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ABSTRACT 

Mesial temporal lobe epilepsy (mTLE), the commonest type of focal epilepsy, is 

associated with both functional and structural brain alterations. Recently, machine 

learning (ML) techniques have been successfully used to discriminate mTLE from 

healthy controls. However, most have used either functional or structural 

neuroimaging data as input, without exploiting the opportunity to combine both. We 

conducted a multimodal ML study based on both functional and structural 

neuroimaging measures. We enrolled 37 left mTLE and 37 right mTLE patients and 

74 healthy controls, and trained a support vector machine learning model to 

distinguish them using each single measure as well as their combinations. For each 

single measure, we obtained a mean accuracy of 74% and 70% for discriminating left 

mTLE and right mTLE from controls, respectively, and 65% putting all patients 

together. For left mTLE, we achieved an accuracy of 78% using functional data and 

79% using structural data, while the highest accuracy of 84% was obtained when 

combining all functional and structural measures. These findings suggest that 

combining multi-modal measures within a single model could be a promising 

direction for improving the classification of individual patients with mTLE. 

 

Keywords: mesial temporal lobe epilepsy; functional magnetic resonance imaging; 

structural magnetic resonance imaging; machine learning; support vector machine. 
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Introduction 

Mesial temporal lobe epilepsy (mTLE) is the commonest type of focal epilepsy in 

adults, and its pathophysiological substrate is usually hippocampal sclerosis (HS) 1. 

Magnetic resonance imaging (MRI) methods have come to play a pivotal role in the 

evaluation of patients with mTLE, notably resting state functional MRI (rs-fMRI) 2, 3 

and structural MRI (sMRI) 4, 5. However, previous MRI studies have typically 

measured average group-level differences, rather than evaluating individual patients.  

In biological neurology there is growing interest in the application of machine 

learning (ML) techniques to neuroimaging data for the diagnosis of epilepsy 6-8, and 

mTLE has been the main focus of this work 9, 10. Most previous studies using ML 

techniques to investigate mTLE have used a single neuroimaging modality: 

multiparameter sMRI data was found to discriminate mTLE patients from controls 

with 81% accuracy 11, while combining 6 rs-fMRI measures achieved 83% accuracy 12. 

In addition, ML has been applied in this way to other neuroimaging modalities such as 

diffusion tensor imaging (DTI) 13, 14.  

Although these studies have shown the potential of integrating appropriate MRI data 

with ML to detect mTLE with acceptable accuracy, questions remain. Firstly, brain 

alteration in left mTLE is reportedly more extensive than in right mTLE 15-17, which 

suggests different patterns of brain abnormalities. However, it is not known whether 

detecting right and left mTLE separately is better than pooling them when using ML. 

Secondly, although both structural and functional brain abnormalities have been 

reported in mTLE 18, 19, no study has so far integrated both structural and functional 
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data with ML, an approach which improves classification performance in some other 

diseases 20. 

We therefore set out to use ML to distinguish mTLE patients and healthy controls 

(HC) by combining both sMRI and rs-fMRI data. As inputs for classification, from 

sMRI we extracted 3 measures which have been successfully used in the investigation 

of mTLE: gray matter (GM) 21 and white matter (WM) 22 density and cortical 

thickness 23; from rs-fMRI the inputs were amplitude of low frequency fluctuation 

(ALFF) 24 and regional homogeneity (ReHo) 25, 26. These 5 measures were combined 

to provide integrated information on the functional and structural brain alterations in 

mTLE. 

We hypothesized (i) that detecting right mTLE and left mTLE patients separately, 

rather than pooling, would improve classification accuracy; (ii) that the combination 

of structural and functional measures within a multi-modal, multi-measure model 

would yield more accurate classification; and (iii) that temporal lobe would contribute 

the most to the classification, being the main site of abnormality in mTLE.  

