Association between urinary potassium excretion and blood pressure: A systematic review and meta-analysis of observational studies

Ziaei, R., Askari, G., Foshati, S., Clark, C., Zolfaghari, H. & Rouhani, M.

Author post-print (accepted) deposited by Coventry University's Repository

Original citation & hyperlink:

Ziaei , R, Askari, G, Foshati, S, Clark, C, Zolfaghari, H & Rouhani, M 2020, 'Association between urinary potassium excretion and blood pressure: A systematic review and metaanalysis of observational studies', Journal of Research in Medical Sciences, vol. 25, no. 116, pp. (In-press).

https://www.jmsjournal.net/article.asp?issn=1735-1995;year=2020;volume=25;issue=1;spage=116;epage=116;aulast=Ziaei

ISSN 1735-1995 ESSN 1735-7136

Publisher: Medknow Publications

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This item cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder(s). The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders.

This document is the author's post-print version, incorporating any revisions agreed during the peer-review process. Some differences between the published version and this version may remain and you are advised to consult the published version if you wish to cite from it.

Association between urinary potassium excretion and blood pressure: A

systematic review and meta-analysis of observational studies

Rahele Ziaei^{1,2}, Gholamreza Askari2, Sahar Foshati^{1,3}, Hamid Zolfaghari², Cain C. T. Clark⁴, Mohammad Hossein Rouhani²

 ¹ Students' Research Committee, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
 ² Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
 ³ Food Security Research Center and Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
 ⁴ Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, U.K.

Figures: 6

Tables: 2

Total number of pages: 18

Total word count: 2669

Word count for abstract: 241

Word count for introduction: 351

Running title: Urinary potassium excretion and blood pressure

Correspondence to:

Mohammad Hossein Rouhani, PhD Department of Community Nutrition School of Nutrition and Food Science Isfahan University of Medical Sciences Isfahan, Iran Tel: (+98) 31 37922719 Fax: (+98) 31 36682509 Email: sm_rouhani2003@nutr.mui.ac.ir

Keywords: Potassium excretion, urinary potassium, blood pressure, hypertension

Acknowledgment: Students' Research Committee, School of Nutrition and Food Sciences, Isfahan	1
University of Medical Sciences, Isfahan, Iran supported present study, with research project number,	2
16821.	3
Authors' contribution: RZ and MHR conceived the idea of the study and designed the study	4
strategy; SF, RZ, GHA and HZ summarized data; MHR, CC and RZ conducted data analyses; and	5
all authors contributed to the writing and revision of the manuscript.	6
Competing interests: Authors declared no personal or financial conflicts of interest.	7
Availability of data and materials: Data are available on request.	8
Consent for publication: Not applicable	9
Ethics approval and consent to participate: all analyses were based on previous studies and no	10
ethical approval and patent consent are needed.	11
Funding: This research did not receive any specific grant from funding agencies in the public,	12
commercial, or not-for-profit sectors.	13 14
	15
	16
	17
	18
	19
	20
	21
	22
	23

Association between urinary potassium excretion and blood pressure: A

systematic review and meta-analysis of observational studies

Abstract

24

Aims and background: The evidence base regarding the association between urinary potassium and 25 blood pressure (BP), or risk of hypertension, is inconsistent. Therefore, we sought to conduct a 26 qualitative and quantitative literature review on the association between potassium excretion and BP. 27 Methodology: Medline, Scopus, Web of Science, Science Direct, and Google Scholar were searched 28 up to June 2020. All observational studies that reported BP and measured potassium excretion in 29 overnight or 24-hour urine samples were included. Correlation coefficients, mean urinary potassium 30 excretion, and odds ratio (ORs) of hypertension were extracted from the included studies. There 31 were no language or publication date restrictions. 32

Results: Overall, twelve observational studies, including 16174 subjects, were identified for 33 inclusion in the present meta-analysis, and 21 effect sizes were extracted. Pooled mean potassium 34 excretion was 3.46 mmol/24h higher in normotensive individuals compared with hypertensive 35 subjects (95% CI: 0.61, 6.31). High urinary potassium excretion was not associated with the risk of 36 hypertension (OR: 0.95; 95% CI: 0.79, 1.13). The pooled correlation coefficient between BP and 37 urinary potassium was not significant (ES: 0.01; 95% CI: -0.03, 0.05). However, a subgroup analysis 38 by age indicated a significant positive correlation between urinary potassium and systolic BP in 39 children (ES: 0.12; 95% CI: 0.04, 0.19). 40

Principal conclusions: 24h urinary potassium excretion was not correlated to BP and risk of
hypertension. In contrast, mean urinary potassium excretion was higher in normotensive individuals
compared with hypertensive counterparts. Future studies should focus on the association between
different sources of dietary potassium and BP.

Keywords: Potassium excretion, urinary potassium, blood pressure

45

Introduction:

Hypertension is regarded as one of the leading modifiable causes of morbidity and mortality 48 worldwide, affecting approximately 1.39 billion adults, and the prevalence is predicted to increase 49 by at least 30% by 2025^[1]. Nearly 40% of people aged >25 y worldwide are reported to suffer from 50 hypertension^[2]. Lifestyle determinants, including dietary factors, profoundly impact blood pressure 51 (BP) and the risk of hypertension, ^[3]. Although dietary interventions for the prevention and 52 management of hypertension have predominantly focused on the reduction of sodium intake, many 53 other dietary factors, such as adequate intake of potassium, calcium, and magnesium, should be 54 considered as part of a healthy diet for patients with hypertension^[4]. Several studies have reported 55 that the effects of non-salt components of a healthy diet, such as adequate potassium, magnesium, 56 and calcium consumption, produced more favorable improvements in BP than reducing salt intake 57 ^[5, 6]. Potassium is an essential mineral in BP regulation, and it can modulate the adverse effects of 58 sodium on BP^[7]. Several epidemiologic and intervention studies have reported an inverse correlation 59 between potassium intake, BP, and the prevalence of hypertension^[8-10]. 60

