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PRECIS: 

PGF2α can decrease the collagen fibril density and cause remodeling of the extracellular 

matrix in ex-vivo rabbit cornea, both of which lead to a stiffness reduction in corneal tissue. 
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Abstract 

Purpose: To investigate the biomechanical effects of two synthetic prostaglandin F2α 

analogues (PGF2α), namely Travoprost and Tafluprost, on the ex-vivo rabbit cornea. 

Materials and Methods: 96 eyes of 48 Japanese white rabbits were divided into 3 equal 

groups randomly; the Travoprost treated group (Tra), the Tafluprost treated group (Taf) and 

the control group (Co). Eyes in Tra and Taf groups were preserved in storage medium for 10 

days with 1:10 Travoprost and Tafluprost diluents, respectively; while the Co eyes were 

preserved in a similar but PGF2α-free medium. 24 corneas of each group were tested under 

inflation conditions with up to 30 mmHg posterior pressure. The pressure-deformation data 

obtained experimentally were used in an inverse analysis process to derive the stress-strain 

behavior of the tissue, using which the tangent modulus, a direct measure of the tissue’s 

material stiffness, was calculated. The remaining 8 specimens of each group were analyzed 

using electron microscopy for fibril diameter and interfibrillar spacing. 

Results: Although the central corneal thickness increased significantly in the three groups 

after storage (p< 0.01), it was similar in all groups both before (p= 0.598) and after storage 

(p= 0.181). After treatment with Travoprost and Tafluprost, the corneas exhibited lower 

tangent modulus (by 29.2% and 29.8%, respectively at 6 kPa stress) and larger stromal 

interfibril spacing (by 21.9% and 23.6%) compared with the control group. There was no 

significant change in fibril diameter with either Travoprost or Tafluprost treatment (p= 

0.769). 

Conclusions: The results demonstrated significant reductions in tangent modulus and 

increases in interfibrillar spacing, which were of similar magnitudes, with the application of 

two different forms of PGF2α. 

 

Keywords: prostaglandin; cornea; biomechanics; stromal fibril; inverse analysis 
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Introduction 

Glaucoma is one of the leading causes of irreversible blindness, associated with destructions 

in ganglion cells and fibers, and leading to a gradual loss in visual field [1, 2]. The risk of 

glaucoma progression could be reduced through reductions in intraocular pressure (IOP) [3], 

using either pharmacologic therapy or surgical solutions. Prostaglandin F2α analogues 

(PGF2α) are among the most commonly prescribed classes of topical hypotensive agents, and 

are frequently used as first-line monotherapy for patients with open angle glaucoma or ocular 

hypertension [4]. As glaucoma is a chronic condition that requires long-term therapy, the 

effect of these drugs on corneal performance, including its biomechanical behavior, needs to 

be well understood. 

 

Corneal stiffness, depicting the corneal resistance to deformation under internal or external 

forces, principally depends on the ocular geometry and thickness as well as the 

micro-architecture of the tissue and the biomechanics of its constituent components. The 

main load-carrying components of corneal tissue are the collagen fibrils, which form an 

important part of the stroma’s extracellular matrix and control the shape of the cornea under 

loads such as the IOP. PGF2α upregulate the activity of matrix metalloproteinase (MMP) and 

downregulate the inhibitors of MMP (TIMP) [5-7] – both effects decrease the collagen fibril 

density (or increase fibril spacing) and remodel the extracellular matrix in the cornea, ciliary 

body and sclera [8, 9]. While these changes can cause a reduction in IOP through enhancing 

the aqueous humor outflow – through the uveoscleral pathway to the suprachoroidal space 

and to episcleral veins [10, 11]– they can also affect corneal biomechanics and hence the 

measurement of IOP. 

