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ABSTRACT: A microporous–mesoporous carbon has been successfully prepared via 

carbonization of sucrose followed by heat treatment process. The obtained porous 

carbon possesses abundant micropores and mesopores, which can effectively increase 

the sulfur loading. The composite exhibited a remarkable initial capacity of 1185 

mAh g‒1 at 0.2 A g‒1 and maintained at 488 mAh g‒1 after 200 cycles, when employed 

for lithium‒sulfur batteries. Moreover, the composite displayed enhanced rate 

capabilities of 1124, 914 and 572 mAh g‒1 at 0.2, 0.5 and 1.0 A g‒1. The outstanding 

electrochemical capabilities and facile low‒cost preparation make the new 

microporous–mesoporous carbon as an excellent candidate for lithium sulfur batteries. 
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1 Introduction 

Lithium‒sulfur (Li‒S) battery, as an advanced energy‒storage device, have caught 

increasing attention owning to its ultrahigh theoretical capacity, low cost and 

minimum safety issues [1]. But there are still hurdles hinders its performance, such as 

inferior conductivity, dissolution of polysulfides and the shuttle effect in liquid 

electrolyte [2]. Meanwhile, the volume effect and slow kinetics of redox reactions in 

the charge/discharge process also limit cyclic stability and damage structural integrity 

[3]. Therefore, advanced materials with high conductivity and porous structure for 

cathode are the key research areas for the purpose of enhancing the cyclic capacity 

and rate capability. 

Recently, metal oxides [4], metal sulfides [5], carbon nanotube [6], and porous 

carbon [7] have been developed as sulfur host materials. Among these materials, 

porous carbon can capture highly dispersive sulfur particulates, improve the 

conductivity and alleviate the volume effect [8‒9]. However, common 

micro‒structured porous carbon shows low surface areas, low porosities, and poor 

sulfur loading, which lead to the low sulfur utilization and rate capabilities [10]. Vast 

approaches have been paid to optimize the microstructures of the porous carbon in 

terms of solve aforementioned problems. Strategies of obtaining high porous carbon 

materials can be classified into the following major categories: i) Biomass materials, 

as a vital resource of porous carbon materials, has drawn extensive attention due to 

the naturally abundance and low cost [11]. E.g. activated pomelo peels [12], litchi 

shells [13], corncob [14] etc. derived carbon embedded with sulfur composite applied 

for Li‒S batteries. Zhang and colleagues designed an activated carbon via carbonizing 

the mango stone. The as‒prepared cathode possesses a tunable porous structure and 

delivered a capacity of 536 mAh g‒1 over 500 cycles at 0.675 A g‒1 [15]. ii) Chemical 
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reagents such as glucose [16], urea [17] and polymer composite [18] etc. can be 

carbonized and then served as sulfur host. For example, Yao et al. prepared a 

graphitic carbon nitride via thermal‒pyrolysis of urea, which exhibited a capacity of 

605.4 mAh g‒1 after 500 cycles at 0.39 mA cm‒2 [19]. iii) Template method which has 

been used to the synthesis of porous carbon materials. Many templates such as silica 

pellets [20], porous silica [21], molecular sieves [22] etc. have been developed in 

recent years as sulfur host. For example, a three‒dimensional porous carbon was 

synthesized using SiO2 nanospheres template followed by adding sulfur applied to 

Li‒S battery, the composite achieved capacity of 760 mAh g‒1 over 150 cycles at 

0.1675 A g‒1 [23]. iv) Metal organic frameworks (MOFs) materials derived 

nanostructured porous carbon [24], such as zeolitic imidazolate frameworks (ZIFs) 

[25] and materials of Institute Lavoisier (MIL) series [26] shows high surface area 

and suitable pore size after carbonation. For example, Wei et al carbonized a mixture 

of ZIF‒67 and dicyandiamide precursors to prepare N‒Doped carbon nanotubes [27], 

when applied for Li‒S batteries, it exhibited a capacity of 3.73 mAh cm‒2 over 100 

cycles at 0.1C. However, these methods are very complex and some of the methods 

involves high‒cost ligand reagent, which limits their scale‒up production. It is 

urgently demanded to develop an efficient, large‒scale and low‒cost method to 

prepare porous carbon sulfur host. 