Accuracy of measuring daily intake of potassium is one of the greatest concerns in epidemiologic 61 studies ^[10, 11]. Although most studies utilize self-reported measurement of dietary intake, such 62 methods are inherently limited by participant ability to recall detailed information on foods, 63 beverages, and portion sizes ^[10]. Serum potassium concentration and 24-hour (24h) urinary 64 potassium excretion are two biomarkers of potassium intake ^[12, 13], and given that serum potassium 65 is strictly controlled by physiological pathways, 24h urine is recommended as the gold standard for 66 measuring potassium intake ^[10, 14]. 67

Serum potassium level, both below and above the normal range, has been associated with adverse 68 clinical outcomes, including hypertension ^[15]. The association between 24h urinary potassium 69 excretion and blood pressure has been investigated in several epidemiologic studies ^[2, 10, 14], 70 however, results have been inconsistent. Indeed, some studies have shown a negative association 71

47

between potassium excretion and BP ^[2, 14, 16-18], whilst, in contrast, others have reported a null or a positive relation between urinary potassium and BP ^[19-22]. To the authors knowledge, there is no comprehensive systematic review and meta-analysis that has explored the relationship between 24h review and blood pressure. Thus, the aim of the present study was to conduct a systematic review and meta-analysis based on published observational data regarding the association between review and blood pressure or risk of hypertension.

Methods

Search strategy

79

78

This study was planned, conducted, and reported according to the Meta-Analysis of Observational 80 Studies in Epidemiology guidelines ^[23]. Electronic databases, including Medline, Scopus, Web of 81 Science, ScienceDirect, and Google Scholar were searched from inception to June 2030. The 82 following search terms were used: ("potassium excretion" [Title/Abstract] OR "urinary potassium" 83 [Title/Abstract] OR "urine potassium" [Title/Abstract] OR "urinary cations" [Title/Abstract]) OR 84 "potassium intake" [Title/Abstract]) OR "potassium status" [Title/Abstract]) AND ("blood pressure" 85 [MeSH] OR "systolic blood pressure" [Title/Abstract] OR "diastolic blood pressure" [Title/Abstract] 86 OR "hypertension" [MeSH] OR "high blood pressure" [Title/Abstract]) OR "Cardiovascular events" 87 [Title/Abstract]) OR "chronic disease" [Title/Abstract]). No other restrictions were imposed in the 88 literature search, and the reference lists of all relevant original and review articles were also searched 89 manually. 90

Study selection

91

In the first round of screening, the title and abstract of all retrieved articles were independently 92 evaluated by two authors (R.Z and S.F) to identify eligible studies. In the second round of screening, 93 full text of publications identified for further evaluation were reviewed. Any disagreements between 94 authors were discussed and resolved by consensus. All observational studies that reported the 95 association between blood pressure and potassium excretion, in overnight or 24h urine samples, were 96 included. Duplicate publications, reviews, experimental researches, letters, comments, editorials,
case reports, conference reports, and studies that measured urinary potassium excretion in a spot
urine samples, respectively, were excluded.

Data extraction

Characteristics of eligible articles including the first author's last name, publication year, study 101 location, total and gender-specific sample size, mean age, study design, follow-up duration, urine 102 sample collection method, reported statistics, adjusted confounders, and main findings were 103 extracted and tabulated. The correlation coefficient between urinary potassium excretion and systolic 104 (SBP) and diastolic (DBP) blood pressure, mean and standard deviation or standard error of urinary 105 potassium excretion in normotensive and hypertensive individuals, and risks of hypertension in the 106 highest category of urinary potassium excretion were also extracted from eligible articles. 107

Quality assessment

The methodological quality of included studies was assessed using the Newcastle-Ottawa Scale. This 109 scale consists of three categories: selection, comparability, and exposure or outcome. Total quality 110 score can range from 0 to 9 for case-control and cohort studies, and from 0 to 10 for cross-sectional 111 studies. In general, studies that were scored \geq 7 were considered as high quality ^[24, 25]. 112

Statistical analysis

Reported standard errors were converted to standard deviations, and all units for means \pm standard 114 deviations were converted to mmol/day ^[26]. Log-transformed odds ratios of hypertension across 115 different categories of urinary potassium excretion were used to calculate appropriate effect sizes. 116 The overall risk of hypertension was estimated by pooling the reported and calculated ORs. The 117 analysis was performed separately for means and risk of hypertension. 118

Overall effect sizes were calculated by pooling the effect sizes derived from each study. When the 119 number of effect sizes was less than five, overall effect sizes were estimated using a fixed-effect 120 model ^[27]. Otherwise, a random-effects model was used to pool effect sizes. Between-study 121

100

108

113

heterogeneity was assessed using the I-squared (I^2) statistic. In the case of significant between-study 122 heterogeneity, subgroup analysis was conducted to investigate the potential sources of heterogeneity. 123 Between-subgroup heterogeneity was evaluated using a fixed-effects model. Sensitivity analysis was 124 carried out to test the robustness of the pooled results, whilst Begg's rank correlation test and Egger's 125 linear regression test, respectively, were used to detect potential publication bias. When publication 126 bias was significant, a trim-and-fill analysis was performed to determine the possible impact of 127 publication bias. All statistical analyses were performed using Stata software (version 11.2, Stata 128 Corporation, College Station, Texas, USA); additionally, analyses were two-tailed, and statistical 129 significance was set at P<0.05, a priori. 130

Results

A flow diagram of the study selection process is shown in **Figure 1**. Finally , 22 articles were 132 included in the present study ^[10, 14, 17, 19, 20, 22, 28-43].