Materials and methods 

Participants  

From September 2013 to January 2018, 74 mTLE patients were consecutively 

recruited in the Department of Neurology in West China Hospital of Sichuan 

University (Chengdu, China), all of whom met the International League Against 

Epilepsy criteria for diagnosis of mTLE 27, 28 and were right-handed. All patients had 
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unilateral HS (37 left and 37 right), as assessed by hippocampal atrophy on T1‐

weighted MRI (qualitative assessments by two radiologist) and increased signal on 

T2 fluid-attenuated inverted recovery (FLAIR) in the mesial temporal region. Video 

EEG was used to confirm that seizure onset was in the ipsilateral temporal lobe. No 

other mass brain lesion, traumatic brain injury or any psychiatric disorder was 

apparent in the MRI, EEG and neuropsychological examination. In addition, 74 

age-matched, sex-matched right-handed HC were enrolled, all free of any 

neurological or psychiatric disorders at the time of the study. Table 1 gives the 

demographic and clinical characteristics of the study groups. 

This study was approved by the West China Hospital Clinical Trials and Biomedical 

Ethics Committee of Sichuan University, and written informed consent was obtained 

from all of the participants. The study protocol was performed in accordance with 

the approved guidelines. 
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Table 1. Demographic and clinical data a 

 

Variables Left mTLE Right mTLE HC 

Sample size 37 37 74 

Age b 24.4±8.0 25.2±7.3 25.9±7.8 

Gender (M/F) 
18 (48.6%)/ 

19 (51.4%) 

19 (51.4%)/ 

18 (48.6%) 

37 (50%)/ 

37 (50%) 

Disease duration (years) b 10.4±9.0 12.4±6.9 - 

Onset of epilepsy (years) c 14.6±9.1 14.3±8.3 - 

Initial precipitating insults: 

febrile seizures 

CNS infection 

status epilepticus 

 

11 (30.0%) 

6 (16.2%) 

None 

 

8 (21.6%) 

7 (18.9%) 

None 

 

Antiepileptic drugs: 

monotherapy 

ditherapy 

multiple AEDs 

 

10 (27.0%) 

14 (37.9%) 

13 (35.1%) 

 

9 (24.3%) 

12 (32.4%) 

16 (43.3%) 

- 

 
a Data are presented as mean±standard deviation. No significant differences were 

identified between the groups in age and gender.  
b Age and duration of episode were defined at the time of MRI scanning.  
c This is the age at onset of seizures or diagnosis of mTLE. 

Abbreviations: mTLE, mesial temporal lobe epilepsy; HC, healthy controls; AEDs, 

antiepileptic drugs. 

 

MRI Data Acquisition 

MRI scanning was performed with a 3 T system (Tim Trio; Siemens Healthineers, 

Erlangen, Germany) using an 8-channel phased array head coil. Each functional 

examination contained 200 image volumes, and total imaging time 410 seconds. 

Participants were instructed not to focus their thoughts on anything in particular and 

to keep their eyes closed during the acquisition. Head motion was minimized by 

using foam pads. Functional scanning parameters: repetition/echo time 2000/30 ms; 

flip angle 90°; 30 axial sections per volume; 5 mm section thickness (no gap); 64×64 
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matrix; field of view 240×240 mm²; voxel size 3.75×3.75×5 mm³. Structural 

scanning used a spoiled gradient-recalled sequence to obtain high-resolution 

three-dimensional T1-weighted images. Structural scanning parameters: 176 slices; 

slice thickness 1 mm; flip angle 9°; matrix size 256 × 256; repetition/inversion/echo 

time 1900/900/2.26 ms; voxel size 1 ×1×1 mm³. 

MRI data analysis 

Figure 1 shows an overview of the classification approach. Five individual measures 

were analyzed using a Support Vector Machine (SVM) learning model: cortical 

thickness, GM and WM, extracted from sMRI data, and ALFF and ReHo, extracted 

from rs-fMRI data. 
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Figure 1. Overview of the classification approach used to assess the diagnostic value 

of sMRI and rs-fMRI data. Abbreviations: sMRI, structural MRI; rs-fMRI, resting 

state functional MRI; GM, gray matter; WM, white matter; ReHo, regional 

homogeneity; ALFF, amplitude of low-frequency fluctuation 

 

