
Northumbria Research Link

Citation:  Elmadih,  W.,  Chronopoulos,  D.,  Syam, W.  P.,  Maskery,  I.,  Meng, Han and Leach, R. K.  
(2019) Three-dimensional resonating metamaterials for low-frequency vibration attenuation. Scientific 
Reports, 9 (1). ISSN 2045-2322 

Published by: Nature Publishing

URL: https://doi.org/10.1038/s41598-019-47644-0 <https://doi.org/10.1038/s41598-019-47644-0>

This  version  was  downloaded  from  Northumbria  Research  Link: 
http://nrl.northumbria.ac.uk/id/eprint/44105/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access 
the University’s research output. Copyright © and moral rights for items on NRL are retained by the 
individual author(s) and/or other copyright owners.  Single copies of full items can be reproduced, 
displayed or performed, and given to third parties in any format or medium for personal research or 
study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, 
title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata 
page. The content must not be changed in any way. Full items must not be sold commercially in any  
format or medium without formal permission of the copyright holder.  The full policy is available online: 
http://nrl.northumbria.ac.uk/pol  i  cies.html  

This  document  may differ  from the  final,  published version of  the research  and has been made 
available online in accordance with publisher policies. To read and/or cite from the published version 
of the research, please visit the publisher’s website (a subscription may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html




1Scientific RepoRtS |         (2019) 9:11503  | https://doi.org/10.1038/s41598-019-47644-0

www.nature.com/scientificreports

three-dimensional resonating 
metamaterials for low-frequency 
vibration attenuation
W. elmadih1, D. chronopoulos2, W. p. Syam1, i. Maskery3, H. Meng2 & R. K. Leach  1

Recent advances in additive manufacturing have enabled fabrication of phononic crystals and 
metamaterials which exhibit spectral gaps, or stopbands, in which the propagation of elastic waves 
is prohibited by Bragg scattering or local resonance effects. Due to the high level of design freedom 
available to additive manufacturing, the propagation properties of the elastic waves in metamaterials 
are tunable through design of the periodic cell. in this paper, we outline a new design approach for 
metamaterials incorporating internal resonators, and provide numerical and experimental evidence 
that the stopband exists over the irreducible Brillouin zone of the unit cell of the metamaterial (i.e. is a 
three-dimensional stopband). the targeted stopband covers a much lower frequency range than what 
can be realised through Bragg scattering alone. Metamaterials have the ability to provide (a) lower 
frequency stopbands than Bragg-type phononic crystals within the same design volume, and/or (b) 
comparable stopband frequencies with reduced unit cell dimensions. We also demonstrate that the 
stopband frequency range of the metamaterial can be tuned through modification of the metamaterial 
design. Applications for such metamaterials include aerospace and transport components, as well 
as precision engineering components such as vibration-suppressing platforms, supports for rotary 
components, machine tool mounts and metrology frames.

Phononic crystals (PCs) are engineered materials designed to control elastic wave propagation. PCs generally rely 
on high impedance mismatches within their structural periodicity to form Bragg-type stopbands that exist due 
to the destructive interference between transmitted and reflected waves. The presence of destructive interference 
prevents specific wave types from propagating. Kushwaha et al.1 presented the first comprehensive calculation of 
acoustic bands in a structure of periodic solids embedded in an elastic background. James et al.2 used a periodic 
array of polymer plates submerged in water and provided experimental realisation of one-dimensional (1D) 
and two-dimensional (2D) PCs. Montero de Espinosa et al.3 used aluminium alloy plates with cylindrical holes 
filled with mercury to generate 2D ultrasonic stopbands. Tanaka et al.4 studied the homogeneity of PCs in the 
perpendicular direction to the direction of propogation, and classified PCs into bulk PCs and slab PCs. Research 
on the design, manufacturing and testing of PCs has mainly focused on 1D and 2D PCs5–15, although recently, 
the research has been extended to include 3D PCs16–24. Lucklum et al.25 discussed the manufacturing challenges 
of 3D PCs and showed that additive manufacturing (AM) has the fabrication capabilities required for the real-
isation of geometrically complex 3D PCs26–29. There are a wide variety of AM technologies that may be used to 
manufacture PC materials, such as laser powder bed fusion (LPBF), photo-polymerization, stereolithography 
and inkjet printing30–33. Although differing in the manufacturing resolution (the thickness of the build layer), 
materials, design constraints and cost, these AM technologies create 3D parts from a CAD model. The creation of 
the 3D parts is usually carried out layer by layer, and the thickness of the deposited layers, as well as the effects of 
post-processing, determine the geometrical quality of the created 3D parts34,35.

