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Abstract 27 

Like many wearables, flash glucose monitoring relies on user compliance and is subject to missing 28 

data. As recent research is beginning to utilise glucose technologies as behaviour change tools, it is 29 

important to understand whether missing data is tolerable. Complete Freestyle Libre data files were 30 

amputed to remove 1-6 hours of data both at random and over mealtimes (breakfast, lunch and 31 

dinner). Absolute percent errors (MAPE) and intraclass correlation coefficients (ICC) were calculated 32 

to evaluate agreement and reliability. Thirty-two (91%) participants provided at least one complete 33 

day (24-hours) of data (age: 44.8±8.6 years, female: 18 (56%); mean fasting glucose: 5.0±0.6 34 

mmol/L). Mean and CONGA (60 minutes) were robust to data loss (MAPE ≤3%). Larger errors were 35 

calculated for standard deviation, coefficient of variation (CV) and MAGE at increasing missingness 36 

(MAPE 2-10%, 2-9% and 4-18%, respectively). ICC decreased as missing data increased, with most 37 

indicating excellent reliability (>0.9) apart from certain MAGE ICC, which indicated good reliability 38 

(0.84-0.9). Researchers and clinicians should be aware of the potential for larger errors when 39 

reporting standard deviation, CV and MAGE at higher rates of data loss in nondiabetic populations. 40 

But where mean and CONGA are of interest, data loss is less of a concern. 41 

 42 

Abstract wordcount:  200 words 43 

Keywords: data loss, flash glucose monitoring, glycaemic variability, mHealth, self-monitoring, 44 

Freestyle Libre   45 

Novelty: 46 

 As research now utilises flash glucose monitoring as behavioural change tools in nondiabetic 47 

populations, it is important to consider the influence of missing data. 48 

 Glycaemic variability indices of mean and CONGA are robust to data loss, but MAGE and 49 

standard deviation are influenced at higher rates of missingness. 50 
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Introduction 51 

Glucose monitoring is an essential component in the self-management of diabetes (Chico et al. 2020), 52 

with a wide range of devices available that provide real-time information on glucose concentrations 53 

and rates of change (Rodbard 2016). Most glucose monitoring devices are minimally-invasive and 54 

utilise a subcutaneous sensor to measure interstitial fluid (Vashist 2013), and transmit data to a 55 

reader or receiver device. As glucose sensing technologies have evolved, flash glucose monitoring 56 

has recently become available (Heinemann and Freckmann 2015). In contrast to continuous monitors, 57 

flash glucose devices require the user to retrieve data by hovering a reader device (smartphone or 58 

handheld reader) over the sensor at regular intervals (Rodbard 2017). Despite this subtle difference, 59 

the process of data transmission and retrieval is active (rather than automatic); demanding regular 60 

user interaction to avoid data loss, creating challenges that were previously non-existent. 61 

 62 

The Freestyle Libre (Abbott, Illinois, USA) is a flash glucose device which provides advantages over 63 

previous continuous models by being able to sample glucose concentrations for up to 14 days without 64 

the need for calibrations. The device is widely discussed in the literature (n=161 studies from 2015-65 

2020, PubMed) and is now being funded via National Health Service (NHS) England for individuals 66 

with Type 1 diabetes (NHS England 2019). The use of these technologies has been associated with 67 

improved glycaemic outcomes in people living with diabetes, due to ability to scan the devices 68 

frequently (Rodbard 2017; Dunn et al. 2018; Jangam et al. 2019). There is also growing literature on 69 

glucose monitoring technologies as a physical activity behaviour change tool in individuals without a 70 

current diagnosis of diabetes (Bailey et al. 2016; Ehrhardt and Al Zaghal 2019; Whelan et al. 2019). 71 

As use is expanding from medical care to prevention, users are not always reliant on these devices 72 

for their health and may feel less inclined to sustain strict scanning regimes. With ever-increasing 73 

sensor lifespans, it is possible to observe reductions in user engagement with the sensors (Whelan et 74 

al. 2019). The device requires users to interact with the sensor every eight hours to prevent data loss. 75 

