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To ultimately combat the emerging COVID-19 pandemic, it is desired to develop

an effective and safe vaccine against this highly contagious disease caused by the

SARS-CoV-2 coronavirus. Our literature and clinical trial survey showed that the whole

virus, as well as the spike (S) protein, nucleocapsid (N) protein, and membrane (M)

protein, have been tested for vaccine development against SARS and MERS. However,

these vaccine candidatesmight lack the induction of complete protection and have safety

concerns. We then applied the Vaxign and the newly developed machine learning-based

Vaxign-ML reverse vaccinology tools to predict COVID-19 vaccine candidates. Our

Vaxign analysis found that the SARS-CoV-2N protein sequence is conserved with

SARS-CoV and MERS-CoV but not from the other four human coronaviruses causing

mild symptoms. By investigating the entire proteome of SARS-CoV-2, six proteins,

including the S protein and five non-structural proteins (nsp3, 3CL-pro, and nsp8-10),

were predicted to be adhesins, which are crucial to the viral adhering and host invasion.

The S, nsp3, and nsp8 proteins were also predicted by Vaxign-ML to induce high

protective antigenicity. Besides the commonly used S protein, the nsp3 protein has not

been tested in any coronavirus vaccine studies and was selected for further investigation.

The nsp3 was found to be more conserved among SARS-CoV-2, SARS-CoV, and

MERS-CoV than among 15 coronaviruses infecting human and other animals. The

protein was also predicted to contain promiscuous MHC-I and MHC-II T-cell epitopes,

and the predicted linear B-cell epitopes were found to be localized on the surface of the

protein. Our predicted vaccine targets have the potential for effective and safe COVID-19

vaccine development. We also propose that an “Sp/Nsp cocktail vaccine” containing a

structural protein(s) (Sp) and a non-structural protein(s) (Nsp) would stimulate effective

complementary immune responses.

Keywords: COVID-19, S protein, non-structural protein 3, vaccine, reverse vaccinology, machine learning, vaxign,
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INTRODUCTION

The emerging Coronavirus Disease 2019 (COVID-19) pandemic

poses a massive crisis to global public health. As of March 11,

2020, there were 118,326 confirmed cases and 4,292 deaths,
according to the World Health Organization (WHO), and WHO
declared the COVID-19 as a pandemic on the same day. On May
12, WHO reported 4,088,848 confirmed COVID-19 cases and
283,153 deaths globally, showing a dramatic increase in terms
of case and death numbers. The causative agent of the COVID-
19 disease is the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2). Coronaviruses can cause animal diseases such
as avian infectious bronchitis caused by the infectious bronchitis
virus (IBV), and pig transmissible gastroenteritis caused by a

porcine coronavirus (1). Bats are commonly regarded as the
natural reservoir of coronaviruses, which can be transmitted to
humans and other animals after genetic mutations. There are
seven known human coronaviruses, including the novel SARS-
CoV-2. Four of them (HCoV-HKU1, HCoV-OC43, HCoV-229E,
andHCoV-NL63) have been circulating in the human population
worldwide and cause mild symptoms (2). Coronavirus became
prominent after Severe Acute Respiratory Syndrome (SARS) and
Middle East Respiratory Syndrome (MERS) outbreaks. In 2003,
the SARS disease caused by the SARS-associated coronavirus
(SARS-CoV) infected over 8,000 people worldwide and was
contained in the summer of 2003 (3). SARS-CoV-2 and SARS-
CoV share high sequence identity (4). TheMERS disease infected
more than 2,000 people, which is caused by the MERS-associated
coronavirus (MERS-CoV) and was first reported in Saudi Arabia
and spread to several other countries since 2012 (5).

Great efforts have been made to develop and manufacture
COVID-19 vaccines, and these efforts in pushing the vaccine
clinical trials are phenomenal (Table 1). Coronaviruses are
positively-stranded RNA viruses with its genome packed inside
the nucleocapsid (N) protein and enveloped by the membrane
(M) protein, envelope (E) protein, and the spike (S) protein
(6). While many coronavirus vaccine studies targeting different
structural proteins were conducted, most of these efforts
eventually ceased soon after the outbreak of SARS and MERS.
With the recent COVID-19 pandemic outbreak, it is urgent
to resume the coronavirus vaccine research. As the immediate
response to the on-going pandemic, the first testing in humans of
the mRNA-based vaccine targeting the S protein of SARS-CoV-2
(ClinicalTrials.gov Identifier: NCT04283461, Table 1) started on
March 16, 2020. As the most superficial and protrusive protein
of the coronaviruses, S protein plays a crucial role in mediating
virus entry. In the SARS and MERS vaccine development, the
full-length S protein and its S1 subunit (which contains receptor
binding domain) have been frequently used as the vaccine
antigens due to their ability to induce neutralizing antibodies that
prevent host cell entry and infection.

