International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2000-000X Vol. 2 Issue 12, December – 2018, Pages: 7-17

On Fuzzy b-Subimplicative Ideal

Suad Abdulaali NeamahDepartment of Mathematics, Faculty of Education for Girls
University of Kufa, IraqE-mail:suada.shabib@uokufa.edu.iqorsoshabib@yahoo.com

Abstract: In this paper, we study a new notion of fuzzy subimplicative ideal of a BH-algebra, namely fuzzy subimplicative ideal with respect to an element in BH-algebra is introduced and some related properties are investigated.

Keywords: BH-algebra, fuzzy subimplicative ideal, subimplicative ideal, fuzzy b- subimplicative ideal, Level subset,

1. PRELIMINARIES :

In this section, issdevoted to some basic ordinarycconcepts of BH-algebra, fuzzy ideal, sub-implicative ideal in fuzzy and ordinary, level subset, image and preimage of fuzzy set and homomorphism in BH-algebra, we give some basic concepts about the image of function, the inverse image of a BH-algebra with some remarks in fuzzy sences.

Definition (1.1): [9] A **BH-algebra** is a nonempty set X with a constant 0 and a binary operation * satisfying the following conditions:

- i. $x * x = 0, \forall x \in X$.
- ii. x * y = 0 and y * x = 0 imply $x = y, \forall x, y \in X$.
- iii. $x * 0 = x, \forall x \in X$.

<u>Remark (1.2)</u>: [10] Let X and Y be BH-algebras. A mapping f: $X \rightarrow Y$ is called a **homomorphism** if $f(x^*y) = f(x)^*f(y)$, $\forall x$, $y \in X$. A homomorphism f is called a **monomorphism** (resp., **epimorphism**) if it is injective (resp., surjective). A bijective homomorphism is called an isomorphism. Two BH-algebras X and Y are said to be **isomorphic**, written $X \cong Y$, if there exists an isomorphism f: $X \rightarrow Y$. For any homomorphism f: $X \rightarrow Y$, the set $\{x \in X: f(x)=0'\}$ is called the **kernel** of f, denoted by ker(f), and the set $\{f(x):x \in X\}$ is called the **image** of f, denoted by Im(f). Notice that f(0)=0', \forall homomorphism f.

Definition (1.3): [1] if $\{A_{\alpha}, \alpha \in \Lambda\}$ is a family of fuzzy sets in X, then :

$$\bigcap_{i \in I} A_{i}(x) = \inf \{ A_{i}(x), i \in I \}, \forall x \in X.$$

 $\bigcup_{i \in I} A_{i}(x) = \sup \{ A_{i}(x), i \in I \}, \forall x \in X. \text{ which are also fuzzy sets in } X.$

Definition (1.4): [2] Let X and Y be any two sets, A be any fuzzy set in X and f: $X \rightarrow Y$ be any function. The set $f^{-1}(y) = \{x \in X \mid f(x) = y\}, \forall y \in Y$. The fuzzy set B in Y defined by $B(y) = \{_{0}^{\sup\{A(x)\mid x \in f^{-1}(y)\}}; if \quad f^{-1}(y) \neq \emptyset \\ ; \quad otherwise \quad \forall y \in Y, is called the$ **image**of A under f and is denoted by <math>f(A).

Definition (1.5): [2] Let X and Y be any two sets, f: $X \to Y$ be any function and B be any fuzzy set in f(A). The fuzzy set A in X defined by: $A(x)=B(f(x)), \forall x \in X$ is called the **preimage** of B under f and is denoted by $f^{-1}(B)$.

Definition(1.6): [6] A fuzzy subset A of a BH-algebra X is said to be a **fuzzy ideal** if and only if:

- i. $A(0) \ge A(x), \forall x \in X.$
- ii. $A(x) \ge \min\{A(x^*y), A(y)\}, \forall x, y \in X.$

Definition(1.7):[5] A nonempty subset I of a BH-algebra X is called subimplicative ideal of X if:

i. 0∈I.

ii. $((x^*(x^*y))^*(y^*x))^*z \in I \text{ and } z \in I \text{ imply } y^*(y^*x) \in I, \forall x, y, z \in X.$

Definition (1.8): [5] Let X be a BH-algebra and $b \in X$, a fuzzy subset A of X is called a **sub-implicative ideal with respect to an element b** (or briefly, **b-subimplicative ideal**) of X if it satisfies:

i. 0∈I.

