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Abstract

There are many potential applications for the deployment of distributed systems composed

of identical autonomous agents such as swarm robotic systems or wireless sensor networks,

including remote monitoring, space exploration, or environmental clean up. Such systems

need to be robust, and the loss of a small number of agents should not compromise the

effectiveness of the system as they will often operate in hostile environments where indi-

vidual members of that system may suffer failures, or communication may be hindered.

To address this, these artificial systems are often designed to imitate the behaviour of

self-organising systems found in nature, where simple reactive behaviours for individual

members of a system can lead to complex global behaviours, and the collective remains

robust to the loss of individuals.

Despite much research being conducted into the development and evaluation of these

systems, the industrial application of these technologies is still low. This issue could

be addressed by further demonstrating that they can reliably, and predictably, achieve

given objectives. Designing such systems is challenging, and often detailed simulations

are developed for their analysis. Simulations give invaluable insight into the behaviour

of such a system, however, there are often corner cases that might be overlooked. By

developing a formal model of the system using some appropriate formalism, mathematical

techniques can be applied during development to ensure that the system behaves correctly
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with respect to some given specification. These dynamic and inherently stochastic systems

can be modelled as Markov processes; memoryless stochastic processes whose behaviour

at any moment in time is determined solely by their current state. Model checking is an

algorithmic technique to exhaustively check that a representation of a system as a Markov

process exhibits some desirable property; furthermore, such an analysis can be extended to

analyse systems whose parameters may not be known in an advance. However, the analysis

of formal models of large systems is limited due to the resources that are required for their

analysis: the size of the model may grow exponentially with the size of the system, and

the subsequent analysis may prove to be impossible due to hardware or time constraints.

This thesis investigates the suitability of parametric Markov models for the analysis of

swarm robotic systems and wireless sensor networks. The analysis of such models is costly

in terms of the size of the formal model representing a system, and the computation time

required for its subsequent analysis. Modelling techniques and abstractions are developed

for the construction of macroscopic models that abstract away from the identities of indi-

vidual swarm robots or sensor nodes, and instead focus on the desirable global behaviours

of such a system, resulting in smaller formal models. New techniques are then introduced

to facilitate the analysis of large families of such models, where similarities between models

who share some parameter values are exploited to speed up their analysis. In addition, new

representations for such models are developed that allow for larger models to be analysed,

and also significantly reduce the time required for that analysis.
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Notation

The following notations and abbreviations are found throughout this thesis:

B The Boolean domain.

N The set of natural numbers.

Z The set of integers.

Q The set of rational numbers.

R The set of real numbers.

R>0 The set of positive real numbers.

C The set of complex numbers.

b·e The nearest integer function.

[a, b] The closed interval {x ∈ R | a 6 x 6 b}.

(a, b) The open interval {x ∈ R | a < x < b}.

Dom(f) The domain of the function f .

f �A The restriction of the function f to the set A.

f1 ⊕ f2 The overriding union of f1 and f2, f1 �Dom(f1)\Dom(f2) ∪f2.
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x(n) The rising factorial x(x+ 1) . . . (x+ n− 1).

P A stochastic matrix.

R A reward function.

E[X] Expectation of the random variable X.

DTMC A discrete-time Markov chain.

PMC A parametric Markov chain.

D A DTMC.

DX A PMC.

18



Chapter 1

Introduction

There are many potential real-world applications for autonomous multiagent systems with

distributed control, and they have been the focus of intense study [109]. The interest is

well-justified: in the future such systems could be deployed to monitor the condition of

hazardous environments, to complete tasks that require miniaturisation such as distributed

sensing tasks in the human body, to provide a cheap solution for agricultural or mining

tasks, to contribute to space exploration, or to assist with cleaning up environmental waste.

These systems will need to be robust, as they will have to function in highly dynamic

and potentially hostile environments, where individual agents may malfunction or suffer

damage, and where communication channels may be unreliable. To achieve this, much

work has been conducted to design control algorithms and protocols for these systems [17]

that imitate the behaviour of distributed systems found in nature, for example colonies

of ants. Individual members of these natural systems often behave according to a set

of simple, reactive rules. However, these simple interactions can lead to complex global

behaviours.

The desirable emergent properties of artificial systems that imitate natural systems are
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often investigated by designing and analysing detailed simulations [48]. Simulations give

invaluable insight into the behaviour of such a system, however there are often corner cases

that might be overlooked. Formal verification is the process of mathematically proving or

disproving properties of a system. These methods are applied during the development of

highly critical systems where correctness of the system is essential. The application of

formal verification techniques during the development of robot swarms would complement

their simulation and testing, increasing their safety and reliability. Despite much research

being conducted into the development and evaluation of robot swarms [17, 18, 29, 52, 109],

the industrial application of these technologies is still low. This issue could be addressed

by further demonstrating that robot swarm systems can reliably, and predictably, achieve

given objectives.

1.1 Artificial collectives

Artifical collectives are systems composed of multiple autonomous agents, mobile robots,

or network nodes, that often take inspiration from swarm systems in nature [109]. Swarm

intelligence is the study of natural and artificial collectives consisting of multiple individ-

uals, where the coordination of the system is decentralised and local interactions between

individuals lead to emergent collective behaviours and self-organisation [17]. Such swarms

are often homogeneous, without any defined hierarchy, and usually exhibit reactive, mem-

oryless behaviour. For our purposes, members of the swarm are anonymous, and only the

collective emergent behaviour of the swarm is of interest.

Decentralised control and communication algorithms based on swarming behaviour

have been developed and widely deployed for both swarm robotic systems and wireless

sensor networks. Swarm robotics combines the principles of swarm intelligence and robotics

to develop multi-robot systems with decentralised control [11, 132]. Individual swarm
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robots are generally low-cost hardware platforms with simple control algorithms where

coordination between members of the swarm is achieved through self-organization via local

interactions. These local interactions between individual robots should lead to complex

global behaviours [17, 132]. The decentralised nature of robot swarms aids scalability

and fault-tolerance, making them an ideal solution for deployment in areas where direct

human control is infeasible. There are many potential real-world applications for robot

swarm technologies, including post-disaster relief [77] and space exploration [34].

There are many examples found in nature of decentralised systems that solve complex

problems. Many species of insects, birds and fish exhibit behaviours that lead to a swarm

of such creatures being more robust. For example, colonies of ants deposit pheromones

along paths when foraging for food. Paths leading to better food sources are proportion-

ately reinforced with more pheromone which results in collective decisions that determine

the best food sources [8]. A common approach in swarm robotics has been to develop

control algorithms based on abstractions of these natural systems. In particular, much

work has been conducted to develop control algorithms based on the behaviours of social

insects, such as foraging for food [29, 110], cooperative nest building [141], and efficient

distribution of labour[18]. Designing such algorithms for swarms is challenging. Simple

control and communication mechanisms are designed at the microscopic level, and both

the interactions between members of the swarm, and interactions between swarm members

and their environment, should result in desired emergent behaviours at the macroscopic

level.

Many distributed swarm algorithms have analogues in wireless sensor network proto-

cols. A wireless sensor network (WSN) is composed of some number of physically dis-

connected sensors, often referred to as nodes, that use wireless communication to collect

and disseminate data, and to organise their activity [130]. The autonomous, spatially dis-

21



tributed sensors monitor conditions in their environment, and have applications in many

domains including environmental sensing, industrial monitoring, health monitoring, home

applications, and threat detection [1].

The capabilities of individual nodes in a network vary according to the application.

Many applications impose constraints on the cost and size of nodes, resulting in corre-

sponding constraints on their hardware capabilities and resources [146, 135]. Deployed

networks are often isolated, and individual nodes with limited energy capacity might have

to operate for long periods of time before their batteries can be replaced. The optimisation

of node power consumption is a critical design consideration.

When data has been collected by a node it is transmitted through the network. The

transmissions are either transported along the most cost-effective multi-hop route in the

network until they arrive at some target destination nodes, known as sink nodes (routing),

or are broadcast, resulting in propagation throughout the whole network (flooding) [1].

Similar to swarm robotic systems, nodes in a WSN are often homogeneous, with no de-

fined hierarchy. However, a sink node may sometimes have augmented energy capacity or

sensing and communication capabilities, if these are required for its distinguished role in

the network [109].

Swarm intelligence has also been widely applied for the optimisation of the performance

of WSNs. Examples include algorithms for determining optimal routes between source

and destination nodes in a network based on the pheromone-based foraging behaviour of

ants [52], and protocols that minimise the power consumption of nodes in a network by

coordinating their activity in a similar manner to that observed in synchronising firefly

colonies [95, 147].

Distributed control paradigms for artificial collectives offer several advantages over more

traditional design patterns, including scalability, reliability, and adaptability. However,
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one of the main obstacles for their implementation and deployment is the difficulty of

identifying the optimal configuration of system parameters that will result in the desirable

global behaviour being exhibited [109].

1.2 Formal analysis of artificial collectives

Formal methods are a collection of tools and techniques that are used to specify and analyse

systems mathematically. System designers can construct a formal specification of a system

— an unambiguous, and mathematically rigorous prescription of its expected behaviour —

that can be used to thoroughly check that the system exhibits desirable properties. Given

a property for a system specified in a formal language, formal verification is the process

of determining whether that property holds in the formal model of the system. Manual

proof constructions using axioms and formal inference rules may be difficult, tedious, and

require creativity [36]. Automated theorem proving and model checking [35] are verification

techniques which attempt to automate this process.

The input for automated theorem proving is a set of axioms and some theorem state-

ment expressed in a suitable formal logic. From this input the theorem prover derives

new logical consequences according to a set of deductive rules, and produces either a proof

showing that the theorem statement is a logical consequence of the axioms, or a refutation

of the theorem statement. The input for model checking is a formal model, usually a

finite-state automaton whose states and transitions model the behaviour of the system of

interest, and some desirable property expressed in a temporal logic. Temporal logics are

classical propositional or first order logics extended with additional operators to reason

about propositions in terms of time. The model checker algorithmically and exhaustively

checks this property against all possible execution paths of the system from some distin-

guished initial state, and either confirms that the property holds in the system or produces
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a trace showing a possible execution of the model that violates the property.

Formal techniques, in particular model checking, have already been applied to for-

mally investigate the emergence of desirable behaviour in artificial collectives such as robot

swarms and and wireless sensor networks [23, 32, 48, 80, 97, 96]. Emergent properties of

artificial collective systems are often investigated by designing and analysing simulations,

or by conducting real world experiments. Experiments and simulation can give detailed

insight into how the global behaviour of such a systems changes over time. The formal

analysis of the behaviours of artifical collectives can complement the design of algorithms

by revealing potential problems that may go unnoticed by empirical analysis [48]. Recently,

work has been conducted to develop property-driven top-down design techniques that can

be used to facilitate the engineering of swarm systems, reducing the need for simulation or

extensive testing [23].

In [9] deductive verification was applied to prove properties of the foraging behaviour

of a swarm of mobile robots. Statistical runtime verification combined with agent-based

simulation was used to determine the likelihood of emergent swarm behaviours in [80].

Dixon et al. [48] used algorithmic verification techniques to analyse and refine swarm

aggregation. An agent-based approach using epistemic temporal logic was employed by

Kouvaros and Lomuscio in [97] to specify and verify the emergence of desirable properties

in swarms, and in [96] Konur et al. conducted a probabilistic analysis of population-based

swarm models. While the techniques used in [48, 9] showed that temporal verification

could indeed be applied to prove properties of swarms, verification of properties was only

possible for models of small swarms due the exponential blow up in the size of the model

as the size of the swarm was increased. To avoid this combinatorial explosion a different

approach was adopted in [80], where statistical analysis was applied to runs of a model

generated by an agent-based simulator. It was demonstrated that larger systems could be
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analysed using this technique, however the results lacked verification strength since only a

subset of all possible runs of the system were considered.

The number of possible configurations for large sensor networks has also limited the

feasibility of formal techniques for their analysis. Chen et al. reviewed how different

methods may be used to investigate ad-hoc routing protocols [32], suggesting that model

checking is suitable for small networks, while analytical methods are necessary for larger

networks. Höfner and Kamali [82] used statistical model checking to analyse a routing

protocol for a network of sixteen nodes. Yue and Katoen [151] used probabilistic model

checking to optimise the energy consumption of a leader election protocol in networks of

up to nine nodes. Probabilistic model checking was also used by Fehnker and Gao [57]

to analyse flooding and gossip protocols. While they were able to use model checking to

analyse networks with at most eight nodes, it was necessary to use Monte Carlo simulations

for the analysis of larger networks.

To formally model the behaviour of an artificial collective an automaton is often con-

structed that models the behaviour of some individual robot or node. Given a population

of such nodes a naive approach would be to construct a model of the system as the prod-

uct of all individual automata. For example, consider the automaton shown in Figure 1.1a

that represents the behaviour of an entity with cyclic behaviour, where each circle repre-

sents a different state of the entity, and each arrow represents a transition between two

states. Figure 1.1b shows three possible states of the automaton that would result from

taking the product of four individual automata, each representing a single entity with the

aforementioned cyclic behaviour. This approach results in very large models, even for low

population sizes, for which it is infeasible to check any properties. In general, if each of

n entities has k distinct states, then the product automata obtained will have kn distinct

states [36]. Developing macroscopic population models, where the homogeneity of entities
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Figure 1.1: (a) A microscopic finite state automaton modelling the cyclic behaviour of an
individual agent. (b) Three states of the composite automaton obtained by taking the
product of individual microscopic models for four interacting agents. (c) A single state of
the macroscopic model of four interacting agents, where counters are used to record agents
sharing the same state.

in the system is exploited, leads to smaller models that require less resources to analyse,

at the expense of losing information about the state of any distinguished node. This is

achieved by using counter abstractions, where variables are introduced that record the

number of entities that share the same state. Each counter records the number of entities

sharing some common state, and the sum of all counters is equal to the population size.

For example, Figure 1.1c illustrates the use of counters to represent the state of nine be-

haviourally identical entities, where the cyclic behaviour of each entity can be described

by the automaton in Figure 1.1a. The population is partitioned into three groups of sizes

4, 3, and 2, where all entities in a group share the same state. The global state of such

models can be represented as a vector where each element of the vector records the num-

ber of entities sharing some state. In general, given n entities with k states, the resulting

population model will have a number of global states given by the multinomial coefficient(
n+k−1
k−1

)
[24].

More recent work by Kouvaros and Lomuscio [97, 111] has made some initial steps
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towards addressing the open problem of state explosion encountered when verifying prop-

erties of swarm systems of any substantial size. A counter abstraction technique was

proposed to verify properties of swarms independently of their size by finding a cut-off

point for the size of the swarm after which the property holds, however the problem of

finding this point becomes intractable if the cut-off point is high. Brambilla et al. con-

structed macroscopic models of swarm robot systems in [23], and stochastic properties of

the systems expressed in a probabilstic temporal logic [75] were checked against prescrip-

tive models of how the system should behave. The results obtained from model checking

were then used to refine the models of the system.

Stochastic approaches are suitable for the modelling and formal analysis of artificial

collectives, as uncertainty is inherent in the real world environments in which they are

deployed [109]. Additional noise is often present in the system from many sources; actua-

tors for mobile robots may be hindered by friction, and messages transmitted by wireless

sensor networks may be lost in the communication medium, since such systems are of-

ten expected to operate under adverse environmental conditions. Furthermore, it is often

the case that stochasticity is intentionally introduced into such systems in order to bring

about some desirable global behaviour (see for example, Chapter 3). These inherently

stochastic systems are often modelled as stochastic processes, in particular discrete-time

Markov chains [23, 25, 30, 96, 109, 111, 112]. This formalism is appropriate because the

reactive behaviour of such systems directly satisfies the Markov property; the actions of

individuals in the system are based solely on their current state, and the current state of

their environment.

A discrete-time Markov chain can be represented as a finite set of states and directed

transitions. The system has some distinguised starting state, and evolves over time by

transitioning to a state that is selected probabilistically from the set of all possible successor
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states. Traditionally, each transition is labelled with some constant value corresponding

to the probability that the system will take that transition. Parametric Markov chains

are a generalisation of Markov chains introduced in [41, 104] and refined in [70], where

expressions over some set of model parameters can be used to label model transitions.

Parametric Markov chains are suitable for modelling artificial collectives where values

for the parameters of the system may not be known. One might, for example, want to

model the likelihood of a message being transmitted by a wireless sensor network node

being lost due to some external environmental factors. If the exact conditions under

which that network will operate are not known, then an exact value for the probability of

message loss cannot be determined a priori. Such parameters can be left open in the model,

and desirable properties of the model can be checked using parametric model checking

techniques [70]. Parametric analysis can play an important role in the analysis of such

systems, as it facilitates investigation into the effects of adjustments to a parameter on

the global behaviour of the model. The results of parametric analysis can be used to

determine optimal settings for a system, or to adjust a formal model to more closely

match observations of a real system. While parametric Markov chains are appropriate and

useful for the analysis of artificial collectives, their analysis is costly. The construction of

representations for these models is often impeded by state-space explosion, and exploring

the parameter space of parameter-wise different families of these models is time consuming.

1.3 Thesis contributions

This thesis aims to address the following research questions:

1. Can parametric Markov models be used to efficiently reason about artificial collec-

tives?
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2. Can new techniques be developed to facilitate the parametric analysis of large families

of parametric Markov models?

3. How can the efficiency of existing techniques for the parametric analysis of families

of parametric Markov models be improved?

The analysis of parametric models is costly in terms of model size and computation

time. To address the first research question, case studies are conducted in Chapters 3, 4

and 5 that demonstrate how state-space explosion can be alleviated by constructing appro-

priate macroscopic models of such systems, hence allowing larger systems to be analysed.

The second research question is addressed in Chapter 6, where structural similarities be-

tween parameterwise-different instances of a model are exploited to speed up their analysis.

Finally, the third research question is addressed in Chapter 7, where new representations

for the rational functions labelling the transitions of parametric Markov models are intro-

duced, and are shown to integrate with, and improve the efficiency of, existing techniques

for their analysis.

An initial case study is presented in Chapter 3 in which we investigate the behaviour of a

swarm of flying micro-air vehicles, deployed to find some target in an unknown environment.

A population model is used to record the number of swarm members located at different

locations in an abstraction of the environment. Formal models of a system of micro-air

vehicles are constructed given parameters determining the size of the swarm, the maximum

explorable distance, and a constant determining the probability of a member of the swarm

choosing a previously explored path over an unexplored path. The models are procedurally

generated for different sets of parameters using a script. Quantitative analysis of the models

determines the probability of the swarm locating the target user within some given time

bound, and also the expected deployment time for a swarm to guarantee locating the user.

The models are then validated by comparing the results to those found in simulations.
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The synchronous flashing of fireflies has inspired many coordination protocols for both

swarms and WSNs. The ideas developed in the initial case study are further developed in

Chapter 4, and applied to develop a generalised population model for these nature-inspired

synchronisation protocols. Again, models are generated using a script for different sets of

parameters pertaining to the number of nodes, the granularity of temporal abstraction, the

degree of uncertainty for communication between nodes, and other parameters defining

the model of synchronisation to be used. The models are analysed with respect to the

probability of a system synchronising, and the time taken for that system to synchronise.

Results for two different models of synchronisation are compared, and results directly

comparable to those found in simulations are obtained. The population model is then

refined to allow for the analysis of larger networks of synchronising nodes. The work

presented in Chapter 5 corresponds to a further extension of this work, and focuses on

annotating the models with rewards corresponding to the energy that would be consumed

by the network over time. In addition, a metric for synchronisation is derived from other

work on pulse-coupled oscillators.

Each aforementioned case study consists of exploring the parameter space for families

of parametric probabilistic models. Parameters investigated are typical of these considered

when evaluating distributed systems, for instance the number of interacting entities, or

the likelihood of interactions between entities resulting in some desirable global behaviour.

The effects of parameters that do not change the underlying structure of a model are

well-studied, however parameters that induce structural change have received less interest.

When analysing hundreds of parameterwise-different, yet similar, models with such pa-

rameters, the time and resources taken can be reduced by re-using as much of the analysis

as possible at each step. Some parameters result in dramatic changes to the structure of

the underling model; others result in only minor changes where much of the information
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obtained from the analysis of the previous instance can be re-used for its analysis. New

algorithms for the incremental analysis of such models are developed and applied to the

previous synchronisation protocol case study, along with a prototypical implementation

illustrating the approach. The results of this work are presented in Chapter 6.