 

Previous studies have reported that topical therapy with PGF2α (Travoprost 0.004% and 

Tafluprost 0.0015%) induce significant reductions in CCT, which may be a result of 

remodeled extracellular matrix [12-14]. This effect would be expected to induce reductions in 

corneal mechanical stiffness, possibly introducing underestimations in IOP measurements 

and inaccuracies in procedures (such as refractive surgeries) that interact mechanically with 

corneal tissue [15]. This study seeks to quantify the changes in corneal biomechanics caused 
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by the usage of two forms of PGF2α, namely Travoprost and Tafluprost, through 

experimental testing and microstructural characterization of ex-vivo rabbit corneas that have 

been treated with these agents. 

 

Materials and methods 

2.1 Experimental animals 

48 Japanese white rabbits (2-3 kg) were included in this study, all from the Animal Breeding 

Unit of Wenzhou Medical University (WMU). The animals were treated in line with the 

ARVO Statement for Use of Animals in Ophthalmic and Vision Research, and every effort 

was made to minimize suffering. The study was approved by the Animal Care and Ethics 

Committee of the Eye Hospital of WMU. 

 

2.2 Experimental design 

The rabbits were euthanized by intravenously injecting high concentrations of pentobarbital 

sodium (Merok, Germany), following which the bilateral eyes (total 96 eyes) were enucleated. 

The corneal and a 3-mm ring of scleral tissues were extracted with all other ocular 

components removed. The specimens were randomly divided into three groups (namely the 

Tra group, Taf group and control group, Co) of 32 eyes each. A process was followed to 

ensure that no bilateral eyes from the same rabbit were included in the same group. Tra and 

Taf groups were placed for 10 days in storage medium Eusol-C (Alchimia S.r.l, Ponte S. 

Nicolo`, Italy) with Travoprost (Travatan, 0.004%, Alcon Laboratories, Inc., Fort Worth, TX) 

or Tafluprost (Tapros, 0.0015%, Santen Pharmaceutical Co,Ltd, Japan) diluent (1:10 dilution 

of stock solution). The 32 specimens of the Co group were placed in the same medium but 

without any PGF2α. The 1/10 dilution was selected to enable comparison with earlier studies 

[16, 17] and to reflect the discrepancy between the comparatively short storage duration 

adopted herein and the long-term usage in clinical practice. All specimens were incubated 

under conditions of 37°C and 5% CO2 for 10 days as in a previous study [18]. Corneal 

thickness at 16 regularly distributed points, along four main meridians (horizontal, vertical, 

45o and 135o) was measured before storage, at end of storage period and just before testing 

using an ultrasonic pachymeter (SP-3000, Tomey Inc, Nagoya, Japan). Corneal diameter was 
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measured using a Vernier caliper in the same four directions. 

 

2.3 Biomechanical Inflation Testing 

Briefly, 24 corneas of each group were mounted onto a custom-built pressure chamber where 

mechanical clamps were used to ensure tight edge connection along the ring of scleral tissue 

of the specimen. The pressure chamber was filled with PBS and connected to a syringe pump 

to control the pressure inside the chamber. A differential pressure transducer (DMP-HS, 

Hangzhou, China) was adopted to monitor the real-time pressure in the chamber. A laser 

beam (LK series, Keyence, Milton Keynes, UK) was used to capture the displacement of 

corneal apex with 0.05 micron resolution. The experimental procedure illustrated in Figure 1 

has been described in a previous study [19]. Side images (Figure 1A) of each cornea were 

captured at different loading levels (0, 4, 8 mmHg, etc) by three cameras (EOS 60D, Canon, 

Inc. Tokyo, Japan) arranged around the specimen with angles 75°, 195° and 316° measured 

from the right horizontal direction (Figure 1B). The anterior profiles were identified from the 

camera images using Image J software (version 1.45s, National Institutes of Health, USA) 

with 10 micron resolution. This process was used to determine the initial shape of specimen 

used later in construction of numerical models. 