Therefore, it is increasingly important for researchers and practitioners to ascertain how much error 76 

missing data introduces and whether this error is tolerable. This is especially important in individuals 77 

not currently diagnosed with diabetes, as the population is not commonly associated with glucose 78 

technologies but are beginning to be exposed to them as behaviour change tools. 79 
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Previous research investigating up to 80% of missing glucose data in a sample of adults living with 80 

type 1 diabetes reported glucose measurements to be robust to data loss, with calculated mean 81 

absolute percentages errors (MAPE) remaining below 5% (Kucharski et al. 2018). This analysis was 82 

conducted on data collected using the Medtronic Enlite Sensor which passively transmits data 83 

automatically. However, quantifying the effect that missing data have on common glycaemic indices 84 

has not been conducted for flash glucose monitoring, which may have larger amount of missing data 85 

due to the active requirement for data acquisition. Therefore, the aim of this study was to investigate 86 

the influence of missing data on common glucose variability indices (mean, standard deviation, 87 

coefficient of variation (CV), continuous overall net glycaemic action (CONGA) and mean amplitude of 88 

glycaemic excursions (MAGE)) from data collected via flash glucose monitoring.89 
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Materials and methods 90 

Data source 91 

Data were collected as part of the Sensing Interstitial Glucose to Nudge Active Lifestyles (SIGNAL) 92 

programme of research in 2016 that aimed to investigate the association between physical activity 93 

behaviours and glycaemic variability. This project involved 35 participants, who all provided written 94 

informed consent, and the study was approved by the Loughborough University Human Participants 95 

Ethical Sub-Committee (R15-P142). 96 

 97 

The Freestyle Libre is a minimally-invasive sensor that was inserted into the interstitial fluid of the 98 

upper arm and a handheld reader was provided to collect the data. Due to a data storage restriction, 99 

participants were asked to scan once every 8 hours otherwise earlier data points would be overwritten 100 

sequentially. For example, if the wearer last scanned at 9am and did not scan again until 6pm, data 101 

between 9am-10am would be lost. 102 

 103 

Height and weight were measured once using a stadiometer (SECA 213, SECA, Germany) and an 104 

electronic scale (Tanita MC780MA, Tanita, The Netherlands). Additionally, a fasting capillary blood 105 

test (> 8 hours) was undertaken to determine diabetes status via a point-of-care capillary blood device 106 

(Lipid Profile•Glucose Cartridge, Cholestech LDX® Analyzer, Alere, Massachusetts, USA). Individuals 107 

were deemed at high risk of diabetes if their fasting plasma glucose level was between 5.5 and 6.9 108 

mmol/L (NICE 2017).  109 

 110 

Data processing decisions 111 

Files were downloaded into a .txt file format, screened and evaluated to determine the number of valid 112 

data points within a file. The theoretical maximum number of datapoints was 96 per day (four per hour 113 

per 24 hours). Due to temporal drift within the data, where data were collected at roughly 13 to 17 114 

(rather than 15) minute intervals, this daily total number of datapoints could instead be 95 or 97. To 115 

model missing data, complete datasets, defined as ≥95 datapoints, were identified. Other days 116 

containing 93 or 94 data points, which were defined as near complete, underwent linear interpolation 117 

before being pooled. These days formed the reference dataset to which all subsequent analyses were 118 

compared against. Any days which did not meet these criteria were removed from the analyses. 119 
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Missing data are usually described as being either: (i) missing completely at random (MCAR) when 120 

the missingness is not related to the data being observed i.e. errors are unrelated to other variables 121 

and is completely random, (ii) missing at random (MAR) when there is some relationship between the 122 

missingness and the data being observed i.e. missingness depends on the variables collected, or (iii) 123 

missing not at random (MNAR) when errors depend on variables with missing data or variables that 124 

have not been collected (Rubin 1976; Goretzko et al. 2019). Data were modelled as MCAR to account 125 

for the variety of possible explanations. Missing data could have been due to the user forgetting to 126 

scan, misplacing the reader, being too busy to scan at the expected frequency or by sleeping >8 127 

hours. As a result of how the Freestyle Libre stores and overwrites data, missing data occurs in 128 

blocks of consecutive values with the duration of missingness directly related to the delay in scanning 129 

after the eight-hour threshold. The missing data was amputed (removed) within the datafile in blocks 130 

of time to reflect real life Freestyle Libre data loss.  Ninety-eight percent of available days were 131 

classed as having no more than six hours of missing data, indicating that participants were relatively 132 

compliant with scanning the sensor. To contextualise this number, to gain up to 6 hours of missing 133 

