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Abstract

I provide a characterization of weakly pseudo-rationalizable choice functions—that is,
choice functions rationalizable by a set of acyclic relations—in terms of hyper-relations sat-
isfying certain properties. For those hyper-relations Nehring calls extended preference rela-
tions, the central characterizing condition is weaker than (hyper-relation) transitivity but
stronger than (hyper-relation) acyclicity. Furthermore, the relevant type of hyper-relation
can be represented as the intersection of a certain class of its extensions. These results
generalize known, analogous results for path independent choice functions.
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1 Introduction

Standardly, choice theory is concerned with choice functions defined over subsets of a universal
set of options, X, that can be rationalized by some binary relation on that universal set. Hyper-
relations provide a more general perspective (Aizerman and Malishevski, 1981; Nehring, 1997;
Danilov et al., 2015). These relations encode preferences, not just over options (or elements of
X), but over menus (or subsets of X) as well. Hyper-relations have served various theoretical
purposes. For example, they have been gainfully employed in studying certain aspects of freedom
of choice. Alternative conceptions of what it is for one menu to provide more freedom of
choice than another have been explored and characterized (Pattanaik and Xu, 1990; Sen, 1991;
Nehring and Puppe, 1999; Bossert et al., 2009). When there is uncertainty about future tastes,
preferences over opportunity sets might be taken to express “preference for flexibility” (Kreps,
1979).1 A second application of hyper-relations, and the more relevant one for this note, is to
the study of non-binary choice functions, that is, choice functions that cannot be rationalized
by a binary preference relation on X. Nehring, for instance, proposes taking hyper-relations
to serve “as canonical ‘preference structure’ to rationalize choice-functions” in part because the
notion of “extended preference relations unifies the general abstract theory of choice-functions.
In particular, all rationalization is of one kind” (Nehring, 1997, p. 405). By contrast, multiple
distinct rationalizability concepts are appealed to when abstract choice theory is developed in
terms of binary relations on X (see, e.g., Moulin, 1985).

1It would be interesting to bring a recent strand of philosophical literature on “transformative experience”
(Paul, 2014; Pettigrew, 2020) into closer contact with the literature on preference for flexibility.
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Path independent choice is one prominent form of non-binary choice (Plott, 1973). Hyper-
relations associated with path independent choice functions have interesting and nice mathemat-
ical properties, and have recently been exploited in matching theory (Chambers and Yenmez,
2017, 2018).2 Path independence is equivalent to pseudo-rationalizability, also called multi-
preference rationalizability (Moulin, 1985). Such choice functions can be thought of as selecting
from a menu the optimal elements according to a set of linear orders. Danilov and Koshevoy
observe that path independent choice functions constitute a very natural generalization of the
class of rational choice functions. One reason is that path independent choice function “is
the join of special rational (namely, linear) functions” (2005, p. 247). The class of weakly
pseudo-rationalizable choice functions—the focus of this note—lifts the restriction to the spe-
cial case; that is, any weakly pseudo-rationalizable choice function is the join of rational choice
functions, and any join of rational choice functions is a weakly pseudo-rationalizable choice
function. Weakly pseudo-rationalizable choice functions are those that can be rationalized
by some set of acyclic relations—rather than only by a set of total orders, as in the case of
pseudo-rationalizability. In standard presentations of choice theory, choice functions that can
be rationalized by just some (acyclic) binary relation or other are cleanly distinguished from
those that can be rationalized by a weak or linear order or some other specific type of binary
relation. It is natural to seek an analogous development of the multi-preference theory. Weak
pseudo-rationalizability is the multi-preference analogue of rationalizability simpliciter.

There are multiple candidate interpretations. Weak pseudo-rationalizability can be seen as
a minimal standard of rational choice for individual agents. On the one hand, some see “no
analytical reason, nor any practical necessity” in imposing stronger constraints on a preference
relation than acyclicity (e.g., Sen, 2017, p. 455). On the other hand, a number of different
studies appeal to multiple preference relations to rationalize choice (e.g., Aizerman, 1985; Levi,
1986; Kalai et al., 2002; Manzini and Mariotti, 2007). Weak pseudo-rationalizability allows
both generalizations simultaneously: choice functions can be rationalized by multiple relations
without imposing more than acyclicity on those relations. In the context of social choice, a
weakly pseudo-rationalizable choice function can be interpreted as selecting those options that
are choice-worthy according to some relevant social rationale. In the context of bounded ra-
tionality, such choice functions can be interpreted as a type of competition filter that restricts
attention to those options that are maximal along at least one relevant dimension (Lleras et al.,
2017).

