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Abstract 

Objective: Based on different physiological mechanisms, respiratory modulations of 

photoplethysmography (PPG) signal differ in strength and resultant accuracy of respiratory 

frequency (RF) estimation. We aimed to investigate the strength of different respiratory 

modulations and the accuracy of resultant RF estimation in different body sites and two 

breathing patterns. 

Approach: PPG and reference respiratory signals were simultaneously measured in 60 

seconds from 36 healthy subjects in six sites (arm, earlobe, finger, forehead, wrist-under 

(volar side), wrist-upper (dorsal side)). Respiratory signals were extracted from PPG 

recordings using four demodulation approaches: amplitude modulation (AM), baseline 

wandering (BW), frequency modulation (FM), and filtering. RFs were calculated from the 

PPG-derived and reference respiratory signals. To investigate the strength of respiratory 

modulations, the energy proportion in the range that covers 75% of the total energy in the 

reference respiratory signal, with RF in the middle, was calculated and compared between 

different modulations. Analysis of variance and Scheirer-Ray-Hare test were performed with 

post hoc analysis.  

Results: In normal breathing, FM was the only modulation whose RF was not significantly 

different from the reference RF (p>0.05). Compared with other modulations, FM was 

significantly higher in energy proportion (p<0.05) and lower in RF estimation error (p<0.05). 

As to energy proportion, measurements from finger and forehead were not significantly 

different (p>0.05), but both significantly different from other four sites (p<0.05). 

In deep breathing, the RFs derived by BW, filtering, and FM were not significantly different 

from the reference RF (p>0.05). The RF estimation error of FM was significantly less than 

that of AM or BW (p<0.05). The energy proportion of FM was significantly higher than that 

of other modulations (p>0.05).  

Significance: Of all the respiratory modulations, FM has the highest strength and is 

appropriate for accurate RF estimation from PPG signals recorded in different sites and 

different breathing patterns. 
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1. Introduction 

Respiratory frequency (RF) is an important physiological parameter in healthcare monitoring, especially for patients with 

respiratory diseases. Respiratory rate (RR) is a vital sign that is directly derived from RF. However, long-term monitoring of 

RF is difficult due to various limitations of current respiratory monitoring devices, which are expensive, difficult to use, and 

could cause discomfort to patients. Some new sensors such as inertial sensors provide the posssibility of convenient 

monitoring of RF, but still need further validation for clinical use or long-term monitoring. It has been suggested that long-

term RF monitoring can be achieved by extracting RF from other signals recorded by wearable sensors (Liu et al., 2019).  

In particular, RF may be easily extracted from photoplethysmography (PPG) signals. A PPG signal reflects the blood 

volumetric changes in peripheral microvascular bed and is continuously recorded by wearable sensors. Therefore, PPG finds 

wide application in healthcare. During respiration, the PPG signal is modulated by several physiological factors in its 

amplitude, baseline, and frequency (Charlton et al., 2017a). These factors reflect the influence of respiratory movement on 

the hemodynamics of peripheral arterioles and capillaries. The respiratory modulation of PPG signals is related with the 

complex interaction of different physiological mechanisms such as vasoconstriction, interthoracic pressure change, and vagal 

outflow (Meredith et al., 2012). However, other influences on the modulation of the PPG signal exist, including baroreceptor 

reflex and neural tone (Kiselev et al., 2016).  

To derive RF, the majority of current algorithms demodulate the respiratory signal from a PPG signal based on amplitude 

modulation (AM), baseline wandering (BW), and frequency modulation (FM) (Charlton et al., 2017a). Here the amplitude 

refers to the magnitude of fluctuation, or the difference between maximum and minimum values of PPG signal in a cardiac 

cycle. The baseline refers to the minimum value of PPG signal in a cardiac cycle. To enhance the reliability and robustness of 

these algorithms, some studies have investigated the fusion of RF values derived by AM, BW, and FM (Liu et al., 2019). 

However, the accuracy of PPG-derived RF estimation using fusion techniques varies in different studies (Orphanidou, 2017; 

Birrenkott et al., 2018). In a widely used Smart Fusion algorithm, the error is still 2.8 ± 3.4 breaths/min, or 0.047 ± 0.057 Hz, 

which is beyond the clinically reliable range (<2 breaths/min) (Karlen et al., 2013). To improve the accuracy of PPG-based 

RF estimation, it is necessary to comprehensively investigate the differences between different respiratory modulations in 

strength that directly influence the accuracy of RF estimation. Moreover, while current fusion algorithms focus on signal 

processing as well as the statistical and probabilistic characteristics of signals, there is a lack of analysis of the physiological 

mechanisms that underlie the different respiratory modulations. 