 

To stabilize the behavior, the specimens were conditioned through three cycles of loading and 

unloading up to a pressure of 30 mmHg, applied at a rate of 0.10 mmHg/s. These values were 

selected as they were slightly higher than the IOP level and the IOP change rate commonly 

seen in rabbit eyes as indicated in our previous studies [19, 20]. A recovery time of 90 

seconds was allowed between successive loading cycles to ensure the behavior was free of 

effect of the strain history of repeated loading cycles [21],[22]. Within this period, the 

specimens were able to recover at least 95% of their apical deformation under the maximum 

applied posterior pressure. Finally, the specimens underwent a fourth loading cycle up to 30 

mmHg, the results of which were used in subsequent inverse analysis to determine the 

material properties of the tissue. 
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2.4 Inverse Analysis 

An inverse analysis process was used to obtain the mechanical properties of corneal tissue 

based on the experimental pressure-deformation results as described in previous studies [19, 

22]. Seventy-two, specimen-specific finite element (FE) models, each employing 1728, 

fifteen-node triangular prism elements (C3D15H), arranged in twelve rings and two layers, 

were developed for the inverse analysis from the initial geometries of the specimens, given 

by their thickness, cross-sectional images and limbal diameter measurements [19] (Figure 

1C). An encastre boundary condition was applied along the limbus in the FE models to mimic 

the connection to the mechanical clamps in the experimental test. 

 

Each cornea model was assumed to have the same material behavior across its surface and 

across the thickness. This assumption was adopted to simplify comparisons between different 

specimen groups. For the same reason, a first-order hyperelastic Ogden constitutive model [19, 

20, 23] was used to represent corneal material behavior with a strain energy function expressed 

as: W = + + − 3 + ( − 1)   (1) 

where W represents the strain energy per unit volume,  the deviatoric principal stretches = J / ×  (k=1, 2, 3), λ1, λ2, λ3 the principal stretches, J = λ1λ2λ3. Material parameters μ and 

α are the strain hardening exponent and the shear modulus, respectively. D is the 

compressibility parameter expressed by = ( )( )  and calculated with the corneal tissue 

assumed to be nearly incompressible [24],[25] and a Poisson's ratio, ν, of 0.48 [19]. 

 

The inverse analysis process employed Abaqus, a finite element software package (Dassault 

Systèmes Simulia Corp., Rhode Island, USA) and optimization software LS-OPT (Livermore 

Software Technology Corp, CA, USA) as described in previous studies [19, 20]. Essentially, 

the analysis determined the optimal values of the material parameters μ and α for each cornea 

by minimizing the root mean square (RMS) error between the experimental and numerical 

displacements at the corneal apex using the following objective function: 
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= .∑ ( − )   

where P is the total number of pressure levels at which the RMS is calculated (i.e. 2, 4, … up 

to 30 mmHg), and  and  represent the experimental and numerical displacements 

of the corneal apex at pressure level . 

 

Within the inverse analysis, parameters µ and α could take values ranging from 0.001 to 0.1, 

and from 50 to 250, respectively. The parameter ranges were suitable for analysis of all 

specimens in this study. Solution uniqueness was evaluated using 3 specimens (one randomly 

selected from each group), by repeating the inverse analysis four more times while starting 

with initial values that were double and half the values used in the first attempt. 

 

2.5 Histological Analysis 

To determine the effect of treatment with PGF2α on collagen fibril diameter and interfibrillar 

spacing, 8 corneas from each group were fixed with 2.5% glutaraldehyde, embedded in Epon 

(SPI-PON 812 Kit, SPI-CHEM, PA, USA), sectioned on the sagittal plane and stained with 

uranyl acetate and lead citrate. Five 50nm-thick sections were extracted from each cornea and 

were analyzed by a professional pathologist (Shen LJ) using a transmission electron 

microscope (TEM, H-7500, Hitachi, Japan) with ×40,000 magnification. The information of 

fibrils was measured in the middle surface of the stroma (300μm away from epithelium). The 

