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Abstract

Over the past two decades, researchers in the field of biometrics have presented a wide variety of coding-based palmprint
recognition methods. These approaches mainly rely on extracting the texture features, e.g. line orientations, and phase
information, using different filters. In this paper, we propose a new efficient palmprint recognition method based on the
Different of Block Means. In the proposed scheme, only basic operations (i.e. mainly additions and subtractions) are used,
thus involving a much lower computational cost when compared with existing systems. This makes the system suitable for
online palmprint identification and verification. Furthermore, the technique has been shown to deliver superior performance

over related systems.

Keywords Palmprint recognition - Online applications - Palmprint coding - Biometrics

1 Introduction

Since the early 2000s, the human palmprint has emerged as a
robust means that can efficiently be used for verifying and/or
identifying the personal identity of individuals. Indeed, the
inner surface of the human hand offers a vast region full of
the distinctive features that can be efficiently used for veri-
fying the personal identity of individuals. This has recently
attracted widespread attention from researchers in the field
of biometrics. Besides, all the distinctive features of the fin-
gerprints, e.g. singular points and ridges exist in palmprints.
Furthermore, the palmprint contains other discriminative fea-
tures, e.g. principal lines and wrinkles, that can be used for
recognition purposes at low-cost utilising different filters
such as the Gabor filter [1,2], the ordinal filter [3], and the
wavelet filter [4]. Existing palmprint recognition techniques
can be viewed from a number of perspectives depending on
the way discriminative features are described. For instance,
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in [5,6] edge detection filters were used to extract palm
lines, which served as key information for matching. Other
techniques rely on subspace projection to reduce features
dimensionality and adopt distance measures or classifiers to
perform matching [7-9]. Finally, some techniques employ a
transform-based approach using low pass and rotational fil-
ters to encode the palmprint features in the form of a mapping
matrix [2]. Such coding-based techniques have gained sig-
nificant attention because of their high performance on well
aligned/segmented low-resolution palmprint images.

In this context, the online palm authentication method,
proposed by Zhang et al. [2], can be considered as the first
attempt in the literature for identifying the personal identity
using low-resolution palmprint images with a coding-based
technique. Based on the fact that the inner surface of the
human hand can be represented by some texture attributes
such as the line and phase information. The technique, called
PalmCode, uses a single 2D Gabor filter to describe the phase
features of palmprints in the form of a phase-feature template.
The latter is then exploited to generate a feature vector to
efficiently represent the original palm. PalmCode achieves
high rates of accuracy and speed in verifying the palm-
printinformation extracted from low-resolution sets. Inspired
by the PalmCode method, in [10], the authors presented
a new palm-based recognition method called the competi-
tive coding (CompCode) scheme. The scheme employs the
real part of the neurophysiological-based 2D Gabor filter to
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extract the orientation information of a palmprint, and fol-
lowed by a coding method to generate a feature vector to
uniquely describe the original palmprint. The filter is noth-
ing but an original Gabor filter whose freedom degrees were
redistricted according to the findings of the neurophysio-
logical method so that the palm-line pattern was modelled
as an upside-down Gaussian function. In [11], a variant of
the CompCode scheme has been considered by adopting a
block-wise approach to compute the competitive codes. In
an attempt to tackle the problem of the correlation of the old
PalmCode, the same authors in [1] added two main alter-
ations on their old work presented in [2]. This modification
includes: (1) replace the static threshold of the old PalmCode
by a dynamic one; (2) use a 2D Gabor filter with multi-
ple orientations instead of single angle Gabor filtering to
generate multiple PalmCodes. Then, these PalmCodes are
merged to generate a feature vector called the Fusion Code
(FusionCode). In [3], the 2D Gaussian filter was adopted
to obtain the weighted intensity of each line-like region in
the palmprint. The idea is to compare each pair of filtered
regions that are orthogonal to each other in terms of the fil-
ters orientation. Generally speaking, coding-based palmprint
approaches suffer severely from small image transforma-
tions, e.g. shift and rotations. In [12], the authors attempted
to enhance the robustness of coding-based palmprint iden-
tification techniques against small image transformations,
e.g. shift and rotation by using a modified version of the
Radon transform (FRAT), called the modified Radon trans-
form (MFRAT), to generate a code-like matrix. Furthermore,
they presented a new matching method which takes into
account small geometric changes by considering the neigh-
bourhood of each pixel in the Radon-filtered image. This
is referred in the literature to as the robust line orientation
code (RLOC). Although RLOC shows slight superiority over
its related competitors under the presence of geometric dis-
tortions, it suffers from highly computational complexity.
The same authors addressed in [13] the problem of high
dimensionality in the RLOC technique using the histogram
of oriented lines where the magnitude and orientation of the
Radon-filtered image were used to compute the histogram
in a fashion that is similar to the conventional Histogram
Of Gradient (HOG). Very recently, it has been found in [14]
that the coding-based techniques offer more robustness when
only two orientation angles are used in the filtering stage.
This has significantly improved RLOC and the competitive
coding technique. In [15], the authors developed a tech-
nique to estimate the Difference of Vertex Normal Vectors
(denoted by DoN) which describe 3D palm information of the
palm. These features have been successfully extracted from
2D palmprint images in the form of binary codes offering
high performance on public datasets. More recently, a work
in [16] explored the connection between the feature extrac-
tion model and the discriminative power of direction features
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in order to obtain highly discriminative palmprint features.
The idea of exploring the latent direction features has also
been reported in [17] where the authors exploited the latent
direction features from the energy map layer of the appar-
ent direction. The apparent and latent direction features were
described in a histogram form for palmprint recognition. The
proposed technique achieved state-of-the-art performance on
four benchmark palmprint databases. The aforementioned
coding-based techniques mainly rely on texture, contour, and
edge features and are characterised by high identification
accuracy and low computational complexity, making such
systems suitable for real-time applications. These features
have also been exploited on palm-vein images recently in
biometric systems [18,19].

