
A coupled mode model for omnidirectional three-dimensional underwater sound
propagation
Brendan J. DeCourcy, and Timothy F. Duda

Citation: The Journal of the Acoustical Society of America 148, 51 (2020); doi: 10.1121/10.0001517
View online: https://doi.org/10.1121/10.0001517
View Table of Contents: https://asa.scitation.org/toc/jas/148/1
Published by the Acoustical Society of America

ARTICLES YOU MAY BE INTERESTED IN

Three-dimensional sound scattering from transversely symmetric surface waves in deep and shallow water using
the equivalent source method
The Journal of the Acoustical Society of America 148, 73 (2020); https://doi.org/10.1121/10.0001522

Underwater noise from glacier calving: Field observations and pool experiment
The Journal of the Acoustical Society of America 148, EL1 (2020); https://doi.org/10.1121/10.0001494

Field measurements of acoustic absorption in seawater from 38 to 360 kHz
The Journal of the Acoustical Society of America 148, 100 (2020); https://doi.org/10.1121/10.0001498

Passive broadband source depth estimation in the deep ocean using a single vector sensor
The Journal of the Acoustical Society of America 148, EL88 (2020); https://doi.org/10.1121/10.0001627

A homily on signal detection theory
The Journal of the Acoustical Society of America 148, 222 (2020); https://doi.org/10.1121/10.0001525

Characterizing the seabed in the Straits of Florida by using acoustic noise interferometry and time warping
The Journal of the Acoustical Society of America 146, 2321 (2019); https://doi.org/10.1121/1.5127846

https://images.scitation.org/redirect.spark?MID=176720&plid=1225645&setID=407059&channelID=0&CID=414012&banID=519951227&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=7e7e30d6798a3241c86931e1e778ab1601dd31fb&location=
https://asa.scitation.org/author/DeCourcy%2C+Brendan+J
https://asa.scitation.org/author/Duda%2C+Timothy+F
/loi/jas
https://doi.org/10.1121/10.0001517
https://asa.scitation.org/toc/jas/148/1
https://asa.scitation.org/publisher/
https://asa.scitation.org/doi/10.1121/10.0001522
https://asa.scitation.org/doi/10.1121/10.0001522
https://doi.org/10.1121/10.0001522
https://asa.scitation.org/doi/10.1121/10.0001494
https://doi.org/10.1121/10.0001494
https://asa.scitation.org/doi/10.1121/10.0001498
https://doi.org/10.1121/10.0001498
https://asa.scitation.org/doi/10.1121/10.0001627
https://doi.org/10.1121/10.0001627
https://asa.scitation.org/doi/10.1121/10.0001525
https://doi.org/10.1121/10.0001525
https://asa.scitation.org/doi/10.1121/1.5127846
https://doi.org/10.1121/1.5127846


A coupled mode model for omnidirectional three-dimensional
underwater sound propagation

Brendan J. DeCourcya) and Timothy F. Duda
Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA

ABSTRACT:
A fully three-dimensional (3D) omnidirectional numerical coupled mode model of acoustic propagation is detailed.

A combination of normal mode and finite element computational methods is applied to produce the numerical

results. The technique is tested in a strongly range-dependent ocean environment modeled after the Hudson Canyon.

Modeled sound from three source locations selected over different bathymetric depths is examined to determine

capabilities and difficulties associated with varying numbers of propagating vertical modes across the horizontal

domain, and variable amounts of mode coupling. Model results are compared to those from a unidirectional

Cartesian 3D parabolic equation simulation, and from adiabatic (uncoupled) simulations to illustrate the capabilities

of the techniques to study the influences of coupling, strong refraction, and reflection.
VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0001517
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I. INTRODUCTION

Sound propagation in and around strongly range vari-

able ocean regions presents a complex set of issues for

numerical modeling and acoustic field prediction efforts.

The four-dimensional acoustic wave equation, reduced to

the three-dimensional (3D) Helmholtz equation by an

assumption of a single frequency sound source, cannot be

cleanly separated with respect to standard coordinates in a

realistic environment; perhaps fundamentally, the boundary

conditions are not applied parallel to coordinate unit vectors.

Furthermore, the quantity of discrete grid points needed to

produce a numerically stable omnidirectional 3D solution

that includes propagation and scattering in all directions pro-

duces a high computational cost which increases with sound

frequency. Despite the difficulty of this problem, a wealth of

scientific work has produced many useful methods of esti-

mating acoustic propagation in realistic environments.

These methods, however, invariably require approximations

of the acoustic and material physics which may limit their

applicability in some circumstances.

Although a perfect separation of variables is impossible

in any topographically realistic ocean environment, a com-

mon method of approximating the solution of the 3D

Helmholtz equation is the method of normal modes.1,2 This

method separates the time-independent pressure pðx; y; zÞ
into vertical modes and their range-dependent amplitudes.3,4

Furthermore, the range-dependent nature of the normal

modes encourages further approximation, as the resulting

modal amplitude equations are coupled.5–7 To avoid the dif-

ficulties inherent in handling mode coupling and to make

higher source frequency computations easier, ray theory8

and beam-tracing have been used.9 The ray and beam meth-

odologies inherently include omnidirectional wave propaga-

tion in three dimensions which is a strength of these

methods, but their applicability is limited in cases of low

frequency or instances with surface ducts.9 Another popular

acoustic calculation approach is the Parabolic Equation (PE)

method.10,11 The fundamental PE approach increases

numerical efficiency by including only the forward-

propagating portion of the acoustic field, clearly excluding

many propagation and scattering effects. While two-way PE

variants do exist, these are largely restricted to idealized

propagation environments.13,14

This paper will present a fully omnidirectional 3D

acoustic propagation model based on extensions of previous

work in normal mode3,12 and mode coupling theories.6,7 To

test the effects of range-variable environments on acoustic

propagation, the method is used to compute acoustic fields

in a model of the Hudson Canyon which lies on the New

Jersey Shelf Break and has already been the subject of

acoustic study.15 A discussion of the techniques used is

given, and a sampling of numerical results which illustrate

the influence of strongly variable canyon bathymetry on

acoustic propagation are presented.