When changes to model parameters do not result in changes in the structure of a model,

for instance when investigating the effect of environmental effects on communication in the

second case study, a wide variety of existing techniques and tools can be used. However,

when analysing thousands of parameter instantiations the analysis is often slow. The ap-

plication of parametric model checking yields a closed-form expression over the parameters

of the model that corresponds to some simple temporal property or expected reward, and

can be evaluated for different parameter instances. Traditionally, these closed-form expres-

sions (rational functions) have been represented as co-prime rational polynomials. During

the computation of the closed-form expression expensive methods often have to be used

to simplify the representations (cancel common factors of the rational function), that can

grow in size and slow down the analysis. When using directed acyclic graphs to repre-

sent these expressions, expensive methods are not necessary to cancel out common factors,

and common sub-expressions can be shared by different formulae. This approach, and the

speed up obtained when analysing models from previous case studies, is described in detail

in Chapter 7.

1.4 Related formal approaches for macroscopic analysis

A model of computation for the interactions of a population of identical finite-state agents

is presented by Anluin et al. in [5]. The model consists of population protocols and

population configurations. Given a finite set of all possible configurations for an agent

(states), a population configuration is a multiset of elements of that set, specifying the
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state of each member of the population. A population protocol is the set of all possible

configurations for an agent along with functions to map input and output alphabets to

those states, and a relation describing how the model transitions from one population

configuration to another when agents communicate. In contrast to the models presented in

Chapters 3, 4 and 5, communication in population protocols is always between two agents,

where one agent initiates the communication and the other responds. Furthermore, even

though the agents cannot identify the other agents in the network, within the global model

each agent is uniquely associated with a state. In the models presented here, two different

agents sharing the same state cannot be distinguished, even at the global level. Finally,

the agents modelled in the case studies may change their state without interacting with

other agents, while the agents in a population protocol must communicate with another

agent to change their internal state.

Other techniques have been used to model populations of processes. For example

population-based models using PEPA, a stochastic process algebra, are discussed in [81].

The work introduces the modelling of individuals using PEPA, and if the identification

of individuals is not necessary a population-based approach is advocated to allow larger

populations to be modelled. Unlike the approaches discussed later in this thesis, the

population-based models make use of an asymptotic approximation of the discrete be-

haviour. Usually, these approximations are referred to as mean field approximations [21],

and these can be separated into two main classes. The first class considers systems where

the different components of that system evolve asynchronously. A model of the system is

constructed as a discrete-time Markov chain (DTMC), by sampling the state of the system

at some fixed, constant rate. Adjusting the sample rate regulates the granularity of local

transitions in the model, and by setting it to a sufficiently high value some constant number

of local transitions for each component between observations can be guaranteed. Increasing
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the number of components in the system increases the density of local transitions, and in

the limit the behaviour of the system becomes continuous and can be characterised as a set

of ordinary differential equations. The second class of mean field approximations considers

synchronous systems where different components of the system evolve synchronously, such

as those presented in this thesis in Chapters 3, 4, and 5. As the number of components for

such a system are increased the density of local transitions at each step remains constant,

and the limit of the sequence of DTMCs will also reside in discrete time, resulting in a set

of difference equations that asymptotically approximate the system. Recently, such tech-

niques have been shown to be useful for checking temporal, probabilistic properties similar

to those investigated in this thesis, relating to the expected behaviour of homogeneous

distributed systems [105, 106]. However, they are better suited for the analysis of systems

where the number of components is several orders of magnitude larger than those normally

investigated for swarm robotic systems or wireless sensor networks, as the approximation

of the collective behaviour is obtained in the limit of the number of components of the

system, and relies on the observation that random, individual choices leading to noise in

the system become increasingly irrelevant as more individuals interact [21].

Stream X-machines are finite state machines extended with internal memory, where

transitions between states are labelled with functions over an input stream and the inter-

nal memory state [53, 107]. Communicating stream X-machines are stream X-machines

that can communicate via messages sent over some shared medium, and different variants

have been proposed for the formal modelling of agent-based systems [39]. In particular,

communicating stream X-machines were used by Gheorge et al. [67] to model the collective

foraging behaviour of a bee colony, and by Chen et al. [31] to identify emergent properties

in multiagent simulations. In contrast to parametric Markov chains there is little tool sup-

port for the analysis of X-machines [131], despite the development of appropriate model
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checking algorithms [54], and proposed stochastic extensions [116].

Vector addition systems, introduced by Karp and Miller in [92] and generalized to vector

addition systems with states (VASS) by Hopcroft and Pansiot [83], can be used to represent

and analyse parallel processes, and are equivalent to Petri nets. A VASS consists of a set

of states labelled with integer vectors (known as configurations). Transitions between

states are also labelled with integer vectors of the same size, and one state is reachable

from another if the sum of the configuration vectors of the old state and the transition is

equal to the configuration vector of the new state. Probabilistic vector addition systems

with states (PVASS), equivalent to discrete-time stochastic Petri nets [118], are stochastic

extensions of vector addition systems where transitions between states are weighted, and

the probability of a given transition is determined by dividing its weight by the total weight

of all enabled transitions [26]. A PVASS is structurally bounded if the set of states reachable

from any initial configuration is finite [124]. Each of the models developed and analysed

in the case studies presented in Chapters 3, 4 and 5 could be encoded as a structurally

bounded PVASS, as in each case the configuration of the system of interest is encoded as an

integer vector. However, our models are encoded as a parametric DTMC, an instantiation

of the more general PVASS, which was preferable as more specialised tools are available

for their analysis.

The state graph of a product composition of identical processes (see for example, Fig-

ure 1.1b) will often exhibit substantial symmetry. Symmetry reduction is a technique

introduced by Clark et al. in [38] that can be used in model checking to ameliorate state-

space explosion by exploiting structural replication in a system. Given a graph representing

the product of multiple, identical processes that exhibits such symmetry, a new quotient

structure is constructed by identifying sets of states that are equivalent with respect to an

automorphism of the graph. Temporal properties of interest can then be checked against
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the smaller quotient structure, however the number of equivalence classes is exponential

in the number of processes. This was addressed in [55] by Emerson et al. through the

use of generic representatives, where the behaviour of multiple processes was represented

generically using a set of counters that recorded the number of processes that are in each

state, but abstracted away from the identity of each process. This technique was applied

to probabilistic model checking by Donaldson et al. in [49], and later generalised in [51].

The formal modelling language Symmetric Probabilistic Specification Language (SPSL)

for symmetric systems was introduced, built on the guarded command language of the

model checker PRISM [101], that is decribed in detail in Section 2.7.1. The GRIP tool [50]

provides an implementation of an algorithm for the translation of a set of SPSL system

specifications into to a generic form that can be analysed by a probabilistic model checker

such as PRISM.

While is has been demonstrated that GRIP can be used to substantially reduce the

size of symmetrical models [50], it was not possible to encode the global semantics of the

models introduced in Chapters 4 and 5 in SPSL due to the interactions between processes

resulting in a global semantics that differed from typical parallelisation operations (see

Section 4.3.1).

1.5 Corresponding publications

In this section the chapters of the dissertation are linked to the related scientific publica-

tions.

1. The formal analysis of a bio-inspired algorithm discussed in Chapter 3 was originally

presented in [61], where the author developed the formal model and conducted the

analysis.

35



• Paul Gainer, Clare Dixon, and Ullrich Hustadt. Probabilistic model check-

ing of ant-based positionless swarming. In Conference Towards Autonomous

Robotic Systems, volume 9716 of LNCS, pages 127–138. Springer, 2016.

2. The development of the formal model of oscillator synchronisation discussed in Chap-

ter 4 was originally presented in [65], where the author developed the formal model

and contributed towards its analysis. The further reduction of that model was orig-

inally presented in [64], where the author developed the reduced model and con-

tributed towards its analysis.

• Paul Gainer, Sven Linker, Clare Dixon, Ullrich Hustadt, and Michael Fisher.

Investigating parametric influence on discrete synchronisation protocols using

quantitative model checking. In International Conference on Quantitative Eval-

uation of Systems, volume 10503 of LNCS, pages 224–239. Springer, 2017.

• Paul Gainer, Sven Linker, Clare Dixon, Ullrich Hustadt, and Michael Fisher.

Multi-scale verification of distributed synchronisation. Formal Methods in Sys-

tem Design. Submitted for publication.

3. The investigation into the power consumption of networks of synchronising oscillators

conducted in Chapter 5 was originally presented in [66], and the extension of this

to reduced models was originally presented in [64], where the author developed the

synchronisation metric and reward structures and contributed towards the analysis

of the models.

• Paul Gainer, Sven Linker, Clare Dixon, Ullrich Hustadt, and Michael Fisher.

The power of synchronisation: formal analysis of power consumption in networks

of pulse-coupled oscillators. In International Conference on Formal Engineering

Methods (Best Paper Award), pages 160–176. Springer, 2018.
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4. The development of novel algorithms for the incremental analysis of parametric

Markov chains discussed in Chapter 6 was originally presented in [63], where the

author devised the algorithms, developed the prototypical tool, and conducted the

analysis.

• Paul Gainer, Ernst Moritz Hahn, and Sven Schewe. Incremental verification

of parametric and reconfigurable markov chains. In International Conference

on Quantitative Evaluation of Systems, pages 140–156. Springer, 2018.

5. The proposal of new representations for the labels of transitions in parametric Markov

chains, and resulting acceleration of their analysis, presented in Chapter 7 was origi-

nally presented in [62], where the author contributed to the devising of the approach

and conducted the analyis.

• Paul Gainer, Ernst Moritz Hahn, and Sven Schewe. Accelerated model check-

ing of parametric Markov chains. In International Symposium on Automated

Technology for Verification and Analysis, pages 300–316. Springer, 2018.

All models, scripts, and results presented in Chapters 3, 4, 5, 6, and 7 are available

online1 or upon request.

1https://github.com/PaulGainer/PhDThesis
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1.6 Thesis outline

Chapter 2 introduces the formalisms and techniques that are used throughout this thesis.

Discrete-time Markov chains and their generalisation, parametric Markov chains, are intro-

duced, and an overview of the logic PCTL and model checking techniques used to analyse

such models are discussed. In addition, a summary of the state-based input language

developed for the probabilistic model checker PRISM [101], used to specify the models

presented in this thesis, is provided.

In Chapter 3, a formal model of a swarming algorithm inspired by the behaviour of

foraging ants is developed, and the results of its analysis are presented and discussed. This

first case study illustrates how behavioural homogeneity can be exploited when constructing

formal models of such systems.

A formal model for networks of nodes synchronising using bio-inspired protocols is de-

veloped and analysed in Chapter 4. This second case study again exploits behavioural

homogeneity, and yields a highly parametrised family of models that are used as bench-

marks to illustrate the effectiveness of new techniques presented in later chapters. The

analysis is extended in Chapter 5, where the power consumption of such networks is inves-

tigated, and new metrics for synchronisation are introduced.

Chapter 6 introduces new algorithms for the incremental analysis of parametric Markov

chains, that exploit similarities in the underlying graphs of parameterwise-different models

to accelerate their analysis. In particular, the technique is shown to be effective when

exploring the parameter space of the family of models introduced in Chapters 4 and 5.

The acceleration of model analysis achieved in Chapter 6 is complemented by the work

presented in Chapter 7, where new representations for the transition labels of parametric

Markov chains are proposed. The implementation of these representations into a proba-

bilistic model checker, and the subsequent empirical analysis of both the models presented
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in previous chapters and others taken from the literature, illustrate a further increase in

model analysis times, and facilitate the parametric analysis of larger models.

In Chapter 8 the thesis is summarised, and suggestions are given for future research

directions.
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Chapter 2

Preliminaries

This chapter introduces the formalisms and techniques that will be used throughout the

rest of this thesis. First discrete-time Markov chains (DTMCs) are formally defined –

stochastic processes that can be used to model the evolution of discrete systems. The def-

inition is then extended to parametric Markov chains (PMCs), a generalisation of DTMCs

where parameters determining the stochastic evolution of the system are unknown. The

annotation of these models with rewards is then discussed. An appropriate formalism for

reasoning over discrete stochastic processes, Probabilistic computation tree logic (PCTL),

is then defined. Algorithms for model checking PCTL over a DTMC are introduced first,

followed by algorithms for model checking properties over a PMC. The final two sections

give a brief overview of statistical methods that can be applied to obtain approximate

model checking results, and introduce the available tools that were used to to obtain the

results that are presented in this thesis.
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2.1 Discrete-time Markov chains

Discrete-time Markov chains are stochastic processes with discrete space and discrete time.

The evolution of the system at any moment in time can be represented by a discrete

probabilistic choice over several outcomes [100].

Definition 1. A discrete-time Markov chain D is a tuple (S, s0,P, L) where S is a finite

set of states. s0 is the initial state, and L : S → P(L) is a labelling function that assigns

properties of interest from a set of labels L to states. P : S × S → [0, 1] is the transition

probability matrix subject to
∑

s′∈S P(s, s′) = 1 for all s ∈ S, where P(s, s′) gives the

probability of a transition from s to s′. There is a transition between two states s, s′ ∈ S if

P(s, s′) > 0.

Intuitively, a DTMC D is a state transition system where transitions between states

are labelled with the probability of that transition being taken. If there are no properties

of interest with which to label states the labelling function will often be omitted from the

tuple.

Definition 2. Given a DTMC D = (S, s0,P, L), the underlying graph of D is given by

GD = (S, E) where E = {(s, s′) | P(s, s′) 6= 0}.

Given a state s ∈ S, the sets of all immediate predecessors and successors of s in the

underlying graph of D are denoted by preD(s) and postD(s), respectively. If s′ is reachable

from s in the underlying graph of D then this is denoted by reachD(s, s′). Given a set of

states Ω ⊆ S the term reachD(s,Ω) denotes that reachD(s, s′) holds for some state s′ ∈ Ω.

These are simplified to pre, post, and reach if D is clear from the context.

Definition 3. Given a DTMC D = (S, s0,P, L) with underlying graph GD = (S, E) a

bottom strongly connected component (BSCC) is a set B ⊆ S such that in the underlying
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Figure 2.1: An example of a discrete-time Markov chain.

graph each state s1 ∈ B can reach each state s2 ∈ B and there is no s3 ∈ S \ B reachable

from s1.

Example 1. Figure 2.1 shows a DTMC D where S = {1 . . . 5}, 1 is the initial state, and

the probability matrix is

P =



0 0.4 0.6 0 0

0 0 0.1 0 0.9

0 0 0.2 0.8 0

0 0 0.8 0.2 0

0 0 0 0 1


where P(i, j) is the probability to transition from state i to state j. The bottom strongly

components of D are {3, 4} and {5}.

Paths and measures An execution path is a non-empty finite, or infinite, sequence of

states s0s1s2 . . . where si ∈ S and P(si, si+1) > 0 for i > 0. For example, 123, 12555 . . .,

and 1344344344 . . . are possible paths of the DTMC in Figure 2.1. The ith state of path ω
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is denoted by ω[i], where ω[0] is the first state along that path.

Definition 4. The set of all (infinite) paths starting in state s is denoted by PathsD(s),

and the set of all finite paths starting in s by PathsD
fin(s).

Paths where the first state along that path is the initial state s0 are simplified to

PathsD and PathsD
fin, and furthermore to Paths and Pathsfin if D is clear from the context.

For a finite path ω ∈ Paths(s) the cylinder set of ω is the set of all infinite paths in

Paths(s) that share prefix ω. The probability of a finite path s0, s1, . . . , sn ∈ Pathsfin(s0) is

given by
∏n
i=1 P(si−1, si). This measure over finite paths can be extended to a probability

measure Prs over the set of infinite paths Paths, where the smallest σ-algebra over Paths

is the smallest set containing all cylinder sets for paths in Pathsfin. For paths where the

first state along that path is the initial state s0 this is simplified to Pr. For a detailed

description of the construction of the probability measure the reader is referred to [93].

Transient probabilities It is often useful to determine the probability that a system is

in some specific state after taking some number of steps from an initial state.

Definition 5. The transient probability of being in a given state s′ after taking k steps

starting from state s is given by

τk(s, s′) = Prs{ω ∈ Paths(s) | ω[k] = s′}.

The transient probabilities can be obtained for all s, s′ by computing the matrix power

Pk. Each τk(s, s′) is then given by Pk(s, s′).

Sub-stochastic models Sometimes only a subgraph of the underlying graph of a DTMC

is considered, by setting the probability of one or more transitions in the probability matrix
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to zero. This can result in the sum of probabilities labelling outgoing transitions being less

than one from some states. For such graphs a state s is

• stochastic if
∑

s′∈post(s) P(s, s′) = 1,

• sub-stochastic if
∑

s′∈post(s) P(s, s′) ∈ (0, 1),

• absorbing if P(s, s) = 1 or
∑

s′∈post(s) P(s, s′) = 0.

2.2 Parametric Markov chains

Parametric Markov chains (PMCs) are a generalisation of DTMCs where all aspects of

the model are not necessarily fixed, and can depend on parameters of the model [41, 104].

More specifically, transition probabilities make not take concrete values, and can instead

be labelled with expressions over a finite set of model parameters. For example, a node in

a wireless sensor network that broadcasts a message to other nodes might fail to broadcast

its message with probability p, and succeed with probability 1− p.

Let X = {x1, . . . , xn} be a finite set of variables over R. A polynomial ρ over the set

of variables X is a sum of monomials

ρ(x1, . . . , xn) =
∑
i1,...,in

ci1,...,inx
i1
1 · · ·x

in
n ,

where each ij ∈ N and each ci1,...,in ∈ R. A rational function q over a set of variables X is

a fraction

q(x1, . . . , xn) =
ρ1(x1, . . . , xn)

ρ2(x1, . . . , xn)
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of two polynomials ρ1, ρ2 over X . The set of all rational functions from X to R is denoted

by QX .

Definition 6. A parametric Markov chain is a tuple DX = (S, s0,P, L,X ), where S is

a finite set of states, s0 ∈ S is the initial state, L : S → P(L) is a labelling function that

assigns properties of interest from a set of labels L to states, X = {x1, . . . , xn} is a finite

set of parameters, and P is the probability matrix P : S × S → QX .

Again if states do not need to be labelled with properties of interest the labelling

function will be omitted from the tuple.

Example 2. Figure 2.2 shows a sample PMC where S = {1 . . . 5}, the initial state is 1,

and the set of parameters is X = {p, q, r}. The probability matrix is

P =



0 p 1− p 0 0

0 0 1− q 0 q

0 0 r 1− r 0

0 0 1− r r 0

0 0 0 0 1


.

An evaluation for X is a function υ : X → R. If Dom(υ) = X for some evaluation υ

then that evaluation is total. Given some set of variables V ⊆ X and an evaluation υ for

X ,

P[Dom(υ)/υ] : S × S → QX\Dom(υ)

denotes the probability matrix that is obtained by considering each variable x ∈ Dom(υ),

and substituting each occurrence of that variable in the range of P with υ(x).
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Figure 2.2: An example of a parametric Markov chain.

Definition 7. Given a PMC DX = (S, s0,P, L,X ) and υ, an evaluation for X , let Xυ

denote the set X \ Dom(υ). The PMC induced by υ is defined as

DXυ = (S, s0,P[Dom(υ)/υ], L,Xυ).

A total evaluation υ is well-defined if for all s, s′ ∈ S,

P[Dom(υ)/υ](s, s′) ∈ [0, 1] for all s, s′ ∈ S,∑
s′∈S

P[Dom(υ)/υ](s, s′) = 1 for all s ∈ S.

Observe that for a total well-defined evaluation the resulting induced PMC is a regular

DTMC, since all occurrences of the parameters in X have been replaced with concrete

values. A strictly well-defined evaluation υ for some PMC DX is a well-defined evaluation

such that DXυ , the PMC induced by υ, does not differ structurally from DX . That is,

given GDX = (S, E) and GDXυ = (S, Eυ), the underlying graphs of the original PMC and

the induced PMC, υ is strictly well-defined if, and only if, E = Eυ.

Example 3. Consider again the PMC shown in Figure 2.2, and let υ = {p 7→ 0.4, q 7→
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0.9, r 7→ 0.2} be a total well-defined evaluation for that PMC. Since υ is total all occurrences

of parameters are replaced with the concrete values defined by υ, yielding the induced DTMC

shown in Figure 2.1. Observe that the underlying graph of the PMC and the induced DTMC

is the same, and hence υ is strictly well-defined.