data, the wearer would not have scanned for 14 consecutive hours. Therefore, it was decided that this 134 

study would model up to 6 hours of missing data in 1-hour blocks of time. 135 

 136 

To model MCAR data points, complete data files were assigned a number using a random number 137 

function within Excel i.e. one number per row (Microsoft, Redmond, USA). The random number with 138 

the highest value for each hour condition of missing data acted as the starting point for the missing 139 

data removal and assessment. We calculated the estimates by removing (deleting) between 1 and 6 140 

hours of missing data. This involved removing 4 data points for each hour of missing data, until 24 141 

data points for 6 hours of missing data. To model postprandial missing data or MNAR, mealtime 142 

periods were defined as 06:00-10:00 for breakfast, 12:00-15:00 for lunch and 18:00-21:00 for dinner 143 

(Leech et al. 2015). To determine the mealtime peak between those times, the highest average 144 

glucose value was determined and then 60 minutes was subtracted to identify the time of 145 

consumption (ADA 2001). Missing data points for these mealtime periods were initiated from 07:15 146 

(datapoint 30) for breakfast, 13:15 (datapoint 58) for lunch and 18:15 (datapoint 74) for dinner, across 147 

all files. Blocks of missing data lasting between one and six hours were amputed starting from the 148 

second datapoint of the hour. Missing data points were represented as blank cells. 149 
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Glucose variability measures 150 

The following indices were chosen for this study to reflect the most easily understood and commonly 151 

used to represent glycaemic variability. Mean daily glucose as a measure of glucose exposure was 152 

calculated as the average of all datapoints for a given data file, which has been reported as a metric 153 

which both patients and clinicians can understand (Bergenstal et al. 2013), and characterises daily 154 

variations in glucose concentrations. Standard deviation of daily glucose is the variation of glucose 155 

datapoints from the average daily glucose (Hill et al. 2011), and CV is the standard deviation adjusted 156 

on the 24 hour mean glucose and is calculated by (SD / mean) x 100 (Monnier et al. 2018a, 2018b). 157 

Both standard deviation and CV are considered one of the most popular and appropriate assessment 158 

metrics for within day glucose variability (Monnier et al. 2018a; Rodbard 2018). Additionally, CONGA 159 

is the standard deviation of differences between observations separated by a period of 1-4 hours 160 

(Rodbard 2009). For this analysis, the difference in time was set at 60 minutes and a higher CONGA 161 

value signals a greater glycaemic variability (McDonnell et al. 2005). Finally, MAGE is the mean 162 

amplitude of glucose excursions that occur above one standard deviation, which reflects postprandial 163 

excursions (Service et al. 1970). MAGE was calculated on the continuous data using a fuzzy logic 164 

algorithm available within the processing software (Hill 2010).  165 

 166 

Data analyses 167 

Data were downloaded using Freestyle Libre software (Abbott, Illinois, USA) and then cleaned and 168 

structured in Excel (Microsoft, Washington, USA). Following re-structuring, data were then processed 169 

using the EasyGV software (V9.0, University of Oxford, Oxford, UK; Hill 2010). Mean absolute percent 170 

errors (APE: Absolute(((Missing Data Point – Complete Data Point) / Missing Data Point) × 100) were 171 

calculated using glucose variability estimates of (i) the complete datasets (Complete Data Point) and 172 

(ii) for each of the six missing data conditions (Missing Data Point). Intraclass correlation coefficients 173 

(ICC) were also calculated to determine the consistency between the complete and missing datasets 174 

using a Two-Way mixed model with absolute agreement. The following ICC thresholds were used: 175 

poor reliability (<0.5), moderate reliability (0.5-0.75), good reliability (0.75-0.9) and excellent reliability 176 

(>0.9) (Koo and Li 2016). Mean absolute percent errors and ICC analyses were calculated at the day 177 

level and then averaged across all available datapoints available. Statistical analyses were performed 178 

using SPSS v24 (IBM, New York, USA).179 
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Results 180 

Data processing 181 

Thirty-two participants out of 35 (91%) provided at least one complete day of data (≥95 datapoints). 182 