131

Characteristics of eligible studies are reported in **Table 1**. Eighteen studies ^[10, 17, 19, 22, 30-43] used a 134 cross-sectional design, two were case-control studies ^[28, 29], and two had a cohort design ^[14, 20]. 135 Cohort studies enrolled healthy subjects, case-control studies used healthy subjects in control groups 136 and hypertensive subjects in case groups, and cross-sectional studies included both healthy and 137 hypertensive participants. All studies enrolled adults, except for two studies which recruited subjects 138 aged <18 years old ^[33, 38]. Although most studies used 24h urinary collections for potassium excretion 139 measurement [10, 14, 17, 19, 22, 29, 30, 33-35, 37-39, 41-43], 6 studies used an over-night urinary specimen [20, 28, 140 ^{31, 32, 36, 40]}. Study bias assessment showed that most studies were of high quality ^[8, 10, 14, 17, 20, 22, 30-32, 30-32, 30-32] 141 ^{34, 35, 37-43]}. Six studies were conducted using partial adjustment ^[40, 41, 44-47], fourteen studies with full 142 adjustment ^[39, 42, 43, 48-58], and in two studies, correlation coefficients were reported without any 143 adjustments ^[59, 60]. Factors which were adjusted are as follows; age, body mass index, sex, alcohol 144 intake, total energy intake, each of the other dietary electrolytes, smoking status, plasma aldosterone, 145 physical activity, antihypertensive medication use, and waist circumference. 146 Eight studies reported no significant association between urinary potassium concentrations and BP 147 [22, 36, 38, 40, 41, 43, 45, 59]. Mean 24h urinary potassium was not significantly different between 148 normotensive and hypertensive individuals in 3 studies [28, 29, 42]. Although eight studies reported a 149 significant negative correlation between urinary potassium and BP [10, 14, 17, 30, 31, 34, 35, 37], three studies 150 showed a positive association [39, 48, 60]. Also, the results were inconsistent between men and women 151 in one study [19].

Pooled correlation coefficient:

153

Sixteen studies were eligible for meta-analysis [10, 14, 17, 19, 20, 22, 28, 32, 33, 36-40, 42, 43, 58] and 22 effect sizes 154 were extracted (n=19261). The correlation coefficient between urinary potassium excretion and SBP 155 or DBP was reported in 10 studies (11 effect sizes) ^[17, 19, 20, 22, 32, 33, 36, 40, 58]. As shown in Figure 2, 156 the pooled correlation coefficient between DBP and urinary potassium excretion was not significant 157 (ES: 0.02; 95% CI: -0.02, 0.05), with no significant heterogeneity (I²=33.1%; P=0.134). Although a 158 comparable result was obtained for SBP (ES: -0.01; 95% CI: -0.06, 0.04), between-study 159 heterogeneity was high in this case ($I^2=73.9\%$; P<0.001). Therefore, we ran a subgroup analysis 160 based on gender, region, age, and type of urine sample. Although studies conducted on children (<18 161 years) showed a significant positive correlation between urinary potassium and SBP (ES: 0.12; 95% 162 CI: 0.04, 0.19), results indicated no significant correlation in adults (ES: -0.03; 95% CI: -0.08, 0.02) 163 (Figure 3). Heterogeneity was not significant in the children subgroup (P=0.0%; P=0.84), however, 164 it was high in the adult subgroup (P=73.9%; P=0.000). in addition, between-subgroup heterogeneity 165 was high (P=0.001). Subgroup analysis based on type of urine sample is shown in Figure 4. 166 Accordingly, the overall effect size of studies which used 24h (ES: -0.01; 95% CI: -0.09, 0.07) or 167 overnight urinary samples (ES: 0.01; 95% CI: -0.02, 0.04) reported no correlation between urinary 168 potassium and both SBP and DBP. Although there was no significant heterogeneity in the overnight 169 urine sample subgroup ($I^2=0.0\%$; P=0.683), heterogeneity in the 24h urine sample subgroup was 170

high (P=79.9%; P<0.001). Further subgroup analysis which did not attenuate heterogeneity is 171 displayed in **Table 2**. 172

Mean urinary potassium in normotensive vs. hypertensive subjects was reported in 5 studies (n= 173 4030). As shown in **Figure 5**, mean potassium excretion was 3.31 mmol/24h higher in normotensive 174 individuals, compared with hypertensive subjects (95% CI: 1.22, 5.39). We did not observe any 175 significant heterogeneity (P=0.0%; P = 0.944). 176

The association between urinary potassium and risk of hypertension was reported in 5 studies 177 (n=11651). There was no association between urinary potassium excretion and risk of hypertension 178 (odds ratio: -0.12; 95% CI: -0.35, 0.10), and between-study heterogeneity was significant (I^2 =64.4%; 179 P=0.024) (**Figure 6**). 180

Sensitivity analysis and publication bias

Overall correlation coefficients for both SBP and DBP were not changed after removing each study, 182 individually, and the same results were obtained for risk of hypertension. In contrast, pooled mean 183 urinary potassium was significantly changed after omission of the study by Jackson et al.^[10]. 184 No publication bias was detected for systolic blood pressure (Begg's: P=0.721; Egger's: P=0.563), 185 diastolic blood pressure (Begg's: P=0.581; Egger's: P=0.923), and mean urinary potassium excretion 186 (Begg's: P=0.142; Egger's: P=0.225). However, there was significant publication bias in studies that 187 reported risk of hypertension (Begg's: P=0.042; Egger's: P=0.06). Trim-and-fill analysis was 188 conducted and no trimming was performed. 189

Discussion

190

181

The results of this meta-analysis revealed that BP is not significantly correlated with 24h urinary 191 potassium excretion. However, we found a positive correlation between SBP and urinary potassium 192 excretion in children. Mean urinary potassium excretion was significantly higher in normotensive 193

individuals than hypertensive patients, and the risk of hypertension had no association with
potassium excretion. To the authors knowledge, this is the first systematic review and meta-analysis
to have assessed the relationship between 24h urinary potassium excretion and BP.

Urinary samples are an important tests utilized to assist in the diagnosis, prognosis, and 197 determination of treatment strategy ^[61]. A 24h urine specimen is regarded as the gold standard for 198 the measurement of dietary potassium intake in a healthy population ¹⁴, in addition to yielding 199 detailed information regarding the circadian variation in the urinary excretion of potassium ^[62]. 200

In the present study, and in contrast to adults, a positive correlation between SBP and potassium 201 excretion was observed in children. Renal ability to excrete potassium is fully developed in early 202 childhood. Therefore, potassium intake is expected to have a comparable relationship with blood 203 pressure in children and adults ^[63]. Indeed, our results must be interpreted with caution due to two 204 reasons. 1) There was a limited number of studies in this field ^[33, 38, 64, 65]; 2) Most included studies 205 reported unadjusted correlation coefficients, and we did not include regression coefficients adjusted 206 for confounders in our analysis. Therefore, it is conceivable that the observed correlation between 207 potassium excretion and SBP in children was confounded by covariates; nevertheless, further studies 208 into the specific relationship in children should be conducted. 209