II. THEORETICAL FORMULATION

In the work described here, the approach taken is a

reformulation of Fawcett’s7 two-dimensional (2D, one verti-

cal, one horizontal coordinate) mode coupling derivations to

extend them to a 3D domain. Here, the ocean environment

is described by Cartesian coordinates (x, y, z), with z being

the vertical coordinate, with the ocean surface located at

z¼ 0, and the bottom located at z ¼ bðx; yÞ < 0. The starting

point is the 3D Helmholtz equation for acoustic pressurea)Electronic mail: bdecourcy@whoi.edu, ORCID: 0000-0003-0978-5791.
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pðx; y; zÞ from a constant frequency f acoustic point source

at ðxs; ys; zsÞ in a medium with sound speed cðx; y; zÞ and

acoustic wavenumber kðx; y; zÞ ¼ 2pf=c. A modal decompo-

sition of p is given by

pðx; y; zÞ ¼
X1
n¼1

Rnðx; yÞ/nðzjx; yÞ; (1)

where n represents the vertical mode number, /n are ortho-

normal vertical modes which satisfy locally flat-bottom

impedance conditions at z ¼ bðx; yÞ, and Rn are the modal

amplitudes. The vertical mode functions /n are solved for a

locally Pekeris-type vertical waveguide, comprised of a var-

iable water column and a half-space for the ocean bottom

using the ORCA normal mode program.12 Following

Fawcett’s method, a coupled equation for the vertical mode

amplitudes is derived:

r2
hRn þ KnRn ¼ �

X
m 6¼n

Bnm � rhRm þ AnmRm½ �

� 4p
qw

/nðzsjx; yÞdðx� xsÞdðy� ysÞ;

(2)

where r2
h is the horizontal Laplacian differential operator in

(x, y), Kn ¼ k2
h;n þ Ann; kh;n is the horizontal wavenumber of

mode n, Bnm and Anm are coupling coefficients, and qw is the

density of the ocean water. The coupling coefficients are

derived by Fawcett7 for 2D acoustic propagation, and in

three dimensions are given by

Bnm ¼ 2

ð0

�1

1

q
rh/mð Þ/ndz

�rhb
1

qw

� 1

qb

� �
/m/nð Þz¼b; (3)

Anm ¼
ð0

�1

1

q
r2

h/m

� �
/ndz�rhb

� 1

q
rh/m

� �
z¼b

/njz¼b; (4)

where the integrals represent a transfer of energy between

modes due to horizontal changes to the water column such as

sound speed fronts, or changing water depth. In these equa-

tions, the notation d�ez�b ¼ d�ez�b� � d�ez�bþ is a difference

between functional values on either side of the water/bottom

interface, and the subscript z¼ b simply means evaluation at

z¼ b. The second term in each coupling coefficient is propor-

tional to rhb and accounts for the coupling influence of the

bottom slope which is lost in the flat-bottom impedance condi-

tions applied to /n.

One strength of this formulation of the coupling coeffi-

cients is that it clearly separates the influence of flat-bottom

vertical modes which can be computed without knowing the

local bathymetric slope, and the influence of the slope itself.

To examine the influence of local bathymetric slope (here

defined as the actual slope of the bottom at a discrete position

in a horizontal numerical grid) compared to a smoother

approximation of bathymetric slope (implicitly defined by

the variable bathymetry depths and represented by a centered

difference approximation), one could compare the relative

sizes of the two components of each coupling coefficient.

Letting rhb ¼ rh
~b þ b where rh

~b represents the numerical

centered difference approximation for bathymetric slope and

b is a perturbation representing the uncertainty of local

slopes, some analyses can be carried out to probe the sensitiv-

ity of acoustic fields to local slopes on the bathymetry grid,

but this does not fall within the scope of this paper.

A reasonable approximation can be computed by limit-

ing the number of modes used to only include those that

propagate as well as a finite selection of leaky modes to

approximate the near field and seabed sound penetration at

sloped seabed locations, and then solving for all Rn simulta-

neously. In three dimensions, however, the amount of com-

putational power required to handle a typical horizontal

domain is incredibly large. Additionally, the concept of

computing the coupling coefficients and necessary horizon-

tal derivatives of vertical modes requires careful treatment

to deal with the strongly range-dependent water/bottom

interface and the integration of leaky modes. These issues

will be considered in Secs. III and IV.

III. HORIZONTAL DIFFERENTIATION OF THE
VERTICAL MODES

Horizontal differentiation of the vertical mode functions

/n and the bathymetry function b appear in both coupling

coefficients given by Eqs. (3) and (4). For the numerical

implementation, these derivatives must be approximated in

a way that preserves some level of numerical accuracy that

is acceptable for the model. The horizontal gradient of the

bathymetry function rhb is a measurement of the local

slopes, but for a realistically rough water/bottom interface it

is not reasonable to expect that the precise slope or even a

close approximation can be obtained at all desired locations.

Therefore, a convenient centered difference approximation

which is accurate to Oðh2Þ for grid spacing h on a uniform

grid can be used for bottom slope calculations. If a finer

sampling of bottom slope is needed, a linear interpolation of

the centered difference slope approximations will imply a

smoothly varying bottom. It is important to note that differ-

ences in bottom slope representation can influence acoustic

field effects,16 but because the bottom slope cannot be

known precisely at all locations in a realistic environment,

this issue will not be addressed here.

Differentiation of the vertical modes raises its own

issues. Primarily, the question of how to numerically handle

horizontal derivatives near the water/bottom interface arises.

The vertical modes are by design vertically differentiable;

near interfaces a one-sided three-point finite difference

scheme can give a second-order accurate approximation of

the first derivative, and the interface conditions can be used

to estimate the value of @/n=@z at the interface. However,

horizontal differentiation runs into the issue of needing to
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incorporate carefully crafted differentiation schemes

designed to handle the generally off-grid water/bottom inter-

face, across which the vertical mode derivatives are discon-

tinuous in z. An alternative approach is to replace z with

bottom-following sigma coordinates often used in meteoro-

logical and oceanographic contexts,17,18 and directional

derivatives along sigma surfaces can be used to compute the

horizontal derivatives.

The sigma coordinates will be defined differently

depending on whether they represent data in the water or the

bottom. In the water, the coordinate rw ¼ b0ðz=bÞ defined

for a water/bottom interface at z ¼ bðx; yÞ and reference

water depth b0 conserves the ratio of z to b� z along surfa-

ces of constant rw. In the bottom, the coordinate rb ¼ H
�ðH � b0ÞðH � zÞ=ðH � bÞ for some jHj � jbj with H< 0

conserving the ratio of z� b to H� z along constant rb. In a

fixed vertical plane such as y¼ yp, the unit vector

~� ¼ �1; �2ð Þ �
@zrðypÞ;�@xrðypÞ
� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@xrðypÞ
� �2 þ @zrðypÞ

� �2
q (5)

lies along a curve of constant rðypÞ, and the directional

derivative along this curve is given by D~�/n ¼ �1/n;x

þ �2/n;z. A numerical approximation of D~�/n can be com-

puted by interpolating the function /n to the r depth grid,

computing a standard finite difference approximation on the

new data, and interpolating back to the initial z grid. In this

way, derivatives /n;x and /n;y can be approximated

smoothly without crossing the water/bottom interface, by

solving for D~�/n and /n;z first, and using the directional

derivative formula to find the horizontal derivatives.