Functional data pre-processing 

Rs-fMRI data was preprocessed using the DPARSF 4.3 Advanced Edition 

(http://www.restfmri.net) as follows: removal of the first 10 volumes of each 

subject’s rest data to minimize the impact of instability in the initial MRI signal; 

correction for acquisition delay between slices; regression of white matter nuisance 

signals, cerebral spinal fluid blood oxygen level dependent signal using Friston 24 

head-motion profiles and scrubbing regressors to minimize the effect of head motion; 

http://www.restfmri.net/
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normalization using EPI templates (voxel size 3×3×3 mm); smoothing with a 

Gaussian kernel of 4 mm full-width at half-maximum (FWHM); finally, filtering 

functional data (band pass: 0.01–0.1 Hz) to reduce the effects of low-frequency drift, 

and high-frequency noise smoothing. 

ReHo maps were then extracted from the pre-processed images using DPARSF 

software. After removing linear trends in the unsmoothed images and applying a 

band-pass filter (0.01 < f < 0.08 Hz) to reduce low-frequency drift and 

high-frequency respiratory and cardiac noise, ReHo maps were generated by 

calculating the concordance of Kendall’s coefficient (values from 0 to 1) of the time 

series of a given voxel with those of its 26 nearest neighbors. The ReHo value of 

each voxel was standardized by dividing it by the global (within-brain) mean ReHo 

value. 

The ALFF was calculated using DPARSF software. After application of a band-pass 

filter (0.01–0.08 Hz) and removal of linear trends, the time series was transformed to 

the frequency domain using fast Fourier transforms. The square root of the power 

spectrum was calculated and averaged across 0.01–0.08 Hz for each voxel to yield 

the ALFF. The ALFF of each voxel was standardized by dividing it by the global 

(within brain) mean ALFF value. 

Structural data pre-processing 

The 3D T1-weighted images were preprocessed using the Diffeomorphic Anatomical 

Registration Through Exponentiated Lie (DARTEL) toolbox based on SPM8 
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(http://www.fil.ion.ucl.ac.uk/spm) as follows: the structural image was segmented 

into GM and WM; anatomical registration was performed using DARTEL algebra in 

SPM8 for registration, normalization and modulation; the registered images were 

transformed to Montreal Neurological Institute (MNI) space (voxel size 1.5×1.5×1.5 

mm); the normalized, non-modulated images (GM and WM density images) were 

smoothed with a 10 mm full-width at half-maximum Gaussian kernel to increase the 

signal to noise ratio. The preprocessed GM and WM probability maps (the density of 

GM and WM were reflected by voxel density) were used as measures for the ML 

analysis. 

Cortical thickness was calculated using FreeSurfer software 

(http://surfer.nmr.mgh.harvard.edu/). The 3D T1-weighted images were processed 

with the recon-all processing pipeline for cortical reconstruction and volumetric 

segmentation 29; the streamlined pipeline included the removal of non-brain tissue, 

Tailarach transformations, segmentation of subcortical white and deep gray matter 

regions, intensity normalization and atlas registration. A mesh model of the cortical 

surface was generated, and the cortical surface was parcellated into 34 cortical 

regions based on gyral and sulcal landmarks for each hemisphere according to the 

Desikan–Killiany atlas 30; cortical thickness for each of these 34 cortical regions 

were calculated per hemisphere. To improve the ability to detect population changes, 

we blurred each participant’s morphometric parameter map using a 25 mm 

full-width at half-maximum surface-based Gaussian kernel. Finally, we combined 

the cortical thickness maps of the left and right hemisphere into a whole brain map, 

http://www.fil.ion.ucl.ac.uk/spm
http://surfer.nmr.mgh.harvard.edu/)
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and this was used as a measure for the ML analysis. 

Machine learning classification and evaluation of models 

We used SVM 
31
 to perform single-subject classification. SVM maps the input vectors to a 

feature space using a set of mathematical functions known as kernels. In this space the 

model finds the optimum separation surface that maximizes the margin between different 

classes within a training dataset. Once the separation surface is determined, it can be used 

to predict the class of new observations using an independent testing dataset. Here a linear 

kernel was preferred to a nonlinear one to minimize the risk of overfitting. The model was 

based on LIBSVM 
32
 and implemented by the Scikit-Learn library 

33
.  

