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Abstract 

This paper presents numerical and experimental investigations on the low 

frequency sound absorption coefficient (SAC) and sound transmission loss (STL) of 

corrugated sandwich panels with various perforation configurations. Considered 

configurations includ perforations in the face plates, in the corrugated core and in both 

the face plates and corrugated cores. Finite element (FE) models are built up for the 

calculations with considerations of the acoustic-structure interactions and viscous and 

thermal consumptions inside the perforate pores. The numerical models are then 

verified by comparing with the experimental results measured in an impedance tube. 

Compared with the classical corrugated sandwich panels without perforations, the 

corrugated sandwich panels with perforated pores in the face plates can not only 

provide higher SAC at low frequencies, the enlargement of SAC will produce better 

STL at low frequencies as a consequence.. Influences of perforated pore diameter and 

porosity on the vibroacoustic performances are also explored. For corrugated 

sandwich panel with uniform perforations, resonance frequencies and bandwidths in 

the SAC and STL curves decreases with the increase of pore diameter and decrease of 
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porosity. Non-uniform perforations in the corrugated sandwich panels can make up 

for the deficiency of the uniform perforations by enlarging the bandwidth and 

lowering the resonance frequency.  

Key words: corrugated sandwich panels, low frequencies SAC, low frequencies STL, 

perforations, additive manufacturing 

 

Introduction 

Sound transmission loss and absorption of panels are the two biggest acoustic 

issues for investigators in this area in the past decades. The most appealing structures 

for the sound transmission are sandwich panels made of multiple-layer panels and 

core structures. Sandwich structures have low density, high stiffness-to-mass ratio, 

and excellent thermal and acoustic characteristics, hence widely applied as 

soundproof concepts. Many kinds of cores exist for the sandwich panels, such as air 

cavity core, foams, honeycomb structures, corrugated structures and other isotropic 

and anisotropic cores. Extensive investigations have been dedicated to the STL of 

sandwich panels, and those investigations can be classified by the core types.  

 

A great deal of investigators presented their methods for the double wall 

partitions with air cavity [1-7], for example, Wang et al. [1] predicted the STL of 

double leaf with air sandwich panel numerically by statistical energy analysis 

approach, Xin et al. [3] investigated analytically the STL of simply supported finite 

double leaf panels with enclosed air cavity. Besides, numerous studies have 

considered the double wall sandwich panels with sound absorbing cores instead of air 

cavity [8-18], for example, Bolton et al. [13, 17] presented calculations of STL of 

double-panel structures lined with elastic porous material by applying the Biot’s 

theory for the porous material, Doutres and Atalla [12] proposed a theory to estimate 

the STL of double panel structure with multilayered absorbing blanket core. Sandwich 

panels with sound absorbing cores turned out to improve the STL at resonance 

frequencies. Honeycomb sandwich panels are more widely used in applications than 

sandwich panels with air or absorbing cores because of good mechanical efficiency, 



many investigators have studied the STL of honeycomb sandwich panels [19-24]. 

Jung et al. [22] presented a theory to predict STL of honeycomb sandwich panels by 

assuming the core is homogeneous orthotropic. Griese et al. [23] numerically 

calculated the STL performance of honeycomb sandwich panels and analyzed the 

effect of honeycomb core geometry on the STL of honeycomb sandwich panel. Zhou 

and Crocker [20] presented STL calculations of foam-filled honeycomb sandwich 

panel by statistical energy analysis. Rajaram et al. [24] investigated panel design 

parameters on the STL of the honeycomb sandwich panels. Tang et al. [21] presented 

a model for the estimation of STL of cylindrical sandwich shell with honeycomb core. 

Among all the sandwich panels, corrugated sandwich panels are the most appealing 

alternative in the transportation industry due to its excellent mechanical performance 

with limited thickness, simple configuration, structural stability and easy manufacture 

procedure. Shen et al. [25] and Xin et al. [26, 27] presented analytical investigations 

of corrugated sandwich panels by modelling the corrugated cores as translational and 

rotational springs. Even though the success applications of sandwich panels for 

settling the STL, sandwich panels are incapable for the sound absorption.  