Despite the benefits of the recent ability to manufacture PCs with AM, their effectiveness at low-frequencies 
is limited due to the dependency of the resulting stopbands on Bragg scattering. Bragg scattering occurs due 
to destructive interference of the propagating waves with the in-phase reflected waves, which occurs when the 
wavelengths of the reflected and propagating waves are similar. The reflection occurs due to the difference in the 
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impedance (e.g. local density) of the PC. For the in-phase reflection to occur, the Bragg law has to be satisfied36, 
which is highly dependent on the cell size of the PC. Bragg scattering starts to occur when the wavelength is 
approximately equal to twice the cell size of the PC36; around a normalised frequency (the quotient of cell size and 
wavelength) of 0.5. Thus, there is a limiting dependency on the size of the unit cell of the PCs to form stopbands 
by Bragg scattering. As a result of this dependency, unrealistic cell sizes need to be employed to satisfy the Bragg 
law at low-frequencies.

It is possible to form stopbands below the lowest Bragg limit using metamaterials with periodically arranged 
local resonators. The stopbands in these metamaterials are formed by absorbing wave energy around the resonant 
frequency37–44. The benefits of resonator-based metamaterials include increased design freedom and the flexibility 
to obtain stopbands in structures of higher periodicity within a fixed design volume compared to conventional 
PCs. Thus, resonator-based metamaterials provide better-defined stopbands. Research on locally resonant meta-
materials includes the work of Liu et al.44, who first developed a metamaterial using solid cores and silicone rub-
ber coatings. The periodically coated spheres of Liu et al. exhibited negative dynamic mass, as well as stopbands 
at low frequencies. Numerous locally resonant metamaterials have been proposed. An example by Fang et al.45  
showed arrays of Helmholtz resonators with negative dynamic bulk modulus. Qureshi et al.46 numerically inves-
tigated the existence of stopbands in cantilever-in-mass metamaterials. Lucklum et al.21 and D’Alessandro et al.47 
independently verified the existence of stopbands in ball-rod metamaterials. Zhang et al.48 presented results of 
a beam metamaterial with local resonance stopbands. Bilal et al.49 reported on the concept of combining local 
resonance with Bragg scattering to form trampoline metamaterial with subwavelength stopbands. Matlack et al.50 
developed a multimaterial structure that has wide stopbands using similar concept to that of Bilal et al.49. Most 
of the above work, regarding both PCs and metamaterials, has employed analytical techniques to model and 
optimise the suggested unit cells. Because analytical techniques can only model simple designs, the potential for 
exploring the elastic capabilities of complex metamaterial designs has been limited.

We hereby report on 3D metamaterial comprising internal resonators, designed for targeting maximum elastic 
wave attenuation below a normalised frequency of 0.1. This normalised frequency limit, chosen arbitrarily, is four 
times lower than the lowest theoretical limit allowed for Bragg scattering stopbands. Due to its high normalised 
stopband frequencies, a PC relies heavily on increasing the cell size to reduce the absolute stopband frequency. 
The low normalised stopband frequencies of metamaterials allow for vibration attenuation at low absolute fre-
quencies using much more practical unit cell sizes (i.e. of more suitable dimensions for AM and applications). A 
novel approach for tuning and designing the unit cell of the metamaterial is presented. The computation scheme 
of the wave dispersion curves uses finite element (FE) modelling. In comparison to finite difference time domain 
(FDTD) modelling which suffers from stair-casing effects51, and plain wave expansion (PWE) modelling which is 
limited to structures of low impedance mismatch52, FE modelling guarantees an accurate description of the wave 
dynamics within the 3D metamaterial. LPBF is employed for fabrication of the metamaterial, which is experimen-
tally tested for verification of the numerical predictions. The fundamental unit cell of the metamaterial is shown 
in Figure 1, and is periodically tessellated in 3D to allow a local resonance effect. The 3D wave propagation and 
the complete stopbands of the metamaterial are presented in Figure 2. The experimental response of the manufac-
tured metamaterial is shown in Figure 3. Details of the computation, manufacturing and experimental methods 
are provided in the subsequent sections.