Due to the timing of sensor deployment, the first day and last days were incomplete, resulting in a 183 

potential 416 recorded days (13 days x 32 participants). From these, 288 complete data files (69%) 184 

were available for amputation, with a further 88 files (21%) containing between 1-3 hours and 40 185 

datafiles between 4-24 hours of missing data, respectively. Each participant provided on average 9 186 

full days, with contributions ranging from 2-13 days. Datafiles could have been missing for several 187 

reasons including sensor malfunctions / errors (including premature removal due to adhesive issues; 188 

n=21, 16%) or non-compliance (e.g. failing to scan within the required 8 hour period; n=107, 84%). 189 

From the available dataset, one data file proved incompatible with EasyGV and was removed, leaving 190 

287-day comparisons.  191 

 192 

Of the 32 participants, 26 were not considered high risk of type-2 diabetes from their fasting capillary 193 

blood samples, and six were deemed at high risk (5.5-6.9 mmol/L (NICE 2017)). Participant 194 

characteristics are displayed within Table 1. 195 

 196 

Absolute percent errors 197 

The absolute (mmol/L) difference and MAPE were calculated for both MCAR and MNAR data removal 198 

conditions for all glucose variability indices (Table 2). Lower errors were calculated for MCAR mean 199 

and CONGA calculations, and errors increased for all indices apart from MAGE as the degree of 200 

missing data also increased, albeit not entirely linearly. 201 

 202 

A greater level of missing data increased mean and CONGA absolute values compared to the 203 

reference average values for the breakfast condition, whilst values decreased for both lunch and 204 

dinner with increasing missingness. Standard deviation, CV and MAGE values decreased for all 205 

mealtime conditions compared to their reference categories. Absolute magnitudes of change for 206 

standard deviation, CV and MAGE were lower across all conditions. MCAR absolute values were also 207 

varied, reflecting that missing data were randomly amputed (and were not anchored to specific 208 

mealtimes). 209 
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Figure 1 represents a visual representation of MAPE values (%) per glycaemic variability measures. 210 

The most stable glucose variability indices were CONGA and mean values with MAPE values 211 

consistently ≤3% for up to 6 hours of missing data. Missing data influenced standard deviation, CV 212 

and MAGE the greatest; however missing data introduced the largest errors for MAGE, as 213 

percentages reaching 12-18% error over the three mealtimes. However, MAGE MAPE values were 214 

slightly lower for increasing missingness for breakfast compared with lunch and dinner.  215 

 216 

A sensitivity analysis was conducted to ascertain the difference in MAPE values after removing those 217 

participants who were deemed at higher risk of developing diabetes (n=6), leaving 228 days (79%) in 218 

the analyses. Mean and CONGA MAPE values were calculated at similar error magnitudes and whilst 219 

standard deviation, CV and MAGE absolute values decreased, MAPE values generally increased by 220 

≤1%. 221 

 222 

Intraclass correlations 223 

Table 3 outlines the ICC that compared missing data values across all missing data conditions and 224 

glycaemic variables. ICC generally decreased over the duration of missing data, with most indicating 225 

excellent consistency (>0.9) apart from several MAGE ICC which indicated good consistency (0.75-226 

0.9 (Koo and Li 2016)). 227 
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Discussion 228 

Main findings 229 

Findings from the present study offer unique insight into the impact of missing data on the 230 

representativeness of glucose indices provided by flash glucose monitoring. Our analysis shows that 231 

missing data has little impact on mean glucose and CONGA, but standard deviation, CV and MAGE 232 

can exhibit larger errors at increasing durations of missingness. The fact that degree of missingness 233 

does not influence average values for both MCAR and across mealtimes is an important finding for 234 

studies using the Freestyle Libre device within behavioural interventions, or those with average 235 

glucose as the primary outcome. End-users of the technology can therefore be somewhat confident 236 

that glycaemic variables are relatively stable at higher levels of missingness, and that enforcing 237 

participants to scan their sensors every 8 hours at the expense of participant burden is not necessary.  238 

 239 

Our findings are comparable to another study that collected data using an Enlite Sensor (Medtronic, 240 

Dublin, USA) that found glucose variability measurements were robust to data loss in Type 1 diabetics 241 

(Kucharski et al. 2018). Absolute errors were similar, with MAPE values consistently below 5% and 242 