TEM images were assessed using image processing software, Image J (National Institute of 

Health, USA) to determine the mean diameter of fibrils and the mean interfibrillar spacing as 

described in a previous study [20]. Only fibrils showing circular or elliptical borders with 

high contrast were included in the fibril diameter calculations [26]. On the other hand, the 

calculation of interfibrillar spacing (W) was based on: W = Area number	of	fibrils⁄ − mean	fibril	diameter. 
The mean values of interfibrillar spacing and fibril diameter obtained from the five TEM 

images obtained for each specimen were used in subsequent analyses. 
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2.6 Statistical analysis 

All statistical analysis was performed using the PASW Statistics 20.0 (SPSS Inc., Chicago, 

USA). One-way analysis of variance (ANOVA) or Kruskal-Wallis H test was carried out to 

compare the biomechanical and geometrical parameters among the three groups according to 

a normal distribution test. p values less than 0.05 were considered indicative of statistical 

significance. 

 

Results 

3.1 Corneal thickness 

The central corneal thickness of Tra, Taf and Co groups was 342.2±24.2 μm, 349.5±19.0 μm 

and 343.4±32.6 μm, respectively, pre-storage, and 698.4±130.6 μm, 686.8±90.3 μm and 

748.1±133.0 μm post storage. No significant differences were found in corneal thickness 

among the three groups before storage (p= 0.598) or after storage (p= 0.181), even though the 

thickness increases with storage were significant in all three groups (p< 0.01). The peripheral 

corneal thickness after storage and corneal diameter were 708.9±118.1 μm and 11.2±0.2 mm 

for the Tra group, 667.5±112.4 μm and 11.0±0.4 mm for the Taf group, and 722.4±99.8 μm 

and 11.1±0.2 mm for the Co groups. The difference among the three groups was not 

statistically significant (p> 0.05). 

 

3.2 Pressure deformation behavior 

Figure 2 shows the pressure-apical displacement behavior of the corneas under cycle loading. 

A notable stiffness increase in all specimens was observed from the first to second loading 

cycle as indicated by a displacement reduction of 13.5±3.7% on average over the loading 

range. A similar comparison between the 2nd and 3rd cycles, and between 3rd and 4th cycles 

showed displacement reduction ratios of 3.7±2.1% and 1.4±1.5%, respectively. These results 

justified the use of 4th cycle results as representative of the specimens' repeatable behavior. 

The max apical displacements in the 4th cycle ranged between 0.38 and 0.99 mm (0.55±0.14 

mm) in the Tra group, 0.24 and 0.84 mm (0.50±0.12 mm) in the Taf group, and 0.17 and 0.58 

mm (0.37±0.11 mm) in the Co group. The mean pressure-apical displacement behavior of the 

ACCEPTED M
ANUSCRIP

T



 

three specimen groups are plotted in Figure 3. All specimens exhibited nonlinear 

pressure-displacement behavior at low pressure levels before it changed to almost linear at a 

pressure between 7 and 15 mmHg. 

 

3.3 Inverse analysis results 

Inverse analysis was employed to derive a constitutive model for each cornea that matched 

the best (lowest RMS) with the experimental results in terms of pressure-displacement 

behavior. The study started with an exercise to assess the uniqueness of the material 

parameters obtained from the inverse analysis procedure in 3 specimens (1 from each of the 

three groups). The process started with an analysis that used the initial values: µ = 0.001 and 

α = 90, then repeated the analysis with each of these initial values doubled and/or halved, 

Table 1. The final parameter values obtained from the three analyses are listed in Table 1. The 

results demonstrated that the inverse analysis procedure adopted in the study was robust in 

arriving at unique material parameters in each case. Following this, the material parameters μ 

and α for each specimen in each specimen group were obtained and their mean values are 

given in Table 2. 