On the contrary, micro-perforated panels (MPPs) can provide effective sound 

absorption performances. MPPs are usually comprised of plates with submillimeter 

pores, an air cavity and rigid wall. Sound absorption mechanism of the MPPs is 

connected to Helmholtz resonance like absorption. Compared with the traditional 

sound absorbing materials, MPPs are more environment-friendly and suitable for 

severe situations, such as high temperature and high pressure. The SAC of the MPPs 

has been widely addressed by many investigators. Maa first [28-30] proposed an 

analysis model for the SAC of single and double MPPs by the electroacoustic analogy 

method. Atalla and Sgard [31], Allard and Atalla [32] tried to figure out the SAC of 

the MPPs by employing rigid frame porous material models, Beranek and Ver [33] 

presented a theoretical model that similar to Atalla and Sgard’s with a different 

correction length for the impedance. Rao and Munjal [34] and Lee and Kwon [35] 

used an empirical impedance model to estimate the SAC of MPPs. Despite of the 

efficiency in SAC, MPPs are invalid structures for the STL. Studies by Chen [36] and 



Dupont et al. [37] showed that the SAC of the MPPs is smaller than that of single 

plate of the same thickness.  

Nowadays, combinations of MPP and sandwich structures come into the view of 

researchers concerning both the STL and SAC of panels. Perforated pores in the face 

plates of the sandwich panels can provide effective sound absorption as MPP layers, 

while the backed plates and core structures can act as sound insulation barriers. 

Dupont et al. [37] first investigated the acoustic properties of a MPP coupling with a 

flexible plate both analytically and experimentally, they found the coupled MPP-air 

cavity-plate system could increase the STL while maintaining a good SAC. To 

improve the STL at mid frequencies, Toyoda and Takahashi [38] subdivided the air 

cavity of the MPP-air cavity-plate system by inserting honeycomb structures to the air 

cavity. Bravo et al. [39, 40] proposed a fully coupled model approach to calculate the 

SAC and STL of single or multi-layer MPPs and plates, and results showed that SAC 

and STL at resonance frequencies were controlled by the relative velocities of 

air-frame and the MPP-back panel. Mu et al. [41] added MPP layer both to the source 

and transmitted side of double leaf panels and found the MPP layer weakened the 

mass-air-mass resonance.  

These investigations concern the acoustical properties of sandwich panels with 

face plate perforations. The middle cores of these sandwich panels are air gap or 

honeycomb structures. None of these investigations considers corrugated sandwich 

panels with perforations. Corrugated sandwich panels are an appealing structure for 

STL in application. Different from the honeycomb sandwich panels, corrugated 

sandwich panels can have perforations in the corrugated pores as well as in the face 

plates (see Fig. 1). It will be interesting for investigators in this area to see the new 

SAC and STL by various perforation configurations in corrugated sandwich panels.  

However, the perforations in the corrugated sandwich panels are micro-sized that 

makes the manufacture of perforated sandwich panels extremely difficult by 

conventional manufacturing methods. Hence, the additive manufacturing (also known 

as 3D printing) is employed to fabricate the perforated corrugated sandwich panels. In 

an additive manufacturing progress, the expected structures are created by laying 



down thin layers of materials according to the digital CAD models. Nowadays, many 

kinds of 3D printers occur, including direct metal laser sintering (DMLS), selective 

laser melting (SLM), fused deposition modeling (FDM), etc. [42]. These different 3D 

printers can create objects from many materials, plastics, sandstones, porcelains, pure 

metals, alloys and almost everything in-between. The additive manufacturing can not 

only print structures with elaborate shapes, it is also a more time-saving method than 

conventional manufacturing methods.  

Therefore, this paper deals with the SAC and STL of corrugated sandwich panels 

with perforations at normal incidence. Section 1 presents FE models to calculate the 

SAC and STL of corrugated sandwich panels with different perforation configurations. 

Section 2 describes an experiment conducted in an impedance tube for the validation 

of the FE models. Based on the FE models proposed in section 1, section 3 compares 

the SAC and STL of corrugated sandwich panels with different perforation 

configurations. The influences of the perforated pore diameter and porosity are also 

discussed in section4. 

1. Corrugated sandwich panels with perforations by FE models 

Figure 1 shows 4 kinds of corrugated sandwich panels with different perforation 

configurations. The sample in Fig. 1(a) represents classical corrugated sandwich 

panels without perforation. The wall thicknesses of the two face plates and corrugated 

core are 1h , 2h  and t  respectively. The distance between the two plates is H . The 

inclination angle of the corrugated core is φ , and the width of the unit cell of the 

corrugated core is L .Samples in Figs. 1(b)(c)(d) have perforated pores of 

submillimeter~ millimeter scale in the upper face plates, corrugated cores and both 

the two places respectively. The diameters of perforated pores in the face plate and the 

corrugated core are 1d  and 2d  respectively. It is noted that for all these corrugated 

sandwich panels, no perforated pores exist on the lower face plate to achieve more 

effective STL.  



