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A Rigorous Theory of Conditional Mean Embeddings\ast 

Ilja Klebanov\dagger , Ingmar Schuster\ddagger , and T. J. Sullivan\S 

Abstract. Conditional mean embeddings (CMEs) have proven themselves to be a powerful tool in many machine
learning applications. They allow the efficient conditioning of probability distributions within the
corresponding reproducing kernel Hilbert spaces by providing a linear-algebraic relation for the kernel
mean embeddings of the respective joint and conditional probability distributions. Both centered
and uncentered covariance operators have been used to define CMEs in the existing literature. In
this paper, we develop a mathematically rigorous theory for both variants, discuss the merits and
problems of each, and significantly weaken the conditions for applicability of CMEs. In the course
of this, we demonstrate a beautiful connection to Gaussian conditioning in Hilbert spaces.

Key words. conditional mean embedding, kernel mean embedding, Gaussian measure, reproducing kernel
Hilbert space
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1. Introduction. Reproducing kernel Hilbert spaces (RKHSs) have long been popular
tools in machine learning because of the powerful property---often called the ``kernel trick""---
that many problems posed in terms of the base set \scrX of the RKHS \scrH (e.g., classification into
two or more classes) become linear-algebraic problems in \scrH under the embedding of \scrX into
\scrH induced by the reproducing kernel k : \scrX \times \scrX \rightarrow \BbbR . This insight has been used to define
the kernel mean embedding (KME; [3], [24]) \mu X \in \scrH of an \scrX -valued random variable X as
the \scrH -valued mean of the embedded random variable k(X, \cdot ), and also the conditional mean
embedding (CME; [10], [27]), which seeks to perform conditioning of the original random
variable X through application of the Gaussian conditioning formula (also known as the
K\'alm\'an update) to the embedded non-Gaussian random variable k(X, \cdot ). This article aims
to provide rigorous mathematical foundations for this attractive but apparently na\"{\i}ve approach
to conditional probability, and hence to Bayesian inference.

To be somewhat more precise---while deferring technical points such as topological con-
siderations, existence and uniqueness of conditional distributions, etc., to section 2---let us
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original spaces \scrX ,\scrY RKHS feature spaces \scrH ,\scrG 

\left\{         
x \in \scrX 
X \sim \BbbP X
Y \sim \BbbP Y

(X,Y ) \sim \BbbP XY

\right\}         
\left\{         
\varphi (x)

\psi (Y ), \varphi (X)

\mu Y , CY , CY X

\mu X , CXY , CX

\right\}         

(Y | X = x) \sim \BbbP Y | X=x \mu Y | X=x =

\left\{     
CY XC

 - 1
X \varphi (x) according to (1.2)

\mu Y + (C\dagger 
XCXY )

\ast (\varphi (x) - \mu X) by (1.3)

(uC\dagger 
X
uCXY )

\ast \varphi (x) by (1.4)

\mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}

\psi ,\varphi 

\mathrm{c}\mathrm{o}
\mathrm{n}
\mathrm{d}
\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}

\mathrm{n}
\mathrm{i}\mathrm{n}
\mathrm{g}
\mathrm{o}
\mathrm{n}

X
=
x

\mathrm{c}\mathrm{o}
\mathrm{n}
\mathrm{d}
\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}

\mathrm{n}
\mathrm{a}
\mathrm{l}
\mathrm{m}
\mathrm{e}\mathrm{a}

\mathrm{n}

\mathrm{e}\mathrm{m}
\mathrm{b}
\mathrm{e}\mathrm{d}

\mathrm{d}
\mathrm{i}\mathrm{n}
\mathrm{g}

\mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}

Figure 1.1. While conditioning of the probability distributions in the original spaces \scrX ,\scrY is a possibly com-
plicated, nonlinear problem, the corresponding formula for their KMEs reduces to elementary linear algebra---a
common guiding theme when working with RKHSs.

fix two RKHSs \scrH and \scrG over \scrX and \scrY , respectively, with reproducing kernels k and \ell and
canonical feature maps \varphi (x) := k(x, \cdot ) and \psi (y) := \ell (y, \cdot ). Let X and Y be random variables
taking values in \scrX and \scrY , respectively, with joint distribution \BbbP XY on \scrX \times \scrY . Let \mu X , \mu Y , and
\mu Y | X=x denote the KMEs of the marginal distributions \BbbP X of X, \BbbP Y of Y , and the conditional
distribution \BbbP Y | X=x of Y given X = x given by

(1.1) \mu X := \BbbE [\varphi (X)] \in \scrH , \mu Y := \BbbE [\psi (Y )] \in \scrG , \mu Y | X=x := \BbbE [\psi (Y )| X = x] \in \scrG .

The CME offers a way to perform conditioning of probability distributions on \scrX and \scrY by
means of linear algebra in the corresponding feature spaces \scrH and \scrG (Figure 1.1). In terms of
the kernel covariance operator CX and cross-covariance operator CY X defined later in (2.3), if
CX is invertible and \BbbE [g(Y )| X = \cdot ] is an element of \scrH whenever g \in \scrG , then the well-known
formula for the CME [27, Theorem 4] is

\mu Y | X=x = CY XC
 - 1
X \varphi (x), x \in \scrX .(1.2)

(We emphasize here that the CME \mu Y | X=x is defined in (1.1) as the KME of \BbbP Y | X=x; the claim
implicit in (1.2) is that \mu Y | X=x can be realized through simple linear algebra involving cross-
covariance operators; cf. the discussion of [20].) Note that there are in fact two theories of
CMEs, one working with centered covariance operators [10, 27] and the other with uncentered
ones [14]. We will discuss both theories in detail, but let us focus for a moment on the centered
case for which the above formula was originally derived.

In the trivial case where X and Y are independent, the CME should yield \mu Y | X=x = \mu Y .
However, independence implies that CY X = 0, and so (1.2) yields \mu Y | X=x = 0, regardless of
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x. In order to understand what has gone wrong it is helpful to consider in turn the two cases
in which the constant function 1\scrX : x \mapsto \rightarrow 1 is, or is not, an element of \scrH .

\bullet If 1\scrX \in \scrH , then CX cannot be injective, since CX1\scrX = 0, and (1.2) is not applicable.
\bullet If 1\scrX /\in \scrH and X and Y are independent, then the assumption \BbbE [g(Y )| X = \cdot ] \in \scrH for
g \in \scrG cannot be fulfilled (except for those special elements g \in \scrG for which \BbbE [g(Y )] = 0
or if \BbbE [\ell (y, Y )] = 0 for all y \in \scrY , respectively), and (1.2) is again not applicable.

In summary, (1.2) is never applicable for independent random variables except in certain
degenerate cases. Note that this problem does not occur in the case of uncentered operators,
where uCX (defined in (2.5)) is typically injective.

Therefore, this paper aims to provide a rigorous theory of CMEs that not only addresses
the above-mentioned pathology but also substantially generalizes the assumptions under which
CME can be performed. We will treat both centered and uncentered (cross-)covariance oper-
ators, with particular emphasis on the centered case, and we will also exhibit a connection to
Gaussian conditioning in general Hilbert spaces.

(1) The standard assumption \BbbE [g(Y )| X = \cdot ] \in \scrH for CME is rather restrictive.1 We show
in section 4 that this assumption can be significantly weakened in the case of centered
kernel (cross-)covariance operators as defined in (2.3): only \BbbE [g(Y )| X = \cdot ] shifted by
some constant function needs to lie in \scrH (Assumption B). In this setting, the correct
expression of the CME formula is

(1.3) \mu Y | X=x = \mu Y + (C\dagger 
XCXY )

\ast (\varphi (x) - \mu X) for \BbbP X -a.e. x \in \scrX ,

where A\ast denotes the adjoint and A\dagger the Moore--Penrose pseudoinverse of a linear
operator A. As a first sanity check, note that this formula indeed yields \mu Y | X=x = \mu Y
when X and Y are independent. Similarly, as shown in section 5, for uncentered
kernel (cross-)covariance operators uCX and uCXY as defined later in (2.5), the correct
formulation of the CME is

(1.4) \mu Y | X=x = (uC\dagger 
X
uCXY )

\ast \varphi (x) for \BbbP X -a.e. x \in \scrX .

(2) Furthermore, the assumption \BbbE [g(Y )| X = \cdot ] \in \scrH , g \in \scrG , is hard to check in most
applications. To the best of our knowledge, the only verifiable condition that implies
this assumption is given by [11, Proposition 4]. However, this condition is itself difficult
to check.2 We will present weaker assumptions (Assumption B\ast ) for the applicability
of CMEs that hold whenever the kernel k is characteristic.3 Characteristic kernels are

1Fukumizu, Song, and Gretton [14] themselves write ``Note, however, that the assumptions [. . . ] may not
hold in general; we can easily give counterexamples for the latter in the case of Gaussian kernels."" More
precisely, for a Gaussian kernel k on, say, [0, 1] and independent random variables X and Y , \BbbE [g(Y )| X = \cdot ] is
a constant function for each g \in \scrG , which does not lie in the RKHS corresponding to k (unless it happens to
be the zero function) by [31, Corollary 5] or [30, Corollary 4.44].

2The original condition of [10, Proposition 4] was verifiable in certain situations, but the proposition itself
turned out to be incorrect. The corrected condition in the erratum [11] seems to be much harder to check---at
least, no explicit case is given in which it is easier to verify than \BbbE [g(Y )| X = \cdot ] being in \scrH for each g \in \scrG .

3A kernel k is called characteristic [13] if the kernel mean embedding is injective as a function from \{ \BbbQ | 
\BbbQ is a prob. meas. on \scrX with

\int 
\scrX \| \varphi (x)\| \scrH d\BbbQ (x) < \infty \} into \scrH ; naturally, the KME cannot be injective as a

function from the space of random variables on \scrX to \scrH , since random variables with the same law embed to
the same point of \scrH .
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well studied (see, e.g., [29]) and therefore provide a verifiable condition as desired.
(3) The applicability of (1.2) requires the additional assumptions that CX is injective and

that \varphi (x) lies in the range of CX , which is also hard to verify in practice.4 We show
that both assumptions can be avoided completely by replacing CY XC

 - 1
X in (1.2) by

(C\dagger 
XCXY )

\ast in (1.3) and (uC\dagger 
X
uCXY )

\ast in (1.4), which turn out to be globally defined
and bounded operators under rather weak assumptions (Assumptions C and uC).