Connections between rationalizability by a hyper-relation and the notion of multi-preference
rationalizability—the latter prominently associated with the work of Aizerman and others (Aiz-
erman and Malishevski, 1981; Aizerman, 1985; Aleskerov et al., 2007)—have been studied
(Nehring and Puppe, 1998; Bossert et al., 2009; Danilov et al., 2015). In particular, it has been
shown that a choice function is rationalizable by the type of hyper-relation that Nehring calls a
transitive extended preference relation (or extended preference ordering) if and only if the choice
function is path independent/pseudo-rationalizable. By ascending to hyper-relations, all of the
information in a pseudo-rationalizable choice function can be summarized by some binary (hyper-
)relation after all. The present note generalizes this observation to weakly pseudo-rationalizable
choice functions (Theorem 2). One notable fact about the relevant sort of hyper-relation is that

2Path independent choice functions induce hyper-relations that form a lattice on subsets of X, have intimate
ties to closure operators, and can be used to generate so-called abstract convex geometries (Koshevoy, 1999;
Johnson and Dean, 2001). The set of path independent choice functions also has a natural lattice structure
(Monjardet and Raderanirina, 2004; Danilov and Koshevoy, 2005). I plan to investigate generalizations of these
constructions and results in future research.
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the central property in the characterization is stronger than Nehring’s generalization of acyclic-
ity, but weaker than his generalization of transitivity (Lemma 1). For binary relations on a set,
properties intermediate between transitivity and acyclicity have played distinguished theoreti-
cal roles. For example, Sen establishes certain possibilities for social choice for quasi-transitive
social preference relations (1969). Suzumura consistency, to take another example, character-
izes those binary relations that have compatible weak order extensions (Suzumura, 1976). This
suggests that investigating properties between transitivity and acyclicity for hyper-relations is
worthwhile. The results below identify one such property and so contribute to the elaboration
of the theory of hyper-relations. A representation of the relevant sort of hyper-relation as an
intersection of a certain class of its extensions is also obtained (Theorem 3). Given that weak
pseudo-rationalizability is a natural construction for non-binary choice and fills an obvious gap
in multi-preference choice theory, it is an interesting case to study for the program of using
hyper-relations to unify general abstract choice theory.

2 Preliminaries

Let X be a non-empty finite set. For any binary relation R ⊆ X × X, let PR and IR denote
the asymmetric and symmetric factors of R, respectively (we drop the subscript when it is clear
from context).3 A (set-valued) choice function on X is a mapping C : 2X → 2X such that, for all
S ⊆ X, C(S) ⊆ S and C(S) = ∅ if and only if S = ∅. Certain axioms of “internal consistency”
have played central roles in the development of choice theory. Unless otherwise quantified, all
of the properties listed below are intended to apply for all x, y ∈ X and all S, T ⊆ X.

S ⊆ T =⇒ S ∩ C(T ) ⊆ C(S) (α)

S ⊆ T, x, y ∈ C(S), and x ∈ C(T ) =⇒ y ∈ C(T ) (β)

C(S) ∩ C(T ) ⊆ C(S ∪ T ) (γ)

Nehring calls α “the mother of all choice consistency conditions” (1997, p. 407). Together,
properties α and γ characterize the class of binary choice functions. For a binary relation R
and any menu S ⊆ X, let M(S,R) be the R-maximal elements in S: M(S,R) = {x ∈ S :
¬∃y ∈ S yPx}. Binary choice functions are those for which there exists R such that, for all
Y ⊆ X, C(Y ) = {x ∈ S : ¬∃y ∈ S xPy} = M(Y,R). It is not difficult to see that only acyclic
relations can rationalize choice functions. This distinguished role for acyclic binary relations is
one motivation for studying weak pseudo-rationalizability, introduced just below. Properties α
and β characterize those choice functions that are rationalizable by a weak order, i.e., a complete
and transitive relation.