Pooled mean urinary potassium was 3.46 mmol/24h higher in normotensive individuals compared 210 with hypertensive subjects. The normal range of urinary potassium concentration is between 25 to 211 125 mmol/24h (diet dependent) ^[66]., therefore, the observed difference between normotensive 212 subjects and hypertensive patients is less than 4% of variation in normal range of urinary potassium. 213 Although our finding is statistically significant, it seems likely that it has no clinical significance ^{[67.} 214 ^{68]}. 215

In contrast to our study, which included observational research, meta-analyses of clinical trials have 216 reported that increased potassium intake (dietary + supplement) can yield a beneficial effect on BP 217 ^[63, 69-71]. We detected a small difference in potassium excretion between normotensive participants
²¹⁸ compared with hypertensive counterparts, however, notwithstanding this difference, it was not
²¹⁹ sufficient to elicit any change in BP. In contrast, however, potassium intake was markedly increased
²²⁰ by nutritional intervention. Empirical data suggests that 12 weeks dietary intervention can result in
²²¹ a mean increase in 24h urinary potassium excretion of 45 mmol ^[72]. Therefore, a nutritional
²²² intervention is capable of eliciting a significant difference in potassium intake, and, consequently,
²²³ BP.

Although 24h potassium excretion is considered the gold standard for estimating ingested potassium, 225 it has some limitations: 1) It does not and cannot reflect long-term dietary potassium intake ^[73], 2) It 226 cannot cover day-to-day variation in potassium intake. Therefore, a single 24h urine sample is prone 227 to random measurement error, which can overestimate or underestimate the actual potassium intake. 228 It has been recommended that using multiple 24h urine samples may provide a more reliable estimate 229 ^[14], 3) There are concerns regarding the adequacy of 24h urine sample collection. Indeed, some 230 evidence highlights that under-collection of 24h urine sample is prevalent ^[74], 4) Intestinal absorption 231 efficacy of dietary potassium is variable among individuals. For instance, on average, 73.7 to 80.3% 232 of dietary potassium is absorbed ^[75], thus, the concentration of potassium in a 24-hour urinary sample 233 may be not equal to ingested potassium. Given the above limitations, it is, therefore, imperative that 234 findings manifest using 24h urinary potassium excretion should be interpreted with caution. 235

To the best of our knowledge, this was the first systematic review and meta-analysis to have 236 investigated the association between 24h urinary potassium excretion and BP, as well as risk of 237 hypertension, and represents a major strength. Indeed, a further strength of our study was the use of 238 a comprehensive subgroup analysis. Also, according to Egger's test and Begg's test, our findings 239 were not affected by publication bias. Moreover, we tried to analyze all the possible reported data 240 including OR, correlation coefficient and mean difference. despite the aforementioned strengths, 241 there are some limitations that must be considered. A significant heterogeneity was detected in sub-

group analysis, suggesting that some results may not be reliable, and require further investigation. 243 Although we included all reported potential sources of heterogeneity, there are still some factors 244 which should be considered in future studies (e.g., of 24h urinary sodium concentration, the dietary 245 origin of potassium and participants' medication history). The greatest impact of dietary potassium 246 intake on SBP has been reported in individuals with high sodium consumption ^[63], highlighting that 247 it is important to measure both sodium and potassium simultaneously ^[76]. Dietary sources of 248 potassium excreted in urine were not reported in most studies, which could viably have impacted 249 some results. In addition to potassium rich foods, such as fruits and vegetables, there are some 250 potassium-based food additives (e.g., potassium sorbate) found in processed cheese, yogurt, 251 beverage, processed meat, cake, and pastry, which can influence the amount of potassium excreted 252 in the urine ^[77]. The authors advocate that the use of antihypertensive treatments should be carefully 253 considered in future studies. 254

Conclusion

255

In conclusion, the current systematic review and meta-analysis highlighted that 24h urinary 256 potassium excretion was not correlated with SBP, DBP, and risk of hypertension. However, mean 257 urinary potassium excretion was higher in normotensive individuals compared with hypertensive 258 subjects. In order to better understand the relationship between potassium and BP, it is advisable that 259 future studies consider the impact of different sources of dietary potassium. 260

References

261

.1D'Elia L, La Fata E, Galletti F, Scalfi L, Strazzullo P. Coffee consumption and risk of hypertension: A 262 dose-response meta-analysis of prospective studies. European journal of nutrition 2019:58(1): 263 271-280. 264 .2Mente A, O'Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, Morrison H, Li W, Wang X, 265 Di C et al. Association of urinary sodium and potassium excretion with blood pressure. N Engl J 266 Med 2014:371(7): 601-611. 267 -3Khalesi S, Sharma S, Irwin C, Sun JJJohh. Dietary patterns, nutrition knowledge and lifestyle: 268 Associations with blood pressure in a sample of australian adults (the food bp study). 269 2016:30(10): 581. 270