Results and Discussion
The unit cell of the metamaterial featured in this work is shown in Figure 1. The design is a cubic unit cell with 
face-centered struts (FCC), and reinforcement struts in the x-, y- and z- directions (FCCxyz). FCC lattices gen-
erally have good compressive strength53, in comparison to body-centred cubic lattices (BCC). Thus, the FCCxyz 
lattice is used as the host for the internal resonance mechanism of the metamaterial. The internal resonance 
mechanism consists of six struts; each connects one side of a cubic mass to the inner walls of the FCCxyz unit cell. 
Increasing the strut diameter Sd would increase the stiffness of the resonator, while increasing the strut length Sl 
would alter its volume fraction, which will have an impact on the stopband frequencies and the total mass.

Figure 1. The design of the resonating metamaterial: (a) Schema of the single unit cell of the metamaterial as 
modelled in CAD, the labels show the strut diameter (Sd), strut length (Sl), and cell size (C), and photograph of 
the 3 × 3 × 3 metamaterial as (b) digitally rendered, and (c) manufactured with LPBF.
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Figure 2. Wave propagation properties of the internally resonating metamaterial: (a) Dispersion curves for 
the metamaterial with Sd/C and Sl/C values of 0.033 and 0.1, respectively, with eigenmodes at selection of high 
symmetry points, and (b) start and end frequencies of the complete stopbands of metamaterials of different  
Sd/C values with the struts connected to resonators of large-size (green), mid-size (blue), and small-size 
(orange). The indicated percentages show the relative gap to mid-gap percentage. All frequencies (f) are 
normalised to the longitudinal wave speed in the medium v and the unit cell size C.

Figure 3. Experimental results acquired for the resonating metamaterial: (a) Transmissibility of the 3 × 3 × 3 
metamaterial in the x- longitudinal direction (solid line), y- transverse direction (dotted line), and z- transverse 
direction (dashed line) vis-à-vis the corresponding stopband as illustrated by the dispersion curves of the 
infinite metamaterial shown in (b), and (c) representative photograph of the experimental setup. The shaded 
areas show the identified stopbands.
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Modelling of the elastic wave propagation in the metamaterials was carried out in 3D using the scheme 
described in the Methods Section. The modelling used sufficient tetrahedral elements, such that the frequency 
of the first vibration mode converged with the FE mesh density (approximately 6000 nodes per unit cell). The 
elements of the converged mesh used three degrees of freedom (DOF) per node with adaptive mesh size to suf-
ficiently model narrow regions in the metamaterials54. To mathematically model the elastic wave propagation, 
the contours of the irreducible Brillouin zone (IBZ) of the unit cells of the metamaterials were scanned. Several 
characteristic points exist within the contours of the IBZ including Γ(0,0,0), X(π/C,0,0), M(π/C,π/C,0), and 
R(π/C,π/C,π/C), where C is the unit cell size (also referred to as α or L in other literature50,55,56). The scan of the 
IBZ was carried out using a total of 360 combinations of wavenumbers (90 combinations for each wave propaga-
tion direction). The corresponding dispersion properties along the path Γ–X–R–M–Γ of the IBZ were predicted 
and the complete stopbands were identified. The dispersion curves of a metamaterial unit cell with Sd/C and Sl/C 
values of 0.033 and 0.1, respectively, are presented in Figure 2a. It was observed that the metamaterial exhibits a 
stopband below a normalised frequency of 0.1. The stopband spans a normalised frequency range of 0.028, start-
ing from 0.039 to 0.067, and is formed by an internal resonance that cuts the first three acoustic wavebands (wave-
bands cutting-on at zero frequency) and splits them into two branches (i.e. top and bottom acoustic branches).

The dispersion curves of multiple metamaterials of different values of Sd/C and Sl/C were predicted. The con-
sidered Sd/C values were 0.005, 0.01, 0.02, 0.025 and 0.033, and the considered Sl/C values were 0.05 (large-size 
resonator), 0.1 (mid-size resonator) and 0.2 (small-size resonator). Figure 2b presents the stopbands for each of 
the considered metamaterials to show the impact of the design of the internal resonators on forming complete 
3D stopbands. The relative gap to mid-gap percentages of selection of the presented stopbands (width of the stop-
band divided by its central frequency) are highlighted in Figure 2b. The large-size resonator showed the largest 
relative gap to mid-gap percentage of 68%. The cut-on frequency of the top acoustic branches (i.e. the stopband 
end frequency) increased with the increase in the diameter of the struts, and with the increase in the size of the 
resonator. The stopbands of all the considered unit cell designs were below a normalised frequency of 0.1, as can 
be seen in Figure 2b. The stopbands of the large-size resonator had wider stopbands than that of the mid-size res-
onator. The average stopband width in the large-size resonator was calculated to be wider by 63%, and 236% than 
that of mid-size and small-size resonators, respectively. The mean frequency of the stopband showed a change of 
2.4% with the change in the resonator size. The results shown in Figure 2b can be used as a means of tuning the 
stopbands of the metamaterial for a specific application.