This study aims to provide a preliminary comparison of different respiratory modulations of PPG signal in their strength 

and accuracy of resultant RF estimation from a physiological perspective. RF is estimated by different modulation algorithms 

from PPG signals of different body sites under different breathing patterns. The intensities of different respiratory 

modulations are also compared. Finally, we analyse the physiological effect of the measurement site and breathing pattern on 

the strength of respiratory modulation and the accuracy of RF estimation. 

2. Methods 

2.1 Analysis of respiratory modulations of PPG signal: from a physiological view  

A PPG signal is an optical signal collected from volumetric changes in the peripheral microcirculation. The blood ejected 

from the left ventricle flows through aorta and major arteries into arterioles and capillaries where PPG signal is recorded. The 

photocurrent of the sensor is then transformed to voltage in the recorded PPG signals. The blood then flows through the 

venous system back to the left heart via the pulmonary circulation. Factors influencing the PPG waveform include those 

related to sensor attachment, such as any movement and the pressure exerted between the PPG sensor and the skin. These 

factors can non-linearly change the waveform, leading to the noises in the recorded PPG signal.  

It is widely known that neural regulation could influence the respiratory movement. It has been disclosed that respiratory 

movement causes variation in sympathetic tone control of cutaneouse blood vessel (as detailed below). The interaction 

between neural regulation and respiratory movement has a complicated effect on the respiratory modulatiosn of PPG signals 

(Nilsson et al., 2000; Johansson, 2003). 

Charlton et al. have extensively reviewed the mechanisms of AM, BW, and FW (Charlton et al., 2017b) (Charlton et al., 

2017a). Recently, some new mechanisms of respiratory modulation have been proposed such as vasomotion (Ovadia-

Blechman et al., 2017) and aortic movement (Sailer et al., 2015). Here we categorize the mechanisms of respiratory 

modulations on PPG signals from a physiological view. 
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During respiration, the PPG signal is modulated by respiratory movements as well as related neural regulations, and is 

influenced by motion artefacts, as shown in figure 1. It has been demonstrated that the aorta and its branches undergo 

considerable respiratory movement (Sailer et al., 2015) which could change the blood flow, as well as the resistance and 

capcity of the arteries. Resultantly, AM and BW will appear in PPG waveform, with an additional pulsative wave whose 

frequency is RF superimposed to the PPG wave. The thoracic movement is a major cause of respiratory modulations. Firstly, 

the thoracic pressure changes contribute to the movement of aorta. Secondly, the intrathoracic pressure change stretches 

sinoatrial node during inhalation and increases the vagal outflow during exhalation, with the heart rate (HR) increased and 

decreased, causing respiratory sinus arrhythmia (RSA). RSA is the major mechanism of FM in PPG signal. During 

inhalation, the pulmonary vasculature was expanded due to the reduced intrathoracic pressure, which in turn decreases the 

resistance and increases the capacity of veins and right heart. Consequently, the blood flow to left ventricular is reduced, with 

the stroke volume decreased. Thus, the magnitude of PPG signal will be decreased, which leads to AM and BW in the PPG 

signal. Due to the decreased blood pressure detected by baroreceptors, HR is then increased via the baroreflex regulation, 

resulting in FM in PPG signal. During inhalation, increased pressure in abdominal vasculature could impulse the blood to 

peripheral areas, causing AM and BW in PPG waveform. The exact change of blood flow depends on the balance or opposite 

effects exerted by thoracic and abdominal movements (Khoo and Chalacheva, 2019). The neural regulations include 

vasoconstriction, vasomotion, and baroreflex. Vasoconstriction happens during inhalation when blood is transferred to veins, 

resulting in BW in PPG signal. In subjects whose body temperatures have been sufficiently lowered, the deep inspiration 

protocol can result in vasodilation rather than vasoconstriction (Khoo and Chalacheva, 2019). Vasomotion directly changes 

the diameter of arterioles especially during slow breathing at low oxygenation levels (Ovadia-Blechman et al., 2017). The 

change of microcirculation resistance results in AM and BW in PPG signals. The baroreflex changes the stroke volume and 

HR according to blood pressure, forming a closed-loop control system, which directly incurs AM and FM in PPG waveform. 

The periodic respiratory movement and blood flow changes commonly contribute to the additional wave superimposed on the 

PPG signals, which could be extracted with filtering for RF estimation. Additionally, the motion artefact causes the change of 

attachment and pressure which further deforms PPG waveform. 
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Figure 1. Physiological mechanisms of PPG signal modulation. The red and blue rectangles denote the process during 

inhalation and exhalation respectively. The respiratory changes in heart rate always involve some form of neural regulation, 

but the details are not shown in the figure for simplification. AM: amplitude modulation; BW: baseline wandering; FM: 

frequency modulation; HR: heart rate; RF: respiratory frequency. 

