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Abstract 

Operational modal analysis (OMA) is increasingly applied to identify the modal properties of 

a constructed structure for its high economy in implementation. Though great achievement has 

been made in OMA, it is still challenging in the scenario of multiple setup data with close 

modes, due to the need to assemble the global mode shapes and the intervention of close modes, 

especially when the data quality is low in some setups. A Bayesian approach is developed in 

this paper to compute the most probable value (MPV) of modal parameters incorporating data 

from multiple setups and multiple (possibly close) modes. It employs an expectation-

maximisation algorithm which admits an analytical update of modal parameters except the 

frequencies and damping ratios, thus allowing an efficient computation of the MPV, usually in 

the order of tens of seconds for each frequency band even when there are a large number of 

degrees of freedom and long data. A comprehensive study based on synthetic and field test data 

is presented to illustrate the performance of the proposed algorithm. Comparing with three 

existing algorithms, it shows the quality of the identified global mode shape is good and 

insensitive to the method used when the data quality is consistently high in all setups; However, 

only the proposed Bayesian approach yields consistently reasonable results when the data 

quality is low in some setups. 
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1. Introduction 

Operational modal analysis (OMA) [1–3] aims at identifying structural modal properties 

(natural frequencies, damping ratios, mode shapes, etc.) using ambient vibration data. The input 

excitation is not measured in ambient vibration test but is assumed to be broadband random. 

This allows the data to be collected economically in the operational condition of the structure 

without much intervention, which makes OMA popular in implementation. An increasing 

number of ambient vibration tests have been performed in the last few decades, see, e.g., [4–

9]. The identified modal parameters are often demanded in downstream applications, e.g., 

damage detection [10–12], model updating [13–15] and structural health monitoring [16–18].  

In OMA, the identified mode shapes can provide insights into the nature of modes through the 

relative motion of the measured degrees of freedom (DOFs). A higher spatial resolution of 

mode shape can only be achieved by increasing the number of measured locations. In full-scale 

field tests, however, many situations exist where there are a large number of DOFs to be 

measured but only a limited number of sensors are available due to, e.g., limited 

instrumentation budget or manpower. This implies that the DOFs of interest cannot be 

measured synchronously together in a single setup.  A common feasible strategy is to conduct 

multiple setups, with each setup covering different parts of the structure. Different setups need 

to share some reference DOFs in common so that the ‘global mode shape’ covering all 

measured DOFs can be assembled by virtue of the common information among the setups. 

Obtaining high-resolution mode shapes is the main target of multiple setup test. According to 

the order of mode shape assembly prior or posterior to the identification, the modal 

identification approaches can be categorised into either pre- or post-identification, and they are 

briefly reviewed as follow. 

Conventionally, post-identification approach is employed to produce the global mode shapes. 

The modal parameters in each setup are identified individually using the corresponding data. 

The global mode shape is then ‘assembled’ or ‘glued’ from the ‘local mode shapes’ in different 

setups. Local least squares method [1] provides a heuristic way for gluing mode shapes. It 

requires one to select a reference setup first. The mode shape in any other setup is scaled so 

that the mode shape values at the reference DOFs best fit their counterparts in the reference 

setup in a least squares sense. The quality of results, however, depends critically on the choice 

of the reference setup [1]. If the quality of identified mode shape in the reference setup is poor 

(e.g., significant disagreement of mode shape values at the reference DOFs with other setups), 
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the assembled mode shape will be of poor quality, often appearing as physically unreasonable. 

Global least squares method [19] eliminates the choice of reference setup by fitting the local 

mode shapes in different setups simultaneously in an overall sense through a single objective 

function, subjected to scaling constraint of the global mode shape. It has been found to give 

reasonable results in many full-scale field tests [4,6,20,21]. Conventional procedures put equal 

weight on different setups, although intuitively the setups with poor data quality should have 

less influence on the assembled mode shape since the local mode shapes identified in these 

problematic setups are less reliable. In Section 14.3.6 of [1], a strategy, based on well-separated 

modes with high signal-to-noise (s/n) ratio, is suggested to place the weights proportional to 

the modal s/n ratio of the setups. In addition, the least squares methods only make use of the 

information of local mode shapes and they ignore other modal properties, which may be 

important when the data quality in some setups is poor.  

Pre-identification approach is also available to assemble the global mode shapes. The basic 

idea is to merge datasets from multiple setups and then use the combined dataset for modal 

identification as if it is from a single setup based on certain modelling assumptions. Since the 

ambient excitation can differ from one setup to another, the data in different setups must be 

scaled properly before merging to a global dataset. In [22], the data-merging strategy is applied 

to stochastic subspace identification (SSI) method for multiple setup measurements where the 

Hankel matrices of the roving sensor data are normalised by their counterparts of the reference 

sensor data. This method was later generalised to a modular SSI method [23]. In [24], a 

frequency-domain method was proposed by merging data power spectral density (PSD) from 

multiple setups before modal identification. Compared to the post-identification approach, the 

pre-identification is less demanding on identification as it allows one to use essentially a single 

setup algorithm. This is at the expense of assuming that all modal parameters to be time-

invariant in all setups, which could be a major source of modelling error.  

A Bayesian method based on the Fast Fourier Transform (FFT) of OMA data was developed 

for modal identification incorporating multiple setup data [25]. Allowing modal properties 

other than mode shapes to vary in different setups, it provides a fundamental means to process 

the information in the multiple measurements and make inference for the modal properties in 

a manner strictly consistent with modelling assumptions and probability logic. The 

comparisons between the Bayesian and post-identification methods [25,26] revealed that when 

the data quality is high in all setups the quality of global mode shapes is high and insensitive 

to the choice of method, e.g., be it local or global (least squares), Bayesian or non-Bayesian. 
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In the general case, however, Bayesian method tends to be more robust to data quality, giving 

reasonable mode shapes in cases with low data quality where least squares methods deliver 

spurious results.  

One critical issue with the Bayesian method is computational effort. The determination of 

modal parameters involves numerical optimisation of the posterior probability density function 

(PDF) which is a nontrivial nonlinear multi-dimensional function of the modal parameters. A 

fast algorithm has been developed in the previous work [25], allowing the modal parameters to 

be determined efficiently even for a large number of measured DOFs. The algorithm, however, 

is only applicable for well-separated modes where one can select a frequency band around the 

natural frequency of interest and the contribution of other modes can be ignored within the 

band. While well-separated modes are typical, close modes are often found in structures (e.g., 

symmetrical structure [27], long bridges [5,6,28,29] and high-rise buildings [30–32]). Fast 

Bayesian algorithm for the general case of multiple (possibly close) modes with multiple setups 

has not been developed yet, as the case of single setup is already challenging [33], demanding 

advanced linear algebra and iterations to resolve measured mode shapes that are not necessarily 

orthogonal and modal excitations (hence response) that can be coherent. As a sequel to the 

development, this paper proposes a fast algorithm for computing the most probable value 

(MPV) of modal properties. Adopting a different route from [33], the proposed algorithm is 

based on Expectation-Maximisation (EM) algorithm and leverages on the discovery of special 

mathematical structure of the problem. A recent application of EM has led to a promising 

algorithm in the case of single setup [34]. 

This paper is organised as follow. Bayesian formulation of OMA based on FFT of multiple-

setup data is first reviewed in Section 2. The EM algorithm and its variant parabolic EM (P-

EM) are introduced in Section 3. Analytical investigation is performed in Section 4 so that one 

can leverage on the power of P-EM to solve the multiple mode multiple setup problem, 

resulting in an iterative algorithm where different groups of modal parameters are updated 

semi-analytically in turn and where the likelihood function will increase as guaranteed by the 

EM algorithm. A comprehensive study based on synthetic and field test data is presented in 

Section 5 to illustrate the performance of the proposed algorithm. Table 1 and Table 2 list 

respectively the abbreviations and notations used in this work. 
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Table 1 Abbreviations used in this work 

Short Long Short Long 

BAYOMA Bayesian Operational Modal Analysis c.o.v. Coefficient of Variation 

DOF Degree of Freedom EM Expectation-Maximisation 

FDD Frequency Domain Decomposition FFT Fast Fourier Transform 

i.i.d. independent and identically distributed LLF Log-likelihood Function 

MAC Modal Assurance Criteria MPV Most Probable Value 

OMA Operational Modal Analysis PDF Probability Density Function 

P-EM Parabolic EM PSD Power Spectral Density 

SSI Stochastic Subspace Identification SV Singular Value 

 

Table 2 List of notations commonly used in this work 

Symbol Description Symbol Description 

n Number of total 

measured DOFs 

nr Number of data 

channels in Setup r 

m Number of modes in 

the selected band 

ns Number of setups 

( )r

fN  Number of FFT points 

in the selected band of 

Setup r 

Nr Number of samples 

per data channel in 

Setup r. 