To investigate the performance of each SVM model, we used a 10-fold stratified 

cross-validation approach. The participants were first divided into 10 

non-overlapping partitions, each partition maintaining the same ratio of mTLE 

patients to HC as the whole group. In each iteration, one partition was considered as 

the independent test set (where the performance metric is calculated), and the 

remaining subjects were defined as the training sample. Within each training set, we 

performed an internal cross-validation (i.e. 10-fold stratified nested cross-validation) 

to select the optimal set of hyperparameters of the ML models. The linear SVM has 

only one hyperparameter (the soft margin parameter C) that controls the trade-off 

between reducing training errors and having a larger separation margin. This 

parameter was optimized by performing a grid search in the following values: C = 

10-3, 10-2, 10-1, 100, 101, 102, 10³, 104. This yielded the optimum C value for each 
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input measure. The set of parameters which performed best across the internal 

cross-validations was selected for each imaging modality and used to train the SVM 

models. 

During multiple measure analysis we combined the SVM predictions of single 

measures using a weight averaging method (soft voting), which is reportedly slightly 

more effective than either sum of kernels or multi-kernel learning 34. We first trained 

each SVM using a single measure; this allowed us to estimate the likelihood of an 

individual belonging to the patient or control group (using the Scikit-Learn library 

default method). Next we calculated the weight probabilities of each specific 

measure by multiplying its predicted probabilities by a coefficient optimized. After 

the grid searches for the C parameter, a second nested cross-validation was 

performed to optimize the coefficient of each specific measure for the soft voting. 

Each coefficient was evaluated using a grid search with a coefficient search space 

assuming an integer value between 1 to 10. This second nested cross-validation was 

also performed using a 10-fold stratified cross-validation. In both nested 

cross-validations, the highest mean balanced accuracy (defined as the mean of 

sensitivity and specificity) of the model was used to define the best hyperparameter 

value. Sensitivity and specificity are taken into account simultaneously by using 

mean balanced accuracy to optimize the model, which is better than simple accuracy 

when the samples of two group are unbalanced. Finally, we calculated the average of 

the predicted weight probabilities, which are the weighted averages of the 

probability that the SVM model based on each measure predicted that an individual 
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subject belong to the two groups respectively, the group with the highest score being 

defined as the predicted class for a given subject. 

After the training of SVM models, the final step was to evaluate the performance of 

the SVM model in conjunction with the evaluation data. To avoid the influence of 

imbalanced datasets in left or right mTLE analysis, we calculated the balanced 

accuracy for each SVM models. We also report the sensitivity, specificity, recall, F1 

score and area under the receiver operating characteristic curve (AUC) to evaluate 

the performance more comprehensively. To obtain meaningful confidence intervals 

and p-values for each cluster, a random permutation test (1000 times) was used to 

examine the statistical significance of the classification models.  

Creation of discriminative brain region maps 

An anatomical automatic labeling (AAL) atlas consisting of 90 regions of interest 

(ROIs) was used to construct maps of discriminative brain regions 35. The weight 

maps are the spatial representation of the decision function that defined the level of 

each ROI’s contributions to the classification process. We report the top 10 

discriminative regions of four measures (ReHo, ALFF, GM, WM), in order to seek 

objective biomarkers of mTLE. The regions that were in the top 10 discriminative 

regions for more than two measures were defined as the most discriminative regions. 

Then we extracted the submaps of these regions based on each measure (ReHo, 

ALFF, GM, WM) and using an SVM technique based on integration of these 

submaps to verify the results. 
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Results 

Classification performance  

The balanced accuracies, sensitivities, specificities, and p-values for the 

single-subject classification of patients and HC are reported in Table 2, and Figure 2 

shows an overview of the classification accuracy. In the identification of all patients 

versus HC, we obtained an accuracy of 63% for ReHo, 63% for ALFF, 58% for GM, 

72% for WM and 63% for cortical thickness. Dividing the patients into left and right 

mTLE, for the discrimination of left mTLE from HC we obtained an accuracy of 75% 

for ReHo, 75% for ALFF, 73% for GM, 76% for WM and 72% for cortical thickness; 

for the discrimination of right mTLE from HC we obtained an accuracy of 68% for 

ReHo, 73% for ALFF, 66% for GM, 73% for WM and 66% for cortical thickness. 