2.2 Collection of PPG and reference respiratory signals 

36 healthy adult subjects (12 males and 24 females, mean±SD and range of age: 33±12 yrs, 19-58 yrs) participated in the 

experiment. For each subject, PPG signals were measured in sitting posture from six different body sites in a random 

sequence: arm, earlobe, finger, forehead, as well as volar and dorsal sides of the wrist (denoted as wrist-under and wrist-upper 

respectively). Simultaneously, the reference respiratory signal was measured by a strain gauge on a thoracic belt. Each 

measurement lasted for one minute. The sampling rate was 2000 Hz for all signals. The PPG signals were collected from the 

PPG100C module of BIOPAC System (BIOPAC Systems, Inc, Goleta, CA) which has preset hardware filters including a low 

pass filter (cutoff frequency: 10Hz) and a high pass filter (cutoff frequency: 0.05Hz) to remove the direct current component. 

The recorded waveform of PPG signal was clear. The respiratory module also contains preset hardware filters including a low 

pass filter (cutoff frequency: 1Hz) and a high pass filter (cutoff frequency: 0.05Hz), with which clear waveform of respiratory 

signals can be recorded. Therefore, no software filter was applied during data collection. The details of data collection have 

been described in our previous work (Hartmann et al., 2019). 

2.3 RF extraction by demodulation 

From the analysis above, the PPG signal is modulated by four different respiratory modulations: AM, BW, FM, and the 

additional wave with RF as its frequency. Therefore, RF could be estimated from the respiratory signals extracted from the 

PPG signal using demodulation techniques based on AM, BW, FM, and direct filtering. 
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2.3.1 Pre-processing of PPG signal   
The recorded data were imported to MATLAB (R2018a; The MathWorks Inc., Natick, USA). To reduce the high-

frequency noises which may affect the selection of peak (systolic maximum) and valley (end-of-diastolic trough) points, the 

original PPG signal was pre-processed with the low-pass infinite impulse response (IIR) filter whose pass band and stop 

bands are <3 Hz and >5 Hz, respectively.  

2.3.2 Extraction of respiratory signals  
AM and BW: In the filtered PPG signal, the valley and peak points were selected, as shown in figure 2a. Firstly, the 

difference function of the PPG signal was calculated:      1diff i PPG i PPG i   , where i  denotes the sequence of 

sampling. Secondly, all the points which satisfy
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were selected as 

the candidate points for peaks and valleys respectively. Next, a candidate point of peak will be excluded if there is another 

point within ±0.1s range with a higher value of PPG signal. Similarly, a candidate point of valley will be excluded if there is 

another point within ±0.1s range with a lower value of PPG signal. The dicrotic notch and local extreme points were 

therefore excluded. Finally, between two consecutive peaks, only one valley with the lowest value of PPG signal was 

selected, and vice versa. Two curves derived by cubic spline interpolation were used to connect the peaks and valleys, 

respectively. The curve which connects valleys reflected the fluctuation of baseline, therefore was used as the respiratory 

signal derived by BW. By subtracting the peak and valley curves, the derived curve reflects the fluctuations of amplitude, 

therefore this was used as the respiratory signal derived by AM. 

FM: The filtered PPG signal was further processed to extract respiratory signal by FM. The continuous PPG signal was 

divided by the valley points into different cardiac cycles. In each cycle, the start and end points (two consecutive valley 

points) were connected by a segment whose function is linear. The waveform was finally detrended by subtracting the linear 

function in each cycle (figure 2b). The BW effect was excluded. In each cycle, the point of the maximal slope was selected by 

calculating the derivative of the de-trended PPG signal. The maximal slope point is located at the systolic uprising side of the 

PPG signal. The time intervals between consecutive maximal slope points were calculated. The FM-based respiratory signal 

was derived from the variability of intervals based on pulse interval modulation (PIM) (Hartmann et al., 2019) (Figure 2c).  

Filtering: The filtered PPG signal before extraction of peaks and valleys was down-sampled in 500Hz, then filtered with 

another low-pass IIR filter whose pass and stop bands were <0.6Hz and >1.0Hz. The resultant signal was the respiratory 

signal derived directly by filtering (figure 2d). 

2.3.3 Estimation of RF 
The four respiratory signals extracted from PPG by AM, BW, FW, and filtering, as well the reference respiratory signal 

recorded by the respiratory belt (figure 2e), were processed with DFT (Discrete Fourier transformation). The focus of this 

study is the comparison between different respiratory modulations instead of the improvement of RF estimation accuracy. 

Therefore, the original respiratory signals were used. The periodogram function in Signal Processing Toolbox of MATLAB 

was used to get the power spectral density (PSD). The respiratory signals had been downsampled before calculating PSD. 