 

Fig. 1 Schematic of classical corrugated sandwich panel and corrugated sandwich 

panels with various perforation configurations 

When a plane wave impinges on the upper face plate, the acoustical properties of 

the corrugated sandwich panels can be calculated by the FE model shown in Fig. 2. 

The FE model is set up by using the software COMSOL Multiphysics. The plane 

wave is applied to the incidence field. Two Perfectly Match layers (PML) are added to 

the incident and transmitted field to simulate infinite and non-reflecting domain.  

 

Fig.2 Numerical model of a unit cell of the corrugated sandwich panel 

The air in the incident, transmitted and middle field is compressible but lossless 

flow, with no thermal conductivity and viscosity considered. Thus the pressure field 



model, which is suited for all frequency-domain simulations with harmonic variations 

of the pressure field, is applied. The sound pressure in these fields is governed by 

Helmholtz equation: 
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where p  is the sound pressure, t  is the time and 0c  is the sound speed. 

The solid components of the structures are isotropic linear elastic materials during 

the simulation, Solid Mechanics module is applied for the vibration of the solid panels, 

the displacement of the panel is governed by 

   T2 1

2
iωtρω Fe     u u u   (2) 

where u  represents the displacement of the solid panels, ρ  is the density of the 

solid panel, ω  is angular frequency, and F  represents the total sound pressure 

exerted on the solid panel. 

As to the air inside the small pores, the radius of pores is of comparable size with 

the thermal boundary thickness and viscous boundary thickness at low frequencies, 

which means the thermal conduction and viscosity should be considered during the 

simulation, therefore, thermal-acoustic modulus is applied, the sound pressure, 

temperature, and particle velocity is governed by three equation, the linear 

Navier-Stokes equation, mass continuity equation and thermal conduction equation, 

given as below: 
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where v  is fluid velocity, and T  is temperature variation, 0ρ  is the density of air, 

η  is the dynamic viscosity. pC  denotes the heat capacity of air at constant pressure, 

K  is thermal conductivity. Besides, 0P  and 0T  represent equilibrium pressure and 



temperature. 

For the corrugated sandwich panels of infinite size, FE simulations can be 

conducted by a unit cell with periodic boundary condition as shown in Fig. 2. While 

for panels of finite size, the whole panels with actual boundaries should be embodies 

in FE models. Model settings for the air and solid frame mentioned before are 

applicable for both infinite and finite sized samples.  

The sound energy E  is divided into three parts during propagation through the 

composite panel: 

 ref trans absorpE E E E     (4) 

where refE  denote the reflected sound energy in the incident field, transE denotes the 

transmitted sound energy in the transmitted sound field, while absorpE  denotes the 

absorbed energy inside the sandwich panel. refE  is calculated by: 
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where 1p  and 1v  are the sound pressure and velocity at the surface of the top face 

plate in the incident field, ip  and iv  are the sound pressure and velocity of the 

incident plane wave. 

The transmitted energy transE  is given as: 
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where 3p  and 3v  are the sound pressure and velocity at the surface of the bottom 

face plate in the transmitted field. Hence, the STL can be given as: 

 S 10TL 10 log
trans

E

E
   (7) 

The SAC is written as: 
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2. Experimental validation 

Experimental measurements were performed to validate the FE models by using 

the four microphones B & K standing wave tube with the two load method shown in 

Fig. 3. A loudspeaker mounted at the end of the tube was set to generate a random 

signal over the frequency range 100~1600 Hz. 4 microphones were installed at the 

four measuring position to measure the complex sound pressures. Note the tubes with 

a diameter of 100 mm were chosen, which is suitable for low frequency measurement 

100~1600 Hz. A transfer matrix method was applied to obtain the acoustic properties 

of the tested samples developed by Bolton et al.[43]. The transfer matrix elements 

were solved by two independent measurements which were conducted with open tube 

termination and reverberant termination respectively. The reverberant termination was 

created with 3 standard samples with an approximately 75 mm depth in total.  

 

 

Fig. 3 Schematic of the experimental system 

  



  

Fig. 4 Corrugated sandwich panel samples for impedance tube test 

 

Fig. 5 FEM models for samples for test 

Figure 4 shows the four tested samples corresponding to the four types of panels 

in Fig. 1. The samples were manufactured by a FDM 3D printer with a density of 958 

kg/m^3, Young’s modulus 1 GPa and Poisson’ ratio of 0.35. The geometrical 

parameters of the samples are shown in Table 1. During the measurement, the samples 

were fixed in the tube. FE models of finite size with fixed boundary conditions 

identical to the experimental conditions are set up (see Fig. 5) by applying the FE 

method in the last section.  