.4Lee HA, Park H. Diet-related risk factors for incident hypertension during an 11-year follow-up: The	271
korean genome epidemiology study. Nutrients 2018:10(8).	272
-5Eckel RH, Jakicic JM, Ard JD, De Jesus JM, Miller NH, Hubbard VS, Lee I-M, Lichtenstein AH, Loria CM,	273
Millen BEJJotACoC. 2013 aha/acc guideline on lifestyle management to reduce cardiovascular	274
risk: A report of the american college of cardiology/american heart association task force on	275
practice guidelines. 2014:63(25 Part B): 2960-2984.	276
.6Han H, Fang X, Wei X, Liu Y, Jin Z, Chen Q, Fan Z, Aaseth J, Hiyoshi A, He J. Dose-response relationship	277
between dietary magnesium intake, serum magnesium concentration and risk of hypertension: A	278
systematic review and meta-analysis of prospective cohort studies. Nutrition journal 2017:16(1):	279
26.	280
.7Zhao X, Zhang Y, Zhang X, Kang Y, Tian X, Wang X, Peng J, Zhu Z, Han Y. Associations of urinary sodium	281
and sodium to potassium ratio with hypertension prevalence and the risk of cardiovascular	282
events in patients with prehypertension. J Clin Hypertens (Greenwich) 2017:19(12): 1231-1239.	283
8Burnier M. Should we eat more potassium to better control blood pressure in hypertension? Nephrol	284
Dial Transplant 2018.	285
9Carranza-Leon D. Octaria R. Ormseth MJ. Oeser A. Solus JF. Zhang Y. Okafor CR. Titze J. Michael Stein	286
C. Chung CP. Association between urinary sodium and potassium excretion and blood pressure	287
and inflammation in patients with rheumatoid arthritis. Clin Rheumatol 2018:37(4): 895-900	288
.10Jackson SL Cogswell MF Zhao L Terry AL Wang CY Wright L Coleman King SM Bowman B. Chen TC	289
Merritt R et al. Association between urinary sodium and notassium excretion and blood pressure	290
among adults in the united states: National health and nutrition examination survey 2014	290
Circulation 2018:137(3): 237-246	291
11 org/ loosten Michel M mmioosten@gmail.com %I The American journal of clinical nutrition	292
PSGKI MGRTBRAdBEPEEIGIMNGBSIbo Ulrinary potassium excretion and risk of cardiovascular	201
events 2016:103(5): 1204-1212	204
12Tasevska Na. Runswick SA. Ringham SAITIon, Urinary notassium is as reliable as urinary nitrogen for	205
use as a recovery biomarker in dietary studies of free living individuals 2006:136(5): 1324-1340	290
12Dalmar PE Clogg DIMina, Divisiology and pathophysiology of patassium homostaris, 2016:40(4):	297
	290
400-490. 14Kianakar I.M. Cancovaart DT. Mukamal KI. da Door DA. Novis C. Dakkar SI. Joacton MMA Lirinany.	299
14Kieneker Livi, Gansevoort KT, Mukamar KJ, de Boer KA, Navis G, Bakker SJ, Joosten Wivi. Ormary	300
and store disease study. Uppertension 2014(64/4): 760, 776	201
end-stage disease study. Hypertension 2014.04(4). 709-770.	302
ISPalaka E, Granuy S, Darington O, Nicewan P, Van Doornewaard A. Associations between serum	303
Clinical Direction 2020;74(1): c12421	304
Clinical Practice 2020.74(1): e13421.	305
. ToDyer AR, Martin GJ, Burton WN, Levin W, Stamer J. Blood pressure and diurnal variation in sodium,	300
potassium, and water excretion. J Hum Hypertens 1998:12(6): 363-371.	307
In Nakagawa H, Morikawa Y, Okayama A, Fujita Y, Yoshida Y, Mikawa K, Sakata K, Ishizaki M, Miura K,	308
Naruse Y et al. Trends in blood pressure and urinary sodium and potassium excretion in Japan:	309
Reinvestigation in the 8th year after the intersalt study. J Hum Hypertens 1999:13(11): 735-741.	310
18Takemori K, Mikami S, Ninira S, Sasaki N. Relationship of blood pressure to sodium and potassium	311
excretion in Japanese women. Tonoku J Exp Med 19-269-281 (4)89:158	312
19Bulpitt CJ, Broughton PM, Markowe HL, Marmot MG, Rose G, Semmence A, Shipley MJ. The	313
relationship between both sodium and potassium intake and blood pressure in london civil	314
servants. A report from the whitehall department of environment study. J Chronic Dis	315
1986:39(3): 211-219.	316
20Chien KL, Hsu HC, Chen PC, Su TC, Chang WT, Chen MF, Lee YT. Urinary sodium and potassium	317
excretion and risk of hypertension in chinese: Report from a community-based cohort study in	318
taiwan. J Hypertens 1750-1756 :(9)2008:26	319
21Ge Z, Guo X, Chen X, Tang J, Yan L, Ren J, Zhang J, Lu Z, Dong J, Xu J et al. Association between 24 h	320
urinary sodium and potassium excretion and the metabolic syndrome in chinese adults: The	321

shandong and ministry of health action on salt and hypertension (smash) study. Br J Nutr 2015:113(6): 996-1002.	322 323
22Staessen J, Bulpitt C, Fagard R, Joossens JV, Lijnen P, Amery A. Four urinary cations and blood pressure. A population study in two belgian towns. Am J Enidemiol 1983;117(6): 676-687	324 325
23Stroup DE Berlin IA Morton SC Olkin I Williamson GD Rennie D Moher D Becker BL Sine TA	326
Thacker SB. Meta-analysis of observational studies in epidemiology: A proposal for reporting.	327
Journal of the American Medical Association 2000:28.2008-2012 :(15)3	328
·24Wells G. The newcastle-ottawa scale (nos) for assessing the guality of non-randomised studies in	329
meta-analyses, http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp 2001.	330
·25Modesti PA. Reboldi G. Cappuccio FP. Agvemang C. Remuzzi G. Rapi S. Perruolo E. Parati G. Panethnic	331
differences in blood pressure in europe: A systematic review and meta-analysis. PLoS One	332
2016:11(1): e0147601.	333
26Cohen J. Statistical power analysis for the behavioral sciences. Erlbaum: Hillsdale 1988.	334
27Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. Journal	335
of the Royal Statistical Society: Series A (Statistics in Society) 2009:172(1): 137-159.	336
·28Hoosen S, Seedat YK, Bhigjee AI, Neerahoo RM. A study of urinary sodium and potassium excretion	337
rates among urban and rural zulus and indians. J Hypertens 1985:3(4): 351-358.	338
.29Jan RA, Shah S, Saleem SM, Waheed A, Mufti S, Lone MA, Ashraf M. Sodium and potassium excretion	339
in normotensive and hypertensive population in kashmir. J Assoc Physicians India 2006:54(22-26.	340
·30Journal ICRGJBBM. Intersalt: An international study of electrolyte excretion and blood pressure.	341
Results for 24 hour urinary sodium and potassium excretion. 1988: 319-328.	342
.31Klag MJ, He J, Coresh J, Whelton PK, Chen JY, Mo JP, Qian MC, Mo PS, He GQ. The contribution of	343
urinary cations to the blood pressure differences associated with migration. Am J Epidemiol	344
1995:142(3): 295-303.	345
-32Liu LS, Fang WQ, Xie JX. Urinary cations and blood pressure in the chinese population. J Cardiovasc	346
Pharmacol 1990:16 Suppl 8(S65-68.	347
-33 Maldonado-Martin A, Garcia-Matarin L, Gil-Extremera B, Avivar-Oyonarte C, Garcia-Granados ME,	348
Gil-Garcia F, Latorre-Hernandez J, Miro-Gutierrez J, Sona-Bonnia A, Vergara-Martin J et al. Biood	349
	251
34Tavo BO Luke A McKenzie CA Kramer H Cao G Durazo-Arvizu R Forrester T Adeveno AA Cooper	351
RSUobh Patterns of sodium and notassium excretion and blood pressure in the african diaspora	352
2012:26(5): 315.	354
·35Tian HG, Nan Y, Shao RC, Dong QN, Hu G, Pietinen P, Nissinen A. Associations between blood	355
pressure and dietary intake and urinary excretion of electrolytes in a chinese population. J	356
Hypertens 1995:13(1): 49-56.	357
36Yamasue K, Hayashi T, Ohshige K, Tochikubo O, Souma T. Are overnight urinary indicators associated	358
with morning blood pressure in the elderly? Clin Exp Hypertens 2008:30(1): 13-21.	359
.37Yan L, Bi Z, Tang J, Wang L, Yang Q, Guo X, Cogswell ME, Zhang X, Hong Y, Engelgau MJTJoCH.	360
Relationships between blood pressure and 24-hour urinary excretion of sodium and potassium	361
by body mass index status in chinese adults. 2015:17(12): 916-925.	362
-38ZHU K, HE S, PAN X, ZHENG X, GU YJAjoe. The relation of urinary cations to blood pressure in boys	363
aged seven to eight years. 1987:126(4): 658-663.	364
.39Deng T, Mai Z, Duan X, Zhao Z, Zhu W, Cai C, Wu W, Zeng G. Association between hypertension and	365
24-h urine composition in adults without urolithiasis in china. World Journal of Urology 2020: 1-	366
7.	367
40Lemogoum D, Ngatchou W, Lele CB, Okalla C, Leeman M, Degaute J-P, Van De Borne P. Association of	368
urinary sodium excretion with blood pressure and risk factors associated with hypertension	369
among camerooman pygnies and bantus. A cross-sectional study. Bivic cardiovascular disorders	57U 271
2010.10(1). 43.	2/1