 $\label{eq:2.1} \text{ii.} (((x^*(x^*y))^*(y^*x))^*z)^*b \in I \text{ and } z \in I \text{ imply } y^*(y^*x) \in I, \ \forall x, \, y, \, z \in X.$

Definition(1.9): [5] A fuzzy set A of a BH-algebra X is called a fuzzy subimplicative ideal of X if it satisfies:

i. $A(0) \ge A(x), \forall x \in X$.

ii. $A(y^*(y^*x)) \ge \min \{A(((x^*(x^*y))^*(y^*x))^*z), A(z)\}, \forall x, y, z \in X.$

Proposition(1.10):[5] Let X be a BH-algebra. Then every fuzzy sub-implicative ideal of X is fuzzy ideal of X.

Definition(1.11): [7] Let μ be a fuzzy set in X, $\forall \alpha \in [0, 1]$, the set $\mu_{\alpha} = \{ x \in X, \mu(x) \ge \alpha \}$ is called a **level subset of A.** Note that, μ_{α} is a subset of X in the ordinary sense.

<u>**Remark(1.12):[suad]**</u> Let A be a fuzzy subset of a BH-algebra X and $w \in X$. The set

{ $x \in X | A(w) \le A(x)$ } is denoted by $\uparrow A(w)$.

2.

3. THE FUZZY SUBIMPLICATIVE IDEAL WITH RESPECT TO AN ELEMENT OF A BH-ALGEBRA.

We define the concept of a fuzzy sub-implicative ideal with respect to an element of a BH-algebra. We discuss some properties of this concept and link it with other types of fuzzy ideal of a BH-algebra.

Definition (2.1): Let X be a BH-algebra and $b \in X$, a fuzzy subset A of X is called a fuzzy sub-implicative ideal with respect toan element b (or briefly,fuzzy b-subimplicative ideal) of X if it satisfies:

i. i. $A(0) \ge A(x), \forall x \in X$.

ii. ii. $A(y^*(y^*x)) \ge \min \{A((((x^*(x^*y))^*(y^*x))^*z)^*b), A(z)\}, \forall x, y, z \in X.$

Example(2.2): Consider the BH-algebra $X = \{0, 1, 2, 3\}$ with the following operation table:

*	0	1	2
0	0	1	2
1	1	0	2
2	2	2	0

The fuzzy subset A defined by $A(x) = \begin{cases} 0.8 \ ; \ x = 0, 1 \\ 0.5 \ ; \ x = 2 \end{cases}$ is a **fuzzy 0-subimplicative ideal** of X.

Theorem (2.3): Let X be a BH-algebra. Then A is a fuzzy subimplicative ideal of X if and only if A is a fuzzy 0-subimplicative ideal of X.

Proof :

Let A be a fuzzy subimplicative ideal of X. Then

i. $A(0) \ge A(x)$, $\forall x \in X$. [By definition (1.9)(i)]

ii. Let x, y, $z \in X$. Then, we have

 $A(y^{*}(y^{*}x)) \ge \min\{A(((x^{*}(x^{*}y))^{*}(y^{*}x)))^{*}z), A(z)\}[By definition(1.5)(ii)]$

 $\Rightarrow \min\{A((((x^*(x^*y))^*(y^*x)))^*z)^*0), A(z)\} = \min\{A(((x^*(x^*y))^*(y^*x)))^*z), A(z)\}$

[Since X is a BH-algebra; x*0=x, $\forall x \in X$.]

 $\Rightarrow A(y^{*}(y^{*}x)) \geq \min\{A((((x^{*}(x^{*}y))^{*}(y^{*}x))^{*}z)^{*}0), A(z)\}$

Therefore, A is a fuzzy 0-subimplicative ideal of X.

Conversely,

Let A be a fuzzy 0-subimplicative ideal of X. Then

i. $A(0) \ge A(x)$, $\forall x \in X$. [By definition (2.1)(i)]

ii. Let x, y, $z \in X$. Then $A(y^*(y^*x)) \ge \min\{A((((x^*(x^*y))^*(y^*x)))^*z)^*0), A(z)\}$

[Since A is a fuzzy 0-subimplicative ideal of X. By definition (2.1)(ii)]

 $\Rightarrow \min\{A(((x^*(x^*y))^*(y^*x))^*z)^*0), A(z)\} = \min\{A(((x^*(x^*y))^*(y^*x))^*z), A(z)\}$

[Since X is a BH-algebra; $x*0=x, \forall x \in X$]

 $\Rightarrow A(y^*(y^*x)) \ge \min \{A(((x^*(x^*y))^*(y^*x))^*z), A(z)\}.$

Therefore, A is a fuzzy subimplicative ideal of X.■

Proposition (2.4): Let X be a BH-algebra, $b \in X$ and A be a fuzzy b-subimplicative ideal of X, such that A(b)=A(0). Then A is a fuzzy ideal of X.