Table 1 Geometrical parameters of the corrugated sandwich panels samples in 

experiment 

Parameters Value 



face plates thicknesses 1

2

1 mm

2 mm

h  

h  




  

distance between face plates 17 mmH    

perforation ratios  1 2 0.78σ =σ = %   

pores diameters 1 2 1 mmd d     

wall thickness of the core  1 mmt    

inclination angle of the core 63.4φ=    

unit cell width of the core 20 mmL    

 

The tested STLs are compared with that by simulation in Fig. 6. The tested STLs 

agree well with the simulation results for all these samples, which proves that the FE 

methods presented are effective to estimate the acoustical properties of the corrugated 

sandwich panels. The deviations at low frequencies are mainly introduced by the 

non-ideal experimental conditions and manufacturing errors of samples. 

 

(a) 

 

(b) 

  



(c) (d) 

Figure 6 Comparison between the STL by FEM and experimental measurement 

3. Results and Discussion 

3.1 Influence of perforation configurations 

  

Fig.7 STL comparison among corrugated sandwich panels with different perforation 

configurations 

  

Fig.8 SAC comparison among corrugated sandwich panels with different perforation 

configurations 

Based on the previous FE models proposed, this section compares the STL and 

SAC of the four kinds of corrugated sandwich panels. For simplification, sandwich 

panels of infinite size are considered. These panels are assumed fabricated by 



aluminum with a density of 2700 kg/m3, Young’s modulus of 70 GPa, and Poisson’s 

ratio of 0.33.  

Table 2 Geometrical parameters of the calculated corrugated sandwich panels 

Parameters Value 

face plates thicknesses 1 2 1 mmh h      

distance between face plates 18 mmH    

perforation ratios  1 2 0.349σ =σ = %   

pores diameters 1 2 1 mmd d     

thickness of the core  1 mmt    

inclination angle of the core 54.8φ=    

unit cell width of the core 30 mmL    

 

The STL and SAC of the classical corrugated sandwich panel and corrugated 

sandwich panels with various perforation configurations are compared in Fig. 7 and 

Fig. 8. The geometrical parameters of the corrugated sandwich panels are listed in 

Table 2. It can be seen from Figs. 7 and 8 that compared with classical corrugated 

sandwich panels without perforation, sandwich panels with perforations in the face 

plate have better SAC and STL at low frequencies, while the sandwich panels with 

perforations only in the corrugated core have almost identical STL and SAC curves. 

For sandwich panels with face plate perforations, the sound waves can enter into the 

small pores during the propagation. The SAC can be dramatically enlarged since the 

sound energy will be consumed by the viscous and thermal effects inside the small 

pores. Due to the improvement of absorbed energy, the transmitted energy will be 

reduced, which will bring out increment of STL. On the contrary, for sandwich panels 

with perforation in the corrugated cores, most of the sound energy will be reflected by 

the upper face plate, therefore, the SAC is negligibly small, simultaneously, no 

improvement occurs in the STL. Besides, it also can be seen that resonance 

frequencies exist in the SAC and STL curves of corrugated sandwich panels with face 

plate perforations. Sandwich panels with perforations in both the face plate and 



middle core have lower resonance frequency than that with only face plate 

perforations.  

It can be concluded that the perforations have great influence in the STL and SAC 

of corrugated sandwich panels. Sandwich panels with perforations both in the face 

plate and cores have the best acoustic properties at low frequencies. Hence, further 

study of the perforations will be conducted based on the corrugated sandwich panels 

with both face plate and core perforations. Influences of pore diameters and pore size 

will be discussed in the following section.  

3.2 Influence of pore diameter 

  

Fig.9 STL and SAC comparison among corrugated sandwich panels with perforations 

of different pore diameters 

Figure 9 compares the STL and SAC of three corrugated sandwich panels with 

same geometrical parameters (as listed in Table 2) apart from the perforated pore 

diameters. For all the three sandwich panels, the pore diameters are uniformly 

distributed, namely, the diameter of pores in the face plates is equal to that in the 

corrugated cores of the same corrugated sandwich panels. It can be seen from Fig. 9 

that with the decrease of the pore diameter, the bandwidth of SAC increases. When 

the porosity is fixed, the air-fluid interface area inside the perforated pores increases 

with the decrease of pore diameter. The improved air-fluid interface area will increase 

the acoustic resistance, which will enlarge the bandwidth in SAC and STL as a 

consequence. It also can be seen from Fig. 9 that the decrease of pore diameter can 



enlarge the resonance frequencies and reduce the peak values in STL and SAC curves. 