(4) The experienced reader will also observe that, modulo the replacement of CY XC
 - 1
X

by (C\dagger 
XCXY )

\ast , (1.3) is identical to the familiar Sherman--Morrison--Woodbury/Schur
complement formula for conditional Gaussian distributions, a connection upon which
we will elaborate in detail in section 7. We call particular attention to the fact that
the random variable (\psi (Y ), \varphi (X)), which has no reason to be normally distributed,
behaves very much like a Gaussian random variable in terms of its conditional mean.

Remark 1.1. Note that we stated (1.3) and (1.4) only for \BbbP X -a.e. x \in \scrX . This is the
best that one can generally hope for, since the regular conditional probability \BbbP Y | X=x is
uniquely determined only for \BbbP X -a.e. x \in \scrX [17, Theorem 5.3]. The work on CMEs so far
completely ignores the fact that conditioning (especially on events of the form X = x) is not
trivial, requires certain assumptions, and, in general, yields results only for \BbbP X -a.e. x \in \scrX . In
particular, the condition on \BbbE [g(Y )| X = \cdot ] to lie in \scrH is ill posed, since these functions are
uniquely defined only \BbbP X -a.e., which in certain situations may be practically nowhere, and
the same reasoning applies to the above-mentioned condition given by [11, Proposition 4].
The existence and almost sure uniqueness of the regular conditional probability distribution
\BbbP Y | X=x will be addressed in a precise manner in section 2.

Remark 1.2. The focus of this paper is the validity of the nonregularized population for-
mulation of the CME in terms of the covariance structure of the KME of the data-generating
distribution \BbbP XY . The construction of valid CME formulae based on empirical sample data
(i.e., finitely many draws from \BbbP XY ) is vital in practice but is also much harder to analyze.
We give some remarks on this setting in section SM2 of the supplementary material.

The rest of the paper is structured as follows. Section 2 establishes the notation and
problem setting and motivates some of the assumptions that are made. Section 3 discusses
several critical assumptions for the applicability of the theory of CMEs and the relations
among them. Section 4 proceeds to build a rigorous theory of CMEs using centered covariance
operators, with the main results being Theorems 4.3 and 4.4, whereas section 5 does the
same for uncentered covariance operators, with the main results being Theorems 5.3 and 5.4.
Section 6 reviews the established theory for the conditioning of Gaussian measures on Hilbert
spaces, and this is then used in section 7 to rigorously connect the theory of CMEs to the
conditioning of Gaussian measures, with the main result being Theorem 7.1. We give some
closing remarks in section 8. The supplementary material contains various auxiliary technical
results (section SM1) and discusses the possible extension of our results to empirical estimation
of CMEs (section SM2).

4Note that, typically, dim\scrH = \infty , in which case the compact operator CX cannot possibly be surjective. To
verify that \varphi (x) \in ranCX , one would need to compute a singular value decomposition CX =

\sum 
n\in \BbbN \sigma nhn \otimes hn

of CX and check the Picard condition
\sum 

n\in \BbbN \sigma 
 - 2
n \langle \varphi (x), hn\rangle 2\scrH <\infty .
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2. Setup and notation. Throughout this paper, when considering Hilbert space-valued
random variables U \in \scrL 2(\Omega ,\Sigma ,\BbbP ;\scrG ) and V \in \scrL 2(\Omega ,\Sigma ,\BbbP ;\scrH ) defined over a probability space
(\Omega ,\Sigma ,\BbbP ), the expected value \BbbE [U ] :=

\int 
\Omega U(\omega ) d\BbbP (\omega ) is meant in the sense of a Bochner integral

[5, section II.2], as are the uncentered and centered cross-covariance operators

u\BbbC ov[U, V ] := \BbbE [U \otimes V ] and \BbbC ov[U, V ] := \BbbE [(U  - \BbbE [U ])\otimes (V  - \BbbE [V ])]

from \scrH into \scrG , where, for h \in \scrH and g \in \scrG , the outer product g \otimes h : \scrH \rightarrow \scrG is the rank-one
linear operator (g \otimes h)(h\prime ) := \langle h, h\prime \rangle \scrG g. Naturally, we write u\BbbC ov[U ] and \BbbC ov[U ] for the
covariance operators u\BbbC ov[U,U ] and \BbbC ov[U,U ], respectively, and all of the above reduces to
the usual definitions in the scalar-valued case. Both the centered and uncentered covariance
operators of a square-integrable random variable are self-adjoint and nonnegative, and---in the
separable Hilbert case that is our exclusive focus---also trace-class (see [2, 22] for the centered
case; the uncentered case follows from [15, Corollary 2.1]).

Our treatment of CMEs will operate under the following assumptions and notation.

Assumption 2.1.
(a) (\Omega ,\Sigma ,\BbbP ) is a probability space, \scrX is a measurable space, and \scrY is a Borel space.5

(b) k : \scrX \times \scrX \rightarrow \BbbR and \ell : \scrY \times \scrY \rightarrow \BbbR are symmetric and positive definite kernels, such
that k(x, \cdot ) and \ell (y, \cdot ) are Borel-measurable functions for each x \in \scrX and y \in \scrY .

(c) (\scrH , \langle \cdot , \cdot \rangle \scrH ) and (\scrG , \langle \cdot , \cdot \rangle \scrG ) are the corresponding RKHSs, which we assume to be
separable. Indeed, according to [18], if the base sets \scrX and \scrY are separable absolute
Borel spaces or analytic subsets of Polish spaces, then separability of \scrH and \scrG follows
from the measurability of their respective kernels and feature maps.

(d) The corresponding canonical feature maps are \varphi : \scrX \rightarrow \scrH , \varphi (x) := k(x, \cdot ), and \psi : \scrY \rightarrow 
\scrG , \psi (y) := \ell (y, \cdot ), respectively. Note that they satisfy the ``reproducing properties""
\langle h, \varphi (x)\rangle \scrH = h(x), \langle g, \psi (y)\rangle \scrG = g(y) for x \in \scrX , y \in \scrY , h \in \scrH , g \in \scrG and that \varphi and \psi 
are Borel measurable in view of [30, Lemma 4.25].

(e) X : \Omega \rightarrow \scrX and Y : \Omega \rightarrow \scrY are random variables with distributions \BbbP X and \BbbP Y and
joint distribution \BbbP XY . Assumption 2.1(a) and [17, Theorem 5.3] ensure the existence
of a \BbbP X -a.e.-unique regular version of the conditional probability distribution \BbbP Y | X=x;
the choice of a representative of \BbbP Y | X=x has no impact on our results. We assume that

(2.1) \BbbE 
\bigl[ 
\| \varphi (X)\| 2\scrH + \| \psi (Y )\| 2\scrG 

\bigr] 
<\infty ,

which also implies that \scrX Y := \{ x \in \scrX | \BbbE 
\bigl[ 
\| \psi (Y )\| 2\scrG | X = x

\bigr] 
< \infty \} has full \BbbP X

measure.6 Hence, \scrH \subseteq \scrL 2(\BbbP X), \scrG \subseteq \scrL 2(\BbbP Y ), and \scrG \subseteq \scrL 2(\BbbP Y | X=x) for x \in \scrX Y since,
by the reproducing property and the Cauchy--Schwarz inequality,

\| h\| 2\scrL 2(\BbbP X) =

\int 
\scrX 
| h(x)| 2 d\BbbP X(x) =

\int 
\scrX 
| \langle h, \varphi (x)\rangle \scrH | 2 d\BbbP X(x)

\leq 
\int 
\scrX 
\| h\| 2\scrH \| \varphi (x)\| 2\scrH d\BbbP X(x) = \BbbE [\| \varphi (X)\| 2\scrH ] \| h\| 2\scrH (2.2)

5A space \scrY is called a Borel space if it is Borel isomorphic to a Borel subset of [0, 1]. In particular, \scrY is a
Borel space if it is Polish, i.e., if it is separable and completely metrizable; see [17, Chapter 1].

6Otherwise, \BbbE [\| \psi (Y )\| 2\scrG ] = \BbbE [\BbbE [\| \psi (Y )\| 2\scrG | X]] could not be finite.
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for all h \in \scrH , and similarly for g \in \scrG and \BbbP Y , \BbbP Y | X=x, x \in \scrX Y . It follows from
(2.2) that the inclusions \iota \varphi ,\BbbP X

: \scrH \lhook \rightarrow \scrL 2(\BbbP X), \iota \psi ,\BbbP Y
: \scrG \lhook \rightarrow \scrL 2(\BbbP Y ) are bounded linear

operators, and so is \iota \psi ,\BbbP Y | X=x
: \scrG \lhook \rightarrow \scrL 2(\BbbP Y | X=x) for x \in \scrX Y .

(f) We further assume that, for all h \in \scrH , h = 0 \BbbP X -a.e. in \scrX if and only if h = 0, i.e.,
almost everywhere equality separates points in \scrH . This assumption clearly holds if k
is continuous and the topological support of \BbbP X is all of \scrX .7 It ensures that we can
view \scrH as a subspace of L2(\BbbP X) and write f \in \scrH for functions f \in L2(\BbbP X) whenever
there exists h \in \scrH (which, by this assumption, is unique) such that f = h \BbbP X -a.e.

(g) Several derivations will rely on the Bochner space L2(\BbbP X ;\scrF ), which is isometrically
isomorphic to the Hilbert tensor product space L2(\BbbP X)\otimes \scrF . Here, \scrF denotes another
Hilbert space, which in our case will be equal to either \BbbR or \scrG . Motivated by the
discussion in section 1 and the fact that \BbbC ov[f(X), f(X)] = \BbbV [f(X)] = 0 if and only
if f is \BbbP X -a.e. constant, we consider the quotient space L2

\scrC (\BbbP X ;\scrF ) := L2(\BbbP X ;\scrF )/\scrC ,8

\scrC := \{ f \in L2(\BbbP X ;\scrF ) | \exists c \in \scrF : f(x) = c for \BbbP X -a.e. x \in \scrX \} ,

\langle [f1], [f2]\rangle L2
\scrC (\BbbP X ;\scrF ) := \langle f1  - \BbbE [f1(X)], f2  - \BbbE [f2(X)]\rangle L2(\BbbP X ;\scrF ).