2.3 Markov reward models

While probabilistic reachability properties allow models to be quantitatively analysed with

respect to the likelihood of reaching some desirable state, they do not allow reasoning

about other properties of interest, for instance the expected time taken for a network of

WSN nodes to reach some desirable state, or the expected energy consumption of that

network. This can be achieved by annotating the states and transitions of the PMC with

rewards (respectively costs, should values be negative) that are awarded when states are

visited, or transitions taken.

Definition 8. Given a PMC DX = (S, s0,P, L,X ) a reward function R : S∪(S×S)→ QX

associates rewards (rational polynomials over X ) with states and transitions of DX .

Example 4. Figure 2.3a shows a sample PMC where S = {1 . . . 5}, the initial state is 1,

and the set of parameters is X = {p, q, r, s}. The PMC is augmented with a reward function

R with R(1) = R(2) = s, R(3) = R(4) = R(5) = 1, R(1, 2) = s, R(2, 3) = R(2, 5) = 2s,

and R(i, j) = 0 for all other i, j ∈ S.

For any evaluation υ for a PMC let

R[Dom(υ)/υ] : S ∪ (S × S)→ QX\Dom(υ)

denote the reward function that is obtained by considering each variable x ∈ Dom(υ) and
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Figure 2.3: A parametric Markov chain with rewards (a), and the DTMC induced by the
evaluation υ = {p 7→ 0.4, q 7→ 0.9, r 7→ 0.2, s 7→ 2} (b).

substituting each occurrence of that variable in the range of R with υ(x). If υ is total then

the induced reward function simply maps states and transitions to values in R.

Example 5. Consider again the PMC in Figure 2.3a augmented with the rewards defined

by the reward function R, and the evaluation υ = {p 7→ 0.4, q 7→ 0.9, r 7→ 0.2, s 7→ 2}

for R. Figure 2.3b shows the induced PMC for that evaluation. The induced PMC is a

DTMC since υ is total and strictly well-defined. The induced reward function R[X/υ] for

the DTMC then assigns real values to states and transitions.

2.4 Probabilistic model checking

Probabilistic Computation Tree Logic [75] (PCTL) is a probabilistic extension of the tem-

poral logic CTL [35], where existential and universal quantification over paths is replaced

with a probabilistic operator that allows the specification of properties such as “the net-

work will eventually reach a synchronised state with probability greater than 0.5”. The

semantics of PCTL is defined over discrete probabilistic systems, and a PCTL formula is
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satisfied by a set of possible paths of that system. Probabilistic model checking [145] of a

PCTL formula is the computation of the probability measure of this set of paths satisfying

the formula, and then comparing the computed value to some given threshold. Firstly

the logic PCTL is introduced. Then a summary of techniques for model checking PCTL

properties over DTMCS is given.

2.4.1 Probabilistic computation tree logic

Definition 9. The syntax of PCTL is given by:

Φ = true | l | ¬Φ | Φ ∧ Φ | P./λ[Ψ]

Ψ = X Φ | Φ U6k Φ

where l is an atomic proposition taken from the set of labels L, ./ ∈ {<,6,>, >}, λ ∈ [0, 1],

and k ∈ N ∪ {∞}.

Formulae denoted by Φ are state formulae and formulae denoted by Ψ are path formulae.

A PCTL formula is always a state formula, and a path formula can only occur inside the

P operator. The semantics of PCTL over a DTMC are now defined.

Definition 10. Given a DTMC D = (S, s0,P, L), the satisfaction relation |= for any state

s ∈ S is inductively defined as follows, recalling that Pr is the probability measure over the

set of infinite paths:

s |= l ⇔ l ∈ L(s)

s |= ¬Φ ⇔ s 6|= Φ

s |= Φ ∧ Φ′ ⇔ s |= Φ ∧ s |= Φ′

s |= P./λ[Ψ] ⇔ Prs{ω ∈ Paths(s) | ω |= Ψ} ./ λ
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where l ∈ L, and for any path ω of D as follows:

ω |= X Φ ⇔ ω[1] |= Φ

ω |= Φ U6k Φ′ ⇔ ∃i ∈ N(i 6 k ∧ ω[i] |= Φ′ ∧ ∀j∈N.j < i =⇒ ω[j] |= Φ).

Disjunction, false, and implication are derived as usual, and eventuality is defined as

F6k Φ ≡ true U6k Φ. The simpler forms F Φ and Φ U Φ′ are used when k = ∞. When

model checking formulae of the form P./λ, the actual probability is first calculated, and

then compared to the bound [102]. Here the notation P[Ψ] = Prs{ω ∈ Paths(s) | ω |= Ψ}

is used to denote this calculated probability.

Example 6. Returning again to the DTMC shown in Figure 2.1, let L = {1 7→ {a}, 2 7→

{b}, 3 7→ ∅, 4 7→ ∅, 5 7→ ∅}. Then trivially, 2 |= b, and 2 6|= a. The relation 1 |= P60.4[F 5]

(equivalently 1 |= P60.4[true U 5]) holds since the set of all infinite paths starting in 1 that

satisfy true U 5 is the singleton {12555 . . .} and Pr{12555 . . .} = 0.4 · 0.9 · 1 · 1 = 0.36 which

is less than or equal to 0.4.

Given a DTMC augmented with a reward function R it is often useful to reason about

the reward that is accumulated along a path ω = s0s1s2 . . . ∈ Paths that eventually passes

through some set of target states Ω ⊆ S. Firstly, for any finite path s0 . . . sk ∈ Pathsfin let

the total reward accumulated along that path with respect to a reward function R, and

up to, but not including, sk be

totalR(s0 . . . sk) =
k−1∑
n=0

R(sn) +
k−1∑
n=0

R(sn, sn+1). (2.1)
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Secondly, define a random variable

XΩ : Paths→ R ∪ {∞}

over the set of infinite paths to be

XΩ(ω) =


∞ if ωΩ = ∅

totalR(s0 . . . sk) otherwise, where k = min{i | si ∈ Ω}.

Intuitively, XΩ maps infinite paths of a DTMC to the rewards accumulated along those

paths until one of the target states in Ω is reached. If a target state is never reached then

the accumulated reward is infinite. The expectation of XΩ with respect to Prs is given by

E[XΩ] =

∫
ω∈Paths(s)

XΩ(ω)dPrs =
∑

ω∈Paths(s)

XΩ(ω)Prs{ω}.

Example 7. Consider the DTMC shown in Figure 2.3b annotated with the rewards defined

by the reward function R, and let the set of target states be Ω = {5}. Then for the infinite

path 12555 . . .

XΩ(12555 . . .) = totalR(125) = (2 + 2) + (2 + 4) = 10.

The logic of PCTL can be extended to include reward properties by introducing the

state formula R./r[F Φ] where ./ ∈ {<,6,>, >} and r ∈ R. Given a state s, a real value r

and a PCTL state formula Φ, the semantics are given by

s |= R./r[F Φ]⇔ E[XSat(F Φ)] ./ r,
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where Sat(Φ) denotes the set of all states that satisfy Φ, and the term E[XSat(F Φ)] is the

expected reward to reach any state in Sat(Φ).

When model checking formulae of the form R./λ, the expected reward is first calculated,

and then compared to the bound. We use the notation R[Ψ] = E[XSat(F Φ)] to denote this

expected reward.

2.4.2 Model checking PCTL

The model checking algorithm for PCTL over a DTMC was first presented in [75]. Given

a DTMC D = (S, s0,P, L) and a PCTL formula Φ the output is the the set of all states

of the model that satisfy Φ. The notation Sat(Φ) = {s ∈ S | s |= Φ} is used to denote the

set of all states satisfying Φ, and the notation Φ denotes the vector in {0, 1}|S| where

Φ(s) =


1 if s ∈ Sat(Φ)

0 otherwise.

The algorithm proceeds as per the model checking algorithm for CTL [37], and can be

summarised as follows:

Sat(true) = S

Sat(l) = {s ∈ S | l ∈ L(s)}

Sat(¬Φ) = S \ Sat(Φ)

Sat(Φ ∧ Φ′) = Sat(Φ) ∩ Sat(Φ′)

Sat(P./λ[Ψ]) = {s ∈ S | Prs{ω ∈ Paths(s) | ω |= Ψ} ./ λ}.

The algorithm for PCTL differs from that for CTL for formulas of the form P./λ[Ψ]. To

determine the satisfying set, the probability Prs{ω ∈ Paths(s) |= Ψ}, which wil be denoted
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by Prob(s,Ψ), must be calculated for every state s in S, yielding the |S|-vector Prob(Ψ).

The elements of Prob(Ψ) can then be element-wise compared to the bound ./ λ.

Next operator. For formulas of the form P./λ[X Φ] the probability Prob(s,X Φ) for a

state s can be is given by summation over the probabilities of outgoing transitions from

that state to states that satisfy Φ, formally

Prob(s,X Φ) =
∑

s′∈Sat(Φ)

P(s, s′).

The vector of probabilities for all states, Prob(X Φ), can be obtained by the matrix-

vector multiplication Prob(X Φ) = P · Φ. The set of satisfying states if then given by

Sat(P./λ[X Φ]) = {s ∈ S | Prob(Ψ)(s) ./ λ}.

Example 8. Consider again the DTMC given in Figure 2.1. To check the property

P>0.9[X(4 ∨ 5))] that states 4 or 5 are reachable in the next step with probability greater

than, or equal to, 0.9, the vector of probabilities is calculated as

Prob(X(4 ∨ 5)) =



0 0.4 0.6 0 0

0 0 0.1 0 0.9

0 0 0.2 0.8 0

0 0 0.8 0.2 0

0 0 0 0 1





0

0

0

1

1


=



0

0

0.8

0.2

1


.

Comparing to the bound > 0.9 gives Sat(P>0.9[X(4 ∨ 5))) = {5}.

Bounded until. For formulas of the form P./λ[Φ U6k Φ′] where k 6=∞ the probabilities

are calculated as follows. First let the sets S1 = Sat(Φ′) and S0 = S \ (Sat(Φ) ∪ Sat(Φ′))

denote the sets of all states where Φ U6k Φ′ is satisfied with probability 1 and 0, respectively.
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When the path property is a reachability property of the form F6k Φ ≡ true U6k Φ the

set S0 is simply the empty set. The probabilities for each state s are then given by the

recursive equations

Prob(s,Φ U6k Φ′) =



∑
s′∈S

P(s, s′)Prob(s′,Φ U6k−1 Φ′) if s ∈ S \ (S1 ∪ S0) and k > 0

1 if s ∈ S1

0 otherwise.

These can be computed by first constructing a new probability matrix P′ that is equiv-

alent to P excepting that all states in S1 and S0 are absorbing, and then computing the

transient probabilities of being in a state satisfying Φ′ after k steps. Intuitively, states in

S1 are made absorbing because any paths starting from states in that set trivially satisfy

the path formula Φ U6k Φ′, and conversely, states in S0 are made absorbing because any

paths starting from a state in that set fail to satisfy the property. The probability ma-

trix P′ is constructed by setting P′(s, s) = 1 for all s ∈ (S1 ∪ S0), P′(s, s′) = 0 for all

s ∈ (S1 ∪ S0) and s′ ∈ S \ (s1 ∪ s0), and P′(s, s′) = P(s, s′) for all other s and s′. The

transient probabilities of being in a state that satisfies Φ′ after at most k steps can then

be calculated as the matrix-vector product Prob(Φ U6k Φ′) = P′k · Φ′. The satisfying set

is then given by Sat(P./λ[Φ U6k Φ′]) = {s ∈ S | Prob(Φ U6k Φ′)(s) ./ λ}.

Example 9. Again consider the DTMC in Figure 2.1, and the property P>0.4[true U62 4] ≡

P>0.4[F62 4]. The sets S1 and S0 are calculated as S1 = {4} and S0 = ∅, and the probability

matrix P′ is then constructed by setting state 4 to be absorbing. The transient probabilities
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of being in a state satisfying 4 after at most two steps are then given by

Prob(true U62 4) =



0 0.4 0.6 0 0

0 0 0.1 0 0.9

0 0 0.2 0.8 0

0 0 0 1 0

0 0 0 0 1



2 

0

0

0

4

0


=



0.48

0.08

0.96

1

0


,

and the satisfying set is Sat(P>0.4[true U62 4]) = {1, 3, 4}.

Unbounded until. For formulas of the form P./λ[Φ U Φ′], those where k = ∞, the

probabilities are calculated as follows. Firstly the set S ′ ⊆ S of all states from which some

state satisfying Φ′ is reachable with positive probability passing only through states that

satisfy Φ is computed. The set of states S0, where Φ U Φ′ is satisfied with probability 0,

is then given by S0 = S \ S ′. Next the the set S ′′ ⊆ S of all states from which some

state in S0 is reachable passing only through states that satisfy Φ is computed. The set

S1 of states where Φ U Φ′ is satisfied with probability 1 is then given by S1 = S \ S ′′. The

probabilities for all states are then obtained as the solution to the linear equation system

Prob(s,Φ U Φ′) =



1 if s ∈ S1

0 if s ∈ S0∑
s′∈S

P(s, s′)Prob(s′,Φ U Φ′) otherwise.

Example 10. Considering again the DTMC given in Figure 2.1, and the property P>0.4[F 4].

The sets S0 and S1 are calculated as S0 = {5} and S1 = {3, 4}. The resulting linear equa-
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tion system is

Prob(1,F 4) = 0.4 · Prob(2,F 4) + 0.6 · Prob(3,F 4)

Prob(2,F 4) = 0.1 · Prob(3,F 4) + 0.9 · Prob(5,F 4)

Prob(3,F 4) = 1

Prob(4,F 4) = 1

Prob(5,F 4) = 0

and through substitution the two unknowns are Prob(2,F 4) = 0.1 and Prob(1,F 4) = 0.64.

Rewards. For reward formulas of the form R./r[F Φ], satisfiability of a state is determined

by calculating the expected reward E[XSat(F Φ)] with respect to some reward function R,

which will be denoted by Exp(s,F Φ), and comparing the resulting value to the bound ./ r.

The sets S1 and S0 are computed as for unbounded until properties, and the set S<1 of

all states for which the probability of reaching a state satisfying Φ is less than 1 is given

by S<1 = S \ S1. The expected rewards for all states are then obtained as the solution to

the linear equation system

Exp(s,F Φ) =



0 if s ∈ Sat(Ψ)

∞ if s ∈ S<1

R(s) +
∑
s′∈S

P(s, s′)(R(s, s′) + Exp(s′,F Φ)) otherwise.

Example 11. Considering again the DTMC annotated with rewards of Figure 2.3b, and

the property R>0.4[F 4]. The sets S0 and S1 are the same as in example 10 and S0 = {5}
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and S1 = {3, 4}, and S<1 = {1, 2, 5}. The resulting linear equation system is

Exp(1,F 4) = ∞

Exp(2,F 4) = ∞

Exp(3,F 4) = 1 + 0.2 · Exp(3,F 4) + 0.8 · Exp(4,F 4)

Exp(4,F 4) = 0

Exp(5,F 4) = ∞

and the single unknown is Exp(3,F 4) = 1.25.

Exact vs. numerical methods. While linear equation systems can be solved using ex-

act solution methods, this is often too expensive for the analysis of larger models; Gaussian

elimination is O(n3), for example. Therefore, most probabilistic model checking software

uses value iteration methods such as Jacobi or Gauss-Seidel to obtain results where some

user-specified precision is achieved.

2.5 Parametric model checking

Model checking PCTL reachability properties over a DTMC yields concrete values for the

probability of taking some set of paths that satisfy the specification. When checking these

properties over a PMC is it useful to obtain a closed-form solution (a rational function over

the parameters of the model) for the parametric reachability probability – the probability

of reaching some set of target states. This is useful when the exact probabilities are not

known a priori, or when a property needs to be checked for a set of well-defined evaluations

for the parameters of the model. For the former, when the concrete probability values are
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known they can be simply substituted into the closed-form solution, which can then be

efficiently evaluated; for the latter, model checking only needs to be applied once, and

then again the closed form solution can be evaluated for each set of concrete values for the

parameters.

An algorithm to obtain the rational function corresponding to the parametric reacha-

bility of some desirable states of a model was first introduced by Daws [41]. He interpreted

the Markov chain under consideration as a finite automaton, in which transitions are la-

belled with symbols that correspond to rational numbers or variables. He then used state

elimination [84] to obtain a regular expression for the language of the automaton. Evaluat-

ing these expressions into rational functions gave the probability of reaching target states.

A simplification and refinement of the algorithm was introduced [70] and implemented [69]

by Hahn et al., where rational functions were used to represent transition probabilities,

instead of regular expressions.

The rest of this section is structured as follows. Firstly, properties for the parametric

reachability of a set of target states are defined. Next the state elimination method of

Hahn [70] for the calculation of these properties over PMCs is introduced. Finally, the

extension of the algorithm to models annotated with rewards is described.

Parametric reachability. Given a PMC DX = (S, s0,P, L,X ), let Pr be the parametric

probability measure over Paths, the infinite paths of DX , and Ω ⊆ S be some set of target

states. Define

X(DX )i : Paths→ S,

where X(DX )i(s0s1 . . .) = si to be the random variable taking values over the set of states

that may be occupied at step i > 0 along some infinite path of the model, starting from
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the initial state. The parametric probabilistic reachability is determined by computing the

function

Reach(DX ,Ω) = Pr{∃i ∈ N.X(DX )i ∈ Ω}.

Given a PMC augmented with a reward function R, and some set of Ω ⊆ S, the

property of interest is the parametric expected accumulated reachability reward [100]. As a

simplification step, it is required that transition rewards are translated into state rewards.

This is always possible when considering expected accumulated rewards for models with-

out non-determinism [125]. The parametric expected accumulated reachability reward is

obtained by computing the function

Acc(DX ,Ω) = E

inf{j|X(DX )j∈Ω}∑
i=0

R(X(DX )i).

 .
State elimination. The algorithm of Hahn [70] shown in Figure 2 calculates the para-

metric reachability probability Reach(DX ,Ω) for a PMC DX given some set of target states

Ω by stepwise eliminating states from the model. At each step a state is removed from the

model, and the new structure has all successors of this state as (potentially new) successors

of the predecessors of this state. The probabilities, and if applicable, rewards on the edges

are adjusted.

The algorithm proceeds as follows, where input is a PMC DX = (S, s0,P,X ) and a set

of target states Ω ⊂ S. Initially, preprocessing is applied (Algorithm 1), and without loss

of generality all states from which the set of target states is unreachable are removed. The

function Eliminate(DX , s) sets the probability of all incoming and outgoing transitions from

s to be 0, eliminating these transitions and s from the underlying graph of DX . Again

without loss of generality, all outgoing transitions from states in Ω are then removed,
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and a new state st is introduced such that there is a transition with probability 1 from

all states in st to that state. A state se is chosen for elimination from Elim, the set of

states to be eliminated, and Algorithm 3 is called to eliminate se from DX as follows. For

every predecessor/successor pair (s1, s2) ∈ pre(se)× post(se) for se the existing probability

P(s1, s2) is incremented by the probability of reaching s2 from s1 via se. The fractional

term results from evaluating the geometric sum

∞∑
i=0

P(s1, se)P(se, se)
iP(se, s2) =

P(s1, se)P(se, s2)

1−P(se, se)

that is the sum of the probabilities of taking paths where se is visited 1 . . .∞ times. The

state is then eliminated from the underlying graph of DX . This procedure is repeated until

only s0 and st remain, and Reach(DX ,Ω), the probability of reaching Ω from s0, is then

given by P(s0, st).

The order in which states are eliminated does not affect the correctness of the ap-

proach [70]. Different orders yield equivalent, but possibly different, rational functions

for the parametric probabilistic reachability. In Chapter 6 it is shown how guiding the

order in which state elimination is applied can improve the efficiency of analysing families

of parameterwise different PMCs, and in Chapter 6 heuristics for selecting an order for

elimination are discussed.

Example 12. Figure 2.4(a) shows a PMC DX with states S = {1, 2, 3, 4, 5}, initial state

1, and parameters X = {p, q, r}. State elimination is applied to the PMC to obtain

Reach(DX , {4}), the parametric probabilistic reachability of the target state 4, as follows.

Firstly, state 5 and its incident transitions are removed from the model, since the target

state 4 is unreachable from that state (Figure 2.4(b)). Next, all outgoing transitions from

the target state 4 are set to 0, a new state st is introduced to the model, and the probability
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Algorithm 1 Parametric reachability probability for PMCs.