Weak pseudo-rationalizability generalizes the Aizerman and Malishevski decomposition in
terms of a set of total orders—complete, transitive, and antisymmetric relations—to a decom-
position in terms of a set of acyclic binary relations. Say that a choice function is weakly

3Symmetric: xRy implies yRx
Asymmetric: xRy implies ¬yRx
Antisymmetric: xRy and yRx implies x = y
Acyclic: for all k ∈ N x1Px2, x2Px3, . . . xk−1Pxk implies ¬xkPx1

Complete: xRy or yRx for all x, y ∈ X
Transitive: xRy and yRz implies xRz
Quasi-transitive: xPy and yPz implies xPz
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pseudo-rationalizable if there exists a set of acyclic relations {Ri : i ∈ I} such that, for any
S ⊆ X,

C(S) =
⋃
i∈I

M(S,Ri). (1)

Stewart (2020) introduces the following weakening of property γ in order to characterize the
class of weakly pseudo-rationalizable choice functions.

C(S) = {x} and x ∈ C(T ) =⇒ x ∈ C(S ∪ T ) (Weak γ)

Theorem 1. (Stewart, 2020) A choice function C on X is weakly pseudo-rationalizable if and
only if C satisfies α and Weak γ.

For our purposes, a hyper-relation is a binary relation = ⊆ 2X × X that “compares”
menus/opportunity sets and options. The quick interpretational gloss that Bossert et al. provide
is “S = x” means “x is an unacceptable choice in the presence of S \ {x}” (2009, p. 240). Or,
as Nehring puts it, the menu S is strictly preferred to the option (or degenerate menu) x (1997,
p. 407). We can generalize rationalizability of a choice function by a binary relation on X to
rationalizability of a choice function by a hyper-relation as follows.

S = x⇐⇒ x /∈ C(S ∪ {x}) (2)

Following Nehring and Bossert et al., we impose the following properties on hyper-relations
throughout.

S = x and S ⊆ T =⇒ T = x (MON)

S = x =⇒ [S \ {x} 6= ∅ and S \ {x} = x] (IRR)

MON essentially says that expanding the menu cannot hurt. IRR is an extension of irreflexivity:
{x} = x implies that {x}\{x} 6= ∅, which is a contradiction. When a hyper-relation is recovered
from a choice function by 2, it automoatically satisfies IRR. Call a hyper-relation satisfying
MON and IRR an extended preference relation. As Bossert et al. point out, when = is an
extended preference relation, 3 and 4 are equivalent.

C(S) = {x ∈ S : ¬∃T ⊆ S such that T = x} (3)

C(S) = S \ {x ∈ S : S = x} (4)

If = is “revealed” by C as in 2, then it will regenerate C using 4. Both 2 and 4 will play central
roles in the following sections.

A hyper-relation that also satisfies the following (slightly weakened) form of acyclicity due
to Nehring will be called an acyclic extended preference relation (Nehring also calls an acyclic
extended preference relation an extended sub-order).

S 6= ∅ =⇒ ∃x ∈ S ¬(S = x) (ACY)

Transitivity can likewise be extended to hyper-relations.

S ∪ {y} = x and T = y =⇒ S ∪ T = x (TRA)

An extended preference relation that satisfies TRA is an extended partial order. Rationalizability
by an extend partial order is equivalent to path independence/pseudo-rationalizability (Nehring,
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1997, Theorem 1.ii, Theorem 6). When a hyper-relation satisfies the following “binariness”
condition, ACY and TRA reduce to the standard notions of acyclicity and transitivity for binary
relations (Nehring, 1997, Fact 4).

S = x =⇒ ∃y ∈ S {y} = x (BIN)

A consequence of some of Nehring’s observation that we appeal to in the proof of Lemma 3
below is that the rationalizability of a choice function in the standard sense is equivalent to the
rationalizability by an extended preference relation satisfying BIN and ACY (1997, Facts 1 and
5.v).

The main result here is a correspondence between extended preference relations satisfying
the following property and weakly pseudo-rationalizable choice functions.