 

With the material parameters determined (Table 2), the stress-strain (σ-ε) relationship, and 

thereafter the tangent modulus (Et = dσ/dε) at arbitrary stress levels could be calculated for 

each cornea. Table 3 presents the mean Et for each specimen group at three stress levels; 

2kPa, 4kPa and 6kPa, and show significant reductions in Et in the Tra group, and the Taf 

group relative to the control specimens (p< 0.01 at all three stress levels considered). On the 

other hand, Tra and Taf groups exhibited similar Et values with no significant differences 

detected at the three stress levels (all p> 0.80). 

 

3.4 Histological Analysis 

No significant differences in fibril diameter were found among the three specimen groups (p= 

0.769) through the analysis of transmission electron microscopy images (Figure 3 and Table 

4). On the other hand, interfibrillar spacing exhibited large and significant differences (p= 

0.00), being higher in the Tra and Taf groups by 21.9% and 23.6% (indicating lower fibril 
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density) compared with the control group. 

 

Discussion 

Due to their effectiveness in lowering IOP [27], PGF2α have become widely used in 

glaucoma management despite their reported side effects including conjunctival hyperemia 

[28], ocular irritation [29], iris pigmentation [30], and eyelid skin darkening [31]. While 

several studies have dealt with these biological effects [16, 32], few studies considered the 

PGF2α’s influence on corneal biomechanics. Using corneal inflation testing in this study, 

large, consistent and significant decreases in corneal stiffness (as measured by the tangent 

modulus, Et) were found in ex-vivo rabbit eyes treated with Travoprost and Tafluprost, 

compared with control specimens. 

 

Travoprost and Tafluprost are two types of PGF2α available for clinical use to lower IOP. 

They employ different mechanisms involving diverse receptor subtypes [33, 34], which 

induce differential expression of MMPs in the ciliary body or ciliary muscles [35, 36]. 

However, despite these differences, Travoprost and Tafluprost have been reported to exhibit 

similar effects in IOP reduction [37], and have been shown in this study to induce similar 

changes in corneal biomechanics. 

 

The changes in corneal biomechanics may be attributed to the effects of PGF2α on the 

extracellular matrix of corneal stroma via upregulation of MMP [38]. In addition, PGF2α 

therapy can increase the keratocyte density in the stroma, probably due to the diminished 

extracellular matrix owing to the activation of MMP and inhibition of their tissue inhibitors 

[39]. 

 

Previous studies on the biomechanical effects of PGF2α used the Ocular Response Analyzer 

(ORA) to provide indications of behavior change. All studies [40-43], except one [44], 

reported increases in the Corneal Hysteresis parameter (CH – parameter linked with cornea’s 

dynamic damping) with PGF2α treatment. However, the image with the Corneal Resistance 

Factor (CRF – linked with mechanical stiffness) was less clear with reported decreases [43, 
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44] and no significant changes [40] [42]. Further, after adjusting for factors that potentially 

influence corneal dynamic parameters, a significant difference was detected in the 

deformation amplitude (DA) parameter – indicating stiffness reduction – in a device based on 

Corneal Visualization Scheimpflug Technology (Corvis ST) post PGF2α therapy [45]. 

 

However, as the biomechanical metrics provided by the ORA and Corvis ST can be 

influenced by factors such as IOP and corneal thickness [15, 46-49], and since the link 

between the CH, CRF and DA metrics and the established mechanical properties of tissue 

(such as tangent modulus) has not been established yet, it is difficult to extract clear 

conclusions on the effect of PGF2α on corneal biomechanical properties based on these 

studies. For this reason, inflation testing, which provides direct measurement of the tissue’s 

properties has been adopted in this study. 

 

Inflation testing is considered superior to the commonly-used strip extensometry testing [50, 

51] as it subjects the cornea to posterior pressure simulating IOP, keeps the cornea intact, 

maintains tissue hydration, adopts boundary conditions that approximate connection to the 

stiffer limbus, and enables monitoring of specimen deformation using non-contact methods. 

