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The two dominant drivers of the global mean sea level (GMSL)
variability at interannual timescales are steric changes due to
changes in ocean heat content and barystatic changes due to the
exchange of water mass between land and ocean. With Gravity
Recovery and Climate Experiment (GRACE) satellites and Argo
profiling floats, it has been possible to measure the relative steric
and barystatic contributions to GMSL since 2004. While efforts to
“close the GMSL budget” with satellite altimetry and other observ-
ing systems have been largely successful with regards to trends,
the short time period covered by these records prohibits a full
understanding of the drivers of interannual to decadal variability
in GMSL. One particular area of focus is the link between varia-
tions in the El Nino—Southern Oscillation (ENSO) and GMSL. Re-
cent literature disagrees on the relative importance of steric and
barystatic contributions to interannual to decadal variability in
GMSL. Here, we use a multivariate data analysis technique to es-
timate variability in barystatic and steric contributions to GMSL
back to 1982. These independent estimates explain most of the
observed interannual variability in satellite altimeter-measured
GMSL. Both processes, which are highly correlated with ENSO var-
iations, contribute about equally to observed interannual GMSL
variability. A theoretical scaling analysis corroborates the observa-
tional results. The improved understanding of the origins of in-
terannual variability in GMSL has important implications for our
understanding of long-term trends in sea level, the hydrological
cycle, and the planet’'s radiation imbalance.
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Since 1992, satellite altimetry has provided continuous and
near-global measurements of sea level, leading to the first
definitive assessment of changes in global mean sea level (GMSL)
(1). From the now 27-y record of satellite-measured sea level, it is
estimated that GMSL is rising at a rate of ~3 mm/y, and there are
indications of an acceleration in this rise during the record (2).
Although the long-term trend is a critical indicator of our warming
climate, providing an integrated measure of changes across the
climate system, the fluctuations that occur about this trend are also
informative. The two dominant drivers of the GMSL variability at
interannual to decadal timescales are steric changes due to changes
in ocean heat content and barystatic changes due to the exchange
of water mass between land and ocean (3, 4). With Gravity Re-
covery and Climate Experiment (GRACE) satellites and Argo
profiling floats, it has been possible to measure the relative steric
and barystatic contributions to GMSL since 2004 (5, 6). Subsequent
efforts to close the budget of GMSL by comparing the combined
steric and barystatic contributions to GMSL measured by satellite
altimeters over the same time period (7-10) have been largely
successful, particularly when focusing on trends, but the short time
period covered by these records prohibits a full understanding of
the drivers of interannual to decadal variability in GMSL.
Understanding the nature of this shorter-term variability and
the associated GMSL response can provide important information
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on the impact of large-scale signals like the El Nifio—Southern
Oscillation (ENSO) on the global climate system (11-13), in-
cluding Earth’s energy budget and the global hydrological cycle.
The global oceans play a dominant role in Earth’s energy budget
and hydrological cycle, accounting for over 90% of the changes in
global heat storage, and reflecting variability in the transfer of
water to and from land. Closing the GMSL budget across time-
scales is thus essential to closing the global energy and hydrolog-
ical budgets. Perhaps most importantly from a climate change
perspective, shorter-term variability serves to obscure the back-
ground trend in the still relatively short modern sea level records
that are available (14-16). Improving the understanding and re-
moving the natural fluctuations on shorter timescales could, in
turn, improve our ability to detect the background forced or an-
thropogenic trend in GMSL. In addition, understanding the
drivers of the short-term swings that occur about the long-term
trend would aid in planning efforts as high-tide flooding at the
coast continues to increase (e.g., ref. 17).

Despite its importance and likely due to the availability of only
short records, recent literature has disagreed on the relative
importance of steric and barystatic contributions to interannual
variability in GMSL (18-23). Here, we attempt to provide a
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clearer understanding of this variability by applying a multivari-
ate data analysis technique to estimate variability in barystatic
and steric contributions to GMSL back to 1982. These longer
independent estimates allow us to investigate the observed in-
terannual variability in satellite altimeter-measured GMSL, and
understand the role of ENSO in driving changes in GMSL. We
interpret our observational results in light of a simple theoretical
scaling analysis, thereby improving our process-based un-
derstanding of the origin of interannual variability in GMSL.