Note that, in the case \scrF = \BbbR , we obtain \langle [f1], [f2]\rangle L2
\scrC (\BbbP X ;\BbbR ) = \BbbC ov[f1(X), f2(X)], in

which case we will abbreviate the space L2(\BbbP X ;\BbbR ) by L2(\BbbP X) or simply L2 and the
space L2

\scrC (\BbbP X ;\BbbR ) by L2
\scrC (\BbbP X) or simply L2

\scrC . For any closed subspace U \subseteq L2(\BbbP X)
we can view U \otimes \scrF as a subspace of L2(\BbbP X ;\scrF ) by the above isometry and identify
(U \otimes \scrF )\scrC := (U \otimes \scrF )/((U \otimes \scrF ) \cap \scrC ) with a subspace of L2

\scrC (\BbbP X ;\scrF ). Note that, in
the particular case U \subseteq \scrH (with U closed in L2(\BbbP X)), the construction of U \otimes \scrF and
(U \otimes \scrF )\scrC treats U as a subspace of L2(\BbbP X) and ignores the existence of the RKHS
norm \| \cdot \| \scrH .

(h) We use overlines and superscripts to denote topological closures, so that, for example,

\scrH \scrC 
L2
\scrC is the closure of \scrH \scrC with respect to the norm \| \cdot \| L2

\scrC 
, and \scrH L2

is the closure of

\scrH with respect to the norm \| \cdot \| L2 .
(i) Since \varphi and \psi are Borel measurable, Z := (\psi (Y ), \varphi (X)) is a well-defined \scrG \oplus \scrH -valued

random variable; (2.1) ensures that Z has finite second moment, and hence its mean
\BbbE [Z] and covariance operator \BbbC ov[Z] are well defined, Sazonov's theorem implies that
\BbbC ov[Z] has finite trace, and we obtain the following block structures:

(2.3) \mu := \BbbE 
\biggl[ \biggl( 
\psi (Y )
\varphi (X)

\biggr) \biggr] 
=

\biggl( 
\mu Y
\mu X

\biggr) 
, C := \BbbC ov

\biggl[ \biggl( 
\psi (Y )
\varphi (X)

\biggr) \biggr] 
=

\biggl( 
CY CY X
CXY CX

\biggr) 
,

7If k is continuous, then so is every h \in \scrH [21, Theorem 2.3]. So, if h \in \scrH and | h(x)| = \varepsilon > 0 for some
x \in \scrX , then | h| > \varepsilon /2 on some open neighborhood of x. Thus, if supp(\BbbP X) = \scrX , then h = 0 \BbbP X -a.e. cannot
hold.

8By the variational characterization of the expected value \BbbE [Z] of a random variable Z \in L2(\BbbP ;\scrF ), \BbbE [Z] =
argminm\in \scrF \BbbE [\| Z  - \BbbE [Z]\| 2\scrF ], the norm \| \cdot \| L2

\scrC (\BbbP X ;\scrF ) coincides with the norm \| [f ]\| = infm\in \scrC \| f  - m\| L2(\BbbP X ;\scrF )

induced on L2
\scrC (\BbbP X ;\scrF ) by the norm \| \cdot \| L2(\BbbP X ;\scrF ).
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where the components

\mu Y := \BbbE [\psi (Y )], CY := \BbbC ov[\psi (Y )], CY X := \BbbC ov[\psi (Y ), \varphi (X)],

\mu X := \BbbE [\varphi (X)], CXY := \BbbC ov[\varphi (X), \psi (Y )], CX := \BbbC ov[\varphi (X)]

are called the kernel mean embeddings (KMEs) and kernel (cross-)covariance opera-
tors, respectively. Note that C\ast 

XY = CY X and that the reproducing properties trans-
late to the KMEs and covariance operators as follows: for arbitrary h, h\prime \in \scrH and
g \in \scrG ,

\langle h, \mu X\rangle \scrH = \BbbE [h(X)],

\langle h,CXh\prime \rangle \scrH = \BbbC ov[h(X), h\prime (X)],

\langle h,CXY g\rangle \scrH = \BbbC ov[h(X), g(Y )],

and so on. We are further interested in the conditional kernel mean embedding and
the conditional kernel covariance operator given by

(2.4) \mu Y | X=x = \BbbE [\psi (Y )| X = x], CY | X=x = \BbbC ov[\psi (Y )| X = x], x \in \scrX Y .

We set \mu Y | X=x := 0 on the \BbbP X -null set \scrX \setminus \scrX Y . Similarly, Z = (\psi (Y ), \varphi (X)) has the
uncentered kernel covariance structure

(2.5) uC := u\BbbC ov
\biggl[ \biggl( 
\psi (Y )
\varphi (X)

\biggr) \biggr] 
=

\biggl( 
uCY

uCY X
uCXY

uCX

\biggr) 
,

where uCY := u\BbbC ov[\psi (Y )], etc. Note that for f1, f2 \in L2(\BbbP X), u\BbbC ov(f1(X), f2(X)) =
\langle f1, f2\rangle L2(\BbbP X), and similarly for functions of Y .

(j) For g \in \scrG we let fg(x) := \BbbE [g(Y )| X = x]. More precisely,

fg(x) :=

\Biggl\{ 
\BbbE [g(Y )| X = x] for x \in \scrX Y ,
0 otherwise.

These functions fg will be of particular importance since, for g = \psi (y), y \in \scrY , and x \in 
\scrX , we obtain f\psi (y)(x) = \mu Y | X=x(y), our main object of interest (note that \mu Y | X=x \in \scrG 
for each x \in \scrX , and so its pointwise evaluation at y \in \scrY is meaningful). By (2.1),
(2.2), and the law of total expectation, fg \in L2(\BbbP X) for every g \in \scrG , since

\| fg\| L2(\BbbP X) = \BbbE [fg(X)2] = \BbbE 
\bigl[ 
\BbbE [g(Y )| X]2

\bigr] 
\leq \BbbE 

\bigl[ 
\BbbE [g(Y )2| X]

\bigr] 
= \BbbE [g(Y )2] = \| g\| \scrL 2(\BbbP Y ) <\infty .

Further, another application of the law of total expectation yields

(2.6) \BbbE [fg(X)] = \BbbE [g(Y )], \BbbE [f\psi (y)(X)] = \mu Y (y).

(k) For a linear operator A between Hilbert spaces, A\dagger denotes its Moore--Penrose pseudo-
inverse, i.e., the unique extension of A|  - 1

(\mathrm{k}\mathrm{e}\mathrm{r}A)\bot 
: ranA\rightarrow (kerA)\bot to a linear operator

A\dagger defined on domA\dagger := (ranA) \oplus (ranA)\bot subject to the criterion that kerA\dagger =
(ranA)\bot . In general, domA\dagger is a dense but proper subspace, and A\dagger is an unbounded
operator; global definition and boundedness occur precisely when ranA is closed; see,
e.g., [7, section 2.1].
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Remark 2.2. Measurability of k(x, \cdot ) and \ell (y, \cdot ) together with the separability of \scrH and
\scrG guarantees the measurability of \varphi and \psi [30, Lemma 4.25]. Separability of \scrH and \scrG is also
needed for Gaussian conditioning (see [19] and section 6), for the existence of a countable
orthonormal basis of \scrH , and to ensure that weak (Pettis) and strong (Bochner) measurability
of Hilbert-valued random variables coincide.

3. The crucial assumptions for CMEs. This section discusses various versions of the
assumption fg \in \scrH under which we are going to prove various versions of the CME formula
(note that, by Assumption 2.1(f), their formulations are unambiguous).

Assumption A. For all g \in \scrG , fg \in \scrH .

Assumption B. For all g \in \scrG there exist a function hg \in \scrH and a constant cg \in \BbbR such
that hg = fg  - cg \BbbP X -a.e. in \scrX .

Assumption C. For all g \in \scrG there exists a function hg \in \scrH such that

\BbbC ov[hg(X) - fg(X), h(X)] = 0 for all h \in \scrH .

In this case we denote cg := \BbbE [fg(X) - hg(X)] (in conformity with Assumption B).

Assumption uC. For all g \in \scrG there exists a function hg \in \scrH such that

u\BbbC ov[hg(X) - fg(X), h(X)] = \langle hg  - fg, h\rangle L2(\BbbP X) = 0 for all h \in \scrH .

Remark 3.1. Note that A =\Rightarrow B =\Rightarrow C, that A =\Rightarrow uC, that C =\Rightarrow B if \scrH \scrC \subseteq L2
\scrC (\BbbP X)

is dense, and that C =\Rightarrow A and uC =\Rightarrow A if \scrH \subseteq L2(\BbbP X) is dense.
Unlike Assumption A, Assumptions B and C do not require the unfavorable property

1\scrX \in \scrH for independent random variables X and Y . Instead, this case reduces to the trivial
condition 0 \in \scrH . At the same time, the proofs of the key properties of CMEs are not affected
by replacing Assumption A with Assumption B as long as we work with centered operators
(see Theorems 4.1 and 4.3 below). Therefore, it is surprising that this modification has not
been considered earlier, even though the issues with independent random variables have been
observed before [14]. One reason might be that, instead of centered operators, researchers
started using uncentered ones, for which such a modification is not feasible.

Assumption C, on the other hand, is not strong enough for proving the main formula for
CMEs (the last statement of Theorem 4.3). Clearly, this cannot be expected: If \scrX and \scrG are
reasonably large, but \scrH is not rich enough, e.g., \scrH = \{ 0\} or \scrH = span\{ 1\scrX \} , then no map from
\scrH to \scrG can cover sufficiently many KMEs, in particular the embeddings of the conditional
probability \BbbP Y | X=x for various x (while Assumption C is trivially fulfilled for these choices of
\scrH ). The weakness of Assumption C lies in the fact that it only requires the vanishing of the
orthogonal projection of [hg] - [fg] onto \scrH \scrC . Only if \scrH \scrC is rich enough (e.g., if it is dense in L2

\scrC )
can this condition have useful implications. A similar reasoning applies to Assumption uC.

