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Abstract: A key factor limiting our understanding of rock slope behavior and associated geohazards 

is the interaction between internal and external system controls on the nature, rates, and timing of 

rockfall activity. We use high-resolution, monthly terrestrial light detection and ranging (LiDAR) 

surveys over a 2 year monitoring period to quantify rockfall patterns across a 0.6 km-long (15.3 × 

103 m2) section of a limestone rock cliff on the northeast coast of England, where uncertainty in rates 

of change threaten the effective planning and operational management of a key coastal cliff top road. 

Internal system controls, such as cliff material characteristics and foreshore geometry, dictate 

rockfall characteristics and background patterns of activity and demonstrate that layer-specific 

analyses of rockfall inventories and sequencing patterns are essential to better understand the 

timing and nature of rockfall risks. The influence of external environmental controls, notably storm 

activity, is also evaluated, and increased storminess corresponds to detectable rises in both total and 

mean rockfall volume and the volumetric contribution of large (>10 m3) rockfalls at the cliff top 

during these periods. Transient convergence of the cumulative magnitude–frequency power law 

scaling exponent (ɑ) during high magnitude events signals a uniform erosion response across the 

wider cliff system that applies to all lithologies. The tracking of rockfall distribution metrics from 

repeat terrestrial LiDAR in this way demonstrably improves the ability to identify, monitor, and 

forecast short-term variations in rockfall hazards, and, as such, provides a powerful new approach 

for mitigating the threats and impacts of coastal erosion. 

Keywords: LiDAR; terrestrial laser scanning; coastal erosion; rockfall; change detection; natural 

hazards 

 

1. Introduction 

Rockfall, or the removal of individual and superficial rocks from a cliff face [1,2], is a significant 

geohazard, particularly on coastal cliffs where the exposure of people and assets is often high [3,4]. 

Rock coasts account for much of the world’s coastline [5], yet our understanding of their evolution 

remains limited by progressive time-dependent failure processes [6], geological and geometric 

settings [7–9], increasing environmental extremes [10,11], and the appropriateness of the available 
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data [12]. A review by Naylor et al. [13] highlighted the need for continued deployment of field 

techniques to better quantify the relative contributions of different processes and forces in driving 

rock coast evolution. Similarly, Kennedy et al. [14] highlighted the existence of a key spatiotemporal 

gap in rocky coast research related to geomorphological processes over seasonal to annual timescales 

and across distances of 102–103 m, scales particularly relevant to coastal management and hazard 

mitigation. 

The last two decades have seen the increasing application of high-resolution topographic data 

for coastal research [10,15–20]. Topographic change detection methods, often employing repeat light 

detection and ranging (LiDAR) data, have provided valuable insights into rockfall frequency and 

magnitude [12,16,21–26] and enabled links between cliff failure mechanisms and erosional processes 

to be explored [4,27]. However, the correlation of failure occurrence with specific triggers is 

complicated by time-dependent deterioration [6], stress release and propagation [28,29], and lagged, 

cumulative, or threshold effects [30], which have limited the establishment of robust, predictive 

driver-response relationships. Primarily due to limitations in resources, terrestrial LiDAR methods 

have typically been used to survey rock coasts across length scales of ~101–103 m. For example, recent 

work by Esposito et al. [31] utilized repeat terrestrial LiDAR and change detection methods to 

quantify recession of a ~1 km-long volcaniclastic sea cliff in southern Italy over a 3 year survey 

interval. They found that most rockfall event volumes that were detected at this spatiotemporal 

resolution were between 0.01 and 1 m3 and that a seawall structure was effective at reducing erosion 

driven directly by marine action at the cliff toe, demonstrating the utility of LiDAR-based studies for 

evaluating the efficacy of coastal defense engineering. To overcome the spatial constrictions of 

ground-based LiDAR, Benjamin et al. [32] utilized annual helicopter-based LiDAR and change 

detection methods to detect rockfall activity across a regional (20.5 km) spatial scale for coastal cliffs 

along the North Yorkshire coast, England, and found that variations in rockfall shape with volume 

could provide insights into the underlying mechanisms of detachment with scale, and that the role 

of cliff retreat via large and infrequent (or ‘episodic’) failure can be significant for rocky coastlines, in 

contrast with the commonly held view that these landscapes are relatively stable. 

Key questions still remain as to the geomorphic role of storms on rock cliffs and their efficacy 

relative to more systematic environmental variations, such as seasonality. This paper analyzes 

spatiotemporal erosion dynamics for a ~0.6 km-long section of limestone coast in northeast England. 

We quantified the location, magnitude, and frequency of rockfalls and cliff instabilities over a ~2 year 

period using repeat terrestrial LiDAR surveys combined with digital elevation model (DEM) 

differencing. These data were used to consider a range of explanatory variables including lithology, 

the local protective capacity of shore morphology, and subaerial and marine environmental drivers 

for dictating short- to medium-term erosion response, and the wider implications of our findings for 

coastal management and geohazard assessment. 

2. Materials and Methods 

Briefly, our methods comprised: i) Repeat terrestrial laser scanning and subsequent differencing 

of these data to detect rockfalls at an approximately monthly timestep; ii) extraction of detailed 

rockfall statistics in a Geographic Information Systems (GIS) environment, including rockfall location 

and timing (i.e., survey interval), lithology, depth, surface area, volume, maximum planar length, 

spatial density, and intersection with other rockfall events that occurred in the monitoring period; 

and iii) a subsequent analysis of these data in the context of the local coastal geomorphology and 

environmental conditions, and the geohazard potential of the site. Additionally, aerial imagery 

acquired from an unpiloted aircraft system (UAS) and processed using digital photogrammetry 

methods were also used to provide additional topographic context for the site (i.e., Figure 1b). 
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Figure 1. (A): Study site location on the north-east coast of England. (B): Oblique view of a 

photogrammetrically derived 3D model of the Marsden Bay study area. The cliff face is shaded 

according to the dominant lithology, where DL = dolomitic limestone, SL = secondary limestone, BL 

= brecciated limestone. Blue to red shading indicates foreshore height (m) relative to Ordnance Datum 

Newlyn (ODN). Grey hatching shows the extent of beach deposits; remaining foreshore comprises 

exposed bedrock or boulder aprons (clasts >1 m3). Yellow triangles show reoccupied terrestrial laser 

scanner (TLS) survey positions. White arrows show the camera position and orientation for the field 

photographs shown in Figure 2. The location of the A183 coastal road is also shown for reference. (C): 

Cross-shore foreshore unit classification. (D): Cross-shore cumulative tidal inundation (Tzt) of the cliff 

toe for the period 21 February 2015–3 March 2017. Data are presented in 5 m cliff line bins. Distance 

axis in D applies to all panels. 