Proof :

Let A be a fuzzy b-subimplicative ideal of X. To prove A is a fuzzy ideal of X.

i. $A(0) \ge A(x), \forall x \in X$. [Since A is a fuzzy b-sub-implicative ideal of X.]

ii. Let $\ x, y$, $z \in \! X$ such that

A(x*b)=A((x*0)*b [Since X is BH-algebra; x*0=x]

= A((x*0)*0)*0) [Since X is BH-algebra; x*x=0]

 $= A(((x^{*}(x^{*}x))^{*}(x^{*}x))^{*}0)^{*}b)$ [Since X is BH-algebra;x*x=0]

 $\Rightarrow A(x^*(x^*x)) \ge \min \{A(((x^*(x^*x))^*(x^*x))^*0)^*b), A(b)\} = A(x^*b)$

[Since A is a fuzzy b-sub-implicative of X. By definition (2.1)(ii)]

Now, $A(x^*(x^*x)) = A(x^*0) = A(x)$ [Since X is BH-algebra ; $x^*x=0$, $x^*0=x$]

 $\Rightarrow A(x) \ge \min \{A(((x^*(x^*x))^*(x^*x))^*0)^*b), A(0)\} = \min \{A(x^*b), A(0)\}$

 \Rightarrow A(x) \geq min{A(x*b),A(b)}. [Since A(b)=A(0)]

Therefore, A is a fuzzy ideal of X.■

<u>**Remark(2.5):**</u> The following example shows that converse of proposition (2.4) is not correct, $\forall b \in X$.

Example (2.6): Consider the BH-algebra X= {0, 1, 2, 3} with the binary operation '*' defined by the following table:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	2
2	2	2	0	1
3	3	3	3	0

The fuzzy subset A defined by $A(x) = \begin{cases} 1 & ; x = 0 \\ 0.5 & ; x = 1,2,3 \end{cases}$ is a fuzzy ideal of X, but A is not a fuzzy 0-subimplicative ideal of X.

Since

if x=2, y=1, z=0, then

 $A(1^{*}(1^{*}2))=A(1^{*}0)=A(1)=0.5 < \min\{A((((2^{*}(2^{*}1))^{*}(1^{*}2))^{*}0), A(0)\}$

 $= \min\{A((2*2))*(1*2)), A(0)\}$

 $=\min\{A(0),A(0)\}=A(0)=1.$

And A is not a fuzzy 1-subimplicative ideal of X. Since

if x=2, y=1, z=0, then

 $A(1*(1*2))=A(1*0)=A(1)=0.5 < \min\{A((((2*(2*1))*(1*2))*0)*1), A(0)\}$

$$= \min\{A(((2*2))*(1*2))*1), A(0)\}$$

$$=\min\{A(0*1),A(0)\}=\min\{A(0),A(0)\}=A(0)=1.$$

And A is not a fuzzy 2-subimplicative ideal of X. Since

if x=2, y=1, z=0, then

$$\begin{aligned} A(1^{*}(1^{*}2)) = A(1^{*}0) = A(1) = 0.5 < \min\{A((((2^{*}(2^{*}1))^{*}(1^{*}2))^{*}0)^{*}2), A(0)\} \\ = \min\{A(((2^{*}2))^{*}(1^{*}2))^{*}2), A(0)\} \\ = \min\{A(0^{*}2), A(0)\} = \min\{A(0), A(0)\} = A(0) = 1. \end{aligned}$$

And A is not a fuzzy 3-subimplicative ideal of X. Since

if x=2, y=1, z=0, then

 $A(1^{*}(1^{*}2))=A(1^{*}0)=A(1)=0.5 < \min\{A((((2^{*}(2^{*}1))^{*}(1^{*}2))^{*}0)^{*}3), A(0)\}$

 $= \min\{A(((2*2))*(1*2))*3), A(0)\}$

 $=\min\{A(0*3),A(0)\}=\min\{A(0),A(0)\}=A(0)=1.$

Therefore, A is not a fuzzy b-subimplicative ideal. $\forall b \in X$.

<u>Proposition</u> (2.7): Let X be a BH-algebra. A be a fuzzy subimplicative ideal of X, $b \in X$ such that A(b)=A(0). Then A is a fuzzy b-subimplicative ideal of X.

Proof:

Let A be a fuzzy subimplicative ideal of X. Then

i. $A(0) \ge A(x), \forall x \in X$ [By definition (1.9)(i)]

ii. Let x, y, $z \in X$. Then

 $A(y^{*}(y^{*}x)) \geq \min\{A((((x^{*}(x^{*}y))^{*}(y^{*}x))^{*}z), A(z)\}$

 $\geq \min\{\min\{A((((x^*(x^*y))^*(y^*x))^*z)^*b), A(b)\}, A(z)\}$

 $= \min\{A((((x^*(x^*y))^*(y^*x))^*z)^*b), A(z)\}$

[Since A is a fuzzy ideal of X. By proposition (1.10) and A(b)=A(0)]

Therefore, A is fuzzy b-subimplicative ideal of X.