L(θ) LLF function ( )r

if  Natural frequency of 

Mode i in Setup r 

( )r

i  Damping ratio of 

Mode i in Setup r 

( )r

eS  Prediction error PSD 

in Setup r 

( ) 
1

0

ˆ rN
r

j
j

−

=
x  

Measured data in 

Setup r; 
1rnR 
 

( )ˆ r

kF  One-sided scaled FFT 

of  ( ) 
1

0

ˆ rN
r

j
j

−

=
x ; 1rnC   

( )r

kη  Scaled FFT of modal 

response at frequency 

( )
f

r

k  in Setup r; 1mC    

( ) ( ) ( )
1 ; ;

r r r

k k mkp p =
 

p  Scaled FFT of modal 

force at frequency 
( )

f
r

k  

in Setup r; 1mC   

D  The collection of the 

FFTs within the 

selected band in all 

setups 

θ Modal parameters to 

be identified 
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rL  Selection matrix; 

rn n
R


 

( ) ( ) ( )( )1 , ,
r r r

k k mkdiag h h=h  
Frequency response 

function matrix; 
m mC    

 1, ,r r rm=Φ ν ν  Local mode shape 

matrix in Setup r; 

rn m
R


 

 1 m=Φ φ φ  Global mode shape 

matrix; 
n mR 

  

( )r

kE  Theoretical PSD 

matrix of the data in 

Setup r; r rn n
C


  

( )r
S  Modal force PSD in 

Setup r; m mC 
 

 

2. Bayesian formulation for multiple setups 

The Bayesian formulation for multiple setup OMA is reviewed in this section. One may refer 

to [25,35] for previous work on well-separated modes and [1] for the general discussion of 

Bayesian Operational Modal Analysis (BAYOMA). In a multiple setup problem, different 

setups measure possibly different parts of the structure while sharing some reference DOFs in 

common. Ambient vibration data is collected from setups during different time periods. The 

modal parameters other than mode shapes need not be the same among setups. This accounts 

for the fact that the structure and environmental condition could differ (however slightly) from 

one setup to another, which may lead to change in the modal parameters, e.g., modal force 

PSDs (reflecting the ambient vibration level) and damping ratios (due to amplitude-dependent 

property). The data collected in different setups are related only by mode shape.  

Let ( )  ( )
1

0

ˆ 1
rN

r

j r
j

n
−

=
x  be the measured ambient acceleration data in Setup r (r = 1, …, ns; ns is 

the number of setups) with nr and Nr respectively being the number of measured DOFs and 

samples per data channel in this setup. The (one-sided) scaled FFT of 
( ) ˆ r

jx  at frequency 

( ) ( ) ( )f Hz
r

k r rk N t=  is defined as 

 
( ) ( )

1
2 /

0

2 ˆˆ
r

r

N
r r jk Nr

k j

jr

t
e

N


−

−

=


= 

i
xF  (1) 

where rt  (sec) is the sampling time interval and 2 1= −i . Assuming linear classically damped 

dynamics with m dominated modes within the selected band, 
( )ˆ r

kF  is modelled as 
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( ) ( ) ( )ˆ r r r

k r k k= +Φ η εF  (2) 

where  1, , rn m

r r rm R


= Φ ν ν  whose i-th column is the ‘local mode shape’ of the i-th mode 

covering only the measured DOFs in Setup r; 
( )r

kη  is the scaled FFT of modal response at 

frequency ( )
f

r

k ; 
( )r

kε  denotes the scaled FFT of the prediction error (due to, e.g., data noise and 

modelling error) assumed to be independent and identically distributed (i.i.d.) among different 

measured DOFs with a constant PSD 
( )r

eS  in the band. Let 
( ) ( ) ( ) 1

1 ; ;
r r r m

k k mkp p C  = 
 

p  with 

( ) ( )1, ,
r

ikp i m=  being the scaled FFT of the i-th modal force at frequency ( )
f

r

k . Then 

( ) ( ) ( )r r r

k k k=η h p  where 
( ) ( ) ( )( )1 , ,
r r r

k k mkdiag h h=h is a diagonal matrix with the i-th diagonal entry 

being the frequency response function corresponding to Mode i and given by (for acceleration 

data) 

 
( )

( ) ( ) ( )

( )
( )

( )2

1

1 2 f

r
r r i

ik ikr r r r

ik i ik k

f
h 

  
= =

− − i
  (3) 

where 
( )r

if  and 
( )r

i  are respectively the natural frequency and damping ratio of Mode i in 

Setup r.  The modal force 
( ) r

kp are assumed to be stationary with a constant PSD matrix 

( )r m mC S  within the selected band. As a standard result in stochastic processes, for long data, 

both 
( )r

kp  and 
( )r

kε  are independent at different frequencies and follow a (circular symmetric) 

complex Gaussian distribution [1], i.e., 
( ) ( )( ),
r r

k CNp 0 S and 
( ) ( )( )0,

r

r r

k e nCN Sε I  where 
rnI

denotes the 
r rn n  identity matrix. 

Let ( )1i nφ  be the ‘global mode shape’ of the i-th mode covering all measured n DOFs. To 

relate the global mode shape to the local one in Setup r, a selection matrix rn n

r R


L  is defined 

[19], such that 

 , 1, ,ri r i i m= =ν L φ   (4) 

The (j, k)-entry of Lr is 1 if the j-th data channel in Setup r measures DOF k in iφ  and zero 

otherwise. In the above context, the set of modal parameters θ to be identified comprises:  
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( )  ( )  ( ) ( )   1

1 1
1

, , , ,
sn

m m
r r r r

i i e m
i i

r

f S
= =

=

 
= = 
 

θ S Φ φ φ   (5) 

The global mode shape iφ  is assumed to be normalised to unity throughout this work, i.e., 

( )1 1, ,T

i i i m= =φ φ , to make the model identifiable. 

Let ( )  ( )  1ˆ ˆ, , sn

k kD = F F  denote the collection of the FFTs within the selected band in all 

setups. Using Bayes’ theorem and assuming a uniform prior distribution for θ, the posterior 

PDF is proportional to the likelihood function, i.e., ( ) ( )p pθ θD D . Assuming that for 

given θ the modal forces and prediction errors in different setups are independent, this implies 

that the scaled FFT of the data in different setups are also independent. Consequently, 

 ( ) ( ) ( )
1

ˆ
sn

r

k

r

p p
=

=θ θD F  (6) 

For long data, the FFTs 
( ) ˆ r

kF  follow a (circular symmetric) complex Gaussian distribution 

and are independent at different frequencies [1], giving 

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1*ˆ ˆ ˆexp

rn
r r r r

k k k kr
k k

p
 −

− = −
 θ E θ

E θ
F F F  (7) 

where the product is taken over all the frequencies within the selected band; 
( )r

kE  is the 

theoretical PSD matrix of the data in Setup r; assuming that the prediction errors 
( )r

kε  are 

independent of the modal forces 
( )r

kp , it is given by 

 ( ) ( ) ( ) ( ) ( )*ˆ ˆ
r

r r r r rT

k k k r k r e nE S = = +
 

E θ Φ H Φ IF F  (8) 

where 
( ) ( ) ( ) ( )*r r r r

k k k=H h S h  and ‘*’ denotes the complex conjugate transpose. 

In implementation, it is more convenient to work with the log-likelihood function (LLF) for 

computation and analysis:  

 ( ) ( )
1

ln
sn

r

r

L p L
=

= =θ θD  (9) 

where 
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 ( ) ( ) ( ) ( ) ( )* 1ˆ ˆln ln
r r r r r

r r f k k k k

k k

L n N  −= − − − E EF F  (10) 

and the sums are over all frequencies in the selected band; 
( )r

fN  is the number of FFT points in 

the selected band of Setup r. Note that in the BAYOMA literature L(θ) refers to the negative 

LLF but here it refers directly to the LLF. This is to be consistent with the EM literature. 

The MPV of modal parameters θ  (akin to the ‘best’ estimate in non-Bayesian methods) can be 

determined by maximising ( )L θ  in (9) (equivalent to maximising ( )p θ D ). It involves 

repeated calculation of the determinant and inverse of ( )r

kE  at different k and different trial 

values of θ . The computation is non-trivial since the matrix 
( )r

kE  is close to being singular 

especially for good quality data with high s/n ratio. On the other hand, the dimension of ( )r

kE , 

which is equal to the number of measured DOFs, could be large in applications. The 

aforementioned difficulties render direct calculation based on the original formulation 

impractical in implementation. An efficient algorithm [25] has been developed for well-

separated modes (i.e., m = 1) in multiple setup OMA, allowing one to compute the modal 

properties within several seconds, even for a large number of DOFs. That algorithm, however, 

cannot be easily extended to deal with close modes (i.e., more than one mode in the selected 

band) because the measured mode shapes are not necessarily orthogonal and the modal 

excitations could be correlated and hence have a non-zero coherence (correlation in the 

frequency domain). A method has been recently developed based on EM to improve the 

computational efficiency and robustness in the case of single setup [34]. It allows the 

parameters other than natural frequencies and damping ratios to be updated analytically in 

terms of the remaining parameters, which significantly reduces the number of parameters to be 

numerically optimised. In the case of multiple setup OMA that is considered in this work, as 

detailed in Section 4, it is still feasible to update analytically the MPVs of some parameters 

given the remaining ones based on EM algorithm, thereby providing an efficient semi-

analytical iterative algorithm for modal identification. 

3. Expectation-Maximisation algorithm 

Before employing the EM algorithm to Bayesian FFT method in multiple setup problem, we 

first briefly introduce this algorithm and its variant which will be used in the paper. A thorough 

review of the theory and applications of this algorithm can be found in [36]. The EM algorithm 
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is widely used to determine the maximum likelihood estimates of the parameters θ  in a 

statistical model ( )p Y θ  where Y is the observed data. By introducing a ‘latent variable’ X 

(which must be carefully designed), it provides the opportunity for exploiting the mathematical 

structure of the subject problem to produce an algorithm where different groups of parameters 

are updated iteratively and where the LLF is guaranteed to increase (hence closer to solution). 