1: procedure ReachabilityProbability(DX ,Ω)
2: requires: A PMC DX = (S, s0,P, L,X ) and a set of target states Ω ⊆ S.
3: S,P← Preprocess(DX ,Ω)
4: Elim← S \ {s0, st}
5: while Elim 6= ∅ do
6: se ← choose(Elim)
7: P← StateElimination(DX , se)
8: Elim← Elim \ {se}
9: end while

10: return P(s0, st)
11: end procedure

Algorithm 2 PMC preprocessing for state elimination.

1: procedure Preprocess(DX ,Ω)
2: requires: A PMC DX = (S, s0,P, L,X ) and a set of target states Ω ⊆ S.
3: for all s ∈ (S \ {s0}) do
4: if not reachDX (s,Ω) then Eliminate(DX , s)
5: end for
6: S ← S ∪ {st}
7: for all s ∈ Ω do
8: for all s′ ∈ postDX (s) do P(s, s′)← 0
9: P(s, st)← 1

10: end for
11: return S,P
12: end procedure

of transitioning from state 4 to st is set to 1 (Figure 2.4(c)). Figures 2.4(d)-2.4(f) then

show the elimination of states 3, 4, and 2, respectively. Once state elimination is complete

the probability labelling the transition from the initial state s0 to the introduced state st is

the parametric probabilistic reachability of state 4,

Reach(DX , {4}) =
(1− p)(1− r) + (1− q)(1− r)

1− r
.

Eliminating the states in a different order results in a different, though equivalent, expres-
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Algorithm 3 Elimination of a single state of a PMC.

1: procedure StateElimination(DX , se)
2: requires: A PMC DX = (S, s0,P, L,X ) and a state to eliminate se ∈ S.
3: for all (s1, s2) ∈ pre(se)× post(se) do

4: P(s1, s2)← P(s1, s2) + P(s1,se)P(se,s2)
1−P(se,se)

5: end for
6: Eliminate(DX , se)
7: return P
8: end procedure

sion.

State elimination with rewards. Given a PMC DX = (S, s0,P, L,X ), a set of target

states Ω ⊂ S, and a reward function R for DX , Algorithm 4 computes the parametric

expected accumulated reachability reward. The algorithm is an extension of Algorithm 2

where for each predecessor and successor pair of se, a state to be eliminated from DX , the

reward function is also updated as follows:

R(s1)← R(s1) + P(s1, se)
P(se, se)

1−P(se, se)
R(se).

The updated value for R(s1) reflects the reward that would be accumulated if a transition

would be taken from s1 to se, where the expected number of self-loops would be

P(se, se)

1−P(se, se)
.

Upon termination, Acc(DX ,Ω), the parametric expected accumulated reachability reward,

is then given by R(s0).
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Figure 2.4: State elimination for a parametric Markov chain.

2.6 Statistical model checking

Model checking approaches are useful to guarantee the correctness of a system with respect

to some specification, and many heuristics have been developed to reduce their memory

footprint, for example symbolic approaches using binary decision diagrams or partial order

reduction. However, it is still often the case that the state-space explosion problem impedes

the analysis of larger systems. To overcome this, statistical model checking [150, 134] was
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Algorithm 4 Parametric expected accumulated reachability reward for PMCs.

1: procedure ExpectedAccumulatedReachabilityReward(DX ,Ω, R)
2: requires: A PMC DX = (S, s0,P, L,X ),a set of target states Ω ⊆ S, and a reward

function R : S → QX .
3: S,P← Preprocess(DX ,Ω)
4: Elim← S \ {s0, st}
5: while Elim 6= ∅ do
6: se ← choose(Elim)
7: P,R← StateEliminationReward(DX , se)
8: Elim← Elim \ {se}
9: end while

10: return R(s0)
11: end procedure

Algorithm 5 Elimination of a single state of a PMC incorporating rewards.

1: procedure StateEliminationReward(DX , se)
2: requires: A PMC DX = (S, s0,P, L,X ),a state to eliminate se ∈ S and a reward

function R : S → QX .
3: for all (s1, s2) ∈ pre(se)× post(se) do

4: P(s1, s2)← P(s1, s2) + P(s1,se)P(se,s2)
1−P(se,se)

5: R(s1)← R(s1) + P(s1, se)
P(se,se)

1−P(se,se)
R(se)

6: end for
7: Eliminate(DX , se)
8: return P,R
9: end procedure

proposed as an alternative to exhaustive state-space exploration. Here hypothesis testing

and Monte Carlo simulations are used to determine if a finite number of executions of a

model can demonstrate to some degree of certainty that the model satisfies or violates some

given property [108]. The technique is a compromise between classical model checking and

testing, and is less memory and time intensive than exhaustive techniques. Therefore, it

can be used to obtain approximate results for large models where it would be otherwise

infeasible to obtain results within a reasonable time or resource bound.
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2.7 Tools for probabilistic model checking

Probabilistic model checkers are tools for the formal modelling and analysis of stochastic

models. The tools take as input a model encoded in some appropriate formal language, and

then automate the process of checking desirable properties expressed in PCTL, or other

suitable logics, against the formal model. The results obtained throughout this thesis were

obtained using the publicly available probabilistic model checkers PRISM [101], ePMC [71],

and Storm [45].

In Chapters 3, 4, and 5 the input language developed for the PRISM model checker

is used to encode the models that are developed there. A description of this language is

given in the following section. The prototypical model checking tool developed for the

work presented in Chapter 6 takes as input a low-level representation of model as a set

of states and a set of transitions, that are defined in a file format widely accepted by

probabilistic model checkers. A script is provided to automate the generation of low-level

representations of the models described in Sections 4 and 5, should they be required for

analysis with other tools

2.7.1 PRISM guarded command language

The PRISM language is a state-based language, based on the Reactive Modules formalism

of Alur and Henzinger [4], and was used to encode the models that are presented in

Chapters 3, 4, and 5. The language was originally developed for the PRISM model checker,

but can also be parsed by the model checkers ePMC and Storm. Formally, the language

can be defined as follows.

Definition 11. A model M is a set of modules [120], where each module M is a tuple

M = (V, I, C). V = {v1, . . . , vk} is a set of local variables over the domain consisting of

finitely bound integers and Boolean values. With each local variable v there is an associated

65



variable v′ denoting the state of v in the next moment of time. The union of the sets of

local variables for all the modules in M is denoted by VM . I is a mapping from variables

to their initial values. C is a set of commands that define the behaviour of the module. A

command c ∈ C is a pair (g, T ) where g is a predicate over VM and T is a set of possible

transitions for the module. Each transition is a pair (p,A) where p ∈ R>0 is a constant

defining the probability of that update occurring, and A is an assignment of values to each

of the local variables in V. Each assignment is of the form
∧k
i=1(v′i = ex i), where each ex i

is an expression in terms of V and the domain of variables.

The semantics of a model M = {M1, . . . ,Mn} can be defined in terms of a DTMC

D = (S, s0,P, L). For DTMCs it is required that p ∈ (0, 1] for every transition (p,A),

and
∑

(p,A)∈T p = 1 for every command (g, T ). The local state space Si of a module

Mi = (Vi, Ii, Ci) is the set of all valuations of Vi. The global state space S = S1 × . . .× Sn

of M is the product of all local state spaces. Labels for states are predicates over the

set of variables V. For details of the calculation of P the reader is referred to [120]. The

semantics can also be given in terms of a PMC, by also allowing transition probabilities to

be labelled with rational functions over a finite set of parameters (variables over [0, 1]).

Example 13. Figure 2.5 shows the Knuth and Yao algorithm [94] for the simulation of a

six-sided dice, by repeatedly tossing a coin. Here the model has been extended to simulate

the tossing of a biased coin, where with probability x the coin toss results in heads, and with

probability 1 − x the coin toss results in tails. Starting from step 0 at each step a coin is

tossed and one of two possible choices are taken with probability x or 1−x. The algorithm

terminates when one of the values . . . is reached. The algorithm can be modelled as a

PMC with parameter x. Listing 2.1 shows an example of PRISM code that encodes such a

PMC.

The first line indicates that the model is a discrete-time Markov chain. Lines 3 − 21

66



0

1

2

3

4

5

6

x

1− x

x

1− x

x

1− x

x
1− x

x

1− x

x

1− x

x1− x

Figure 2.5: PMC model of a dice simulated using a biased coin.

describe a single PRISM module. Line 5 defines an open parameter of the model, x, and so

this model is a parametric Markov chain. Lines 8 and 9 defines integer variables s ∈ [0 . . . 7]

and d ∈ [0 . . . 6] with initial values of 0 that are used to represent the state of the system.

Here a value of k ∈ [0 . . . 6] for s indicates that the system is in a state equivalent to state k

in Figure 2.5, while a value of 7 for s indicates that the system is in a state that corresponds

to one of the states . . . . The value of d has a value of 0 when s has a value in [1 . . . 6],

and takes the value of the dice when s = 7 and the system is in one of the states . . . .

Lines 12−19 are the commands that define the behaviour of the module, consisting of a

predicate over the module variables and a set of possible transitions. For example, line 12

states that whenever the local variable s = 0, in the next moment in time the system will

move to a state where s = 1 with probability x, or to a state where s = 2 with probability

1− x. The value of the local variable s in the next state is denoted by s′.
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1 dtmc

2

3 module die

4

5 const double x;

6

7 // local state

8 s : [0..7] init 0;

9 // value of the die

10 d : [0..6] init 0;

11

12 [] s=0 -> x : (s’ = 1) + (1 - x) : (s’ = 2);

13 [] s=1 -> x : (s’ = 3) + (1 - x) : (s’ = 4);

14 [] s=2 -> x : (s’ = 5) + (1 - x) : (s’ = 6);

15 [] s=3 -> x : (s’ = 1) + (1 - x) : (s’ = 7) & (d’ = 1);

16 [] s=4 -> x : (s’ = 7) & (d’ = 2) + (1 - x) : (s’ = 7) & (d’ = 3);

17 [] s=5 -> x : (s’ = 7) & (d’ = 4) + (1 - x) : (s’ = 7) & (d’ = 5);

18 [] s=6 -> x : (s’ = 2) + (1 - x) : (s’ = 7) & (d’ = 6);

19 [] s=7 -> (s’ = 7);

20

21 endmodule

Listing 2.1: PRISM code for an algorithm to simulate a biased dice using a coin.
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Chapter 3

Probabilistic Model Checking of

Ant-Based Positionless Swarming

In this chapter, a formal analysis of an algorithm inspired by the foraging behaviour of ants

is conducted, where a swarm of flying micro air vehicles (MAVs) is deployed to locate a

target at some unknown location. The algorithm was originally presented by Hauert et al.

in [77], and coordinates the activity of a swarm of micro air vehicles (MAVs) attempting

to locate a target in some unknown location. Once the target has been located, the swarm

tries to establish a robust communication network between that target and a base station

from where the swarm was launched.

Designing control mechanisms for swarms is a challenging problem. Individual be-

haviours must be formulated at the microscopic level and should result in the emergence

of complex desired group behaviours at the macroscopic level. There are many examples

found in nature of decentralised systems that solve complex problems [17]. A common

approach in swarm robotics has been to develop control algorithms based on abstractions

of these natural systems. In particular, much work has been conducted to develop control

69



algorithms based on the behaviours of social insects, such as foraging for food [29, 110],

cooperative nest building [141], and efficient distribution of labour [18].

The control algorithm investigated here is inspired by the stigmergic foraging behaviour

of army ants that lay and maintain pheromone paths from their nest to sources of food [19].

The ants initially make random walks from the nest, depositing light pheromone trails as

they explore. If an ant finds a source of food it returns home, reinforcing the trail with

larger deposits of pheromone that are often proportional to the quality of the food source.

Deposited pheromone influences the behaviour of other ants, who are more inclined to

follow, and also reinforce, those trails with larger deposits, creating a positive feedback

loop. When a food source is depleted less ants will reinforce the trail, and a negative

feedback loop resulting from pheromonal dissipation ensures that trails to depleted sources

soon disappear. The combination of positive and negative feedback loops often lead to

such trails converging to the shortest path between the nest and the source [52].

A model of this behaviour was originally developed in [47], where the results of running

Monte Carlo simulations of ants moving through a discrete network of points were anal-

ysed. These findings were later discussed in detail in [17]. By taking inspiration from this

behaviour, the algorithm presented in [77] aims to create and maintain shortest commu-

nication pathways between a base station and some target in an unknown location. Since

stigmergic communication via the environment itself is often undesirable or not practical,

the swarm itself forms a platform for the deposition of virtual pheromone.

This chapter describes the application of probabilistic temporal verification to the sce-

nario presented in [77]. Parametrised probabilistic models are generated for its verification,

encoded using the guarded command language described in Section 2.7.1. The models are

validated by first checking reachability properties of interest in the models using statistical

analysis of a subset of the possible runs of the system, and then comparing these results to
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those obtained from simulations in [77]. Probabilistic reachability and reachability reward

properties of interest are then exhaustively checked in the model using the probabilistic

model checker PRISM. It is demonstrated how results that would facilitate the logistics of

deploying a swarm of MAVs can be obtained a priori using these models.s

This scenario was selected as a case study for the following reasons. Firstly, the al-

gorithm itself is interesting, and is inherently stochastic, making it an ideal candidate for

formal probabilistic analysis. Secondly, the swarm of interest was composed of physically,

and behaviourally, identical members, and the property of interest – locating the target

– did not require any member of the swarm to be distinguished from the others. This

homogeneity allows abstractions to be employed when creating formal models of such sce-

narios, and hence allows larger models to be analysed.. A general discussion of the use of

abstractions was given in the introduction, and its application to this scenario is discussed

in more detail in Section 3.3. Thirdly, the system had several clearly defined parameters

that would determine the structure of any formal model developed for its analysis; ex-

amples include the size of the swarm, the maximum distance at which the target might

be located, and a parameter defining the exploration behaviour of the swarm. Finally,

the exploration algorithm considered a grid of discrete locations in the environment that

motivated a natural abstraction for recording the locations of members of the swarm.

Related work is discussed in Section 3.1. Section 3.2 introduces the ant-based swarming

scenario described in [77]. In Section 3.3 the generation of the parametrised input models

is detailed, and both the abstractions used, and assumptions made, when designing the

discrete formal model are discussed. The results of checking probabilistic reachability and

reachability reward based properties in the models is given in Section 3.4. Concluding

remarks and suggestions for further work are given in Section 3.5.
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3.1 Related work

Laibinis et al. [103] formalised the behaviour of a colony of foraging ants using Event-B [14],

a formalism appropriate for the correct-by-construction approach to the design of dis-

tributed systems. An abstract specification of the behaviour of the ants and their envi-

ronment was transformed into a more detailed model via successive refinements, where at

each refinement step it was verified that desirable behaviours were preserved. The reacha-

bility objective for the colony of ants – to gather all available food from the environment –

was formalised as a termination problem, and a proof for termination was then obtained.

Similarly to the models presented here, decisions made by ants were influenced by per-

ceived amounts of pheromone deposited by other ants in the environment. In contrast,

the behavioural choices of the ants are resolved non-deterministically, not stochastically.

While the authors indicate that stochastic reasoning could be introduced to the model,

this would only allow qualitative analysis with respect to the global objective [72], which

precludes analyses to obtain quantitative results like those presented here.

Process algebras have been used to reason about the behaviour of interacting social

insects, and were first applied by Tofts in [142]. They were used in [143] to study the

allocation of tasks to individual ants based on the availability of work, and in [22] to in-

vestigate correlations between the factors determining the behaviour of individual ants.

In [139], Sumpter et al. investigated the activity patterns of a colony of ants. Interactions

at the microscopic level between individual ants were defined using process algebra, which

allowed for computer simulation and Markov chain analysis, while dynamical systems ap-

proaches were used to analyse the emergent global properties at the macroscopic level. All

these studies focused on the evolution of the global behaviour over time, and spatial aspects

of the environment were not of interest, and hence not encoded in the models, unlike those

presented here. Another study in [114] used process algebras and fluid flow analysis to re-
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spectively analyse and encode the behaviour of foraging ants that make choices over which

paths to take in order to reach some food in the environment. The choices of which path to

take are stochastic, and determined by deposited levels of pheromone, though pheromonal

decay over time is not encoded in the model. In contrast to the work presented here, their

model only encodes a topological map of the environment, and the analysis is restricted to

two possible paths from the nest to the food.

In [137] a multi-agent systems approach combining X-machines [53] and population P

systems [12] was used to formalise the behaviour of a colony of ants, foraging for food in

a grid-like environment. Simulation was used to provide statistical data for the validation

of the model, however no verification results were presented, and the pheromone induced

stochastic behaviour of the ants included in the simulations was not encoded in the formal

model. Multi-agent based simulation methods were also employed by Herd et al. in [80],

where statistical model checking was used to analyse a probabilistic model of nature-

inspired foraging robots first introduced by Liu et al. in [110]. Similarly to parts of this

work, the analysis focused on the energy consumed by the robots, but only considered the

global behaviour of the system over time, and again spatial aspects of the environment

were not encoded in the models. The model of Liu et al. was also analysed by Konur

et al. in [96], using parametric Markov chains in a similar approach to that presented

here. Behdenna et al. [9] used first-order linear temporal logic to formalise the model, and

proofs of desirable properties were automated. The analysis was restricted to very small

numbers of robots, and stochastic properties of the model could not be investigated as the

probabilities labelling transitions of the original model were abstracted away.
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3.2 The ant-based swarming scenario

The scenario to which probabilistic model checking techniques are applied is presented

in [77]. Here, a simulated swarm of positionless fixed-wing micro aerial vehicles (MAVs)

is deployed by a human operator in order to establish a robust emergency communication

network between a target, situated at some unknown location (but in some known cardinal

direction), and the base station from where the swarm is launched.

Each MAV is positionless in that it relies solely upon proprioceptive sensors and local

neighbourhood communication to position itself [138]. MAVs deposit “pheromones” as

they explore, similarly to foraging army ants. Pheromone levels influence the navigation of

MAVs in the swarm. Modifying the environment by the deposition of chemicals or objects

is often undesirable, and map-based virtual pheromone depositing is impossible without

global positioning [77]. As a solution to this issue MAVs can enter a node state in which

they remain stationary at a location. When in this state they record the levels of virtual

pheromone deposited by other exploring MAVs. Once a MAV has moved within commu-

nication range of the target a communication link is established and messages between the

target and the base node are relayed via the network of MAVs in the node state. The

establishment and maintenance of this communication network is studied in more detail

in [77] – this work focuses on the exploration behaviour of the MAVs.

3.2.1 MAV behaviour

Figure 3.1 shows a Y-junction grid consisting of possible positions that MAVs will ideally

adopt in their search for the target, and the paths that connect them, while Figure 3.2 shows

the finite state machine describing the behaviour of an individual MAV. An MAV begins in

landed state at the base node, denoted as (0, 0) on the grid. MAVs are launched at regular

intervals and are then in the exploring state. In the exploring state an MAV navigates
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Figure 3.1: The Y-junction grid illustrating
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Figure 3.2: A finite state machine describ-
ing the behaviour of an MAV.

through the grid, travelling at a velocity of 10m/s. When an MAV reaches a position

in the grid where there is no other MAV it will change to node state and remain at that

position, acting as a platform upon which other MAVs can “deposit” virtual pheromone.

Upon changing to node state an MAV will initialise its pheromone levels to some given

amount. An MAV in the node state at some position (i, j) is considered to be an internal

node if there is an MAV in the node state at either of (i+ 1, j) or (i, j+ 1). Internal nodes

supplement their levels of deposited pheromone at each time step by some amount. While

in the node state each MAV broadcasts its pheromone level to other MAVs in the node state

within its communication range of 100m. When an MAV in the exploring state reaches a

position in the grid where there is already an MAV in the node state, it continues moving

outward and makes a probabilistic choice which branch to take, determined by the levels of

pheromone deposited at the next positions on the left and right branches and a parameter

that influences the choice of unexplored paths over explored paths, as transmitted by the

MAV in the node state.

Pheromone levels dissipate gradually over time and when they are depleted, an MAV

in the node state changes to the returning state (internal nodes are supplemented with
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sufficient pheromone to guarantee that they cannot change to the returning state.) It

then navigates back through the grid towards the base node similarly to an MAV in the

exploring state but only moving along positions occupied by MAVs in the node state. Once

it reaches the base node, if a signal to land is being broadcast by the base node then the

MAV will land, otherwise it will change back to exploring state.