Thus dividing the patients into left and right mTLE allows more accurate 

classification than pooling all patients, for both left mTLE (mean 74% versus 64%; 

paired t-test, p = 0.005) and right mTLE (mean 69% versus 64%; paired t-test, p = 

0.030). 

Discriminating left mTLE from HC, combining functional measures (ReHo and 

ALFF) yielded an accuracy of 78%. Combining structural measures (GM, WM and 

cortical thickness) yielded an accuracy of 79% (Table 2). Thus for both structural 

and functional modalities, combining different measures yields a marginally higher 

accuracy of classification than using single measures alone. For discriminating either 
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all patients or right mTLE from HC we found no such increase in accuracy. 

Combining all measures across structural and functional modalities yields an 

accuracy of 84% for discriminating left mTLE from HC (Table 2), which is higher 

than the use of single modalities, either structural (84% vs 79%) or functional (84% 

vs 78%). For discriminating either all patients or right mTLE from HC, we found no 

such increase in accuracy. 

 

Figure 2. Overview of the classification accuracy based on different modalities. 

‘Functional combinations’ means a multimodal SVM classifier using functional 

measures ReHo and ALFF as input; ‘structural combinations’ means a multimodal 

SVM classifier based on structural measures GM, WM and cortical thickness; ‘ALL 

combinations’ means a multimodal SVM classifier using all of the five measures 

ReHo, ALFF, GM, WM and cortical thickness as input. 
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Table 2. SVM classifier performance for the different modalities and combinations 

 

 
a Functional combinations: multi-modal SVM classifier using functional measures ReHo and ALFF as input;  
b Structural combinations: multi-modal SVM classifier based on structural measures GM, WM and cortical thickness;  

 Accuracy Sensitivity Specificity Recall F1 Score AUC P value 

All patients vs HC        

ReHo 62.6% 67.5% 57.7% 61.5% 62.0% 64.1% 0.019 

ALFF 62.8% 69.2% 56.4% 61.3% 62.0% 65.7% 0.017 

GM 58.2% 56.6% 59.8% 58.5% 58.3% 61.4% 0.023 

WM 72.3% 77.8% 66.8% 70.1% 71.2% 75.2% 0.012 

Cortical thickness 62.6% 57.5% 67.7% 64.0% 63.3% 65.6% 0.026 

Functional combinations a 62.6% 68.7% 56.5% 61.2% 61.9% 64.3% 0.023 

Structural combinations b 62.8% 65.4% 60.2% 62.2% 62.5% 66.7% 0.019 

All combinations c 58.2% 67.5% 48.9% 57.0% 57.6% 64.3% 0.035 

Left mTLE vs HC 

ReHo 74.8% 80.7% 69.0% 72.2% 73.5% 77.8% 0.003 

ALFF 75.0% 81.7% 68.3% 72.0% 73.5% 79.5% 0.001 

GM 72.9% 72.5% 73.3% 73.1% 73.0% 74.1% 0.002 

WM 75.8% 77.8% 73.7% 74.7% 75.2% 81.2% 0.009 

Cortical thickness 72.1% 70.5% 73.7% 72.8% 72.4% 73.6% 0.002 

Functional combinations a 77.5% 84.1% 70.8% 74.2% 75.8% 81.4% 0.001 

Structural combinations b 79.2% 81.7% 76.7% 77.8% 78.5% 83.6% 0.001 

ALL combinations c 84.1% 86.5% 81.7% 82.5% 83.3% 87.8% 0.001 

Right mTLE vs HC 

ReHo 67.5% 61.7% 73.3% 69.8% 68.6% 71.3% 0.005 

ALFF 73.3% 67.5% 79.2% 76.4% 74.8% 75.2% 0.002 

GM 66.3% 55.0% 77.5% 71.0% 68.6% 68.2% 0.021 

WM 72.9% 72.5% 73.3% 73.1% 73.0% 75.1% 0.002 

Cortical thickness 66.1% 57.1% 75.1% 69.6% 67.8% 71.3% 0.017 

Functional combinations a 72.9% 67.5% 78.3% 75.7% 74.3% 73.6% 0.002 

Structural combinations b 69.2% 65.0% 73.3% 70.9% 70.0% 71.4% 0.006 

All combinations c 72.9% 77.5% 68.3% 71.0% 71.9% 74.6% 0.002 
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c All combinations: multi-modal SVM classifier using all of the five measures ReHo, ALFF, GM, WM and cortical thickness as input. 