Unlike existing coding-based palmprint identification
techniques, this paper proposes a new, simple, and efficient
palmprint coding technique based on the Difference of Block
Means (DBM) that does not require any filtering opera-
tions. In the proposed scheme, only basic operations (i.e.
mainly additions and subtractions) are used, thus involv-
ing a much lower computational cost when compared with
existing systems. This makes the system suitable for online
palmprint identification and verification. Furthermore, the
technique has been shown to deliver superior performance
over related systems. The rest of the paper is structured as fol-
lows. In Sect. 2, the proposed DBM code extraction scheme
is described. Section 3 discusses a matching methodology
adopted for palmprint identification and verification. Sec-
tion 5 provides an experimental evaluation of the system in
comparison with recent and related techniques. Section 6
summarizes and concludes the paper.

2 Proposed DBM palmprint code

The proposed system for generating the palmprint code is
illustrated by Fig. 1. First, the input hand image is pre-
processed to obtain the region of interest describing the
palmprint area (see Fig. 3). Here, the pre-processing stage
that has been reported in existing research works such
as [2,20] is adopted. Then, the differences between over-
lapping block means are computed to describe the palm
information in each direction. Finally, a threshold is applied
to obtain the final palmprint code in each direction. Note that
the palmprint codes are in binary form and are smaller in size
than the original image due to the processing of block means
instead of image pixels. This makes the matching process
extremely fast for online palmprint recognition.

The idea of extracting differential block means (DBM) in
the spatial domain was initially applied to videos for per-
ceptual video hashing [21,22]. However, to the best of our
knowledge, no studies on the use of DBM in biometrics have
yet been published. In this section, the features of DBM are
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claimed to make it more robust than the directional filters
adopted in the literature (such as Gabor, wavelets, Radon, and
Gaussian filters) for the construction of palmprint codes. The
use of DBM features is justified in terms of their efficiency
in representing textured areas, including edges and contours,
at low computational cost. Moreover, only two directions are
used to derive DBM codes. This idea is inspired by previ-
ous research [14] where it was found that two perpendicular
directions describe the principal lines and the key texture of
the palm in a more robust fashion than multiple directions.
First, a two-dimensional (2D) array is formed by computing
the mean of overlapping blocks of the same size in the palm-
print ROI (Region Of Interest) image. Overlapping blocks
in feature extraction are used due to their robustness against
small geometric changes as demonstrated elsewhere [23].
Let M x N be the number of overlapping blocks. Denote
by A(i, j) the array obtained whose elements represent the
statistical means of the overlapping blocks of the processed
palmprint ROl image with0 <i <M —1,0<j <N — 1.
Next, two 2D arrays of the same size are derived from A by
calculating the differences in the horizontal (H) and vertical
(V) directions, respectively, as:

A, j+1)—AG, j) if j<N-—1

A(i,0)— AG, j) if j=N—1. M

H(i,j)={

Y
Palmprint code extraction

AG+1,j)—AG, j) if i <M —1

A, j) —AG, j) if i=M—1. @

Vi, j) = {

Finally, the horizontal and vertical codes, Cj, and C,, are
derived by thresholding the previous DBM features as fol-
lows:

... [lif HG, j)=0

Cn(i, J) _{ 0  otherwise. ®
o [1ifva, =0

G, j) = { 0  otherwise . @

Figure 2 illustrates on a palmprint image sample the
extraction of block means with a block size of 16 x 16 and
an overlap of 5 pixels as well as the DBM features and the
corresponding codes.

3 Palmprint matching distance

The Hamming distance, D g, between a shifted version of a
binary code C; and C» can be defined as

" S SN I~k j=D=Cai, )
D (Cl’ s Cz) = ,
M x N
)
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() (b) (c)
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Fig.2 Extraction of DBM codes from a palmprint ROI (Region Of Interest) image: a original palm; b overlapping block means; ¢ horizontal DBM;
d vertical DBM; e horizontal palmprint code (i.e. Cp,); f vertical palmprint code (i.e. Cy)

where k, [ are integer indices. At the matching stage, the
Hamming distance is the core of the proposed palmprint
matching distance. However, the binary palmprint codes are
shifted by one pixel in all possible directions to take small
geometric changes into account. Let C; = (Cy, 1, Cy.1), and
Cy = (Cp 2, Cy 2) be two palmprint code pairs correspond-
ing to two palm images, accordingly. The horizontal distance
dn(Cy, Cy) is defined as:

dy(C1, C2) = min{D(Cyy. Cro))i k1€ (=1,0.1). (6)

Likewise, the vertical distance d,(Cy,1, Cy,2) is defined
as:

k,l e{-=1,0,1}. (7)

dy(C1. C2) = min{D(Cy}. Co2)):

Finally, the proposed palmprint matching distance Dpaim
(Cq, Cy) is defined in terms of the average of the horizontal
and vertical distances. This is given as:

dp(Cy, C3) +dy(Cy, Cr)

Dpalm (C1,Cr) = )

®)

4 Computational complexity of DBM

Let P and Q be the size of the palmprint image. Denote by
p and ¢ the size of each block where P and Q are multiples
of p and ¢, respectively, and s represents the overlap size. It
is sensible to assume that p, g, s < {P, Q}. It follows that

vl (75 ) <9>

And

LGP

where | - | is the floor function that takes the lower closest inte-
ger. The number of additions per block is p x ¢ — 1. Therefore,
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since the number of blocks is M x N, the computational cost
due to incurred additions is O (P Q). To compute the statisti-
cal mean of each block, one division is required. Hence, the
divisions are in the order of O(‘;—qQ). As for the subtractions
required to compute the block differences in two directions
(horizontal and vertical), there are 2M N subtractions. This
also corresponds to 0(%). Finally, the thresholding of the
difference block means consist of an element-wise sign com-
parison that applies to all samples in the horizontal and
vertical matrices, each of size M x N and hence, this involves
acostof O (%). As a consequence, the total computational
cost incurred by the DBM coding technique for an image of
size P x Qis O(PQ).

5 Experimental results
5.1 Experimental settings and datasets

In this research, four public palmprint datasets have been con-
sider to validate our proposed system; namely: PolyU II [24],
PolyU M-B [25], IITD [26], and CASIA [27] as will be
detailed later. Figure3 shows samples from each dataset.