In the context of Bayesian modal identification, θ  is the set of modal parameters to be 

identified (i.e., (5)) while Y is the data FFTs D . Following the findings in [34], the modal 

response ( ) r

kη is taken as the latent variable in this work, which is found to result in an efficient 

algorithm. The EM algorithm seeks to find the maximum likelihood estimates by alternating 

between performing the Expectation (E) step and the Maximisation (M) step until convergence: 

E step: The expected value of the ‘complete-data log likelihood’ ( )  ( ); , ln ,L p=θ Y X Y X θ

is computed, i.e., 

 
( )( ) ( ) ( )

,
E ; ,

t

t
Q L=   X Y θ

θ θ θ Y X   (11) 

where ( )  
,

E
t

X Y θ
 is the expectation operation with respect to the current conditional 

distribution of X given Y and the current estimates of parameters 
( )t
θ . 

M step: Update the parameters by maximising (11), i.e., 

 
( ) ( )( )1 arg maxt t

Q
+
=

θ

θ θ θ   (12) 

The EM algorithm is especially useful when the likelihood function belongs to the exponential 

family (as in modal identification) since the E step leads to a sum of expectation of sufficient 

statistics while the M step involves maximising a linear function of unknown parameters. In 

this case, a closed-form update for each step is usually available. The EM iterations always 

increase the likelihood function and therefore converge if the likelihood is bounded [37]. There 

is no guarantee that the sequence converges to a global maximum, however. Depending on the 

initial value of θ, EM may converge to a saddle point or a local maximum. To avoid such an 

issue, a proper initial guess of θ should be provided when using the EM algorithm. 

One drawback of EM is the possibility of low convergence which is problem dependent and 

does not reveal itself in a trivial manner. In particular, it can happen for some problems that 
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the iterations move quickly to the neighbourhood of a stationary point but then move extremely 

slow (or practically stagnant) towards the stationary point. Different variants have been 

proposed for improvement, among which the P-EM [38,39] shows good efficiency while still 

preserving the advantages of the EM algorithm, i.e., simplicity and monotonic convergence. 

The P-EM approximates the local curvature of the surface (θ, L(θ)) by a parabolic extrapolation 

controlled by three successively estimated values of parameter θ, where ( ) ( )lnL p=θ Y θ . Let 

( ):F Fθ θ  be a mapping function representing a single iteration of EM so that a sequence 

θ(0), θ(1), …, θ(t), … can be generated with the iterative scheme, i.e., ( ) ( )( )1t t
F

+
=θ θ . 

The pseudo-code of P-EM is given in Algorithm 1 [38].To start the algorithm, several iterations 

of EM need to be performed first from the initial value of 
( )0
θ . Besides, two parameters a and 

b need to be tuned in the extrapolation step. Good reference values are given in [38] with a = 

1.5 and b = 0.1. They are used in this work.  

Algorithm 1 (Pseudo-code of P-EM) 

1. Initialisation 

Generate a sequence of θ(1), θ(2), …, 
( )bn
θ  based on ( ) ( )( )1t t

F
+
=θ θ  from the initial value 

θ(0) and set 
( ) ( )0 bn
=θ θ . 

2. Iterations 

iter = 0; ( )( )0

oldL L= θ ; ( ) ( )( )1 0
F=θ θ ; ( ) ( )( )2 1

F=θ θ ; 
( )( )2

bestL L= θ  

while iter < itermax  % maximum number of iterations 

iter = iter +1; i = 0; c = 1 + aib;  

( ) ( ) ( ) ( ) ( )2 0 1 221 2 1new c c c c= − + − +θ θ θ θ ; ( )new newL L= θ ;  

      if Lnew ≤ Lbest 

    ( ) ( )0 2
=θ θ ; Lold = Lbest 

     ( ) ( )( )1 0
F=θ θ ; ( ) ( )( )2 1

F=θ θ ; 
( )( )2

bestL L= θ  

       else 

     Lold = Lbest; 

     while 
new bestL L  

     best new=θ θ ;
best newL L= ; i = i + 1; c = 1 + aib; 

     ( ) ( ) ( ) ( ) ( )2 0 1 221 2 1new c c c c= − + − +θ θ θ θ ; ( )new newL L= θ  

     endwhile 
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     ( ) ( )0 1
=θ θ ; ( ) ( )1 2

=θ θ ; ( ) ( )( )2

bestF F=θ θ ; ( )( )2

bestL L= θ  

        endif 

if  best old bestL L L −   % convergence criterion 

stop; % convergence achieved  

endif 

endwhile 

4. EM for Bayesian FFT method in multiple setup data 

The last section provides the recipe for EM algorithm in a general context but its feasible 

implementation is far from trivial. The feasibility and resulting efficiency gain depend critically 

on the discovery of special mathematical structure of the problem (if any) and proper design of 

latent variables. In the current context of Bayesian modal identification, one main issue is to 

determine the mapping function F. It involves determining (preferably analytically) the Q-

function (i.e., expectation of complete-data log likelihood) in the E step (see (11)) and 

maximising it (preferably analytically) in the M step. It turns out that by defining the modal 

response as the latent variable these can be performed almost analytically, leading to an 

efficient algorithm that is also elegant and conducive to computer coding. The Q-function is 

investigated in Section 4.1. The maximisation step is solved analytically in Section 4.2, leading 

to closed-form expressions for updating the parameters. Section 4.3 develops the proper initial 

guess of modal parameters based on high modal s/n asymptotics, which is indispensable for 

proper convergence and robustness of the resulting algorithm. 

4.1. Formulation of Q-function 

The choice of latent variable is critical to an EM algorithm as it determines the resulting 

mathematical structure of the problem. In the case of data from a single setup, taking the modal 

response as latent variable was found to simplify complications arising from multiple modes 

and as a result lead to an efficient algorithm [34]. Such simplification still applies to the present 

context of multiple setup data, and so the modal response 
( )r

kη  is taken as the latent variable.  

Recall that the scaled FFT at frequency 
( ) ( )f Hz
r

k r rk N t=   in Setup r is modelled as 

( ) ( ) ( )ˆ r r r

k r k k= +Φ η εF  where r r=Φ L Φ  and 
( ) ( ) ( )r r r

k k k=η h p . To formulate the Q-function in (11), 

we need to determine the complete-data log likelihood function and the conditional distribution 
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of 
( ) r

kη  given D  and θ. Since 
( ) ( )( ),
r r

k CNp 0 S , 
( )r

kη  also follows a (circular symmetric) 

complex Gaussian distribution with a covariance of 
( ) ( ) ( ) ( )*r r r r

k k k=H h S h . Combining with

( ) ( )( )0,
r

r r

k e nCN Sε I , the conditional joint distribution of 
( )ˆ r

kF  and 
( )r

kη  given θ is again a 

(circular symmetric) complex Gaussian with the covariance matrix 

 ( )
( ) ( ) ( )

( ) ( )

r

r T r r

r k r e n r kr

k r T r

k r k

S +
=  
  

Φ H Φ I Φ H
C

H Φ H
  (13) 

Using this information and by conditioning on the modal response, the complete-data log 

likelihood function can be expressed in an elegant form (see Appendix A for details) 

 
( ) ( ) ( ) ( ) ( ) ( )

1

ˆ ˆ; , ln ,
sn

r r r r

k k k k r

r

L p L
=

= =θ η η θF F  (14) 

where 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*
1

1 1*

ˆ ˆln ln

ln

r r r r r r r r

r r f r f e e k r k k r k

k

r r r r

k k k k

k k

L n m N n N S S −

− −

   = − + − − − −
   

+ −



 

Φ η Φ η

H η H η

F F

 (15) 

On the other hand, using (13) and standard results in multi-variate Gaussian statistics [40], the 

conditional distribution of 
( )r

kη  given 
( )ˆ r

kF  and θ is a complex Gaussian with mean  

 
( ) ( )( ) ( ) 1ˆ ˆ, ( )
r rr r T

k k k r kE −  =
 
η θ J ΦF F   (16) 

and covariance 

 
( ) ( )( ) ( ) 1ˆ , ( )
r rr r

k k e kS −  =
 

C η θ JF   (17) 

where 
( ) ( )

1
( ) ( )rr r T

k e k r rS
−

= +J H Φ Φ . 