3.2.2 Path probabilities

In more detail, the choice between the left and right path from some position (i, j) is

determined probabilistically according to the amount of deposited pheromone at (i+ 1, j)

and (i, j+1) for MAVs in exploring state, or (i−1, j) and (i, j−1) for MAVs in the returning

state. Given pheromone levels of h(i+1,j) and h(i,j+1), the probability of an MAV choosing

the left or right path is calculated using (3.1) to (3.4), where µ ∈ (0, 1) is a real valued

constant that determines the attractiveness of unexplored paths, and is set to 0.75 for the

simulations in [77]. If there is no MAV in the node state at (i, j) then h(i,j) = 0. Equations

(3.3) and (3.4) are the calculations of the probabilities of taking the left or right path at

(i, j) where the correction factor cL(i, j) defined in [77] is applied to the original probability

calculation pL(i, j) given in [47]. This correction ensures that positions equidistant from

the base node have an equal chance of being eventually reached, given equal amounts of

pheromone on every path.
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qL(i, j) =

(
µ+ h(i+1,j)

)2(
µ+ h(i+1,j)

)2
+
(
µ+ h(i,j+1)

)2 (3.1)

cL(i, j) =
i+ 1

i+ j + 2
(3.2)

pL(i, j) =
qL(i, j)cL(i, j)

qL(i, j)cL(i, j) + (1− qL(i, j))(1− cL(i, j))
(3.3)

pR(i, j) = 1− pL(i, j) (3.4)

3.3 Modelling the scenario

Next the design and automatic generation of parametrised models of the scenario, to which

probabilistic analysis will be applied, are discussed. Formal models of the scenario were

constructed using PRISM language, as detailed in Section 2.7.1.

3.3.1 Discretisation

Simulations were conducted in [77] using a time-step of 50ms. Since an MAV travels at

10m/s, and ideal positions for nodes are 100m distant from their neighbours, an MAV in

the exploring or returning state takes 10 s to move from one position to the next. For the

formal models one transition in the model is considered to be equivalent to a time-step of

10 s. In the original scenario MAVs are launched from the base node by a human operator

every 15 ± 7.5 s, giving an interval in seconds of possible durations between launches of

[7.5, 22.5]. By rounding the endpoints of the interval to the nearest multiple of 10, since one

transition in our model is equivalent to 10 s, it can be determined that an MAV is launched

from the base in the formal model once every one or two transitions. While additional

transitions could be introduced to the model to encode this, by means of a distribution over

the events where one, or two, MAVs are launched, a comparison of checking properties in
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both the regular models, and those where these additional transitions were encoded, showed

that there were only very minor differences between the results. Therefore, the model was

further simplified so that exactly one MAV was launched per transition. This allowed much

larger models to be analysed, since the state space of models with the additional encoding

became too large.

When a MAV switches to node state at time t and position (i, j) it initialises the

pheromone level h(i,j)(t) to hinit. The evolution of the pheromone levels at some position

(i, j) is defined given by the equation

h(i,j)(t+ 1) = min(h(i,j)(t)−∆hdec
+ n ·∆hant + ∆ha , hmax) (3.5)

where

• hmax is the maximum amount of pheromone that can be deposited at any node,

• ∆hdec
is the rate at which deposited pheromone dissipates,

• ∆hant is the rate at which pheromone is deposited on an MAV in the node state by

an MAV in the exploring state or the returning state,

• n is the number of MAVs in the exploring state or the returning state at (i, j),

• ∆ha = ∆hinit
if there is some MAV in the node state at (i + 1, j) or (i, j + 1), or 0

otherwise,

• ∆hinit
is the rate at which extra pheromone is deposited on internal nodes.

The simulations conducted in [77] used values hinit = 0.7 and hmax = 1. The rates

at which pheromone was deposited, or dissipated, given in terms of units per time-step

with one time-step corresponding to 50ms, were given as ∆hant = 0.002, ∆hinit
= 0.001
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and ∆hdec
= 0.001; in this model one transition is considered to be equivalent to 10 s and

therefore the values are multiplied by 200 to get the pheromone deposition/dissipation

rates per transition in the model. To decrease the size of the models a range of discrete

integer values is used to model pheromone levels. Given some d ∈ N, the number of discrete

values to be used to model pheromone levels, a pheromone value h ∈ [0, hmax] is mapped

to the natural bhde, where b·e denotes rounding to the nearest integer. For the models

analysed here a value of d = 5 is used; pheromone is deposited by MAVs in the exploring

state or the returning state at a rate of 200 · ∆hant · 5 = 2 per transition, internal nodes

supplement their own pheromone levels at a rate of 200 · ∆hinit
· 5 = 1, and pheromone

dissipates at a rate of 200 ·∆hdec
· 5 = 1.

3.3.2 Abstractions and assumptions

Modelling each MAV individually would result in very large models. The model size is

reduced by employing the following abstractions. First, since one transition in the formal

model is equivalent to the duration of a flight between two adjacent nodes, and since

all MAVs begin at the base node (position (i, j), see Figure 3.1), after each transition it

can be assumed that the location of each MAV is always at some position (i, j), instead

of in-between positions. Second, as demonstrated in [96] a counting abstraction can be

used when modelling the behaviours of multiple identical processes. Since all MAVs are

behaviourally identical, and their action decisions depend solely on their immediate state

and percepts, a counter can be associated with every position (i, j) to record the number

of MAVs in the returning state at that location. As detailed later in this section, the

number of MAVs in the node or exploring state is always at most one, and therefore no

such abstraction is required to model their behaviour.

For the simulations in [77], if the signal to land has not been given, then MAVs that
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have returned to the base node instead resume exploration. Here the number of MAVs

that may leave the base node at any moment in time is constrained to be at most one.

This simplification allows us to greatly reduce the size of the model. Since each MAV is

considered to land upon returning, and at most one MAV is launched each round, it can

be concluded that at most one exploring MAV is at any given position at any time. This

can be modelled using Boolean variables to record if an exploring MAV has moved from

some position (i, j) to either of (i+ 1, j) or (i, j + 1).

A strategy is given in [77] to automatically assign altitudes to individual MAVs, en-

suring that MAVs in the exploring or the returning state maintain an altitude higher than

MAVs in the node state. While this strategy did not prove to be successful in all cases, the

chance of a collision occurring was sufficiently low (2.6% of 7500 MAVs collided over 500

trials) for us to assume that altitude differentiation always avoids collisions, and therefore

choose to not encode this in our models.

3.3.3 Model generation

Given concrete values for the parameters N ∈ N, the number of MAVs in the swarm,

U ∈ N, the maximum distance between the target and the base node (in hundreds of

metres), and d, the number of discrete values used to record pheromone levels, the formal

model M is encoded as a PMC with the single parameter µ, and can be defined using the

state-based language discussed in Section 2.7.1, as a composition of modules:

M = {B} ∪ {Ei,j ,Ri,j | i, j ∈ 0 . . . U and 0 < i+ j < U}

∪ {Fi,j | i, j ∈ 0 . . . U and i+ j = U},

where B is a module that models the movement of MAVs in exploring state from the base

node, each Ei,j is a module that models the movement of MAVs in the exploring or node
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states at (i, j), each Ri,j is a module that models the movement of MAVs in the returning

state at (i, j), and each Fi,j is a module that models the movement of MAVs that have

moved to, or beyond some point (i, j) that is at the maximum depth at which a target

might be located. In PRISM it is possible to define many different parallel compositions of

modules, but here all modules synchronise over all transitions – that is, a single transition

is taken in each module at the same time. Each module in the model is now defined.

Base module. The base module is a tuple B = (VB, IB, CB), where

VB ={nB,↖0,0,↗0,0},

IB ={nB 7→ N,↖0,0 7→ false,↗0,0 7→ false}.

The finitely bound integer variable nB records the number of MAVs at the base node. The

boolean variables↖0,0 and↗0,0 record the movement of MAVs in the exploring state, and

are true if, and only if, in the last moment in time an MAV moved from the base node

to (1, 0) or (0, 1), respectively. Should there be one or more MAVs at the base node then

one will be launched and will move to (1, 0) with probability pL(0, 0), or to (0, 1) with

probability pR(0, 0).

Exploring modules. For every Ei,j = {V i,jE , Ii,jE , Ci,jE } we have local variables and initial

values

V i,jE ={hi,j ,#i,j ,↖i,j ,↗i,j}

Ii,jE ={hi,j 7→ 0, ni,j 7→ 0,↖i,j 7→ false,↗i,j 7→ false},
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where hi,j is a finitely bound integer variable recording the levels of pheromone deposited

at (i, j), #i,j is a boolean variable that is true if there is an MAV in the node state at (i, j),

and ↖i,j and ↗i,j are Boolean variables which are are true if, and only if, an MAV moved

from (i, j) respectively to (i+ 1, j) or (i, j + 1) in the last moment in time. If no MAVs in

the exploring state have moved to (i, j) then in the next moment in time no MAVs in the

exploring state will be moving from (i, j); if #i,j = true then pheromone updates will be

applied, and if hi,j 6 0 then in the next moment in time the MAV will be in the returning

state, otherwise the MAV remains in the node state. If an MAV in the exploring state

has moved to (i, j) when #i,j = false then in the next moment in time #i,j will be true

and hi,j will be initialised to hinit · d; no MAV in the exploring state will be moving from

(i, j) in the next moment in time. If an MAV in the exploring state has moved to (i, j)

when #i,j = true, then in the next moment in time the exploring MAV will have moved

to (i+ 1, j) with probability pL(i, j), or to (i, j + 1) with probability pR(i, j), and remains

in the exploring state; pheromone updates are applied and if hi,j 6 0 then in the next

moment in time the MAV in the node state will be in the returning state, otherwise this

MAV remains in the node state.

Returning modules. For every Ri,j = {V i,jR , Ii,jR , Ci,jR } if i > 0, j > 0 there is a finitely

bound integer variable ↙i,j∈ V i,jR with Ii,jR (↘i,j) = 0, and if i > 0, j > 0 there is a finitely

bound integer variable↘i,j∈ V i,jR with Ii,jR (↘i,j) = 0, which record the number of MAVs in

the returning state that moved from (i, j) respectively to (i, j− 1) and (i− 1, j) in the last

moment in time. Unlike exploring MAVs, it is often the case that two or more returning

MAVs will simultaneously move to the same position. Any MAV in the returning state at

some location (i, j) will always move to (i, j − 1) or (i− 1, j) respectively if i = 0 or j = 0,

otherwise it will move from (i, j) to (i−1, j) with probability pL(i−1, j−1), or to (i, j−1)

with probability pR(i − 1, j − 1). If no MAVs in the returning state have moved to (i, j),
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and there is no MAV in the node state whose pheromone levels have depleted, then in the

next moment in time no MAVs in the returning state will be moving to either of (i− 1, j)

or (i, j − 1). Let Ei,jk,l to be the event where given k MAVs in the returning state at (i, j),

l MAVs move from (i, j) to (i − 1, j) in the next moment in time, and k − l MAVs move

from (i, j) to (i, j− 1) in the next moment in time. The probability of this event occurring

is denoted by P (Ei,jk,l), and is given by the probability mass function

P (Ei,jk,l) =

(
k

l

)
pL(i− 1, j − 1)lpR(i− 1, j − 1)k−l.

For each case where there are 0 < k 6 N MAVs at (i, j) the event Ei,jk,l occurs with

probability P (Ei,jk,l) for 0 6 l 6 k, and a random variable over the possible events clearly

follows the binomial distribution.

MAVs beyond the maximum depth. For every Fi,j = {V i,jF , Ii,jF , Ci,jF } there is a

finitely bound integer variable nF ∈ V i,jF with Ii,jF (nF) = 0 that records the number of

MAVs that are at or beyond this position and a finitely bound integer variable t ∈ V i,jF

with Ci,jF (t) = 0 that is used to determine when MAVs should return from (i, j) or beyond.

If i > 0, j > 0 there is a finitely bound integer variable ↙i,j∈ V i,jF with Ii,jF (↙i,j) = 0 and

if i > 0, j > 0 there is a finitely bound integer variable↘i,j∈ V i,jF with Ii,jF (↘i,j) = 0 which

record the number of MAVs in the returning state that moved from (i, j) respectively to

(i, j − 1) and (i− 1, j) in the last moment in time. The variable t is an approximation of

the average number of transitions of the model that would be expected to occur between a

MAV in the exploring state moving to (i, j) or beyond, and then returning from a position

at or beyond (i, j). If no MAV moves to (i, j) then after each transition the variable t is

decremented by 1. If there are MAVs at (i, j) and t has decreased to 0, then in the next

moment in time nF is decremented by 1 and a single MAV returns to (i− 1, j) or (i, j − 1)
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Figure 3.3: The automation of model generation and analysis for ant-based swarming
models, given a set of parameters for the model and a set of PCTL properties to check.

with probability pL(i, j) or pR(i, j) respectively. For final positions where i = 0, j = 0, all

MAVs returning from (i, j) will move to (i, j − 1) or (i− 1, j) respectively.

Automated model generation. Formal models are encoded using the PRISM language

described in Section 2.7.1. A script was developed to automate both the generation of the

input files for PRISM, and the checking of PCTL properties against these models using the

model checker. Figure 3.3 illustrates the automation process. The script takes as input a

set of parameters defining the model, and a set of PCTL properties to check against that

model.

The model parameters are concrete values for the parameters N ∈ N, the number of

MAVs in the swarm, U ∈ N, the maximum distance between the target and the base node

(in hundreds of metres), and d, the number of discrete values used to record pheromone
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levels. The PCTL properties are a set of reachability properties that should be checked

against the model. Given an input property the script generates a corresponding property

for each position (i, j) in the Y-junction grid. This is described in more detail in the next

section.

The PRISM preprocessor1 is a tool to automate the generation of PRISM models that

contain a lot of repetition. The preprocessor accepts template models with undefined con-

stants that can be given concrete values when they are processed. It also allows the use

of looping constructs to aid procedural generation. The script uses the preprocessor to

instantiate a concrete PRISM input model, using the model parameters and a template

model defining how each of the modules described earlier in this section should be gener-

ated. The script then checks the PCTL properties against the model, using the PRISM

model checker. The results are then aggregated and written to an output file.

3.4 Experiments

In this section the formal model is instantiated, and validated using statistical methods.

Properties that could facilitate the deployment of such a swarm are then checked against

the instantiated formal model, using both exhaustive and statistical methods.

3.4.1 Model validation

To validate the model statistical model checking was applied using the statistical engine

of PRISM by checking properties against systems of large swarms of MAVs where full

verification could not be practically applied. For a detailed description of statistical model

checking see Section 2.6.

The results obtained were compared to those taken from the simulations conducted

1https://www.prismmodelchecker.org/prismpp/
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Figure 3.4: The subset of Luser for which the PCTL property is checked. Here the results
correspond to checking the property for N = 5.

in [77]. The mean probability of establishing contact with a target within 30 minutes was

calculated over a series of 500 simulations for varying swarm sizes. Targets were located at

some randomly determined location within a 60 degree arc in a known cardinal direction

from the base node at a distance of ≈ 200-500m. In the formal model it was assumed that

an MAV has established communication with a target if it has moved to a position at most

100m distant from the target. Since a target can be located up to ≈ 500m from the base

node, models were generated with N = 5 and U = 5 for all models. The set of all possible

locations at which a target may be located is defined as

Luser = {(i, j) | i, j ∈ 0 . . . 5 and 1 < i+ j 6 5}.

For each (i, j) ∈ Luser the statistical engine of PRISM was used to calculate the probability

of an MAV moving to (i, j) within 30 minutes (equivalent to 180 transitions in the formal

model), by formally specifying this as a probabilistic reachability property in PCTL.
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Figure 3.5: The mean probability of finding the target within 30 minutes over 500 trials
for simulation and 500 samples for statistical model checking.

Since the grid of positions is symmetrical PCTL properties are only checked for a

subset of Luser, as shown in Figure 3.4 – the probability of a MAV moving to some (i, j) is

equivalent to the probability of an MAV moving to (j, i). For each(i, j) define reachedi,j as

reachedi,j ≡


↖i−1,j ∨ ↗,i j − 1 if i, j > 0

↗i,j−1 if i = 0, j > 0

↖i−1,j if i > 0, j = 0.

The mean probability over all locations P̄ (reached) is then calculated as follows, where we

assume the location of the target is taken from a uniform distribution over Luser:

P̄ (reached) =
1

|Luser|
∑

(i,j)∈Luser

P[F6180 reachedi,j ].

Figure 3.5 compares the results of calculating P̄ (reached) for values of N ∈ [5 . . . 20] to

the results presented in [77]. For each instance of the PMC we induce a DTMC by fixing
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the parameter µ to be 0.75, the value used for the simulations in [77]. Statistical model

checking results were obtained using 500 simulation samples with an average confidence

interval of ±2% based on a 99.0% confidence level. Experiments were conducted on a

PC with a 2.20GHz Intel Xeon E5-2420 CPU, 196GB RAM, running Scientific Linux 6.6.

There is clearly a strong correlation between both sets of results. For some swarm sizes,

namely for N ∈ {5, 9, 10, 16}, there was a more pronounced difference between the two

values. However, some minor discrepancies were expected due to the relatively low number

of simulations/samples used to obtain the results. Exhaustive model checking results are

shown only for N ∈ [5 . . . 7] since the reachable state space of models for N > 8 was too

large for the properties to be checked.

3.4.2 Reachability and reachability reward targets

As described in Section 2.3, other measurable aspects of model behaviours can be reasoned

about by associating real valued rewards with states and transitions. Properties of interest

relating to the expected reward accumulated along some path can then be checked in the

model.

By defining a simple reward function for the formal model that associated a reward of

1 with every state and then checking the property R[F reachedi,j ] for every (i, j) ∈ Luser

the total expected time for the swarm to almost surely establish contact with a target at

(i, j) (with probability 1) can be obtained. These values could facilitate the logistics of the

deployment of swarms of real MAVs where guaranteed contact with a target is required,

and where there is a limited number of MAVs.

The four plots of Figure 3.6 show the total expected time in hours for a deployment

of N MAVs, depth U , and lateral distance of the target from the base node, to establish

communication with the target target with probability 1. The results obtained by checking
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Figure 3.6: Results for checking the property R[F reachedi,j ] for each (i, j).

the property R[F reachedi,j ] for each (i, j). Each vertex on the triangulated meshes for each

plot corresponds to a possible position for the target on the Y-junction grids first illustrated

in Figure 3.1, and indicates the result that was obtained for checking the property against

that position. Larger swarm sizes result in a flattening of the mesh at all points, indicating

that the expected time to locate the target decreases as the swarm size increases irrespective

of the location of the target.

The four plots of Figure 3.7 show the probability of establishing communication with the

target within thirty minutes by a deployment of N MAVs, depth U , and lateral distance

of the target from the base node. The results are obtained by checking the property
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Figure 3.7: Results for checking the property P[F6180 reachedi,j ] for each (i, j).

P[F6180 reachedi,j ] for each (i, j). Results for N > 7 were obtained using statistical methods

over 4000 samples. Again each vertex on the triangulated meshes corresponds to a result

obtained by checking the property for a possible position for the target on the Y-junction

grids. Larger swarm sizes result in all points of the mesh being elevated, indicating that

the probability of locating the target within 180 time steps decreases as the swarm size

increases, irrespective of the location of the target.
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3.5 Conclusions and further work

Formal probabilistic models were constructed by making some simplifying assumptions

given in Section 3.3.2, and a close correspondence between these models and the simulations

conducted in the original scenario was clearly shown. The models were then used to check

both probabilistic reachability and reachability reward properties, the results of which

could be used to plan the deployment of a swarm of MAVs where establishing contact

with a user must be guaranteed, or achieved with a probability that exceeds some given

threshold. Since battery life greatly impacts the flight duration of MAVs the a priori

calculation of the total expected flight time, or total expected distance travelled, for the

swarm would ensure that sufficient resources could be made available to ensure that it

achieves its objectives. Different reward functions could be developed for a more detailed

analysis of the energy consumption of the swarm, since the rate of power consumption

for each MAV would differ according to its current mode and rate of communication with

other MAVs. Reward functions such as these are applied later in Chapter 5, where the

power consumption of a network of synchronising nodes is analysed.

Another natural extension of this work would be to use parametric model checking to

investigate the relationship between the parameter µ, that defines the attractiveness of un-

explored paths in the grid, and the likelihood of the swarm finding the user at some location.