The integrals in Eqs. (3) and (4) can be computed

numerically using a fine z grid, and using the interface con-

ditions on /n at z¼ b. The integrals are approximated by

using a depth grid that truncates at z ¼ H � b, as defined

for the bottom sigma coordinate. This H value is chosen

such that the selections of normal modes used in the compu-

tation have all decayed to a pre-selected numerically insig-

nificant value. Furthermore, in order to handle the transition

from deeper water to shallow regions, a small attenuation

and sound speed gradient is inserted into the bottom follow-

ing the method of Westwood and Koch.3 This forces leaky

modes to eventually decay and become integrable,3,19 as

without the gradient the amplitude of the leaky vertical

modes grows exponentially. By including some of the leaky

modes, the leading order effects of coupling into lossy

modes at the slopes are included.

As will be noted in Sec. IV, there is a difference in the

grid density requirements for horizontal differentiation of

the bathymetry or vertical mode data, and requirements to

resolve oscillations of the mode amplitudes, with the latter

demanding a much finer grid. Since the differences in /n

from one horizontal position to another derive from changes

to the water column between the two locations, and because

the intervening values cannot be known precisely for a real-

istic environment, interpolation of data from a coarse grid

for Bnm and Anm is acceptable, given that the grid is dense

enough to resolve the local characteristics of range depen-

dence. For this work, the bathymetry is considered the pri-

mary cause of vertical waveguide variation, so a grid

spacing derived from the bathymetry variation is proposed

for evaluating the coupling coefficients. A convenient

method to define a bathymetrically sensitive coarse grid is

to require that the inequality jbj � jDxbxj is satisfied for

grid spacing Dx, and likewise for the y direction. Given two

adjacent values of b on a grid in x defined as biþ1 ¼ bðxiþ1Þ
and bi ¼ bðxiÞ, the grid spacing is chosen such that

2j biþ1 � bi

biþ1 þ bi
j � �; (6)

for some �� 1. This discretization of jbj � jDxbxj uses a

centered difference approximation for the derivative and an

average value of b over the interval xi to xiþ1. If new points

are needed to fill in gaps in the user supplied grid either at

this step or later, interpolation will be used to supply needed

information. A differentiable interpolation method is

desired, and in this case the “makima” or “modified Akima”

method supplied by MATLAB was used. This method is also

used to horizontally interpolate the mode functions

expressed vertically in the bottom following sigma coordi-

nates in Eq. (5).

IV. SOLVING THE 2D HELMHOLTZ EQUATION

The most challenging aspect of the numerical imple-

mentation of this method is solving the mode amplitudes

defined by Eqs. (2)–(4). Due to Eq. (2) being coupled, in

order to avoid the need to solve for each mode coefficient

simultaneously, it must first be de-coupled. One approach is

to begin by replacing the coupling term in Eq. (2) with an

estimate based on approximations of the mode coefficients,

and converging to a numerically exact solution through an

iterative process.6 To do so, the mode amplitude equation is

first expressed as

r2
hRn þ KnRn ¼ �Sn;0 � Sn;CðRÞ; (7)

where Sn;0 ¼ 4pq�1
w /nðzsjx; yÞdðx� xsÞdðy� ysÞ is the point

source term, and Sn;CðRÞ is the remaining sum on the right

side of Eq. (2). The adiabatic approximation to Eq. (7)

assumes no coupling, and is the solution to case Sn;C ¼ 0.

This equation can be solved individually for each mode.

Using the adiabatic Rð0Þn as an initial approximation for the

mode coefficients, an iterative equation to approximate Rn is

given by

r2
hRðjþ1Þ

n þ KnRðjþ1Þ
n ¼ �Sn;0 � Sn;C RðjÞð Þ; (8)

with a relative error estimate for Rðjþ1Þ
n given by

Ejþ1 ¼ 2
jSn;C Rðjþ1Þð Þj � jSn;C RðjÞð Þj
jSn;C Rðjþ1Þð Þj þ jSn;C RðjÞð Þj

: (9)
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The iterative refinement process can be continued until Ejþ1

is sufficiently small on a sufficiently large percentage of the

horizontal domain. For the purposes of this paper, the ad
hoc restriction chosen is that less than 50 square meters of

the domain excluding the sponge region has greater than a

1% error as measured by Eq. (9).

Now that the mode equations have been de-coupled they

must be solved numerically. A finite element approach can be

used, which has the benefit of being able to handle a point

source Sn;0 as well as a nontrivial coupling term Sn;C through-

out the horizontal domain. Transition to a weak formulation

of the problem follows the standard method of multiplying

Eq. (8) by a test function and integrating over the horizontal

domain.20 This domain is described by a uniform square grid

with grid spacing of ten points per horizontal modal wave-

length. To address the boundary conditions, an artificial

absorbing sponge layer is placed on the edges of the domain

to eliminate boundary reflections and emulate an outward

radiation condition.21 Due to the sponge layer, boundary inte-

grals reduce to zero. Numerical convergence of the

Helmholtz equation solution was confirmed by comparing

computed solutions to r2
huþ k2u ¼ �dðxÞðyÞ, to the analyti-

cal Green’s function solution ugðx; yÞ ¼ �ði=4ÞHð1Þ0 ðkrÞ, with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and fixed k ¼ 2p=30. Calculating the numeri-

cal solution on a grid with spacing h1 ¼ k=10 and h2 ¼ k=20

with k ¼ 2p=k, and then comparing the errors n1 ¼ u1 � ug

and n2 ¼ u2 � ug, where uj is computed on the numerical

grid with spacing hj, the convergence rate of the method can

be estimated. Along the curve x¼ 1750, �250 < y < 250

measured in meters, the error is assumed to take the form

Ej 	 Chl
j , such that l 	 log ðjn1j=jn2jÞ= log ð2Þ. The mean

value of l is computed to be l ¼ 1:947 6 0:009, with the

uncertainty listed spanning one standard deviation above and

below the mean value. This is consistent with a numerical

scheme with accuracy to Oðk2h2Þ. A similar comparison

between the h1 grid and a h4 ¼ k=40 computation yields an l
estimate of l ¼ 1:969 6 0:005. The accuracy tests reveal

phase lags in the computed modal waves that grow with

range from the source even when the amplitude remains accu-

rate. This phase lag is proportional to �ðkhÞ2r, where r is the

distance from the source, k is the horizontal wavenumber, h is

the grid spacing, and � is a small constant which has been cal-

culated to be approximately � 	 0:0075. Phase lag in finite

element solutions to the Helmholtz equation have been

studied,22 and this is an acknowledged difficulty of the

method which can be addressed when needed by reducing h.