The initial topography measurements enable the construction of specimen-specific numerical 

models, and inverse analysis can be used to derive the tissue’s material properties in forms of 

stress-strain behavior and hence the tangent modulus at different stress or strain levels based 

on the experimentally-obtained pressure deformation results. 

 

In our study, all specimens exhibited clear nonlinear mechanical behavior, and the results 

show large, consistent and significant stiffness decreases in the treated groups. The tangent 

modulus was consistently lower in the Tra and Taf groups compared to the control group (by 

32.7% and 31.2% at 2 kPa stress, 30.0% and 30.1% at 4 kPa stress, 29.2% and 29.8% at 6 

kPa stress). Meanwhile, corneal thickness decreased by 6.6% and 8.2% compared with the 

control group. The histological results also showed a significant increase in collagen 

interfibrillar spacing in the Tra and Taf groups (by 21.9% and 23.6%), indicating a decrease 

in collagen fibril density in the corneal stroma. However, there was no significant change in 
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fibril diameter after treatment. It is interesting to find that the change in CCT and fibril 

spacing tie with the stiffness change. While the change in corneal microstructure can lead to 

stiffness reduction (as collagen fibrils are the main load carrying components of the cornea), 

it has been theorized that PGF2α could stimulate collagen gel contraction [52], decrease 

fibronectin protein content [53], accelerate collagen degradation [54] and change stromal 

collagen distribution [53], all of which can cause tissue stiffness deterioration. 

 

Changes in corneal biomechanics, such as those reported herein, can cause an 

underestimation in the measurement of IOP in tonometry. Because most tonometry methods 

rely on loading the cornea by contact or non-contact force and correlating the corneal 

deformation to the value of IOP, reducing corneal stiffness can lead to underestimations of 

IOP [55]. This is an interesting outcome since PGF2α are intended in the first place to lower 

IOP, but the long-term reductions in corneal stiffness may exaggerate the drop in IOP and 

overstate the effectiveness of the treatment. 

 

There has been a significant thickness increase observed in all specimen groups during the 

storage period. This increase was most likely caused by the storage medium that can result in 

an anaerobic state and increased lacate concentrations [56], both of which may promote tissue 

swelling during the storage period. This thickness increase could have masked a decrease in 

thickness caused by storage in Travoprost and Tafluprost similar to what has been observed in 

clinical studies involving patients with glaucoma or ocular hypertension [12, 13]. 

 

The study has a number of limitations including the use of rabbit eyes as models of the 

human eye. This has been necessary due to the difficulties in obtaining sufficient human 

donor eyes, and justified by findings of similarity of biomechanical behavior with human 

eyes in earlier experimental studies [57, 58]. Corneal tissue was separated from the sclera and 

stored in Eusol-C for ten days due to difficulties in storing the eye globes intact. Corneal 

separation would expose to treatment the interior side of the corneoscleral tissue as well as 

the edge of the cut, and would create conditions that were different from the physiological 

state Furthermore, since differences are possible between ex-vivo and in-vivo tissue behavior, 
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it may be difficult to correlate directly the findings of the present study with what to expect in 

clinical practice. However, it was necessary to rely in this study on ex-vivo tissue due to the 

current inability to measure corneal mechanical behavior in vivo. 

 

Using a standard biomechanical test, this study investigated the effect of PGF2α hypotensive 

medication on corneal biomechanical properties. In conclusion, the results of the study 

demonstrate significant corneal material stiffness reductions associated with the use of 

PGF2α analogues (Travoprost diluent, 0.0004%; and Tafluprost diluent, 0.00015%). These 

results warrant caution when clinicians assess accuracy and adequacy of IOP control in 

glaucoma patients under chronic PGF2α therapy. 
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Figure Captions 

Figure 1 Corneal profile (A) captured before the start of the inflation test by one of 

the three cameras mounted on the inflation rig (B) and used to construct 

specimen-specific numerical models (C) 

