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Abstract : The main goal in this work  to find the general solution for some kind of linear second order homogenous differential 

equations with variable coefficients which have the general form  0)()(  yxQyxPy
 , by using the substitution


dxxZ

ey
)(

  ,which transform form the above equation to Riccati equation . 
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1. INTRODUCTION 

 Many researchers  in this field of differential equations , may face a difficult in solving the linear second order differential 

equations by using known methods . Therefore  ,they are trying to solve these equations by using the power series or the 

Frobenius method [1] . 
Kathem [ 2 ] gave a method for solving the above equation ,this method depends to find a function  )(xZ   such that 


dxxZ

ey
)(

. Kathem [ 2]   only gave examples which enable to find the general soluation by using this substitution . 
  

2- Bernoulli Equation [3] 

         The general form that of  Bernoulli equation  has is written as  

 

1)()(  nnyxqyxpy
 

where  p  and  q   are functions of, x   (or constants) 

3-  Riccati Equation [4]  

The general form of Riccati equation is written as 

 

 
)1...(2)()()( yxhyxgxfy   

where  gf ,   and  h  are given functions of  x   ( or constants) . We can solve it , if one or more particular solutions of  )1(  can 

be found by inspection or otherwise . The general solution of   )1(  is easy to be obtained by the following conditions 

i- If 1y  is a known particular solution , then the general solution 

can be obtained by  the assumption :-  

1
yyU    , 

then )1(  transformed into  Bernoulli equation 

2)
1

2()( hUUhygxU   , 

so ,  the general solution of   )1(   is given by  

 
dxhyg

exxdxxxhcyy
)

1
2(

)(;)()()()
1

(
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ii-If 1y  and  2y  are two known  particular solutions  , then  the general solution of  )1( can be found  by the  assumption  

1
)

2
( yyyyU   , 

then the general solution is given by :- 

dxyyxh
eyyCyy

)
21

()(
)

2
(

1
 

   , 

where C  is an arbitrary constant . 

 

iii- If 21 , yy   and  3y  ,are three known  particular solutions, say   then the general solution of equation  )1(  is given as : 

C
yyyy

yyyy






)()(

)()(

113

231   , 

where C  is an arbitrary constant  

 

4-  How  Find The General Solution for the Linear Second Order Differential Equations  

          We can solve the equation  

                        
)2...(0)()(  yxQyxPy

 

  
 by the following cases: 

i- If )(xP  and )(xQ are constants say axP )(  and bxQ )(  then the equation )2(  becomes 

)3...(0)()()( 2  bxaZxZxZ   , 

and the solution of )3( is given by :- 

a)                    


















 x
a

bCx
a

bC
x

a

ey
4

2
sin

24

2
cos

1
2

  , 

if 
4

2a
b   ,where  and   are arbitrary constants 

 

b)                                
 Cx

x
a

eAy 


 2
 , 

if 
4

2a
b  ,where A  and C  are arbitrary constants . 

 

proof :-  
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a) Since   0)()(2)(  bxaZxZxZ , so
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4.1.Example:- For solving the differential equation  

32,032  bandayyy   , 

since 
4

2a
b   

Then , by using the above formula , we get the general solution which has the form 
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b) If 
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4.2.Example:-For solving the differential equation 

4,4;044  bayyy  

we will use the general form in the above formula and we get 

)(2,)(2 BAxxeyACBBAx
x

a

ey 


  

ii-If 0)( xQ  , then the general solution is given by :- 

  Bdx
pdx

eAy
 

proof:- Since 

2020)()(2)( ZZPZZPZZQxZPxZxZ 

  ,

 

this is like Bernoulli equation , to solve it , let  tZ 1 1 Ptt  

.this equation is linear , and its integrating factor is given by:- 
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4.3.Example :- For solving the differential equation 

0
2

 y
x

y   , 

we use the general form in the above formula and we get  
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  Bdx
dxxp

eAy
)(

       


 Bdx
dx

xeAy

2

 

31
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1
ln2 A

ABxAyBdxxeAy   

 

     iii-If )(2)( xQxP   , then the equation )3( can be solved by the assumption )()( xQxZu    , 

since 

  0
2

02202  QZZQQZZQPZZZ    , 

 to solve this equation , let 

P

Q
uuu

P

Q
u

P

Q
u

Q

Q
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 202

2
  , 

this is Riccati equation  , with 
P

Q
xkandxgxf


 )(0)(,1)(  

Now , there are many cases 

 

1-If 1u is a known solution to the last equation , then the general solution is given by  


 
















dx
dxu

e
dxxQu

eAy 1
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proof:- 

   The assumption 1uud   transforms the equation to Bernoulli equation which has the  form:- 

2
1

20
1

22 dduddudd 
  ,

    

to solve it , we set       

1
1

2221  tuttddtddtd  , this is linear equation , and its integrating factor is given by :- 




dxu
eFI 1

2
. ,so the general solution of the last equation is given by :- 
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. 

2-If 1u and 2u  are two known solutions , then the general solution of the last equation is given by :- 

tconsC
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proof:- From Riccati equation we get  
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3-if 21 ,uu  and 
3u  are three known solutions , then the general solution of the last equation is given by :- 
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proof:- From Riccati equation we get :  
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Note:-  Some of these equations can be transformed into variable separable equations and don’t need the above formula to find the 

general solution 

 

4.5. Example :- For solving the differential equation 

2)(,2)(;022 xxQxxPyxyxy 
  ,   

by using the equation )3(  we get  

                    

  002
222  xZZxxZZZ        ,   
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iv) If )(xP  and )(xQ  are not any one of the above cases , then the equation 0)()(2  xQZxPZZ  is like Riccati 

equation . As a result  then there are three  cases : 

 

1-If 1Z  is a known solution to it, then the general solution of )1( is given by :- 
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Proof :- 

      The assumption uZZ  1 transforms the equation to Bernoulli equation which has the  form:- 
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to solve it , we assume tu 1
 

      
  12 1  tZPt this is a linear equation , and its integrating factor (I.F) is given by :- 
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2- If 1Z and 2Z  are two known solutions of it , then the general solution of this equation is given by  :- 
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proof:- From Riccati equation  , we can write 
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3-If 21 ,ZZ and 3Z are three known solutions of it , then the general solution of this equation is given by :- 
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proof:- From Riccati equation , we can write 
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4.6..Example :-  For solving the differential equation  
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y   ,   

we use the general form in the above formula , which is  
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now, let 
x
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1
  ( which is a particular solution of Riccati equation ) 
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