The downsampling rate was 8Hz. In PSD, the rectangular window with the same length as the input signal was used, with the 

frequency range of 0.05Hz to 0.3Hz for deep breathing, and 0.1Hz to 0.5Hz for normal breathing. The resolution of RF was 

0.001Hz, which was equal to 0.06 breath per minute in RR. The peak frequency was selected as the estimated RF (figure 2f).  

2.3.4 Calculation of energy proportion 
To quantitatively estimate the strength of each respiratory modulation, the energy ratio was calculated. In the PSD of 

reference respiratory signal, the peak which indicates RF has the highest density of energy. A range of frequency (denoted as 

“75%-respiratory interval”) was calculated which covers 75% of total energy (total area under the PSD curve) with RF at the 

middle. On the corresponding PSD of each PPG-derived respiratory signal, the proportion of the energy in the “75%-

respiratory interval” was calculated. This value reflects the ratio of respiratory-related energy in the respiratory signal, thus 

indicating the strength of corresponding respiratory modulation.  
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Figure 2. Estimation of respiratory rate from PPG signals using different modulations. (a) Extraction of peaks and valleys 

from the filtered PPG signal recorded in normal breathing. The blue and green lines denote the derived respiratory signals by 

AM and BW. (b) Extraction of maximal slope points (marked by crosses) from detrended PPG signal. (c) Respiratory signal 

derived by FM. (d) Respiratory signal derived by filtering. (e) Reference respiratory signal (Resp) recorded by strain gauge. 

(f) Extraction of RF from different respiratory signals using PSD.  

2.4 Statistical analysis 

Statistical analysis was performed using SPSS (Version 24.0, IBM Corp) and R programming language (R Core Team 

(2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing). Since RF was 

paced at a fixed rate of 0.1Hz in deep breathing, the data of normal and deep breathing patterns were analyzed separately.  

The relative error of each PPG-derived RF value was calculated:
PPG resp

resp

=
RF RF

ERF
RF


, where PPGRF , respRF , and 

ERF denote the PPG-derived RF, the corresponding RF derived from the respiratory belt, and the estimation error of PPG-

derived RF. The RF and ERF values derived by different methods (AM, BW, FM, filtering) from different measurement sites 

(arm, earlobe, finger, forehead, wrist-under, wrist-upper) were compared to investigate if there is any significant influence of 

RF extraction method, measurement site, or their interaction, on RF or ERF values. Firstly, the Levene’s test was performed 

to investigate the homogeneity of variance (defined as p>0.05). If the hypothesis of homogeneity of variance was satisfied, 

the analysis of variance (ANOVA) was performed. If the assumption was violated (p<0.05), the Scheirer-Ray-Hare test was 

performed as the substitute. If any significant influence was observed, in ANOVA, the least significant difference (LSD) post 

hoc multiple comparisons were performed to find the pairs with significant difference (p<0.05). In the Scheirer-Ray-Hare 

test, Dunn's Kruskal-Wallis multiple comparisons were performed for post hoc analysis. The p-value was adjusted with 

Benjamini-Hochberg method.   

To illustrate the difference between different RF extraction methods and different measurement sites in the accuracy of RF 

estimation, Bland-Altman analysis was performed on PPG-derived and reference RFs.  

3. Results 

3.1 Energy proportion 

The results showed that the energy ratio was significantly influenced by measurement site, extraction method, and their 

interaction (p<0.05 for all, homogeneity of variance satisfied). The strongest modulation was FM at the finger, and FM often 

being stronger than the other modulations, particularly during deep breathing, as shown in Figure 3. 

 
Figure 3. The mean (shaded bar) and standard deviation (segment) of the ratio of energy under the 75%-respiratory 

interval estimated by different methods.  
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Normal Breathing: For normal breathing, the homogeneity of variance was satisfied by the overall distribution of energy 

proportion (p=0.056 in Levene’s test). Therefore, ANOVA was performed. The results showed that the energy ratio was 

significantly influenced by measurement site, extraction method, and their interaction (p<0.05 for all). 

The post-hoc analysis showed that the energy ratio derived by FM was significantly different from the results derived by 

other methods (AM, BW, filtering) (p<0.05 for all). There was no significant difference among the results derived by AM, 

BW, and filtering (p>0.05 for all).  

As to the comparison between sites, finger and forehead were not significantly different (p>0.05), but both were 

significantly different from the results of other four sites (arm, earlobe, wrist-under, wrist-upper) (p<0.05 for all). There was 

no significant difference among the results from these four sites (p>0.05 for all). 

Deep Breathing: For deep breathing, the homogeneity of variance was violated by the overall distribution of energy 

proportion (p<0.05 in Levene’s test). Therefore, the Scheirer-Ray-Hare test was performed. The results showed that the 

energy ratio was significantly influenced by extraction method (p<0.01), without any significant influence from the site, or 

the interaction between site and extraction method (p>0.05 for all). 