 

Abbreviations: ReHo, Regional Homogeneity; ALFF, Amplitude Low Frequency Fluctuation; GM, Gray Matter; WM, White Matter; SVM, Support Vector Machine; 

mTLE, mesial Temporal Lobe Epilepsy; HC, Healthy Controls. AUC, Area Under the receiver operating characteristic Curve. 
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The most discriminative brain regions 

In order to explore which brain regions contributed to single-subject classification, we 

computed the mean absolute values of the weights of the model across the different 

stages of the cross-validation, and then used a template mask based on the AAL atlas 

to extract the weight for each region. The top 10 brain regions with the highest mean 

values based on each measure are reported in Table 3. 

The brain regions contributing to single-subject classification varied across our four 

measures of interest. However, some regions were detected at least in two of our four 

measures of interest (Figure 3 and Figure 4). In the classification of left mTLE and 

HC, regions which were detected in at least two individual measures included some 

structures of the left temporal lobe (such as left inferior temporal gyrus, left temporal 

pole, middle temporal gyrus) and of the DMN (default-mode network) 36, 37 (such as 

the left superior parietal gyrus, left inferior parietal and left angular gyrus). In the 

classification of right mTLE and HC, the main role was played by the right temporal 

lobe (right inferior temporal gyrus, right temporal pole: middle temporal gyrus, right 

temporal pole: superior temporal gyrus), left pallidum and bilateral putamen. Taken 

collectively, the discriminative regions for left mTLE and right mTLE mainly focused 

on the ipsilateral temporal lobe, and on extra-temporal regions such as DMN for left 

mTLE and left pallidum and bilateral putamen for right mTLE. When we used SVM 

to discriminate left mTLE and right mTLE from HC based on integration of the 

submaps of these regions for each measure, we obtained a balanced accuracy of 70.2% 

for left mTLE and 64.3% for right mTLE.  
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Figure 3. The distribution maps of the regions which were detected by at least two 

individual measures in the classification between left mTLE and healthy controls 

 

 

 

 
Figure 4. The distribution maps of the regions which were detected by at least two 

individual measures in the classification between right mTLE and healthy controls 
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Table 3. Ten brain regions making the greatest contribution to single-subject classification across 

the different measures. 

 

Left mTLE VS HC  

ReHo Significance values 

Inferior temporal gyrus L 0.066 

Pallidum L 0.064 

Temporal pole: middle temporal gyrus L 0.058 

Lingual gyrus R 0.053 

Inferior occipital gyrus R 0.042 

Superior parietal gyrus L 0.037 

Inferior parietal gyrus L 0.036 

Putamen L 0.035 

Cuneus R 0.033 

Supramarginal gyrus R 0.032 

ALFF Significance values 

Superior parietal gyrus L 0.025 

 
Precuneus L 0.021 

Angular gyrus L 0.018 

Inferior parietal gyrus L 0.018 

Superior parietal gyrus R 0.017 

Inferior occipital gyrus R 0.016 

Supramarginal gyrus L 0.015 

Cuneus R 0.015 

Paracentral Lobule R 0.014 

Postcentral gyrus R 0.014 

GM Significance values 

Fusiform gyrus R 0.032 

Angular gyrus L 0.028 

Temporal pole: superior temporal gyrus L 0.022 

Thalamus R 0.021 

Putamen L 0.021 

Cuneus L 0.019 

Supramarginal gyrus L 0.019 

Heschl’s gyrus R 0.018 

Cuneus R 0.015 
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Fusiform gyrus L 0.015 