2.1. Study Site 

Marsden Bay extends for ~1.5 km along the coastline of northeast England. Its orientation 

exposes it to fetch distances that exceed 1900 km. Tides range to 5.6 m and the mean and maximum 

recorded wave height during our monitoring period at the Newbiggin wave buoy, 25 km north of 

the study site, were 0.9 and 9.8 m, respectively. We focused on a 0.6 km sub-section of the wider bay 

that includes alternating embayment and headland relief, sub-vertical coastal cliffs with sporadic 

deep-cut caves, discontinuous sections of uneven shore platform and boulder fields, and pockets of 

dry pebble and sand beach (Figure 1). The uncertainty surrounding the true rates and responses of 

the coastal cliffs at three key pinch points has raised concerns over the safe operation of a cliff top 

coastal road, the A183 that links South Shields to Sunderland [25]. The cliff face is ~25 m in height 

and is composed of a complex assemblage of dolomitic limestone and dedolomitized limestone. The 

latter has transformed from limestone to dolomite, and back to limestone via dedolomitization, or re-

calcification; we term this lithology ‘secondary limestone.’ Additionally present are concretionary 

brecciated limestones, formed ca. 252–272 Ma (Figure 2). Dissolution weathering and karstic collapse 

are evident, resulting in a variety of structural forms ranging from intact to brecciated material, and 

generally of weak to extremely weak geotechnical competence, which is noted in local borehole 

inspection reports that could not recover sufficient intact material for strength testing. Dip angles are 

41°, 29°, and 47° for the dolomitic, secondary, and brecciated limestones, respectively. Bedding 
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thickness varies between 0.3 and 3 m and is largely horizontal along the cliff face. Joints and fractures 

tend to be vertical in the dolomitic and secondary limestones but are chaotic in the brecciated 

limestone. Texturally, the dolomitic limestone is quite open with numerous cavities, rendering it 

theoretically less competent and prone to weathering than the denser secondary limestone, which, 

due to its recrystallized nature, possess fewer cavities. Many, but not all, of the brecciated areas are 

held together with a crystalline cement matrix that adds some cohesion despite the presence of 

numerous cavities. Further information on the geological context of the site is provided by Smith et 

al. [33] and Cooper et al. [34]. Contemporary rates of cliff top recession are within manual cliff line 

survey error, which, in places, can approach or exceed 3 m [35,36]. The predicted future retreat rate 

of the wider stretch of coastline is 0.1–0.2 m a−1 [34]. 

 

Figure 2. Field photographs showing the three main cliff lithologies, and large-scale failure. (A): 

Dolomitic and secondary limestones. (B): Dolomitic and brecciated limestones. (C): Erosion of the 

entire cliff face (volume ~ 175 m3), affecting a section immediately outside of our survey area, and 

which occurred within 6 months of the end of our monitoring period. The cliff is 20–25 m high in all 

of both photographs. Black dashes show lithological boundaries. Red dashes in C show the cliff-scale 

erosion scar outline, which includes both the scar and debris deposit. 
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2.2. Topographic Data Capture and Rockfall Detection 

To capture 3D cliff topography, we used a Riegl LMS-Z620 time-of-flight terrestrial laser scanner 

(www.riegl.com), set to acquire ~11,000 points per second at a 3D point spacing of 0.05 m at 100 m 

distance, producing a mean 3D point spacing of 0.03 m. We undertook a total of 24 surveys at an 

approximately monthly return interval (mean 33.5 days) between February 2015 and March 2017. 

Each survey comprised three overlapping scans (Figure 1), which were georegistered using: 1) 

Manual point picking, which achieved cloud-to-cloud alignment to <0.10 m, followed by 2) iterative 

closest point matching in RiSCAN Pro software (version 1.5.9; www.riegl.com), which works well 

where the majority of the cliff face undergoes no change between surveys, which is typically the case 

for coastal cliffs. Final cloud-to-cloud alignment errors were ±0.02 m in xyz. Merged scans for each 

survey date were then aligned to the earliest terrestrial laser scanner (TLS) survey by repeating steps 

(1) and (2) above. Compound survey-to-survey alignment errors were ±0.03 m. As the TLS data were 

not geo-located at the point of acquisition, a differential Global Positioning System (dGPS) and total 

station survey of twelve distinctive features across the cliff face were used to perform a vertical shift 

so that cliff elevations were correct relative to a national datum (i.e., meters above Ordnance Datum 

Newlyn). The same vertical shift was applied to all scans so that the true elevation of rockfall scars 

could be extracted for subsequent analysis without the computationally expensive use of true easting 

and northing values in the point cloud data. We used a combination of automatic outlier removal 

and manual point cloud editing to remove isolated and unwanted points, which comprised seabirds 

in flight, solar glare, and other artifacts. Due to changes in beach height and slight differences in TLS 

position in successive surveys, TLS data were clipped at the cliff base to the lowest common vertical 

extent, which excluded approximately the lowermost 0.7 m of the cliff from our analysis. 

We used QT Modeler software (v. 8.0.7.1; www.appliedimagery.com) to convert 3D point cloud 

data to 2.5D raster digital elevation models (DEMs) at 0.10 m resolution, where the elevation of a grid 

cell represents the mean of the points contained within it and is thus less susceptible to artificial 

elevation spikes and noise than if the maximum or minimum point elevation is used. DEMs were 

imported into ArcGIS software (v. 10.5.1; www.arcgis.com), DEMs were rotated, and successive point 

clouds (i.e., month 1–month 2, month 2–month 3, etc.) were differenced normally to the cliff face 

plane to derive the surface change at a detection threshold of 0.10 m, which is deliberately 

conservative to account for compound scan-to-scan registration errors and geo-location error, and 

should minimize the likelihood of the smallest rockfall size fractions included being affected by 

measurement error. This threshold excluded much of the change signal attributable to vegetation 

growth and dieback, and the growth and disintegration of seabird nests between surveys, which were 

further manually masked following visual inspection of the point cloud. Changes within areas 

comprising extreme breaks of slope were removed due to their association with minor data alignment 

errors and occlusion. These false positives typically took the form of geometrically implausible (i.e., 

long, thin) instances of change that possessed a volume of ≤0.10 m3. 