Taking expectation on (14) with respect to the conditional distribution of ( )r

kη  given ( )ˆ r

kF  and 

θ yields Q-function 

 
( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) 1

1 2

1

ln ln
sn

t r r r r r t r t

r f r f e e

r

Q n m N n N S S Q Q −

=

= − + − − +θ θ θ θ θ θ   (18) 
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where  

 
( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) * *

1 1 2
ˆ ˆ ˆ2 Re

r t r r r r r T

k k r k k r k r

k

Q tr tr   = − +
  θ θ Φ w Φ w ΦF F F   (19) 

 ( ) ( )( ) ( ) ( ) ( )1 1

2 2ln
r t r r r

k k k

k k

Q tr
− − 

= −  
 

 θ θ H H w   (20) 

The terms 
( )

( ) ( ) ( )

( )
1

,
r r t

k k

r r

k kE  =
 η θ

w η
F

 and 
( )

( ) ( ) ( )

( ) ( )*
2

,
r r t

k k

r r r

k k kE  =
 η θ

w η η
F

 are respectively the first and 

second conditional moment of 
( )r

kη  given 
( )ˆ r

kF  and θ(t) (parameters obtained from previous 

iteration). The former can be calculated using (16) and the latter using 

 
( ) ( ) ( ) ( )*( ) 1 ( ) * ( ) 1

2
ˆ ˆ( ) ( ) ( )

r r r rr T r r

k k r k k r k e kS− − −= +w J Φ Φ J JF F  (21) 

Note that 
( )
1

r

kw  and 
( )
2

r

kw  are constant in the M-step since they are evaluated based on the 

parameters obtained in the previous iteration. Equation (18) indicates that the mode shape 

affects the Q-function solely through the third term while the forth term involves the modal 

parameters other than ( )r

eS  and 
rΦ . Consequently, the parameters can be optimised in different 

groups in the M-step. 

4.2. Maximisation of Q-function 

In the M-step, the parameters are updated by maximising 
( )( )t

Q θ θ  with respect to θ. By 

exploiting the mathematical structure of the Q-function in (18), analytical closed-form solution 

can be obtained for the modal force PSDs, noise PSDs and mode shapes. First consider the 

(global) mode shape ( )n mΦ which is related to the local mode shape matrix by 

( )r r rn m= Φ L Φ . By noting that in (18) only Q1 depends on Φ , one obtains 

 

( )( )
( ) ( ) ( )( ) ( ) ( )( )*1 1

1 2

1

2 Re 2 Re
s

t
n

r r r r rT T

e r k k e r r k

r k k

Q
S S− −

=

  
= − 

  
  

θ θ
L w L L Φ w

Φ
F   (22) 

where we have used ( )  T Td tr d =UXV X U V and ( ) T T T Td tr d = +UXCX V X U V XC VUXC

for any matrices U, X, C and V of appropriate size with U, C and V being constant. For 

simplicity, define  
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 ( ) ( )( ) ( ) ( ) ( )*1 1

2 1

1

Re Re
sn

r r r r rT n n m m T n m

r e r r r k e r k k

k r k

S R R S R−   − 

=

 
 =  =  =   

 
  A L L B w P L wF  (23) 

Note that Ar is a diagonal matrix and its i-th diagonal entry is equal to the product of ( ) 1r

eS − and 

the number of channels DOF i is measured in setup r. To see this, note that the (i, j)-entry of 

Ar is equal to ( ) ( ) ( ) ( )1

1

, , ,
rn

r

r e r r

k

i j S k i k j−

=

= A L L , where Lr (k, i) is either 1 (when local 

channel k measures DOF i) or zero (otherwise). Thus when i = j, the summand 

( ) ( )
1

, ,
rn

r r

k

k i k j
=

L L  simply counts the number of local channels in setup r that measure DOF 

i. When i is not equal to j, the summand ( ) ( )
1

, ,
rn

r r

k

k i k j
=

L L  is zero because a single channel 

k cannot measure both DOFs i and j (assumed to be distinct).  

The term Br is a constant matrix in the current step because it is evaluated based on the 

parameters from the previous iteration. Setting the derivative in (22) to zero and rearranging, 

one obtains the equation: 

 ( )
1

( ) ( )
sn

T T T

r r

r

vec vec
=

 
 = 

 
 A B Φ P   (24) 

where ‘  ’ denotes the Kronecker product; ( )vec  denotes the vectorisation of the 

corresponding matrix, obtained by stacking its columns. Note that the Kronecker product

T

r rA B  gives a diagonal block matrix because Ar is diagonal. The summation in the bracket 

of (24) is invertible because Br is and all the DOFs considered are measured by at least one 

data channel (hence all the diagonal blocks are non-zero). Consequently, after rearranging, one 

has 

 ( ) ( ) ( )
1

1

( , ) , 1, ,
sn

r r

r

i i i i i n

−

=

 
= = 

 
Φ P A B   (25) 

where ( )iΦ  and ( )iP  are respectively the i-th row of Φ and P. The term to be taken inverse in 

the bracket is a m-by-m matrix where m typically does not exceed 3; the computational time 

involved is therefore negligible. It should be noted that the mode shape norm constraints have 

been ignored when deriving (25) and they can be handled by simply scaling the mode shapes 
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in (25) to have unit norm (see later). Such strategy has been proved to be legitimate for EM 

algorithm [34].  

We next consider the update of noise PSDs and modal force PSDs. Taking the partial derivative 

of 
( )( )t

Q θ θ  in (18) with respect to 
( ) 1r

eS
−

 and setting it to zero gives 

 ( )

( ) ( )( )
( )

1

r t

r

e r

r f

Q
S

n N
=

θ θ
  (26) 

Similarly, it is shown in Appendix A that the update of ( )r
S  is given by 

 ( ) ( ) ( ) ( )( )1

2( )

1r r r r

k k kr
kfN

− −
= S h w h   (27) 

Closed-form expressions are not available for natural frequencies 
( ) r

if and damping ratios

( ) r

i because they affect the Q-function in a nonlinear manner that is not amendable to 

analytical treatment. As shown in Appendix B, the gradient and Hessian of the Q-function can 

be derived analytically with respect to these parameters. Newton’s method is therefore used for 

efficiently optimising ( ) r

if  and ( ) r

i  given the remaining parameters. Since the optimisation 

of ( ) r

if  and ( ) r

i  is coupled in a top-level iteration, it is generally sufficient to determine 

them as a solution using a single Newton iteration in each M-step. This improves the efficiency 

of the algorithm but without introducing any approximation in the final (top-level) converged 

solution because the remaining parameters are continually updated through the top-level 

iteration. 

As mentioned earlier mode shape constraints can be incorporated by simply scaling each mode 

shape in (25) to have unit norm, i.e.,  

 ˆ =Φ Φa  (28) 

where Φ̂  is the MPV of mode shape; a is a m-by-m diagonal matrix with the i-th diagonal entry 

being 1 iφ . Correspondingly, the modal force PSD 
( )r

S updated in the M-step should be 

scaled as 

 
( ) ( )1 1ˆ r r− −=S a S a  (29) 
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It can be easily checked that the theoretical PSD matrix based on the mode shapes in (28) and 

modal force PSD matrix in (29) is invariant to the scaling, as can be intuitively expected.  

4.3. Initial guess of modal parameters 

A proper initial guess is important to start an iterative algorithm in a domain of convergence. 

In this section, we investigate the initial guess of modal parameters based on the asymptotic 

behaviour of their MPVs when the modal s/n ratio is high that simplifies mathematics. For this 

purpose, (10) is first rewritten as (see Appendix A for details) 

 

( )

( ) ( )

( ) ( ) ( )

*( ) ( ) ( ) 1 ( )* ( ) 1 ( )

ln ln

ln ln

r r r

r r f r f e

r rr r r r r r

k k e k k k k k

k k k k

L n N n m N S

S



− −

= − − − −

 
− − − 

 
   J H s J sF F

  (30) 

where 
( )( ) rr T

k r k=s Φ F . By writing LLF in this form, the asymptotic MPVs of 
( )r

eS  and 
( )r

S  can 

be obtained analytically when the modal s/n ratio is high. In such a situation,  ( ) ( )
1

( )r r

e kS
−

→H 0 , 

one has 

 
( )r T

k r rJ Φ Φ   (31) 

 and (up to the first order) 

 ( ) ( ) ( ) ( ) ( )
1 1 1 1

( ) 1 ( )rr T T r T

k r r e r r k r rS
− − − −

− −J Φ Φ Φ Φ H Φ Φ   (32) 

Substituting (31) and (32) into (30) gives 

 

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1*( ) 1 ( )* ( ) ( )

ln ln ln lnr r r T r

r r f r f e r r k

k k

r r rr r T T r T r

e k k k r r e r r k r r k

k k

L n N n m N S

S S



− − − −
−

− − − − −

  − − −    

 

 

Φ Φ H

s Φ Φ Φ Φ H Φ Φ sF F

 (33) 

Note that the prediction error 
( )r

eS  in Setup r is only involved in the second and last terms in 

(33). The MPV of 
( )r

eS  can thus be determined by maximising these two terms. This yields the 

asymptotic MPV of 
( )r

eS  (assuming nr > m) 

 

( ) ( ) ( ) ( ) ( )

( )

1* *

( )

( )
~

r r r rT T

k k k r r r r k
r k k

e r

r f

S
n m N

−

−

−

  Φ Φ Φ ΦF F F F

  (34) 
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Similarly, as shown in Appendix A, the asymptotic MPV of 
( )r

S  can be obtained as 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1*( ) ( ) ( )*1
~

r rr r T T T r

k r r r k k r r r kr
kfN

− − − −

S h Φ Φ Φ Φ Φ Φ hF F   (35) 

The asymptotic MPVs of 
( )r

eS  and 
( )r

S  can be used as their initial guess. For natural 

frequencies ( ) r

if , the initial guess can be simply picked from the singular value (SV) spectrum 

of the measured data. A nominal value of 1% (say) may be assigned as the initial guess of 

damping ratios ( ) r

i . For the mode shapes, we can first set the local mode shape riν  as the 

eigenvector (corresponding to the largest eigenvalue) of the real part of sample PSD matrix of 

the data in Setup r at the initial guess of natural frequency. The initial guess of global mode 

shape can then be set from a local least squares algorithm, e.g.,[1]. 