Herein, a facile and scalable strategy was designed to prepare a nanostructured 

porous carbon (PC) with abundant micropores and mesopores. The PC was obtained 

using sucrose as carbon source, via a concentrated sulfuric carbonization and a 

subsequent heat treatment process. When applied in sulfur host, the PC/S composite 

demonstrates a high reversible capacity and a superior rate performance. 

2 Experimental section 
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2.1 Preparation of porous carbon (PC) 

All chemicals are purchased from Aladdin, and used as received. 15.0 g of 

sucrose was added into 30 ml of concentrated sulfuric acid solution (98%), then the 

mixtures were transferred into an oven and carbonized at 120 °C for 40 minutes. Then 

the resulting black product was washed with distilled water six times and dried at 

80 °C for 20 h. Then, the black product was calcined in Ar at 800 °C for 3 h. After 

that, the obtained sample was smashed via planetary ball‒milling at 400 r min‒1 for 4 

h. Finally, the PC sample was collected. 

2.2 Preparation of PC/S composite 

Briefly, the as‒prepared PC was mixed with commercial sulfur powder along with 

the mass ratio of 1:3. Then, the composites were sealed in a Teflon‒lined container in 

Ar‒filled atmosphere, and heated at 160 °C for 50 h. Finally, the PC/S composite was 

obtained. Commercially available sulfur powder (Aladdin, S111724) is also included 

as cathode for comparison propose. 

2.3 Li‒S batteries assembly and testing (see Supplementary Information for details). 

3 Results and discussion 

3.1 Structural and morphological characterization 

The scanning electron microscopy (SEM) images demonstrate the structure and 

morphology of the PC samples. The SEM results are exhibited in Figs. 1a,b, the PC 

before ball milling process exhibits the numerous irregular bulk structure ranging in 

size from one to a dozen micrometers, and the surface of the porous carbon is 

relatively smooth. Figs. 1c,d reveals a smooth morphology information of 

homogeneous particle sizes distribution with average size of 5 micrometer for the PC 

after ball‒milling.  
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The high-resolution TEM (HRTEM) images (Figs. 2a,b) confirm the 

micro‒porous nanostructure of the product. The inset image presents the selected area 

electron diffraction (SAED) pattern of the PC, in which two Debye‒Scherrer rings 

were clearly observed. The rings represent the (104) and (116) planes of the 

hexagonal carbon (JCPDS no. 26‒1076). These results demonstrate the evidence of 

amorphous profile of our porous carbon sample. 

Fig. 3a shows the results of the BET measurements for the PC sample. The 

isotherm curves of PC are a combination of Type I (characteristic of microporous 

materials) and Type IV (typical feature of mesoporous structure) isotherms [28]. As 

shown in Fig. 3a (inset), PC contains pores with the sizes in the 0.355-28.0 nm, 

indicating the coexistence of micropores and mesopores. Together with the 

micropores observed in the TEM images, these measurements confirm the 

micro‒meso porous structure of PC. The specific surface area and total pore volume 

of PC are approximately 480.5 m2 g‒1 and 0.231 cm3 g‒1, respectively. Consequently, 

the composite’s abundant surface area and high total pore volume can accommodate 

high sulfur content and anchor the polysulfides in redox process [29].  