MAGE being the most “vulnerable to missing data” (Kucharski et al. 2018). Considering those devices 243 

had a greater data resolution of data transfer (5 minutes), it is encouraging to note that mean errors 244 

were comparable. Particularly given that flash glucose monitoring may obtain different estimates of 245 

important glycaemic variability compared to more traditional continuous monitoring devices (Michalak 246 

et al. 2019).  247 

 248 

Comparison of missingness was derived to model the influence of MCAR and MNAR data whilst 249 

retaining contextual awareness of how the devices collected the data. The results of this study 250 

suggest that the MCAR analyses represent the interactions of the missing data across the defined 251 

mealtime periods. Reconfirming that mealtimes are an important source of error due to potentially 252 

large diet related deviations in glucose levels, it is again encouraging to note that mean and CONGA 253 

indices are relatively unaffected by data loss. Given the missing data structures of MCAR and MNAR, 254 

the results are generally consistent with other investigations regarding missing data mechanisms 255 

(Schouten and Vink 2018). Indeed, knowing the body’s ability to maintain homeostatic balance by 256 

returning postprandial glucose concentrations to normal within 2-3 hours (ADA 2001), it is logical to 257 
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conclude that for a large proportion of time, glucose levels are stable, and the mean will smooth over 258 

any short-term peaks in the data. Measures of deviations such as standard deviation, CV and MAGE 259 

will therefore be impacted, which has been demonstrated by higher MAPE values. Nevertheless, the 260 

lower magnitudes of values of both standard deviation and MAGE suggest that relatively small 261 

changes will exhibit larger MAPE values.  262 

 263 

We have shown that whilst MAPE values remain below 3% for mean and CONGA indices, calculated 264 

errors for standard deviation, CV and MAGE range between 2-18% for up to 6 hours of data loss. 265 

There are a lack of clinically meaningful thresholds related to changes in short-term changes in 266 

glycaemic variability compared to more established chronic exposure metrics such as HbA1c (Wilmot 267 

et al. 2019), therefore making it difficult to define an acceptable level of introduced error. However, a 268 

minimum of 70% of data over 14 consecutive days has been proposed to optimise clinical decision 269 

making (Danne et al. 2017), equating to 7 hours of data loss per day. Whilst this criterion relates to an 270 

overview of glycaemic variability for the individual and not a valid day criterion, only 2% (8 days) of 271 

data within our sample were deemed to have >6 hours of missing data. Considering the low MAPE % 272 

and the excellent ICC values (Koo and Li 2016), for mean and CONGA across all missing data 273 

conditions indicates that up to 6 hours is tolerable. On comparison, the largest MAPE values for SD, 274 

CV, and MAGE range between 9-18% across all conditions. Yet bearing in mind the absolute 275 

differences of 0.029, 0.25% and 0.05 mmol/L for the largest errors, it could be considered that all 276 

glycaemic variability indices can be utilised with up to 6 hours of missing data. However, users should 277 

be aware of the potential larger errors above 2-3 hours of missing data for short-term glycaemic 278 

variability indices of SD, CV and MAGE. 279 

 280 

Glycaemic variability can be considered the evaluation of the amplitude, frequency and duration of 281 

fluctuations in glucose data (Danne et al. 2017), that has been associated with a range of diabetes 282 

complications (Peyser et al. 2018). Deviating from equilibrium into both hypoglycaemic and 283 

hyperglycaemic ranges carry risks that increase with the amplitude of the change (Danne et al. 2017), 284 

but the detrimental effect of short-term fluctuations in glucose exposure have been less understood, 285 

compared with exposure of a chronic nature (Ceriello et al. 2019). Yet, the use of continuous 286 

monitoring devices is beginning to be extended beyond diabetes management to be used as a 287 
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preventative behavioural change tool (Whelan et al. 2019). The relatively low cost and lack of 288 

calibration of the devices has meant a wider possibility of the use of such devices in individuals with 289 

and without diabetes. As such, missing data may only be of concern for populations without diabetes 290 

as they may be less invested to interact with the devices (Whelan et al. 2019), and do not rely on 291 

them for clinical management. Yet, the growing literature on the associations between movement 292 

behaviours and short-term glycaemic variability indices (Kingsnorth et al. 2018), support the use of 293 

short-term, inter-day indices and the quantification of the influence of missing data.  294 