[∀y ∈ S \ {x} S = y and ¬(T = x)] =⇒ ¬(S ∪ T = x) (WGM)

WGM is an obvious relational analogue of Weak γ for hyper-relations. Theorem 2 below gen-
eralizes the characterization of path independent (alias pseudo-rationalizable) choice functions
using transitive extended preference relations already recorded in the literature.

3 Results

For extended preference relations, we can locate WGM between TRA and ACY.

Lemma 1. If = is an extended preference relation, then TRA =⇒ WGM =⇒ ACY. However,
the converse implications do not hold.

Proof. First, suppose = satisfies TRA. Let x ∈ X be such that, for all y ∈ S \ {x}, S = y and
¬(T = x). Suppose for reductio that S ∪ T = x. If S = ∅, then S ∪ T = T , which implies
T = x, a contradiction. So, S 6= ∅. If x /∈ S, then S = y for all y ∈ S. Since TRA implies ACY
(Nehring, 1997; Bossert et al., 2009), and S 6= ∅, again we have a contradiction. So, let x ∈ S. If
T = ∅, then S ∪ T = x implies S = x. So, again, S = y for all y ∈ S. Since TRA implies ACY,
this is not possible. So T 6= ∅. Now, by MON, S∪T = y for all y ∈ S \{x}, so we have S∪T = y
for all y ∈ S by the assumption that S ∪ T = x, too. Let {y1, . . . , yk} be an enumeration of
the elements of S such that yk = x. By IRR, (S ∪ T ) \ {y1} = y1. For any yi, i ∈ {2, . . . , k},
[(S ∪ T ) \ {y1}] ∪ {y1} = yi. So, by TRA, (S ∪ T ) \ {y1} = yi. Similarly, for any i ∈ {3, . . . , k},
[(S ∪ T ) \ {y1, y2}] ∪ {y2} = yi and [(S ∪ T ) \ {y1, y2}] = y2. Thus, (S ∪ T ) \ {y1, y2} = yi. In
general, using TRA and IRR,

(S ∪ T ) \ {y1} = yi, i ∈ {2, . . . , k}
(S ∪ T ) \ {y1, y2} = yi, i ∈ {3, . . . , k}

...

(S ∪ T ) \ {y1, . . . , yk} = yk.

Since (S ∪ T ) \ {y1, . . . , yk} ⊆ T and (S ∪ T ) \ {y1, . . . , yk} = x, by MON, T = x, which is a
contradiction. So, ¬(S ∪ T = x).

Next, suppose that = satisfies WGM. Let S 6= ∅. Suppose for reductio that S = x for all
x ∈ S. Fix such an x. Choosing T = {x}, it follows S ∪ T = x. Using the contrapositive of
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WGM, either there is some y ∈ S \ {x} such that ¬(S = y) or T = x. The former disjunct is
inconsistent with our assumption that S = x for all x ∈ S. By IRR, the latter disjunct implies
T \ {x} 6= ∅, which is a contradiction. So, there must be some y ∈ S such that ¬(S = y). Thus,
= satisfies ACY.

Now, we construct extended preference relation counterexamples to ACY =⇒ WGM and
WGM =⇒ TRA in turn.

Example 1. Let X = {x, y, z} and consider the following choice function on X. Choice sets
for singletons are singletons.

C(X) = {x}
C({x, y}) = {x, y}
C({x, z}) = {x, z}
C({y, z}) = {y}

Define = from C by 2. Then, = automatically satisfies IRR. Since C satisfies α, = satisfies
MON (see the second direction of the proof of Theorem 2 which does not rely on this sub-claim
of the lemma being established now). So, = is an extended preference relation. It is also clear
that = satisfies ACY since there are no empty choice sets for non-empty menus for C. To see
that = does not satisfy WGM, observe {y, z} = z and ¬({x, y} = y), but {x, y, z} = y. 4

Example 2. Let X = {x, y, z}. Choice sets for singletons are singletons.