Extending Sea Level Data Records

The GRACE record of mass change and Argo record of steric
sea level are too short to yield a significant advance on the
current understanding of interannual to decadal fluctuations in
GMSL. We extend these records in time by applying a multi-
variate data analysis technique, which relies on overlapping
physically related, correlated datasets with longer records. Fur-
ther details can be found in Methods, but a brief summary is
provided here for the case of extending the GRACE record. A
schematic outlining the technique is also provided (Fig. 1) and
connected to the explanation below.

For the purposes of this study, one of the measurements we
are extending is terrestrial water storage (TWS), as measured by
GRACE (representing the target variable [TV] in Fig. 1, step 1).
After removing ice-related trends in the GRACE record and
only using the data over land, the remaining mass changes are
predominantly reflective of changes in the storage of water over
land, and are highly correlated with land precipitation and land
surface temperature (24). TWS is informative of barystatic sea
level (25). By conservation of mass, the spatial integral of mass
anomalies over all land, divided by the ocean surface area, will
mirror (be equal and opposite to) anomalous barystatic sea level.
Using a modern record (GRACE) and a longer, overlapping
record (e.g., precipitation, or the predictor variable [PV] in

Fig. 1, step 1), we compute combined statistical empirical or-
thogonal function (EOF)-based modes (26, 27) of variability of
both datasets during the overlapping period, creating spatial
patterns of the individual datasets, and a common time series of
their temporal evolution (Fig. 1, step 2). We then project the
spatial patterns of precipitation obtained in the EOF-based de-
composition back onto the full precipitation dataset to obtain the
temporal evolution of each pattern over the full length of the
precipitation record (Fig. 1, step 3). Finally, we recombine the
spatial patterns of GRACE from the EOF-based decomposition
with the longer time series from the projection onto the pre-
cipitation data (Fig. 1, step 4). Other datasets can be used, and
their inclusion has been evaluated (see Methods), and, in this
case, the TWS extension relies on precipitation (28) and surface
temperature, while the steric sea level extension uses only sea
surface temperature (SST) (29). The justification for using only
SST to extend steric sea level comes partially from a recent study
that used SST to reconstruct historical ocean heat content back
to 1871 (30). The argument made in the study is that variability
in ocean heat content will be inherited at the surface and thus
reflected in measurements of SST. Assuming the extension or
reconstruction technique can properly account for any time lag
between a change in SST and change in ocean heat content,
establishing a relationship with SST should be sufficient to re-
produce steric sea level changes. Additionally, the magnitude of
the changes in steric sea level stem from the Argo basis func-
tions, and the SST is used only to reproduce the temporal evo-
lution of the basis functions back through time. Finally, the focus
here is on the global mean steric sea level changes, which have
been shown to be primarily controlled on these timescales by
regional steric sea level changes in the tropical Pacific (18), a
region where sea level and SST are strongly correlated. While
not the focus of this study, extended regional steric sea level time

Target variable (TV) is variable of interest with

TV Past short record length, and predictor variable (PV) is
physically related variable with longer record.
PV
Further in Past
2. EQF-Based Analysis During Overlap Compute EOFs of both T.V. and P.V.

simultaneously during overlapping period to obtain
basis functions with common temporal evolution
but different spatial patterns.
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Fig. 1. Schematic showing the four steps of the data extension of a TV using a physically related PV.
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series reconstructed from SST could show important systematic
errors and should be treated cautiously.

The result of this procedure in this study is a half-degree,
monthly TWS dataset from 1982 through 2018 (31), and a one-
degree, monthly steric sea level dataset from 1982 through 2018
(32). We compute the barystatic contribution to GMSL by
inverting TWS anomalies in our extended dataset and converting
them to sea level change units by dividing by ocean surface area.
We use the term “steric” to refer to the dataset produced here,
as no attempt has been made to remove halosteric-related sea
level variability, but we note that the steric contributions in
GMSL are necessarily thermosteric in nature (3).