Optimal parameter values for µ could be determined for the maximisation or minimisation

of probabilistic reachability or reachability reward properties of interest. Parametric model

checking techniques for such an analysis, where changing a parameter does not result in a

change in the underlying graph of the PMC have been well studied. The analysis of model

parameters that do induce structural changes, for instance the number of MAVs in the

swarm N , or the maximum distance at which a user might be located U , has received less

attention, and new ideas for their analysis are presented later in Chapter 6.
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Chapter 4

Investigating Parametric Influence

on Discrete Synchronisation

Protocols

Synchronisation is an emergent phenomenon observable throughout the natural world. A

noteworthy example is the mutual synchronisation of some species of firefly. Each firefly

has an internal biological clock which determines the frequency of its flashes. When a

firefly perceives the flashing of others in a colony it updates the rhythm of its own flashes

accordingly to bring its own cycle closer to that of its observable neighbours, leading to the

emergence of self-organized synchronisation without any centralized control. Natural syn-

chronising systems have inspired the development of protocols for achieving coordination

in a diverse range of distributed dynamic systems; in particular swarm robotic systems

and WSNs. Applications include detecting faults in members of a robotic swarm [33], syn-

chronising the duty cycles of sensor nodes in a network [148], auto-tuning mobile networks

to save energy [16], and coordinating data dissemination for a WSN [27].
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The cyclic behaviour of systems where synchrony spontaneously occurs can be mod-

elled as networks of coupled oscillators with similar frequencies. Oscillators are devices

that generate oscillations, continual variations in a measure between two or more different

states. Essentially an oscillator produces some form of energy at levels that follow a regular

rhythmic pattern. Oscillators are coupled when some process results in the transferral of

energy between them. When the mutual agitation of oscillators takes place only at discrete

instances in time the oscillators are pulse-coupled [99, 117]. At some distinguished point in

the oscillation cycle a pulse-coupled oscillator fires and influences other nearby oscillators,

and resets its own phase. An oscillator that is perturbed by another oscillator shifts or

resets the phase of its own oscillation cycle to more closely match that of its neighbour.

Over time this can lead to all oscillators matching phase, and synchronisation is achieved

if all oscillators fire synchronously.

Figure 4.1 illustrates the evolution over time of the phase of two pulse-coupled oscilla-

tors A and B. Initially, oscillator A is at the start of its cycle, while oscillator B is half way

through its cycle. When the phase of each oscillator reaches the threshold (indicated by

the top line of both grids) it resets and fires, perturbing the phase of the other oscillator.

After each interaction the difference in the phases of the oscillators decreases until they

share the same phase and become synchronised.

In nature, the oscillation cycle of oscillators often includes a refractory period. The

refractory period is an interval in the oscillation cycle during which its phase cannot be

perturbed by other firing oscillators. The refractory period can prevent spurious mutual

stimulation of the oscillators, which could lead to perpetual asynchrony.

Figure 4.2 again illustrates the evolution over time of oscillators A and B but now the

cycle of each oscillator includes a refractory period, indicated by the shaded areas of the

grids and denoted by R. Again oscillator A begins at the start of its cycle, while oscillator
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Figure 4.1: Synchronisation of two pulse-coupled oscillators.

B begins half way through its cycle. The initial firing of oscillator A does not perturb the

phase of oscillator B, which is within its refractory period. For this example, this leads to

synchrony being achieved earlier than was the case for the oscillators without refractory

periods in Figure 4.2, however it is sometimes the case that longer refractory periods result

in longer times to synchronise. The introduction of a refractory period to oscillators in

artificial systems not only helps to achieve synchrony, but can also be thought of as a

period during which robots in a swarm, or nodes in a WSN, can turn off their wireless

antennas and save energy [147].

The contribution of this chapter is the development of a formal and general model for

oscillator synchronisation, which is parametrised by a synchronisation model and a config-

uration for both oscillators and the network. In contrast to previous applications of model

checking to detect synchronisation, this model is discrete. That is, the oscillators interact

at discrete moments in time, and their oscillation cycles are defined as sequences of discrete

states. For very small devices with limited resources, for instance sensing nodes in a WSN,
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Figure 4.2: Synchronisation of two pulse-coupled oscillators with refractory periods.

it is important to minimise the cost of low-level functionalities, such as synchronisation.

Even a floating point number may need too much memory, compared to an implementa-

tion with, for example, a four-bit vector. Hence, in our model the oscillators synchronise

over a finite set of discrete clock values. A PMC can be automatically generated from an

instantiation of the formal model, and properties of interest relating to the likelihood of

synchronisation, and time taken to achieve it, can be formalised and checked against the

model. An analysis of two different models of synchronisation are considered, and for each

a family of PMCs for different parameter instances are automatically generated.

This scenario was selected as a case study for the following reasons. As in the previous

chapter, the system of interest is composed of homogeneous interacting entities (nodes

in a WSN, or robots in a swarm), and the property of interest, the likelihood that a

network synchronises, does not require any individual entity to be distinguished from the

others. This ensures that entities sharing the same state can be reasoned about as a group,

not as individuals, resulting in much smaller formal models, and hence less resources being
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required for their analysis. Again, the model introduced here has clearly defined parameters

that determine both the structure of the formal model, and stochastic choices over how

the model evolves over time.

Related work is discussed in Section 4.1. Section 4.2 presents the dynamics of individual

oscillators with discrete oscillation cycles. The general, parametrised population model for

a network of oscillators is then formally defined in Section 4.3, and a description of how

the corresponding DTMC is constructed is given in Section 4.4. The results of checking

synchronisation properties for two concrete instantiations of our formal model are discussed

in Section 4.5. A refinement of the population model that allows larger networks to be

analysed is then presented and evaluated in Section 4.6. Finally, concluding remarks and

suggestions for further work are given in Sect. 4.7.

4.1 Related work

The synchronisation of pulse-coupled oscillators is a well-studied phenomenon. In [117]

Mirollo and Strogatz give an intuitive description of how synchrony develops in a system

of pulse-coupled oscillators. As the system evolves over time clusters of oscillators sharing

the same activation are formed as the firing of oscillators brings their neighbours’ firing

cycles closer to those of their own. Since all oscillators in a cluster fire at the same time the

collective firing strength increases, bringing other oscillators to the firing threshold. Groups

of oscillators grow by absorbing other oscillators. Larger groups may absorb smaller groups

and this process repeats until there is only one group of synchronized oscillators. Mirollo

and Strogatz’s model was derived from Peskin’s model of a cardiac pacemaker [123]. They

proved that under certain conditions a network of mutually coupled oscillators always

converges – their position within the oscillation cycle eventually coincides. One such as-

sumption was that the network was fully coupled. Later work by Lucarelli and Wang
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showed that this assumption could be relaxed, by proving that oscillators would always

achieve synchrony if the coupling graph of the network was connected [113].

Such models have been shown to be applicable to the clock synchronisation of wireless

sensor nodes and swarms of robots. A pulse-coupled oscillator model was used by Tyrell et

al. in [144] to synchronise a network of WSN nodes over the physical layer. The model was

shown to be effective, even under the integration of realistic effects such as transmission

delays. A similar approach was used in [148] to synchronise the duty cycles of nodes in

a WSN, however here the nodes used delayed information from the past to adjust their

clocks when receiving synchronisation messages. The method was shown to work well even

under adverse network conditions such as message delays and loss, and was tested on an

indoor sensor network test bed. An agent based approach was employed by Bojic et al.

in [16], where autonomous agents operating on nodes in a network aim to synchronise their

actions, and fine tune a telecommunication network. Taniguchi et al. [140] showed that

synchronising nodes in a network facilitated data gathering without centralised control,

where all nodes leave their idling state at the same time, obtain information from their

environment, and transmit this information back to some distinguished base node.

The introduction of a refractory period for oscillators, an interval in the oscillation cycle

where that oscillator cannot be perturbed, can help to achieve synchrony and reduce power

consumption. Wang et al. [147] investigated refractory periods, by studying the power

consumption of nodes in a WSN that synchronise and turn off their wireless antennas to

save energy in unison. Refractory periods were also investigated by Breza in [27], where bio-

inspired synchronisation protocols were combined with gossiping protocols to coordinate

data dissemination in a WSN.

Synchronisation has also been shown to be useful in the domain of swarm robotics.

It was used by Christensen et al. in [33] to detect faults in a robotic swarm. Members
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of the swarm periodically emit a flash that is perceivable by others, and when all flashes

are synchronised a faulty robot that fails to flash can be detected. The synchronisation of

mobile swarm robots was also investigated in detail by Perez-Diaz [122], where the effects

of robot speed on the rates at which synchronisation was achieved were analysed.

A general formal model of oscillator synchronisation was introduced in [6], where oscil-

lators were modelled as a subclass of timed automata [3], and a model checking algorithm

was used to determine the reachability of a synchronised state for distinguished runs of the

model. Unlike the work presented here, their analysis was restricted to a network of only

three oscillators.

More recently, Heidarian et al. used model checking to analyse clock synchronisa-

tion [78]. They analysed the behaviour of synchronisation protocols for WSNs based on

time allocation slots for up to four nodes and different topologies, from fully connected

networks to line topologies. They modelled the protocol as timed automata [3], and used

the model-checker UPPAAL [10] to examine its worst-case behaviour. In contrast to the

models presented in this chapter, they use continuous time models, and in particular, they

did not model pulse-coupled oscillators.

4.2 Discrete oscillator model

A fully-connected network of pulse-coupled oscillators is considered, where all oscillators

have identical dynamics over discrete time. The phase of an oscillator i at time t is denoted

by φi(t). The phase of an oscillator progresses through a sequence of discrete integer values

bounded by some T > 1. The phase progression over time of a single uncoupled oscillator

is determined by the successor function, where the phase increases until φi(t) = TT , at

which point the oscillator fires, in the next moment in time where φi(t + 1) becomes 1,

and the oscillator attempts to broadcast a firing signal to all other oscillators coupled to
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it. The phase progression of an uncoupled oscillator is cyclic with period T and we refer

to one cycle as an oscillation cycle.

An oscillator’s firing signal perturbs the phase of all oscillators to which it is couples.

We use αi(t) to denote the number of other oscillators that are coupled to oscillator i

and will broadcast their firing signal at time t. The strength of the coupling between the

oscillators determines the magnitude of the induced perturbation to phase, and is given

by the parameter ε ∈ R. Furthermore, µ ∈ [0, 1] is the probability that a broadcast failure

occurs when an oscillator fires – the attempt to broadcast its firing signal fails (the oscillator

still resets its phase to 1). Note that µ is a global parameter, hence the chance of broadcast

failure is identical for all oscillators. Observe that αi(t) is defined globally even though the

model is not deterministic.

Definition 12. The perturbation function is an increasing function

∆ : [1 . . . T ]× N× R>0 → N

that maps the phase of an oscillator i, the number of oscillators that have fired and perturbed

i, and a real valued constant defining the strength of the coupling between oscillators, to an

integer value corresponding to the induced perturbation to phase.

A refractory period can be introduced into the oscillation cycle of each oscillator. A

refractory period is an interval of discrete values [1 . . . R] ⊆ [1 . . . T ] where 0 6 R 6 T is

the size of the refractory period, such that if φi(t) is inside the interval, for some oscillator

i at time t, then i cannot be perturbed by other oscillators to which it is coupled. If R = 0

then the interval has zero length and there is no refractory period at all. To be consistent

with the literature only refractory periods that occur at the start of the oscillation cycle

are considered [147].
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Definition 13. The refractory function

ref : [1 . . . T ]× N→ N

is defined as:

ref(φ, δ) =


φ if φ ∈ [1 . . . R]

φ+ δ otherwise.

The phase is increased by δ if φ is outside of the refractory period, otherwise it remains

unchanged.

The phase evolution of an oscillator i over time is then defined as follows, where the

update function and firing predicate, respectively denote the updated phase of oscillator i

at time t in the next moment in time, and the firing of oscillator i at time t,

updatei(t) = 1 + ref(φi(t),∆(φi(t), αi(t), ε)),

firei(t) = updatei(t) > T,

φi(t+ 1) =


1 if firei(t)

updatei(t) otherwise.

4.3 Population model

Let O = {1, . . . , N} be a fully connected network of N identical oscillators with phases in

the range 1, . . . , T , whose dynamics are determined by the perturbation function ∆, and

have a refractory period defined by R. The strength of the coupling between the oscillators

is given by ε ∈ [0, 1], and the probability of broadcast failure is given by µ ∈ [0, 1]. The
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population model of the network O is a tuple

P = (∆, N, T,R, ε, µ).

Since all oscillators in the model are behaviourally identical there is no need to distin-

guish between oscillators sharing the same phase, and reasoning can be applied to groups

of oscillators sharing the same local state, instead of individuals. The global state of the

model is encoded as a tuple

〈k1, . . . , kT 〉

where each kΦ is the number of oscillators sharing phase φ. The population model does not

account for the introduction of additional oscillators to a network, or the loss of existing

coupled oscillators, and the population N remains constant.

Definition 14. A global state of a population model P = (∆, N, T,R, ε, µ) is a T -tuple

〈k1, . . . , kT 〉 ∈ [0 . . . N ]T , where
∑T

Φ=1 kΦ = N . The set of all global states of P is Γ(P ),

or simply Γ when P is clear from the context.

Example 14. Figure 4.3 shows three global states for an instantiated population model,

P = (∆, 5, 6, 2, 0.15, 0.1),

where the synchronisation model of [117] is instantiated by defining the perturbation func-

tion as

∆(Φ, α, ε) = bΦα εe .

101



σ0 k1k1σ0

1

k2

σ0σ02 σ0

2

σ0 σ1 k1k1σ1

k2

σ1

1

σ1σ1

2

σ1

2

σ2 5 k1k1σ2

k2

σ2σ2σ2σ2

Figure 4.3: Evolution of the global state over three discrete time steps.

The label for each node kΦ is the number of oscillators with phase Φ. The label is omitted

if kΦ = 0. The starred node records the number of oscillators with phase T . Oscillators at

node k6 are about to fire, and oscillators at nodes k1 and k2 are in their refractory period,

and cannot be perturbed by the firing of other oscillators. The global states are

σ0 =〈0, 1, 0, 2, 2, 0〉,

σ1 =〈0, 0, 1, 0, 2, 2〉,

σ2 =〈5, 0, 0, 0, 0, 0〉.

Later it is discussed how transitions between these global states are made. Note that direc-

tional arrows indicate cyclic direction, and do not represent transitions.

A non-empty set of failure vectors is associated with every global state σ, where each

failure vector is a tuple of broadcast failures that could occur in σ.

Definition 15. A failure vector is a T -tuple f ∈ ([0 . . . N ] ∪ {?})T . The set of all possible

failure vectors is denoted by F .

Given a failure vector f = 〈f1, . . . , fT 〉, fΦ ∈ [0 . . . N ] indicates the number of broadcast

failures that occur for all oscillators with a phase of Φ. If fΦ = ? then no oscillators with

a phase of Φ fire, for all 1 6 Φ 6 T . Semantically, fΦ = 0 and fΦ = ? differ in that the
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former indicates that all (if any) oscillators with phase Φ fire and no broadcast failures

occur, while the latter indicates that all (if any) oscillators with a phase of Φ do not fire.

If no oscillators fire at all in a global state then there is only one possible failure vector,

namely {?}T .

4.3.1 Transitions

The calculation of the set of all possible failure vectors for a global state, and the resulting

identification of all successor states of that state, is described later in this section. Firstly,

it must be shown how the single successor state of a global state can be calculated, given

a single failure vector for that state.

Absorptions. For real deployments of synchronisation protocols it is often the case that

the duration of a single oscillation cycle will be at least several seconds [33, 121]. The

perturbation induced by the firing of a group of oscillators may lead to groups of other

oscillators to which they are coupled firing in turn. The firing of these other oscillators may

then cause further oscillators to fire, and so forth, leading to a “chain reaction”, where each

group of oscillators triggered to fire is absorbed by the initial group of firing oscillators.

Since the whole chain reaction of absorptions may occur within just a few milliseconds, and

in our model the oscillation cycle is a sequence of discrete states, when a chain reaction

occurs the phases of all perturbed oscillators are updated at one single time step.

Since only fully connected networks of oscillators are considered here, two oscillators

sharing the same phase will have their phase updated to the same value in the next time

step. They will always perceive the same number of other oscillators firing. Therefore, for

each phase Φ the following function is defined,

αΦ : Γ×F → [1 . . . N ],
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where αΦ(σ, f) is the number of oscillators with a phase greater than Φ perceived to be firing

by oscillators with phase Φ in some global state σ, incorporating the broadcast failures

defined in the failure vector f . This allows the aforementioned chain reactions of firing

oscillators to be encoded. Note that this encoding of chain reactions results in a global

semantics that differs from typical parallelisation operations, for example, the construction

of the crossproduct of the individual oscillators.

Definition 16. Given a global state σ = 〈k1, . . . , kT 〉 and a failure vector f = 〈f1, . . . , fT 〉,

the following mutually recursive definitions show how α1(σ, f), . . . , αT (σ, f) are calculated,

and how functions introduced in the previous section are modified to indicate the update in

phase, and firing, of all oscillators sharing the same phase Φ. Observe that to calculate

any αΦ(σ, f) only definitions for phases greater than Φ are referenced and the base case is

Φ = T , that is, values are computed from T down to 1.

updateΦ(σ, f) = 1 + ref(Φ,∆(Φ, αΦ(σ, f), ε))

fireΦ(σ, f) = updateΦ(σ, f) > T

αΦ(σ, f) =


0 if Φ = T

αΦ+1(σ, f) + kΦ+1 − fΦ+1 if Φ < T, fΦ+1 6= ? and fireΦ+1(σ, f)

αΦ+1(σ, f) otherwise

Transition function. The transition function that maps phase values to their updated

values in the next time step is now defined. Since there is no differentiation between

oscillators with the same phase, only a single value for their perturbation needs to be

calculated.

Definition 17. The phase transition function τ : Γ × [1 . . . T ] × F → N maps a global

state, a phase Φ, and some possible failure vector f for σ, to the updated phase in the next
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discrete time step, with respect to the broadcast failures defined in f , and is defined as

τ(σ,Φ, f) =


1 if fireΦ(σ, f)

updateΦ(σ, f) otherwise.

Let UΦ(σ, f) be the set of phase values Ψ where all oscillators with phase Φ in σ will

have their phase updated to Ψ in the next time step, with respect to the broadcast failures

defined in f . Formally,

UΦ(σ, f) = {Ψ | Ψ ∈ [1 . . . T ] ∧ τ(σ,Ψ, f) = Φ}.

The successor state of a global state σ can now be calculated, and the evolution of the

model over time can be defined.

Definition 18. The successor function
→

succ : Γ × F → Γ maps a global state σ and a

failure vector f to a global state σ′, and is defined as

→
succ(〈k1, . . . , kT 〉, f) =

〈 ∑
Ψ∈U1(σ,f)

kΨ, . . . ,
∑

Ψ∈UT (σ,f)

kΨ

〉
.

Example 15. Consider again Figure 4.3 with global states σ0 = 〈0, 1, 0, 2, 2, 0〉, σ1 =

〈0, 0, 1, 0, 2, 2〉, σ2 = 〈5, 0, 0, 0, 0, 0〉. Observe that in the global state σ0 no oscillators

will fire since k6 = 0. Therefore there is one possible failure vector for σ0, namely f =

{?}6. Since no oscillators fire the dynamics of the oscillators are determined solely by the

standalone dynamics, and all oscillators simply increase their phase by 1 in the next time
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step. Now consider the global state σ1 and

f = 〈?, ?, 0, 0, 0, 1〉,

a possible failure vector for σ1, indicating that oscillators with phases in [3..6] will fire and

one broadcast failure will occur for one of the two oscillators that will fire with phase 6.

Despite the broadcast failure occurring, a chain reaction will occur as the perturbation

induced by the single oscillator with phase 6 that does not suffer a broadcast failure is

sufficient to cause the two oscillators with phase 5 to fire also. The combined perturbation

induced by the firing of all three oscillators will cause the final oscillator with phase 3 to

fire. All oscillators are therefore absorbed into the initial group of firing oscillators. Since

fire6(σ1, f) holds

α5(σ1, f) = α6(σ1, f) + k6 − f6 = 0 + 2− 1 = 1.

Similarly since fire5(σ1) holds,

α4(σ1, f) = α5(σ1, f) + k5 = 1 + 2 = 3.