V. TEST OF REFLECTION AND REFRACTION

In the adiabatic approximation, the coupling coeffi-

cients ~Bnm and Anm which incorporate the bottom slope

influence are set to zero, so some of the physics of bottom

reflection is lost. To illustrate how this affects simulations, a

simple example of a Pekeris type waveguide with a reflect-

ing berm is examined. Consider a 100 m deep waveguide

with a homogeneous 1500 m/s sound speed ocean over a

2000 m/s sound speed bottom with density 1.9 g/cm3 and

attenuation 0.8 dB per acoustic wavelength. A 30 m high

berm is added, with the seabed otherwise flat. The berm

crest is parallel to the y axis and the berm has no y
dependence.

Figure 1(a) shows the bathymetry in this model. The

berm begins at x¼ 1100, plateaus between x¼ 1160 and

1170, and slopes downward again until x¼ 1230. The wall

sides have a slope of approximately 26.565 degrees.

To examine the influence of reflection and refraction

that is captured by the adiabatic and coupled mode theories,

the model is run for three cases, all with a 50 Hz sound

source: with no berm, with the berm and no coupling, and

with the berm and coupling. Six modes are computed for a

point source of 50 Hz placed at x¼ 400 and z ¼ 5 m. For

reference, the real portions of the horizontal modal wave-

numbers are shown in Fig. 1(b), with the thick dashed line

representing the wavenumber in the bottom, such that modes

falling below this line are expected to attenuate strongly

horizontally. The vertical dashed lines represent the begin-

ning and end of the berm. Mode 1 appears at the top of the

figure, with mode 6 as the bottom curve.

Let the outgoing acoustic pressure field which is calcu-

lated with no berm be given by pO, the incoming field from

the adiabatic approximation be given by pS;A ¼ pA � pO,

and coupled given by pS;C ¼ pC � pO, where pA and pC are

the adiabatic and coupled pressure fields. Figures 2(a) and

2(d) show the intensity and phase associated with pO at a

depth of z¼ 30 m, given by 20 log10jpOj and argðpOÞ, while

Figs. 2(b) and 2(e) show the same for pS;A, and Figs. 2(c)

and 2(f) show pS;C. Examining the results, it is evident that

the coupled mode approximation captures 10 to 20 dB more

scattered sound than the adiabatic approach on the source

side of the berm. On the opposite side a higher amount of

energy is scattered with the coupled approximation as well,

this time from a combination of energy bouncing off the

berm in a forward manner, and the absence of energy that is

scattered back toward the source. A similar representation

of outgoing and scattered sound is given in Fig. 3, where

only mode 3 is illustrated. In this instance the difference

between adiabatic and coupled scattering is quite stark on

the source side of the berm, where very little sound is

reflected backwards. All of this goes to show that while the

adiabatic approximation can certainly account for some

acoustic reflection and refraction from sloping bottoms, the

coupled mode method is absolutely necessary to account for

a more complete physical representation of the acoustics. In

particular, the adiabatic scattered field shows little or no

reflection of sound that encounters the berm at normal inci-

dence, although it does show some energy that has refracted

while encountering the berm at non-normal incidence.

For an additional test of the method accuracy, the adia-

batic approximation field can be benchmarked by comparing

the energy that is scattered due to a single abrupt “step”

change in the bathymetry, to a reflection coefficient estimate

using vertically homogeneous layers in the ocean and

Rayleigh reflection coefficients at layer interfaces. Consider
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a 100 m deep waveguide with a constant sound speed con-

taining one 50 Hz source, which transitions to a 75 m deep

waveguide over the short distance of 5 m (1/6th of a wave-

length in the 1500 m/s ocean), and lies above a bottom iden-

tical to that of the berm model. Reusing the berm notation,

the unperturbed pressure in a homogeneous 100 m deep

waveguide is given by pO and is the outgoing field. The scat-

tered portion of the adiabatic approximation for the step

waveguide is given by pA � pO, where pA is the adiabatic

approximation in the step waveguide. For each mode, the

amplitude is expressed similarly as RO;m for the amplitude

of the outgoing mode m, and RA;m � RO;m for the amplitude

of the scattered portion of mode m. Then the difference in

intensity of each mode at the step is evaluated as

REFA ¼ 20 log10ðjRA;m � RO;mj=jRO;mjÞ. A second estimate

for the scattered sound at the step is given by evaluating the

influence of horizontal reflection coefficient across the step,

as REFT ¼ 20 log10ðjk75 � k100j=jk75 þ k100jÞ, where k75 and

k100 are the horizontal wavenumbers on the 75 and 100 m

sides of the step. A comparison of these results is given in

Table I.

While not a perfect match, the small differences in the

two estimates can be, in part, explained by the step not being

truly instantaneous, and the implied approximation that each

FIG. 1. (Color online) (a) Bathymetry for the simple berm model. The top (blue) layer represents 1500 m/s water, while the bottom (brown) layer represents

2000 m/s sediment, with a bottom density of 1.9 g/cm3, and attenuation of 0.8 dB/acoustic wavelength. The bathymetry is composed of straight lines con-

necting the (x, z) pairs: (0, 100), (1100, 100), (1160, 70), (1170, 70), (1230, 100), (2000, 100). Horizontal dashed lines are inserted for perspective relative to

vertical axis. Vertical dashed lines indicate the flat top of the berm. (b) Real components of the horizontal wavenumbers Reðkh;nÞ, for modes n¼ 1 through

6. The horizontal dashed line is at kb ¼ 2pf=cb 	 0:157 m�1, being the wavenumber in the bottom. Vertical dashed lines indicate the beginning and end of

the berm. Mode 1 is the top-most curve, counting down to mode 6 as the bottom-most curve.

FIG. 2. (Color online) Output from calculations from the flat-bottom and berm environments are shown at a depth of z¼ 30 m. (a) The flat-bottomed (pO)

result is shown, which has only outgoing sound. (b) The dB scale difference between the adiabatic berm result (pS;A) and the flat bottom result is shown,

which is the berm-scattered field. (c) The dB scale difference between the coupled berm result (pS;C) and the flat bottom result is shown. (d), (e), and (f) are

the phases for the cases shown in (a), (b), and (c), respectively.