5.1.1 PolyU palmprint database (version 2.0)

The PolyU palmprint database (PolyU II) has been published
by the Hong Kong Polytechnic University [24]. In biometrics,
this dataset in particular has been widely used for evalu-
ating palmprint recognition systems. However, PolyU II is
available only in a full palmprint version. Hence, we used a
universal cropping algorithm to extract the ROI which con-
sists of a square of 128 x 128 pixels. Samples of the ROIs
that were extracted from PolyU II are depicted in Fig. 3a.
PolyU Il consists of 7752 low-resolution palmprint images,
collected from 193 individuals (Males and Females) over two
different sessions separated by a minimum time interval of
two months. In each session, each participant provided at
least 10 low-resolution palmprint images from each of his/her
left and right hand. That is, PolyU II can be viewed as a col-
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Fig. 3 ROIs samples. a PolyU II palmprint database. b PolyU M-B
palmprint database. ¢ IITD Touch-less palmprint database. d CASIA
palmprint database

lection of 386 classes of palmprints. In our experiments, 1500
palmprint images (6 images per class x 250 classes) from the
first session are considered as reference images, whereas an
equal number of palmprint images from the second session
are used as query images. It is worth mentioning that in each
database, the same image file order 1, 2, 3, .. ., etc, is used as
given by the original authors to obtain reference and query
samples. For instance, in the PolyU II database the first 6
images in the first session (denoted by Set;) for each partic-
ipant are used as reference images and the first 6 images in
the second session (denoted by Set;) for each participant are
used as query images. Our experiments suggest that the dif-
ference in performance when using different images within
the same session is negligible. However, the difference when
the reference and query sets are swapped (Set vs Set; and
Set vs Sety) is clearly noticeable. Results of experiments on
swapped sets are reported below, accordingly.

5.1.2 PolyU multispectral palmprint database

The PolyU multispectral (PolyU M) palmprint dataset was
also collected by the Hong Kong Polytechnic University

(PolyU) using a developed capturing machine, by which
low-resolution versions of an image can be obtained under
different illuminations such as Red (PolyU M-R), Green
(PolyU M-G), Blue (PolyU M-B), and (PolyU M-NIR) near
infra-red [25]. For each illumination, 250 individuals have
provided 24 palmprint images from which 12 images were
for the right hand and the other 12 images were for the left
hand. This process has been conducted over two different
sessions separated by a time interval of 9 days. In each ses-
sion, each user was asked to provide six palmprint images
for each of the right and left hand. In total, 6000 palmprint
images were collected for each illumination corresponding
to 500 classes. Unlike PolyU II, PolyU M is available in both
full and cropped versions. Figure 3b shows samples of the
ROIs that were extracted from the PolyU blue band palm-
print (PlyU M-B) database. In our experiments, 3000 images
for the blue band palmprints corresponding to 250 classes
have been considered. That is, 1500 images acquired in the
first session (i.e. 6 images per class) are used as reference
images and 1500 images from the same classes but taken in
a different session are used as query images.

5.1.3 IIT Delhi touchless Palmprint (version 1.0)

The IIT Delhi Touchless palmprint (II'TD) database [26] has
been developed over a period of one year (July 2006—Jun
2007) by the Biometrics Research Laboratory at IIT Delhi.
The IITD palmprint database was collected from 230 partici-
pants, whose ages range between 12—57 years old. There are
14 high-resolution palmprint images of size 800 x 600 pix-
els taken from the left or right hand of each participant. This
makes a total of 3220 palmprint images corresponding to 230
classes (7 images per class). In addition to the full palmprint
images, cropped versions of size 150 x 150 pixels are also
available, see Fig. 3c. In our settings, each of the reference
and query sets contain 1380 palmprint images representing
the 230 classes. That is, in each set a class is represented by
6 images.