 

Figure 2 Pressure-displacement behavior at the corneal apex of one typical specimen 

during the 4 loading cycles 

 

Figure 3 Mean pressure-displacement behavior at the corneal apex in the three groups 
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Figure 4 Cross-sectional images of corneal stroma showing collagen fibrils obtained 

using TEM with 40,000 magnification. (A) Travoprost Treated Group, (B) Tafluprost 

Treated Group, (C) Control group 
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Table Captions 

Table 1 Constitutive parameters α and μ obtained for 3 specimens using different 

initial values in the inverse analysis 

Table 2 Mean and standard deviation of constitutive parameters α and μ in the three 

specimen groups 

Table 3 Average and standard deviation values of tangent modulus in the three groups 

at different stress levels 

Table 4 Mean and standard deviation of interfibrillar spacing and fibril diameter in 

corneal stroma in the three specimen groups 
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Table 1 Constitutive parameters α and μ obtained for 3 specimens using different initial values in the inverse analysis 

Inverse 

attempts 

Initial values 

Tra case Taf case Co case 

Obtained values 
RMS 

(µm) 

Obtained values 
RMS 

(µm) 

Obtained values 
RMS 

(µm) µ α µ α µ α µ α 

1 0.001 90 0.0426 105.29 12.02 0.0140 38.97 18.20 0.0044 49.75 29.49 

2 0.002 180 0.0427 105.21 11.96 0.0140 38.97 18.20 0.0044 49.75 29.49 

3 0.0005 45 0.0426 105.29 12.02 0.0140 38.98 18.19 0.0044 49.75 29.49 

4 0.002 45 0.0427 105.21 11.96 0.0140 38.97 18.20 0.0044 49.75 29.49 

5 0.0005 180 0.0427 105.21 11.96 0.0140 38.98 18.20 0.0044 49.75 29.49 

Tra = Travoprost treated group, Taf = Tafluprost treated group, Co = control group 
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Table 2 Mean and standard deviation of constitutive parameters α and μ in the three 

specimen groups 

Group α μ RMS, µm 

Tra 59.44±19.44 0.0044±0.0043 47.15±27.79 

Taf 58.03±19.72 0.0070±0.0107 42.42±29.56 

Co 80.24±21.16 0.0123±0.0145 37.56±20.74 

Tra = Travoprost treated group, Taf = Tafluprost treated group, Co = control group 
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Table 3 Mean and standard deviation of tangent modulus (Et) in the three groups at different stress levels 

Stress (kPa) 
Tangent Modulus, Et (MPa) 

p EtTra/EtCo % EtTaf/EtCo % 
Tra Taf Co 

2.0 0.12±0.03 0.12±0.05 0.17±0.05 0.00 67.3 68.8 

4.0 0.22±0.07 0.22±0.08 0.32±0.08 0.00 70.0 69.9 

6.0 0.33±0.11 0.33±0.12 0.46±0.12 0.00 70.8 70.2 

Tra = Travoprost treated group, Taf = Tafluprost treated group, Co = control group; EtTra/EtCo = ratio between tangent modulus in Travoprost 

treated group (EtTra) and control group (EtCo); EtTaf/EtCo = ratio between tangent modulus in Tafluprost treated group (EtTaf) and control group 

(EtCo)
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Table 4 Mean and standard deviation of interfibrillar spacing and fibril diameter in corneal 

stroma in the three specimen groups 

Group n Fibril diameter (nm) Interfibrillar spacing (nm) 

Tra 8 30.92±1.35 44.28±1.67 

Taf 8 31.18±0.56 44.90±3.65 

Co 8 30.78±1.24 36.33±4.62 

Tra/Co % - 100.4 121.9 

Taf/Co % - 101.3 123.6 

Tra = Travoprost treated group, Taf = Tafluprost treated group, Co = Control group. 
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