For verification of the complete stopband in the proposed metamaterial, LPBF was used to manufacture a 3D 
structure of finite periodicity. Details about the LPBF process can be found in the Methods Section. The geomet-
rical dimensions and periodicity of the metamaterial were selected to be suitable for the LPBF process. The manu-
factured metamaterial, presented in Figure 1c, had a unit cell size of 30 mm and a 3D periodicity of three. The Sd/C 
and Sl/C values were selected to provide the lowest stopband start frequency, when referenced to the stopband 
start frequencies presented in Figure 2b while considering the lowest manufacturable feature size with LPBF57 
(See Methods Section); this meant that the Sd/C and Sl/C values had to be 0.033 and 0.1, respectively. The 3D 
transmissibility of the metamaterial was obtained experimentally and is presented in Figure 3a. The longitudinal 
transmissibility had a value of 0 dB near the normalised frequency of zero, which indicates complete transmission 
of the excitation waves. At the vibration resonances, the longitudinal transmissibility was greater than 0 dB and 
reached 28 dB, which indicates high amplification of the excitation waves. Within the stopband, the longitudinal 
transmissibility reached −77 dB. The effect of lattice periodicity on the transmissibility within the stopband can 
be seen elsewhere12,58. For this investigation, considering the manufacturable feature size of LPBF (See Methods 
Section), we have chosen 3 × 3 × 3 as a reasonable example. The results showed that the metamaterial in this work 
has double the transmissibility reduction experimentally reported by Croënne et al.12 for their 3D PC which had 
double the spatial periodicity used in this work.

The 3D elastic wave propagation in the internally resonating metamaterials was modelled using a hybrid 
scheme. The scheme uses the FE method combined with infinite periodicity assumptions. It was shown that the 
metamaterials exhibit complete stopbands far below the lowest frequency limit of Bragg-type stopbands, which 
exist in traditional PCs. A metamaterial of finite periodicity was manufactured using LPBF. An experimental 
setup was assembled, comprising a broadband vibration shaker, a laser vibrometer, and dedicated signal gen-
eration and acquisition units. The experimental setup was used to test the 3D vibration transmissibility of the 
manufactured metamaterial. It was shown that the metamaterial could attenuate the vibration waves within the 
stopband range. The experimental results showed that, within the stopband, the longitudinal transmissibility 
of vibration waves in the metamaterial reached −77 dB. Tuning of the stopband can be achieved by adjusting 
the size of the resonator and the diameter of the struts to suit the requirements of various applications. For this 
particular metamaterial, the stopband was from 1.63 kHz to 2.8 kHz with a unit cell size of 30 mm. Unit cells of 
suitable dimensions for AM and applications, and higher periodicity within a certain design volume, in compar-
ison to PCs, can be employed to obtain low absolute frequency stopbands; resulting in higher attenuation within 
the stopbands.

Methods
Modelling of elastic wave propagation using a hybrid wave and finite element scheme. The 
proposed scheme for computing the dispersion curves used a combination of FE modelling and periodic struc-
ture theory. The metamaterials were modelled using FE modelling which allows for accurate representation of the 
geometrically complex metamaterials. The complete mass and stiffness matrices of the designs, K and, M respec-
tively, were extracted. The Bloch theorem59, which governs the periodic displacement and forcing conditions was 
employed. The periodic structure theory assumed an infinite 3D spatial periodicity of the unit cell60,61. Figure 4 is 
a schema of the segmentation of the unit cell of the metamaterial into sets of DOF, which were used for modelling 
the periodicity of the unit cell.

https://doi.org/10.1038/s41598-019-47644-0
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The nodal displacement matrices q were arranged in the following sequence to allow for the 3D spatial peri-
odicity of the unit cell

=q q q q q q q q q q q q q q q q q q q q[ ] , (1)IN F S B T L R FB FT SB ST FL FR SL SR BL BR TL TR
T

where the subscripts IN, L, R, T, B, F, and S indicate the DOF of the nodes existing at the inside, left, right, top, 
bottom, front, and back of the unit cell as illustrated in Figure 4. A transformation matrix R was considered to 
project the nodal displacement matrices as follows

= q Rq , (2)

where
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where k is the wavenumber for the waves propagating in x-, y- and z- directions within the considered regions of 
the IBZ. Subsequently, the projected stiffness and mass matrices of the reduced sets of DOF, K  and M , were com-
puted as