5.1.4 CASIA palmprint database

The CASIA palmprint database was collected by the Chinese
Academy of Sciences’ Institute of Automation (CASIA) [27].
The database consists of 5502 full palmprint images collected
from 312 individuals. Each participant provided 16 palmprint
images where at least 8 images were taken from each of the
left and right hand. This represents 624 classes in total where
each class has at least 8 images. The device that was used to
acquire CASIA does not include any pegs to restrict postures
and positions of the hand. The full palmprint images were
cropped to a size of 192 x 192 pixels, see Fig. 3d. In our
settings, each of the reference and query sets contain 1800
palmprint images representing 450 classes where each class

@ Springer
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Table 1 Identification accuracy of DBM on a validation subset using
different block sizes

Dataset Block size (p x q)

8x8 12x12 16x16 20x20 24x24
PolyU 11 100 100 100 99.8 99.6
PolyUM-B 100 100 100 99.7 99.2
IITD 94.6 95.2 95.4 94.6 94.5
CASIA 92.3 93.3 93.6 93.9 93.8

Results given in bold represent the highest performance obtained

contains 4 images. As highlighted in [15], there are some
issues when acquiring and sorting images in CASIA such as
the presence of palmprint images in the wrong classes or the
distorted image for individual 76. The classes that come with
these issues are excluded in our setup.

5.2 System analysis

In this section, validation experiments have been conducted
on the palmprint images representing the reference images.
To this end, we have split the reference set in two subsets
(reference subset and validation subset). The reason for con-
ducting this experiment is twofold. First, to understand the
sensitivity of the proposed system to block size change. Sec-
ond, to determine the optimal block size for each dataset as
the datasets have been acquired using different devices and
under different illumination conditions in addition to the fact
that images were taken at various resolutions. The proposed
DBM technique has been analysed using the following pro-
tocol. For PolyU II, PolyU M-B, and IITD, 3 images from
each class (the first 3 images in the dataset) represent the
reference subset and the remaining 3 images constitute the
validation subset. For CASIA, the first 2 images from each
class form the reference subset and the remaining 2 images
are used for validation. Results in terms of the proportion of
correctly identified palmprint images are depicted in Table 1
for different values of the block size (p x q).

As can be seen, the system performs well on the valida-
tion subset though the accuracy slightly changes against the
block size (p x ¢). In the rest of the paper and according to
these validation results, the block size is set to (16 x 16) for
PolyU II, PolyU M-B, IITD and to (20 x 20) for CASIA in
the rest of the paper.

5.3 Comparison with state-of-the-art techniques

In order to assess the performance of the proposed palm-
print recognition system, extensive experiments have been
conducted on the four aforementioned standard palmprint
databases. A number of related state-of-the-art techniques
have also been applied where the same experimental pro-

@ Springer

tocols are maintained for all the tested techniques for fair
comparison. All the competing palm-identification systems
used in this paper have been implemented by the authors. This
is because the performance of the reported techniques varies
against the number and quality of palmprint images used, and
since such images were not specifically mentioned in detail, it
is not possible to replicate exactly the same experimental set-
tings as reported in the literature. This is why different results
with such techniques can be found in the literature on the
same palmprint databases. In this context, a slight variation to
our experimental settings has been considered in our evalua-
tion in order to demonstrate this point. Indeed, to illustrate the
sensitivity of palmprint recognition systems to image quality
within each database, the reference and query sets, denoted
here by Set; and Setp, respectively, have been considered
interchangeably. In the protocol Set, vs Set;, Set, represents
query images and Set; consists of reference images. On the
other hand, Set; vs Set; is used to refer to Set; as query
images and Set, as reference images.

To the best of our knowledge, there are very few systematic
studies on deep learning with applications to palmprint recog-
nition. We believe that current deep learning systems are
still immature to compete with traditional methods in terms
of performance and low complexity. In fact, as mentioned
in [29], the systems that directly use global and high level fea-
tures extracted by CNN cannot be suitable for the palmprint
recognition problem. This has been clearly shown in [30]
(Table V) where coding-based methods (Competitive code,
DoN, and Ordinal code) outperform common deep learn-
ing structures such as AlexNet-S, GoogleNet, ResNet-50,
and VGG-16. The deep learning-based palmprint recognition
systems that have been shown to perform well have also used
low level features or different filters than the standard ones
including Gabor filters, PCA, or a shit-based loss function as
in [30,31] or an alignment network that precedes the CNN as
in [29] and this has added extra complexity to enhance per-
formance. Basically, deep learning systems already involve
very high complexity cost and require much more compu-
tations than coding-based palmprint recognition techniques.
The fact that GPUs are required for such systems clearly indi-
cate that a large number of calculations have to be performed
in parallel. This is because GPUs are designed with thousands
of processor cores running simultaneously, and this enables
massive parallelism where each core is focused on making
efficient calculations. With a normal CPU, deep learning sys-
tems would require a significant amount of time to train and
test. Furthermore, CNN-based systems have normally been
trained with a large dataset and tested on a smaller subset
unlike our experimental protocol where the number of test
images is equal to the number of training images.