X-ray diffraction (XRD) measurements were performed to investigate the crystal 

structures of the PC and PC/S. As for the XRD pattern of PC shown in Fig. 3b, a 

broad peak at ca. 26° can be observed, which attributes to the (002) peak of 

amorphous carbon [30]. As for the pattern of PC/S composite, the characteristic peaks 

are similar with the peaks of sulfur, and the intensities of diffraction peaks are weaker than 

these of sulfur, indicating the PC material was combined with sulfur powder in the 

composite, the peak of sulfur powder is consistent with the characteristic peaks of 

orthorhombic sulfur (JCPDS no. 08‒0247) [31]. 
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X-ray photoelectron spectroscopy (XPS) measurement for PC/S composite was 

performed to study the valence state of element. The XPS survey spectrum of PC/S 

composite is shown in Fig. S3. The C1s spectrum presented in Fig. 4a can be divided 

into three peaks located at approximately 284.7, 285.9 and 289.5 eV, corresponding to 

the C–C/C=C, C–O and O–C=O bonds, respectively [32]. In the S 2p spectrum (Fig. 

4b), a weak broad peak in the range of 169.8 eV to 166.8 eV can be ascribed to the S–

O bond of sulfate species arising from the oxidation of the active sulfur in air [33]. 

Besides, the fitted peaks located at 163.8 and 164.9 eV are associated with the S–S 

bond of the long‒chain polysulfides [34]. 

Raman spectroscopy has been generally performed to elucidate the structural 

characteristics of carbonaceous materials. As shown in Fig. 4c, both PC and PC/S 

samples exhibit the peaks located at 1345 and 1585 cm‒1, which are ascribed to the 

defect structure (D band) and the graphitic carbon atom in the carbon lattice (G band) 

[35]. The value of ID/IG for PC is 0.80, confirming the formation of graphite structure 

in the high‒temperature annealing process, which facilitates the charge transport 

between the electrodes [36]. The defects in PC are reported to be beneficial for the 

sulfur loading [37]. Furthermore, the ID/IG value of PC/S (0.92) is higher than that of 

PC, which indicates that the PC/S composite generates more lattice defects after 

loading sulfur. In addition, the three small peaks at 153, 226 and 330 cm‒1 are 

characteristic peaks of elemental sulfur [38], demonstrating the sulfur was 

compounded with PC successfully. The thermogravimetric analysis (TGA) was 

further performed to investigate the sulfur content in the PC/S composite. As shown 

in Fig. 4d, the result of pure sulfur demonstrates the sulfur loss at 265‒316 °C. The 

sulfur content in PC/S composite is ca. 62.6%. And a weight loss from 500 °C is 

ascribed to oxidation of PC, and the content of PC in the composite is ca. 37.4% [39]. 
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3.2 Electrochemical properties 

A coin type CR2032 half‒cell having lithium metal was used as counter 

electrode and reference electrode, and a polypropylene film was applied as separator 

for electrochemical testing. The electrochemical performance characteristics of PC/S 

composite are shown in Fig. 5. Fig. 5a presents the CV analysis of the PC/S cathode 

obtained at scan rate of 0.1 mV s‒1 in the range of 1.6‒2.8 V. The peak at 

approximately 2.33 V is ascribed to the anode reaction of Li2S/Li2S2 to S8 [40]. The 

two peaks presented at 2.30 V and 2.06 V correspond to the reduction of S8 to Li2Sn 

and Li2S/Li2S2 in cathodic curves, respectively [41]. Compared with the first 

reduction reaction process at approximately 2.30 V, the second reaction process at 

approximately 2.06 V involves more lithium ions. Therefore, the area of the reduction 

peak at 2.06 V is larger than that of the reduction peak at 2.30 V. The subsequent CV 

curves are almost identical, which indicates the superior reversibility of the PC/S 

cathode [42]. Moreover, the CV curves obtained at a scan rate of 0.1 mV s‒1 for 

commercial sulfur are presented in Fig. S1. The peaks at 2.12 and 1.83 eV on the 

cathodic curves are associated with the reduction of S8 to Li2Sn and Li2S2/Li2S, 

respectively. One peak at 2.62 eV is due to the oxidation of Li2S2/Li2S to S8. It can be 

demonstrated that peaks of PC/S cathode are shaper than those of commercial sulfur 

from CV results, suggesting that the PC/S composite possesses a slight polarization 

profile [43]. 

Fig. 5b shows the charge/discharge curves of PC/S at 0.2 A g‒1 for different cycles. 