In summary, based on the analysis in Section 4, we can use Algorithm 1 to determine the MPV 

of modal parameters incorporating the data from multiple setups. The Φ , 
( )r

eS  and 
( )r

S  can be 

updated analytically by (25), (26) and (27), respectively, followed by a normalisation in (28) 

and (29), respectively. Newton method is used for updating ( ) r

if  and ( ) r

i . As shown in 

Algorithm 1, the original EM algorithm needs to run first for generating a sequence of the 

parameters. Here we use the convergence of 
( )r

eS  to control the number of sequences nb, 

because this parameter often converges more quickly compared to others.  

5. Verification and applications 

5.1. Shear building (synthetic data) 

Consider a six-story shear building as shown in Figure 1, where the locations to be measured 

are indicated by dots. The structure was considered in [41] to verify an iterative algorithm for 

the case of multiple modes with single setup data. The floor plan measures 36.6 m × 36.6 m. 

The height of the first story is 5.49 m while that of all others is 3.81 m. Assuming rigid floor, 

the interstory stiffness and floor mass are summarised in Table 3. The natural frequencies of 

the first three modes are calculated to be 2.126, 2.178 and 2.472 Hz, corresponding to the 

fundamental translational modes along EW (x) and NS (y) directions and the fundamental 

rotational mode. The damping ratios of the modes in EW, NS and rotational directions are 

assumed to be respectively 0.5%, 1.5% and 1%. The building is subjected to i.i.d. Guassian 
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white noise excitation at all the floor levels, with a one-sided PSD of 0.5N Hz , 1.0 N Hz  

and 3N m Hz  in EW, NS and rotational directions, respectively. The measured acceleration 

is contaminated by measurement noise modelled by i.i.d. Guassian white noise at different 

channels with a PSD of 1μg Hz  . In [41] ambient data at all the 36 × 2 = 72 DOFs to be 

measured was assumed to be available in a single setup but here we assume that only seven 

biaxial accelerometers are available, using one reference sensor and six setups to cover all the 

DOFs. The reference location is at Test Point 18. The detailed plan is shown in Table 4. For 

convenience of planning, Rover 3 in Setup 1 is put at the same location as the reference. As the 

setups proceed, the sensors rove from the top floor to the bottom. Acceleration data in each 

setup is sampled at 100 Hz for a duration of 5 minutes.  

                  

Figure 1 shear building with measured DOFs numbered and indicated by dots; Left: 3D model; Right: 

typical floor plan 

Figure 2 (a) shows the root PSD spectrum of the data in Setup 1. Clear spectral peaks indicate 

the existence of structural modes. Acceleration PSD is in the order of few of μg Hz  around 

the resonance band of the modes. From the spectrum, the noise level of the data is around 

1μg Hz , which checks with the measurement noise value assumed. Figure 2 (b) shows the 

corresponding SV spectrum where the number of lines significantly above others indicates the 

number of modes. Analysis here focuses on the first six modes, which have been labelled with 
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their modal nature. The prefix ‘TX’, ‘TY’ and ‘R’ denote respectively the translational modes 

along x and y directions, and rotational mode. The modes TX1 and TY1 (or TX2 and TY2) are 

close due to the similar interstory stiffness along the two directions. To investigate the proposed 

method for different number of modes in the selected band, TX1, TY1 and R1 are identified in 

the same band (m = 3); TX2 and TY2 are identified in a single band (m = 2) while R2 is 

identified alone (m = 1). The (hand-picked) frequency bands and the initial guess of natural 

frequencies are shown with the symbol ‘[-]’ and a circle, respectively. 

Table 3 Properties of shear building 

Story Stiffness  Mass 

x (kN/mm) y (kN/mm) Rotation 

(GN m/rad) 

 x (ton) y (ton) Rotation 

(kton m2) 

1 476 499 97.5  282 282 42.8 

2 1420 1491 291  262 262 39.8 

3 954 1002 196  255 255 38.7 

4 954 1002 196  254 254 38.6 

5 579 608 119  247 247 37.4 

6 579 608 119  215 215 32.6 

 

Table 4. Setup plan in shear building example 

Setup Sensors Remarks 

Ref. 1 Rover 1 Rover 2 Rover 3 Rover 4 Rover 5 Rover 6 

1 18 6 12 18 24 30 36 6/F 

2 18 5 11 17 23 29 35 5/F 

3 18 4 10 16 22 28 34 4/F 

4 18 3 9 15 21 27 33 3/F 

5 18 2 8 14 20 26 32 2/F 

6 18 1 7 13 19 25 31 1/F 

 

It should be mentioned that Mode R2 can also be identified by the existing algorithm developed 

in [25] as it is a well-separated mode. However, this is not the case for Mode TX2 and TY2 (or 

TX1 and TY1), because their natural frequencies are so close that it is difficult to select a 

frequency band that is only dominated by one of the modes (as required by the existing 

algorithm). 
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Figure 2 (a) PSD spectrum and (b) SV Spectrum. Setup 1, shear building example 

Table 5 summarises the identified modal properties and the exact values used to generate the 

data, where Sii denotes the diagonal entries of modal force PSD matrix. It is seen that the MPVs 

are close to the exact values. A better agreement can be achieved for the natural frequencies 

compared to damping ratios. This is consistent with the common observations (i.e., identified 

damping ratio often has a higher uncertainty). For the higher modes (say R2), the MPV of 

prediction error PSD tends to be larger than the exact value because of the presence of the 

unmodelled lower modes in the selected band. Figure 3 shows the most probable mode shapes 

of the first six modes of the structure where the red and black line indicates the undeformed 

and deformed shapes of the building, respectively. The natural frequencies and damping ratios 

are also reported in the figure in terms of the sample mean among the setups. The identified 

mode shapes are colinear with the exact ones indicated by the MACs (Modal Assurance 

Criterion) in Table 6.  
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Table 5 Identified modal parameters (MPV), shear building example   

Parameter Mode Setup Exact 

1 2 3 4 5 6 

f (Hz) TX1 2.119 2.119 2.119 2.119 2.118 2.119 2.126 

TY1 2.177 2.178 2.178 2.177 2.179 2.178 2.178 

R1 2.477 2.477 2.475 2.477 2.476 2.478 2.472 

TX2 5.650 5.650 5.650 5.647 5.649 5.648 5.647 

TY2 5.768 5.773 5.767 5.768 5.768 5.769 5.786 

R2 6.563 6.559 6.558 6.559 6.562 6.561 6.566 

ζ (%) TX1 0.51 0.53 0.49 0.50 0.52 0.54 0.50 

TY1 1.37 1.25 1.17 1.32 1.28 1.15 1.50 

R1 1.13 1.02 1.05 1.09 1.05 1.18 1.00 

TX2 0.52 0.54 0.50 0.54 0.47 0.55 0.50 

TY2 1.37 1.38 1.49 1.36 1.43 1.44 1.50 

R2 0.97 0.99 1.08 1.05 0.98 0.94 1.00 

( )μg HziiS  TX1 0.519 0.522 0.502 0.513 0.524 0.535 0.514 

TY1 1.034 0.986 0.952 1.018 0.993 0.941 1.028 

R1 0.471 0.456 0.462 0.470 0.457 0.485 0.480 

TX2 0.484 0.500 0.476 0.500 0.464 0.503 0.506 

TY2 0.994 0.998 1.044 0.989 1.013 1.019 1.012 

R2 0.433 0.451 0.483 0.466 0.444 0.437 0.473 

( )μg HzeS  {TX1, TY1, R1} 0.989 1.000 1.012 0.995 0.995 1.002 1.000 

{TX2, TY2} 1.052 1.033 1.025 1.020 1.044 1.031 1.000 

R2 1.314 1.139 1.090 1.154 1.194 1.196 1.000 
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Figure 3 Identified mode shapes; shear building 

Table 6 MAC between the identified and exact mode shapes 

Mode TX1 TY1 R1 TX2 TY2 R2 

MAC 0.9923 0.9989 0.9980 0.9995 0.9997 0.9990 

 

Efficient calculation of the posterior covariance matrix has not been developed in this work 

and so the uncertainty of modal identification results is investigated in an ensemble (frequentist) 

manner. For this purpose, one hundred i.i.d. data sets are generated to illustrate the statistical 

properties of the identified results in terms of their MPVs. Figure 4 shows the identified natural 

frequencies and damping ratios of the first three modes for different data durations. The results 

for each data length are reported with a dot at the sample mean of the MPVs and an error bar 

covering ±1 sample standard deviation. The dashed red line represents the exact value. As the 

data duration increases, the error bar shortens and the sample mean of MPV generally 

converges to the exact value that generated the data. The error bar covers the exact values 

regardless of the data durations, suggesting that the MPVs are unbiased. 
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Figure 4 Identified modal properties vs duration, building example. Red dashed line – exact value; 

Dot: sample mean value of the MPV among 100 i.i.d. data sets; error bar: ± 1 standard deviation 

From Figure 4, increasing the data duration can improve the accuracy of the estimated modal 

parameters, which seems to suggest one to take the measurement as long as possible in ambient 

vibration test. This should not be taken for granted, however, because identifying modal 

parameters using extended data length increases the risk of modelling error (e.g., stationary 

assumption of the data) in practice. The choice of the data duration is a trade-off between the 

amount of information for inference and the risk of modelling error. The recently developed 

‘uncertainty laws’ for Bayesian OMA offer a fundamental means to determine the data duration 

for achieving a required precision of modal parameters for well-separated modes [42] and close 

modes [43]. 