The mean depth (m) of an erosion scar was multiplied by its 3D surface area (m2; as viewed in 

the xy plane) to calculate eroded volume (m3). The minimum detectable eroded volume was 1.0 × 10−3 

m3, a volume that equates to a regular 0.1 m cube. The temporal resolution of field surveys precludes 

the identification of event superimposition at temporal scales smaller than the revisit interval (e.g., 

[26]), i.e., where multiple rockfalls occur in the same location within a given survey interval and 

superimpose to produce a single scar, we are not able to discern the dimensions or timings of the 

individual rockfalls that it might represent. However, we were able to explore progressive erosion at 

monthly timescales (Figure 3). We additionally used the FACETS plugin in CloudCompare software 

(v. 2.10.2; www.danielgm.net) to directly extract geological structure information from the February 

2015 3D point cloud. The plugin extracts planar facets; the 2D size, shape, and spatial attitude (e.g., 

dip) of these facets can be linked to stratification, and the spacing of faults and joints (e.g., [37]). We 

refer the reader to Dewez et al. [38] for an overview of the plugin. 
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Figure 3. Example erosion depth maps for individual differencing periods retrieved from digital 

elevation model (DEM) differencing. (A): Extensive erosion of existing caves at the cliff base between 

December 2016 and January 2017, beginning at a cliff line distance of 0.38 km (see Figure 1). Erosion 

extends across both dolomitic and secondary limestones. (B): The largest cliff-top failure recorded 

during the monitoring period, which occurred in the period of March–May 2016 at a cliff line distance 

of 0.34 km. In this example, the erosion scar is confined to the brecciated limestone and does not 

extend down into the dolomitic limestone. Background data are a semi-transparent RGB orthoimage, 

draped over a hill-shaded DEM. Dashed lines show lithologic boundaries. Square boxes in A and B 

show locations of Figure 9a,b, respectively. 

We additionally acquired an aerial photoset (no. photos = 570) of the wider cliff and foreshore 

environment on 27 February 2017 using a Phantom 4 Professional UAS (www.dji.com) equipped 

with an onboard 20-megapixel RGB camera. The purpose of generating a UAS-derived 3D model was 

for topographic visualization (e.g., Figure 1b) and for the extraction of cliff and shore topographic 

profiles, which were later used in combination with rockfall location data to explore links between 

erosion activity and cliff form (Section 3.3). Drone imagery was captured from a combination of 

oblique (n = 367) and nadir (n = 203) perspectives and was processed using a standard structure-from-

motion (SfM) photogrammetry workflow in Agisoft PhotoScan software (version 1.2.6; 

www.agisoft.com) to create sparse and dense 3D point clouds [39]. Due to tidal conditions at the site 

and the time required to safely set out and survey a suitably dense ground control point (GCP) 

network, fly the drone, and retrieve GCPs, it was not logistically possible to use dedicated GCPs for 

model georeferencing and independent quality assessment. Instead, we employed direct 

georeferencing (after [40]) using UAS image geotags to generate a DEM from which cliff and 

foreshore topography were extracted for topographic analysis. With these applications in mind, 

internal consistency in model geometry was more important than absolute, real-world geolocation. 

We collected both nadir and oblique imagery, as has elsewhere been shown to mitigate against the 

introduction of systematic model deformation [41,42]. We anticipate these data to be accurate to ±0.04 

m, in line with the findings of Carbonneau and Dietrich [40] who found residual DEM errors equal 

to 0.1% of flying height (here, ~40 m) when direct georeferencing was used. 

2.3. Environmental Data 

We retrieved the mean tidal water surface height from the North Shields local tidal reference 

station, 6 km to the northwest of the study site (via the British Oceanographic Data Centre: 

www.bodc.ac.uk), and used these data to calculate the duration of tidal cliff toe inundation (Figure 

1D) and identify the boundary between ‘wet’ and ‘dry’ zones, and also obtained offshore wave 

spectra data, specifically the mean and maximum wave height, from the Newbiggin wave buoy (via 

the Channel Coastal Observatory: www.channelcoast.org). We did not employ wave transformation 

modeling, which can account for processes such as wave run-up, refraction, and shoaling, and, as 

such, we do not undertake any quantitative correlation analysis between erosion statistics and wave 

metrics. However, offshore wave data are useful for indicating relative differences in far-field wave 
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environments over time. We used the tidal water surface data to infer the location of ‘wet’ and ‘dry’ 

zones on the cliff profile; because we did not account for wave runup, this boundary is, therefore, a 

conservative one (i.e., in reality, it more than likely occurs higher up the cliff face). In the absence of 

an on-site or nearby automatic weather station, we retrieved reanalysis meteorological data from the 

National Oceanic and Atmospheric Administration’s Climate Prediction Center (CPC; 

www.esrl.noaa.gov), derived from a combination of satellite and weather station data. In line with 

previous coastal erosion studies that have explored links between rockfall activity and environmental 

factors (e.g., [10,12]), we chose not to consider air temperature in our analysis. For high-latitude [43] 

or high-altitude rock slopes [44], persistently low air temperatures are conducive to the growth and 

influence of ground ice in driving or conditioning erosion activity; however, diurnal or seasonal 

variations in air temperature are unlikely to be key environmental data for driving erosion at our 

temperate coastal site, where local air temperatures very rarely drop below freezing. 