Steric and Barystatic Contributions to GMSL

To check the ability of the extended datasets to explain varia-
tions in GMSL, the barystatic and steric GMSL contributions are
estimated and compared to their underlying modern data record.
The extended steric dataset matches closely with the GMSL
computed from the Argo dataset, showing an initial negative
trend in the first half of the record before reversing in the second
half (Fig. 2, Top). Over the full length of the extended record, there
is a large increase in the steric contribution to GMSL for both the
1997/1998 and 1982/1983 El Ninos. Another notable feature is a
brief decline in GMSL starting in 1988 and recovering in 1990.
Similarly, the barystatic contribution from the extended TWS
dataset agrees well with the underlying GRACE dataset, repro-
ducing the large increase in 2011 and the decrease that peaks in
2016 (Fig. 2, Middle). Prior to the GRACE record, decreases in
barystatic GMSL coincide with the 1997/1998 and 1982/1983 El
Ninos. These extended records strengthen the conclusions in Pie-
cuch and Quinn (18), Dieng et al. (23), and Fasullo and Nerem
(34), which were either limited to short records (18, 23) or used a
strictly model-based approach (34). Specifically, those studies and
the analysis here suggest that ENSO variability elicits significant
and near-equal magnitude in both barystatic and steric contribu-
tions to GMSL. The correlation between the barystatic and steric
time series and the Multivariate ENSO Index (35) are found to be
0.53 and 0.67 from 1982 to 2018, similar to the correlations
obtained by Piecuch and Quinn (18) from 2005 to 2015.

We also note that steric and barystatic GMSL time series can
be computed from other available datasets. SI Appendix, Fig. S1
provides a comparison of several steric sea level GMSL time
series, including the one produced here. There is little agreement
between the different time series, which generally have very large
amplitude interannual variability throughout the record. For the
barystatic GMSL contribution, a comparison is made between the
presently extended dataset and the reconstruction of Humphrey
and Gudmundsson (25). (S Appendix, Fig. S2). The two time se-
ries agree well during the GRACE time period, but diverge as the
record is extended into the past. The reason for this divergence is
not immediately clear, and requires a more in-depth examination
to determine which one may be more representative of barystatic
sea level. Furthermore, in a recent study, global hydrological
models were shown to not reproduce the interannual to decadal
variability in the GRACE record, concluding that the models are
not suitable to quantify global TWS-induced barystatic changes
prior to the GRACE record (36). As a result of these differences,
associated studies, and the fact that fully assessing the origin of
these disagreements is outside of the scope of the paper, the rest of
the paper only considers and uses the datasets produced here.

The steric and barystatic GMSL contribution time series can
be combined and then compared to total sea level as measured
by satellite altimeters (Fig. 2, Bottom; description of altimeter
data in Methods). To quantify the consistency and agreement
between time series, the percentage of variance in the GMSL
time series that is explained by the steric, barystatic, and com-
bined contributions is computed over different time periods
(Table 1). For each time period, the variance explained by the
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Fig. 2. (Top) Steric contribution to GMSL from 1982 to 2018 estimated from
extended dataset and Argo measurements. (Midd/e) Barystatic contribution
to GMSL from 1982 to 2018 estimated from extended TWS dataset and
GRACE data. (Bottom) Comparison of combination of steric and barystatic
contributions from extended datasets to satellite altimetry and a sea level
reconstruction.

steric time series alone is greater than 65%, while the variance
explained by the barystatic time series is greater than 42% (note
that the explained variance is defined here as the percentage
difference between the variance in total GMSL and variance in
GMSL minus the contributor time series). Most importantly, the
combination of the two contributors explains more than 76% of
the variance in the altimeter-measured GMSL for each time
period. The rms value of the residuals between the altimetry
GMSL and combined steric and barystatic contributions is also
less than 2 mm. In general, the residuals are small (<2 mm)
throughout the record, except during two time periods: 1996/
1997 and 2016/2017. The causes of these discrepancies remain to
be understood. While a formal error analysis is beyond the scope
of the present study (discussed in more detail below), Piecuch
and Quinn (18) provide SE estimates in the range of 1 mm to
2 mm for monthly Argo, GRACE, and altimetry GMSL time
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Table 1. Percentage of explained variance of altimetry GMSL
time series for steric, barystatic, and combined contributions for
different time periods

2005-2019, %  1993-2019, %  1982-2019, %

Steric 73 65 65
Barystatic 43 42 45
Steric + barystatic 83 76 77

For the period from 1982 to 2019, the sea level reconstruction is used
prior to 1993. A 12-mo smoothing is also applied to each time series prior to
computing the explained variance.