C(X) = {x}
C({x, y}) = {x}
C({x, z}) = {x, z}
C({y, z}) = {y}

Again, define = from C by 2. Again, = automatically satisfies IRR, and, since C satisfies
α, = satisfies MON. So, = is an extended preference relation. Since C is binary, it certainly
satisfies Weak γ, and so = satisfies WGM (see the proof of Theorem 2 which does not rely on
this sub-claim of the lemma being established now). To see that = does not satisfy TRA, observe
{z} ∪ {y} = z and {x} = y, but ¬({x, z} = z). 4

We can now state and prove a characterization of weak pseudo-rationalizability in terms of
hyper-relations.

Theorem 2. If = is an extended preference relation that satisfies WGM, then C as defined
by 4 is a weakly pseudo-rationalizable choice function. Conversely, if C is a weakly pseudo-
rationalizable choice function, then the hyper-relation defined by 2 is an extended preference
relation that satisfies WGM.

Proof. Let = be an an extended preference relation satisfying WGM, that is, = satisfies MON,
IRR, and WGM. Let C be defined from = as in 4. First, by Lemma 1, = satisfies ACY which
implies C(S) 6= ∅ when S 6= ∅. Conversely, C(S) = ∅ when S = ∅ by the construction of C.
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Similarly, by construction, we have C(S) ⊆ S, so C is a well-defined choice function. Next,
we need to show that C satisfies α and Weak γ. To check α, suppose that S ⊆ T and let
x ∈ S ∩ C(T ). By the construction of C, ¬(T = x). By MON, ¬(S = x). So, x ∈ C(S)
and C satisfies α. To show Weak γ, suppose C(S) = {x} and x ∈ C(T ). By the definition
of C in 4, S = y for all y ∈ S \ {x} and ¬(T = x). WGM now implies that ¬(S ∪ T = x),
so x ∈ C(S ∪ T ). Hence, the induced choice function C satisfies both α and Weak γ and, by
Theorem 1, is therefore weakly pseudo-rationalizable.

Let C be a weakly pseudo-rationalizable choice function, that is, C satisfies α and Weak γ.
We need to show that = as defined from C in 2 satisfies WGM, MON, and IRR. For WGM,
suppose S = y for all y ∈ S \ {x} and ¬(T = x). If S = ∅, then ¬(T = x) implies ¬(S ∪ T = x)
and we’re done. So assume S 6= ∅. If x /∈ S, then S = y for all y ∈ S. This implies that
C(S) = ∅, which is a contradiction. So let x ∈ S. From the definition of =, we have C(S) = {x}
and x ∈ C(T ∪ {x}). By Weak γ, it follows that x ∈ C(S ∪ T ∪ {x}) = C(S ∪ T ), since x ∈ S.
This, in turn, implies that ¬(S ∪ T = x), as desired. To verify that = satisfies MON, suppose
that S = x and S ⊆ T . By the construction of =, x /∈ C(S ∪ {x}). Since S ∪ {x} ⊆ T ∪ {x},
if x ∈ C(T ∪ {x}), α implies x ∈ C(S ∪ {x}), which is a contradiction. So, x /∈ C(T ∪ {x}),
which means T = x. Thus, = satisfies MON. To show IRR, suppose that S = x. So, by 2,
x /∈ C(S ∪ {x}). Since C({x}) = {x} by our definition of a choice function, S \ {x} 6= ∅. Since
(S \ {x}) ∪ {x} = S ∪ {x}, we have x /∈ C((S \ {x}) ∪ {x}) = C(S ∪ {x}), that is, S \ {x} = x.
Hence, = satisfies WGM, MON, and IRR.

Next, we can establish that any extended preference relation satisfying WGM can be repre-
sented as the intersection of a certain class of its extensions. Let A be the set of acyclic binary
relations on X. Let C be the set of choice functions rationalizable by a binary relation on X.
Since rationalizability by a binary extended preference relation reduces to rationalizability by a
binary relation (for the way choice functions are defined here), for a binary relation = on X, we
put S = x if and only if there is some y ∈ S such that {y} = x. An extension of a hyper-relation
= is a relation =′ such that = ⊆ =′. Call a choice function C ′ a refinement of C if C ′(S) ⊆ C(S)
for all S ⊆ X. I write C ′ ⊆ C for short. A choice function C is called subrationalizable if it
contains a refinement C ′ ∈ C . That is, there is a rationalizable C ′ such that C ′ ⊆ C.