3. Results 

3.1. Summary of r = Rockfall Observations 

A total of 30,428 rockfalls were detected over the ~2 year monitoring period, representing 835 

m3 of material. Rockfall activity covered 12% of the cliff area, which equates to a local face refresh 

period (i.e., the time taken for rockfalls to occur across the whole cliff face) of ~17 years. By 

distributing our eroded volume across the cliff area, we determined the site-wide cliff retreat rate 

over our monitoring period as 0.032 m a−1, amalgamating spatially and temporally constrained 

periods of enhanced activity. The mean retreat rate for each lithology was as follows: Dolomitic 

limestone 0.029 m a−1; secondary limestone 0.079 m a−1; brecciated limestone 0.010 m a−1. These retreat 

rates are in the upper interquartile range of published erosion rates for other limestone cliffs 

worldwide (0.008–0.08 m a−1; [45]). Notable large erosion scars included the loss of 69.3 m3 from a 

brecciated limestone outcrop at the cliff top between December 2015 and January 2016, and at the cliff 

toe (104.3 m3) in dolomitic limestone in the northern sector of the site between the January and 

February 2017 surveys (Figure 3). Both events generated localized erosion rates that exceed the site-

wide mean by over an order of magnitude (max. 0.50 m a−1); rarer large failures (≥0.1 m3) at this site 

contributed more to the overall volume of erosion at monthly-annual timescales than frequent 

smaller failures (0.001–0.1 m3), in line with similar observations from other rocky (e.g., [12,46,47]) and 

soft coast sites worldwide (e.g., [48–50]). 

The mean rockfall depth was 0.142 m and the mean rockfall volume was 0.024 m3, and these 

metrics were broadly consistent between lithologies (e.g., mean volume range 0.020–0.027 m3, median 

range 0.005–0.006 m3). Rockfalls <0.01 and <0.1 m3 accounted for 71% and 98% of detected events, 

respectively, whilst rockfalls >0.1 m3 accounted for 89% of the total eroded volume. We additionally 

fitted a minimum bounding rectangle to each rockfall outline and extracted maximum width and 

height metrics. The mean width-to-height ratio of the rockfall inventory was 1.98 and the mean 

width-to-depth ratio was 2.20, implying that surficial as opposed to deep failures dominated, in line 

with observations from similar North Sea rocky coastlines [30]. Median facet length along the longest 

planar axis was 0.351, 0.164, and 0.236 m for the dolomitic, secondary, and brecciated limestones, 

respectively. By comparison, the median length of individual rockfall scars was 0.212, 0.207, and 0.214 

m for respective lithologies, implying a structural control on rockfall dimensions for all lithologies, 

and for the brecciated limestone in particular. 

The secondary limestone generated a greater eroded volume relative to its surface area (42% of 

total erosion across 20% of the cliff face), compared to the other lithologies (55% and 2.5% of total 

erosion across 71% and 9% of the cliff area for the dolomitic and brecciated limestones, respectively). 

Rockfall occurrence was much higher in the brecciated limestone (a mean of 12.3 rockfalls per m2) 

compared to other lithologies (means of 2.1 and 0.5 per m2 for the dolomitic and secondary 

limestones, respectively), a distinction that is well-illustrated in Figure 4, where a clear lithological 

boundary in rockfall activity is apparent. The magnitude–frequency distribution of rockfalls, 

landslides, and rock avalanches determines the hazard posed by mass movements from a given slope. 
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The magnitude and frequency of mass movements are commonly described using magnitude–

frequency curves (e.g., [26]), to which an inverse power law is often fitted and used to estimate the 

recurrence interval of an event of a given size. The power law scaling exponent (α) describes the 

proportional contribution of increasingly small events. The cumulative magnitude–frequency 

relationship of our rockfall inventory fits an inverse power law distribution (Figure 5). We also 

derived lithology- and period-specific power laws, and later used period-specific α as a proxy for 

analyzing temporal variability in the proportional contribution of rockfall volumes, an approach that 

has successfully quantified storm effects in other coastal environments [51]. For our entire inventory, 

α = 2.19, whilst for the dolomitic, secondary, and brecciated limestones, α = 2.31, 2.25, and 2.19, 

respectively. The ‘rollover,’ or size fraction, below which the power law is not applicable was 0.007 

m3 for the entire inventory, and in the range 0.004–0.014 m3 for lithology specific inventories. 

 

 

Figure 4. Rockfall occurrence mapping. (A): Oblique, hill-shaded DEM showing site context, showing 

the location of panels B and C. (B,C): Rockfall density maps. Density mapping comprises data from 

the full 2 year rockfall inventory, displayed as rockfalls per unit area of cliff face (m2). Lithological 

boundaries also shown for reference. 
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Figure 5. Cumulative distribution functions (CDF) and associated power law functions for the entire 

rockfall inventory, progressive and ‘new’ rockfalls, and specific lithologies. Scaling exponents for each 

inventory are displayed in brackets. CDFs were derived and plotted using the ‘poweRlaw’ toolbox 

for R (https://cran.r-project.org/web/packages/poweRlaw/index.html). 

3.2. Spatiotemporal Patterns of Erosion Response 

We observed complex spatiotemporal patterns of erosion (Figure 6) including regions that 

experience intense and short-lived (i.e., spanning a single monthly survey interval) periods of activity 

adjacent to areas with a more temporally consistent distribution of failure periodicity and volume. 

For instance, between 0.37 and 0.45 km, 96% of total erosion occurred in a 30 day monitoring window 

between December 2016 and January 2017 (Figure 6). At the extremes of the site (<0.05 and >0.5 km), 

summer and winter activity are more regularly distributed. Dominant periods of erosion in the 

dolomitic limestone broadly mirror those in the secondary limestone (Figure 6b,c), implying that 

these two lithologies generate rockfalls synchronously. Notable examples of this behavior occurred 

in the period from September to October 2016 and December 2016 to January 2017. Erosion that 

occurred in the period March–May 2016 accounted for >95% of all eroded volume in the dolomitic 

limestone between 0.33 and 0.35 km (Figure 6b). This period also accounted for a high proportion 

(40–95%) of eroded volume between 0.25 and 0.33 km distance in the adjacent brecciated limestone. 