Then by continuing to calculate αΦ(σ1, f) for 3 > Φ > 1, it can be concluded that

U1(σ1, f) = {6, 5, 4, 3},

U6(σ1, f) = U5(σ1, f) = U4(σ1, f) = ∅.
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Then since R = 2,

U3(σ1, f) = {2},

U2(σ1, f) = {1}.

Finally, the successor of σ1 is calculated as

σ2 =
→

succ(〈0, 0, 1, 0, 2, 2〉, f) = 〈k6 + k5 + k4 + k3, k1, k2, 0, 0, 0〉 = 〈5, 0, 0, 0, 0, 0〉.

Lemma 1. The number of oscillators is invariant during transitions, i.e., the succes-

sor function only creates tuples that are states of the given model. Formally, let σ =

〈k1, . . . , kT 〉 and σ′ = 〈k′1, . . . , k′T 〉 be two states of a population model P such that σ′ =

→
succ(σ, f), where f is some possible failure vector for σ. Then

T∑
Φ=1

kΦ =

T∑
Φ=1

k′Φ = N.

Proof. By construction, it is clear that for all 1 6 Φ 6 T ,

τ(σ,Φ, f) ∈ [1 . . . T ].

Hence for all Ψ with 1 6 Ψ 6 T , there is a Φ such that Ψ ∈ UΦ(σ, f). This implies

T⋃
Φ=1

UΦ(σ, f) = [1 . . . T ].

Furthermore, there cannot be more than one Φ such that Ψ ∈ UΦ(σ, f), since τ is functional.
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Therefore,

T∑
Φ=1

k′Φ =
T∑

Φ=1

∑
Ψ∈UΦ(σ,f)

kΨ =
T∑

Φ=1

kΦ = N,

and the lemma is proved.

4.3.2 Failure vector calculation

The set of all possible failure vectors for a global state is constructed by considering every

group of oscillators in decreasing order of phase. At each stage it is determined if the

oscillators would fire. If they fire then each outcome where any, all, or none of the firings

result in a broadcast failure is considered. A corresponding value is then added to a partially

calculated failure vector and the next group of oscillators with a lower phase is considered.

If the oscillators do not fire then there is nothing left to do, since by Definition 12 ∆ is

increasing, therefore all oscillators with a lower phase will also not fire. The partial failure

vector can then be padded with ? appropriately to indicate that no failure could happen

since no oscillators fired.

Table 4.1 illustrates how a possible failure vector for global state σ1 in Figure 4.3 is

iteratively constructed. The first three columns respectively indicate the current iteration

i, the global state σ1 with the currently considered oscillators indicated, and the elements

Table 4.1: Construction of a possible failure vector for a global state σ1 = 〈0, 0, 1, 0, 2, 2〉.

iteration (i) σ1 failure vector f fired branches

0 〈0, 0, 1, 0, 2, 2〉 〈〉 – false
1 〈0, 0, 1, 0, 2, 2〉 〈1〉 true true
2 〈0, 0, 1, 0, 2, 2〉 〈0, 1〉 true true
3 〈0, 0, 1, 0, 2, 2〉 〈0, 0, 1〉 true false
4 〈0, 0, 1, 0, 2, 2〉 〈0, 0, 0, 1〉 true true
5 〈0, 0, 1, 0, 2, 2〉 〈?, ?, 0, 0, 0, 1〉 false –
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of the failure vector f computed so far. The fourth column is true if the oscillators with

phase T + 1 − i would fire given the broadcast failures in the partial failure vector. All

outcomes of any or all firings resulting in broadcast failure must be considered. The

final column therefore indicates whether the value added to the partial failure vector in

the current iteration is the only possible value (false), or if a choice from one of several

possible values (true).

Initially there is an empty partial failure vector. At the first iteration there are 2

oscillators with a phase of 6. These oscillators will fire so each case where 0, 1 or 2 broadcast

failures occur must be considered. Here 1 broadcast failure is chosen, which is then added

to the partial failure vector. At iteration 2, oscillators with a phase of 5 fire, and again

each case with 0, 1 or 2 broadcast failures occur must be considered; here 0 is chosen. At

iteration 3 oscillators with a phase of 4 would have fired, but since there are no oscillators

with a phase of 4 there is only one possible value to add to the partial failure vector,

namely 0. At iteration 4 a single oscillator with a phase of 3 fires, and the case where the

firing did not result in a broadcast failure is chosen. In the final iteration oscillators with

a phase of 2 do not fire, it can be concluded that oscillators with a phase of 1 also do not

fire, and the partial failure vector can be padded appropriately with ?.

Let g be a family of functions indexed by Φ, where each gΦ takes as parameters some

global state σ, and V , a vector of length T − Φ. V represents all broadcast failures for

all oscillators with a phase greater than Φ. The function gΦ then computes the set of all

possible failure vectors for σ with suffix V . The notation v_v′ is used to indicate vector

concatenation.

Definition 19. For 1 6 Φ 6 T let

gΦ : Γ× [0 . . . N ]T−Φ → P([0 . . . N ] ∪ {?})T )
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be the family of functions indexed by Φ, where σ = 〈k1, . . . , kT 〉 and

gΦ(σ, V ) =



⋃kΦ
i=0 gΦ−1(σ, 〈i〉_V ) if 1 < Φ 6 T and fireΦ(σ, {?}Φ_V )⋃k1
i=0 {〈i〉_V } if Φ = 1 and fire1(σ, 〈?〉_V ){
{?}Φ_V

}
otherwise.

The set of all possible failure vectors for σ is then given by gT (σ, 〈〉), and for every failure

vector f = 〈f1, . . . , fT 〉 in that set fi 6 ki for 1 6 i 6 T and fi = ? implies fj = ? for

1 6 j < i.

Definition 20. Given a global state σ ∈ Γ let Fσ be the set of all possible failure vectors

for that state, where Fσ = gT (σ, 〈〉), and let Next(σ) be the set of all successor states of σ,

where Next(σ) = { →succ(σ, f) | f ∈ Fσ}.

Note that for some global states |Next(σ)| < |Fσ|, since it may be the case that

→
succ(σ, f) =

→
succ(σ, f ′) for some f , f ′ ∈ Fσ with f 6= f ′.

Given a global state σ and a failure vector f ∈ Fσ, the probability of a transition being

made to the global state
→

succ(σ, f) in the next time step can now be computed. Recall that

µ is the probability with which a broadcast failure occurs. Firstly, let PMF : [1 . . . N ] ×

[1 . . . N ] → [0, 1] be the probability mass function, where PMF(n, b) gives the probability

of b broadcast failures occurring given that n oscillators fire, given by

PMF(n, b) = µb(1− µ)n−b
(
n

b

)
.

The function mapping a broadcast failure vector f for σ, to the probability of the
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failures in f occurring can then be defined as

Pτ : Γ× f → [0, 1],

where

Pτ (〈k1, . . . , kT 〉, 〈f1, . . . , fT 〉) =

T∏
Φ=1


PMF(kΦ, fΦ) if fΦ 6= ?

1 otherwise.

Lemma 2. For any global state σ, Pτ is a discrete probability distribution over Fσ. For-

mally,
∑

f∈Fσ Pτ (σ, f) = 1.

Proof. Given a global state σ = 〈k1, . . . , kT 〉 a tree of depth T can be constructed where

each leaf node is labelled with a possible failure vector for σ, and each node Λ at depth

Φ is labelled with a vector of length Φ corresponding to the last Φ elements of a possible

failure vector for σ. The label of a node Λ is denoted by V (Λ). Each node Λe is labelled

with 〈e〉_V (Λ). The tree is iteratively constructed, starting with the root node, root, at

depth 0, which is labelled with the empty tuple 〈〉. For each node Λ at depth 0 6 Φ < T

the children of Λ are constructed as follows:

1. If oscillators with phase Φ fire the sample space E = {0, . . . , kΦ} is a set of disjoint

events, where each e ∈ E is the event where e broadcast failures occur, given that kΦ

oscillators fired. For each e ∈ E there is a child Λe of Λ with label 〈e〉_V (Λ), and

the edge from Λ to Λe is labelled with PMF(kΦ, e).

2. If oscillators with phase Φ do not fire then Λ has a single child Λ? labelled with

〈?〉_V (Λ), and the edge from Λ to Λ? is labelled with 1.

The label of an edge from a node Λ to its child Λ′ is denoted by L(Λ,Λ′). For case 2 if
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oscillators with phase Φ do not fire then oscillators with any phase Ψ < Φ will also not

fire, since from Definition 12 ∆ is an increasing function. Hence, all descendants of Λ will

also have a single child, with an edge labelled with 1, and each node is labelled with the

label of its parent, prefixed with 〈?〉.

After constructing the tree there is a vector of length T associated with each leaf node,

corresponding to a failure vector for σ. The set Fσ of all possible failure vectors for σ is

therefore the set of all vectors labelling leaf nodes. The product of all labels on edges along

the path from Λ back to the root is denoted by P ↓(Λ). Given a global state σ = 〈k1, . . . , kT 〉

and a failure vector f = 〈f1, . . . , fT 〉 ∈ Fσ labelling some leaf node Λ at depth T ,

P ↓(Λ) = 1 ·
T∏

Φ=1


PMF(kΦ, fΦ) if fφ?

1 otherwise

= Pτ (σ, f).

Let DepthΦ denote the set of all nodes at depth Φ. The equality
∑

d∈DepthΦ P ↓(d) = 1

is shown by induction on Φ. For Φ = 0, i.e. DepthΦ = {root}, the property holds by

definition. Now assume that
∑

d∈DepthΦ P ↓(d) = 1 holds for some 0 6 Φ < T . Let Λ be

some node in DepthΦ, and let ChildΛ be the set of all children of Λ. Consider the following

two cases: If oscillators with phase Φ do not fire then |ChildΛ| = 1, and L(Λ, c) = 1 for the

only c ∈ ChildΛ. If oscillators with phase Φ fire observe that PMF is a probability mass

function for a random variable defined on the sample space E = {0, . . . , kΦ}. In either case∑
c∈ChildΛ L(Λ, c) = 1. Note that

DepthΦ+1 =
⋃

d∈DepthΦ

Childd,
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and recall that L(d, c)P ↓(d) = P ↓(c). Therefore,

∑
d∈DepthΦ+1

P ↓(d) =
∑

d∈DepthΦ

∑
c∈Childd

L(d, c)P ↓(d) =
∑

d∈DepthΦ

P ↓(d)
∑

c∈Childd

L(d, c)

 .

Since
∑

c∈Childd L(d, c) = 1 for each d ∈ DepthΦ, and from the induction hypothesis,

∑
d∈DepthΦ

P ↓(d)
∑

c∈Childd

L(d, c)

 =
∑

d∈DepthΦ

P ↓(d) = 1.

It has already been shown that P ↓(Λ) = Pτ (σ, f) for any leaf node Λ labelled with a failure

vector f , and since the set of all labels for leaf nodes is Fσ it can be concluded that

∑
f∈Fσ

Pτ (σ, f) =
∑

d∈DepthT

P ↓(d) = 1.

This proves the lemma.

Example 16. Consider again the global states

σ1 = 〈0, 0, 1, 0, 2, 2〉,

σ2 = 〈5, 0, 0, 0, 0, 0〉,

given in Figure 4.3, of the population model instantiated in Example 14, and the failure

vector

f = 〈?, ?, 0, 0, 0, 1〉

given in Example 15, noting that f ∈ Fσ1,
→

succ(σ1, f) = σ2, and µ = 0.1. The probability
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of a transition being made from σ1 to σ2 is calculated as

Pτ (〈0, 0, 1, 0, 2, 2〉, 〈?, ?, 0, 0, 0, 1〉) = 1 · 1 · PMF(1, 0) · PMF(0, 0) · PMF(2, 0) · PMF(2, 1)

= 1 · 1 · 0.9 · 1 · 0.81 · 0.18 = 0.13122.

The evolution of the global state of a population model over time.can now be defined.

A path of a population model P is an infinite sequence of global states σ0σ1σ2 · · · , where

σi+1 ∈ Next(σi) for all i > 0.

4.3.3 Synchronisation

When all oscillators in a global state of a population model have the same phase in that

state the state is synchronised. Formally, a global state σ = 〈k1, . . . , kT 〉 is synchronised if,

and only if, there is some Φ ∈ [1 . . . T ] such that kΦ = N . Hence, for all Φ′ 6= Φ, kΦ′ = 0.

A path of the run synchronises if, and only if, there exists some state along that path that

is synchronised. A population model P synchronises if, and only if, all possible runs of the

model synchronise. In Figure 4.3 global state σ2 is synchronised, since k1 = N .

4.4 Model generation

Given a population model P = (∆, N, T,R, ε, µ), a PMC DX = (S, s0,P, L,X ) is con-

structed as follows. First, the set of model parameters is set to X = {µ}. The set of states

S is the set Γ∪{s0}. In the initial state s0 all oscillators are considered to be unconfigured,

and have not yet been assigned a value for their phase.

Multinomial coefficients are used to calculate the likelihood of permutations of a pop-

ulation of oscillators, for which the standard definition is provided.

Definition 21. The multinomial coefficient is an extension of the binomial coefficient
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that gives the number of ordered permutations of the elements of a multiset. Given a finite

multiset M, a permutation is an ordered arrangement of its elements, where each element

appears a number of times equal to its multiplicity in M. The number of permutations of

M is given by

(
n

m1,m2, . . . ,mi

)
=

n!

m1!m2! · · ·mi!
=

(
m1

m1

)(
m1 +m2

m2

)
· · ·
(
m1 +m2 + . . .+mi

mi

)
,

where m1, . . .mi are the multiplicities of the elements of M and n is the sum of those

multiplicities.

For each s ∈ S, where s ∈ Γ and s = 〈k1, . . . , kT 〉, we define

P(s0, s) =
1

TN

(
N

k1, . . . , kT

)
(4.1)

to be the probability of moving from s0 to a state where kΦ arbitrary oscillators are

configured with the phase value Φ for 1 6 Φ 6 T . The multinomial coefficient defines the

number of possible assignments of phases to distinct oscillators that result in the global

state σ. The fractional coefficient normalises the multinomial coefficient with respect to

the total number of possible assignments of phases to all oscillators. For every s ∈ S \{s0}

the probability of taking a transition to s′, a possible successor of s, is

P(s, s′) = Pτ (s, f), (4.2)

where s′ =
→

succ(s, f) for some f ∈ Fs. For all other s ∈ S \ {s0} and s′ ∈ S, where s 6= s′

and s′ 6∈ Next(s), P(s, s′) = 0. The set of labels of each s = 〈k1, . . . , kT 〉 ∈ S \ {s0} is set
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to L(s) = {synchronised} if, and only if,

T∨
Φ=1

kΦ = N

holds for that state, or is set to L(s) = ∅ otherwise. Observe that the set of all states

labelled with synchronised form a bottom strongly connected component of the underlying

graph GDX , since the successor of any synchronised state is also synchronised.

Automated model generation. The PMC is encoded using the PRISM language de-

scribed in Section 2.7.1, where a global state is a valuation for T finitely bound integer

variables ranging over [1 . . . N ]. A script was developed to automate both the generation

of the input files for PRISM, and the checking of PCTL properties against these models

using the model checker. Figure 4.4 illustrates the automation process. The script takes

as input a set of parameters defining the model, and a set of PCTL properties to check

against that model.

The model parameters given as input to the system consist of sets of valuations for

the parameters N , T , R, ε, and µ, and a definition for the perturbation function ∆.

Given a valuation for each of the model parameters, the formal model is programmatically

generated, where the probabilities for transitions between states are calculated directly as

defined in equations (4.1) and (4.2). A model is generated for all parameter instantiations

taken from the cartesian product of the sets of valuations for each of the parameters, and

the PCTL properties are checked against the model using PRISM. User-specified output

– for example the result, or model checking time – is written to a file that can be used by

statistical analysis tools. A sample file generated for N = 4, T = 5, ε = 0.1, R = 1, and

with the perturbation function defined in Section 4.5.1, is given in Appendix A.
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Figure 4.4: The automation of model generation and analysis for synchronisation models,
given value ranges for model parameters, and a set of PCTL properties to check.

4.5 Evaluation

This section discusses the properties of two synchronisation models taken from the liter-

ature. The formal model defined in Section 4.3 is instantiated for each synchronisation

model by providing a concrete definition for the perturbation function. Properties of inter-

est are then checked for different model instances using the model checker PRISM, and the

effects of varying parameters relating to the network (N , ε), oscillator dynamics (T,R),

and environmental factors (µ), are discussed. Other case studies could also be consid-

ered for different models of synchronisation where the dynamics of oscillators, and their

interactions, can be described by some perturbation function.

The properties of interest are firstly, the probability a model eventually synchronises,

and secondly, the time needed to achieve synchronisation. The first property can be for-
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malised in PCTL as

P[F synchronised] ≡ P

[
F

(
T∨

Φ=1

kΦ = N

)]
,

the probability that an execution path of the model leads to a state that is labelled with

synchronised – that is, all oscillators in that state have the same phase.

To formalise the second property – the expected time taken to achieve synchronisation,

if it is achieved at all – a reward function is first defined for the PMC, as described in

Section 2.3. Given the PMC DX = (S, s0,P, L,X ) for a population model P let R be a

reward function for DX , where the reward for each state s ∈ S is given by

R(s) =


1
T if s 6= s0 and s 6|= synchronised

0 otherwise.

For all s, s′ ∈ S,R(s, s′) = 0. By assigning a reward of 1
T to each state where oscillators

are configured, and where the system is not synchronised, the accumulated reward along

an execution path yields the number of oscillation cycles taken to reach a synchronised

state. The corresponding property can now be formalised in PCTL as

R[F synchronised] ≡ R

[
F

(
T∨

Φ=1

kΦ = N

)]
.

Recall from the definition of reachability reward properties in Section 2.3 that a reward of

∞ is accumulated along a path that never reaches a set of target states. Hence, this is the

result that is obtained when checking the property in a model that does not synchronise.

The results of model checking two instantiations of the formal model are now presented.

For a network of synchronising sensor nodes, there are several attributes of interest that
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can be weighted against each other:

1. the probability of achieving synchrony,

2. the time taken to achieve synchrony,

3. the power consumption of the network.

Direct results for the first two desirable properties can be obtained by respectively checking

the properties P[F synchronised] and R[F synchronised] in the formal model. Reasoning

about the expected power consumption of a single node, or the network as a whole, requires

more specialised reward functions, and is explored in detail in Chapter 5. In WSNs,

communication is costly with respect to power consumption. Communication is either

active when sending a message, for example when a node fires and broadcasts its firing

signal, or passive, when receiving messages from other nodes. Hence, during periods where

a sensor does neither, the antenna can be shut down to save energy. In the formal model,

this interval of inactivity corresponds to the refractory period. That is, the longer the

refractory period is, the less energy will be consumed.

4.5.1 Mirollo and Strogatz synchronisation model.

The formal model is first instantiated as a discretisation of the Mirollo and Strogatz [117]

(M&S) model of synchronisation. The perturbation function is set to

∆(Φ, α, ε) = bΦαεe .

Observe that the perturbation induced by the firing of another oscillator increases linearly

with the phase of the perturbed oscillator. With this function fixed the models were

checked with respect to the two properties of interest, for the parameter space defined by
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Figure 4.5: Mirollo and Strogatz synchronisation: synchronisation probabilities for different
refractory periods.

considering all possible valuations from

N ∈ [3 . . . 7], T ∈ [4 . . . 10], R ∈ [0 . . . T ], ε ∈ {0.1, 0.2, . . . 1}, µ ∈ {0.1, 0.2, . . . , 1}.

Observe that for each instance we induce a DTMC by providing a concrete value for the

single parameter µ.

Figure 4.5 plots the probability of synchronisation for different rates of broadcast failure

against the refractory period for N = 7, T = 10, and ε = 0.1. We can extrapolate a

trade-off between a high refractory period and high synchronisation probability. As long

as the refractory period is less than half the oscillation cycle, synchronisation will be

achieved in almost all cases. Higher values for R result in a rapid drop in the probability

of synchronisation. The exceptions are the edge cases µ = 0, and µ = 1. Unsurprisingly,
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Figure 4.6: Mirollo and Strogatz synchronisation: synchronisation times for different rates
of broadcast failure.

if all firings result in broadcast failures (µ = 1), the probability of synchronisation is

almost zero. In fact, the only paths that synchronise in this case are those where the

first state along that path where the oscillators are configured (i.e. the successor state

of s0) is synchronised. The comparably bad synchronisation probabilities for µ = 0 may

seem surprising. If µ = 0 then all transitions in the model are taken deterministically,

excepting the initial transitions from s0 to states where oscillators are configured. This

can lead to unwanted cyclic behaviour, an artefact of the discreteness of the phase values,

where very minor perturbations to phase are ignored due to the rounding of values to

the nearest integer in the perturbation function, resulting in groups of oscillators staying

unsynchronised forever. Similar phenomena have also been observed in other approaches

used to model emergent synchronisation [56]. When some level of uncertainty is introduced

to the model perpetually asynchronous cycles no longer occur.
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Figure 4.6 plots the expected time taken for the model to synchronise. A higher refrac-

tory period results in less time being taken to achieve synchronisation when the probability

for broadcast failure is low. In general, a longer refractory period up to half the cycle length

improves the rate of convergence to synchrony, which is consistent with the findings of [42].

