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Abstract

The notion of a genetic program has been widely criticized by both biologists
and philosophers. But the debate has revolved around a narrow conception
of what programs are and how they work, and many criticisms are linked to
this same conception. To remedy this, I outline a modern and more apt idea
of a program that possesses many of the features critics thought missing from
programs. Moving away from over-simplistic conceptions of programs opens
the way to a more fruitful interplay of ideas between the complexity of biology
and our most complex engineering discipline.

1 Introduction

The genomic sequence encodes the developmental program which de-
termines the progression from fertilized egg to organized body plan (Pe-
ter and Davidson 2013).

Peter and Davidson’s statement is not unusual; biologists frequently equate or com-
pare genes to computer programs. Their aim is often to identify a special or distinc-
tive role for genes in development. Thus, genes contain the instructions for building
an organism in contrast to, say, mere environmental inputs. Despite the frequency of
these statements, many philosophers and biologists argue that such comparisons are
wrong-headed and ultimately misleading rather than informative (Nicholson 2014;
Keller 2001; Pigliucci 2010; Boudry and Pigliucci 2013; Griffiths 2001; Planer 2014;
Nijhout 1990; Moczek et al. 2015; Jaeger et al. 2015). The complaints are many,
and I won’t rehearse them all here. Instead, I want to examine an aspect of the com-
parison between genes and programs that has had scant attention from philosophers.
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The issue is this: if we wish to advocate or dismiss the idea that genes are like a
program, then we need a clear idea about what a program itself is like. Yet while
the debates about genetic programs draw on the latest insights from molecular and
developmental biology, the corresponding talk about programs provides little detail
about what programs are and how they function; it is simply assumed that this is
common wisdom. But the discussion typically centers around a very narrow inter-
pretation of how programs operate. For example, the debates often assume that a
program is a list of instructions telling the computer what to do. This is true of
some programming languages (such as C, Java, or Python), but in other languages
(such as SQL or Haskell), you describe the results required rather than dictate the
instructions and the order they should be done. Many claims in the debates rely
on one understanding of a program, rather than anything about programs in general
(see Backus 1978 for a critique of these assumptions).

For many critics, this narrow interpretation of programs is irrelevant. Their goal
has been to evaluate the use and misuse of the genetic programming metaphor in
recent biological history (Keller 2003, for example). Their critiques often hit the
mark because advocates of genetic programs deploy concepts that are either similarly
narrow or vague enough to be interpreted this way.

But evaluating how scientists have deployed the notion of program is not our only
option here. An alternative is to look beyond this narrow interpretation and see
if it is possible to build a better analogy. Why bother? One role that engineering
analogies play in science is to draw on something well understood to illuminate,
clarify, or rethink some puzzling natural phenomenon. If we discard the genetic
program analogy without fully exploring what programs are like, we risk losing
valuable insights or simply re-inventing them under another name.

In the rest of this chapter, I sketch a way to think about programs that avoids many
of the criticisms advanced against genetic programs. This suggests there is still some
worth in thinking of genes as programs, as long as we’re clear on what programs we
have in mind.

2 Avoiding Deep Thought

In Douglas Adams’s tale The Hitchhiker’s Guide to the Galaxy, intelligent mice con-
struct a computer named Deep Thought to compute the answer to the meaning
of life, the universe, and everything. The mice then wait 7.5 million years for it
to deliver its famous answer. That is an absurdly long time to wait, but it high-
lights something often attributed to computers and, by extension, programs. The
computational task demanded of Deep Thought has what we might call a “ballistic
trajectory.” We give the computer (or program) some input, set it running, and
then stand back and wait for it to produce an answer. The British “bombe” device
depicted in the film about Alan Turing (The Imitation Game, 2014) demonstrates this
same ballistic trajectory, whirring and clicking to crack the German enigma code
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(just in time, whew!).

Many programs have this ballistic property. When biologists use phylogenetic soft-
ware to reconstruct the tree-like relationships between organisms using their DNA,
they feed it the raw sequence information and then may wait weeks for these pro-
grams to produce results. A program need not be complex or long-running to be
ballistic, however. The first programs students are asked to write have this ballistic
property, writ small:

exercise 1 : write a program to compute the first N prime numbers.

exercise 2 : write a program that calculates someone’s age in days from a given birth
date (look out for leap years!).