The discharge capacities are 1185, 1103, 1076, 684 and 585 mAh g‒1 for the 1st, 2nd, 

3rd, 50th and 100th cycles. However, the discharge capacities of the 1st, 2nd, 3rd, 

50th and 100th cycles are 697, 693, 683, 479 and 399 mAh g‒1 for the pure sulfur 

cathode in Fig. S2, which are far lower than those of PC/S composite. The platforms 
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of discharge at 2.28 and 2.11 V are approximately consistent with the positions of the 

reduction peaks. The charge platform at 2.32 V is corresponding to the oxidation peak, 

which is in agreement with the CV analysis. The polarization phenomenon is 

gradually apparent with increasing cycle times, due to the irreversible deposition of 

polysulfides on the cathodes [44]. However, the gap between the discharge platforms 

and charge plateau of PC/S cathode is even narrower than those of pure sulfur cathode, 

indicating the PC/S can alleviate polarization phenomenon during the cycling process 

[45].  

Rate capabilities from 0.1 to 1.0 A g‒1 of the PC/S and pure sulfur cathodes are 

shown in Fig. 5c. The specific capacities are 946, 1124, 1041, 572 mAh g‒1 at 0.1, 0.2, 

0.5 and 1.0 A g‒1, respectively. After returning to 0.1 A g-1, the capacity recovered to 

1056 mAh g-1. Contrarily, the pure sulfur cathode Li‒S battery exhibits capacities of 

929, 768, 645 and 401 mAh g‒1 at the corresponding current densities, and a specific 

capacity reached 529 mAh g‒1 when the current was restored to 0.1 A g‒1. However, 

decreased the first discharge specific capacity, mainly because the intermediate 

product polysulfide is dissolved in the organic electrolyte during the cycling process, 

so that the shuttle effect occurs, the Coulomb efficiency is lowered, and the 

reversibility is deteriorated. It is observed that that the first discharge capacity of PC/S 

is lower than those of the subsequent cycles. This is mainly because the electrolyte is 

not sufficiently used in the battery assembly process and permeates slowly. As a result, 

a small amount of sulfur in the micropores of the cathode material cannot participate 

in the electrochemical reaction in the first discharge process. Fig. 5d shows the 

cycling performance results of the PC/S and pure sulfur cathodes obtained at 0.2 A g‒1. 

The PC/S exhibits a discharge capacity of 1185 mAh g‒1, and it retained a capacity of 

585 mAh g‒1 over 100 cycles, which is much higher than that of the pure sulfur 
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cathode. The cycling performance results of the PC/S and sulfur cathodes are 

presented in Fig. 5e. The first discharge capacity of PC/S is 930 mAh g‒1, it is much 

higher than sulfur electrode material (312 mAh g‒1) at 1.0 A g‒1. The PC composite 

still delivered discharge capacities of 464 mAh g‒1 after 500 cycles. In contrast, sulfur 

cathode delivers only 99 mAh g‒1 after 500 cycles. The cycling performance results of 

the PC/S and sulfur cathodes at current density of 0.1 A g‒1 are shown in Fig. S4. Both 

Coulombic efficiency of PC/S and pure sulfur cathodes are ~99%. The capacity of the 

pure sulfur cathode is much lower than that of the PC/S cathode, indicating that the 

porous structured carbon can increase the sulfur loading and reduce the polysulfide 

shuttle effect. Therefore, the discharge specific capacity is improved [46]. The SEM 

images of PC/S cathode after cycling test are shown in Fig. S5. It can be seen that the 

sample still retains its original morphology. Moreover, the cycling performance of the 