Alternately, the period December 2015 to January 2016 was associated with enhanced activity in the 

brecciated limestone between 0.20 and 0.24 km (accounting for 23% of total erosion in this lithology) 

but did not stand out as a period of increased rockfall activity in the dolomitic or secondary limestone. 
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Figure 6. Cross-shore, lithology-specific spatiotemporal erosion cycling. (A): Percentage of total 

erosion attributable to each cliff geology (Vn) for 5 m cliff line bins. Red line is annual erosion rate (m 

a−1). (B–E): Combined spatial and temporal distribution of rockfall activity for all lithologies (B) and 

the dolomitic, secondary, and brecciated limestones, respectively (C–E). Vertical axis is normalized 

eroded volume per 5 m cliffline bin. Text annotation highlights notable periods of activity (i.e., SO16 

= September–October 2016). Red-blue color ramp in (B–E) relate to the time of year. Broadly speaking, 

blues and reds equate to ‘winter’ and ‘summer’ erosion, respectively. 

Lithology provides a clear spatial control on the occurrence of rockfalls (Figure 4). Events <0.1 m3 

accounted for 33% and 38% of total eroded volume for the dolomitic and secondary limestones, 

respectively (Figure 7b,c), and 64% for the brecciated limestone, indicating that smaller rockfalls 

accounted for more erosion in this cliff material, an observation that is explained by the highly fragmented 

nature of the latter lithology. Aspects of commonality between lithologies included a tendency for larger-

volume rockfalls (>10 m3) to occur in winter months (here, broadly defined as September–March) in the 

dolomitic and brecciated limestones (respectively Figure 7b,d), although our data do not span a timescale 

long enough to statistically resolve any seasonal control on rockfall generation. Differences between 

winter and summer rockfall activity become more evident as rockfalls increase in size: Across our entire 
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inventory, winter activity accounted for 55%, 62%, 66%, 79%, and 100% of the eroded volume in successive 

size classes ranging from 0.001 to 100 m3 (with class boundaries at 0.01, 0.1, 1, 10, and 100 m3). This pattern 

was replicated in the rockfall volume data for the dolomitic limestone (winter volumetric contributions of 

53%, 59% 71%, 84%, and 100% for respective volume classes), but was less clear for the secondary (60%, 

61%, 52%, and 78%, with no rockfalls >10 m3) and brecciated limestones (58%, 68%, 75%, 69%, and 100%, 

with no rockfalls >100 m3). We also observed an increase in winter rockfall frequency relative to summer 

across all lithologies and volume classes: The mean winter rockfall contribution, by frequency, was 73% 

for the entire inventory (Figure 7a), and 77%, 63%, and 74% for the dolomitic, secondary, and brecciated 

limestones (Figure 7b–d), respectively. 

 

 

Figure 7. Lithology-specific periodic rockfall volume (column 1) and rockfall count (column 2) 

contributions. (A): All lithologies; (B): Dolomitic limestone; (C) Secondary limestone; (D): Brecciated 

limestone. ‘w’ and ‘s’ denote ‘winter’ and ‘summer’ periods, respectively. The key in panel A applies 

to all panels. Note the y-axis limits for column 1 vary for each panel. 

 



Remote Sens. 2020, 12, 2620 12 of 22 

 

3.3. Cliff Profile Analysis and Vertical Rockfall Zonation 

The seasonal response of different lithologies was also evident in their 2D cliff and shore profiles, 

analyzed here through spatial variations in profile form and the height and timing of recorded 

failures (Figure 8). The brecciated limestone possessed the least variability in erosion rate with cliff 

height and exhibited the most consistent form (Figure 8). Further, erosion rates are generally lower 

in summer (mean 0.01 mm d−1, max. 0.09 mm d−1) and higher in winter (mean 0.04 mm d−1, max. 0.9 

mm d−1). In the secondary limestone, we observed a progressive increase in erosion rate toward the 

base and top of the cliff (Figure 8); the mean erosion rate at the cliff center is <0.01 mm d−1, increasing 

to 0.05 mm d−1 at the cliff base, and >0.30 mm d−1 at the cliff top. This pattern likely reflects the erosive 

influence of surface runoff from the cliff top and direct wave action at the cliff toe, respectively. 

However, over time, we would expect that enhanced erosion at the cliff toe would lead to 

destabilization of the overlying rock mass (e.g., [52]), leading to upward-propagating failure, and a 

corresponding positive vertical shift in the elevation at which peak erosion occurs. The short duration 

of our survey precludes such an observation, implying that this process likely operates across decadal 

timescales, as observed at other North Sea rocky coast sites [6]. 

 

Figure 8. (A): Lithology-specific cliff-normal topographic profiles. Grey lines are individual profiles, 

extracted every 5 m of cliff line distance for representative sections of each unit. Black line shows 

mean profile. �� = mean erosion rate per lithology. Solid and dashed blue lines indicate position of 

mean sea level and the highest astronomical tide, respectively. Inset panels show mean erosion rate 

(x-axis for all = m a−1) according to cliff height (y-axis; mODN). DL, SL, and BL are dolomitic, 
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secondary, and brecciated limestone, respectively. (B): Temporal distribution of erosion rates across 

the cliff height. Data are classified by lithology and by differencing period for 1 m cliff height bins. 

Occasional winter peaks in erosion (max. 9 mm d−1) exceeded the underlying base rates of change 

by over two orders of magnitude (mean 0.07 mm d−1), and it is noteworthy that cliff profiles extending 

below the maximum offshore wave height in this lithology were characterized by cliff toe protrusion, 

contrasting those defended by boulder fields that were concave at the cliff base, where karstic collapse 

and wave processes may be more dominant. The winter signal in the dolomitic limestone (Figure 8b) 

also recorded peak rates of change (up to 7.5 mm d−1 at 12 m elevation), although some winter surveys 

also recorded the lowest rates (<0.001 mm d–1) at some elevations, suggesting a more spatially varied 

response over the monitoring period. 

3.4. Event Superimposition 

Previous studies have explored the significance of ‘progressive’ rockfall (abbreviated: PRF) 

evolution in driving rock cliff retreat in both coastal (e.g., [6,30]) and non-coastal settings [53–55]. 

Precursory rockfalls are commonly detected prior to the release of a larger mass, and, as such, 

represent a form of progressive rockfall. Rockfall scars can also act as an initiation point from which 

future rockfalls can originate, or progress; the latter has been shown to be a potentially significant 

driver of rocky coastline retreat [6]. Specifically, our terminology here serves to distinguish between 

‘first time’ slope failures that do not appear to be spatially connected to other recorded slope 

instability events, and failures that can be shown to evolve from recent, existing rockfall scars that 

are detected within the wider monitoring period (i.e., PRFs). To explore the role that the latter plays 

in driving cliff retreat, we classified PRFs as those rockfalls whose outlines intersected a minimum of 

one other rockfall scar in any preceding differencing period and regard all other rockfalls as ‘new.’ 