J. Acoust. Soc. Am. 148 (1), July 2020 Brendan J. DeCourcy and Timothy F. Duda 55

https://doi.org/10.1121/10.0001517

https://doi.org/10.1121/10.0001517


uses to handle this. While this does not benchmark the cou-

pled mode output, it does show that in a simple step model,

the adiabatic mode amplitude solution method is capable of

producing good approximations.

VI. NUMERICAL OUTPUT

To test the method, a 9
 14 km region of the upper

Hudson Canyon is modeled. This region contains a variable

bathymetry with water depths ranging from 81 to 494 m as

shown in Fig. 4. Local bathymetric slopes in this domain

range from nearly zero to 25 degrees and higher in some

areas. In Fig. 4, the thick bathymetry levels denote 100, 200,

300, and 400 m depths, while the thin contours denote 50 m

intervals, and the dashed contours are at 25 m intervals. The

sound speed is given by a single profile for the water which

is truncated at the water/bottom interface. As shown in

Fig. 5, the sound speed is a downward refracting profile

with a surface speed of 1536 m per second, and decreases to

a minimum value of 1485 m per second. In Fig. 5, the hori-

zontal line at 81 m represents the most shallow water mea-

surement, while the horizontal line at 494 m is the deepest.

The ocean floor is modeled as a sandy bottom, with a sound

speed of 1650 m per second, density of 1.9 g per cubic centi-

meter, and attenuation of 0.8 dB per acoustic wavelength.

For the coupled mode output, the process for choosing

the number of modes to include is not trivial. The propagat-

ing modes as well as a finite number of leaky modes must

be included to approximate the field near the source.16 In the

case of a fully reflecting seabed, the number of required

modes would be straightforward to determine. Here, the

number of water-trapped modes at the location where these

are most numerous would be the minimum required, and

improved simulation would result by adding a few modes

that would be leaky everywhere. The presence of these

leaky modes would change the results for energy transfer

into the seabed at all coupling locations (sloped seabed loca-

tions). However, for an environment where sound penetrates

the seabed such as used here, the mode set may transition

FIG. 3. (Color online) Comparison of adiabatic and coupled models for vertical mode 3 in the berm model. Subfigures (a), (b), and (c) represent outgoing,

adiabatic scattered, and coupled scattered dB scale mode 3 amplitudes, while (d), (e), and (f) are the associated phases.

TABLE I. Step bathymetry test parameters.

Mode # k100 [m�1] k75 [m�1] REFA [dB] REFT [dB]

1 0.2076 þ i8 
10�6 0.2064 þ i2 
10�5 �50.7 �50.7

2 0.2019 þ i3 
10�5 0.1966 þ i6 
10�5 �37.6 �37.5

3 0.1916 þ i6 
10�5 0.1783 þ i0.0001 �29.0 �28.9

4 0.1760 þ i0.0001 0.1495 þ i0.0023 �22.1 �21.8

5 0.1543 þ i0.0010 0.0921 þ i0.0102 �12.6 �11.9

6 0.1185 þ i0.0047 0.0142 þ i0.0968 �3.77 �1.56

FIG. 4. (Color online) Hudson Canyon bathymetry. Markers represent loca-

tions of tested sound sources. Contours begin at 100 m depth and repeat at

25 m intervals. Sources are labeled S1, S2, and S3.
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gradually from fully trapped low-order modes (little or no

attenuation) through slightly bottom interacting and slightly

attenuating with range, to greatly attenuating, then to eva-

nescent in the horizontal. In this case, the horizontal modal

attenuation (the imaginary component of the horizontal

modal wavenumber kh
23) provides an estimate of the hori-

zontal range of influence of a given mode in the absence of

coupling. In the adiabatic case, selecting modes which decay

quickly within some selected distance from the source

ensures that beyond that distance, the field is well approxi-

mated. However, with a strongly range-dependent environ-

ment where mode coupling is crucially important,

propagating trapped modes can couple into strongly attenu-

ating modes, increasing the horizontal area where these oth-

erwise unimportant modes are energized, while also

changing the energy content of the propagating modes

(increasing bottom loss). Therefore, the simulated field will

depend on the number of modes used. The coupling effects

are difficult to know without actually completing the full

calculation, which is not feasible in cases like the one pre-

sented here, where the computational demands can become

large as the number of modes is increased. The number of

modes used for these numerical examples was chosen by

using a horizontal decay rate metric which is described in

the following paragraph, including modes up to those with

very strong horizontal attenuation, and then assessing the

final coupled modal amplitudes to ensure that the highest

mode included does exhibit strong range attenuation despite

the coupling influence.

Mode amplitudes are proportional to exp ðikhrÞ, thus

decay like exp ð�ImðkhÞrÞ. The amplitude e-folding scale

can be used as a decay metric,24 i.e., D ¼ ImðkhÞ�1
. In the

cases tested here, 16 modes are included, with mode 16 hav-

ing decay ranges of 2, 7, and 474 m at S1, S2, and S3, and

mode 17 having decay ranges of 2, 6, and 381 m at S1, S2,

and S3. Clearly, these are leaky modes at two of the source

positions, and travel only a few wavelengths in the canyon

at S3. With mode coupling, these ranges will no longer be

accurate representations of the modal decay, but they are

selected because of the high attenuation especially in the

case of S1 and S2, and the coupled amplitude decay can be

confirmed after computations are complete.

To examine how the coupled mode approach measures

up to other propagation modeling methods, a 3D PE model

was used to generate a comparison field.10,11 For both mod-

els, a 50 Hz sound source is placed at a depth of 8 m over a

195 m deep location, which is marked by a square marker in

Fig. 4. The intensity values for the modeled acoustic fields

are plotted in dB on horizontal planes at depths of 9, 99, and

249 m for the coupled mode and PE models in Fig. 6. In

these figures, black contours represent bathymetry depths on

50 m intervals starting with 100 m, and the dashed (blue)