The post-hoc analysis showed that the energy ratios derived by different methods were always significantly different 

(p<0.05 for all) except between BW and filtering (p>0.05). There was no significant difference between the results of any two 

different sites (p>0.05 for all).  

3.2 RF values: respiratory frequency derived from PPG and respiratory belt in different sites 

The results showed that FM derived the most accurate RF estimation, particularly in normal breathing where FM was the 

only method of which the RF estimation was not significantly different from the reference value (p>0.05).  

Normal Breathing: In normal breathing, the assumption of homogeneity of variance was violated in RF distribution 

(p<0.01 in Levene’s test). The results of Scheirer-Ray-Hare test showed that there was a significant influence of extraction 

method (p<0.01) on RF. FM achieved the most accurate RF estimation. The influences of measurement site or the interaction 

between measurement site and extraction method were not significant (p>0.05 for both).  

The Dunn’s Kruskal-Wallis multiple comparisons showed that there was not any significant difference between reference 

RF and the RF derived by FM, whereas RFs derived by AM, BW, and filtering were significantly different from reference RF 

but were not significantly different between each other (Table 1). No significant difference was observed between any two 

different measurement sites. 

 

Table 1. The results of Dunn's Kruskal-Wallis multiple comparisons on RF derived by different methods in normal 

breathing. Significant difference is marked by *. 

Data pair Adjusted significance 

Resp-AM <0.001* 
Resp-BW <0.001* 
Resp-FM 0.102 
Resp-filtered <0.001* 
AM-BW 0.498 
AM-FM <0.001* 
AM-filtered 0.889 
BW-FM <0.001* 
BW-filtered 0.462 
FM-filtered <0.001* 

Significant difference is marked by *. 

 

Deep Breathing: In deep breathing, the assumption of homogeneity of variance was violated in RF distribution (p<0.01 in 

Levene’s test). The results of Scheirer-Ray-Hare test showed that both extraction method and measurement site had a 

significant influence on RF (p<0.01 for both). The influence of the interaction between measurement site and extraction 

method was not significant (p>0.05).  

The Dunn’s Kruskal-Wallis multiple comparisons showed there was not any significant difference between reference RF 

and PPG-derived RFs derived by BW, FW, or filtering (Table 2). However, the RF derived by AM was significantly different 

from reference RF and other PPG-derived RFs. As to measurement sites, a significant difference was observed between 

finger and forehead, and between finger and wrist-upper (p<0.05 for both). 
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Table 2. The results of Dunn's Kruskal-Wallis multiple comparisons on RF derived by different methods in deep breathing.  

Data pair Adjusted significance 

Resp-AM 0.010* 
Resp-BW 0.262 
Resp-FM 0.268 
Resp-filtered 0.917 
AM-BW 0.134 
AM-FM <0.001* 
AM-filtered 0.009* 
BW-FM 0.025* 
BW-filtered 0.278 
FM-filtered 0.259 

Significant difference is marked by *. 

3.3 ERF values: the estimation error of PPG-based methods 

Overall, FM showed the least estimation error. The ERF of FM was significantly smaller than those of AM, BW, and 

filtering in both normal breathing (p<0.05 for all), and than those of AM and BW in deep breathing (p<0.05 for both). 

Normal Breathing: In normal breathing, the assumption of homogeneity of variance was violated in RF distribution 

(p<0.01 in Levene’s test). The results of Scheirer-Ray-Hare test showed that there was significant influence of extraction 

method (p<0.01) on RF. FM achieved the least ERF. The influences of measurement site or the interaction between 

measurement site and extraction method were not significant (p>0.05 for both).  

The Dunn’s Kruskal-Wallis multiple comparisons showed that there was no significant difference between ERFs derived 

by AM, BW, and filtering (p>0.05 for all). The ERF derived by FM was significantly different from those derived by AM, 

BW, and filtering (p<0.01 for all), as shown in Table 3. 

 

Table 3. The results of Dunn's Kruskal-Wallis multiple comparisons on ERF derived by different methods in normal 

breathing.  

Data pair Adjusted significance 

AM-BW 0.709 
AM-FM <0.001* 
AM-filtered 0.238 
BW-FM <0.001* 
BW-filtered 0.361 
FM-filtered <0.001* 

Significant difference is marked by *. 

 

Deep Breathing: In deep breathing, the assumption of homogeneity of variance was violated in RF distribution (p<0.01 in 

Levene’s test). The results of Scheirer-Ray-Hare test showed that the influences of extraction method and measurement site 

on RF were significant (p<0.01 for both). The influence of the interaction between measurement site and extraction method 

was not significant (p>0.05).  