We were thus required to remove the first differencing period from the analysis that follows. 

Additional methodological caveats included the following: i) We only consider PRFs that have 

developed from new rockfall scars that were detected during our monitoring period; we do not 

consider spatial intersections with rockfall scars that pre-date our observation period, and ii) we are 

unable to detect progressive scar growth, otherwise known as event superimposition, within a given 

differencing period. Where we refer to an ‘individual PRF,’ this may, in fact, represent multiple 

rockfalls, but the temporal resolution of our data preclude clarification. Due to these constraints, we 

are certain to underestimate the prevalence of PRF activity in our data, and so the relative frequency 

and volumetric contributions of PRF that we report below should be considered conservative 

estimates. Nevertheless, our data remain valuable for exploring PRF occurrence and potential 

environmental or lithological controls that operate over short (monthly) timescales. 

We observed both precursory rockfall activity prior to larger failures and progressive scar 

enlargement following an initial detachment (Figure 9). PRFs accounted for 46.5% of all rockfalls by 

frequency but contributed 78.9% of the total eroded volume (Figure 10). When subdivided by 

lithology, we found that PRFs accounted for 44.1%, 41.1%, and 50.0% of rockfalls by frequency, and 

81.5%, 47.1%, and 77.3% of the total eroded volume in the dolomitic, brecciated, and secondary 

limestone, respectively. In all lithologies the mean volume of a PRF exceeded that of a new rockfall 

by 0.03 m3, or the equivalent of a 0.3 m cube. The mean PRF volume in the brecciated limestone was 

smaller (0.02 m3) than other lithologies (0.04–0.06 m3), and the maximum volume for an individual 

PRF in this lithology was smaller (1.33 m3) than the maximum volume for a new rockfall (5.58 m3). 

By contrast, for the dolomitic and secondary limestone, the maximum PRF volume (104.30 and 36.35 

m3, respectively) approached, or was greater than, an order of magnitude larger in volume compared 

to the largest new rockfalls. PRFs were equivalent in mean depth to new rockfalls (0.15 versus 0.14 

m), and this finding was consistent between lithologies. The mean 3D surface area (0.15 m2) of a PRF 

was more than twice as large as a new rockfall (0.06 m2). This observation was consistent across 

lithologies, except for the brecciated limestone, where PRF surface area was, on average, 1.7 times 

larger than a new rockfall, compared to multipliers of 2.5 and 2.3 for the dolomitic and brecciated 

limestone, respectively. Combined, our findings imply that PRFs contributed less relative volume 
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overall for the brecciated limestone than for the other two lithologies. We found no discernible 

variation in PRF frequency distribution according to height on the cliff face. The power-law scaling 

exponents of our PRF and ‘new’ rockfall inventories were 2.07 and 2.50, respectively, reflecting the 

larger volume of individual PRFs. 

 

Figure 9. Progressive rockfall development over a two-year period. (A): Progressive failure evolution 

at the cliff base, in this case, via the expansion of marine erosion-undercutting. Through time, 

intersecting rockfalls progressively increase in size, culminating in scar coalescence and large-scale 

failure (e.g., Dec–Jan 2016–17). (B): A sub-region of the highly fragmented brecciated limestone, where 

progressive rockfalls account for 50% and 77% of rockfalls by frequency and eroded volume, 

respectively. The dashed line in A shows the minimum common vertical extent of overlapping scans 

due to fluctuations in beach surface height at the cliff toe (local mean 0.3 m). See Figure 3 for locations. 

 

Figure 10. Progressive rockfall contributions in different lithologies, reflected as relative percentage 

of (A): Rockfall frequency, and (B): Eroded volume for successive differencing periods. Grey shading 

and i–iv annotation highlight periods that include notable storm events and can be cross-referenced 

to Figure 11. Data were de-trended to remove the effect of decreasing ‘fresh’ surface area through 
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time, an effect that produced a residual positive linear trend in both relative progressive rockfall (PRF) 

frequency and eroded volume through time, upon which monthly variations were superimposed. 

4. Discussion 

Our results demonstrate the complexity of rock cliff erosion responses spatially and over time. 

We have developed a detailed rockfall inventory that has allowed the exploration of connections 

between, and controls on, apparently disparate and episodic geomorphic behavior, which we 

elaborate on below with respect to their implications for wider studies of rock slope environments. 

4.1. Rockfall Development 

Summary rockfall descriptors (e.g., mean depth, volume) were broadly consistent between 

lithologies but masked varied spatiotemporal patterns of activity that reveal the complex interplay 

of lithological structure and competence, erosional conditioning and environmental forcing, and 

possible modulation by foreshore geomorphology and in situ cliff conditions. Rockfall activity was 

characterized by frequent, small failures that can be typical of rock slope behavior in both coastal 

(e.g., [6,12,22,23,26,32]) and many non-coastal settings [21,24], but the total eroded volume was 

dominated by large events that occurred infrequently; rockfalls >1 and >10 m3 occurred 

approximately every 2 and 9.5 months, respectively, and affected all lithologies (Figure 7). We note 

an absence of large (>10 m3) failures in the secondary limestone, perhaps because the return period 

for such events is longer than our two-year monitoring period. Alternatively, joint spacing has 

previously been shown to be a controlling factor of rockfall size distribution (e.g., [6,56,57]) and, thus, 

the smaller median facet length of the secondary limestone (0.164 m) relative to the dolomitic 

limestone (0.351 m) could result in a higher propensity for failure to occur as smaller events instead 

of longer-term stress accumulation within rock bridges as found in rocks with wider joint spacing 

[29]. This control was even stronger in the highly fragmented brecciated limestone, which lacks the 

structural coherence observed in the other lithologies (Figure 2b); individual clasts are contained 

within a finer-grained matrix that has a low resistance to weathering. These findings demonstrate 

that layer-specific rockfall inventories are required to better understand rock slope responses. 