series. This serves as a baseline for the uncertainties on the
products generated here. In terms of specific events within the
record, both the altimetry and combined contributors have an

increase of ~0.5 cm associated with the 1997/1998 El Nifno. To
provide a comparison prior to the altimeter record, a re-
construction of sea level that combines tide gauges and satellite
altimetry can be used (33) (Fig. 2, Bottom, black). The combined
extended datasets reproduce the decline in GMSL from 1988 to
1990, and the increase in GMSL associated with the 1982/1983
El Nino. While other sea level reconstructions have been pro-
duced and often disagree, Chambers et al. (37), Calafat et al.
(38), and Dangendorf et al. (39) all reconstruct the almost ~1-cm
decline in GMSL that starts in 1988. Chambers et al. (37) ex-
amined this event in greater detail, finding agreement with sea
level measurements made by Geosat. Comparing the re-
construction used here and the reconstruction from Calafat et al.
(38) shows the general agreement between reconstruction
products (SI Appendix, Fig. S3). Also, to test the sensitivity of
these comparisons to the underlying datasets, we have repeated
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Fig. 3. Short-term trends in the steric and barystatic contributions to GMSL from the extended datasets, computed using a (A) 2-y window, (B) 5-y window,

and (C) 10-y window.
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the analysis using precipitation, surface temperature, and SST
from the National Centers for Environmental Prediction re-
analysis (40) The resulting correlations are provided in SI Ap-
pendix, Table S1, and demonstrate that similar conclusions can
be drawn when relying on different datasets for the PVs.

We now examine relative steric and barystatic contributions to
GMSL over different timescales. To do this, we compute running
2-, 5-, and 10-y trends from the GMSL time series covering the
time period from 1982 to 2018 (Fig. 3). The 2- and 5-y trends are
chosen to be representative of the timescales upon which ENSO
typically varies, and the 10-y trends are selected to focus on
decadal variability in GMSL. For the 2-y trends that are most
representative of interannual variability, the barystatic contri-
bution is as large as the steric contribution and appears to in-
crease in magnitude toward the end of the record. Consistent
with the comparisons made in Fig. 2 and discussed above, the
steric and barystatic trends are of similar sign and magnitude for
most of the record, particularly during significant ENSO events.
The steric contribution appears to lead (by a couple of months)
the barystatic contribution for several of these events (e.g., 1982/
1983, 2009/2010, and 2015/2016 El Nifios and 1988/1989 and
2010/2011 La Nifas), supporting the findings of ref. 34. Short-
term trends can still be large during non-ENSO events. At longer
timescales, the steric contribution begins to exceed the barystatic
contribution, particularly for the 10-y trends (Fig. 3C). Both the
steric and barystatic 5- and 10-y trends are large and mostly
correlated during the record, highlighting the role of enhancing
or suppressing the background trend in GMSL depending on the
time period of interest, consistent with recent studies (e.g.,
ref. 24).

Scaling Analysis of GMSL Contributions

Based on the analysis conducted above, there are three key
findings regarding the relative contributions to variations in
GMSL, particularly on interannual timescales: 1) Barystatic and
steric contributions are nearly equal in magnitude, 2) the bary-
static and steric contributions are generally correlated, and 3)
both contributions are strongly connected to variations in ENSO.
This result, obtained over a longer time period than other
comparable previous studies, provides strong support for the
results of refs. 18, 23, and 34, while disagreeing with the as-
sessment that changes in GMSL are mostly driven by barystatic
variability (12, 21, 22). It remains to determine whether there is a
physical explanation for why the barystatic and steric GMSL
contributions are generally correlated and of similar magnitude.
To generate an initial hypothesis, we consider the changes in
air—sea exchanges on interannual to decadal timescales. While
the intent here is for the analysis to apply in general, the ENSO-
related behavior and response is of particular focus. By conser-
vation of volume, changes in barystatic sea level (#5) can only be
driven by anomalous air—sea freshwater flux,

one _ 1 [1
% =4 ]]po(E+P+R)dA, [1]

A

where E, P, and R are evaporation, precipitation, and runoff,
respectively, p, is a reference ocean density, and A is the global
ocean surface area. We assume that the change in global mean
steric sea level (770) is given by