In each exercise, we’re asked to write a program that begins by consuming some
input, performs some calculation, and ends by supplying some output. A program
like this, which starts with a set of initial conditions and then churns through an
ordered series of steps to produce a final output, is sometimes known as a “script”
or a “batch program.”

Most programs we use today are not batch programs. When I start my word proces-
sor, I don’t sit around waiting for it to finish its job. The opposite is often true: my
word processor is sitting around waiting for me. A word processor, like most pro-
grams we encounter these days, is an “interactive program”: it takes in various bits
of input from the keyboard and mouse, responding with changes to what appears on
the screen and the odd beeping noise. Each interaction is brief and evokes a rapid
response: a keystroke adds a letter; a menu selection formats the text. A long series
of such interactions produce a story or a business report or a scientific paper.

This interplay between the program and user describes a feedback loop. I tap a few
words, the word processor highlights a spelling mistake, and I go back and correct it.
I read over a few sentences, decide on a better formulation, and then go back and
clarify the text. The dynamic coupling between the user and program is a mark of
these interactive programs.

The dynamic coupling of the interaction is essential, for interactive programs are not
merely programs that require input at times other than when they are started. Con-
sider an installation program from the days of CDs and floppy disks. These programs
stopped intermittently with the tedious but necessary request: “please insert next
disk.” Such a program is interactive in one sense – it asks for something from a user
at various stages during its operation. But notice that, in this case, the program decides
when and what type of interaction takes place. With a word processor, the user is
in the driver’s seat, and the program awaits commands in the form of mouse clicks
and key presses. Something outside the program (us, in this case) decides the order
things happen rather than the other way around.

The distinction between batch program and interactive program is not a hard line;
a single program might contain aspects of both. For example, we might view com-
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mands executed by a word processor, such as “Print” or “Format Bibliography,” as
tiny batch subprograms in themselves; we start them up and wait for them to fin-
ish. But the difference between batch programs and interactive programs is relevant
when we make analogies with genes, for it colors our thinking about what programs
are, how they operate, and what they explain.

3 Which Program Are You Thinking Of?

Critics of the genomic program often appeal to features of programs that apply only
to batch programs. For example, Evelyn Fox Keller thinks of a program as something
that starts with some data and finishes by producing some output – following the
ballistic trajectory I outlined earlier. Because of this, her only way of envisioning
complex gene interaction with feedback is to invoke multiple programs:

… what counts as “data” for one “program” is often the output of a
second “program,” and the output of the first is “data” for yet another
“program,” or even for the very “program” that provided its own initial
“data.” (Keller 2001)

Yet the notion of a feedback loop in interactive programs renders this unnecessary.
A single interactive program can take in input at different times, and that input may
include output that it has produced at previous times.

Fred Nijhout, similarly, appears to have batch programs in mind in his critique of
the genetic program metaphor. He outlines two conditions for gene expression to
be a program (Nijhout 1990, 442):

1. “The gene or its product must be necessary and sufficient for the occurrence
of the process, and not be itself provoked by the process itself.”

2. “A program must somehow contain information about the temporal sequence
of events.”

The first claim sounds reasonable for something like a batch program: we start up
a program to construct a phylogenetic tree, give it some input, and then let it run.
After setting it going, the results are determined by the program alone. Now consider
an interactive program: a half-written document, displayed on the screen, provokes
the user to change it, perhaps by pointing out a spelling mistake. So the feedback
loop between user and program guarantees it will fail Nijhout’s first condition.

Nijhout’s second condition fares the same. A batch program comprises a set of
modular components and some order in which to execute these components. The
order is important, for the operations later in the program often depend on the
completion of earlier operations. An interactive program also has a set of modular
components. In a word processor, the various menu options expose some of this
modular functionality (such as saving, formatting, numbering, or printing). But
the order in which we put together these operations – the “temporal sequence of
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events” – is not part of the program. The user of the program chooses how to put
them together.