contours in Figs. 6(b) and 6(c) illustrate the water/bottom

intersection for the plotted depth. A visual comparison of

the two does reveal some shared behavior, but generally the

field calculations represent quite different outcomes for

interference patterns. The differences in interference pat-

terns can be generally attributed to both a change in the

propagation mechanisms being modeled (forward propagat-

ing PE, omnidirectionally propagating coupled modes, han-

dling of bottom slope), and a known phase lag in the

coupled mode model compared to unknown phase accuracy

in the PE. This comparison aims to highlight the variations

(or similarities) in model output, in the context of competing

goals in acoustic modeling. Two goals in modeling acoustic

propagation in a highly range-dependent environment

include producing computationally efficient methods, and

producing physically accurate outcomes. Both methods

shown in Fig. 6 make physical and numerical approxima-

tions, and they do propagate comparable levels of acoustic

energy especially along the x coordinate direction which is

the propagation direction of the more computationally effi-

cient PE. The importance of the coupled mode approach

then is not simply in the ability to account fully for 3D

effects of the omnidirectional acoustic propagation, but also

that it provides a mechanism to study the transfer of modal

energy that is represented by the modal coupling coeffi-

cients. While mode filtering can be used with PE output to

study coupling effects, the coupling analysis cannot fully

incorporate the out-of-plane effects as not all propagation

directions are modeled. One potential use of the two models

which has not been explored in this paper is that the pres-

ence of very high angle sound energy in the mode solution,

not included in the PE solution, can be used to evaluate the

FIG. 5. (Color online) The depth-dependent sound speed in the water is

plotted. The upper horizontal line (red) is at the most shallow water depth

(81 m), bottom line (red) is at the deepest point (494 m).
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utility (or limitations) of the more practical PE, Gaussian

beam, or forward-restricted coupled mode solutions in these

challenging environments.

To illustrate the influence of the canyon on acoustic

propagation, three separate sound sources are tested and

acoustic fields are plotted on three horizontal planes. Source

1 (S1) is denoted by the circle marker in Fig. 4, and is at a

depth of 8 m. The water depth at S1 is 89 m. Source 2 (S2) is

denoted by the square marker in Fig. 4, and is the same

source that generated Fig. 6. Like S1 it is located at a depth

of 8 m, but here the water depth is 195 m. Source 3 (S3) is

denoted by the triangle marker in Fig. 4, and is at a depth of

150 m where the total water depth is 297 m. The acoustic

intensity in three horizontal planes at 8, 100, and 200 m

deep is plotted for each source in Fig. 7, with the color lev-

els matching those in Fig. 6.

In Figs. 7(a)–7(c) the influence of the canyon and the

downward refracting sound speed profile on the field gener-

ated by S1 is clear. As the sound propagates over the can-

yon, it travels down from the surface toward the canyon

floor, as evidenced by the relatively low intensity over the

canyon at the 8 and 100 m levels, and the comparatively

higher intensity in the 200 m plane. Similarly, S2 shown in

Figs. 7(d)–7(f) exhibits the downward refracting influence

of the sound speed profile, with acoustic energy propagating

more strongly in the 200 m plane. Additionally, the focusing

effect of the smaller arm of the canyon over which S2 is

placed is clear, with the sound propagation being strongest

along the thalweg of this part of the canyon. With S3 shown

in Figs. 7(g)–7(i), the energy propagation is much stronger

compared to S1 and S2, as more propagating modes exist

deeper in the canyon, rather than decaying into the bottom.

To understand the importance of an omnidirectional

propagation model in contrast to the forward propagation

PE, consider some example modal amplitudes as shown in

Figs. 8 and 9. Mode 8, illustrated in Fig. 8 over a more

restricted 9 km
 9 km region, is the first mode that very

clearly displays refraction/reflection from the canyon wall

opposite the source location. For clarity, the dB scale magni-

tudes of the modes are shown. This is most clear in the adia-

batic amplitude 10 log10jR
ð0Þ
8 j

2
, but the coupled amplitude

10 log10jR8j2 is the more accurate representation of where

vertical mode 8 propagates. Both adiabatic and coupled

mode amplitudes show modal energy refracting/reflecting

back from the canyon wall opposite the source location,

which is behavior that cannot be fully captured in a forward-

only propagation model. To clarify the importance of the

coupling, a relative difference between adiabatic and cou-

pled mode amplitudes is shown, where white indicates

agreement in mode amplitude, while darker colors represent

either stronger (red) or weaker (blue) propagation for the

coupled amplitude compared with the adiabatic. The relative

difference is computed as diff ¼ 2ð log10jRnj � log10jRð0Þn jÞ=
ð log10jRnj þ log10jRð0Þn jÞ, similar to the relative difference

calculation in Eq. (9). At points where both �20 log10jRnj
> 120 and �20 log10jRð0Þn j > 120, the relative difference

calculation is forced to be zero, with the intention of de-

emphasizing the difference at locations where both the adia-

batic and coupled mode amplitudes exhibit high energy loss.

This also eliminates the numerical issues associated with the

relative difference metric in the case where both amplitudes

equal zero. Figure 9 similarly presents the adiabatic and cou-

pled amplitudes for mode 11, and their relative difference.

In Figs. 8 and 9, the adiabatic mode amplitudes cannot

show explicit horizontal reflection from the changing bathym-

etry, which is contained within the mode coupling coeffi-

cients in Eqs. (3) and (4). The coupled mode amplitudes do

contain both vertical and horizontal reflection information. In

both situations, strong refraction and reflection show that

sound energy propagates generally back toward the source, or

greater than 90 degrees from the primary propagation direc-

tion. This type of energy propagation is excluded in the PE

method, with 3D PE models instead assigning backward

propagating energy to other components of forward propaga-

tion or to dissipation mechanisms.13,14,25 Of note is the ability

of propagating modes to couple into horizontally attenuating

FIG. 6. (Color online) Horizontal plane slices of the transmission loss in the Coupled Mode (CM) and PE models are plotted for source S2 at a source depth

of 8 m, with plane depths of 9 m in (a), 99 m in (b), and 249 m in (c). Thick contours represent bathymetry levels at 100 m intervals, beginning with 100 m.

Thin contours represent bathymetry levels at 50 m intervals. The dashed (light blue) contours in (b) and (c) show the intersection of the plane with the water/

bottom interface.
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leaky modes to carry modal energy into regions where the

adiabatic approximation suggests the leaky modes do not

reach. This is most clearly seen in Figs. 8 and 9 where the

energy has propagated into the shallow regions of the canyon.

VII. DISCUSSION OF IMPLEMENTATION
DIFFICULTIES

The accuracy of the acoustic field solution presented in

this paper depends on many factors. The mode functions

and modal parameters must be accurate, as well as the cou-

pling coefficients computed from these. These are difficult

to know in the real ocean, and determining these in compact

areas is the goal of many ocean acoustic inverse experi-

ments. The ability to compute a solution of specified accu-

racy will also be a function of the number of modes in the

model, with computational speed and convergence proper-

ties suffering as more modes are used in an effort to improve

near-field accuracy. Solutions for environments with easy-

to-compute modes, such as uniform hard seabeds, are

FIG. 7. (Color online) Acoustic intensity. (a)–(c): Source location 1 (S1) is 8 m deep in 89 m of water, with planes at z¼ 8, 100, and 200 m. (d)–(f): Source

location 2 (S2) is 8 m deep in 195 m of water, with planes at same depths as (a)–(c). (g)–(i): Source location 3 (S3) is 150 m deep in 297 m of water, with

planes at same depths as (a)–(f).