5.2. Queen’s park suspension footbridge (field data) 

The proposed method is next applied to field data. The instrumented structure is Queen’s park 

footbridge across the River Dee in Chester, UK (Figure 5(a)). It has a width of 4.4 m and a 
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main span of 85.2 m with side spans of 17.8 m each. The main deck is held up by vertical 

suspender cables while the side decks are supported on two piers spaced at 6 m apart. There 

are handrails distributed uniformly along the two sides of the bridge, providing a convenient 

means for locating test points. Neighbouring test points are designed to space at every two 

handrails. Figure 5(b) shows the plan view of the bridge and the measurement locations. 

Six force-balance triaxial accelerometers were deployed in the test. Each was paired with a 

24bit digitiser and logging system capable of storing data locally in a distributed manner. The 

recorded data of different sensors were synchronised by external GPS clocks, see Figure 6(a) 

for the equipment at a typical measurement point. Before the test, the instrument noise was 

estimated by a huddle test [44] in the laboratory with the noise spectrum of one data channel 

shown in Figure 6(b). It is seen that the noise level is in the order of 0.1μg HZ , which is well 

below the ambient vibration level. Sixteen setups were designed to cover 66 locations. Details 

are shown in Table 7. The two reference locations, 110 and 219, were selected near the quarter 

and middle of the main span. The main span was measured first with two sensors roving from 

the west side towards the midspan and the other two roving sensors moving from the middle 

to the east side. Fifteen minutes data was collected at a sampling rate of 200 Hz in each setup 

and used for analysis. Between the setups, it generally took five minutes to move, align and 

level the sensors. Including initial preparation (e.g., sensor calibrations and marking test points), 

the whole test took around one day, from 8 am to 5 pm. 

 
(a) Overall view of Queen’s park footbridge 

 
(b) Plan view and measurement locations 

Figure 5 Queen’s park footbridge  
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(a) Equipment at the test point (b) Noise PSD spectrum of a typical channel 

Figure 6 Equipment used in the test and its noise PSD spectrum 

Figure 7 shows the SV spectrum of the data in Setup 1. It is used to select the initial guess of 

natural frequencies and frequency bands for modal identification, as indicated by a circle and 

a horizontal bar ‘[-]’, respectively. The study here focuses on the modes below 3.5 Hz. Six 

modes are identified and they are named based on their nature confined from the identification 

results (see later). The modes are identified in group as follows: {L1}, {V1}, {V2}, {T1} and 

{T2, V3}. That is, the first four modes are identified separately within their bands; T2 and V3 

are identified together on a single band.  

Table 7 Setup Plan 

Setup Sensors Remarks 

Ref. 1 Ref. 2 Rover 1 Rover 2 Rover 3 Rover 4 

1 110 219 205 118 217 105 Midspan 

2 110 219 206 119 218 106 

3 110 219 207 120 220 107 

4 110 219 208 121 221 108 

5 110 219 209 122 222 109 

6 110 219 210 123 223 111 

7 110 219 211 124 224 112 

8 110 219 212 125 225 113 

9 110 219 213 126 226 114 

10 110 219 214 127 227 115 

11 110 219 215 128 228 116 

12 110 219 216 129 229 117 

13 110 219 204 130 230 104 Side Span 

14 110 219 203 131 231 103 

15 110 219 202 132 232 102 

16 110 219 201 133 233 101 
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Figure 7 SV spectrum, Setup 1, Queen’s park footbridge 

 

Table 8 Identified natural frequencies and damping ratios 

Setup 
f (Hz)  ζ (%) 

L1 V1 V2 T1 T2 V3 L1 V1 V2 T1 T2 V3 

1 0.808 1.306 1.488 1.821 2.843 3.119  2.3 0.9 1.9 0.7 2.8 1.4 

2 0.804 1.305 1.484 1.813 2.835 3.104  1.7 1.3 3.0 1.9 2.6 1.7 

3 0.795 1.301 1.478 1.825 2.852 3.100  2.0 0.9 1.7 0.9 2.1 0.9 

4 0.771 1.303 1.469 1.799 2.821 3.089  1.6 0.8 1.1 1.4 1.3 1.3 

5 0.782 1.296 1.474 1.814 2.817 2.981  2.1 1.5 1.8 1.4 1.1 1.1 

6 0.776 1.301 1.481 1.780 2.803 2.967  3.1 0.6 1.7 1.1 0.8 0.9 

7 0.761 1.305 1.493 1.810 2.816 3.099  1.3 0.8 2.8 1.8 0.6 0.9 

8 0.794 1.304 1.478 1.800 2.792 3.112  2.8 0.8 2.2 0.9 1.0 1.2 

9 0.773 1.302 1.466 1.797 2.811 3.095  2.1 0.7 1.6 1.5 1.1 1.6 

10 0.774 1.299 1.463 1.786 2.804 3.105  2.8 0.6 1.4 0.8 1.7 1.1 

11 0.761 1.307 1.464 1.794 2.799 2.999  2.7 0.9 2.1 0.8 1.0 2.4 

12 0.783 1.303 1.469 1.794 2.788 3.009  3.8 0.8 1.1 0.9 1.1 1.6 

13 0.781 1.301 1.467 1.784 2.793 3.092  3.4 0.9 1.1 1.6 1.2 1.1 

14 0.756 1.299 1.460 1.788 2.801 3.089  4.0 1.0 2.4 1.7 1.5 0.9 

15 0.753 1.305 1.463 1.791 2.770 3.066  1.9 1.0 1.5 2.5 1.6 2.0 

16 0.767 1.306 1.462 1.783 2.785 3.077  3.0 0.7 1.0 2.5 1.2 1.5 

Mean 0.777 1.303 1.472 1.799 2.808 3.069  2.5 0.9 1.8 1.4 1.4 1.4 

c.o.v. 

(%) 
2.1 0.2 0.7 0.8 0.8 1.6 

 
31.5 24.7 34.4 41.0 44.5 31.9 
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Table 8 and Table 9 summarise the MPV of modal parameters in different setups. The MPVs 

of each parameter in different setups are close but not identical as expected. The bottom two 

rows of the tables give the sample mean and coefficient of variation (c.o.v. = standard 

deviation/mean) of the MPVs calculated based on the samples among the setups. The c.o.v. of 

natural frequencies is typically small (< 3%) while that of other parameters are relatively larger 

(in the order of a few tens of percent). In particular, the sample c.o.v.s of modal force PSD and 

PSD of prediction error reflect the variation of the environmental condition during the test.  

Table 9 Identified modal force PSD and prediction error PSD 

Setup 
( )100 μg HziiS    ( )100 μg HzeS   

L1 V1 V2 T1 T2 V3 L1 V1 V2 T1 T2 V3 

1 6.0 3.5 6.1 7.1 4.6 4.1  0.6 3.9 3.0 6.7 1.9 1.9 

2 7.4 4.9 10.1 17.8 4.6 4.5  0.6 4.5 3.6 9.8 2.6 2.6 

3 6.3 4.0 7.8 7.4 4.0 5.4  0.6 4.0 4.4 9.1 2.9 2.9 

4 6.7 4.0 8.5 7.5 2.7 4.5  0.6 4.8 5.8 7.4 1.4 1.4 

5 6.6 5.5 7.4 11.9 3.4 11.6  0.6 5.9 5.4 12.1 3.6 3.6 

6 5.6 3.1 9.8 9.0 4.2 13.3  0.5 6.4 5.5 10.0 4.4 4.4 

7 6.0 4.0 17.6 11.2 2.5 5.6  0.6 6.6 11.0 9.1 1.9 1.9 

8 7.4 2.5 5.1 13.6 3.4 4.5  0.9 4.1 5.0 14.5 2.3 2.3 

9 6.9 3.5 8.0 11.7 3.5 5.3  0.6 4.9 4.8 11.3 1.9 1.9 

10 7.3 3.6 3.7 9.8 2.6 5.3  0.6 5.0 2.9 7.2 1.5 1.5 

11 6.3 4.8 11.2 9.5 3.5 11.1  0.4 4.1 5.5 10.1 2.1 2.1 

12 6.6 2.3 4.9 10.6 4.0 11.8  0.6 2.7 2.6 9.3 1.9 1.9 

13 7.9 3.8 6.3 13.4 3.7 5.3  0.4 2.3 2.6 5.6 0.9 0.9 

14 5.4 3.3 6.3 17.8 3.4 4.1  0.4 2.4 2.3 4.8 0.6 0.6 

15 6.9 6.7 12.3 21.9 4.6 17.4  0.5 3.2 4.0 5.5 1.4 1.4 

16 7.7 4.9 6.3 23.1 3.8 6.0  0.6 3.1 2.9 5.4 0.7 0.7 

Mean 6.7 4.0 8.2 12.7 3.7 7.5  0.5 4.2 4.5 8.6 2.0 2.0 

c.o.v. 