WM Significance values 

Temporal pole: middle temporal gyrus L 0.043 

Parahippocampal gyrus L 0.035 

Inferior temporal gyrus L 0.033 

Paracentral lobule L 0.028 

Superior temporal gyrus L 0.027 

Superior occipital gyrus L 0.026 

Fusiform gyrus L 0.021 

Temporal pole: middle temporal gyrus R 0.021 

Inferior occipital gyrus R 0.019 

Parahippocampal gyrus R 0.018 

Right mTLE VS HC  

ReHo Significance values 

Caudate L 0.078 

Inferior temporal gyrus L 0.062 

Temporal pole: middle temporal gyrus R 0.055 

Inferior temporal gyrus R 0.053 

Inferior occipital gyrus R 0.042 

Paracentral lobule R 0.035 

Putamen R 0.034 

Pallidum L 0.031 

Temporal pole: superior temporal gyrus L 0.030 

Thalamus R 0.030 

ALFF Significance values 

Precuneus L 0.035 

Superior parietal gyrus L 0.029 

Angular gyrus L 0.028 

Inferior parietal gyrus L 0.026 

Middle frontal gyrus (orbital part) R 0.025 

Paracentral lobule R 0.021 

Supramarginal gyrus L 0.020 

Temporal pole: middle temporal gyrus R 0.020 

Rectus R 0.019 

Superior parietal gyrus R 0.019 
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GM 
Significance values 

Heschl gyrus R 0.028 

Putamen L 0.027 

Cuneus R 0.027 

Temporal pole: superior temporal gyrus R 0.025 

Fusiform gyrus R 0.023 

Putamen R 0.022 

Fusiform gyrus L 0.021 

Pallidum L 0.021 

Paracentral lobule R 0.020 

Insula R 0.017 

WM 
Significance values 

Inferior temporal gyrus R 0.036 

Parahippocampal gyrus R 0.033 

Temporal pole: middle temporal gyrus L 0.031 

Middle temporal gyrus R 0.030 

Temporal pole: superior temporal gyrus R 0.027 

Putamen L 0.026 

Putamen R 0.021 

Cuneus R 0.020 

Angular gyrus L 0.020 

Parahippocampal gyrus L 0.020 

 

All brain regions are identified using AAL (automated anatomical labeling); the vectors are 

computed using a template mask based on the AAL atlas to extract the absolute value of weight 

for each brain regions across the different folds of the cross-validation. 

 

Abbreviations: ReHo, Regional Homogeneity; ALFF, Amplitude of Low Frequency Fluctuation; 

GM, Gray Matter; WM, White Matter; mTLE, mesial Temporal Lobe Epilepsy; HC, Healthy 

Controls; L, Left; R, Right. 
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Discussion 

This study combined functional and structural MRI measures to distinguish mTLE 

patients from HC. Our results suggest that classification accuracy can be improved by 

dividing the mTLE patients into two groups (left and right) and by combining 

functional and structural MRI measures. The temporal lobe contributed most to the 

single subject classification, and some extra-temporal regions also had high 

discriminative power. 

Consistent with our hypothesis (i), dividing the mTLE patients into left and right 

mTLE improved the classifier performance. This reflects the fact that left and right 

mTLE are associated with distinct brain alterations, corroborated by both functional 

and structural imaging findings 15-17. Moreover, the accuracy of left mTLE versus HC 

was higher than right versus HC for different modalities, in accordance with previous 

ML studies 9, 14, 38. One possible explanation, for which there is some evidence, is that 

the functional and structural alterations in left mTLE are more extensive than in right 

mTLE 39, 40. In functional studies, left mTLE showed greater reduction of functional 

connectivity than right mTLE 41. Furthermore, left mTLE has been reported to be 

associated with alteration of bilateral mesial temporal lobes, while right mTLE only 

with alteration of right mesial temporal lobe 42. Some structural studies have found 

that left mTLE shows not only more extensive losses in white matter, but also more 

aberrant inter-tract correlations than right mTLE 43, while another study reports 

greater alteration of GM and WM in left mTLE 44. The left hemisphere is of course 

dominant in most right-handed persons 45, and all of our subjects were right-handed. 