FIG. 8. (Color online) Mode 8 amplitude: adiabatic 10 log10jR
ð0Þ
8 j

2
, coupled 10 log10jR8j2, and relative difference.
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simpler to compute and verify with the chosen finite-

element method, but these are not overly useful for general-

ized 3D ocean acoustic scenarios.

The general approach taken here is to evaluate the ana-

lytically “exact” Helmholtz equation solution in a semi-

idealized scenario (fixed sound speed profile, semi-infinite

single layer half-space bottom with an attenuation gradient)

given by Eq. (1), and introduce only a numerical approxima-

tion in the computation process with the exception of the

necessary analytical approximation of mode truncation.

Without introducing analytical approximations first such as

in the PE method, where the directional restriction forces

series or rational expansion solutions, implementing the 3D

coupled mode model numerically raises a number of com-

plications. Of all the components of the computations, cal-

culating the mode amplitudes given by Eq. (7) is the most

challenging. Without approximating the Helmholtz equation

as is done in the PE method, a high grid resolution of 10

points per modal horizontal wavelength was required. Even

at the long wavelength of about 30 m associated with the

50 Hz source, this leads to millions of spatial points to which

the finite element method is applied. To increase efficiency

in this coupled mode computation process, this is the portion

of the calculation which requires the most attention. In the

calculations here, the “backslash” (mldivide) operator in

MATLAB is used, which selects one of a number of exact and

approximate direct, decomposition, or iterative methods on

the matrix equation resulting from the finite element

method.26 One method of speeding up this process is to

exchange the computationally expensive sparse matrix

inversions with a properly preconditioned iterative approxi-

mation process in Eq. (8), which is an area that has seen

some research in the underwater acoustics community.27,28

A second area of the numerical implementation that

adds to the computational complexity is the handling of

mode calculations as bathymetry transitions from deep to

shallow water. The difficulties stem from two requirements

of the method: a sufficient number of modes must be calcu-

lated in order to accurately represent the acoustic field, and

for all required modes both the mode shape and horizontal

modal wavenumber information is needed to compute the

mode amplitudes. To determine the number of modes that

are needed to represent the acoustic field, higher modes

which decay within a short distance of the source location

can be discarded. A simple approximation of 1=ImðkhÞ < rd

for some selected distance rd from the source can be used to

find modes that attenuate quickly in range to supply a strict

lower bound on the number of modes, but with each added

mode the number of times that Eq. (8) must be solved

increases. This can quickly create an issue when higher fre-

quencies are included and the number of modes increases,

and significantly increases the importance of addressing the

efficiency of the Helmholtz equation solution method.

Requiring mode and modal wavenumber information

everywhere in the horizontal domain is also an issue for gen-

eralized environment computations. As the water depth

decreases, a mode which may have been trapped in the

water can become strongly bottom interacting and no longer

integrable as it transitions into the leaky mode domain. In

this paper, the issue is addressed by introducing a small gra-

dient in the bottom attenuation and sound speed,3,19 which

will force the modes to decay exponentially after some

amplitude growth in the bottom. However, even this

approach has its limitations, as the gradient must remain

small (suggested3 less than about 0.18 dB/wavelength and

5.5 m/s/wavelength) to reduce error in the acoustic field in

the water. As such, placing a limitation on the size of the

gradient restricts the amount of control one has over the

depth at which the mode begins to decay exponentially,

which in turn can increase the demands on computer hard-

ware as both hard drive and RAM storage requirements

increase. This issue arises when a mode which is propagat-

ing at the source must travel over a continually decreasing

water depth, becoming leakier as it propagates. Of course,

leaky modes lose energy into the bottom, so their influence

drops off in range. One way to make use of this fact would

be to incorporate a method of replacing leaky mode calcula-

tions with dummy values that will not introduce meaningful

computational errors where the mode influence is negligible.

As the mode shapes are also needed for computing coupling

coefficients however, implementing this concept is not

straightforward, and it was not addressed in this paper.

As a final note to reiterate the importance of increas-

ing the computational efficiency of the Helmholtz

FIG. 9. (Color online) Mode 11 amplitude: adiabatic 10 log10jR
ð0Þ
11 j

2
, coupled 10 log10jR11j2, and relative difference.
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equation solution method, consider that for a problem with

N modes that take up to M iterations to converge to an

accurate solution, a total of up to NM matrix inversions

must be computed. In the numerical tests presented here,

N¼ 16, and M � 6, such that NM � 96. Including the

sponge, the computations presented in this paper were com-

pleted on a 3425
 5105 grid (which generates a 17.5
 106

by 17.5
 106 element sparse matrix), using dual Intel Xeon

E5–2680 v4 processors, which each have 14 dual thread

cores operating at 2.40 GHz (workstation was built by Pogo

Linux, Redmond, WA). For a single sparse matrix inversion

which uses MATLAB’s multithreading capabilities to compute,

the clock time was 6 min and 26 s, while the CPU time was

1 h 34 min 9 s. If a full 6 iterations are required to converge

for each mode, which is generally not the case, the clock

time for the full computation is more than 10 h, while the

CPU time is more than 6 days.

VIII. CONCLUSION

A 3D omnidirectional coupled mode model was pre-

sented and implemented numerically in a 9 km
 14 km

region of the Hudson Canyon. The environment selected

had a bathymetry range from 81 to 494 m of water depth,

possessing local slopes of up to 25 degrees or more. To

restrict the focus on the influence of bathymetry, a single

sound speed profile for the water was replicated through-

out the domain and truncated at the water/bottom inter-

face, while three separate source locations in and around

the canyon were tested. A comparison between the cou-

pled mode approach and a PE model was given, which

revealed differences in acoustic interference patterns in

three different horizontal planes. The method described

here faces a number of difficulties in implementation

which are outlined, and methods for improving efficiency

have been discussed. Ultimately, this representation of

3D omnidirectional propagation can be useful for a num-

ber of research applications. The 3D mode coupling

approach allows for both an analytical and numerical

study of the comparative influence of large and small

scale bathymetry variations on acoustic fields, and can

aid in assessing the reliability of the convenient but phys-

ically inaccurate adiabatic approximation. The latter

application is of interest, as not only can the adiabatic

approximation quite clearly identify complex refractive

behavior in a submarine canyon environment as shown in

this paper, but it is more readily analyzed via asymptotics

to estimate the influence of environmental parameters on

acoustic fields.
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8H. J. Lugt and P. Uginčius, “Acoustic rays in an ocean with heat source or