′ ′= =K R KR M R MR,, and (4)

Assuming no external excitation under Bloch-Floquet59 boundary conditions, the following eigenvalue prob-
lem was derived in the wave domain

ϕω− =K M( ) 0, (5)2

where ω is the angular frequency and ϕ is the eigenvector. Eq. 5 provided the wave propagation characteristics of 
the metamaterials in 3D space. By substituting a set of presumed wavenumbers in a given direction, the derived 
eigenvectors ϕ provided the deformation of the unit cell under the passage of each wave type at an angular fre-
quency ω. To obtain normalised frequencies, the frequency eigenvalues of Eq. 5 were normalised to the unit cell 
size C and the speed of longitudinal waves in the lattice material v, which was calculated as the square root of the 
quotient of the elastic modulus and material density. A complete description of each passing wave, including x-, 
y- and z-directional wavenumbers and wave shapes, at a certain frequency range is acquired with modulo 2π. 
When modelling the dispersion curves of the metamaterial used in this work, suitable 3D translation of all solid 
features and voids within the unit cell is obtained when the design is approximated as a simple cube, thus, allow-
ing for the use of the IBZ of simple cubic lattice for modelling the dispersion curves. Such approximation is 
known to provide accurate dispersion relations as can be seen elsewhere62–64. The computation did not include 
damping, though it should be noted that structural damping can be directly introduced to Eq. 4 by including an 
imaginary part of the K  matrix65. Alternatively, if full viscous damping properties are to be considered, then 
dedicated eigenvalue problem solvers can be employed59.

Additive manufacturing technology employed. Internally resonating metamaterial samples were fab-
ricated on a laser powder bed fusion (LPBF) system using PA12 polymer material. The material properties for 
PA12 can be found in Table 1. The LPBF system used a 21 W laser of scan speed and hatch spacing of 2500 mm⋅s−1 
and 0.25 mm, respectively. The nominal spot size of the laser was 0.3 mm and the layer thickness was 0.1 mm. 
PA12 powder was used to fill the powder bed of dimensions 1320 mm × 1067 mm × 2204 mm at a temperature of 
173 °C. Geometrical features of sizes below 0.8 mm are usually manufactured with considerable losses in mechan-
ical properties, due to the existence of unsolidified powder within the manufactured features57. To ensure that all 
geometrical features were manufactured in agreement with the specified design, the size of the narrowest meta-
material feature was designed to be 1 mm57.
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experimental measurements on vibration transmissibility. The metamaterial sample was suspended 
using piano strings to approximate free-free boundary conditions. The approach taken to suspend the metama-
terial, similar to the approach taken by Zhang et al.48 and Chen et al.66, supports the metamaterial uniformly. An 
alternative approach, which can also be used for approximation of free-free boundary conditions, can be found 
in the work of D’Alessandro et al.47. The metamaterial was adhesively affixed from one side to a connector which 
was, in turn, bolted to an acceleration sensor. The acceleration sensor was linked to the armature of the shaker 
(Modal Shop Shaker 2060E)67 through a stinger. The stinger is a 1.5 mm rod which connects to the acceleration 
sensor, and decouples cross-axis force inputs, thus, minimising errors during measurements68. As part of the 
experimental setup, the beam of a laser vibrometer was projected perpendicularly to the opposite surface of the 
metamaterial to take longitudinal acceleration measurements. The transverse acceleration measurements were 
taken by projecting the beam of the laser vibrometer perpendicularly to the side surfaces of the metamaterial. The 
laser vibrometer was set to measure the structural response in the longitudinal and transverse directions from 
a normalised frequency of 0 to 0.15. The acceleration data within the tested frequency range were also obtained 
through the acceleration sensor. The combination of the measurements of both the laser vibrometer and the 
acceleration sensor provided the transmissibility of the specimen. Figure 3c is a representative photograph of the 
experimental setup. All measurements were taken with a normalised frequency resolution of less than 3.7 × 10−5 
and were complexly averaged, considering both the phase and the magnitude of the measurements, over 100 
spectral sweeps.

Material property Value

Young’s modulus 1.5 × 103 MPa

Density 950 kg⋅m−3

Table 1. Material properties of PA1269.

Figure 4. Selection of the segmentation of the unit cell of the metamaterial into DOF as used for modelling the 
periodicity of the unit cell. The magenta points represent the (a) front nodes, (b) left nodes, (c) top nodes, (d) 
top-left nodes, (e) top-front nodes, and (f) front-left nodes.
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