PC/S is comparable to those of the mesoporous carbon microtube/S [47], tubular 

amorphous C@S composite [48] and C@PC/S composite etc. [49‒53] that are listed 

in Table S1. Despite that the corresponding literatures has reported a significant 

progress, the satisfactory electrochemical capabilities of PC/S cathode may ascribe to 

the following advantageous properties. First, the presences of nanostructure can 

accelerate the electrons/ions diffusion and facilitate electrolyte infiltration during the 

cycle process, improving the rate performances of cathode. Second, the porous carbon 

structure can capture the polysulfide and relieve the shuttle effect via physical 

confinement. Finally, the abundant surface area of the composite can load a high 

sulfur content and anchor the polysulfides in the electrochemical process. The ohmic 

drop represents the potential difference after various cycles and reveals the energy 

barrier. It is observed from Fig. 5e that the ohmic drops of the PC/S and sulfur 

cathodes prior to the cycling test were determined as 0.83 and 3.67 mV, respectively. 
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After 500 cycles, the ohmic drops of the PC/S and sulfur cathodes increased to 1.22 

and 6.24 mV, respectively, which was attributed to the gradual increase of the 

resistance of the electrolyte and the internal resistance of the sample during the 

cycling process. 

At various scanning rates of PC/S cathode for the Li‒S battery, CV scans are 

conducted in scan rate of 0.1‒1.0 mV S‒1. As shown in Fig. 6a, several mechanisms 

obey the total charge stored during cycling [54], and they can be qualitatively 

analyzed according to: 

i= aVb                                          (1) 

log i= blog v + log a                               (2) 

where a and b are constants, i and v are the current and the scan rate, respectively. The 

value of b (0.5) indicates that the charge‒storage process is controlled by the diffusion, 

and the capacitive performance of the cathode can be obtained based on the b value 

(1.0) [55,56]. For the anodic and cathodic peaks in Fig. 6b, the b values were 

determined to be 0.565, and 0.842, respectively, indicating a capacitive‒controlled 

behavior process. Fig. 6c shows the contribution of capacity at different scan rates. 

The rate of the capacitive contribution is over 50%, indicating an increased capacitive 

contribution [57,58]. The capacitive contribution degree reaches to 83.5% at 1.0 mV 

s−1. The PC/S cathode exhibits a superb conductivity and the abundant specific 

surface area, contributing to an enhanced rate performance and improved cycling 

performance. 

Electrochemical impedance spectroscopy (EIS) measurements for PC/S and 

sulfur cathodes before and after cycling are shown in Fig. 7 with the inset of a 

schematic of the equivalent circuit. In Fig. 7a, the Nyquist plots are constituted of a 

high‒frequency one semicircle and a low‒frequency slanted line. A semicircle is 
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attributed to the electron transfer impedance (Rct) between the electrode and the 

electrolyte, the inclined line at low-frequency region is related with the Li‒ion 

diffusion in cathode material corresponding to Warburg impedance Wo [1,59]. After 

cycling 500 cycles, the impedance of the PC/S and pure sulfur cathodes exhibits two 

obvious semicircles (Fig. 7b). The high-frequency region can be ascribed to the 

accumulated passivation layer on the cathode surface, which is attributed to the 

formation of solid products (Li2S2/Li2S) in the electrode. The semicircle in the 

medium‒frequency region is associated with charge transfer resistance at the 

electrode‒electrolyte interface [51,60]. Moreover, the low-frequency region shows an 

inclined line that is assigned to the Li-ion diffusion resistance [61]. The fitting results 

for Nyquist spectra of PC/S and commercial sulfur cathodes are presented in Table S2. 

The Rct values of the PC/S and pure sulfur cathodes are 50.41 Ω and 914.7 Ω prior to 

cycling test, indicating the PC/S material shows good conductivity [62]. Moreover, 

the Rct values of the PC/S and pure sulfur cathodes after 500 cycles are 25.4 Ω and 

270.0 Ω, respectively. Furthermore, the Rct of the PC/S cathode after cycling is 

smaller than this of the fresh cathode, which demonstrates that the conductive porous 

carbon accelerates the electron and Li‒ion diffusion while preventing the polysulfides 

from dissolving during the cycling process [63,64]. Furthermore, the ultraviolet (UV) 

spectra and the inset picture shown Fig. S6 also confirm that PC shows a stronger 

adsorption effect for polysulfide [11,46]. Consequently, the PC/S cathode exhibits 

superior electrochemical performance. 