.41Modesti PA, Marzotti I, Rapi S, Rogolino A, Cappuccio FP, Zhao D, Costanzo G, Galanti G, Boddi M.	372
Daily urinary sodium and potassium excretion in chinese first-generation migrants in italy.	373
International journal of cardiology 2019:286(175-180.	374
.42Moliterno P, Álvarez-Vaz R, Pécora M, Luzardo L, Borgarello L, Olascoaga A, Marino C, Noboa O,	375
Staessen JA, Boggia J. Blood pressure in relation to 24-hour urinary sodium and potassium	376
excretion in a uruguayan population sample. International journal of hypertension 2018:2018(377
.43Ge Z, Guo X, Chen X, Tang J, Yan L, Ren J, Zhang J, Lu Z, Dong J, Xu J. Association between 24 h urinary	378
sodium and potassium excretion and the metabolic syndrome in chinese adults: The shandong	379
and ministry of health action on salt and hypertension (smash) study. British Journal of Nutrition	380
2015:113(6): 996-1002.	381
.44Bulpitt C, Broughton P, Markowe H, Marmot M, Rose G, Semmence A, Shipley M. The relationship	382
between both sodium and potassium intake and blood pressure in london civil servants: A report	383
from the whitehall department of environment study. Journal of chronic diseases 1986:39(3):	384
211-219.	385
45Hoosen S. Seedat YK. Bhigiee Al. Neerahoo RM. A study of urinary sodium and potassium excretion	386
rates among urban and rural zulus and indians. Journal of hypertension 1985:3(4): 351-358.	387
46Klag MJ, He J, Coresh J, Whelton PK, Chen J-Y, Mo J-P, Qian M-C, Mo P-S, He G-Q, The contribution of	388
urinary cations to the blood pressure differences associated with migration. American Journal of	389
Enidemiology 1995-142(3): 295-303	390
.47Staessen L Bulnitt C Fagard B Joossens IV Lijnen P Amery A Four urinary cations and blood	391
pressure: A population study in two belgian towns. American journal of enidemiology	397
1983-117(6)· 676-687	392
48Chien K-L Hsu H-C Chen P-C Su T-C Chang W-T Chen M-E Lee V-T Urinary sodium and notassium	301
everetion and risk of hypertension in chinese: Report from a community-based cohort study in	305
taiwan Journal of hypertension 2008;26(0): 1750-1756	306
And the second	207
24 bour urinary sodium and potassium excretion, BMI: British Medical Journal 1988: 319-328	308
50 Jackson SL. Cogswell ME. Zhao L. Terry AL. Wang C-Y. Wright L. Coleman King SM. Bowman B. Chen T-	200
C Merritt P Association between urinary sodium and potassium excretion and blood pressure	100
c, Merrit R. Association between unitary social and potassium excretion and blood pressure	400
Circulation 2019:127(2): 227-246	401
El Culdulul 2010.157(5). 257-240.	402
•SIMERERE LW, Gansevoort RT, Mukamar KJ, de Boer RA, Navis G, Bakker SJ, Joosten Will. Ormary	403
and stage disease study. Uppertension 2014(4/4): 760, 776	404
Ellu-Stage uisease study. Hypertelision 2014.04(4). 709-770.	405
-52Liu L, Fang W, Xie J. Ornary cations and blood pressure in the chinese population. Journal of	400
Calulovasculai phannacology 1990.10(505-08.	407
-53Nakagawa H, Morikawa Y, Okayama A, Fujita Y, Yoshida Y, Mikawa K, Sakata K, Ishizaki M, Miura K,	408
Naruse Y. Trends in blood pressure and urinary sodium and potassium excretion in Japan:	409
Reinvestigation in the 8th year after the intersalt study. Journal of human hypertension	410
	411
.54Tayo BO, Luke A, McKenzie CA, Kramer H, Cao G, Durazo-Arvizu R, Forrester T, Adeyemo AA, Cooper	412
RS. Patterns of sodium and potassium excretion and blood pressure in the african diaspora.	413
Journal of human hypertension 2012:26(5): 315-324.	414
.55Tian H-G, Nan Y, Shao R-C, Dong Q-N, Hu G, Pietinen P, Nissinen A. Associations between blood	415
pressure and dietary intake and urinary excretion of electrolytes in a chinese population. Journal	416
of hypertension 1995:13(1): 4956	417
56Yamasue K, Hayashi T, Ohshige K, Tochikubo O, Souma T. Are overnight urinary indicators associated	418
with morning blood pressure in the elderly? Clinical and Experimental Hypertension 2008:30(1):	419
13-21.	420