Additionally, in cliff sections that contained dolomitic limestone overlain by brecciated limestone, 

significant changes occurred first in the weaker breccia, and then in the more competent dolomite. 

This sequence reverses patterns of spatially constrained upward failure evolution, recorded within 

rock masses containing less geotechnically varied layers [6], highlighting the importance for future 

studies to account for the ordering of and interaction between the lithological boundaries in the 

assessment of the timing and nature of rockfall risks. 

Event superimposition is a significant control on erosion at our site; PRFs accounted for ~80% of 

total eroded volume but accounted for less than half of all erosion scars. PRFs were the dominant 

mechanism of cliff face retreat in the dolomitic and secondary limestones over annual timescales, but 

did not exert an overriding control on the erosional signal in the brecciated limestone. Further, the 

mean volume of PRFs in the brecciated limestone was smaller than other lithologies, implying that 

lithological structure is a limiting factor on the relative volumetric contribution of progressive failures 

in this lithology. By contrast, PRFs in the dolomitic and secondary limestones were larger than ‘new,’ 

or first-time, failures, perhaps as a function of the coalescence of contiguous failure scars, and the 

bridging of proximal scars, thereby producing larger rockfalls [6,58]. The spatial connection between 

rockfalls, and the associated generation of ‘hotspots’ of activity, may reflect de Vilder et al.’s [58] 

theory of localized progressive failure related to stress release and rock bridge failure, working to 

separate cliff failures from triggering events [30]. The implication for the resultant rockfall hazard is 

that the probabilities of occurrence are not evenly distributed spatially across the rock face and there 

may be detectable times of heightened activity in specific locations. 

4.2. Links to Environmental Drivers 

Erosion rates during winter months are generally higher than those in summer months, a finding 

that is also consistent across the cliff height in all lithologies (Figure 8b). However, due to the short 
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time period that our data span (geologically speaking), we could not statistically test for a seasonal 

control on erosion rates. Similarly, because we did not undertake wave transformation modeling, we 

cannot make robust statistical inferences between key marine controls and erosion response. 

However, our data show that detectable increases in rockfall volumes within the monitored period 

coincided with individual winter storm events and associated short-term increases in precipitation 

and wave activity. Rather than an assumed sustained increase in erosion rates during winter months, 

we observed direct event-specific responses, in accordance with observations in other rock coast 

environments [59]. Heightened rockfall activity in winter has been noted in other rock slope 

environments [24], but our data evidence a potential departure from episodic and temporally 

disconnected perceptions of rock failure. However, this hypothesis requires further testing through 

analysis of rockfall inventories captured over a longer (i.e., decadal) time period, and in different rock 

cliff environments. 

We define a ‘stormy period’ as one during which storms were identified and named by the UK 

Meteorological Office [60] and affected northern England, or, for periods prior to November 2015 

(when the UK first adopted a standardized storm naming convention), periods where the cumulative 

precipitation and maximum significant wave height exceeded 80 mm and 4 m, respectively, 

characteristics shared by periods in which named storms occurred. We observed varying degrees of 

spatiotemporal connectivity between periods where storms occurred, and rockfall activity. For 

example, an increased proportion of erosion occurred in the ‘wet’ zone in the secondary limestone in 

the period immediately following a large storm in December 2015 (Figure 11), but this did not 

produce an overall increase in eroded volume. Previous work has found statistically significant 

positive relationships between wind velocity and various rockfall inventory descriptors [10] and 

demonstrated that breaking wave energy at the cliff toe can be delivered to the cliff top [61]. At 

Marsden Bay, this effect might be particularly efficient at triggering rockfalls at the cliff top, including 

large failures (Figure 3b), but in situ seismic monitoring data are required to explore this effect in 

more detail (e.g., [62]). 

We observed a distinct storm signal in the rockfall distributions that pervades all lithologies, 

which suggests a uniform cliff system response. The scaling law exponent of a power law describes 

the proportional contribution of specific sizes of events [26,63]. Storm occurrence coincides with 

convergence in the power law exponents (Figure 11e), implying that high-energy events can generate 

synchronous behavior across all lithological units. At Marsden Bay, exponent convergence 

manifested as a consistent decrease in the scaling exponent, implying a shift toward the increasing 

prevalence of larger-volume rockfalls during stormy periods (e.g., [64]). Fewer rockfalls were 

produced from the secondary limestone (n = 101–102 per differencing period) than the dolomitic or 

brecciated limestones (n = 102–103), but the relative size distribution remained consistent between 

differencing periods for each lithology, and was comparable to the size distribution of the entire ~2 

year inventory for each lithology, providing confidence that exponent convergence was controlled 

by short-lived shifts in the size distribution and was not a product of inadequate rockfall inventory 

size. The convergence of power law scaling exponents has been used to quantify storm-impacts in 

coastal dune cliff systems [65] and, here, it has proven an effective approach for understanding 

complex rock cliff behavior, specifically short-term synchronicity in erosion responses. Questions 

remain over whether a storm-related erosion signature is the same for all events, reflective of the 

magnitude of the storm, or altered by the in situ conditions of the cliff. 

There is a historical disconnect between studies that focus on either shore platform or rock cliff 

processes [66], but, here, we show enhanced rockfall activity at sections not protected by boulder 

fields and, hence, subjected to the highest cumulative tidal cliff toe inundation over the monitoring 

period (Figure 1c). Foreshore composition and characteristics are often investigated separately from 

cliff process studies, but, here, we show how holistic foreshore-cliff analysis aids the interpretation 

of the superimposition of erosion dynamics at rocky coasts. The focusing of marine energy related to 

incised channels in shore platform (Figure 1a), or the dissipative effect of platform material or 

structures, exerts key controls on cliff toe exposure and results in local divergence from classic models 

of undercutting and cantilever collapse [50]. Outside of periods of scaling exponent convergence 
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(Figure 11e), we hypothesize that the erosion response of the secondary limestone is largely marine-

driven, and certainly for small- (<0.1 m3) and mid-range (0.1–1.0 m3) failures. The volumetric 

contribution of PRFs in both the dolomitic limestone and the secondary limestone also increases 

during stormy periods (Figure 10b). However, we do not observe this behavior in the fragile 

brecciated limestone; direct transfer of marine energy to this lithology is likely to be limited because 

much of the brecciated material is protected from wave action by extensive boulder fields and 

discontinuous sections of shore platform at the cliff base (Figures 1 and 2b). 