Both of Nijhout’s conditions draw on a more basic assumption – that a program con-
tains some intrinsic ordering over how the instructions in the program are executed.
Nijhout is not alone in emphasizing the importance of this intrinsic ordering. An-
other critic of the genetic program, Ronald Planer, finds it problematic that “there
is no order in which these instructions can be properly said to be retrieved and ex-
ecuted by the cell during development,” so that there is no “beginning, middle, or
end to this ‘program’ ” (Planer 2014).

Consider Planer’s claim in light of batch programs and interactive programs. A batch
program has a clear beginning, middle, and end. Many batch programs even show
how far through the various tasks they are: “Processing 50% complete . . .” But
how should we respond if asked about the beginning, middle, and end of a word
processing program? Given the technical know-how, we might find the first instruc-
tions executed by a word processor when it starts and maybe even the last instruction
it executes when we quit the program. But where is the middle of this program?
The program comprises a set of small actions – typing, formatting, editing – chained
together in a variety of ways by the user of the program. There is no way to point
to some specific piece of code and say, “This is the middle,” like we could with, say,
the program that reconstructs phylogenies. This is because an interactive program
does not dictate the order in which it must execute its operations. Instead, this order
derives from some external input.

Notice that a word processor is useful because it does not dictate this order. Without
the ability to control the order in which it executes the various components, the
flexibility of the word processor would be lost. This exposes assumptions about
what programs are good for. If we focus on batch programs, we might think the
utility of a program lies in its capacity to encode a complex series of dependent
operations. With a word processor, however, rather than a set of dependent steps,
we have a set of loosely coupled operations that transform a document. The utility
of the program lies in the ease and flexibility with which some external process
can recombine these operations. An interactive program resembles a well-designed
toolkit of related operations that are assembled at run time rather than a set of ordered
instructions that execute a well-designed plan.

This shift in focus turns many common ideas related to programs, and especially
genetic programs, on their head (see Nicholson 2014, for example). A batch program
emphasizes determinism; an interactive program, flexibility and open-endedness. A
batch program churns away by itself; an interactive program depends on inputs from
some external source. A batch program contains the rules (instructions, procedures,
algorithm) for producing its output; an interactive program contains no rules for
producing a particular output but a toolkit for generating many outputs. Finally, a
batch program often incites agentive thinking: “the phylogenetic program generated a
tree of related various organisms,” while an interactive program does not: Microsoft
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Word no more wrote my thesis than a typewriter wrote Hemingway’s The Old Man
and the Sea.

4 No Spookiness Required

I introduced an interactive program using a word processor – something I assume
readers are familiar with. But a word processor interacts with us – an intelligent
external agent. Am I suggesting there is an external intelligent agent interacting
with (or directing!) the genetic program? That would be spooky. So let me describe
an interactive program without positing any intelligent external agent.

Instead of a word processor, consider a program that controls a mobile robot, such as a
robot vacuum cleaner or “robovac.” If you haven’t seen one, they are self-contained
vacuum cleaners the size and shape of a Frisbee on wheels. They zip around the
floor, moving underneath furniture and doing a surprisingly good job of cleaning
your house unattended.

A robovac has several sensors that convey information about the local environment
– whether it is touching something, whether something is in front, and so on. This
information feeds into the program controlling the robovac, and the program re-
sponds by maneuvering the robot, such as changing direction or slowing down. By
maneuvering, the robot changes its environment, and now its sensors are exposed to
a different environment. This results in further maneuvering. And so it goes until
(in my experience) the battery runs out or the robovac ingests a stray sock. Here we
have the same coupled, fluid feedback loop between a program and some external
set of affairs. But instead of an intelligent agent directing the robot, it is the changing
environment that serves as the other half of the feedback loop.

The robovac example removes the spookiness, but have we lost the contrast with the
batch program I outlined earlier? Unlike the word processor’s open-ended output,
a robovac’s actions are directed to one outcome: cleaning the house. Let’s shift
our attention from this goal and consider, instead, how the robovac achieves this
task. Take the path the robovac robot traced around my house on some particular
day. This path was not programmed into the robot – I did not upload a house plan
into my robovac and have it precalculate some optimal cleaning path. Rather, the
particular path taken arose from the continuous interaction between the layout of
my house and the combined set of responses of the program controlling the robot’s
actions.