.57Yan L, Bi Z, Tang J, Wang L, Yang Q, Guo X ,Cogswell ME, Zhang X, Hong Y, Engelgau M. Relationships	421
between blood pressure and 24-hour urinary excretion of sodium and potassium by body mass	422
index status in chinese adults. The Journal of Clinical Hypertension 2015:17(12): 916-925.	423
.58ZHU K, HE S, PAN X, ZHENG X, GU Y. The relation of urinary cations to blood pressure in boys aged	424
seven to eight years. American journal of epidemiology 1987:126(4): 658-663.	425
.59Jan R, Shah S, Saleem S, Waheed A, Mufti S, Lone M, Ashraf M. Sodium and potassium excretion in	426
normotensive and hypertensive population in kashmir. JAPI 2006:54(22-26.	427
60Maldonado-Martin A, Garcia-Matarin L, Gil-Extremera B, Avivar-Oyonarte C, Garcia-Granados M, Gil-	428
Garcia F, Latorre-Hernández J, Miró-Gutiérrez J, Soria-Bonilla A, Vergara-Martín J. Blood pressure	429
and urinary excretion of electrolytes in spanish schoolchildren. Journal of human hypertension	430
2002:16(7): 473-478.	431
-61Eknoyan G, Hostetter T, Bakris GL, Hebert L, Levey AS, Parving HH, Steffes MW, Toto R. Proteinuria	432
and other markers of chronic kidney disease: A position statement of the national kidney	433
foundation (nkt) and the national institute of diabetes and digestive and kidney diseases (niddk).	434
AM J KIGNEY DIS 2003:42(4): 617-622. 62Puomi M. Campa S. Sturiala A. Alaisi C. Roman A. Nastro I. Crassi F. Puollo A. Manfredini P. Eloccari F.	435
et al. Circadian rhythm of hydration in healthy subjects and gramic nations studied by	430
bioelectrical impedance analysis. Nenbron Physiol 2007;106(3): n39-44	437
634 hurto NL Hanson S. Gutierrez H. Hooner L. Elliott P. Cannuccio EPIB. Effect of increased notassium	430
intake on cardiovascular risk factors and disease: Systematic review and meta-analyses	440
2013:346(f1378.	441
.64Uchiyama MJJohh. Risk factors for the development of essential hypertension: Long-term follow-up	442
study in junior high school students in niigata, japan. 1994:8(5): 323-325.	443
65Watson RL, Langford HG, Abernethy J, Barnes TY, Watson MJJH. Urinary electrolytes, body weight,	444
and blood pressure. Pooled cross-sectional results among four groups of adolescent females.	445
1980:2(4_pt_2): I93-98.	446
.66Mente A, Irvine EJ, Honey RJDA, Logan AG. Urinary potassium is a clinically useful test to detect a	447
poor quality diet. The Journal of Nutrition 2009:139(4): 743-749.	448
.67Sainani KLJP. Clinical versus statistical significance. 2012:4(6): 442-445.	449
.68Palmer BFJCJotASoN. Regulation of potassium homeostasis. 2015:10(6): 1050-1060.	450
.69Binia A, Jaeger J, Hu Y, Singh A, Zimmermann DJJoh. Daily potassium intake and sodium-to-potassium	451
ratio in the reduction of blood pressure: A meta-analysis of randomized controlled trials.	452
2015:33(8): 1509-1520.	453
.70Cappuccio FP, MacGregor GA. Does potassium supplementation lower blood pressure? A meta-	454
analysis of published trials. In. Does potassium supplementation lower blood pressure? A meta-	455
analysis of published trials; 1991.	456
/1Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, Klag M, Pope WJSoA. Effects of oral	457
potassium on blood pressure: Meta-analysis of randomized controlled clinical trials. 1998:42(2):	458
100. Z211a El Marcinial: M. Carney, C. Markandy, ND. Anand V. Errean M.D. Daltar DN. Kaski JC. MarCroser	459
CALL Effects of notacsium chloride and notacsium bicarbonate on endethelial function	400
GAJH. Effects of polassium chloride and polassium bicarbonate on endothenal function,	401
72Cobb LK Anderson CA Elliott P. Hu ER, Liu K. Neston JD. Whelton PK, Moodward M. Appel LUC	402
Methodological issues in cohort studies that relate sodium intake to cardiovascular disease	403
outcomes: A science advisory from the american heart association 2014:129(10): 1173-1186	465
.74Nabavizadeh P. Ghadermarzi S. Fakhri M. A new method to make 24-hour urine collection more	466
convenient: A validity study. Int I Nephrol 2014/2014/718147	467
-75Holbrook JT. Patterson KY. Bodner JE. Douglas I.W. Veillon C. Kelsav II. Mertz W. Smith IC. Ir. Sodium	468
and potassium intake and balance in adults consuming self-selected diets. Am J Clin Nutr	469
1984:40(4): 786-793.	470
	-

 .76Adrogué HJ, Madias NEJNEjom. Sodium and potassium in the pathogenesis of hypertension. 2007:356(19): 1966-1978. .77Esfandiari Z, Badiey M, Mahmoodian P, Sarhangpour R, Yazdani E, Mirlohi M. Simultaneous determination of sodium benzoate, potassium sorbate and natamycin content in iranian yoghurt drink (doogh) and the associated risk of their intake through doogh consumption. Iranian journal of public health 2013:42(8): 915-920. 	471 472 473 474 475 476
	477
	478
	479
	480
	481
Legend to figures	482
	483
Figure 1. Flow chart of the study selection process	484
	485
Figure 2 . Forest plot demonstrating pooled correlation coefficient between diastolic blood pressure and urinary potassium excretion. Pooled effect was calculated using a random effects model	486 487
	488
Figure 3. Forest plot demonstrating pooled correlation coefficient between systolic blood pressure and urinary potassium excretion stratified by age. Pooled effect was calculated using a random effects model.	489 \$490 491
	492
Figure 4. Forest plot demonstrating pooled correlation coefficient between systolic blood pressure and urinary potassium excretion stratified by type of urine sample. Pooled effect was calculated using a random effects model.	₫493 494 495
Figure 5 . Forest plot demonstrating overall effect of association between blood pressure and mean urinary potassium excretion in normotensive and hypertensive individuals. Pooled effect was calculated using a random effects model.	496 497 498
Figure 6. Forest plot demonstrating pooled the association between urinary potassium excretion and risk of hypertension. Pooled odds ratio was calculated by using a fixed effect mod	499 500
	501

Table 1. Characteristics of studies included in the systematic review of the relationship between urinary potassium excretion and blood

pressure.