While it is nice to have a weaker form of Assumption A, Assumptions A, B, and C remain
hard to check in practice. Another condition, provided by [11, Proposition 4], is also hard
to verify in most applications (see footnote 2). Since characteristic kernels are well studied
in the literature, Lemma SM1.4 gives hope for a verifiable condition for the applicability of
CMEs: it states that \scrH \scrC is dense in L2

\scrC (\BbbP X) whenever the kernel k is characteristic. So, if
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the denseness of \scrH \scrC in L2
\scrC (\BbbP X) were sufficient for performing CMEs, then the condition that

k be characteristic would be sufficient as well, thus providing a favorable criterion for the
applicability of formula (1.3). A similar argumentation applies to the condition that \scrH is
dense in L2(\BbbP X) and the condition that k is L2-universal.9 Unfortunately, neither condition
implies Assumption B. Therefore, we will consider the following slightly weaker versions of
Assumptions A and B, under which CMEs can be performed if one allows for certain finite-
rank approximations of the (cross-)covariance operators.

Assumption A\ast . For all g \in \scrG , fg \in \scrH L2

.

Assumption B\ast . For all g \in \scrG there exist a function hg \in \scrH L2

and a constant cg \in \BbbR such
that hg = fg  - cg \BbbP X -a.e. in \scrX .

Note that Assumptions C and uC have no weaker versions, since they would become trivial

if hg \in \scrH \scrC were replaced by hg \in \scrH \scrC 
L2
\scrC and hg \in \scrH by hg \in \scrH L2

, respectively.

Remark 3.2. In terms of the spaces L2
\scrC and \scrH \scrC , Assumptions A--B\ast can be reformulated

as follows: For all g \in \scrG ,
(A) fg \in \scrH ;
(B) [fg] \in \scrH \scrC ;

(C) the orthogonal projection P
\scrH \scrC 

L2
\scrC 
[fg] of [fg] onto \scrH \scrC 

L2
\scrC lies in \scrH \scrC ;

(uC) the orthogonal projection P
\scrH L2fg of fg onto \scrH L2

lies in \scrH ;

(A\ast ) fg \in \scrH L2

;

(B\ast ) [fg] \in \scrH \scrC 
L2
\scrC .

In summary, we consider the hierarchy of assumptions illustrated in Figure 3.1. The main
contributions of this paper are rigorous proofs of three versions of the CME formula under
various assumptions:

\bullet Theorem 4.3 uses Assumption B and centered operators.
\bullet Theorem 4.4 uses Assumption B\ast and finite-rank approximations of centered operators.
\bullet Theorem 5.3 uses Assumption A and uncentered operators.
\bullet Theorem 5.4 uses Assumption A\ast and finite-rank approximations of uncentered oper-
ators.

Note that the theorems for uncentered covariance operators require stronger assumptions
than their centered counterparts and that Theorem 5.4 provides weaker statements than its
centered analogue Theorem 4.4 (we show only the convergence in L2(\BbbP X ;\scrG ), which does not
guarantee convergence for \BbbP X -a.e. x \in \scrX ).

4. Theory for centered operators. In this section we will formulate and prove two ver-
sions of the CME formula (1.3)---the original one under Assumption B and a weaker version

involving finite-rank approximations C
(n)
X , C

(n)
XY of the (cross-)covariance operators under As-

sumption B\ast . The following theorem demonstrates the importance of Assumption C (which

9A kernel k on \scrX is called L2-universal [28] if it is Borel measurable and bounded and if \scrH is dense in
L2(\BbbQ ) for any probability measure \BbbQ on \scrX . Any L2-universal kernel is characteristic [28].

D
ow

nl
oa

de
d 

07
/1

4/
20

 to
 2

13
.2

49
.2

45
.1

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

592 ILJA KLEBANOV, INGMAR SCHUSTER, AND T. J. SULLIVAN

\scrH = L2(\BbbP X) \scrH \scrC = L2
\scrC (\BbbP X)

A: fg \in \scrH for g \in \scrG B: [fg] \in \scrH \scrC for g \in \scrG C: P
\scrH \scrC 

L2
\scrC 
[fg] \in \scrH \scrC for g \in \scrG 

uC: P
\scrH L2fg \in \scrH for g \in \scrG 

A\ast : fg \in \scrH L2

for g \in \scrG B\ast : [fg] \in \scrH \scrC 
L2
\scrC for g \in \scrG 

\scrH dense in L2(\BbbP X) \scrH \scrC dense in L2
\scrC (\BbbP X)

k is L2-universal k is characteristic

Figure 3.1. A hierarchy of CME-related assumptions. Sufficient conditions for validity of the CME formula
are indicated by solid boxes, while the insufficient Assumptions C and uC, indicated by dashed boxes, have
several strong theoretical implications and Assumption C has a beautiful connection to Gaussian conditioning
(Theorem 7.3). Assumption B\ast is the most favorable one, since it is verifiable in practice and, by Lemma SM1.4,
in particular is fulfilled if the kernel is universal or even just characteristic (marked in green). The shaded boxes
correspond to Theorems 4.3, 4.4, 5.3, and 5.4.

follows from Assumption B). It implies that the range of CXY is contained in that of CX ,

making the operator C\dagger 
XCXY well defined. By Theorem SM1.1 it is even a bounded operator,

which is a nontrivial result requiring the application of the closed graph theorem.10

Similar considerations cannot be performed, in general, under Assumption B\ast alone: it
can no longer be expected that ranCXY \subseteq ranCX , which is why we must introduce the

above-mentioned finite-rank approximations in order to guarantee that ranC
(n)
XY \subseteq ranC

(n)
X .

In summary, Assumption B allows for the simple CME formula (1.3) by Theorem 4.1, while
under Assumption B\ast we must make a detour using certain approximations. Note that this
distinction is very similar to the theory of Gaussian conditioning in Hilbert spaces introduced
by [19] and recapped in section 6 below, a connection that will be elaborated upon in detail
in section 7.

Theorem 4.1. Under Assumption 2.1, the following statements are equivalent:
(i) Assumption C holds.
(ii) For each g \in \scrG there exists hg \in \scrH such that CXhg = CXY g.
(iii) ranCXY \subseteq ranCX .

Proof. Note that (iii) is just a reformulation of (ii), so we only have to prove (i) \Leftarrow \Rightarrow (ii).

10Furthermore, by Lemma SM1.3, this operator is actually Hilbert--Schmidt when thought of as an operator
taking values in the appropriate L2 space rather than in the RKHS.
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Let g \in \scrG and h, hg \in \scrH . By Lemma SM1.6, \BbbC ov[h(X), fg(X)] = \langle h,CXY g\rangle \scrH , and so

\BbbC ov[h(X), hg(X)] = \BbbC ov[h(X), fg(X)] \forall h \in \scrH \Leftarrow \Rightarrow \langle h,CXhg\rangle \scrH = \langle h,CXY g\rangle \scrH \forall h \in \scrH 
\Leftarrow \Rightarrow CXhg = CXY g.

Note that Assumption C implies that [hg] \in \scrH \scrC is the orthogonal projection of [fg] \in L2
\scrC 

onto \scrH \scrC with respect to \langle \cdot , \cdot \rangle L2
\scrC 
(see the reformulation of Assumption C in Remark 3.2).

Therefore, there might be some ambiguity in the choice of hg \in \scrH if \scrH contains constant
functions. However, there is a particular choice of hg that always works.

Proposition 4.2. Under Assumption 2.1, if Assumption B or C holds, then hg may be
chosen as

(4.1) hg = C\dagger 
XCXY g.

More precisely, if Assumption C holds, then \BbbC ov[(C\dagger 
XCXY g)(X)  - fg(X), h(X)] = 0 for all

h \in \scrH and g \in \scrG , and if Assumption B holds, or even just fg \in \scrH \scrC for some g \in \scrG , then
there exists a constant cg \in \BbbR such that \BbbP X-a.e. fg = cg + C\dagger 

XCXY g.

Proof. By Theorem 4.1, (4.1) is well defined. Under Assumption C, for all g \in \scrG and
h \in \scrH , and appealing to Theorem 4.1 and Lemma SM1.6,

\BbbC ov[h(X), (C\dagger 
XCXY g)(X)] = \langle h,CXC\dagger 

XCXY g\rangle \scrH = \langle h,CXY g\rangle \scrH = \BbbC ov[h(X), fg(X)].

If fg \in \scrH \scrC for some g \in \scrG , then there exist a function h\prime g \in \scrH and a constant c\prime g \in \BbbR such that,
\BbbP X -a.e. in \scrX , h\prime g = fg  - c\prime g. Theorem 4.1 implies that CXh

\prime 
g = CXY g, and so Lemma SM1.5

implies that h\prime g  - C\dagger 
XCXY g is constant \BbbP X -a.e. Hence, fg  - C\dagger 

XCXY g is constant \BbbP X -a.e.

We now give our first main result, the rigorous statement of the CME formula for cen-
tered (cross-)covariance operators. In fact, we give two results: a ``weak"" result (4.2) under
Assumption C in which the CME, as a function on \scrX , holds only when tested against ele-
ments of \scrH in the L2(\BbbP X) inner product, and a ``strong"" almost-sure equality in \scrG (4.3) under
Assumption B.

Theorem 4.3 (centered CME). Under Assumptions 2.1 and C, C\dagger 
XCXY : \scrG \rightarrow \scrH is a

bounded (see footnote 10) operator and, for all y \in \scrY and h \in \scrH ,

\langle h, \mu Y | X= \cdot (y)\rangle L2(\BbbP X) =
\Bigl\langle 
h,
\bigl( 
\mu Y + (C\dagger 

XCXY )
\ast (\varphi ( \cdot ) - \mu X)

\bigr) 
(y)
\Bigr\rangle 
L2(\BbbP X)

.(4.2)

Suppose in addition that any of the following four conditions holds:
(i) the kernel k is characteristic;
(ii) \scrH \scrC is dense in L2

\scrC (\BbbP X);
(iii) Assumption B holds;
(iv) f\psi (y) \in \scrH \scrC for each y \in \scrY .