Theorem (2.8): Let X be a BH-algebra. Then a fuzzy ideal A of X satisfying the condition:

 $\forall \; x, \, y \; \in X \; ; \quad A(y^*(y^*x)) \; \geq \; A((x\; *(x^*y))^*(y^*x)) \quad (b_1)$

is a fuzzy b-subimplicative ideal of X, where $b \in X$ and A(b)=A(0).

Proof:

Let A be a fuzzy ideal of X. Then, we have

i. $A(0) \ge A(x), \forall x \in X$. [By definition (1.6)(i)]

ii. Let x, y, $z \in X$. Then, we have

 $A((x^{*}(x^{*}y))^{*}(y^{*}x)) \ge \min\{A((x^{*}(x^{*}y))^{*}(y^{*}x))^{*}z), A(z)\}$

[Since A is a fuzzy ideal of X. By definition (1.6)(ii)]

 $\geq \min\{\min\{A((((x^*(x^*y))^*(y^*x))^*z)^*b), A(b)\}, A(z)\}[\text{Since A is a fuzzy ideal of X.}]$

 $= \min \{A((((x^*(x^*y))^*(y^*x))^*z)^*b), A(z)\}$

[Since A((((x*(x*y))*(y*x))*z)*b)=min{A((((x*(x*y))*(y*x))*z)*b),A(b)}

and A(b)=A(0)]

 $\Rightarrow A(y^{*}(y^{*}x)) \ge \min\{A((((x^{*}(x^{*}y))^{*}(y^{*}x))^{*}z)^{*}b), A(z)\}$ [By the condition (b1)]

Then A is a fuzzy b-subimplicative ideal of X, A(b)=A(0).■

Theorem (2.9): If X is a BH-algebra of X satisfies the condition:

$$\forall x, y \in X$$
; $y^*(y^*x) = (x^*(x^*y))^*(y^*x)$ (b2),

then every fuzzy ideal of X is a fuzzy b-subimplicative ideal of X, where $b \in X$ and A(b)=A(0).

Proof:

Let A be a fuzzy ideal of X. Then, we have

i. $A(0) \ge A(x), \forall x \in X$. [By definition (1.6)(i)]

ii. Let x, y, $z \in X$. Then $A((x^*(x^*y))^*(y^*x)) \ge \min \{A((x^*(x^*y))^*(y^*x))^*z), A(z)\}$ [Since A is a fuzzy ideal of X. By definition (1.6)(ii)]

Now, $A(y^*(y^*x)) = A((x^*(x^*y))^*(y^*x))$ [By (b2)]

 $\Rightarrow A(y^*(y^*x)) \ge \min \{A(((x^*(x^*y))^*(y^*x))^*z), A(z)\}$

 \Rightarrow A is a fuzzy subimplicative ideal of X. [By definition (1.9)]

Therefore, A is a fuzzy b-subimplicative ideal of X. [By proposition (2.7)].■

<u>Theorem (2.10)</u>: Let X be a BH-algebra, $b \in X$ and A be a fuzzy b-subimplicative ideal of X. Then the set X_A is a b-subimplicative ideal of X.

Proof:

Let A be a fuzzy b-subimpllicative ideal of X. To prove X_A is a b-subimplicative ideal of X.

i. A(x) = A(0).

If x=0, then $0 \in X_A$

ii. Let x, y, z, b \in X such that (((x*(x*y))*(y* x))* z)*b \in X_A and z \in X_A

 \Rightarrow A(((((x*(x*y))*(y*x))*z)*b)=A(0) and A(z)=A(0)

 $\Rightarrow\,$ by definition of fuzzy b-subimplicative ideal of X , we have

 $A(y^*(y^*x)) \ge \min \{A((((x^*(x^*y))^*(y^*x))^*z)^*b), A(z)\}$

 $= \min \{A(0), A(0)\} = A(0)$

 $\Rightarrow A(y^*(y^*x)) \ge A(0)$. But $A(0) \ge A(x)$. [Since A is a fuzzy b-subimplicative ideal of X.]

$$\Rightarrow A(y^*(y^*x)) = A(0)$$

 \Rightarrow y*(y*x) \in X_A. Therefore, X_A is a b-subimplicative ideal of X.