First, let’s note a couple of close connections between the extensions of a hyper-relation and
the class of choice functions that witness the subrationalizability of a choice function.

Lemma 2. If = ⊆ =′, then C ′ ⊆ C, where C and C ′ are defined from = and =′, respectively, by
4. Conversely, if C ′ ⊆ C, then = ⊆ =′, where = and =′ are defined from C and C ′, respectively,
by 2.

Proof. Suppose that = ⊆ =′. Let C and C ′ be defined from = and =′, respectively, by 4.
Suppose that x ∈ C ′(S) (which implies x ∈ S). By the construction of C ′, ¬(S =′ x). From the
assumption it follows that ¬(S = x). By 4, it follows that x ∈ C(S).

Suppose that, for all S ⊆ X, C ′(S) ⊆ C(S). Let = and =′ be defined from C and C ′,
respectively, by 2. Assume that S = x. Then, we have that x /∈ C(S ∪ {x}). It follows that
x /∈ C ′(S ∪ {x}). By 2, this in turn implies that S =′ x.

Lemma 3. If = satisfies

==
⋂
{=′∈ A : = ⊆ =′}, (5)
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then C as defined by 4 satisfies

C(S) =
⋃
{C ′(S) : C ′ ∈ C and C ′ ⊆ C}. (6)

Conversely, if C satisfies 6, then = as defined by 2 satisfies 5.

Proof. Suppose that = satisfies 5 and that C is generated from = by 4. First, assume that
x ∈ C(S). By 4, this implies that ¬(S = x). By 5, ¬(S =′ x) for some =′∈ A such that = ⊆ =′.
Thus, x ∈ C=′(S), where C=′ is the choice function generated from =′ by 4. Moreover, from
Lemma 2, it follows that C=′ ∈ {C ′ ∈ C : C ′ ⊆ C}. Hence, x ∈

⋃
{C ′(S) : C ′ ∈ C and C ′ ⊆ C}.

Second, assume that x /∈ C(S). By 4, S = x. By 5, we have S =′ x for all =′∈ A such that
= ⊆ =′. So, x /∈ C=′(S ∪ {x}) for all =′∈ A such that = ⊆ =′. For any C ′ ∈ C such that
C ′ ⊆ C, =′ defined from C ′ by 2 is in A and, by Lemma 2, = ⊆ =′. Thus, x /∈

⋃
{C ′(S) : C ′ ∈

C and C ′ ⊆ C}.
Now suppose that C satisfies 6. First, assume that S = x, where = is defined from C using

2. So, x /∈ C(S ∪ {x}). Then, by 6, x /∈ C ′ for any C ′ ∈ C such that C ′ ⊆ C. If =′∈ A is such
that = ⊆ =′, then, C=′ ∈ C and, by Lemma 2, C=′ ⊆ C. So, x /∈ C=′(S ∪ {x}). Hence, for
any =′∈ A such that = ⊆ =′, S =′ x. Thus, = ⊆

⋂
{=′∈ A : = ⊆ =′}. Second, assume that

¬(S = x). By 2, x ∈ C(S ∪{x}). By 6, for some C ′ ∈ C such that C ′ ⊆ C, x ∈ C ′(S ∪{x}). By
2, ¬(S =′ x). But =′∈ A and, by Lemma 2, = ⊆ =′. Therefore, (S, x) /∈

⋂
{=′∈ A : = ⊆ =′}.

Thus,
⋂
{=′∈ A : = ⊆ =′} ⊆ =.

It follows that a hyper-relation can be represented as the intersection of its acyclic binary
extensions if and only if it is an extended preference relation that satisfies WGM.

Theorem 3. A hyper-relation = is an extended preference relation that satisfies WGM if and
only if = satisfies 5.

Proof. By Lemma 3, = satisfies 5 if and only if C (as defined from = by 4) satisfies 6. But 6
is weak pseudo-rationalizability. So the claim in the theorem is equivalent to the following one,
established by Theorem 2: = is an extended preference relation satisfying WGM if and only if
C is weakly pseudo-rationalizable.
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