Then, for \BbbP X-a.e. x \in \scrX ,

\mu Y | X=x = \mu Y + (C\dagger 
XCXY )

\ast (\varphi (x) - \mu X).(4.3)
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Proof. Theorems SM1.1 and 4.1 imply that C\dagger 
XCXY is well defined and bounded (see foot-

note 10) and that, for each g \in \scrG , we may choose the function hg \in \scrH in Assumptions B and

C to be hg = C\dagger 
XCXY g (by Proposition 4.2). Now (2.6), Lemma SM1.7, and the definition of

cg (see Assumption C) yield that, for x \in \scrX and y \in \scrY ,

(4.4) h\psi (y)(x) + c\psi (y) =
\bigl( 
\mu Y + (C\dagger 

XCXY )
\ast (\varphi (x) - \mu X)

\bigr) 
(y).

This yields (4.2) for each h \in \scrH via

\langle h,
\bigl( 
\mu Y | X= \cdot  - \mu Y  - (C\dagger 

XCXY )
\ast (\varphi ( \cdot ) - \mu X)

\bigr) 
(y)\rangle L2(\BbbP X)

= \langle h, f\psi (y)  - h\psi (y)  - c\psi (y)\rangle L2(\BbbP X)

= \BbbC ov[h(X), (f\psi (y)  - h\psi (y))(X)]\underbrace{}  \underbrace{}  
=0

+\BbbE [h(X)]
\bigl( 
\BbbE [(f\psi (y)  - h\psi (y))(X)] - c\psi (y)\underbrace{}  \underbrace{}  

=0

\bigr) 
= 0.

If (i) or (ii) holds (note that, by Lemma SM1.4, (i) =\Rightarrow (ii)), then (4.3) follows directly. If
(iii) or (iv) holds (with f\psi (y) = h\psi (y)+ c\psi (y), h\psi (y) \in \scrH , c\psi (y) \in \BbbR ), then (4.3) can be obtained
from

\mu Y | X=x(y) = \BbbE [\ell (y, Y )| X = x] = f\psi (y)(x)
(\ast )
= h\psi (y)(x) + c\psi (y)

=
\bigl( 
\mu Y + (C\dagger 

XCXY )
\ast (\varphi (x) - \mu X)

\bigr) 
(y),

where all equalities hold for \BbbP X -a.e. x \in \scrX and the last equality follows from (4.4) (note that
we might be arguing with two different choices of h\psi (y), which we may assume to agree by
Proposition 4.2).

Note that step (\ast ) in the proof of Theorem 4.3 genuinely requires condition (iv) (which
follows from Assumption B), and Assumption C alone does not suffice. Again we see that
\scrH needs to be rich enough. The reason that we get (4.2) in terms of the inner product of
L2(\BbbP X), and not its weaker version in L2

\scrC (\BbbP X), is that we took care of the shifting constant
cg := \BbbE [fg(X) - hg(X)].

Motivated by the theory of Gaussian conditioning in Hilbert spaces [19] presented in
section 6 and Theorem 6.2 in particular, we hope to generalize CMEs to the case where
ranCXY \subseteq ranCX (i.e., by Theorem 4.1, Assumption C) does not necessarily hold. As
mentioned above, this will require us to work with certain finite-rank approximations of the
operators CX and CXY . We are still going to need some assumption that guarantees that \scrH 
is rich enough to be able to perform the conditioning process in the RKHSs. For this purpose
Assumption B will be replaced by its weaker version, Assumption B\ast .

Theorem 4.4 (centered CME under finite-rank approximation). Let Assumption 2.1 hold.
Further, let (hn)n\in \BbbN be a complete orthonormal system of \scrH that is an eigenbasis of CX , let
\scrH (n) := span\{ h1, . . . , hn\} , let \scrF := \scrG \oplus \scrH , let P (n) : \scrF \rightarrow \scrF be the orthogonal projection onto
\scrG \oplus \scrH (n), and let

C :=

\biggl( 
CY CY X
CXY CX

\biggr) 
, C(n) := P (n)CP (n) =

\Biggl( 
CY C

(n)
Y X

C
(n)
XY C

(n)
X

\Biggr) 
.
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Then ranC
(n)
XY \subseteq ranC

(n)
X and therefore h

(n)
g := C

(n)\dagger 
X C

(n)
XY g \in \scrH is well defined for each g \in \scrG .

For each y \in \scrY and h \in \scrH ,

(4.5) \langle h, \mu Y | X= \cdot (y)\rangle L2(\BbbP X) = lim
n\rightarrow \infty 

\langle h, \mu (n)( \cdot , y)\rangle L2(\BbbP X),

where, for x \in \scrX and y \in \scrY ,

\mu (n)(x, y) :=
\bigl( 
\mu Y + (C

(n)\dagger 
X C

(n)
XY )

\ast (\varphi (x) - \mu X)
\bigr) 
(y).

Suppose in addition that any of the following four conditions holds:
(i) the kernel k is characteristic;
(ii) \scrH \scrC is dense in L2

\scrC (\BbbP X);
(iii) Assumption B\ast holds;

(iv) f\psi (y) \in \scrH \scrC 
L2
\scrC for each y \in \scrY .

Then, as n\rightarrow \infty ,

(4.6)
\bigm\| \bigm\| \mu (n)(X, \cdot ) - \mu Y | X

\bigm\| \bigm\| 
L2(\BbbP ;\scrG ) \rightarrow 0,

\bigm\| \bigm\| \mu Y | X=x  - \mu (n)(x, \cdot )
\bigm\| \bigm\| 
\scrG \rightarrow 0 for \BbbP X-a.e. x \in \scrX .

Proof. Note that, since C is a trace-class operator, so is C(n). Furthermore, by [2, Theo-

rem 1], C
(n)
XY = (C

(n)
X )1/2V C

1/2
Y for some bounded operator V : \scrG \rightarrow \scrH . Since C

(n)
X has finite

rank, this implies that ranC
(n)
XY \subseteq ranC

(n)
X . Similarly to the proof of Theorem 4.3, we define

c
(n)
g := \BbbE [(fg  - h

(n)
g )(X)] for g \in \scrG , n \in \BbbN and obtain by (2.6) and Lemma SM1.7 for x \in \scrX ,

y \in \scrY , and n \in \BbbN that

(4.7) h
(n)
\psi (y)(x) + c

(n)
\psi (y) = \mu (n)(x, y).

Identity (4.5) can be obtained similarly to (4.2) except that we also need to show that

\BbbC ov[h(X), fg(X)] = limn\rightarrow \infty \BbbC ov[h(X), h
(n)
g (X)] for all h \in \scrH , as proved in Lemma SM1.9(a).

To establish (4.6), we first note that, by Lemma SM1.9(b), for all g \in \scrG , [h(n)g ] is the

L2
\scrC -orthogonal projection of [fg] onto \scrH (n)

\scrC . Now let y \in \scrY and U :=
\bigcup 
n\in \BbbN \scrH (n)

\scrC . Note that,

by Lemma SM1.4, (i) =\Rightarrow (ii) =\Rightarrow (iii) =\Rightarrow (iv), so let us assume (iv). Since U
\scrH \scrC = \scrH \scrC 

and [f\psi (y)] \in \scrH \scrC 
L2
\scrC by assumption, and since (2.2) implies that \| \cdot \| \scrH is a stronger norm than

\| \cdot \| L2 , we also have [f\psi (y)] \in U
L2
\scrC and Lemma SM1.8 implies

(4.8)
\bigm\| \bigm\| [h(n)\psi (y)] - [f\psi (y)]

\bigm\| \bigm\| 
L2
\scrC 
 -  -  - \rightarrow 
n\rightarrow \infty 

0.

For x \in \scrX and n \in \BbbN let m(n)(x) := h
(n)
\psi ( \cdot )(x) = (C

(n)\dagger 
X C

(n)
XY )

\ast \varphi (x) \in \scrG and m(x) := f\psi ( \cdot )(x) =
\mu Y | X=x \in \scrG . Then m(n),m \in L2(\BbbP X ;\scrG ) by (2.1), since

\| m(n)\| 2L2(\BbbP X ;\scrG ) = \BbbE 
\bigl[ \bigm\| \bigm\| (C(n)\dagger 

X C
(n)
XY )

\ast \varphi (X)
\bigm\| \bigm\| 2
\scrG 
\bigr] 
\leq 
\bigm\| \bigm\| (C(n)\dagger 

X C
(n)
XY )

\ast \bigm\| \bigm\| \BbbE \bigl[ \| \varphi (X)\| 2\scrH 
\bigr] 
<\infty ,

\| m\| 2L2(\BbbP X ;\scrG ) = \BbbE 
\bigl[ 
\| \BbbE [\psi (Y )| X]\| 2\scrG 

\bigr] 
\leq \BbbE 

\bigl[ 
\BbbE [\| \psi (Y )\| 2\scrG | X]

\bigr] 
= \BbbE 

\bigl[ 
\| \psi (Y )\| 2\scrG 

\bigr] 
<\infty .
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So far, we have shown that, for each y \in \scrY ,

\bullet ([m(n)]( \cdot ))(y) is the L2
\scrC (\BbbP X)-orthogonal projection of ([m]( \cdot ))(y) onto \scrH (n)

\scrC ;
\bullet ([m(n)]( \cdot ))(y) \rightarrow ([m]( \cdot ))(y) in L2

\scrC (\BbbP X) as n\rightarrow \infty .
Hence, by Lemma SM1.10(a) and (b),

(4.9)
\bigm\| \bigm\| (m(n)(X) - \BbbE [m(n)(X)]) - (m(X) - \BbbE [m(X)])

\bigm\| \bigm\| 
L2(\BbbP ;\scrG )  -  -  - \rightarrow n\rightarrow \infty 

0.

Therefore, by (4.7) and the definition of c
(n)
g , \mu (n)(X, \cdot ) converges to \mu Y | X = f\psi ( \cdot )(X) = m(X)

in Lp(\BbbP ;\scrG ) for p = 2 and, since \BbbP is a finite measure, also for p = 1. By Lemma SM1.11,
(\mu (n)(X, \cdot ))n\in \BbbN is a martingale, and so [5, Theorem V.2.8] implies that this convergence even
holds a.e., i.e., \mu (n)(x, \cdot ) converges in \scrG to \mu Y | X=x for \BbbP X -a.e. x \in \scrX .