<u>Proposition (2.11)</u>: Let $\{A_{\alpha} | \alpha \in \lambda\}$ be a family of fuzzy b-subimplicative ideals of a BH-algebra X. Then $\bigcap_{\alpha \in \lambda} A_{\alpha}$ is a fuzzy b-

subimplicative ideal of X. $\forall b \in X$

<u>Proof</u>: Let $\{A_{\alpha} | \alpha \in \lambda\}$ be a family of fuzzy b-subimplicative ideals of X.

i. Let $x \in X$. Then

$$\bigcap_{\alpha \in \lambda} A_{(0)} = \inf \{ A_{\alpha}(0) | \alpha \in \lambda \} \ge \inf \{ A_{\alpha}(x) | \alpha \in \lambda \} = \bigcap_{\alpha \in \lambda} A_{\alpha}(x)$$

[Since A_{α} is a fuzzy b-subimplicative ideals of X, $\forall \alpha \in \lambda$. By definition (2.1)(i)]

$$\Rightarrow \bigcap_{\alpha \in \lambda} A_{\alpha(0)} \ge \bigcap_{\alpha \in \lambda} A_{\alpha(x)}$$

ii.Let x, y, z \in X. Then, we have
$$\bigcap_{\alpha \in \lambda} A_{\alpha}(y^*(y^*x)) = \inf \{A_{\alpha}(y^*(y^*x)) | \alpha \in \lambda\}$$

 $\geq \inf \{\min\{A_{\alpha}((((x^{*}(x^{*}y))^{*}(y^{*}x))^{*}z)^{*}b), A_{\alpha}(z) \mid \alpha \in \lambda\}\}$ [Since A_{α} is a fuzzy b-subimplicative ideals of X, $\forall \alpha \in \lambda$. By definition (2.1)(ii)]]

 $= \min \{ \inf \{ A((((x * (x*y))* (y*x))*z)*b), A_{\alpha}(z) \mid \alpha \in \lambda \} \}$

$$= \min \{ \inf \{ A_{\alpha}((((x * (x*y))* (y*x))*z)*b) \mid \alpha \in \lambda \}, \inf \{ A_{\alpha}(z) \mid \alpha \in \lambda \} \}$$

$$= \min \left\{ \bigcap_{\alpha \in \lambda} A_{\alpha}((((x * (x*y))*(y*x)) * z)*b), \right.$$

$$\bigcap_{\alpha\in\lambda}A_{\alpha(z)}$$

$$\Rightarrow \bigcap_{\alpha \in \lambda} A_{\alpha(y^{*}(y^{*}x)) \geq \min\{\{\bigcap_{\alpha \in \lambda} A_{\alpha(((x^{*}(x^{*}y))^{*}(y^{*}x))^{*}z)^{*}b), \bigcap_{\alpha \in \lambda} A_{\alpha(z)}\}\}}$$

Therefore, $\bigcap_{\alpha \in \lambda} A_{\alpha}$ is a fuzzy b-subimplicative ideal of X. $\forall b \in X \blacksquare$

Proposition (2.12): Let $\{A_{\alpha} | \alpha \in \lambda\}$ be a chain of fuzzy b-subimplicative ideals of a BH-algebra X. Then $\bigcup_{\alpha \in \lambda} A_{\alpha}$ is a fuzzy b-

subimplicative ideal of X. $\forall b \in X$.

<u>Proof</u>: Let $\{A_{\alpha} | \alpha \in \lambda\}$ be a chain of fuzzy b-subimplicative ideal of X.

i. Let
$$x \in X$$
. Then $\bigcup_{\alpha \in \lambda} A_{\alpha}(0) = \sup\{ A_{\alpha}(0) | \alpha \in \lambda \} \ge \sup\{ A_{\alpha}(x) | \alpha \in \lambda \} = \bigcup_{\alpha \in \lambda} A_{\alpha}(x)$

[Since A_{α} is a fuzzy b-subimplicative ideal of X, $\forall \alpha \in \lambda$. By definition(2.1)(i)]

$$\Rightarrow \bigcup_{\alpha \in \lambda} A_{\alpha}(0) \geq \bigcup_{\alpha \in \lambda} A_{\alpha}(x)$$

ii. Let x, y, z \in X. Then, we have $\bigcup_{\alpha \in \lambda} A_{\alpha}(y^*(y^*x)) = \sup \{A_{\alpha}(y^*(y^*x)) | \alpha \in \lambda\}$

 $\geq \sup \{\min\{A_{\alpha}((((x * (x*y))*(y*x)) * z)*b), A_{\alpha}(z) \mid \alpha \in \lambda\}\}$

[Since A_{α} is a fuzzy b-subimplicative ideals of X, $\forall \alpha \in \lambda$. By definition (2.1)(ii)]