However, the current coronavirus vaccines, including S
protein-based vaccines, might have issues in the lack of
inducing complete protection and possible safety concerns (7, 8).
Most existing SARS/MERS vaccines were reported to induce
neutralizing antibodies and partial protection against the viral
challenges in animal models (Table 2). A recent study reported

that adenovirus vaccine vector encoding full-length MERS-CoV
S protein (ChAdOx1 MERS) showed protection upon MERS-
CoV challenge in rhesus macaques (9). Nonetheless, it is desired
for a COVID-19 vaccine to induce complete protection or
sterile immunity. Moreover, it has become increasingly clear that
multiple immune responses, including those induced by humoral
or cell-mediated immunity, are responsible for correlates of
protection than antibody titers alone (10). Both killed SARS-
CoV whole virus vaccine and adenovirus-based recombinant
vector vaccines expressing S or N proteins induced neutralizing
antibody responses but did not provide complete protection in
animal model (11). A study has shown increased liver pathology
in the vaccinated ferrets immunized with modified vaccinia
Ankara-S recombinant vaccine (12). The safety and efficacy of
these vaccination strategies have not been fully tested in human
clinical trials, but safety could be a major concern. Therefore,
novel strategies are needed to enhance the efficacy and safety of
COVID-19 vaccine development.

In recent years, the development of vaccine design has been
revolutionized by the reverse vaccinology (RV), which aims to
first identify promising vaccine candidate through bioinformatics
analysis of the pathogen genome. RV has been successfully
applied to vaccine discovery for pathogens such as Group B
meningococcus and led to the license Bexsero vaccine (13).
Among current RV prediction tools (14, 15), Vaxign is the
first web-based RV program (16) and has been used to predict
vaccine candidates against different bacterial and viral pathogens
(17–19). Recently we have also developed a machine learning
approach called Vaxign-ML to enhance prediction accuracy (20).

In this study, we first surveyed the existing coronavirus
vaccine development status, and then applied the Vaxign
and Vaxign-ML RV approaches to predict COVID-19 protein
candidates for vaccine development. We identified six possible
adhesins, including the structural S protein and five other
non-structural proteins, and three of them (S, nsp3, and nsp8
proteins) were predicted to induce high protective immunity.
The S protein was predicted to have the highest protective
antigenicity score, and it has been extensively studied as
the target of coronavirus vaccines by other researchers. The
sequence conservation and immunogenicity of the multi-domain
nsp3 protein, which was predicted to have the second-highest
protective antigenicity score yet, was further analyzed in this
study. Based on the predicted structural S protein and non-
structural proteins (including nsp3) using reverse vaccinology
and machine learning, we proposed and discussed a cocktail
vaccine strategy for rational COVID-19 vaccine development.

RESULTS

Published Research and Clinical Trial
Coronavirus Vaccine Studies
To better understand the current status of coronavirus vaccine
development, we systematically surveyed the development of
vaccines for coronavirus from the ClinicalTrials.gov database
and PubMed literature. There were only three SARS-CoV and
six MERS-CoV vaccine clinical trials (Table 1), and extensive
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TABLE 1 | Reported clinical trials of preventive SARS-CoV, MERS-CoV, SARS-CoV-2 vaccine studies.

Virus Location Phase Year Identifier Vaccine type

SARS-CoV United States I 2004 NCT00099463 Recombinant DNA vaccine (S protein)

SARS-CoV United States I 2007 NCT00533741 Inactivated whole virus vaccine

SARS-CoV United States I 2011 NCT01376765 Recombinant protein vaccine (S protein)

MERS United Kingdom I 2018 NCT03399578 Vector vaccine (S protein)

MERS Germany I 2018 NCT03615911 Vector vaccine (S protein)

MERS Saudi Arabia I 2019 NCT04170829 Vector vaccine (S protein)

MERS Germany, Netherland I 2019 NCT04119440 Vector vaccine (S protein)

MERS Russia I, II 2019 NCT04128059 Vector vaccine (protein not specified)

MERS Russia I, II 2019 NCT04130594 Vector vaccine (protein not specified)

SARS-CoV2 United States I 2020 NCT04283461 mRNA-based vaccine (S protein)

SARS-CoV2 China I 2020 NCT04313127 Vector vaccine (S protein)

SARS-CoV2 China II 2020 NCT04341389 Vector vaccine (S protein)

SARS-CoV2 China I, II 2020 NCT04352608 Inactivated whole virus vaccine

SARS-CoV2 United Kingdom I, II 2020 NCT04324606 Vector vaccine (S protein)

SARS-CoV2 United States I 2020 NCT04336410 DNA vaccine (S protein)

effort has been made to develop COVID-19 vaccines in response
to the current pandemic. Seven representative vaccine clinical
trials were presented in Table 1, including inactivated whole
virus vaccine and S protein-derived vaccine. Well-established
vaccines targeting pathogens other than SARS-CoV-2 are also
under investigation, such as measles (NCT04357028) and BCG
(NCT04327206), which may induce strong immune responses
and provide non-specific protective effects against SARS-CoV-2
infection (21).

There are two primary design strategies for coronavirus
vaccine development: the usage of the whole virus or genetically
engineered vaccine antigens that can be delivered through
different formats. The whole virus vaccines include inactivated
(22) or live-attenuated vaccines (23, 24) (Table 2). The two
live attenuated SARS vaccines mutated the exoribonuclease
and envelop protein to reduce the virulence and/or replication
capability of the SARS-CoV. Recent works also showed
promising development of three types of SARS-CoV-2 vaccines,
including inactivated whole virus vaccine (25), RNA vaccine (26),
and virus-like particles (VLP) vaccine (27) (Table 2). Overall, the
whole virus vaccines can induce a strong immune response and
protect against coronavirus infections. Genetically engineered
vaccines that target specific coronavirus proteins are often used
to improve vaccine safety and efficacy. The coronavirus antigens
such as S protein, N protein, and M protein can be delivered as
recombinant DNA vaccine and viral vector vaccine (Table 2).