5. Theory for uncentered operators. Beginning with the work of [25, 26], uncentered
(cross-)covariance operators became more commonly used than centered ones. This section
shows how results similar to those of section 4 can be obtained for uncentered operators.
Roughly speaking, the same conclusions can be made as in Theorem 4.3 but under Assump-
tion A in place of B, while only weaker statements than in Theorem 4.4 can be obtained in
Theorem 5.4 (no \BbbP X -a.e. convergence; see below) and again under the stronger Assumption A\ast 

in place of B\ast . This observation suggests that centered operators are superior to uncentered
ones in terms of generality. So far, the theoretical justification for CME using uncentered
operators relies on [14, Theorems 1 and 2], which require rather strong assumptions. Our
improvement can be summarized as follows:

\bullet Since we use uC\dagger 
X instead of uC - 1

X our theory can cope with noninjective operators
uCX . This is only a minor advance, since uCX is injective under rather mild conditions
on X and k (see [14, Footnote 3]).

\bullet In contrast to [14, Theorem 2], we do not require the assumption that \varphi (x) lies in

the range of uCX . The reason for this is that the operator (uC\dagger 
X
uCXY )

\ast in (4.3) is
globally defined, whereas uCY X

uC - 1
X is not. This is an important improvement since

the assumption that \varphi (x) \in ran uCX is typically hard to verify (see Footnote 4).
\bullet We state a version of the CME formula under Assumption A\ast , which is a verifiable
condition since it follows from the kernel k being L2-universal.

\bullet As explained in Remark 1.1, the condition in [14, Theorem 2] on \BbbE [g(Y )| X = \cdot ] to
lie in \scrH for each g \in \scrG is ill posed, since these functions are uniquely defined only
\BbbP X -a.e. However, in our case, Assumption 2.1(f) ensures that Assumptions A and A\ast 

are unambiguous.
As mentioned above, using centered operators instead of uncentered ones yields the important
advantage of requiring only the weaker Assumption B in place of A or Assumption B\ast in
place of A\ast , respectively. Further, Theorem 5.4 provides weaker statements than its centered
analogue, Theorem 4.4: we show only convergence in L2(\BbbP X ;\scrG ), which does not guarantee
convergence for \BbbP X -a.e. x \in \scrX .

Theorem 5.1. Under Assumption 2.1, the following statements are equivalent:
(i) Assumption uC holds;
(ii) for each g \in \scrG there exists hg \in \scrH such that uCXhg =

uCXY g;
(iii) ran uCXY \subseteq ran uCX .
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Proof. The proof is identical to that of Theorem 4.1 (apart from using uncentered covari-
ance operators in place of centered ones).

Similar to Proposition 4.2, the element hg \in \scrH in Assumption uC can always be chosen

as hg =
uC\dagger 

X
uCXY g.

Proposition 5.2. Let Assumption 2.1 hold. Under Assumption uC, hg may be chosen as

(5.1) hg =
uC\dagger 

X
uCXY g.

More precisely, u\BbbC ov[(uC\dagger 
X
uCXY g)(X) - fg(X), h(X)] = 0 for all h \in \scrH and g \in \scrG . If fg \in \scrH 

for some g \in \scrG , then the identity fg =
uC\dagger 

X
uCXY g holds \BbbP X-a.e.

Proof. By Theorem 5.1, (5.1) is well defined. If Assumption uC holds, then, by Theo-
rem 5.1 and Lemma SM1.6, for all g \in \scrG and h \in \scrH ,

u\BbbC ov[h(X), (uC\dagger 
X
uCXY g)(X)] = \langle h, uCX uC\dagger 

X
uCXY g\rangle \scrH 

= \langle h, uCXY g\rangle \scrH = u\BbbC ov[h(X), fg(X)].

If fg \in \scrH holds for some g \in \scrG , then Lemma SM1.6 implies that uCXfg = uCXY g for all
g \in \scrG and the claim follows from Lemma SM1.5.

Let us now formulate and prove the analogues of Theorems 4.3 and 4.4 for uncentered
operators.

Theorem 5.3 (uncentered CME). Under Assumptions 2.1 and uC, the linear operator
uC\dagger 

X
uCXY : \scrG \rightarrow \scrH is bounded (see footnote 10) and, for all y \in \scrY and h \in \scrH ,

\langle h, \mu Y | X= \cdot (y)\rangle L2(\BbbP X) =
\Bigl\langle 
h,
\bigl( 
(uC\dagger 

X
uCXY )

\ast \varphi ( \cdot )
\bigr) 
(y)
\Bigr\rangle 
L2(\BbbP X)

.(5.2)

Suppose in addition that any of the following four conditions holds:
(i) the kernel k is L2-universal;
(ii) \scrH is dense in L2(\BbbP X);
(iii) Assumption A holds;
(iv) f\psi (y) \in \scrH for each y \in \scrY .

Then, for \BbbP X-a.e. x \in \scrX ,

\mu Y | X=x = (uC\dagger 
X
uCXY )

\ast \varphi (x).(5.3)

Proof. First note that, by Theorems SM1.1 and 5.1, uC\dagger 
X
uCXY is well defined and

bounded (see footnote 10) and that for each g \in \scrG we may choose the function hg \in \scrH 
in Assumption uC as hg =

uC\dagger 
X
uCXY g by Proposition 5.2. By Lemma SM1.7 we obtain, for

all x \in \scrX and y \in \scrY ,

h\psi (y)(x) =
\bigl( 
(uC\dagger 

X
uCXY )

\ast \varphi (x)
\bigr) 
(y).

This yields (5.2) via\Bigl\langle 
h,
\bigl( 
\mu Y | X= \cdot  - (uC\dagger 

X
uCXY )

\ast \varphi ( \cdot )
\bigr) 
(y)
\Bigr\rangle 
L2(\BbbP X)

= \langle h, f\psi (y)  - h\psi (y)\rangle L2(\BbbP X)

= u\BbbC ov[h(X), (f\psi (y)  - h\psi (y))(X)] = 0,
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which implies (5.3) under any of the four conditions stated in the theorem (possibly using
Proposition 5.2).

Theorem 5.4 (uncentered CME under finite-rank approximation). Let Assumption 2.1 hold.
Further, let (hn)n\in \BbbN be a complete orthonormal system of \scrH that is an eigenbasis of CX , let
\scrH (n) := span\{ h1, . . . , hn\} , let \scrF := \scrG \oplus \scrH , let P (n) : \scrF \rightarrow \scrF be the orthogonal projection onto
\scrG \oplus \scrH (n), and let

uC :=

\biggl( 
uCY

uCY X
uCXY

uCX

\biggr) 
, uC(n) := P (n) uCP (n) =

\Biggl( 
uCY

uC
(n)
Y X

uC
(n)
XY

uC
(n)
X

\Biggr) 
.

Then ran uC
(n)
XY \subseteq ran uC

(n)
X and therefore uh

(n)
g := uC

(n)\dagger 
X

uC
(n)
XY g \in \scrH is well defined for each

g \in \scrG . For each y \in \scrY and h \in \scrH ,

(5.4) \langle h, \mu Y | X= \cdot (y)\rangle L2(\BbbP X) = lim
n\rightarrow \infty 

\langle h, \mu (n)( \cdot , y)\rangle L2(\BbbP X),

where, for x \in \scrX and y \in \scrY ,

(5.5) u\mu (n)(x, y) :=
\bigl( 
(uC

(n)\dagger 
X

uC
(n)
XY )

\ast \varphi (x)
\bigr) 
(y).

Suppose in addition that any of the following four conditions holds:
(i) the kernel k is L2-universal;
(ii) \scrH is dense in L2(\BbbP X);
(iii) Assumption A\ast holds;

(iv) f\psi (y) \in \scrH L2

for each y \in \scrY .
Then

(5.6)
\bigm\| \bigm\| u\mu (n)(X, \cdot ) - \mu Y | X

\bigm\| \bigm\| 
L2(\BbbP ;\scrG )  -  -  - \rightarrow n\rightarrow \infty 

0.

Proof. The proof is analogous to that of Theorem 4.4 up to (4.9), using uncentered opera-
tors instead of centered ones and the statements (c), (d) instead of (a), (b) of Lemmas SM1.9
and SM1.10. However, we cannot draw the final conclusion of convergence almost everywhere
since we do not have the martingale property, which is provided by Lemma SM1.11 for the
centered case. Note that our proof relies on [2, Theorem 1], which, strictly speaking, only
treats the centered case, but its uncentered version can be proven similarly.

Corollary 5.5. Under the assumptions of Theorem 5.3 (including either of the additional
ones),

\mu Y = (uC\dagger 
X
uCXY )

\ast \mu X .

Under the assumptions of Theorem 5.4 (including either of the additional ones),\bigm\| \bigm\| \mu Y  - (uC
(n)\dagger 
X

uC
(n)
XY )

\ast \mu X
\bigm\| \bigm\| 
\scrG  -  -  - \rightarrow 

n\rightarrow \infty 
0.

Proof. As stated in Theorem 5.3, uC\dagger 
X
uCXY is a well-defined and bounded (see foot-

note 10) linear operator. Hence, by the law of total expectation and Theorem 5.3,

\mu Y = \BbbE [\mu Y | X ] = \BbbE 
\bigl[ 
(uC\dagger 

X
uCXY )

\ast \varphi (X)
\bigr] 
= (uC\dagger 

X
uCXY )

\ast \BbbE [\varphi (X)] = (uC\dagger 
X
uCXY )

\ast \mu X ,
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proving the first claim. The second one follows from Jensen's inequality and Theorem 5.4 via\bigm\| \bigm\| \mu Y  - (uC
(n)\dagger 
X

uC
(n)
XY )

\ast \mu X
\bigm\| \bigm\| 2
\scrG =

\bigm\| \bigm\| \BbbE [\mu Y | X ] - (uC
(n)\dagger 
X

uC
(n)
XY )

\ast \BbbE [\varphi (X)]
\bigm\| \bigm\| 2
\scrG 

=
\bigm\| \bigm\| \BbbE \bigl[ \mu Y | X  - (uC

(n)\dagger 
X

uC
(n)
XY )

\ast \varphi (X)
\bigr] \bigm\| \bigm\| 2

\scrG 

\leq 
\bigm\| \bigm\| \mu Y | X  - (uC

(n)\dagger 
X

uC
(n)
XY )

\ast \varphi (X)
\bigm\| \bigm\| 2
L2(\BbbP X ;\scrG )  -  -  - \rightarrow n\rightarrow \infty 

0.