In this section, the performance of both palmprint iden-
tification and verification is assessed. In the identification
experiments, performance is measured as the proportion of
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correctly identified palmprint images to the total number
of query images. This is referred to as ’Iden’ in the rest
of this paper. In palmprint verification, however, the task
is to verify whether or not a query palmprint image rep-
resents a genuine participant. Because a threshold must be
set in order to reach such a decision, one can use a range
of values in order to measure the performance of the sys-
tems, including the false positive rate (FPR) and true positive
rate (TPR), for each threshold value. This leads us to what
is known in the literature as the receiver operating charac-
teristics (ROC) curve. Also, the equal error rate (EER) has
been adopted in verification experiments. The EER defines
the point in percentage where the false rejection rate [i.e.
100(1 — T P R)] becomes equal to the false acceptance rate.
This can be determined by finding a threshold 7* so that
FPR(T*) = 100(1 — T PR(T™)).

Note that a palmprint image is said to be of a certain class
if the nearest reference image belongs to that class, so that the
matching distance for the corresponding reference image as
givenin (8), is the lowest among all reference images of other
classes. The experimental results are depicted in Tables 2, 3,
4,5 and Figs. 4,5, 6, 7.

Tables 2, 3, 4, 5 show that the proposed palmprint recog-
nition system achieves high performance on low-resolution
palmprint image datasets when compared to its competitors
from existing work such as the PalmCode and CompCode. It
can also be seen from the results that the coding-based palm-
print identification techniques perform well on both PolyU II
and PolyU M-B because of the highly accurate alignment
of images at the acquisition stage. The DoN technique [15]
offers the best performance among the competing techniques
and this is in line with the authors’ claim on its DoN superi-

Table 2 Identification and verification results on PolyU II

Technique Sety versus Set; Set; versus Set
EER% Iden% EER% Iden%
Palmcode [2] 1.63 97.13 1.67 97.33
Competitive [10] 4.71 94.00 5.88 90.73
Ordinal [3] 0.82 98.80 1.20 97.67
RLOC [12] 2.18 97.27 2.18 96.33
HOL [13] 4.30 95.73 4.19 92.33
FAST-RLOC [14] 2.53 94.20 291 94.53
NDI [28] 2.83 95.93 3.66 94.73
DoN [15] 0.33 99.60 0.42 99.60
DBM 0915 99.40 0.61 99.20

Results given in bold represent the highest performance obtained
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Table 3 Identification and verification results on PolyU M-B

Technique Sety versus Set; Set; versus Sety
EER% Iden% EER% Iden%
Palmcode [2] 0.05 99.93 0.36 99.53
Competitive [10] 0.20 99.87 0.47 99.67
Ordinal [3] 0.07 99.93 0.13 99.87
RLOC [12] 0.07 99.93 0.21 99.80
HOL [13] 0.37 100 0.34 100
FAST-RLOC [14] 0.26 99.80 0.70 99.20
NDI [28] 0.19 99.80 0.39 99.60
DoN [15] 0 100 0.11 99.93
DBM 0.01 100 0.06 100

Results given in bold represent the highest performance obtained
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Table 4 Identification and verification results on IITD

Technique Sety versus Set; Set; versus Sety
EER% Iden% EER% Iden%
Palmcode [2] 14.08 72.75 17.76 66.02
Competitive [10] 18.61 66.01 20.97 59.35
Ordinal [3] 8.48 84.86 10.48 81.02
RLOC [12] 11.55 78.40 13.25 74.49
HOL [13] 7.76 86.74 9.38 84.35
FAST-RLOC [14] 13.67 71.09 16.07 64.42
NDI [28] 15.33 73.70 16.71 67.39
DoN [15] 6.83 88.12 5.49 90.51
DBM 3.35 96.01 4.46 93.55