From experimentally identified immune responses induced
by coronavirus vaccines, we found evidence of the protective
roles of both antibody and cell-mediated immunity (28, 29).
The protective role of the neutralizing antibody to coronavirus
S protein has been demonstrated by the experimental result
that a passive transfer of the serum from mice immunized with
MVA/S to naïve mice reduced the replication of challenged
SARS-CoV in the respiratory tract (28). Here the MVA/S is
the highly attenuated modified vaccinia virus Ankara (MVA)
containing the gene encoding full-length SARS-CoV S protein.

The antibodies developed in the mice immunized with MVA/S
could also bind to the S1 domain of S and neutralize SARS-
CoV in vitro. Passive transfer of anti-S neutralizing antibody also
offered protection against SARS-CoV (30). However, antibody
responses in patients previously infected with respiratory viruses,
including SARS-CoV and MERS-CoV, tend to be short-lived
(31). Instead, T cell responses are often long-lived by targeting
conserved proteins and showed to have a significant correlation
in protective immunity against influenza virus infection (32).
SARS-CoV-specific memory T cells but not antibody-producing
B cells could be detected in patients 6 years after SARS-CoV
infection (33). A further study showed that respiratory tract
memory CD4+ T cells specific for an epitope the nucleocapsid
(N) protein of SARS-CoV provided protection against virulent
challenge with SARS-CoV and MERS-CoV (29). CD8+ T cells
were also found to be crucial for the clearance of SARS-CoV and
MERS-CoV infections (34, 35). Therefore, our vaccine prediction
would target those viral antigens with the ability to induce
protective neutralizing antibody and/or T cell responses.

SARS-CoV-2N Protein Sequence Is
Conserved With the N Protein From
SARS-CoV and MERS-CoV
We first used the Vaxign analysis framework (16, 20) to compare
the full proteomes of seven human coronavirus strains (SARS-
CoV-2, SARS-CoV, MERS-CoV, HCoV-229E, HCoV-OC43,
HCoV-NL63, and HCoV-HKU1). The proteins of SARS-CoV-2
were used as the seed for the pan-genomic comparative analysis.
The Vaxign pan-genomic analysis reported only the N protein in
SARS-CoV-2 having high sequence similarity among the more
severe form of coronavirus (SARS-CoV and MERS-CoV), while
having low sequence similarity among the more typically mild
HCoV-229E, HCoV-OC43, HCoV-NL63, andHCoV-HKU1. The
sequence conservation suggested the potential of N protein as
a candidate for the cross-protective vaccine against SARS and
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TABLE 2 | Experimentally verified vaccines for SARS-CoV, MERS-CoV, and SARS-CoV-2.

Vaccine name Vaccine type Antigen PMID/doi*

SARS VACCINES

CTLA4-S DNA vaccine** DNA S 15993989

Salmonella-CTLA4-S DNA vaccine** DNA S 15993989

Salmonella-tPA-S DNA vaccine** DNA S 15993989

Recombinant spike polypeptide from E. coli vaccine** Recombinant S 15993989

Recombinant spike polypeptide from insect cells vaccine Recombinant S 22536382

pCI-N protein DNA vaccine DNA N 15582659

CRT/pcDNA3.1/myc-His(-)N DNA vaccine DNA N 15078946

M protein DNA vaccine DNA M 16423399

pcDNA3.1/myc-His(-)-N protein DNA vaccine DNA N 15078946

pcDNA3.1/myc-His(-)-N+M protein DNA vaccine DNA N, M 16423399

tPA-S DNA vaccine** DNA S 15993989

β-propiolactone-inactivated SARS-CoV vaccine Inactivated virus Whole virus 16476986

Dual-inactivated virus (DIV) SARS-CoV vaccine Inactivated virus Whole virus 22536382

UV-Inactivated SARS virus vaccine + TLR agonist Inactivated virus Whole virus 24850731