 

Figure 11. (A): Local gauge-based precipitation data, displayed as cumulative total per differencing 

period (blue), and maximum and mean significant wave heights (Hs) at the Newbiggin wave buoy 

(dashes and solid line, respectively.) (B–D): Proportional rockfall distribution in the ‘wet’ and ‘dry’ 

zones on the cliff face (i.e., rockfalls occurring below and above the tidal inundation threshold for 

each differencing epoch, respectively), daily rockfall volume (black line) and the power law exponent 

of the rockfall inventory (red line) per differencing period. (E): Divergence/convergence of the 

exponent (α) of the power law exponent that best describes the cumulative distribution function of 

the rockfall inventory for each lithology, represented as the max-min exponent range between 

lithologies. i–iv highlight differencing periods that include notable storm events, wherein we observe 

convergence of α and direct or lagged erosion response in one or more lithologies. 

4.3. Implications for Coastal Monitoring and Geohazard Assessment 

Whilst high-resolution analyses of rockfall inventories are typically limited in temporal extent, 

they can provide important information to better understand rock cliff erosion processes and their 
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drivers, and ultimately to mitigate the impacts of uncertainty in failure dynamics. A number of 

aspects of this work contribute to an improved understanding of coastal cliff geohazards, both locally 

and more generally. On a basic level, high-quality rockfall data have enabled a re-evaluation of the 

conservatively high rates of cliff erosion previously relied upon for decision-making at this site, and 

which are derived from potentially error-prone historic cliff line retreat mapping; our new high-

resolution dataset provides a wealth of quantitative data on the erosion dynamics of specific rock 

types, enabling complex geomorphic signals to be identified and analyzed. We found that the 

brecciated limestone generated more frequent rockfalls than the other two lithologies, and, 

temporally speaking, rockfalls from this lithology might be considered a more persistent hazard. By 

contrast, rockfall activity in the dolomitic and secondary limestones was more sensitive to 

environmental forcing. Rapid, possibly instantaneous, step-back of the entire cliff face occurred at a 

frequency greater than 2 years, whilst rockfalls >1 and 10 m3 occurred every ~2 and ~9.5 months, 

respectively, and this applied to all lithologies. The true risk of rockfalls results from both the 

detachment of an initial rockfall volume, followed by the potential for failure propagation across a 

slope and the generation of additional rockfalls. We found that PRFs accounted for ~80% of the total 

eroded volume, but occurred less frequently than initial, or ‘new,’ failures. We also found that the 

volumetric contribution of PRFs in the dolomitic and secondary limestones increased during stormy 

periods. These data show more widely that knowledge of short-term patterns and the connectivity 

of rockfall events is potentially vital for effective coastal management of rockfall risk, given that 

individual PRFs were also larger in volume than ‘first-time’ detachments. 

Ultimately, the timescales required for coastal management span from those applicable to 

hazard mitigation (days-years) to strategic planning (≥decades), but the key challenge remains in 

dealing with uncertainty in cliff geomorphic behavior. Comprehensive risk assessment for slope 

rockfall hazards requires knowledge of rockfall geometries, triggers (intrinsic and extrinsic), failure 

dynamics and propagation, and timing, the latter of which is the more difficult to elucidate [30,67]. 

Similarly, the uncertainty surrounding how cliffs will change, how fast, and over what timeframes, 

and in response to which drivers, has direct impacts on costly decisions such as whether to relocate 

an asset, when and how to remediate sea defenses, and advising coastal users of higher-risk periods 

or locations. To this end, establishing links between failure volume and periodicity, for example, 

through the application of magnitude–frequency power laws, remains invaluable, but previous 

studies (e.g., [67]) failed to link the power law slope or scaling exponents with environmental 

conditions, limiting their utility for practical application. Further work is required to explore whether 

temporal convergence–divergence in a rockfall volume distribution during stormy periods identified 

here can be statistically linked to extrinsic environmental drivers and is a significant avenue for future 

research to explore. From a coastal management perspective, such a finding would be significant; for 

sites where cliffs are composed of a range of lithologies, it may be possible for practitioners to use 

such relationships in combination with, for example, marine forecasts, or real-time offshore wave 

buoy data and wave transformation modeling to infer site- or layer-specific, short-term temporal 

sequencing of the rockfall size distribution, and associated short-term hazard increases that threaten 

coastal users, assets, or infrastructure. 

5. Conclusions 

We have presented an analysis of a rockfall inventory acquired through high-resolution 

topographic change detection applied to a section of limestone coastal rocky cliff in northeast 

England. The work highlights the value of high-resolution surveys in constraining the geometry, 

failure mechanisms, and drivers of erosion of rocky coastal cliffs, how these vary in space and time, 

and the implications for hazard assessment. Our data demonstrate the importance of lithological 

succession where layer competence varies significantly, potentially controlling the nature and 

location of rockfall occurrence and processes driving longer-term cliff evolution. Progressive rockfall 

evolution is shown here to be significant in driving eroded volume, if not frequency, leading to a 

spatially concentrated rockfall hazard. However, the relative importance of progressive failures 

remains lithology-dependent: The brecciated limestone, an exceptionally weak and fragmented 
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lithology, exhibited a short-term erosional regime more in line with the dominance of intrinsic rather 

than extrinsic controls on rockfall generation. We present an analysis of rockfall distributions that 

signals a coherent erosion response between certain rock types to storm activity, which manifests as 

temporary convergence of the magnitude–frequency power law scaling exponent and an associated 

short-term shift toward larger failure volumes during stormy periods. This coherent response was 

distinct from background variations in erosion activity otherwise associated with foreshore 

properties and other system controls. The ability to summarize a complex geomorphic response 

within a single summary metric like a scaling exponent has wide ranging potential applications for 

understanding and ultimately predicting geomorphic responses. From a hazard management 

perspective, future work should focus on linking extrinsic erosion drivers to statistically modeled 

rockfall responses in this way in order to develop a new predictive tool for quantifying temporal 

convergence in rockfall dynamics over timescales that are relevant for hazard assessment and 

mitigation. 
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