The Dunn’s Kruskal-Wallis multiple comparisons showed that significant differences on ERF existed between AM and 

FM, between AM and filtering, and between BW and FM (Table 4). There was a significant difference between finger and 

wrist-upper on ERF (P=0.004). The difference between finger and forehead was at the threshold of significance (p=0.053) 

and the difference between finger and wrist-under just outside the threshold (p=0.057). There was no significant difference in 

ERF between other measurement sites (p>0.05 for all). 

 

Table 4. The results of Dunn's Kruskal-Wallis multiple comparisons on ERF derived by different methods in deep 

breathing.  

Data pair Adjusted significance 

AM-BW 0.090 
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AM-FM <0.001* 
AM-filtered 0.021* 
BW-FM 0.025* 
BW-filtered 0.411 
FM-filtered 0.112 

Significant difference is marked by *. 

3.4 Bland-Altman analysis 

Normal Breathing: In Figure 4, the RFs derived by FM have the lowest bias and the narrowest limits of agreement (LoA) 

in all the sites and extraction methods. In the results of Bland-Altman analysis, all the values were rounded to the second 

significant digit to ensure that the small values (absolute value<0.001Hz, Figure 5) could be accurately delineated. Therefore, 

the FM results were slightly different from those in our previous work where the data were rounded to 2 decimal places 

before Bland-Altman analysis (Hartmann et al., 2019). The results are in accordance with the analysis of RF and ERF values. 

Therefore, FM was significantly more accurate than other methods in RF estimation. Other three methods (AM, BW, and 

filtering) were comparable and less accurate in RF estimation. Especially, AM had the widest LoA in all the sites. 
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Figure 4. Bland-Altman results between PPG-derived respiratory frequency (PPG_f) and the reference respiratory 

frequency derived from the respiratory belt (Resp_f) in normal breathing. The dashed line denotes the mean bias. The dotted 

lines denote the limits of agreement (LoA), or mean ± 1.96 SD interval. 

 

Deep Breathing: In Figure 5, the difference between different extraction methods depends on the site. All the methods 

achieved small biases (<0.025Hz) in all the measurement sites, which is equal to less than 1.5 breaths per minute. The highest 

biases (-0.021Hz and -0.024Hz) were derived by AM. The LoA of AM was always the widest except in finger. This is in 

accordance with the RF and ERF results that only AM-derived RF value was significantly different from the reference RF. 

Other three methods did not show a consistent difference in accuracy in all the sites.  
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Figure 5. Bland-Altman results between PPG-derived respiratory frequency (PPG_f) and the reference respiratory 

frequency derived from the respiratory belt (Resp_f) in deep breathing. The dashed line denotes the mean bias. The dotted 

lines denote the limits of agreement (LoA), or mean ± 1.96 SD interval. 

4. Discussion 

In this study, based on the analysis of related physiological mechanisms, the strength of four respiratory modulations, as 

well as the accuracy of RF estimation, were compared in different measurement sites, and normal and deep breathing patterns 

respectively. It is an important supplement of our existing study (Hartmann et al., 2019), and provides a reference for the 

related studies. On the one hand, the results of our study can provide the reference for the physiological studies on the 
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modeling of PPG signal (Khoo and Chalacheva, 2019) and the estimation of respiratory effect on peripheral hemodynamic 

oscillations(Tankanag et al., 2020). On the other hand, our results shed light on the fusion of different respiratory-induced 

modulations. Currently, in the fusion of respiratory signals or RF estimations derived from different respiratory modulations 

of PPG signals, the calculation of the weights mainly depends on the analysis of the respiratory signals, with a lack of 

consideration of different physiological conditions (Liu et al., 2019; Pollreisz and Nejad, 2020; Pirhonen and Vehkaoja, 

2020). According to our results, the weights should be adjusted in different breathing patterns and different measurement sites 

(e.g. BW achieved the most accurate estimation of RF at the wrist-upper and wrist-under sites in deep breathing) to achieve 

more accurate estimation of RF. 

4.1 Different respiratory modulations in both breathing patterns 

In normal breathing, FM was the only method whose derived RF was not significantly different from the reference RF. 

The estimation error was significantly less than the other three methods. In Bland-Altman analysis, FM had the lowest bias 

and the narrowest LoA in all the sites. The energy proportion of FM was also significantly higher than the values of other 

methods. Therefore, in normal breathing, the modulation by FM had the highest strength of respiratory modulation and the 

highest accuracy in RF estimation. 

In deep breathing, the estimations of RF derived by BW, filtering, and FM were not significantly different from the 

reference RF. However, the ERF of FM was significantly different from the corresponding results of AM and BW. In Bland-

Altman analysis, the lowest bias and narrowest LoA belonged to BW and FM in different sites. The energy proportion of FM 

was significantly higher than all the other methods. Therefore, in deep breathing, FM still had the highest strength of 

respiratory modulation, but its accuracy in RF estimation was comparable with BW and filtering. 