MA-ExoN vaccine Live attenuated MA-ExoN 23142821

rMA15-1E vaccine Live attenuated MA15 23576515

rSARS-CoV-1E vaccine Live attenuated SARS-CoV-1E 18463152

VLP SARS-CoV vaccine Viral-like particle S,N,E,M 22536382

Ad S/N vaccine Viral vector S,N 16476986

ADS-MVA vaccine Viral vector S 15708987

MVA/S vaccine Viral vector S 15096611

SV8000 vaccine Viral vector S, N, ORF8 10.1101/2020.02.17.951939

VRP-SARS-N vaccine*** Viral vector N 27287409

MERS VACCINES

England1S DNA Vaccine DNA S 26218507

MERS-CoV pcDNA3.1-S1 DNA vaccine DNA S 28314561

Inactivated whole MERS-CoV (IV) vaccine Inactivated virus Whole virus 29618723

England1S DNA +England1S protein subunit Vaccine Mixed S1 26218507

England1 S1 protein subunit Vaccine** Subunit S1 26218507

MERS-CoV S vaccine Subunit S 29618723

rNTD vaccine Subunit NTD of S 28536429

rRBD vaccine Subunit RBD of S 28536429

MERS-CoV VLP vaccine Viral-like particle S, E, M 27050368

Ad41.MERS-S vaccine** Viral vector S 25762305

Ad5.MERS-S vaccine** Viral vector S 25192975

Ad5.MERS-S1 vaccine** Viral vector S1 25192975

ChAdOx1-MERS-S vaccine Viral vector S 29263883

MVvac2-CoV-S(H) vaccine Viral vector S 26355094

MVvac2-CoV-solS (H) vaccine Viral vector solS 26355094

RV1P-MERS/S1 vaccine** Viral vector S1 31589656

VRP-MERS-N vaccine*** Viral vector N 27287409

VSV1G-MERS vaccine** Viral vector S 29246504

SARS-CoV-2 VACCINES

PiCoVacc vaccine Inactivated virus Whole virus 10.1101/2020.04.17.046375

RBD-CuMVTT vaccine** VLP RBD 10.1101/2020.05.06.079830

LPN-SARS-Cov-2 vaccine** RNA S 10.1101/2020.04.22.055608

S, surface glycoprotein; N, nucleocapsid phosphoprotein; M, membrane glycoprotein; Exon, exoribonuclease; NTD, N-terminal domain; RBD, receptor binding domain; ORF8, open

reading frame 8; solS, truncated soluble surface glycoprotein; VLP: Virus-like particles.

*, Journal articles have their PMID while pre-print papers have their doi. **, Only have an immune response and not a formal challenge study according to the source. ***, This vaccine

also gives cross-protection to MERS-CoV or SARS-CoV.
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MERS. The N protein was also evaluated and used for vaccine
development (Table 2). As a protein inside the viral envelope,
the N protein packs the coronavirus RNA to form the helical
nucleocapsid in virion assembly. This protein is more conserved
than the S protein and was reported to induce a humoral and
cellular immune response against coronavirus infections (36).
A conserved CD4+ T cell epitope in the SARS-CoV N was
also found important for the induction of protection against
the challenge of SARS-CoV or MERS-CoV (29). However, a
study also showed the linkage between N protein and severe
pneumonia or other serious liver failures, suggesting N protein-
induced pathogenesis and possible adverse effects caused by N
protein-derived vaccines (37).

Six Adhesive Proteins in SARS-CoV-2
Identified as Potential Vaccine Targets
The Vaxign RV analysis predicted six SARS-CoV-2 proteins
(S protein, nsp3, 3CL-PRO, and nsp8-10) as adhesive proteins
(Table 3). Adhesin plays a critical role in the virus adhering
to the host cell and facilitating the virus entry to the host
cell (38), which has a significant association with the vaccine-
induced protection (39). In SARS-CoV-2, S protein was predicted
to be adhesin, matching its primary role in virus entry. The

structure of SARS-CoV-2 S protein was determined (40) and
reported to contribute to the host cell entry by interacting
with the angiotensin-converting enzyme 2 (ACE2) (41). Besides
S protein, the other five predicted adhesive proteins were all
non-structural proteins. In particular, nsp3 is the largest non-
structural protein of SARS-CoV-2 comprises various functional
domains (42).

Three Adhesin Proteins Were Predicted to
Induce Strong Protective Immunity
The recently published Vaxign-ML pipeline was applied to
compute the protegenicity (protective antigenicity) score and
predict the induction of protective immunity by a vaccine
candidate (20). Vaxign-ML predicts the protegenicity score using
an optimized supervised machine learning model with manually
annotated training data consisted of bacterial and viral protective
antigens. These protective antigens were tested to be protective
in at least one animal challenge model (43). The performance of
the Vaxign-ML models was evaluated (Table S1 and Figure S1),
and the best performing model had a weighted F1-score and
Matthew’s correlation coefficient of 0.94 and 0.66, respectively, in
nested cross-validation. Using the optimized Vaxign-ML model,
we predicted three proteins (S protein, nsp3, and nsp8) as vaccine

TABLE 3 | Vaxign-ML prediction and adhesin probability of all SARS-CoV-2 proteins.