(%) 
10.9 27.8 41.8 39.3 18.1 55.1 

 
23.9 31.1 47.8 31.6 51.0 51.0 

 

Figure 8 shows the identified mode shapes of these six modes. The red and black lines indicate 

respectively the undeformed and deformed shape. Mode L1 is a symmetric bending mode along 

the transverse direction. It can be seen that the support restraints the motion at the tower 

locations. There is also a slight torsional vibration from the x-z view. Modes V1 and V2 are 

the symmetric and asymmetric vertical modes, respectively.  Mode T1 is a torsional mode with 

a slight transverse motion while T2 is a combination of torsional and symmetric transverse 
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modes. Mode V3 is the third vertical mode. For all the modes, the mode shape values at the 

side spans are practically zero, indicating that the main span vibrates independently of the side 

ones. This checks with visual inspection of the structure that suggested no connection between 

the main and side spans. Although there is no exact answer for comparison, the identified mode 

shapes look reasonable and physically make sense. A thorough comparison with three existing 

methods is provided in the following section. 

 
Figure 8 Identified mode shapes; Queen’s park footbridge 

The computational time for identifying the modal parameters in the two examples is discussed 

here. The calculation was performed using Matlab R2016a on an HP EliteDesk 800 G2 desktop 

(Intel Core i5, 3.20 GHz and 8GB of RAM). In general, the time required for convergence 

increases with the number of setups and the number of modes in the selected band. This is 

essentially because the number of parameters increases accordingly. The convergence 

tolerance in the iteration was set to be 10-5 on a fractional basis for all the modal parameters.  

Table 10 shows the computational time for the shear building and footbridge examples. Except 

for Modes {V2} and {T2, V3}in the field test example, the MPVs can be determined in less 

than half a minute. Mode {V2} requires longer time (around one minute) to converge, possibly 

due to the lower s/n ratio in some setups. The longest time (138.9 s) is required for the close 

modes {T2, V3}. Nevertheless, it is still acceptable even on site.  



30 

 

 

Table 10 Computational time 

Example Mode No. of iterations Time required (s) 

Shear Building  

(synthetic data) 

{TX1, TY1, R1} 89 21.5 

{TX2, TY3} 86 15.6 

{R2} 38 3.7 

Footbridge (field data) {L1} 30 15.0 

{V1} 50 15.4 

{V2} 150 60.8 

{T1} 55 20.1 

{T2, V3} 126 138.9 

 

5.3. Comparison with existing methods  

Since the ‘true’ values of modal parameters in the field test of the suspension footbridge are 

unknown, the results identified in Section 5.2 are compared with those by three existing 

methods, namely, the modular SSI [23] and two post-identification approaches based on 

Frequency Domain Decomposition (FDD) [45] and Bayesian single-setup algorithm [33]. 

These three algorithms are well established and are sufficient to check the performance of the 

proposed algorithm, especially when there are challenges encountered in practical situations.  

The modular SSI is one of the pre-identification methods for multiple setup measurements. It 

allows one to process all the setups simultaneously and extracts the modal parameters from a 

global subspace matrix which contains all measured setups. A MATLAB implementation of 

this method [46] is used in this study. For the FDD and the Bayesian single-setup algorithm, 

we apply the post-identification approach, that is, the local mode shapes in each setup are 

identified by FDD or Bayesian method first and the global mode shapes are then assembled 

using least squares method. Conventionally, the local least squares method is employed to 

produce the global mode shapes, e.g., in Section 11.3.1 of [2], but here we adopt the global 

least squares method [19] as it eliminates the choice of reference setup by minimising a global 

measure-of-fit function. 

Table 11 compares the identified natural frequencies and damping ratios by different methods, 

where the results obtained by the proposed algorithm and FDD are reported in terms of the 

sample mean among the setups. The natural frequencies and damping ratios identified by 

Bayesian single-setup algorithm are practically the same as the proposed algorithm and hence 

omitted here. It is seen that the results obtained by the proposed algorithm are generally close 
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to their counterparts by other methods. The frequencies deviate slightly, while the damping 

ratios are again similar except for the Mode V2 in modular SSI. 

Table 11 Comparison of identified natural frequencies and damping ratios between existing and 

proposed methods 

Mode 
f (Hz)  ζ (%) 

proposed modular SSI FDD  proposed modular SSI FDD 

L1 0.777  0.791 0.773   2.5  2.8 2.1  

V1 1.303  1.314 1.303   0.9  1.1 1.1  

V2 1.472  1.489 1.464   1.8  3.1 1.6  

T1 1.799  1.801 1.792   1.4  1.2 1.2  

T2 2.808  2.782 2.814   1.4  1.9 0.8  

V3 3.069  3.094 3.088   1.4  1.2 1.0  

 

The MACs between the mode shapes identified by the proposed algorithm with respect to the 

remaining methods are shown in Table 12. All the MACs for Modes L1, V1, T1 and V3 are 

greater than 0.98, indicating a good consistency of the identified mode shapes. Differences 

exist in the mode shapes of Modes V2 and T2 produced by the modular SSI, and of the Mode 

T2 identified by the post-identification methods. For a further comparison, those modes are 

illustrated in Table 13 taking the x-z view. 

Table 12 MAC between the mode shapes identified by the proposed algorithm with respect to the 

existing methods 
Method L1 V1 V2 T1 T2 V3 

Modular SSI 0.9962 0.9840 0.9513 0.9837 0.9608 0.9933 

Post-identification approach based on FDD 0.9998 0.9902 0.9960 0.9924 0.9549 0.9980 

Post-identification approach based on 

Bayesian method 

1.0000 1.0000 1.0000 1.0000 0.9889 0.9996 

 

Although the MACs between the mode shapes identified are all greater than 95%, they only 

indicate the overall discrepancy and need not inform the local features. The mode shapes of V2 

and T2 produced by modular SSI are ‘noisier’ with kinks at some measured DOFs, which might 

be due to the low modal s/n ratio at some setups. The mode shapes of V2 identified by the post-

identification approaches based on FDD and Bayesian single-setup method are similar to that 

yielded by the proposed method, but the mode shapes of T2 have more unreasonable kinks, 

though the one identified by the Bayesian single-setup method looks a little better (kinks appear 
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in Setup 5). This poor quality of T2 could be due to either the method when identifying the 

local mode shapes or least squares method when producing the global mode shapes. In the 

absence of the result produced by the proposed algorithm, it is difficult to determine whether 

such kinks are due to structural behaviour or merely computational artifacts. From Table 13, 

the mode shape of T2 identified by the proposed algorithm is physically more plausible. 

Table 13 Comparison of V2 and T2 between existing methods and proposed algorithm 

Method V2 T2 

Proposed 

algorithm 

(copied from 

Figure 8) 

  

Modular SSI 

  

Post-

identification 

approach based 

on FDD 

  

Post-

identification 

approach based 

on Bayesian 

method 

  

 

The issue of Mode T2 is further studied to investigate the factors that influence the quality of 

the assembled mode shape. The previous study [25] revealed that significant disagreement in 

the identified mode shape values at the reference DOFs among different setups can present 

challenge for least squares method, be it local or global. Figure 9 shows the MAC between the 

mode shape values of T2 at the reference locations identified using the data in Setup 5 and 
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other setups by Bayesian single-setup algorithm. The closer the MAC is to 1, the better the 

agreement. It is seen that all the MAC values are above 0.90, indicating that the mode shape 

identified in Setup 5 agrees well with that in other setups at the reference locations. This is also 

true between any other setups, hence the reason for the poor quality of mode shape of T2 may 

differ from that in [25]. Figure 10 shows the time history of the data collected in one of the 

vertical data channels in Setup 5. It is seen from Figure 10(b) that the measured response 

follows a sinusoidal wave with a frequency around 3 Hz from 870 s to 900 s, which is possibly 

due to jogging activities on the bridge during this period. The interference is within the selected 

frequency band of mode T2 and V3. If we exclude the portion of data between 870 s and 900 

s for modal identification, then the mode shape assembled by global least squares method with 

Bayesian method (see Figure 11(a)) will be of better quality compared to the original mode 

shape and consistent with that by the proposed algorithm. This implies that the interference 

from this portion of data is significant for global least squares method but not so for the 

proposed method, hence the proposed method is more robust to the data quality. The global 

least squares method tries to fit the theoretical mode shapes with equal weights based on the 

most probable mode shapes identified individually in each setup, which involves different 

levels of noise and violation of assumptions. Estimation error of the mode shape in the 

problematic setup will smear into the assembled counterpart and even affect other originally 

well-identified setups. Identifying the global mode shapes in a Bayesian manner seems to 

automatically place the ‘weights’ in different setups based on their data quality, allowing the 

information in different setups to ‘correct’ the mode shape values in the problematic setups.  