This “emergent” behavior is often contrasted with how programs work.1 Nijhout,
for example, differentiates development from a program by describing it thus: “De-
velopment is a series of elaborate temporal and spatial interactions that are context
dependent. The sequence of gene activation we see in development is an emergent

1By “emergent,” here (and elsewhere), I mean the weak emergence exhibited by many agent-based
systems and cellular automata rather than anything metaphysically hard to understand (Bedau 1997).
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property of this interaction” (Nijhout 1990). Yet we can describe the sequence of
maneuvers executed by our robovac the same way. The particular path the robovac
took is an emergent property of its interaction with the environment. Like the word
processor, the ordering of the set of responses it made was not intrinsic but induced
by something external to the robot. For the robovac, this external feature was the lo-
cal environment. This local environment, in turn, resulted from previous decisions
made by the robot.

Switching the kind of program we have in mind changes what features we attribute
to a program. Yet it is batch programs that critics have focused on, while interactive
programs look like a better choice if we wish to build an analogy with genes. In
the next section, I show how extending this idea can add some further clarity to
constructing a useful analogy.

5 A Roomful of Robovacs

Word processors and robovacs are interactive programs, but what they interact with
differs. In the first case, the program interacts with a goal-directed intelligent agent
(such as me, on good days at least). But a robovac largely interacts with a static envi-
ronment, a variety of furniture distributed across rooms of various shapes. Dynamic
bits of the environment, such as pets and small children, typically present a challenge
to it. The variety of input it receives is generated entirely by its own motion in that
environment.

Now consider placing several robovacs in the same room. We no longer have a
static environment, as each robovac is responding, in part, to other robovacs. To
my knowledge, no one has designed robovacs that work in groups, so I doubt this
exercise would produce faster or more efficient cleaning (over and above there be-
ing just more robovacs). But this kind of collective robotic behavior is being actively
explored. There are flocks of coordinated aerial robots that can fly in formation, for
example (Vasarhelyi et al. 2014). These flocks lack any central controlling system;
each robot is independent, responding to local physical parameters, global position-
ing information, and messages received from other robots. Their ability to fly in
formation – a group-level ability – results from the continuous interaction between
individual robots.

Would we say the program created a particular flying formation? That seems odd
but for a different reason than saying the word processor wrote my thesis. For the
question here is about a group-level capacity: a particular flying formation. A single
robot (with a single program) does not create a formation. If we are to attribute this
goal to the program, then we need to mention it arose from several copies of that
program interacting with one another. We can think of it like this. For the robots
to assemble into a formation, each must maneuver itself while continually adjusting
to the other robots doing likewise. As with our initial robovac, these paths are not
explicitly coded into the robots. Rather, they emerge from each robot’s coupled
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interaction with other robots navigating their own path. But the maneuvering of
individual robots is not equivalent to the assembly of a particular formation. That
emerges from the collective behavior of all the robots.

So neither the behavior of individual aerial robots nor their group flying formation
is encoded in the program. To fully understand how the formation occurs, we need
to understand how the program is embedded within the physical context and how
the communication and interaction between the multiple versions of it take place.
Yet we can still make sense of a program playing a distinctive role in controlling a robot.
The interactive nature of program is, in part, what enables the robot to respond with
appropriate behavior given particular local conditions.

Let me summarize the kind of program we are now dealing with. I’ll call it a
Collectively-Identical Interactive Program. Abstracting away from the details of our
roomful of robovacs (or skyful of aerial robots), we have:

1. A single interactive program (a related but loosely coupled set of operations,
which are invoked by, and respond to, incoming input),

2. where there are multiple identical copies of this same program running con-
currently,

3. and each copy of the interactive program is coupled to other copies of itself,
where the outputs from one can affect the future inputs of others.

4. Furthermore, the program has been designed to interact with other copies of
itself,

5. yet the design goal itself is a group-level capacity rather than the individual
behavior of a single copy of the program.