 295 

The complete datasets within this present study were artificially amputed both randomly and over 296 

mealtimes by removing data between specific time points. Whilst it can be concluded that certain 297 

glycaemic variability measures will not be influenced by data structure and missing timestamps within 298 

analyses files, it is important to note that for measures such as CONGA, which does have a temporal 299 

component, and for MAGE which is determined by unique deviations, file structure should be 300 

prioritised. The Freestyle Libre data export does not impute data rows if data is missing and if files are 301 

not re-structured to represent complete data matrices, glucose variability metrics may not conform to 302 

the error rates reported within this study. Nevertheless, missing data are largely unique to flash 303 

glucose monitoring technologies and the intermittent nature of the device functionality. 304 

 305 

Limitations 306 

There are some limitations within the data and study design that need to be discussed.  A large 307 

number of days were processed but the analyses did not constrain the contribution of certain 308 

participants in line of similar studies and certain influential cases (individuals) may influence the 309 

MAPE and ICC values calculated. The error and reliability estimates are also only applicable to the 310 

Freestyle Libre sensors as MAPE estimates could be altered using devices with a higher sampling 311 

frequency. The analyses do not also account for variations in eating behaviours (e.g. snacking) or 312 

physical activity that can cause short term changes in glucose concentrations. Finally, the blocks of 313 

time chosen to reflect mealtime periods may not reflect every possible meal schedule but captured 314 

the overall pattern of the participants within the present study. Additionally, the data were obtained 315 

from individuals without a diagnosis of diabetes and therefore the estimates may vary in populations 316 

with greater glucose excursions in their daily data, such as those with Type 2 Diabetes. 317 
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 318 

Conclusions 319 

Missing data may largely be attributed to the flash glucose monitoring technology itself; yet, as 320 

represented by low MAPE and high ICC values, mean and CONGA measures of glycaemic variability 321 

collected via flash glucose monitoring are resistant to 6 hours or less of missing data (MCAR) in 322 

individuals without a diagnoses of diabetes. In contrast, standard deviation, CV and MAGE display 323 

larger errors, which increases in proportion to the duration of missingness. Researchers and clinicians 324 

should therefore be aware of the potential for larger errors when reporting standard deviation, CV and 325 

MAGE at higher rates of data loss, but where mean and CONGA are indices of interest, data loss is 326 

less of a concern. 327 
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Tables 451 

 452 

Table 1 – Participant characteristics of the sample included within the missing data analyses 

Characteristics Mean SD   
     

Age (years) 44.8 (1.5)   
Sex (n)     
   Male 14    
   Female 18    
Body mass index (kg/m2) 24.9 (0.7)   
Fasting glucose (mmol/L) 5.0 (0.1)   
     

Abbreviations: SD (standard deviation). 
453 
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454 Table 2 – Mean absolute percent errors for all glycaemic variables for data missing at random and missing over key mealtimes. 
 Mean SD CV CONGA MAGE 
 mmol/L MAPE % mmol/L MAPE % % MAPE % mmol/L MAPE % mmol/L MAPE % n 

            

Complete data 5.06 - 0.873 - 17.20 - 4.47 - 2.40 - 287 
                   

MCAR                     
1 hour 5.04 0.52 0.870 2.50 17.18 2.34 4.46 0.68 2.38 4.15 287 
2 hours 5.05 0.80 0.876 3.31 17.29 3.08 4.47 0.95 2.37 9.35 287 
3 hours 5.03 1.19 0.862 5.38 17.06 4.79 4.47 1.31 2.35 11.55 284 
4 hours 5.16 2.15 0.877 4.51 16.89 5.12 4.52 1.59 2.41 7.68 287 
5 hours 5.21 3.01 0.876 5.71 16.68 6.80 4.52 1.86 2.42 7.04 286 
6 hours 4.97 2.31 0.844 10.30 16.92 9.02 4.43 1.86 2.33 18.20 275 

            

MNAR - Breakfast            
1 hour 5.06 0.49 0.873 2.01 17.19 1.86 4.47 0.59 2.38 4.74 287 
2 hours 5.06 0.82 0.871 3.31 17.16 3.07 4.47 0.79 2.37 7.08 286 
3 hours 5.07 1.12 0.869 4.44 17.10 4.20 4.48 1.05 2.37 10.02 285 
4 hours 5.08 1.44 0.868 5.65 17.03 5.30 4.49 1.33 2.36 11.41 285 
5 hours 5.10 1.70 0.866 7.17 16.92 6.78 4.50 1.57 2.37 14.08 284 
6 hours 5.12 1.96 0.868 8.10 16.90 7.74 4.51 1.80 2.36 15.13 283 