Thus the diversity may be explained on the basis that seizures originating in the 

dominant hemisphere cause more excitotoxic damage in left-hemisphere dominant 

patients.  
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Consistent with our hypothesis (ii), in the identification of left mTLE and HC, by 

combining two functional measures (ReHo, ALFF), we achieved an accuracy of 78% 

(comparable to 83% accuracy in distinguishing mTLE from HC reported in a study 

combining 6 rs-fMRI measures 12). By combining 3 structural measures (GM, WM 

and cortical thickness) we achieved an accuracy of 79% (comparable to 81% accuracy 

in distinguishing mTLE from HC reported in a study combining multiparameter sMRI 

data ) 11. When we combined all the measures, we obtained the highest accuracy of 

84%. This is accordance with the results reported in some other neuropsychiatric 

disorder 46, 47. The increased accuracy supports the view that mTLE can cause not only 

structural abnormality but also functional alterations of brain 48-51. Therefore, 

combining multi-modal measures within a single model appears to be a promising 

tool for improving classification of individual patients with mTLE. By contrast, in the 

classification of right mTLE and HC, the accuracy was not increase by combining 

functional and structural measures. The reason may be that some of the neuroimaging 

modalities (ReHo, GM, cortical thickness) we used were more sensitive in detecting 

left mTLE than right mTLE (Table 2).  

The best-discriminative regions were widespread and not restricted to particular brain 

hemispheres or lobes across the four measures. There are two possible reasons in 

SVM why an individual region might display high discriminative power: a 

between-group feature value difference in that region; or a between-group difference 

in the correlation between that region and other areas. Thus, the widespread network 

revealed in this kind of study should not be interpreted in terms of individual regions, 

but as a spatially distributed pattern of a discrimination informed by all brain voxels. 

Direct comparison is difficult with reported sMRI or rs-fMRI studies using 

mass-univariate analyses, but it seems reasonable that brain regions showing greater 
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difference should contribute more in the SVM based classification. The discriminative 

regions we detected in more than two measures partially overlap with previous studies. 

For example, consistent with our hypothesis (iii), the ipsilateral temporal lobe 

contributed most to classification across the four measures. Consistent with this, in 

previous studies the epileptogenic zone often involved the mesial and lateral temporal 

lobe in mTLE 52, 53. In the identification of left mTLE and HC, some regions of the 

DMN are also important. Previous studies have found functional or structural 

alterations of DMN in mTLE 19, 54, 55. The DMN is an integrated system for 

self-related cognitive activity, including autobiographical, self-monitoring and social 

functions 56, so impairment of the DMN in mTLE may underlie the 

pathophysiological mechanism of impaired cognition 57. Previous studies have 

suggested that alterations of DMN in mTLE may be related to the rich connections 

that exist between the hippocampus and several key structures of this network 58. In 

addition, several subcortical regions, such as pallidum and putamen, also had high 

discriminative power in the classification of right mTLE and HC. Consistent with this, 

alterations of pallidum and putamen in mTLE have been reported in previous studies 

59.  

This study has some limitations. Firstly, a major challenge in the application of 

machine learning to high dimensional neuroimaging data is the risk of overfitting. We 

minimized this risk by using region-level features, which are associated with less 

noise and lower risk of overfitting, rather than voxel-level data 60. Secondly, although 

the present results are promising, the development of a practical diagnostic will 

require several advances. The model will need even better accuracy, perhaps by 

including more diverse observations from multimodal imaging. Finally, to make it 

easier to discuss the neurobiology of mTLE, we identified the discriminative regions 
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based on the AAL atlas, with the potential drawback that some atlas areas (e.g. the 

hippocampus region) might be too large or unspecific to detect group differences. 

In conclusion, the present study shows that dividing the mTLE patients into left and 

right mTLE, and combining multi-modal measures within a single model, both 

improve the classifier performance. We therefore suggest that subtyping of patients 

and integration of multi-modal neuroimaging modalities will be promising methods 

for improving classifier performance in the classification of individual patients with 

mTLE and HC. 
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