4 Conclusions 

Herein, the PC/S with abundant micropores and mesopores has been successfully 

prepared via carbonization followed by heat treatment process. the PC/S composite 

with 62.0 wt% sulfur exhibits a high discharge capacity of 1185 mAh g‒1 at 0.2 A g‒1 
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and retained at 585 mAh g‒1 over 100 cycles, when applied for Li–S batteries. 

Moreover, it exhibits a capacity of 464 mAh g‒1 at 1.0 A g‒1 after 500 cycles. Within 

the composite, the nanostructured PC can provide vast number of active reaction site 

with large contact area to ensure an abundant sulfur loading, effectively inhibit the 

dissolution and the shuttle effect of polysulfides, therefore enhanced the structural 

stability. Our results are promising in developing high sulfur loading cathode 

materials for long cycle‒life Li–S batteries and demonstrates a promising direction for 

the facile preparation of high‒performance sulfur host carbon materials. 
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Figure captions 

Fig. 1 SEM images of PC (a, b) before and (c, d) after ball‒milling. 

Fig. 2 (a) TEM and (b) HRTEM images of PC sample. Inset is SAED pattern of PC 

sample. 

Fig. 3 (a) Nitrogen adsorption/desorption isotherms of PC sample, the inset shows the 

pore size distribution of PC sample. (b) XRD patterns of PC, PC/S and commercial 

sulfur powder. 

Fig. 4 XPS spectra of (a) C 1s and (b) S 2p. (c) Raman spectra and (d) TGA curves of 

PC/S and commercial sulfur powder. 

Fig. 5 (a) CV curves of PC/S composites in potential range of 1.6-2.8 V at a scan rate 

of 0.1 mV s-1. (b) Charge/discharge profiles of PC/S composites at 0.2 A g-1. (c) Rate 

performances of PC/S and sulfur powder cathodes. Cycling performances of PC/S and 

sulfur powder cathodes at current densities of (d) 0.2 A g-1 over 200 cycles and (e) 1.0 

A g-1 over 500 cycles. 

Fig. 6 (a) CV curves of PC/S for Li‒S batteries at different scan rates ranging from 

0.1 to 1 mV S‒1. (b) Plots of log i versus log v. (c) Percentages of capacitive 

contribution at different scan rates for PC/S cathode. 

Fig. 7 Nyquist plots of PC/S and sulfur cathodes (a) before cycling test and (b) after 

500 cycles. Insets are the corresponding simulation circuit models. 
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Figures 

 

Fig. 1 SEM images of PC (a, b) before and (c, d) after ball‒milling. 
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Fig. 2 (a) TEM and (b) HRTEM images of PC sample. Inset is SAED pattern of PC 

sample. 
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Fig. 3 (a) Nitrogen adsorption/desorption isotherms of PC sample, the inset shows the 

pore size distribution of PC sample. (b) XRD patterns of PC, PC/S and commercial 

sulfur powder. 
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Fig. 4 XPS spectra of (a) C 1s and (b) S 2p. (c) Raman spectra and (d) TGA curves of 

PC/S and commercial sulfur powder. 
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Fig. 5 (a) CV curves of PC/S composites in potential range of 1.6-2.8 V at a scan rate 

of 0.1 mV s-1. (b) Charge/discharge profiles of PC/S composites at 0.2 A g-1. (c) Rate 

performances of PC/S and sulfur powder cathodes. Cycling performances of PC/S and 

sulfur powder cathodes at current densities of (d) 0.2 A g-1 over 200 cycles and (e) 1.0 

A g-1 over 500 cycles. 



28 

 

 

 

Fig. 6 (a) CV curves of PC/S for Li‒S batteries at different scan rates ranging from 

0.1 to 1 mV S‒1. (b) Plots of log i versus log v. (c) Percentages of capacitive 

contribution at different scan rates for PC/S cathode. 
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Fig. 7 Nyquist plots of PC/S and sulfur cathodes (a) before cycling test and (b) after 

500 cycles. Insets are the corresponding simulation circuit models. 