            

MNAR - Lunch            
1 hour 5.04 0.63 0.861 2.74 17.03 2.45 4.47 0.64 2.32 8.90 286 
2 hours 5.02 1.04 0.854 4.76 16.95 4.19 4.46 0.95 2.32 12.55 286 
3 hours 5.01 1.33 0.851 6.07 16.93 5.40 4.45 1.15 2.32 14.30 285 
4 hours 4.99 1.63 0.847 7.65 16.90 6.70 4.44 1.39 2.31 16.33 281 
5 hours 4.98 1.95 0.846 9.02 16.92 7.84 4.44 1.63 2.35 16.27 279 
6 hours 4.97 2.25 0.846 10.15 16.95 8.83 4.43 1.90 2.35 18.38 278 

            

MNAR - Dinner            
1 hour 5.05 0.48 0.872 2.06 17.19 1.95 4.48 0.68 2.36 7.11 285 
2 hours 5.04 0.87 0.866 3.92 17.11 3.57 4.48 0.98 2.36 9.13 284 
3 hours 5.03 1.19 0.862 5.38 17.06 4.79 4.47 1.31 2.35 11.55 284 
4 hours 5.02 1.49 0.858 6.48 17.02 5.75 4.47 1.53 2.34 13.69 283 
5 hours 5.01 1.83 0.852 8.20 16.96 7.27 4.46 1.75 2.33 15.33 278 
6 hours 4.99 2.19 0.848 9.48 16.95 8.39 4.45 2.10 2.29 17.48 279 

Notes: n = number of MAGE comparisons as some did not compute during analyses. Abbreviations: SD (standard deviation); CV (coefficient of variation); 
CONGA (continuous onset of net glycaemic action); MAGE (mean amplitude of glycaemic excursions); MAPE (mean absolute percentage errors); MCAR 
(missing cases at random); MCNAR (missing cases not at random); SD is presented to 3 decimal places to account for smaller variations. 
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 455 

Table 3 – Intraclass correlation coefficients for all glycaemic variables over 24 hours for data 
missing at random and missing over key mealtimes. 

 Mean SD CV CONGA MAGE 
      

MCAR      
1 hour 0.998 0.993 0.993 0.997 0.982 
2 hours 0.996 0.991 0.989 0.994 0.943 
3 hours 0.992 0.971 0.970 0.990 0.918 
4 hours 0.978 0.984 0.974 0.986 0.955 
5 hours 0.957 0.975 0.941 0.979 0.967 
6 hours 0.975 0.922 0.919 0.981 0.844 

      

MNAR - Breakfast      
1 hour 0.998 0.995 0.995 0.998 0.971 
2 hours 0.995 0.985 0.987 0.996 0.951 
3 hours 0.992 0.976 0.978 0.993 0.919 
4 hours 0.987 0.965 0.965 0.989 0.899 
5 hours 0.982 0.952 0.946 0.985 0.872 
6 hours 0.977 0.943 0.934 0.980 0.858 

      

MNAR - Lunch      
1 hour 0.997 0.989 0.989 0.997 0.923 
2 hours 0.994 0.976 0.975 0.994 0.901 
3 hours 0.991 0.964 0.961 0.992 0.881 
4 hours 0.986 0.950 0.946 0.989 0.864 
5 hours 0.981 0.936 0.933 0.985 0.868 
6 hours 0.975 0.923 0.920 0.981 0.842 

      

MNAR - Dinner      
1 hour 0.998 0.994 0.993 0.997 0.958 
2 hours 0.995 0.981 0.980 0.995 0.937 
3 hours 0.992 0.971 0.970 0.990 0.918 
4 hours 0.988 0.960 0.960 0.987 0.901 
5 hours 0.983 0.945 0.944 0.984 0.883 
6 hours 0.977 0.931 0.930 0.978 0.866 

      

Abbreviations: SD (standard deviation); CONGA (continuous onset of net glycaemic action); MAGE 
(mean amplitude of glycaemic excursions); CV (coefficient of variation); MCAR (missing cases at 
random); MCNAR (missing cases not at random). 
 