011Q _ 1 a
?_Z/E(QHQHQHQS)M, [2]
A

where a is the thermal expansion coefficient, ¢, is the specific
heat capacity of seawater, and O, Oy, Oy, and Qg are the latent,
sensible, longwave, and shortwave fluxes, respectively. This assumption
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neglects any (probably higher-order) contributions from internal
redistribution by ocean currents and nonlinearities in the seawa-
ter equation of state. As discussed in a recent study (41), anom-
alous latent evaporative heat fluxes are an important driver of
heat flux in the tropical Pacific on interannual and longer time-
scales (see SI Appendix, Fig. S4 for further support). Those heat
fluxes are proportional to anomalous evaporation, such that the
ocean will lose water mass through evaporation at the same time
evaporative cooling occurs, or

Or = AE, [31

where A is the latent heat of vaporization of seawater. This
anomalous evaporation will be offset, in part, by precipitation.
In other words, the increased evaporation will lead to increased
precipitation. Using observational precipitation data (see TWS
Dataset), in general, 25% of this increased precipitation will fall
over land. This percentage ranges from ~20 to 30% for El Nifio
and La Nifia, respectively (SI Appendix, Fig. S5). Scaling the
barystatic contribution by this percentage, the relative contribu-
tions of barystatic and steric variability can be given in terms of
Eqgs. 1 and 2,

ong/ot o 0.25¢, ~1, [4]
ongfor aA

where we assume representative values for the constants of
cpa4x10° J-kg™!-°C™, Ax2.5x 100 J-kg™!, and a~3x 1074°C!
(assumed reasonable for the tropical ocean). While future stud-
ies will examine the impact of the assumptions made and further
investigate the relevant driving mechanisms, this preliminary
analysis provides a potential lowest-order physical explanation
for the observation-based results presented in this paper. Specif-
ically, both approaches show that steric and barystatic GMSL
changes in response to ENSO-like conditions are correlated
and of similar magnitude. On the shorter timescales (Fig. 34),
the scaling between the two contributors in Eq. 3 appears rep-
resentative of the observations, with TWS contributions gener-
ally exceeding steric contributions. This appears less true on
longer timescales, but a more thorough examination of the phys-
ical drivers is required before drawing further conclusions.

Discussion

There are a couple of caveats and potential limitations to con-
sider when interpreting the results presented above. First, the
overlapping period for the steric and TWS datasets is limited to
15 y, raising questions regarding the ability to capture decadal
variability. Any partial cycle of longer-timescale variability will
still be represented in the EOF-based modes, and thus will be
imparted on the resulting extended dataset. It is difficult to as-
sess the degree to which this variability is represented, so we note
it as a limitation of the technique, focus largely on the in-
terannual timescale, and adjust our conclusions accordingly.
Second, uncertainty in the extended datasets is a function of
several factors. These factors include length of the overlapping
time period (discussed above), representativeness of the modes
computed during the overlapping time period to the full record,
number of EOF-based modes used in the procedure, uncertainty
in the TV datasets, uncertainty in the PV datasets, and choice of
the PV datasets. The uncertainty associated with the latter three
factors is testable, but leads to likely unrealistically small error
estimates in terms of global mean contributions. Recognizing the
potential limitation in our ability to fully assess the uncertainty,
the analysis we perform here is focused primarily on scaling
analyses, and we specifically avoid attempting any type of
“budget closure” exercise. Finally, in an attempt to test the
ability of the procedure outlined above to extend the datasets
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back in time, we have used a model large ensemble (LENS)—the
Community Earth System Model (CESM) to conduct sensitivity
testing (see Methods and SI Appendix, Fig. S6). The goal of this
sensitivity testing is simply to determine whether physically re-
lated predictor datasets can be used to extend the record of a TV
back in time. There are model biases and uncertainties that
could impact these results, but choose to still include the results
of the test as an additional piece of support for the procedure
implemented here.