Protein Vaxign-ML score Adhesin probability

orf1ab nsp1 Host translation inhibitor 79.312 0.297

nsp2 Non-structural protein 2 89.647 0.319

nsp3 Non-structural protein 3 95.283* 0.524#

nsp4 Non-structural protein 4 89.647 0.289

3CL-PRO Proteinase 3CL-PRO 89.647 0.653#

nsp6 Non-structural protein 6 89.017 0.320

nsp7 Non-structural protein 7 89.647 0.269

nsp8 Non-structural protein 8 90.349* 0.764#

nsp9 Non-structural protein 9 89.647 0.796#

nsp10 Non-structural protein 10 89.647 0.769#

RdRp RNA-directed RNA polymerase 89.647 0.229

Hel Helicase 89.647 0.398

ExoN Guanine-N7 methyltransferase 89.629 0.183

NendoU Uridylate-specific endoribonuclease 89.647 0.254

2′-O-MT 2′-O-methyltransferase 89.647 0.421

S Surface glycoprotein 97.623* 0.635#

ORF3a ORF3a 66.925 0.383

E Envelope protein 23.839 0.234

M Membrane glycoprotein 84.102 0.282

ORF6 ORF6 33.165 0.095

ORF7 ORF7a 11.199 0.451

ORF8 ORF8 31.023 0.311

N Nucleocapsid phosphoprotein 89.647 0.373

ORF10 ORF10 6.266 0.0

*Denotes Vaxign-ML predicted vaccine candidate.
#Denotes predicted adhesin. Bold value denotes Vaxign-ML predicted vaccine candidate and/or predicted adhesin.
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candidates with significant protegenicity scores (Table 3). The
S protein was predicted to have the highest protegenicity score,
which is consistent with the experimental observations reported
in the literature. The nsp3 protein is the second most promising
vaccine candidate besides S protein. There was currently no
study of nsp3 as a vaccine target. The structure and functions
of this protein have various roles in coronavirus infection,
including replication and pathogenesis (immune evasion and
virus survival) (42). Therefore, we selected nsp3 for further
investigation, as described below.

Nsp3 as a Vaccine Candidate
The multiple sequence alignment and the resulting phylogeny
of nsp3 protein showed that this protein in SARS-CoV-2
was more closely related to the human coronaviruses SARS-
CoV and MERS-CoV, and bat coronaviruses BtCoV/HKU3,
BtCoV/HKU4, and BtCoV/HKU9. We studied the genetic
conservation of nsp3 protein (Figure 1A) in seven human
coronaviruses and eight coronaviruses infecting other animals
(Table S2). The five human coronaviruses, SARS-CoV-2, SARS-
CoV, MERS-CoV, HCoV-HKU1, and HCoV-OC43, belong to the

FIGURE 1 | The phylogeny and sequence conservation of coronavirus nsp3. (A) Phylogeny of 15 strains based on the nsp3 protein sequence alignment and

phylogeny analysis. (B) The conservation of nsp3 among different coronavirus strains. The red line represents the conservation among the four strains (SARS-CoV,

SARS-CoV-2, MERS, and BtCoV-HKU3). The blue line was generated using all the 15 strains. The bottom part represents the nsp3 peptides and their sizes. The

phylogenetically close four strains have more conserved nsp3 sequences than all the strains being considered.
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beta-coronavirus while HCoV-229E and HCoV-NL63 belong to
the alpha-coronavirus. The HCoV-HKU1 and HCoV-OC43, as
the human coronavirus with mild symptoms clustered together
with murine MHV-A59. The more severe form of human
coronavirus SARS-CoV-2, SARS-CoV, and MERS-CoV grouped
with three bat coronaviruses BtCoV/HKU3, BtCoV/HKU4,
and BtCoV/HKU9.

When evaluating the amino acid conservations relative to
the functional domains in nsp3, all protein domains, except
the hypervariable region (HVR), macro-domain 1 (MAC1)
and beta-coronavirus-specific marker βSM, showed higher
conservation in SARS-CoV-2, SARS-CoV, and MERS-CoV
(Figure 1B). The amino acid conservation between the major
human coronavirus (SARS-CoV-2, SARS-CoV, and MERS-CoV)
was plotted and compared to all 15 coronaviruses used to
generate the phylogenetic of nsp3 protein (Figure 1B). The
SARS-CoV domains were also plotted (Figure 1B), with the
relative position in the multiple sequence alignment (MSA) of all
15 coronaviruses (Table S3 and Figure S2).

The immunogenicity of nsp3 protein in terms of T cell MHC-
I & MHC-II and linear B cell epitopes was also investigated.
There were 28 and 42 promiscuous epitopes predicted to bind the
reference MHC-I & MHC-II alleles, which covered the majority
of the world population, respectively (Tables S4, S5). In terms
of linear B cell epitopes, there were 14 epitopes with BepiPred
scores over 0.55 and had at least ten amino acids in length
(Table 4). The 3D structure of SARS-CoV-2 protein was plotted
and highlighted with the T cell MHC-I & MHC-II, and linear
B cell epitopes (Figure 2). The predicted B cell epitopes were
more likely located on the surface of the nsp3 protein. Most
of the predicted MHC-I & MHC-II epitopes were embedded
inside the protein. The sliding averages of T cell MHC-I &
MHC-II and linear B cell epitopes were plotted with respect to
the tentative SARS-CoV-2 nsp3 protein domains using SARS-
CoV nsp3 protein as a reference (Figure 3). The ubiquitin-
like domain 1 and 2 (Ubl1 and Ubl2) only predicted to have
MHC-I epitopes. The Domain Preceding Ubl2 and PL2-PRO
(DPUP) domain had only predicted MHC-II epitopes. The PL2-
PRO contained both predicted MHC-I and MHC-II epitopes,
but not B cell epitopes. In particular, the TM1, TM2, and AH1
were predicted helical regions with high T cell MHC-I and
MHC-II epitopes (44). The TM1 and TM2 are transmembrane
regions passing the endoplasmic reticulum (ER) membrane. The
HVR, MAC2, MAC3, nucleic-acid binding domain (NAB), βSM,
Nsp3 ectodomain; (3Ecto), Y1, and CoV-Y domain contained
predicted B cell epitopes. Finally, the Vaxign RV framework also
predicted two regions (position 251-260 and 329-337) in the
MAC1 domain of the nsp3 having high sequence similarity to the
human mono-ADP-ribosyltransferase PARP14 (NP_060024.2).