This kind of program naturally fits with the goal of controlling swarms of robots, or
agent-based simulations. But this is not the only place we find this confluence of
properties. One recent example concerns analyzing the social networks that arise
in online interactions – a task essential for many big online companies. These so-
cial networks comprise “vertices,” representing people, and “edges,” representing
social relationships (capturing friendship, for example). Understanding the struc-
ture of these networks can reveal an enormous amount about how people interact
(too much perhaps). It turns out, however, that traditional top-down algorithms
for analyzing networks cannot deal with networks of this size. One solution to this
problem, proposed by employees at Google, is to treat the graph as though each ver-
tex (or node) is running the same program and receiving input and sending output
along its edges (Malewicz et al. 2010). Because each program requires only limited
local information, we can distribute these programs across many computers and run
in parallel. Similar to the way the iterative feedback between programs in interact-
ing aerial robots converges to a particular formation, we can use iterative feedback
between many interacting vertex-based programs to identify high-level structure in
graphs, such as the complex communities of friendships in a social graph. There are
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no robots here, but we still have a program that interacts with itself to produce a
collective feature at a higher level.

6 Building a Better Analogy

Given the aim of this chapter, it should not be surprising that I think the kind of
program I have just outlined has something in common with genes. The analogy
goes like this. In a developing multicellular organism, each cell contains a copy of
the same DNA.2 This DNA encodes a program, and each cell is running a copy of
the same program. These are interactive programs, constantly responding to their
local environment. In a developing multicellular organism, this environment con-
sists largely of other cells. Like the examples, each copy of the program interacts
with other copies in the surrounding cells. On this view, a genomic program is an
interactive program that has evolved to interact with copies of itself to generate a
higher level of organization, such as prominent features of a multicellular body plan.

This claim might sound familiar and open to the same familiar critiques. But it is
essential to see these claims in the light of the preceding discussion about programs.
First, although we might say (one copy of) a program is guiding the cell’s behavior,
this behavior is not encoded as a series of steps in the genome but arises dynamically
from the interaction between the program and its changing developmental environ-
ment. Second, not only is this cellular behavior not encoded in the genome, but
the individual cellular behavior itself is also not equivalent to the higher level of
organization that the collective individual-level behavior produces.

This revised view of a genomic program allows us to pull apart some features that
are commonly run together. For example, it makes sense to say that this program
controls features of development because changing the program will change how
the collective interaction of the programs unfolds.3 But it does not follow that the
program itself is sufficient to “compute the embryo.” Nor does it mean that this
higher-level organization is “in” the DNA or that it can be read off the DNA like
the structure of a building can be read off a blueprint. This version of a genetic
program is also compatible with views that emphasize the key role of physical self-
organization in development (such as Newman and Bhat 2009). As we saw with the
aerial robots, the programs by themselves did not explain how the formations were
constructed; other information about the interactions amongst the group and were
required.

2To a rough approximation. There are always exceptions in biology, such as cells without DNA,
somatic mutations, and chimeric organisms.

3This provides a novel way to pursue the idea that genes are a special kind of difference maker
(Griffiths et al. 2015; Weber 2016).
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7 Summary

My goal in this chapter was to present a fresh approach to genetic programs. I fo-
cused on two key ideas. First, we need to move beyond scripts and batch programs
and instead look at how interactive programs work. Second, we need to look at pro-
grams that are specifically designed to interact with one another to produce some
collective behavior. The first of these is commonplace – almost every program we
now use is interactive. The second shift is more specialized, but I identified two
areas of active research. More can be said, however. I’ve focused on describing
the behavioral contrasts between batch and interactive programs. But the internal
architecture of these programs differs too. I touched on this earlier when I referred
to an interactive program as more like a combinatorial toolkit whose pieces are put
together at run time. Interestingly, this same architecture enables interactive pro-
grams to be extended and modified more easily than batch programs. That looks
relevant once we shift our attention to the evolution of development and the subject
of evolvability (Calcott 2014).

The notion of a genetic program still has something to offer us. It may not be
a complete picture, nor should it be the only source of ideas. It does, however,
have additional virtues in contrast to frameworks offered as replacements, such as
developmental systems theory (Oyama et al. 2003). For when you borrow from
engineering, the ideas you draw on have been applied and are known to work, and
their limitations are understood.
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