 $=\min\{\sup\{A_{\alpha}((((x^*(x^*y))^*(y^*x))^*z)^*b), A_{\alpha}(z)| \ \alpha \in \lambda\}\} \text{ [Since } A_{\alpha} \text{ is a chain]}$

$$= \min \{ \sup \{ A_{\alpha} ((((x * (x*y))*(y*x)) * z)*b) \mid \alpha \in \lambda \}, \sup \{ A_{\alpha}(z) \mid \alpha \in \lambda \} \}$$

$$= \min \left\{ \bigcup_{\alpha \in \lambda} A_{\alpha}((((x * (x*y))*(y*x)) * z)*b), \bigcup_{i \in \Gamma} A_{\alpha(z)} \right\}$$

$$\Rightarrow \bigcup_{\alpha \in \lambda} A_{\alpha}(y^{*}(y^{*}x)) \geq \min \{\{\bigcup_{\alpha \in \lambda} A_{((((x^{*}(x^{*}y)))^{*}(y^{*}x))^{*}z)^{*}b), \bigcup_{\alpha \in \lambda} A_{\alpha}(z)\}\}$$

www.ijeais.org

Therefore, $\bigcup_{\alpha \in \lambda} A_{\alpha}$ is a fuzzy b-subimplicative ideal of X. $\forall b \in X \blacksquare$

<u>**Proposition(2.13)</u>**: Let f: (X,*, 0) \rightarrow (Y,*, 0') be a BH-epimorphism. If A is a fuzzy b-subimplicative ideal of X, then f(A) is a fuzzy b-subimplicative ideal of Y. $\forall b \in X$ </u>

<u>Proof</u>: Let A be a fuzzy b-subimplicative ideal of X. Then

i. Let $y \in Y$. Then there exists $x \in X$.

 $(f(A))(0')=\sup \{A(x_1) \mid x_1 \in f^{-1}(0')\}$

 $=A(0) \ge \sup\{A(x) \mid x \in X\} \ge \sup\{A(x_1) \mid x = f^{-1}(y)\} = (f(A))(y)$

[Since A is a fuzzy b-subimplicative ideal of X. By definition (2.1)(i)]]

 $\Rightarrow (f(A))(0') \ge (f(A))(y), \ \forall \ y \in Y.$

iii. Let $y_1, y_2, y_3 \in Y$. Then there exist

 $f(x_1)=y_1, f(x_2)=y_2, f(z)=y_3, f(b)=y_4$ such that $x_1, x_2, z, b \in X$

 $(f(A))(y_{2}^{*'}(y_{2}^{*'}y_{1}))=\sup\{A(x_{2}^{*}(x_{2}^{*}x_{1}))|x_{2}^{*}(x_{2}^{*}x_{1}) \in f^{1}((y_{2}^{*'}(y_{2}^{*'}y_{1})))\}$

 $\geq \min\{\sup\{A((((x_1^{*}(x_1^{*}x_2))^{*}(x_2^{*}x_1))^{*}z)^{*}b), A(z)|(((x_1^{*}(x_1^{*}x_2))^{*}(x_2^{*}x_1))^{*}z) * b \in \mathbb{C}$

 $f^{1}(((y_{1}*'(y_{1}*'y_{2}))*'(y_{2}*'y_{1}))*'y_{3})*'y_{4})\}$ and $z \in f^{1}(y_{3})\}\}$

[Since A is a fuzzy b-subimplicative ideal of X. By definition (2.1)(ii)]

 $\geq \min \left\{ \sup \{A((((x_1 * (x_1 * x_2)) * (x_2 * x_1)) * z) * b) | \left(\left((x_1 * (x_1 * x_2)) * (x_2 * x_1) \right) * z \right) * b \in C \right\}$

 $f^{-1}(((y_1*'(y_1*'y_2))*'(y_2*'y_1))*'y_3)*)*'y_4)\}, \sup \{A(z) | z \in f^{-1}(y_3)\}\}$

 $= \min \{ ((f(A))((f(((x_1 * (x_1 * x_2)) * (x_2 * x_1)) * z) * b), (f(A))(f(z)) \}$

=min {(((f(A))((((f(x_1)*'(f(x_1)*'f(x_2)))*'(f(x_2)*'f(x_1)))*'f(z))*'f(b), (f(A))(f(z)))}

[Since f is an epimorphism. By remark (1.2)]

 $= \min \{ (f(A))((((y_1*'(y_1*'y_2))*'(y_2*'y_1)))*'y_3))*'y_4), (f(A))(y_3) \}$

 $\Rightarrow f(A))(y_2^{*'}(y_2^{*'}y_1)) \ge \min\{(f(A))((((y_1^{*'}(y_1^{*'}y_2))^{*'}(y_2^{*'}y_1)))^{*'}y_3))^{*'}y_4), (f(A))(y_3)\}$

Therefore, f (A) is a fuzzy b-subimplicative ideal of Y.■

Proposition (2.14):

Let X be a BH-algebra and A be a fuzzy subset of X. Then A is a fuzzy b-subimplicative ideal of X if and only if $A^{\#}(x)=A(x)+1-A(0)$ is a fuzzy b-subimplicative ideal of X, where $b \in X$.