6. Gaussian conditioning in Hilbert spaces. This section gives a review of conditioning
theory for Gaussian random variables in separable Hilbert spaces, summarizing the work of
[19]. Our only somewhat novel contribution here is the explicit characterization of the essential
operator \widehat QC,\scrH in terms of the Moore--Penrose pseudoinverse, which appears as an exercise for
the reader in [1, Remark 2.3].

In the following let \scrF = \scrG \oplus \scrH be the sum of two separable Hilbert spaces \scrG and \scrH , and
let (U, V ) be an \scrF -valued jointly Gaussian random variable with mean \mu \in \scrF and covariance
operator C : \scrF \rightarrow \scrF given by the following block structures:\biggl( 

U
V

\biggr) 
\sim \scrN (\mu ,C), \mu =

\biggl( 
\mu U
\mu V

\biggr) 
, C =

\biggl( 
CU CUV
CV U CV

\biggr) 
\geq 0

with \mu U \in \scrG , etc. We denote by L(\scrF ) the Banach algebra of bounded linear operators on
\scrF and by L+(\scrF ) = \{ A \in L(\scrF ) | A \geq 0\} the set of positive operators, i.e., those self-adjoint
operators A for which \langle x,Ax\rangle \geq 0 for all x \in \scrF . The theory of Gaussian conditioning relies
on the concept of so-called oblique projections.

Definition 6.1. Let \scrF = \scrG \oplus \scrH be a direct sum of two Hilbert spaces \scrG and \scrH , and let
C \in L+(\scrF ) be a positive operator. The set of (C-symmetric) oblique projections onto \scrH is
given by

\scrP (C,\scrH ) = \{ Q \in L(\scrF ) | Q2 = Q, ranQ = \scrH , CQ = Q\ast C\} .
The pair (C,\scrH ) is said to be compatible if \scrP (C,\scrH ) is nonempty.

The first two conditions, Q2 = Q and ranQ = \scrH , imply that Q has the block structure

(6.1) Q =

\biggl( 
0 0\widehat Q Id\scrH 

\biggr) 
, \widehat Q : \scrG \rightarrow \scrH .

Then the condition CQ = Q\ast C is equivalent to CV \widehat Q = CV U (which follows from a straight-
forward blockwise multiplication; see Lemma 6.3) and implies in particular ranCV U \subseteq ranCV .
The other way round, as we will see later on, the condition ranCV U \subseteq ranCV guarantees the
existence of an oblique projection Q \in \scrP (C,\scrH ) and will provide a crucial link between the
theory of Gaussian conditioning and CMEs in section 7.

The results on conditioning Gaussian measures can then be summarized as follows.

Theorem 6.2 (see [19, Theorem 3.3, Corollary 3.4]). If (C,\scrH ) is compatible, then condition-
ing U on V = v \in \scrH results in a Gaussian random variable on \scrG with mean \mu U | V=v and
covariance operator CU | V=v given by

(6.2)

\Biggl\{ 
\mu U | V=v = \mu U + \widehat Q\ast (v  - \mu V ),

CU | V=v = CU  - CUV \widehat Q
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for any oblique projection Q \in \scrP (C,\scrH ) given in the form (6.1). Also, in this case, \scrP (C,\scrH )
contains a unique element

QC,\scrH =

\biggl( 
0 0\widehat QC,\scrH Id\scrH 

\biggr) 
that fulfills the properties (6.4) defined below.

If (C,\scrH ) is incompatible, then conditioning U on V = v \in \scrH still yields a Gaussian random
variable on \scrG , but the corresponding formulae for the conditional mean \mu U | V=v and covariance
operator CU | V=v are given by a limiting process using finite-rank approximations of C in the

following way. Let (hn)n\in \BbbN be a complete orthonormal system of \scrH , let P (n) : \scrF \rightarrow \scrF denote
the orthogonal projection onto \scrG \oplus span\{ h1, . . . , hn\} , and let C(n) = P (n)CP (n). Then (C(n),\scrH )
is compatible for each n \in \BbbN and, for \BbbP V -a.e. v \in \scrH (with \BbbP V denoting the distribution of V ),

(6.3)

\Biggl\{ 
\mu U | V=v = \mu U + limn\rightarrow \infty \widehat Q\ast 

C(n),\scrH (v  - \mu V ),

CU | V=v = CU  - limn\rightarrow \infty CUV \widehat QC(n),\scrH ,

where the second limit is in the trace norm.

In the following we will revisit some theory on oblique projections which will be nec-
essary to establish the connection between Gaussian conditioning and CMEs. We will also
characterize the special oblique projection QC,\scrH \in \scrP (C,\scrH ) by means of the Moore--Penrose
pseudoinverse.

Lemma 6.3. If \widehat Q : \scrG \rightarrow \scrH is a bounded linear operator such that CV \widehat Q = CV U , then

Q =

\biggl( 
0 0\widehat Q Id\scrH 

\biggr) 
\in \scrP (C,\scrH ).

In particular, the pair (C,\scrH ) is compatible.

Proof. The properties Q2 = Q and ranQ = \scrH are clear from the definition of Q, and a
straightforward blockwise multiplication shows that CQ = Q\ast C.

Proposition 6.4. In the setup of Definition 6.1, if (C,\scrH ) is compatible, then there exists a
unique bounded operator \widehat QC,\scrH : \scrG \rightarrow \scrH such that

(6.4) CV \widehat QC,\scrH = CV U , ker \widehat QC,\scrH = kerCV U , ran \widehat QC,\scrH \subseteq ranCV .

By Lemma 6.3 the first property implies that

QC,\scrH =

\biggl( 
0 0\widehat QC,\scrH Id\scrH 

\biggr) 
\in \scrP (C,\scrH ).

Proof. See [6, Theorem 1] or [8, Theorem 2.1] for the existence and uniqueness of \widehat QC,\scrH 
and [4] or [19] for its connection to oblique projections.

If one follows the original construction of [6, Theorem 1] or [8, Theorem 2.1], it is easy to
see how this unique element can be characterized in terms of the Moore--Penrose pseudoinverse
C\dagger 
V of CV .
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Theorem 6.5. If ranCV U \subseteq ranCV , then \widehat Q = C\dagger 
V CV U : \scrG \rightarrow \scrH is a well-defined bounded

operator which uniquely fulfills the conditions (6.4).

Proof. This is a direct application of Theorem SM1.1.

Theorem 6.6. In the setup of Definition 6.1, the following statements are equivalent:
(i) (C,\scrH ) is compatible;
(ii) ranCV U \subseteq ranCV .

If either of these conditions holds, then the unique element QC,\scrH \in \scrP (C,\scrH ) in Proposition 6.4
is given by

(6.5) \widehat QC,\scrH = C\dagger 
V CV U .

Proof. If (C,\scrH ) is compatible, there exists an element \widehat QC,\scrH : \scrG \rightarrow \scrH with CV \widehat QC,\scrH = CV U
by Proposition 6.4, which implies (ii). If ranCV U \subseteq ranCV , then Theorem 6.5 and Lemma 6.3
imply (i). Theorem 6.5 and the uniqueness of \widehat QC,\scrH in Proposition 6.4 imply (6.5).

Remark 6.7. Lemma 6.3 and the equivalence part of Theorem 6.6 were already proved by
[4]; we state them for the sake of readability. The second part of Theorem 6.6(ii) characterizes
the operator \widehat QC,\scrH in terms of the Moore--Penrose pseudoinverse, without an assumption of
closed range, as anticipated by [1, Remark 2.3].

There are covariance operators C for which the above conditions do not hold.

Example 6.8. Let \scrH = \scrG be any (separable) infinite-dimensional Hilbert space with com-
plete orthonormal basis (ej)j\in \BbbN . Let

CU :=
\sum 
j\in \BbbN 

j - 2ej \otimes ej ,

CV :=
\sum 
j\in \BbbN 

j - 4ej \otimes ej ,

CV U = CUV := C
1/2
U Id\scrH C

1/2
V =

\sum 
j\in \BbbN 

j - 3ej \otimes ej .

By [2, Theorem 2],

C :=

\biggl( 
CU CUV
CV U CV

\biggr) 
is a legitimate positive definite covariance operator on \scrF = \scrG \oplus \scrH . However,

ranCV U =

\left\{   \sum 
j\in \BbbN 

\alpha jej

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| (j3\alpha j)j\in \BbbN \in \ell 2

\right\}   \not \subseteq 

\left\{   \sum 
j\in \BbbN 

\alpha jej

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| (j4\alpha j)j\in \BbbN \in \ell 2

\right\}   = ranCV .

7. Connection between CME and Gaussian conditioning. If we compare the theories of
CMEs and Gaussian conditioning in Hilbert spaces, we make the following observations:

\bullet Formula (4.3) for CME and formula (6.2) for Gaussian conditioning look very similar
(in view of Theorem 6.6).
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\bullet The assumptions under which the conditioning process is ``easy""---namely, Assump-
tion C (as long as Assumption B\ast holds as well) and the compatibility of (C,\scrH )---are
equivalent to the conditions that ranCXY \subseteq ranCX and ranCV U \subseteq ranCV , respec-
tively (Theorems 4.1 and 6.6).