thermal-mixing zone,” J. Acoust. Soc. Am. 36, 689–694 (1964).
9M. B. Porter, “Beam tracing for two- and three-dimensional problems in

ocean acoustics,” J. Acoust. Soc. Am. 146, 2016–2029 (2019).
10T. F. Duda, “Initial results from a Cartesian three-dimensional parabolic

equation acoustical propagation code,” WHOI Technical Report WHOI-

2006-14 (Woods Hole Oceanographic Institution, Woods Hole, MA,

2006).
11Y.-T. Lin, T. F. Duda, and A. E. Newhall, “Three-dimensional sound

propagation models using the parabolic-equation approximation and the

split-step Fourier method,” J. Comp. Acoust. 21, 1250018 (2013).
12E. K. Westwood, C. T. Tindle, and N. R. Chapman, “A normal mode

model for acousto-elastic ocean environments,” J. Acoust. Soc. Am. 100,

3631–3645 (1996).
13M. D. Collins and R. B. Evans, “A two-way parabolic equation for acous-

tic backscattering in the ocean,” J. Acoust. Soc. Am. 91, 1357–1368

(1992).
14D. Zhu and L. Bjørnø, “A three-dimensional, two-way, parabolic equation

model for acoustic backscattering in a cylindrical coordinate system,”

J. Acoust. Soc. Am. 108, 889–898 (2000).
15M. S. Ballard and J. D. Sagers, “Measurements and modeling of acoustic

propagation in a scale model canyon,” J. Acoust. Soc. Am. 146,

1858–1866 (2019).
16F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt,

Computational Ocean Acoustics, 2nd ed. (Springer, New York, 2011),

Chaps. 3 and 5.
17C. Sch€ar, D. Leuenberger, O. Fuhrer, D. L€uthi, and C. Girard, “A new

terrain-following vertical coordinate formulation for atmospheric predic-

tion models,” Am. Meteorological Soc. 130, 2459–2480 (2002).
18D. B. Haidvogel, H. Arango, W. P. Budgell, B. D. Cornuelle, E.

Curchitser, E. Di Lorenzo, K. Fennel, W. R. Geyer, A. J. Hermann, L.

Lanerolle, J. Levin, J. C. McWilliams, A. J. Miller, A. M. Moore, T. M.

Powell, A. F. Shchepetkin, C. R. Sherwood, R. P. Signell, J. C. Warner,

and J. Wilkin, “Ocean forecasting in terrain-following coordinates:

Formulation and skill assessment of the Regional Ocean Modeling

System,” J. Comp. Phys. 227, 3595–3624 (2008).
19M. S. Ballard, B. M. Goldsberry, and M. J. Isakson, “Normal mode analy-

sis of three-dimensional propagation over a small-slope cosine shaped

hill,” J. Comp. Acoust. 23, 155005 (2015).
20T. J. R. Hughes, The Finite Element Method: Linear Static and

Dynamic Finite Element Analysis (Dover Publications, New York,

2000) Chap. 1.
21H. K. Brock, “The AESD parabolic equation model,” Rep. TN-12,

Naval Ocean Research and Development Activity, NSTL Station, MS

(1978).
22F. Ihlenburg and I. Babu�ska, “Finite element solution of the Helmholtz

equation with high wave number Part I: The h-version of the FEM,”

Computers Math. Appl. 30, 9–37 (1995).
23M. J. Buckingham, “Array gain of a broadside vertical line array in shal-

low water,” J. Acoust. Soc. Am. 65, 148–161 (1979).
24Y.-T. Lin, K. G. McMahon, J. F. Lynch, and W. L. Siegmann,

“Horizontal ducting of sound by curved nonlinear internal gravity

J. Acoust. Soc. Am. 148 (1), July 2020 Brendan J. DeCourcy and Timothy F. Duda 61

https://doi.org/10.1121/10.0001517

https://doi.org/10.1121/1.428083
https://doi.org/10.1121/1.2141212
https://doi.org/10.1121/1.2141212
https://doi.org/10.1121/1.1909303
https://doi.org/10.1121/1.386744
https://doi.org/10.1121/1.386744
https://doi.org/10.1121/1.404293
https://doi.org/10.1121/1.1919043
https://doi.org/10.1121/1.5125262
https://doi.org/10.1142/S0218396X1250018X
https://doi.org/10.1121/1.417226
https://doi.org/10.1121/1.402465
https://doi.org/10.1121/1.1286074
https://doi.org/10.1121/1.5125130
https://doi.org/10.1175/1520-0493(2002)130%3C2459:ANTFVC%3E2.0.CO;2
https://doi.org/10.1016/j.jcp.2007.06.016
https://doi.org/10.1142/S0218396X15500058
https://doi.org/10.1016/0898-1221(95)00144-N
https://doi.org/10.1121/1.382257
https://doi.org/10.1121/10.0001517


waves in the continental shelf areas,” J. Acoust. Soc. Am. 133, 37–49

(2013).
25M. B. Porter, F. B. Jensen, and C. M. Ferla, “The problem of energy conser-

vation in one-way models,” J. Acoust. Soc. Am. 89, 1058–1067 (1991).
26MATLAB: Mathematics, 2019b (The MathWorks, Inc., Natick, MA,

2019), pp. 2–14.

27E. Larsson and L. Abrahamsson, “Helmholtz and parabolic equation solu-

tions to a benchmark problem in ocean acoustics,” J. Acoust. Soc. Am.

113, 2446–2454 (2003).
28N. A. Gumerov and R. Duraiswami, “A broadband fast multipole acceler-

ated boundary element method for the three dimensional Helmholtz equa-

tion,” J. Acoust. Soc. Am. 125, 191–205 (2009).

62 J. Acoust. Soc. Am. 148 (1), July 2020 Brendan J. DeCourcy and Timothy F. Duda

https://doi.org/10.1121/10.0001517

https://doi.org/10.1121/1.4770240
https://doi.org/10.1121/1.400525
https://doi.org/10.1121/1.1565071
https://doi.org/10.1121/1.3021297
https://doi.org/10.1121/10.0001517

	s1
	s2
	l
	n1
	d1
	d2
	d3
	d4
	s3
	d5
	d6
	s4
	d7
	d8
	d9
	s5
	f1
	f2
	s6
	f3
	t1
	f4
	f5
	f6
	s7
	f7
	f8
	f9
	s8
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28