First author (publication year)	Country	Sample size (male/female)	Mean age (years)	Study design	Follow- up duration (years)	Method of urine collection	Extracted statistics	Adjustment for potential confounders	Main results	Quality score*
Staessen (1983) (55)	Belgium	688 (355/333)	34.4	Cross- sectional	-	24-hour urine	Correlation coefficient	Partial	No significant association	7/10
Hoosen (1985) (56)	South Africa	583 (320/263)	41.4	Case- control	-	Overnight urine	Mean urinary potassium excretion	Partial	No significant difference	5/9
Bulpitt (1986) (57)	England	618 (459/159)	45.3	Cross- sectional	-	24-hour urine	Correlation coefficient	Partial	Significant negative association in men and significant positive association in women	7/10
Zhu (1987) (58)	China	148 (148/0)	7.5	Cross- sectional	-	24-hour urine	Correlation coefficient	Full	No significant association	8/10
Rose (1988) (59)	International	10079 (5045/5034)	39.5	Cross- sectional	-	24-hour urine	-	Full	Significant negative association	8/10
Liu (1990) (60)	China	3251 (1638/1613)	39.5	Cross- sectional	-	Overnight urine	Correlation coefficient	Full	Significant positive association with SBP in men	7/10
Klag (1995) (61)	China	831 (831/0)	37.6	Cross- sectional	-	Overnight urine	-	Partial	Significant negative association	7/10

Tian (1995) (62)	China	663 (328/335)	43.5	Cross- sectional	-	24-hour urine	-	Full	Significant negative association with SBP	8/10
Nakagawa (1999) (63)	Japan	503 (246/257)	39.5	Cross- sectional	-	24-hour urine	Correlation coefficient	Full	Significant negative association	8/10
Maldonado- Martín (2002) (64)	Spain	553 (274/279)	10.3	Cross- sectional	-	24-hour urine	Correlation coefficient	Unadjusted	Significant positive association with SBP	6/10
Jan (2006) (65)	Kashmir	237 (115/122)	39.4	Case- control	-	24-hour urine	-	Unadjusted	No significant difference	5/9
Chien (2008) (66)	Taiwan	1520 (729/791)	52.0	Cohort	7.9	Overnight urine	Correlation coefficient and risk of hypertension	Full	Significant positive association with DBP	7/9
Yamasue (2008) (67)	Japan	85 (43/42)	63.5	Cross- sectional	-	Overnight urine	Significant negative association with HTN risk	Full	No significant association	5/10
Tayo (2012) (68)	Nigeria, Jamaica, and United States	2704 (1217/1487)	39.9	Cross- sectional	-	24-hour urine	-	Full	Significant negative association	8/10
Kieneker (2014) (69)	Netherlands	5511 (2499/3012)	51.5	Cohort	7.6	24-hour urine	Risk of hypertension	Full	Significant negative association with HTN risk	9/9
Yan (2015) (70)	China	1948 (NR/NR)	41.4	Cross- sectional	-	24-hour urine	Mean urinary potassium excretion and risk of hypertension	Full	Significant negative association with HTN risk	9/10

Jackson (2018) (71)	United States	766 (373/393)	44.5	Cross- sectional	-	24-hour urine	Mean urinary potassium excretion and risk of hypertension	Full	Significant negative association with HTN risk	9/10
Deng (2020)	China	584(278/306)	53.4	Cross- sectional	-	24-hour urine	24-hour urine 24-hour adults		Significantly higher level of urine potassium in hypertensive patients	9/10
Lemogoum (2018)	Cameroon	300 (165/135)	35	Cross- sectional	-	Overnight urine	Correlation coefficient	Partial	Urinary potassium excretion was not related to blood pressure	8/10
Modesti (2018)	Italy	319 (165/154)	49.4	Cross- sectional	-	24-hour urine	Mean urinary potassium excretion and hypertension	Partial	No significant association	7/10
Ge	China	1906 (991/914)	42.9	Cross- sectional	-	24-hour urine	24-hour Risk of elevated urine blood pressure		No significant association	8/10
Moliterno (2018)	Uruguay	149 (60/89)	54.5	Cross- sectional	-	24-hour urine 24-hour urine 24-hour bypertensive and normotensive adults		Full	Mean potassium excretion was similar in hypertensive and normotensive individuals	9/10

Abbreviations: DBP, diastolic blood pressure; HTN, hypertension; NR, not reported; SBP, systolic blood pressure.

* Based on the Newcastle-Ottawa Scale.

Subgroups		Studies (n)	Effect size	I ²	P heterogeneity	P between subgroup heterogeneity
Region	Asian	6	-0.02 (-0.08, 0.04)	68.7%	0.007	0.354
	European	3	0.02 (-0.1, 0.14)	86%	<0.001	
	Male	6	0.02 (-0.11, 0.14)	89.2%	<0.001	
Gender	Female	5	0.04 (-0.02, 0.11)	40.4%	0.152	0.179
	Both	4	-0.06 (-0.15, 0.14)	75.6%	0.006	
Age group	Children	2	0.12 (0.04, 0.19)	0.0%	0.847	0.001
	Adults	8	-0.03 (-0.08, 0.02)	74%	<0.001	
Type of urine sample	Overnight urine sample	3	0.02 (-0.01, 0.05)	0.0%	0.583	0.006
	24-hour urine sample	7	-0.01 (-0.09, 0.07)	79.9%	<0.001	

Table 2: Subgroup analysis to assess the correlation between systolic blood pressure and urinary potassium excretion