DISCUSSION

Our prediction of the potential SARS-CoV-2 antigens, which
could induce protective immunity, provides a timely analysis
for the vaccine development against COVID-19. Currently,
most coronavirus vaccine studies use the whole inactivated or

TABLE 4 | Predicted linear B cell epitopes in nsp3 protein using BepiPred 2.0.

Epitope Start End Length

EDEEEGDCEEEEFEPSTQYEYGTEDDYQGKPLEFGATS 111 148 38

EEEQEEDWLDDD 154 165 12

VGQQDGSEDNQ 170 180 11

IVEVQPQLEMELTPVVQTIEV 187 207 21

EVKPFITESKPSVEQRKQDDK 392 412 21

EEVTTTLEETK 419 429 11

YIDINGNLHPDSAT 438 451 14

YILPSIISNEK 536 546 11

RKYKGIKIQEGVVD 586 599 14

DLVPNQPYPNA 1,095 1,105 11

NATNKATYKPNT 1,178 1,189 12

DAQGMDNLACEDLKPVSEEVVENPTIQKDVLECNVK 1,214 1,249 36

YREGYLNSTNVTIA 1,448 1,461 14

GQKTYERHSLS 1,691 1,701 11

FIGURE 2 | Predicted 3D structure of nsp3 protein highlighted with (A) MHC-I

T cell epitopes (red), (B) MHC-II (blue) T cell epitopes, (C) linear B cell epitopes

(green), and the (D) merged epitopes. The B cell epitopes are more exposed

on the protein surface while the T cell MHC-I and MHC-II epitopes are more

located within the protein.

attenuated virus, or target the structural proteins such as the
spike (S) protein, nucleocapsid (N) protein, and membrane
(M) protein (Table 2). But the inactivated or attenuated whole
virus vaccine might cause strong adverse events. On the other
hand, vaccines targeting the structural proteins induce a robust
immune response (36, 45, 46). In some studies, these structural
proteins, including the S and N proteins, were reported to
associate with the pathogenesis of coronavirus (37, 47) and
might raise safety concern (12). Recently, the epitopes of the
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FIGURE 3 | Immunogenic region of nsp3 between SARS-CoV-2 and the four conservation strains. (A) MHC-I (red) T cell epitope (B) MHC-II (blue) T cell epitope

(C) linear B cell epitope (green).

SARS-CoV-2 were computationally predicted and evaluated by
sequence homology analysis of SARS-CoV and MERS-CoV
epitopes (48). Following this study, the predicted T cell MHC-
I and MHC-II epitopes of SARS-CoV-2 was experimentally
evaluated using the “megapools” approach and both CD4+

and CD8+ responses were detected (49). The present work is
complementary but not overlapping with the recent reports. Our
study applied state-of-the-art Vaxign reserve vaccinology (RV)
and Vaxign-ML machine learning strategies to the entire SARS-
CoV-2 proteomes, including both structural and non-structural
proteins for vaccine candidate prediction. Our results indicate,

for the first time, that many non-structural proteins could be used
as potential vaccine candidates.

The SARS-CoV-2 S protein was identified by our Vaxign and
Vaxign-ML analysis as the most favorable vaccine candidate.
First, the Vaxign RV framework predicted the S protein as a
likely adhesin, which is consistent with the role of S protein
for the invasion of host cells. Second, our Vaxign-ML predicted
that the S protein had a high protective antigenicity score. These
results confirmed the role of S protein as the important target
of COVID-19 vaccines. However, targeting only the S protein
may induce high serum-neutralizing antibody titers but cannot
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induce complete protection (11). In addition, HCoV-NL63 also
uses S protein and employs the angiotensin-converting enzyme 2
(ACE2) for cellular entry, despite markedly weak pathogenicity
(50). This suggests that the S protein is not the only factor
determining the infection level of a human coronavirus. Thus,
alternative vaccine antigens may be considered as potential
targets for COVID-19 vaccines.

Among the five non-structural proteins being predicted as
potential vaccine candidates, the nsp3 protein was predicted
to have second-highest protective antigenicity score, adhesin
property, promiscuous MHC-I & MHC-II T cell epitopes,
and B cell epitopes. The nsp3 is the largest non-structural
protein that includes multiple functional domains related to viral
pathogenesis (42). The multiple sequence alignment of nsp3 also
showed higher sequence conservation in most of the functional
domains in SARS-CoV-2, SARS-CoV, and MERS-CoV, than in
all 15 coronavirus strains (Figure 1B). Besides the nsp3 protein,
our study also predicted four additional non-structural proteins
(3CL-pro, nsp8, nsp9, and nsp10) as possible vaccine candidates
based on their adhesin probabilities, and the nsp8 protein was
also predicted to have a significant protective antigenicity score.