Proof:

Let A be a fuzzy b-subimplicative ideal of X. Then

i. $A^{\#}(0)=A(0)+1-A(0)$

 $\Rightarrow A^{\#}(0)=1$. Then $A^{\#}(0) \ge A^{\#}(x), \forall x \in X$

ii. Let x, y, $z \in X$ and $b \in X$. Then

 $A^{\#}(y^{*}(y^{*}x)) = A(y^{*}(y^{*}x)) + 1 - A(0)$

 $\geq \min \left\{ A((((x^*(x^*y))^*(y^*x))^*z)^*b), A(z) \right\} + 1 - A(0)$

[Since A is a fuzzy b-subimplicative ideal of X. By definition (2.1)(ii)]

 $= \min\{A((((x^*(x^*y))^*(y^*x))^*z)^*b) + 1 - A(0) , A(z) + 1 - A(0)\}$

 $\geq \min \left\{ A^{\#} \left(\left(\left((x^{*}(x^{*}y))^{*}(y^{*}x) \right)^{*}z \right)^{*}b \right) \right), A^{\#}(z) \right\}$

:. $A^{\#}(y^{*}(y^{*}x)) \ge \min\{A^{\#}((((x^{*}(x^{*}y))^{*}(y^{*}x))^{*}z)^{*}b), A^{\#}(z)\}$

 \Rightarrow A[#] is a fuzzy b-subimplicative ideal of X.

Conversely,

Let $A^{\#}$ be a fuzzy b-subimplicative ideal of X.

i. Let $x \in X$. Then we have

 $A(0)=A^{\#}(0)-1+A(0) \ge A^{\#}(0)-1+A(0)=A(x)$

[Since A[#] be a fuzzy b-subimplicative ideal of X. By definition (2.1)(i)]

 $\Rightarrow A(0) \ge A(x), \forall x \in X.$

ii. Let x, y, $z \in X$ and $b \in X$. Then

 $A(y^{*}(y^{*}x)) = A^{\#}(y^{*}(y^{*}x)) - 1 + A(0) \ge \min\{A^{\#}((((x^{*}(x^{*}y))^{*}(y^{*}x))^{*}z)^{*}b), A^{\#}(z)\} - 1 + A(0)$

[Since A[#] is a fuzzy b-subimplicative ideal of X. By definition (2.1)(ii)]

 $= \min \{ A^{\#} ((((x^{*}(x^{*}y))^{*}(y^{*}x))^{*}z)^{*}b) - 1 + A(0) , A^{\#}(z) - 1 + A(0) \}$

 $\geq \min \{ A((((x^*(x^*y))^*(y^*x))^*z)^*b)), A(z) \}$

 $\Rightarrow A(y^*(y^*x)) \ge \min \{ A ((((x^*(x^*y))^*(y^*x))^*z)^*b), A (z) \}$

Then A is a fuzzy b-subimplicative ideal of X.

<u>**Proposition(2.15)**</u> Let X be a BH-algebra and let w, $b \in X$. If A is a fuzzy b-sub-implicative ideal of X, then $\uparrow A(w)$ is a b-subimplicative ideal of X.

Proof:

Let A be a fuzzy b-subimplicative ideal of X. Then

i. $A(0) \ge A(x), \forall x \in X$.

[Since A is a fuzzy b-subimplicative ideal of X. By definition (2.1)(i)]

$$\Rightarrow A(0) \ge A((w) \Rightarrow 0 \in \uparrow A(w)$$

ii. Let x, y, $z \in X$ such that $(((x * (x*y)*(y*x))*z)*b \in \uparrow A(w) \text{ and } z \in \uparrow A(w)$

⇒ $A(w) \le A((((x *(x*y))*(y*x))*z)*b)$ and $A(w) \le A(z)$

 $\Rightarrow A(w) \le \min\{A((((x * (x*y))*(y*x))*z)*b), A(z)\}$

But $A(y^*(y^*x)) \ge \min \{A((x^*(x^*y))^*(y^*x))^*z)^*b), A(z)\}$

[Since A is a fuzzy b-subimplicative ideal of X .By definition (2.1)(ii)]

 $\Rightarrow A(w) \le A(y^*(y^*x))$

 $\Rightarrow y^*(y^*x) \in \uparrow A(w).$

Therefore, $\uparrow A(w)$ is a b-subimplicative ideal of X . \blacksquare

Theorem (2.16):

Let X be a BH-algebra, A be a fuzzy ideal of X A(b) =A(0). Then A is a fuzzy b-subimplicative ideal of X if and only if A_{α} is a b-subimplicative ideal of X, $\forall \alpha \in [0, A(0)]$.