For both the modular SSI and the post-identification approach based on FDD as seen in Figure 

11(b) and (c), the mode shapes of T2 are still problematic even when the portion of data 

between 870 s and 900 s is excluded for modal identification. This is possibly due to the low 

s/n ratio of Mode T2 (see Figure 7), which reduces the quality of identified mode shapes. 
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Figure 9 MAC between the mode shape values of T2 at the reference locations identified using the 

data in Setup 5 and other setups  

 

Figure 10 Time history of one of the vertical channels in Setup 5 (a) from 0 to 900 s; (b) zoom into 

the segment from 870 s to 900 s 
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Figure 11 Identified mode shape of T2 by existing methods (a) – (c) when excluding the portion of 

data between 870 s and 900 s in Setup 5; and by the proposed algorithm (d) copied from Figure 8(e)  

6. Conclusions 

This paper has developed a fast Bayesian FFT method based on the P-EM algorithm for modal 

identification incorporating multiple setups. It provides a fundamental means to process the 

information from multiple setup measurements strictly consistent with modelling assumptions 

and probability logic without heuristics. The modal parameters (except the mode shape) in 

different setups are not constrained to be the same. This allows for more robustness in the 

identification model. The computational difficulties are addressed by the P-EM algorithm. 

Except for the natural frequencies and damping ratios, analytical formulae have been derived 

for updating the modal parameters, leading to a fast iterative procedure that is also elegant and 

conducive to computer coding. The proposed method is applicable for the general case of 

multiple (possibly close) modes even with a large number of measured DOFs. Two examples 

have been presented to demonstrate the consistency and feasibility of the method.  

Focusing on the global mode shape, a critical comparison was made between the proposed 

algorithm and three common existing methods. It is found that for modes with high modal s/n 

ratios in all setups, the assembled mode shape is insensitive to the choice of method. Challenges 

exist when the data quality is poor in some setups. The proposed Bayesian method is found to 

be more robust to modal s/n ratio, producing a global mode shape that is physically sound.  
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9. Appendix A. Derivations for Section 4 

In this appendix, we provide the derivations for some expressions in Section 4, i.e., the 

complete log-likelihood function in (14), the closed-form update of modal force PSD in (27), 

the alternative form of LLF in (30) and the initial guess of modal force PSD in (35). 

Complete log-likelihood function in (14) 

The derivation here is similar to Appendix B.1 of [34] although it is presented for the present 

case of multiple setup data for completeness. Based on the theory of multivariate complex 

Guassian distribution and (13),  the 
( )ˆ r

kF given ( )r

kη  follows the complex Guassian distribution 

with the mean and covariance as follows: 

 ( ) ( ) ( )( ) ( )ˆ ,
r r r r

k k r kE =η θ Φ ηF   (36) 

 ( ) ( ) ( )( )ˆ ,
r

r r rr

k k e nS  =
 

C η θ IF   (37) 

Since ( ) ( ) ( )( )~ ,
r r r

k kCNη θ 0 H , one can obtain the complete-data log likelihood function 

mailto:zhuzuo@liverpool.ac.uk
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( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )

1

1 1 1

1

ˆ ˆ; , log ,

ˆ ˆlog , log , log

s

s s s

s

n
r r r r

k k k k

r k

n n n
r r r r r r

k k k k k k

r k r k r k

n

r

r

L p

p p p p

L

=

= = =

=

=

 = = +
  

=



  



θ η η θ

η θ η θ η θ η θ

F F

F F  (38) 

where 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*
1

1 1*

ˆ ˆln ln

ln

r r r r r r r r

r r f r f e e k r k k r k

k

r r r r

k k k k

k k

L n m N n N S S −

− −

   = − + − − − −
   

+ −



 

Φ η Φ η

H η H η

F F

 (39) 

Closed-form update of modal force PSD in (27)  

Substituting the expression of ( ) ( ) ( ) ( )*r r r r

k k k=H h S h into (20) and rearranging gives 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

2 2ln ln
r t r r r r r r r

k k k k k

k k k

Q tr
− − − − − − 

= + −  
 

  θ θ h h S S h w h   (40) 

Note that ( )r
S is only involved in ( ) ( )( )2

r t
Q θ θ  in (18). Taking the partial derivative of ( )( )t

Q θ θ  

in (18) with respect to 
( ) 1

Re
r −

S  gives 

 

( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

1 1

2

1 1( )

2 2

/ Re / Re

2Re Re (2Re Re )
r r

t r r t r

r r r r r r r rr

f n k k k k k k n

k

Q Q

N

− −

− − − −

  =  

= − − −

θ θ S θ θ S

S S I h w h h w h I
 (41) 

where ‘ ’ denotes matrix elements product (also known as Hadamard product). 

Setting (41) to be zero yields 

 ( )( ) ( ) ( ) ( )( )1

2( )

1
Re Re

r r r r

k k kr
kfN

− − 
=  

 
S h w h   (42) 

Similarly, one can have 

 ( )( ) ( ) ( ) ( )( )1

2( )

1
Im Im

r r r r

k k kr
kfN

− − 
=  

 
S h w h   (43) 

Combining (42) and (43) gives 
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 ( ) ( ) ( ) ( )( )1

2( )

1r r r r

k k kr
kfN

− −
= S h w h   (44) 

Alternative form of LLF in (30)  

For the purpose of deriving (30), we first introduce the Matrix Inverse Lemma and Matrix 

Determinant Theorem [40]. 

1. Matrix Inverse Lemma 

For any complex matrices A, C, U, V of appropriate size, with A and C invertible, 

 ( ) ( )
11 1 1 1 1 1A UCV A A U C VA U VA
−− − − − − −+ = − +   (45) 

2. Matrix determinant theorem 

For any complex matrices A, C, U, V of appropriate size, with A and C invertible, 

 ( ) ( )( ) ( )1 1det det det detA UCV A C C VA U− −+ = +   (46) 

Based on (45), the inverse of ( )r

kE  can be re-written as 

 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1
1

1
1 1 1 1 1

1 1 ( ) 1

r

r

r

r r rT

k r k r e n

r r r r rT T

e n e r e r r k r e

r r r T

e n e r k r

S

S S S S

S S

−
−

−
− − − − −

− − −

= +

 = − +
 

= −

E Φ H Φ I

I Φ Φ Φ H Φ

I Φ J Φ

  (47) 

Based on (46), one can re-written the determinant of ( )r

kE  as 

 ( ) ( ) ( )r
r n m r r

k e k kS −=E H J   (48) 

Substituting (47) and (48) into (10), after rearranging, one can get (30). 

Initial guess for modal force PSD in (35)  

Taking the partial derivative of rL  in (33) with respect to ( ) 1
Re

r −
S   

 

( )
( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )

( ) 1

1 1 1 1*( ) ( )*

1 1 1 1*( ) ( )*

~ 2Re Re
Re

2Re

Re

r r r

r
k

r rr T T T r

k r r r k k r r r k

r rr T T T rk
k r r r k k r r r k

L
−

− − − −

− − − −


− −



 
 
 
 −
 





θ
S S I

S

h Φ Φ Φ Φ Φ Φ h

h Φ Φ Φ Φ Φ Φ h I

F F

F F

  (49) 
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Then taking the partial derivative of rL  with respect to ( ) 1
Im

r −
S   

 
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )1 1 1 1*( ) ( ) ( )*

( ) 1
~ 2Im 2Im

Im

r rr r r T T T r

k r r r k k r r r kr
k k

L − − − −

−


−


 

θ
S h Φ Φ Φ Φ Φ Φ h

S
F F  

 (50) 

Setting (49) and (50) to be zero, after rearranging, one can obtain (35). 

10. Appendix B. Derivatives of Q-function 

This Appendix presents the derivatives of Q-function in (18) with respect to ( ) r

if  and ( ) r

i  

required in Newton’s method. For convenience, we express the Q-function in (18) as 

 
( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) 21 23

1

sn
t r t r t r t

SP

r

Q Q Q Q
=

= + +θ θ θ θ θ θ θ θ   (51) 

where 

 ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) 11

1

1

ln ln ln
sn

r t r r r r r t r

SP r f r f e e

r k

Q n m N n N S S Q
−−

=

 
= − + − − + 

 
 θ θ θ θ S  (52) 

 
( ) ( )( ) ( )
21

1

ln
m

r t r

ik

k i

Q D
=

=θ θ   (53) 

 ( ) ( )( ) ( ) ( ) ( ) ( )1 1

23 2

r t r r r r

k k k

k

Q tr
− − − 

= −  
 
θ θ S h w h   (54) 

 ( ) ( )( ) ( ) ( )( )
1

2 2 41 4 2
r r r r

ik i ik ikD   
−

= + − +   (55) 

Note that only the last two terms in (51) involve ( ) r

if  and ( ) r

i . Taking the partial derivative 

of Q-function with respect to 
( )r

if  gives 

 

( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

( )

( )
( ) ( ) ( )

( )
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21 23
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Q Q Q D
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f f f f f
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D e e

f f
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− −

−−
− −

        
= + = −                 
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θ θ θ θ θ θ h
S h w

S h w

  (56) 
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where ei is an m-by-1 vector with the i-th entry equal to 1 and all others equal to 0. ( )r

ikh  is the 

complex transpose of ( )r

ikh . The derivatives of ( ) 1r

ikD −  and ( ) 1r

ikh
− will be given later. 

Similarly, one can have 

 

( )( )
( )

( )

( )

( ) ( ) ( ) ( )
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11
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r r
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− −
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θ θ
S h w   (57) 

Taking the second partial derivative of Q-function with respect to ( )r

if  gives 
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Similarly,  
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For i ≠ j,  
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Equations (56) to (63) involve derivatives of the quantities 
( ) 1r

ikD −  and 
( )r

ikh
−

 which are 

presented in the following [41] 
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