 456 
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Figure captions 457 

458 

Figure 1 – Mean absolute percent errors (MAPEs) across all data removal conditions (missing at 459 

random and across breakfast, lunch and dinner meal conditions) and glycaemic variability measures 460 

(continuous overall net glycaemic action (CONGA), mean glucose, coefficient of variation (CV), 461 

standard deviation (SD) and mean amplitude of glycaemic excursions (MAGE). The grey colour 462 

represents lower MAPE, whilst green and blue indicates higher MAPE values. The glycaemic 463 

variability measures have been ordered according to MAPE values. 464 
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Supplementary material 465 

Table S1 - sensitivity analyses for glycaemic variability indices without individuals categorised as ‘high risk’. 
 Mean SD CV CONGA MAGE 
 mmol/L MAPE % mmol/L MAPE % % MAPE % mmol/L MAPE % mmol/L MAPE % n 

            

Complete data 4.86 - 0.819 - 16.85 - 4.30 - 2.23 - 228 
                  

MCAR                    
1 hour 4.84 0.47 0.817 2.441 16.85 2.32 4.30 0.64 2.21 4.47 228 
2 hours 4.85 0.74 0.825 3.295 16.97 3.02 4.31 0.92 2.20 9.06 228 
3 hours 4.83 1.19 0.807 5.475 16.70 4.88 4.31 1.29 2.16 12.10 226 
4 hours 4.96 2.19 0.820 4.471 16.49 5.25 4.37 1.64 2.26 7.73 228 
5 hours 5.01 3.07 0.817 5.627 16.27 6.93 4.37 1.92 2.26 6.73 227 
6 hours 4.76 2.37 0.786 11.074 16.49 9.56 4.26 1.84 2.16 18.86 216 

            

MNAR - Breakfast            
1 hour 4.86 0.47 0.820 1.884 16.84 1.78 4.31 0.58 2.23 4.68 228 
2 hours 4.87 0.76 0.820 3.052 16.83 2.88 4.32 0.76 2.23 6.94 227 
3 hours 4.88 1.03 0.819 4.159 16.78 4.04 4.32 1.02 2.21 10.51 226 
4 hours 4.89 1.33 0.819 5.314 16.73 5.10 4.33 1.27 2.21 11.90 226 
5 hours 4.91 1.60 0.818 6.927 16.64 6.69 4.35 1.51 2.24 14.47 226 
6 hours 4.93 1.89 0.821 7.889 16.61 7.66 4.36 1.74 2.24 15.59 225 

            

MNAR - Lunch            
1 hour 4.84 0.62 0.807 2.899 16.67 2.58 4.31 0.61 2.16 9.15 227 
2 hours 4.82 1.04 0.799 5.064 16.56 4.42 4.30 0.92 2.16 13.23 227 
3 hours 4.80 1.36 0.794 6.614 16.52 5.83 4.29 1.13 2.16 15.22 226 
4 hours 4.79 1.69 0.788 8.413 16.45 7.28 4.27 1.35 2.14 17.40 222 
5 hours 4.77 2.02 0.787 9.769 16.48 8.43 4.26 1.59 2.17 17.33 220 
6 hours 4.76 2.32 0.788 10.950 16.51 9.42 4.26 1.84 2.16 18.95 219 

            

MNAR - Dinner            
1 hour 4.85 0.46 0.818 2.190 16.84 2.04 4.31 0.67 2.19 7.31 226 
2 hours 4.84 0.86 0.812 4.065 16.76 3.66 4.31 0.97 2.18 9.41 226 
3 hours 4.83 1.19 0.807 5.475 16.70 4.88 4.31 1.29 2.16 12.10 226 
4 hours 4.81 1.51 0.801 6.683 16.64 5.93 4.30 1.51 2.15 14.37 226 
5 hours 4.79 1.89 0.795 8.517 16.57 7.58 4.28 1.74 2.15 16.29 222 
6 hours 4.77 2.29 0.791 9.895 16.57 8.73 4.27 2.07 2.12 18.42 221 
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 466 

Notes: 6 individuals were categorised as ‘high risk’ and were removed; 228 days (79%) remained within the above analysis); n = number of MAGE 
comparisons as some did not compute during analyses. Abbreviations: SD (standard deviation); CV (coefficient of variation); CONGA (continuous onset of 
net glycaemic action); MAGE (mean amplitude of glycaemic excursions); MAPE (mean absolute percentage errors); MCAR (missing cases at random); 
MCNAR (missing cases not at random); SD is presented to 3 decimal places to account for smaller variations. 
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