Compared with normal breathing, in deep breathing the energy proportion was higher in FM but lower in other methods. 

In deep breathing, many different mechanisms of blood flow regulation are activated, resulting in cardiorespiratory vagal 

afferents, the oscillations in cerebral blood flow, enhanced Mayer-Traube-Hering waves, and finally the interference on AM 

and BW, resulting in a lower energy proportion (Noble and Hochman, 2019). In deep breathing, with the involvement of 

neural sympathetic activity, the respiration-vasomotion coupling is intensified (Ovadia-Blechman et al., 2017), which will 

lead to the variation of impedance in peripheral microcirculation. The enhanced neural activity might be related to the lower 

energy proportion in deep breathing. Deep breathing could decrease the amplitude of BP  and its cardiac fluctuations (Dick et 

al., 2014) but increase its respiratory fluctuations  (Nuckowska et al., 2019). Therefore, despite the lower respiratory energy 

proportion, the error in RF estimation was lower in deep breathing for AW, BW, and filtering (Figure 4 and Figure 5). The 

RSA which causes RF is greatly exaggerated at slower respiratory frequencies as the difference between the maximal and 

minimal heart rates is enlarged (Noble and Hochman, 2019).  

The difference in respiratory modulations is related to physiological mechanisms. As shown in Figure 1, AM and BW 

were related to many different mechanisms. In particular, the baroreflex is the major mechanism that maintains the beat-to-

beat blood pressure (Kishi, 2018) which may activate other mechanisms of hemodynamic regulation. Li et al. compared the 

intensities of FM, AM, and BW in PPG signals using the correlation coefficients with reference respiratory signal (Li et al., 

2010). They found that the strength of FM was higher than AM and BW, which is consistent with the results of our analysis 

of energy proportion. However, Li et al. did not perform any statistical analysis. The authors compared the difference 

between sitting and lying postures, and between males and females. A study suggested that age and gender have insignificant 

effect (p=0.67) on the respiratory modulation of PPG signals (Nilsson et al., 2006). Therefore, in this pilot study, we just 

focused on the strength of different respiratory modulations on PPG signal and considered the effect of measurement site 

which significantly influences the PPG waveform (Hartmann et al., 2019).  

4.2 Accuracy of RF estimation by different demodulations 

In this study, the FM method showed the best accuracy in RF estimation compared with other methods. For PPG signals, the 

method of demodulation could influence the accuracy of derived respiratory signal and RF estimation. Yang et al. (Yang et 

al., 2019) compared AM, BW, and FM in the accuracy of RR estimation. As found in our study, they concluded that FM was 

more accurate than BW and AM and in a normal range of RR (12-15 breaths/min), and BW is better than AM. However, they 

used the interval of systolic peaks to derive FM. In the PPG signal, the position of systolic peak point is sensitive to noises 

and filtering. Karlen et al. investigated three respiratory-induced variations (frequency, intensity, and amplitude, 

corresponding to FM, BW, and AM respectively), whose errors are 5.8, 6.2, and 3.9 breaths/min (0.097, 0.103, and 0.065Hz) 

in estimating RR from PPG signal (Karlen et al., 2013). They used peak values and intervals between peaks to calculate the 

variations of intensity and frequency, which affected the accuracy of AM and FM respectively. In detecting FM of PPG 

signal, the maximum slope point has been proven to be more reliable for measuring RF than peak or valley point which is 
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prone to non-trivial error due to common artifact in the waveforms and wave reflection interference (Escobar and Torres, 

2014). Firstly, as to the PPG signal in a cardiac cycle, the slope of systolic uprising side is much higher than the value of any 

other segment. It is difficult for the motion artefacts or other noises superimposed to the PPG signal to affect the waveform 

severely and move the maximum slope point out of the systolic uprising side. Secondly, the time length of systolic uprising 

side is short (<0.15s). The change in the intensity of motion artefact or other noises is limited in such a short period, which 

makes the position of maximum slope point reliable. Finally, considering the obvious change in the cardiac cycle length 

caused by respiration, even the position of maximum slope point is inaccurate, as long as it is in the systolic uprising side, the 

effect on FM detection is limited. Therefore, the FM detection based on maximum slope point is reliable and robust to the 

noises. In comparison, the accurate detection of peak and valley points is difficult, which limited the accuracy of AM and BW 

in estimating RF. Due to its smooth shaped peaks, finding fiducial points (including peaks and valleys) in PPG is more 

challenging than in electrocardiography (Firoozabadi et al., 2017). It has been known that fiducial features of PPG signals are 

sensitive to noises including motion artefacts (Karimian et al., 2017). Additionally, the detection of fiducial points can be 

influenced by the filtering. The visual inspection of PPG waveforms showed that the shape distortion was particularly 

obvious at the pulse peaks when a high pass filter was applied with the cut-off frequency higher than 0.2 Hz (Allen and 

Murray, 2004).  There is a need of advanced signal processing method to improve the reliability and robustness of RF 

estimation based on AM and BW methods. 