However, these predicted non-structural proteins (nsp3,
3CL-pro, nsp8, nsp9, and nsp10) are not part of the viral
structural particle, and all the current SARS/MERS/COVID-
19 vaccine studies target the structural (S/M/N) proteins.
Although structural proteins are commonly used as viral
vaccine candidates, non-structural proteins correlate to vaccine
protection. The non-structural protein NS1 was found to induce
protective immunity against infections by flaviviruses (51).
Since NS1 is not part of the virion, antibodies against NS1
have no neutralizing activity but some exhibit complement-
fixing activity (52). However, passive transfer of anti-NS1
antibody or immunization with NS1 conferred protection (53).
The anti-NS1 antibody could also reduce viral replication by
complement-dependent cytotoxicity of infected cells, block NS1-
induced pathogenic effects, and attenuate NS1-induced disease
development during the critical phase (54). Finally, NS1 is
not a structural protein and the anti-NS1 antibody will not
induce antibody-dependent enhancement (ADE), which is a
virulence factor and a risk factor causing many adverse events
(54). In addition to the induction of antibody responses, non-
structural proteins of viruses could induce virus-specific T
cells, especially cytotoxic T lymphocytes, that are important
to control viral infection. The non-structural proteins of the
hepatitis C virus were reported to induce HCV-specific vigorous
and broad-spectrum T-cell responses (55). The non-structural
HIV-1 gene products were also shown to be valuable targets
for prophylactic or therapeutic vaccines (56). Therefore, it is
reasonable to hypothesize that the SARS-CoV-2 non-structural
proteins (e.g., nsp3) are possible vaccine targets, which might
induce cell-mediated or humoral immunity necessary to prevent
viral invasion and/or replication.

The SARS-CoV-2 nsp3 protein was recently reported to
account for the virus-specific T cell response. Grifoni et al.
showed that the three major structural (S/M/N) proteins
accounted for 59% of the total CD4+ T cell response in COVID-
19 recovered patients while other non-structural proteins,

including nsp3, also accounted for the response (49). In addition,
SARS-CoV-2-reactive CD4+ T cells could be detected in a large
portion of unexposed individuals, suggesting cross-reactive T cell
recognition between SARS-CoV-2 and the other coronaviruses
that only cause common cold. In our study, the nsp3 protein
showed sequence conservation among the 15 coronaviruses, and
particularly, the protein shared higher similarity among the more
severe form of coronavirus (SARS-CoV, MERS-CoV, and SARS-
CoV-2) (Figure 2). The preexisting immunity against the mild
human coronaviruses might offer cross-protection to the SARS-
CoV-2 infected individuals (49). In spite of that, none of the non-
structural proteins have been evaluated as vaccine candidates,
and the feasibility of these proteins as vaccine targets are subject
to further experimental verification.

Besides the immunogenicity, safety is also an important
factor of a successful COVID-19 vaccine. One of the safety
issues of COVID-19 vaccines might occur due to vaccine
delivery (e.g., vectors, adjuvants, formulation doses, or route
of administration), which cannot be evaluated by the machine
learning approach presented in this study. In addition, the
nsp3 and other viral adhesive proteins with sequence homology
to the host cell adhesion molecules might also cause auto-
reactivity with self-antigen or induce T regulatory, leading to low
responsiveness of the host to the virus. By applying Vaxign and
epitope predictions, our study found that the MAC1 domain of
nsp3 protein share sequence homology with the human mono-
ADP-ribosyltransferase PARP14, and there is no predicted T
cell MHC-I, MHC-II, and linear B cell epitopes within the
aligned region.

In addition to vaccines expressing a single or a combination of
structural proteins, here we propose an “Sp/Nsp cocktail vaccine”
as an effective strategy for COVID-19 vaccine development. A
typical cocktail vaccine includes more than one antigen to cover
different aspects of protection (57, 58). The licensed Group B
meningococcus Bexsero vaccine, which was developed via reverse
vaccinology, contains three protein antigens (13). To develop
an efficient and safe COVID-19 cocktail vaccine, an “Sp/Nsp
cocktail vaccine,” which mixes a structural protein(s) (Sp, such
as S protein) and a non-structural protein(s) (Nsp, such as nsp3)
could induce more favorable protective immune responses than
vaccines expressing a structural protein(s). Current COVID-19
vaccines mostly target on the S protein with various types of
delivery systems (such as recombinant virus vectors) (Table 1),
and none of the non-structural proteins has not been used. The
benefit of a cocktail vaccine strategy could induce immunity that
can protect the host against not only the S-ACE2 interaction and
viral entry to the host cells, but also protect against the accessary
non-structural adhesin proteins (e.g., nsp3), which might also be
vital to the viral entry and replication. The usage of more than
one antigen allows us to reduce the volume of each antigen and
thus to reduce the induction of adverse events. Nonetheless, the
potential and safety of the proposed “Sp/Nsp cocktail vaccine”
strategy need to be experimentally validated.