Proof:

Let A be a fuzzy b-subimplicative ideal of X. To prove A_{α} is a b-subimplicative ideal of X.

i. Let $x \in A_{\alpha}$. Then $A(x) \ge \alpha$ [By definition (1.11) of A_{α}]

But $A(0) \ge A(x)$. [Since A is a fuzzy b-subimplicative ideal of X. By definition(2.1)(i)]

 $\Rightarrow A(0) \ge \alpha.$

 $\Longrightarrow 0 \in A_{\alpha}.$

 $\Rightarrow A((((x^*(x^*y))^*(y^*x))^*b) \ge \alpha \quad \text{and} \quad A(z) \ge \alpha \quad [By \text{ definition}(1.11) \text{ of } A_{\alpha}]$

min { A((((x*(x*y))*(y*x))*z)*b) , A(z) } $\geq \alpha$

But $A(y^*(y^*x)) \ge \min\{A((((x^*(x^*y))^*(y^*x))^*z)^*b), A(z)\}$

[Since A is a fuzzy b-subimplicative ideal of X. By definition (2.1)(ii)]

 $\Rightarrow A(y^*(y^*x)) \ge \alpha \Rightarrow y^*(y^*x) \in A_\alpha \qquad \qquad [By \ definition \ (1.11) \ of \ A_\alpha]$

Therefore, A_{α} is a b-subimplicative ideal of X, $\forall b \in A_{\alpha}$.

Conversely,

To prove A is a fuzzy b-subimplicative ideal of X.

i. $0 \in A_{\alpha}$ [By definition (1.8)(i)]. Then $A(0) \ge \alpha = A(x), \forall x \in X$.

ii. Let x, y, $z \in X$ such that $\alpha = \min\{A((((x^*(x^*y))^*(y^*x))^*z)^*b), A(z)\}$

 $\Rightarrow A((((x^*(x^*y))^*(y^*x))^*z)^*b) \geq \alpha \quad \text{ and } \quad A(z) \geq \alpha$

 $\Rightarrow (((x^*(x^*y))^*(y^*x))^*z)^*b \in A_\alpha \text{ and } z \in A_\alpha \,.$

 \Rightarrow y*(y*x) \in A_a [Since A_a is a b-subimplicative ideal of X. By definition (1.8)(ii)]

$$\Rightarrow A(y^*(y^*x)) \ge \alpha$$

 $\Rightarrow A(y^*(y^*x)) \ge \min \{ A((((x^*(x^*y))^*(y^*x))^*z)^*b), A(z) \}$

Therefore, A is a fuzzy b-subimplicative ideal of X, A(b) = A(0).

References

- D. Dubois and H. Prade, "Fuzzy Sets and Systems", Academic Press. INC. (London) LTD, fifth Avenue, New Yurk, 1980.
- E. M.kim and S.S. Ahn," On Fuzzy n-fold Strong Ideals of BH-algebras", J. Appl. Math. & Informatics. 30,(No.3) 4,pp. 665 - 676,2012
- 3. H. H. Abbass and H. A. Dahham,"Some Types of Fuzzy Ideals with Respect to an Element of a BG-algebra", M.S.c thesis, Kufa University, 2012.
- 4. H. H. Abbass and H. M. A. Saeed, "The Fuzzy Closed BCH-algebra with Respect to an Element of a BH-algebra", M.S.c thesis, Kufa University, 2011.
- H. H. Abbass and S. A. Neamah. Saeed, "The Fuzzy Implicative Ideal with Respect to an Element of a BH-algebra", M.S.c thesis, Kufa University, 2014.

- 6. H. H. Abbass, "The Q-Smarandache Closed Ideal and Q-Smarandache Fuzzy Closed Ideal with Respect to an Element of a Q-Smarandache BCH-agebra", Journal kerbala university,vol.10, No.3 scientific, pp.302-312,2012.
- 7. M. Ganesh, "Introduction to Fuzzy Sets and Fuzzy Logic", fourth printing, 2009.
- 8. Q. Zhang, E. H. Roh and Y. B. Jun, "On Fuzzy BH-algebras", J. Huanggang, Normal Univ. 21(3), pp. 14–19, 2001.
- 9. Y. B. Jun, E. H. Roh and H. S. Kim, "On BH-algebras", Scientiae Mathematicae 1(1), pp. 347–354, 1998.
- Y. B. Jun, H. S. Kim and M. Kondo," On BH-relations in BH-algebras", Scientiae Mathematicae Japonicae Online, Vol.9, pp. 91–94, 2003.