By extending the records of steric sea level and TWS over a
longer time period, advances in our understanding of the vari-
ability in GMSL have been demonstrated in this paper. On a
basic level, the strong agreement between the GMSL contribu-
tions estimated from the extended steric and TWS datasets, the
satellite altimetry data, and the tide gauge reconstructions serves
as validation for each dataset. In terms of the information de-
rived from these datasets, we have shown that there are corre-
lated barystatic and steric GMSL contributions of similar
magnitudes in response to ENSO variability from 1982 to 2018,
supporting refs. 18, 23, and 34 but disagreeing with refs. 12, 21,
and 22. Based on the results contained herein and with longer
records of TWS and steric sea level, there are many other ave-
nues of study to pursue. The relative steric and barystatic con-
tributions to variability in GMSL have potentially important
implications for the understanding of Earth’s energy budget and
the hydrological cycle that need to be investigated in light of the
budget analysis performed here. For example, quantifying the
Earth energy imbalance is typically done using Argo-based esti-
mates, which vary across products. The extended datasets pro-
duced here along with the good agreement demonstrated in
Table 1 potentially provide a further avenue for study. Fur-
thermore, regional patterns of steric sea level and TWS are
provided by the extended datasets, and can shed light on the
regional responses to climate signals like ENSO. Finally, the role
of interannual to decadal variability in obscuring the background
trend in GMSL was mentioned earlier in the paper. With the
demonstrated consistency between the different datasets, par-
ticularly on interannual timescales, it may be possible to remove
the GMSL variations associated with one or both of the con-
tributors from the satellite altimeter record and reexamine the
underlying trend and acceleration (e.g., ref. 2). In short, although
the focus here is on interannual to decadal variability, the
analysis and the opportunity presented by longer records can
lead to an improved understanding of changes in sea level across
a large range of timescales.

Methods

Data Extension Method. The premise of the data extension technique used
here originates from Smith et al. (42), with further refinement in Hamlington
et al. (43). Specifically, those studies demonstrated that a particular TV can
be reconstructed or extended back in time by relying on statistical rela-
tionships to other climate variables with longer observational records. While
both reconstructed the TV (precipitation and sea level, respectively) back to
the beginning of the 20th century, here the records are only extended back
to the beginning of the 1980s. Smith et al. (42) used canonical correlation
analysis to establish relationships between the TVs and extending variables,
and Hamlington et al. (44) used a combination of cyclostationary EOFs
(CSEOFs) (44) and a simple regression technique. Here, a modified procedure
is used and described as follows.

1) Identify a modern record to serve as the TV (e.g., TWS from GRACE) and
a PV that is physically related but has a longer, overlapping record (e.g.,
precipitation).

2) Compute combined CSEOF modes of variability of TV and PV during the
overlapping period, creating spatial patterns with common temporal
evolution. In other words, each returned mode contains two spatial pat-
terns (one for TV and one for PV), and a single time series representing
the spatial evolution.

13988 | www.pnas.org/cgi/doi/10.1073/pnas.1922190117

3) Project the spatial patterns of PV obtained in step 1 back onto the full
record of PV to obtain the temporal evolution of each pattern over the
length of PV.

4) Recombine the spatial patterns of TV obtained in step 1 with the time
series obtained in step 2.

The result of this procedure is a dataset in the variable of TV with the
record length of PV. Note, more than one variable can be included as PV in
this procedure. The seasonal cycle is included in this procedure, although is
removed prior to the analysis conducted here. The trend is dealt with dif-
ferently for the steric and TWS extended datasets, discussed in more
detail below.

It should be noted that CSEOFs play an important role in this procedure.
Prior to computing CSEOFs, a specific nested period is chosen for the returned
modes (the details on the selection of this nested period can be found in ref.
44). The spatial patterns of each mode thus have a periodicity imposed by
the chosen nested period. For example, for the case of an annual cycle that is
present in a dataset with monthly temporal resolution, each mode will
contain 12 spatial patterns (one for each month) and an associated time
series that represents the amplitude variations of the annual cycle. The
relaxing of the stationarity requirement when compared to traditional EOFs
is critical for the procedure described above. Variations associated with the
seasonal cycle in precipitation are known to lead variations in TWS, with the
associated time lags differing across the globe. CSEOFs as computed in step 1
can capture this lagged relationship in addition to the spatial variability in
this relationship across the globe. As long as the lag between variables is less
than the chosen nested period, CSEOFs provide the opportunity to capture
the relationship in a single mode. In other words, the procedure developed
and used here does require included variables to be in phase and/or
correlated.