For rational COVID-19 vaccine development, it is critical to
understand the fundamental host-coronavirus interaction and
protective immune mechanism (7). Such understanding may
not only provide us guidance in terms of antigen selection but
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also facilitate our design of vaccine formulations. For example,
an important foundation of our prediction in this study is
based on our understanding of the critical role of adhesin as
a virulence factor as well as protective antigen. The choice
of DNA vaccine, recombinant vaccine vector, and another
method of vaccine formulation is also deeply rooted in our
understanding of pathogen-specific immune response induction.
Different experimental conditions may also affect results (59, 60).
Therefore, it is crucial to understand the underlying molecular
and cellular mechanisms for rational vaccine development.

METHODS

Annotation of Literature and Database
Records
We annotated peer-reviewed journal articles stored in the
PubMed database and the ClinicalTrials.gov database. From
the peer-reviewed articles, we identified and annotated those
coronavirus vaccine candidates that were experimentally studied
and found to induce protective neutralizing antibody or provided
immunity against virulent pathogen challenge.

Vaxign and Vaxign-ML Reverse
Vaccinology Prediction
The SARS-CoV-2 sequence was obtained from NCBI. All the
proteins of six known human coronavirus strains, including
SARS-CoV, MERS-CoV, HCoV-229E, HCoV-OC43, HCoV-
NL63, andHCoV-HKU1were extracted fromUniprot proteomes
(61). The full proteomes of these seven coronaviruses were
then analyzed using the Vaxign reverse vaccinology pipeline
(16, 20). The Vaxign program predicted serval biological features,
including adhesin probability (62), transmembrane helix (63),
orthologous proteins (64), protein functions (16), and Vaxign-
ML protegenicity score (20).

The Vaxign-ML protegenicity score was calculated following
a similar methodology described in the Vaxign-ML. In brief, the
positive samples in the training data included 397 bacterial and
178 viral protective antigens (PAgs) recorded in the Protegen
database (43) after removing homologous proteins with over
30% sequence identity. There were 4,979 negative samples
extracted from the corresponding pathogens’ Uniprot proteomes
(61) with sequence dis-similarity to the PAgs, as described in
previous studies (65–67). Homologous proteins in the negative
samples were also removed. The proteins in the resulting
dataset were annotated with biological and physicochemical
features. The biological features included adhesin probability
(62), transmembrane helix (63), and immunogenicity (68). The
physicochemical features included the compositions, transitions,
and distributions (69), quasi-sequence-order (70), Moreau-
Broto auto-correlation (71, 72), and Geary auto-correlation
(73) of various physicochemical properties such as charge,
hydrophobicity, polarity, and solvent accessibility (74). Five
supervised ML classification algorithms, including logistic
regression, support vector machine, k-nearest neighbor, random
forest (75), and extreme gradient boosting (XGB) (76) were
trained on the annotated proteins dataset. The performance

of these models was evaluated using a nested 5-fold cross-
validation (N5CV) based on the area under receiver operating
characteristic curve, precision, recall, weighted F1-score, and
Matthew’s correlation coefficient. The best performing XGB
model was selected to predict the protegenicity score of all
SARS-CoV-2 isolate Wuhan-Hu-1 (GenBank ID: MN908947.3)
proteins, downloaded from NCBI. The protegenicity score is
the percentile rank score from the Vaxign-ML classification
model. A protein with higher protegenicity score is considered as
stronger vaccine candidate with higher utility toward protection.
In addition, using the protegenicity score of 0.9 as a threshold
resulted in the highest prediction performance with weighted
F1-score= 0.94 in N5CV.

Phylogenetic Analysis
The protein nsp3 was selected for further investigation. The
nsp3 proteins of 14 coronaviruses besides SARS-CoV-2 were
downloaded from the Uniprot (Table S2). Multiple sequence
alignment of these nsp3 proteins was performed using MUSCLE
(77) and visualized via SEAVIEW (78). The phylogenetic tree was
constructed using PhyML (79), and the amino acid conservation
was estimated by the Jensen-ShannonDivergence (JSD) (80). The
JSD score was also used to generate a sequence conservation line
using the nsp3 protein sequences from 4 or 13 coronaviruses.

Immunogenicity Analysis
The immunogenicity of the nsp3 protein was evaluated by the
prediction of T cell MHC-I and MHC-II, and linear B cell
epitopes. For T cell MHC-I epitopes, the IEDB consensus method
was used to predicting promiscuous epitopes binding to 4 out
of 27 MHC-I reference alleles with consensus percentile ranking
<1.0 score (68). For T cell MHC-II epitopes, the IEDB consensus
method was used to predicting promiscuous epitopes binding
to more than half of the 27 MHC-II reference alleles with
consensus percentile ranking <10.0. The MHC-I and MHC-II
reference alleles covered a wide range of human genetic variation
representing the majority of the world population (81, 82). The
linear B cell epitopes were predicted using the BepiPred 2.0 with
a cutoff of 0.55 score (83). Linear B cell epitopes with at least 10
amino acids were mapped to the predicted 3D structure of SARS-
CoV-2 nsp3 protein visualized via PyMol (84). The predicted
count of T cell MHC-I and MHC-II epitopes, and the predicted
score of linear B cell epitopes were computed as the sliding
averages with a window size of ten amino acids. The nsp3 protein
3D structure was predicted using C-I-Tasser (85) available in the
Zhang Lab webserver (https://zhanglab.ccmb.med.umich.edu/C-
I-TASSER/2019-nCov/).
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