This motivates us to connect these two theories by working in the setup of section 2 and intro-
ducing new jointly Gaussian random variables U and V that take values in the RKHSs \scrG and
\scrH , respectively, where the means \mu U and \mu V and (cross-)covariance operators CU , CUV , CV U ,
and CV are chosen to coincide with the kernel mean embeddings \mu Y and \mu X and the kernel
(cross-)covariance operators CY , CY X , CXY , and CX , respectively:\biggl( 

U
V

\biggr) 
\sim \scrN (\mu ,C), \mu =

\biggl( 
\mu U
\mu V

\biggr) 
:=

\biggl( 
\mu Y
\mu X

\biggr) 
, C =

\biggl( 
CU CUV
CV U CV

\biggr) 
:=

\biggl( 
CY CY X
CXY CX

\biggr) 
.(7.1)

By [2, Theorem 1] and since Assumption 2.1(e) implies that C is a trace-class covariance
operator, the Gaussian random variable (U, V ) is well defined in \scrG \oplus \scrH . Note that the
random variables W = (U, V ) and Z = (\psi (Y ), \varphi (X)) do not coincide even though they
have the same mean and covariance operator, since the latter will not generally be Gaussian.
Surprisingly, their conditional means agree, as long as we condition on V = v = \varphi (x) and
X = x, respectively. This is obvious when one compares (4.3) with (6.2) (and (4.6) with
(6.3) using Theorem 6.5). A natural question is whether a similar equality holds for the
conditional covariance operator CY | X=x. However, the covariance operator CU | V=v obtained
from Gaussian conditioning is independent of v, a special property of Gaussian measures that
cannot be expected of the conditional kernel covariance operator CY | X=x. Instead, CU | V=v

equals the mean of CY | X=x when averaged over all possible outcomes x \in \scrX .11 These insights
are summarized in the following proposition and illustrated in Figure 7.1.

Note that the distributions of \varphi (X) and V might have different (and even disjoint!) sup-
ports, and so one must be particularly careful with ``almost every"" statements in this context.

Theorem 7.1. Let Assumptions 2.1 and B\ast hold, let (U, V ) be the random variable defined
by (7.1), and let \BbbP \varphi (X) and \BbbP V denote the probability distributions of \varphi (X) and V , respectively.
Then, for \BbbP V -a.e. v \in \scrH ,

CU | V=v = \BbbE [CY | X ] =

\int 
\scrX 
CY | X=x d\BbbP X(x).

Further, there exist N1, N2 \subseteq \Omega with \BbbP \varphi (X)(N1) = 0 and \BbbP V (N2) = 0, such that, for every
v = \varphi (x) /\in N1 \cup N2, \mu U | V=v = \mu Y | X=x.

Proof. By Lemma SM1.12, \BbbE [CY | X ] is well defined. The identity \mu U | V=v = \mu Y | X=x for
the means follows directly from Theorems 4.4, 6.2, and 6.5. For the covariance identity, using

the notation of Theorem 4.4, note that \| [h(n)\psi (y)]  - [f\psi (y)]\| L2
\scrC 
 -  -  - \rightarrow 
n\rightarrow \infty 

0 by (4.8). Therefore, for

11This observation has already been made by [10, Proposition 5] under stronger assumptions and by [12,
Proposition 3] in a weaker form.
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\scrX ,\scrY \scrH ,\scrG Gaussian on \scrG \oplus \scrH 

\left\{         
x \in \scrX 
X \sim \BbbP X
Y \sim \BbbP Y

(X,Y ) \sim \BbbP XY

\right\}         
\left\{         
\varphi (x)

\psi (Y ), \varphi (X)

\mu Y , CY , CY X

\mu X , CXY , CX

\right\}         
\biggl( 
U
V

\biggr) 
\sim \scrN 

\biggl( \biggl( 
\mu Y
\mu X

\biggr) 
,

\biggl( 
CY CY X
CXY CX

\biggr) \biggr) 

(Y | X = x) \sim \BbbP Y | X=x \mu Y | X=x, CY | X=x (U | V = v) \sim \scrN (\mu U | V=v, CU | V=v)

\mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}

\psi ,\varphi 

\mathrm{c}\mathrm{o}
\mathrm{n}
\mathrm{d}
\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}

\mathrm{n}
\mathrm{i}\mathrm{n}
\mathrm{g}
\mathrm{o}
\mathrm{n}

X
=
x

\mathrm{c}\mathrm{o}
\mathrm{n}
\mathrm{d}
\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}

\mathrm{n}
\mathrm{a}
\mathrm{l}
\mathrm{m}
\mathrm{e}\mathrm{a}

\mathrm{n}

\mathrm{e}\mathrm{m}
\mathrm{b}
\mathrm{e}\mathrm{d}

\mathrm{d}
\mathrm{i}\mathrm{n}
\mathrm{g}

\mathrm{c}\mathrm{o}
\mathrm{n}
\mathrm{d}
\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}

\mathrm{n}
\mathrm{i}\mathrm{n}
\mathrm{g}
\mathrm{o}
\mathrm{n}

V
=
v
=
\varphi 
(x

)

\mathrm{e}\mathrm{m}\mathrm{b}\mathrm{e}\mathrm{d}

\psi ,\varphi 

Figure 7.1. A normally distributed \scrG \oplus \scrH -valued normal random variable (U, V ) can be defined with the same
mean and covariance structure as (\psi (Y ), \varphi (X)). While the latter will typically fail to be normally distributed,
surprisingly, the conditional means of the two random variables happen to agree! Since CU| V =v does not depend
on the realization v, a specific property of Gaussian random variables that cannot be expected from CY | X=x, a
similar agreement for the conditional covariance operators cannot be obtained. Instead, the identity provided
by Theorem 7.1 holds, which is open to interpretation.

y, y\prime \in \scrY , g = \psi (y), and g\prime = \psi (y\prime ),

\BbbC ov
\bigl[ 
fg(X), fg\prime (X)

\bigr] 
= lim

n\rightarrow \infty 
\BbbC ov

\Bigl[ 
h(n)g (X), h

(n)
g\prime (X)

\Bigr] 
= lim

n\rightarrow \infty 
\langle CXh(n)g , h

(n)
g\prime \rangle \scrH 

= lim
n\rightarrow \infty 

\langle C(n)
XY g, C

(n)\dagger 
X C

(n)
XY g

\prime \rangle \scrH 

= lim
n\rightarrow \infty 

\langle g, C(n)
Y XC

(n)\dagger 
X C

(n)
XY g

\prime \rangle \scrG 

= lim
n\rightarrow \infty 

\langle g, CUV C(n)\dagger 
V C

(n)
V Ug

\prime \rangle \scrG .

By the law of total covariance and (6.3), (6.5) this implies that, for g = \psi (y) and g\prime = \psi (y\prime ),

\langle g,\BbbE [CY | X ]g
\prime \rangle \scrG = \BbbE 

\bigl[ 
\BbbC ov[g(Y ), g\prime (Y )| X]

\bigr] 
= \BbbC ov[g(Y ), g\prime (Y )] - \BbbC ov

\bigl[ 
fg(X), fg\prime (X)

\bigr] 
= \langle g, CUg\prime \rangle \scrG  - lim

n\rightarrow \infty 
\langle g, CUV C(n)\dagger 

V C
(n)
V Ug

\prime \rangle \scrG 

= \langle g, CU | V=v g
\prime \rangle \scrG 

for \BbbP V -a.e. v \in \scrH . Since span\{ \psi (y) | y \in \scrY \} is dense in \scrG , this finishes the proof.

Remark 7.2. Theorem 7.1 implies in particular that the posterior mean \mu U | V=v of the
U -component of a jointly Gaussian random variable (U, V ) in an RKHS \scrG \oplus \scrH is not just
some element in \scrG , but in fact the KME of some probability distribution on \scrY , as long as we
condition on an event of the form V = v = \varphi (x) outside the null events N1 and N2. Note,
though, that these null sets could be geometrically quite large.
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As mentioned above, there is another analogy between CMEs and Gaussian conditioning,
namely, the assumption under which the formula for the conditional mean is particularly nice,
i.e., does not require finite-rank approximations of the (cross-)covariance operators.

Theorem 7.3. Under Assumption 2.1 and with the random variable (U, V ) defined by (7.1),
Assumption C is equivalent to the compatibility of (C,\scrH ).

Proof. By Theorems 4.1 and 6.6, both conditions are equivalent to ranCXY \subseteq ranCX .

8. Closing remarks. This article has demonstrated rigorous foundations for the method
of conditional mean embedding in reproducing kernel Hilbert spaces. Mild and verifiable suf-
ficient conditions have been provided for the centered and uncentered variants of the CME
formula to yield an element \mu Y | X=x that is indeed the kernel mean embedding of the condi-
tional distribution \BbbP Y | X=x on \scrY . The CME formula required a correction in the centered case
but, modulo this correction, it is more generally applicable than its uncentered counterpart
and provides stronger statements: Theorem 4.4 proves convergence in L2(\BbbP ;\scrG ) as well as \BbbP X -
a.e. convergence, while its analogue Theorem 5.4 yields only convergence in L2(\BbbP ;\scrG ). The
reason is that (u\mu (n)(X, \cdot ))n\in \BbbN defined by (5.5), in contrast to (\mu (n)(X, \cdot ))n\in \BbbN , may fail to be
a martingale (cf. Lemma SM1.11), and we cannot apply [5, Theorem V.2.8]. Therefore, we
advocate for the centered version of the CME formula as the preferred formulation in prac-
tice. We have also demonstrated the precise relationship between CMEs and well-established
formulae for the conditioning of Gaussian random variables in Hilbert spaces.

Some natural directions for further research suggest themselves:
First, in practice, the KMEs and kernel (cross-)covariance operators will often be estimated

using sampled data, and so empirical versions of the CME, along with convergence guarantees,
are of great practical importance. Various empirical CMEs have already been considered and
applied in the literature [9, 14, 16, 20], but their approximation accuracy is not at all trivial to
analyze, conditions for validity along the lines of our Assumptions A--uC are not yet known,
and a detailed treatment would be too long to consider in this work, which has deliberately
focused on the population CME. Section SM2 gives an overview of the technical obstacles that
must be overcome in the empirical setting, existing results in the area, and work yet to do.

Second, when using CMEs for inference, a remaining step might be to undo the kernel
mean embedding, i.e., to recover the conditional distribution \BbbP Y | X=x on \scrY from its embedding
\mu Y | X=x \in \scrG , or its density with respect to a reference measure on \scrY . This is a particular
instance of a nonparametric inverse problem, and a principled solution, based upon Tikhonov
regularization, has been proposed in the context of the kernel conditional density operator
(KCDO) by [23]. The relationship between this KCDO approach and the sufficient conditions
for CME that have been considered in this article remains to be precisely formulated; given the
intimate relationship between Tikhonov regularization and the Moore--Penrose pseudoinverse,
this should be a fruitful avenue of research.

Acknowledgments. The authors wish to thank S. Klus, H. C. Lie, M. Mollenhauer, and
B. Sprungk for helpful and collegial discussions.
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