Steric Sea Level Dataset. The steric sea level dataset produced here uses a
gridded Argo dataset from 2005 through 2017 as the TV, and SST from the
Optimum Interpolation Sea Surface Temperature (OISST v2) (56) from 1982 to
present as the extending variable (PV). The start date of this dataset sets the
start date of the analysis performed here. Prior to computing the combined
CSEOFs, no editing is performed, and the spatial pattern of the trends in the
final dataset is preserved. To compute the gridded steric sea level dataset
from Argo, we used monthly Argo in situ temperature and salinity distrib-
uted by the Scripps Institution of Oceanography. The resolution of the data
are a half-degree over 65°S to 65°N, and the depth from the surface to
2,000 m is divided into 58 sections with different increments (coarser grid for
deeper depth). Steric sea level is then computed following Gill and Niiler
(45). It should be noted that there is some disagreement between different
datasets generated using the in situ Argo measurements, and these differ-
ences are even more dramatic when attempting to extend the record of
steric sea level prior to 2005. The steric contribution to GMSL is shown for
several of these datasets, in S/ Appendix, Fig. S1, along with GMSL from the
dataset generated as part of this study. Due to the substantial differences
and the fact that the other products are unable to approach the satellite
altimetry GMSL when combined with the TWS contribution, we only con-
sider the steric product generated here in the main paper.

TWS Dataset. For the TWS dataset, we use monthly gridded estimates of
equivalent water thickness based on retrievals from GRACE. Specifically, we
used the mascon solutions from Release-06 data generated by the NASA Jet
Propulsion Laboratory (JPL) (46, 47) The data, whose native resolution is
about 200,000 km?, are regridded at 0.5° spatial resolution and covers the
time period from April 2002 through end of mission (June 2017). While
GRACE also provides measurements over the ocean and the ice sheets, only
data over land are used here to focus on TWS. Several monthly gaps in the
dataset were filled with interpolation relying on classical decomposition that
uses information about the trend, seasonal cycle, and residual variability
about these signals. To establish the statistical relationship with GRACE and
extend the record into the past, we use precipitation measurements from
the Global Precipitation Climatology Project (v2.3) (48) dataset covering the
time period from 1979 to present, in addition to the 2-m temperature from
ERAS5 (49) covering the same time period. Prior to use, both datasets were
regridded to the same grid as the GRACE data. As with the GRACE data, we
again use only the observations over land. Since the focus here is on the
variability about the trends, the trends over ice-covered regions are removed
prior to analysis. While other trends are retained, precipitation and 2-m
temperature data unlikely to be representative of some of the trends in
the GRACE dataset (e.g., trends associated with groundwater withdrawal),
and resulting trends on a regional level, should be treated with caution.
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Altimetry Data. Similar to ref. 8, we choose not to rely on a single satellite
altimetry-derived GMSL time series. Instead, we use the ensemble average
from five groups: AVISO (50), Colorado (51), CSIRO (52), NOAA (53), and JPL
(54). The time series are interpolated onto regular monthly intervals from
1993 through 2018 prior to use.

Sensitivity Testing. Validation of the extended steric and TWS datasets is a
challenge given the lack of available TWS observations prior to GRACE, and
the disagreement between steric sea level products prior to Argo (S/ Ap-
pendix, Fig. S1). In an attempt to test the ability of the procedure outlined
above to extend the datasets back in time, we use a model LENS—CESM (55).
Specifically, we take precipitation, TWS, surface temperature, SST, and steric
sea level fields from LENS and repeat the extension procedure. We take
length segments (37 y) equivalent to those provided by the actual obser-
vations, and extract the last 13 y to use in step 1 of the procedure above.
Once the extended datasets are created, we can compare the result to the
“truth” provided by the modeled TWS and steric sea level. Due to compu-
tational constraints, this procedure is repeated 100 times for both steric and
TWS datasets. The results of these tests are shown in S/ Appendix, Fig. S6,
showing only the correlation between the extended GMSL contribution and
the actual contribution for steric (with annual cycle, SI Appendix, Fig. S6A,
and without annual cycle, SI Appendix, Fig. S6B) and barystatic (S| Appendix,
Fig. S6 C and D). While providing some indication of ability to extend the
datasets using the procedure presented here, it should be noted that there
are differences between the model and observations that could impact the
results. One, in particular, is that the CSEOF analysis of LENS returns an
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