Corrugated sandwich panels are ideally expected to have high peak values, big 

bandwidths and low resonance frequencies in SAC and STL curves at the same time. 

However, obviously, there exists a contradiction between increment of bandwidth and 

decrease of resonance frequencies and increment of peak values for sandwich panels 

with uniform pore diameters. Therefore, corrugated sandwich panels with 

non-uniform pore diameters are resorted to balance this problem as shown in Fig. 10.  

  

Fig.10 STL and SAC comparison among corrugated sandwich panels with 

perforations of uniform and non-uniform pore diameters 

Figure 10 compares the STL and SAC of the sandwich panels with uniform and 

non-uniform perforated pore diameters. For the two non-uniformly perforated 

sandwich panels, diameters of pores in the face plate are different from that in the 

corrugated core of the same panel, instead, the pore diameters of the two places are in 

descending and ascending orders respectively. It can be seen from Fig. 10 that the 

non-uniform pore diameters in the sandwich panels can remedy defects introduced by 

uniform pores. The non-uniformly perforated sandwich panels have bigger bandwidth 

than the uniformly perforated sandwich panels with bigger pore diameter, and higher 

peak value and lower resonance frequency than uniformly perforated sandwich panels 

with smaller pore diameter. In addition, Fig 10 also shows that sandwich panels with 

non-uniform pores diameters in descending order have better STL and SAC at low 

frequencies than that in ascending order. 



3.3 Influence of porosity 

Fig.11 STL and SAC comparison among corrugated sandwich panels with 

perforations of different porosities 

This subsection discusses the influence of perforated porosity on the STL and 

SAC of the corrugated sandwich panels. The perforated corrugated sandwich panels 

have the same geometrical parameters (as listed in Table 2) except porosities. Note 

that for the three sandwich panels discussed in Fig. 11, the porosity of pores in the 

face plate is identical with that in the corrugated cores of the same sandwich panel. It 

can be seen from Fig. 11 that the bandwidth improves with the increase of porosity, 

which can be also attributed to the increment of acoustic resistance by enlarged 

porosity. Besides, the resonance frequency decreases with the decrease of porosity. 

Contradiction between the decrease of resonance frequency and increase of bandwidth 

also exists for corrugated sandwich panels with uniform porosity. Therefore, 

corrugated sandwich panels with non-uniform porosities are explored in Fig. 12. 



  

Fig.12 STL and SAC comparison among corrugated sandwich panels with 

perforations of uniform and non-uniform porosities 

The STL and SAC of corrugated sandwich panels with non-uniform porosities are 

compared with that of corrugated sandwich panels with uniform porosities in Fig. 12. 

The pore porosities of the face plates and corrugated cores are in descending order 

and ascending orders respectively for corrugated sandwich panels with non-uniform 

porosities. It can be seen from Fig. 12 that the sandwich panels with non-uniform 

porosities have lower resonance frequencies than the uniformly perforated sandwich 

panels with relatively bigger porosity, and larger bandwidth than the uniformly 

perforated sandwich panels with relatively smaller porosity. Besides, it also can be 

seen from Fig. 12 that sandwich panels with non-uniform porosities in ascending 

order have better STL and SAC at low frequencies that that in descending order. 

  

Conclusions 

In this study, corrugated sandwich panels with perforations are numerically 

investigated from the SAC and STL viewpoint. A finite element method model is 

presented by applying Comsol Multiphysics. The air in the incident, middle and 

transmitted field is regarded as compressible inviscid flow calculated with the 

Pressure acoustics module. By contrast, since the diameter of the pores is comparable 

to the viscous and thermal boundary layer thickness, the air inside the pores is 

assumed as compressible viscous flow modeled withy Thermacoustics module. The 



rigid frames of the MPPCP are flexible structures calculated with the Solid Mechanics 

module. Calculated STL is then validated by comparing with experimental resulst. 

Afterwards, comparisons between the classical corrugated sandwich panels and 

corrugated sandwich panels with face plate perforations prove the face plate 

perforations are effective to improve the SAC and STL at low frequencies. Meanwhile, 

the resonance frequencies and bandwidths in SAC and STL curves are shown to 

decrease with the increase of pore diameter and decrease of porosity. Corrugated 

sandwich panels with non-uniform perforated pore diameters or porosities can have 

better SAC and STL than that with uniform pore dimeters and porosities at low 

frequencies. Results obtained in the present paper can help researchers to design 

superior structures that aim at reducing both reflection and transmission with internal 

noise. Further optimization work can be conducted based on the corrugated sandwich 

panels with non-uniform perforations. 
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