4.3 Factors influencing the accuracy of demodulation-based RF extraction 

The difference between measurement sites is inconsistent in normal and deep breathing patterns, and in RF, ERF, and 

energy proportion. In figure 3, the finger has the highest energy proportion which means its position of RF in the frequency 

domain has the highest accordance with reference respiratory signal. In figure 1, the PPG signal depends on the impedance of 

arteries (RA and CA), as well as sensor attachment. The impedance of peripheral arteries that supply the blood flow of the 

finger is less affected by the respiration compared with other proximal arteries. It has been shown that the PPG signal from 

finger has the lowest ratio between cardiac and respiratory pulse energies (Nilsson et al., 2007), compared with wrist, arm, 

and forehead. In figure 6a, the amplitudes of PPG-derived respiratory signals are much lower than the amplitude of PPG 

fluctuation in a cardiac cycle. The finger is also the best place to get a reliable attachment. Therefore, although the finger has 

a low strength of respiratory modulations, its PPG waveform shows the minimal influence of neural regulations as compared 

with forehead PPG waveform. A recent study suggested that PPG signal from finger is more accurate in RF estimation 

compared with forehead and wrist (Longmore et al., 2019). In contrast, the PPG signal from forehead has been known to be 

affected by lower frequency (0.1Hz-0.2 Hz) baseline fluctuations of PPG signals, which are evident in humans as part of a 

separate vascular response to the sympathetic nervous system. These fluctuations are often referred to as Mayer-Traube-

Hering waves and are thought to represent the baroreflex mediated oscillation of arterial blood pressure (Meredith et al., 

2012). This component could significantly influence the PPG signal of forehead and cause inaccuracy in RF estimation 

(Hernando et al., 2019). In figure 6a, the PPG waveform of forehead has large fluctuations in baseline. As a result, the 

frequency peaks derived by AM, BW, and filtering are located between 0Hz-0.15Hz.  
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Figure 6. RF estimations in forehead and finger of the same subject. (a) Extraction of peaks and valleys from filtered PPG 

signal. The blue and green lines denote the derived respiratory signals by AM and BW. (b) Extraction of maximal slope 

points (the crosses) from detrended PPG signal. (c) Respiratory signal derived by FM. (d) Respiratory signal derived by 

filtering. (e) Reference respiratory signal (Resp) recorded by strain gauge. (f): Extraction of RF from different respiratory 

signals using PSD.  

4.4 Limitations and future directions 

In this pilot study, firstly, the number of subjects is limited. Especially, a major limitation is that only young and healthy 

individuals are included. It is interesting that the results presented in this study are in agreement with the results for young 

healthy adults (aged 18-39) in Charlton et al.’s work where the FM modulation was the strongest in young healthy subjects, 

but much weaker in elderly healthy subjects (Charlton et al., 2017b). It is well known that heart rate variability and RSA 

decreases with age (Charlton et al., 2017b). It has been found that RSA in the older subjects (59 to 71 years) was < 20% of 

that in the younger subjects (20 to 31 years) (Kaushal and Taylor, 2002). Therefore, the conclusion from this study cannot be 

generalized to other populations. More subjects are needed to further investigate the effect age, gender, and race on 

respiratory modulations of PPG signal. Secondly, all the data were recorded in sitting posture. The blood flow in 

microcirculation will change in different postures. Moreover, a recent study shows that posture may influence the respiratory 

FM in PPG signal (Sahroni et al., 2019). Additionally, during measurement, the subjects were given enough resting time and 
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were asked to breath as stably as possible. However, it was difficult for each subject to reach an ideally steady breathing state. 

The calculated RF was an estimation of the averaged RF during the period of measurement instead of the real-time value. 

Finally, as a pilot study, the analysis of physiological mechanisms of respiratory modulations is not conclusive. In future 

studies, more subjects in different postures and physiological conditions (e.g. post-exercise measurements) could be included 

for a more comprehensive evaluation of respiratory modulations of PPG signals. More advanced algorithms are needed to 

achieve real-time monitoring of RF.  

5. Conclusion 

Of all the respiratory modulations, FM has the highest strength and is appropriate for accurate RF estimated based on PPG 

signal recorded in different sites and breathing patterns. Compared with other positions, the finger showed the strongest FM. 

The physiology of different respiratory modulations of PPG signals deserves further investigation and will provide a 

reference for the algorithms of RF extraction from PPG signals. 
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