Results given in bold represent the highest performance obtained

Table 5 Identification and verification results on CASIA

Technique Sety versus Set; Set; versus Sety
EER% Iden% EER% Iden%
Palmcode [2] 15.19 77.94 14.21 79.00
Competitive [10] 20.68 64.33 20.97 64.94
Ordinal [3] 8.43 86.83 8.25 86.50
RLOC [12] 9.99 81.67 9.74 83.00
HOL [13] 7.7 82.30 7.82 83.28
FAST-RLOC [14] 11.17 79.72 9.67 81.61
NDI [28] 16.53 74.22 15.98 75.06
DoN [15] 5.46 91.39 6.59 91.06
DBM 4.20 94.17 4.46 94.61

Results given in bold represent the highest performance obtained

@ Springer

0.995 |-

0.99 tr
0.985 [+
0.98 |
/4
o 0.975
-
0.97
0.965 H——__- PalmCode [2]
..... Competitive [10]
----- Ordinal [3]
0.96 H ----- RLOC [12]
HOL [13]
..... FAST RLOC [14]
0.955 4 ————- NDI [28]
DoN [15]
——DBM
0.95
10° 10* 10° 10° 10" 10’

FPR

Fig.7 ROC curve using CASIA palmprint database

ority over related techniques in [15]. DoN delivers the best
performance on PolyU II slightly outperforming our DBM
technique. However, DBM clearly has the upper hand over
its competitors on the challenging datasets II'TD and CASIA.
This is mainly attributed to the fact that the block-based
nature of the algorithm offers more robustness against illu-
mination noise as well as geometric changes at the image
acquisition stage.

Although the authors in [14] argued that the pixel-to-
pixel matching strategy is more robust than the pixel-to- area
matching approach proposed in [12], our results seem to dif-
fer from their findings and are actually in perfect agreement
with the claim made in [12] in the sense that the one-to-
many matching approach takes into consideration small shifts
and rotations in palmprint images. Finally, it is worth not-
ing the sensitivity of the techniques to the quality of images
used. Indeed, although the same number of images from each
database was used, swapping query and reference images
yields different results.

5.4 Complexity analysis

To analyse the computational complexity of the proposed
system along with other competing code-based techniques,
the average run time on 100 test palmprint images with a size
of 128 x 128 pixels is measured. All the source codes were
implemented in MATLAB and run on a platform of an Intel
Core Duo i7-4770 CPU 3.40 GHz with 16 GB of memory.
Note that MATLAB is a high-level programming language
and the results reported could be significantly improved using
a lower level programming language such as C or C++. As
previously mentioned, all the competing techniques have
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Table6 Run time in

milliseconds (ms) of the code Techniques Code extraction Matching stage Total time

extraction and matching stages Palmcode [2] 01.30 0.80 2.10

with different techniques - ’ ) )
Competitive [10] 49.60 13.4 63.00
Ordinal [3] 12.80 1.89 14.69
HOL [13] 160.0 2.90 162.90
RLOC [12] 73.70 6.50 80.20
FAST RLOC [14] 58.84 2.10 60.94
NDI [28] 53.1 0.56 53.66
DoN [15] 10.80 1 11.80
DBM 0.660 0.37 0.697

Results given in bold represent the highest performance obtained

been implemented in this paper. The results in milliseconds
(ms) are depicted in Table 6.

The computational cost of the proposed hashing system is
low when compared to its competitors at both the code extrac-
tion and matching stages. This is because the code extraction
stage does not require any filtering operations and uses only
basic operations. Furthermore, the process is only conducted
in two directions (horizontal and vertical) unlike other related
techniques. The matching stage is conducted on binary codes
as in other competing techniques but lower complexity was
involved since the extracted codes are much smaller in size
than those used in the compared techniques.

6 Conclusion

In this paper, a simple, fast, and efficient coding-based palm-
print recognition system has been proposed. The technique
relies on the Difference of Block Means (DBM) which
require a sufficiently small number of basic operations (i.e.
mainly additions and subtractions) for online and real-time
applications. The system has been analysed and assessed
on a number of palmprint databases, and it has been shown
to achieve superior performance when compared to related
state-of-the-art techniques at lower computational cost.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
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