Furthermore, for high values of µ the differences in the times required to achieve synchro-

nisation for different refractory period lengths are negligible. Hence, a refractory period

of slightly less than half the cycle, with a low value for the coupling constant ε, is opti-

mal for this model of synchronisation, if shorter synchronisation times are desirable. As

ε is increased the results remain similar, but with a decrease in the time taken to achieve

synchronisation.

Mirollo and Strogatz proved that a system of interacting pulse-coupled oscillators with

no refractory period would always synchronise under the assumption of a convex pertur-

bation function, and higher values for ε would results in faster synchronisation rates. The

findings presented here are consistent with their results, however the effect of a refractory

period on the likelihood of synchronisation was also investigated. The exception is the

results obtained when the chance of broadcast failure is 0, or the coupling strength was set

to very low values. This is because unlike the oscillators analysed in the work of Mirollo

and Strogatz [115], oscillators in the formal model synchronise over discrete values, and

very minor induced perturbations are ignored due to the rounding of phase values to the

nearest discrete value.

4.5.2 Mean phase synchronisation model.

The formal model is now instantiated for a model of synchronisation similar to the work of

Breza [27]. For this model of synchronisation, when the phase of an oscillator is perturbed

by the firing of another oscillator it updates its phase to be the average of its current phase
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and the phase of the firing oscillator, which is fixed as T in the formal model. The model

as referred to as the mean phase (MP) synchronisation model.

Since the perturbation to phase is determined solely by the current phase of the firing

oscillator, and the oscillator receiving the firing message, the is no notion of coupling

strength between oscillators. Hence, in this model ε is ignored. However, the formal

model can still be instantiated to formalise such a protocol. The perturbation function is

instantiated as:

∆(Φ, α, ε) =
⌊
2−α(T (2α − 1) + Φ)

⌉
− Φ. (4.3)

Informally, the function calculates the result of iteratively taking the mean of the phase and

T , for α iterations, and returns the difference between this and the original phase. Note

that the perturbation induced by the firing of another oscillator is inversely proportional

to 2Φ.

Example 17. Consider the following situation where all oscillators are synchronising over

T = 10 discrete values, the perturbation function is instantiated as that in (4.3), and a

group of oscillators sharing phase 2 are perturbed by the firing of a group of three oscillators

where no broadcast failures occur. The perturbation induced by the firing would be given by

∆(2, 3, ε) =
⌊
2−3(10(23 − 1) + 2)

⌉
− 2

=

⌊
72

8

⌉
− 2

= 7,

which is what we would expect, since iteratively taking the average of the phase 2 with 10

three times yields 6, then 8, and finally 9; the perturbation is therefore 9− 2 = 7.
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Figure 4.7: Mean phase synchronisation: synchronisation probabilities for different refrac-
tory periods.

Models were generated for the parameter values examined for the M&S model of syn-

chronisation in Section 4.5.1, and again the models were analysed with respect to the two

properties of interest.

Figure 4.7 shows the probability of achieving synchronisation for different rates of

broadcast failure and lengths of refractory period. It has similar characteristics to Fig-

ure 4.5. For almost all values of µ the oscillators will always synchronise when the length

of the refractory period is less than half the length of the oscillation cycle. Again as ex-

pected, µ = 1 results in almost no synchronising runs, and µ = 0 creates cyclic behaviour

that leads to perpetual asynchrony. Here the MP synchronisation model is slightly more

robust than the M&S synchronisation model with loosely coupled oscillators. However, if

the coupling strength of the latter is increased, it performs even better. The results are

consistent with the findings of [27], who showed that refractory periods longer than half of
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Figure 4.8: Mean phase synchronisation: synchronisation times for different rates of broad-
cast failure.

they cycle length result in systems where sychrony is often not achieved.

Figure 4.8 shows the results of checking the time taken to achieve synchronisation.

In most cases, a short, but non-zero, refractory period results in shorter synchronisation

times. In general, it seems optimal to choose a short, non-zero length refractory period, if

shorter synchronisation times are desirable. When the probability of broadcast failure is

low, however, there are negligible differences for refractory periods of different lengths. If

robust communication is expected for a deployed network then a longer refractory period

should be chosen, to conserve energy.

4.5.3 Summary of the two synchronisation methods.

Both the Mirollo and Strogatz and mean phase synchronisation models perform well for

networks where the oscillators have refractory periods of length less than half the cycle
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length. However, the mean phase model is more robust with respect to broadcast failure

and also achieves shorter synchronisation times, making it a good choice for the synchro-

nisation of networks where many messages are expected to be lost, perhaps due to adverse

environmental effects, or for networks where synchronisation must be achieved rapidly.

4.5.4 Network synchronisation scalability.

Figures 4.9 and 4.10 plot the time taken to achieve synchronisation against the size of

the network for different broadcast failure probabilities, for the Mirollo and Strogatz and

mean phase synchronisation models respectively, where T = 10 and R = 1. For the M&S

model when µ > 0.3, increasing the number of nodes in the network results in shorter

synchronisation times, while higher rates of broadcast failure yields longer synchronisation

times. It is conjectured that the surprising peaks for µ 6 0.3 are again an artefact of

rounding values to the nearest integer, resulting in cyclic behaviour, similar to that observed

for the M&S model when µ ∈ {0, 1}. For the mean phase synchronisation model, longer

times to achieve synchronisation are again observed for higher rates of broadcast failure.

Similarly, increasing the population size results in shorter times to achieve synchronisation.

However, in this case the rate at which synchronisation time decreases, given an increase

in the size of the population, is more pronounced. Unlike the M&S model there are no

peaks in the graphs indicating undesirable asynchronous cyclic behaviour. For the M&S

model, low coupling strength resulted in minor perturbations to phase being ignored due

to rounding. In the mean phase model this does not occur, since the fractional part of the

calculated mean phase is always greater than, or equal to, 0.5.
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Figure 4.9: Synchronisation times for different number of oscillators for the Mirollo and
Strogatz synchronisation model.

4.5.5 Model checking scalability.

Using formal models to analyse networks of indistinguishable oscillators is a promising

approach. Network sizes of up to 7 oscillators were investigated, while other formal analyses

in the literature turned out to be infeasible for more than four nodes for fully-connected

networks [78]. The memory used, and time taken, by PRISM for exploring the reachable

state space of a single model, and for checking the probabilistic reachability property in

that model, are shown in Table 4.2. The increase in memory usage is as expected, and

differences between the two models are relatively small. The properties can be checked

in under a second. While this approach allows state space explosion to be postponed, we

cannot escape it completely. The major bottleneck is not the model checking time itself,

but rather state space exploration time. For individual models this was relatively short,

but accumulated greatly over the parameter space that was investigated, where thousands
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Figure 4.10: Synchronisation times for different number of oscillators for the mean phase
synchronisation model.

of individual models were constructed.

4.6 Population model refinement

In Section 4.3 formal models were constructed for populations of up to 7 synchronising

oscillators. Desirable properties could not be checked for larger populations, due to the

limited resources of the machine used for their analysis. To facilitate the analysis of larger

networks, a refinement of the population model is now presented. It is shown that the

refinement results in a significant decrease in the size of the model, and is equivalent to the

original model with respect to the reachability of global states where one or more oscillators

are firing.

First, states where one or more oscillators are about to fire, and states where no oscilla-
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Table 4.2: Memory for model checking and time for model construction, for T = 10, R = 1,
ε = 0.1, µ = 0.1.

M&S MP

N Memory(MB) Time(s) Memory(MB) Time(s)

3 124.63 0.09 131.30 0.09
4 161.33 0.37 162.42 0.43
5 262.62 1.65 261.39 1.61
6 592.94 5.28 610.20 5.42
7 1604.76 17.13 1495.59 16.88

tors will fire at all, are distinguished, and will be referred to as firing states and non-firing

states, respectively.

Definition 22. Given a population model P = (∆, N, T,R, ε, µ), a global state 〈k1, . . . , kT 〉 ∈

Γ is a firing state if, and only if, kT > 0. The set of all firing states of P is denoted by

ΓF, and the set of all non-firing states of P is denoted by ΓNF = Γ \ ΓF.

First, given a PMC DX = (S, s0,P, L,X ) let

|P| =|{(s, s′) | s, s′ ∈ S2 and P(s, s′) 6= 0}|,

|DX | =|S|+ |P|

denote the number of non-zero transitions in P, and the total number of states and non-zero

transitions in DX , respectively. Observe that |P| is the number of edges in GDX = (S, E),

the underlying graph of DX and is not used to denote the determinant of the matrix P.

Theorem 1. For every population model P = (∆, N, T,R, ε, µ) and corresponding PMC

DX = (S, s0,P, L,X ), there is a reduced model D ′X = (S ′, s0,P
′, L′,X ) where |D ′X | < |DX |

and unbounded-time reachability properties with respect to synchronised firing states in DX

are preserved in D ′X for all total well-defined evaluations for X . In particular, the states
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and transitions in DX are reduced in D ′X such that S ′ = S \ ΓNF and

|S ′| = 1 +
T (N−1)

(N − 1)!
,

|P′| 6 |P| − 2|ΓNF|

where ·(n) denotes the rising factorial.

The proof of the theorem follows, but first some preliminary properties of non-firing

states, and their relation to firing states, are defined.

Lemma 3. Every non-firing state sNF ∈ ΓNF has exactly one successor state, and in that

state all oscillator phases have increased by 1.

Proof. Given a non-firing state sNF = 〈k1, . . . , kT 〉 observe that as kT = 0 there is only one

possible failure vector for sNF, namely {?}T . The set of all successor states of sNF is then

the singleton

{ →succ(sNF, {?}T )}.

By construction we can then see that

updateΦ(sNF, {?}T ) = Φ + 1 for 1 6 Φ 6 T

UΦ(sNF, {?}T ) = {Φ− 1} for 1 < Φ 6 T

U1(sNF, {?}T ) = ∅.

The single successor state is then given by

→
succ(sNF, {?}T ) = 〈0, k1, . . . , kT − 1〉.
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Corollary 1. An immediate corollary of Lemma 3 is that a transition from any non-firing

state is taken deterministically, since for any σ ∈ ΓNF we have Pτ (σ, {?}T ) = 1.

4.6.1 Reachable state reduction.

Given a path s0 · · · sn−1sn where si ∈ ΓNF for 0 < i < n and s0, sn ∈ ΓF, we omit transitions

(si, si+1) for 0 6 i < n, and instead introduce a direct transition from s0, the first firing

state, to sn, the next firing state in the sequence. For any s = 〈k1, . . . , kT 〉 ∈ S let

δs = max{Φ | kΦ > 0 and 1 6 Φ 6 T}

be the highest phase of any oscillator in s. The successor state of a non-firing state is then

the state where all phases have increased by T − δs. Observe that T − δs = 0 for any

s ∈ ΓF.

Definition 23. The deterministic successor function
y

succ : Γ→ ΓF, given by

y
succ(〈k1, . . . , kT 〉) = {0}T−δs_〈k1, . . . , kδs〉,

maps a non-firing, or firing, state s to the next firing state reachable by taking T − δs

deterministic transitions. Observe that δsF = T for any firing state sF, and hence that

y
succ(sF) = sF.

The definition for the set of all successor states for some global state s ∈ S is updated

to incorporate the deterministic successor function.

Definition 24. Given a global state s ∈ S let
y

Next(s) be the set of all successor states of
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s, where

y
Next(s) = { y

succ(
→

succ(s, f)) | f ∈ Fs}.

Definition 25. Given a firing state sF ∈ ΓF let Pred(sF) be the set of all non-firing prede-

cessors of sF, where sF is reachable from the predecessor by taking some positive number of

transitions deterministically. Formally,

Pred(sF) = {s | s ∈ ΓNF and
y

succ(s) = sF}.

All states s ∈ Pred(sF) are referred to as deterministic predecessors of sF.

Then given DX = (S, s0,P, L,X ) with S = {s0} ∪ Γ let

S ′ = S \
⋃
s∈ΓF

Pred(s)

to be the reduction of S where all non-firing states from which a firing state can be reached

deterministically are removed.

Lemma 4. For any PMC DX = (S, s0,P, L,X ) with S = Γ ∪ {s0}, the reduction S ′ is

equal to ΓF ∪ {s0}.

Proof. Let P =
⋃
s∈ΓF Pred(s) be the set of all predecessors of firing states in ΓF. Since

S = Γ∪{s0} and S ′ = S \P we can see that S ′ = ΓF∪{s0} if, and only if, P = ΓNF. From

Definition 25 it follows that P ⊆ ΓNF. In addition, for any s ∈ ΓNF there is some state s′

such that s ∈ Pred(s′) and s′ =
y

succ(s) ∈ ΓF, hence ΓNF ⊆ P and the lemma is proved.

Lemma 5. For any PMC DX = (S, s0,P, L,X ) with S = Γ ∪ {s0}, the number of states
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in the reduction of S is given by

|S ′| = 1 +
T (N−1)

(N − 1)!
,

where ·(n) denotes the rising factorial.

Proof. Observe that there are
(
N+T−1

N

)
ways to assign T distinguishable phase values to

N indistinguishable oscillators [58]. Since S = Γ ∪ {s0}, and Γ is the set of all possible

configurations for oscillators, it is clear that

|S| =
(
N + T − 1

N

)
+ 1.

For any non-firing state sNF = 〈k1, . . . , kT 〉 ∈ ΓNF it is known from Definition 14 that

T∑
Φ=1

kΦ = N

and from Definition 22 that kT = 0, so it must be the case that

T−1∑
Φ=1

kΦ = N.

That is, there must be

(
N + T − 2

N

)

ways to assign T − 1 distinguishable phases to N indistinguishable oscillators, and so

|ΓNF| =
(
N + T − 2

N

)
.
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s0

si = 〈1, 1, 0, 0, 0, 0〉

si+1 = 〈0, 1, 1, 0, 0, 0〉

si+2 = 〈0, 0, 1, 1, 0, 0〉

si+3 = 〈0, 0, 0, 1, 1, 0〉

si+4 = 〈0, 0, 0, 0, 1, 1〉

P(s0, si)

P(s0, si+1)

P(s0, si+2)

P(s0, si+3)

P(s0, si+4)

P(si, si+1) = 1

P(si+1, si+2) = 1

P(si+2, si+3) = 1

P(si+3, si+4) = 1

Figure 4.11: Five possible initial configurations in S for N = 2, T = 6.

Since S ′ = S \ ΓNF from Lemma 4 it must be the case that

|S ′| = |S| − |ΓNF| = 1 +

(
N + T − 1

N

)
−
(
N + T − 2

N

)

= 1 +
(N + T − 1)!

N !(T − 1)!
− (N + T − 2)!

N !(T − 2)!

= 1 +
(N + T − 2)!

(N − 1)!(T − 1)!

= 1 +
T (N−1)

(N − 1)!
.

4.6.2 Transition matrix reduction.

The reduction in the number of non-zero transitions in the model is now described. First,

the removal of transitions from the initial state to non-firing states is illustrated using a

simple example, and secondly, the removal of transitions from firing states to any successor

non-firing states is shown.
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Figure 4.11 shows five possible initial configurations si, . . . , si+4 ∈ S for N = 2 oscil-

lators with T = 6 values for phase, where a transition is taken from s0 to each sj with

probability P(s0, sj). Any infinite run of DX where a transition is taken from s0 to one of

the configured states si, . . . , si+3 will pass through si+4, since all transitions (si+j , si+j+1)

for 0 6 j 6 3 are taken deterministically. Also, observe that states si, . . . , si+3 are not in

S ′, since si+4 is reachable from each by taking some number of deterministic transitions.

The probability of moving from s0 to si+4 in P′ is therefore set to be the sum of the prob-

abilities of moving from s0 to si+4 and from s0 to each of its predecessors in P. Generally,

given a state s ∈ S ′ where s 6= s0 the probability to take the transition from the initial

state to s is set as

P′(s0, s) = P(s0, s) +
∑

s′∈Pred(s)

P(s0, s
′).

Now the probability with which a transition is taken from a firing state to each of its

possible successors is calculated. For each firing state sF ∈ S ′ and each possible successor

s ∈
y

Next(sF) of sF, let FsF→s be the set of all possible failure vectors for sF for which the

successor of sF is s,

FsF→s = {f ∈ FsF | y
succ(

→
succ(sF, f)) = s}.

The probability with which a transition from sF to s is taken is then set to

P′(sF, s) =
∑

f∈F
sF→s

Pτ (sF, f).

Lemma 6. For a PMC DX = (S, s0,P, L,X ) with S = {s0} ∪ Γ, and its reduction
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D ′X = (S ′, s0,P
′, L′,X ), the transitions in P are reduced in P′ such that

|P′| 6 |P| − 2|ΓNF|.

Proof. From Lemma 4 |S ′| = |S \ ΓNF|, and hence |ΓNF| transitions from s0 to non-firing

states are not in P′, and from Lemma 3 there is one transition from each non-firing state to

its unique successor state that is not in P′. Since no additional transitions are introduced

in the reduction it is clear that |P′| 6 |P| − 2|ΓNF|.

4.6.3 Preservation of reachability properties

Lemma 7. For every PMC DX = (S, s0,P, L,X ), unbounded-time reachability properties

with respect to synchronised firing states in DX are preserved in its reduction D ′X for all

total well-defined evaluations for X .

Proof. This can be proved by showing that for every ./ ∈ {<,6,>, >} and every λ ∈ [0, 1],

if s0 |= P./λ[F synch] holds in DX then it also holds in D ′X . Assume that we have υ, some

total well-defined evaluation for X , yielding the DTMCs

DXυ = (S, s0,P[Dom(υ)/υ], L,Xυ),

D ′Xυ = (S ′, s0,P[Dom(υ)/υ]′, L′,Xυ).

From the semantics of PCTL over a DTMC we have

s0 |= P./λ[F synch] ⇔ Pr{ω ∈ Paths | ω |= F synch} ./ λ,
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and need to show that

PrDXυ {ω ∈ PathsDXυ | ω |= F synch} = PrD′Xυ {ω′ ∈ PathsD′Xυ | ω′ |= F synch},

where PrDXυ and PrD′Xυ denote the probability measures with respect to the sets of infinite

paths from s0 in DXυ and D ′Xυ respectively.

Given a firing state sF ∈ S let Paths
DXυ
sF denote the set of all infinite paths of DXυ

starting in s0 where the first firing state reached along that path is sF. All such sets for all

firing states in S form a partition, such that

⋃
sF∈ΓF

Paths
DXυ
sF = PathsDXυ .

Now observe that any infinite path of DXυ can be written in the form

ω = s0ω
NF
1 s

F
1ω

NF
2 s

F
2 · · ·

where sF
i is the ith firing state in the path and each

ωNF
i = s1

i s
2
i · · · s

ki
i

is a possibly empty sequence of ki non-firing states. Then for every such path in DXυ there

is a corresponding path of D ′Xυ without non-firing states, and of the form

ω′ = s0s
F
1s

F
2s

F
3 · · · ,

since sji ∈ Pred(sF
i) for all i > 1 and all 1 6 j 6 ki. As only deterministic transitions have
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been removed in D ′Xυ observe that

PrDXυ {sF
1ω

NF
2 s

F
2 · · · } = PrD′Xυ {sF

1s
F
2s

F
3 · · · }.

Hence, only the finite paths from s0 to sF
1 need to be considered. To that end, observe that

there are |Pred(sF
1)| possible prefixes for each path from s0 to sF

1 where the initial transition

is taken from s0 to some non-firing predecessor of sF
1, plus the single prefix where the initial

transition is taken to sF
1 itself. Overall there are exactly |Pred(sF

1)|+1 distinct finite prefixes

that have ω′ as their corresponding path in D ′Xυ . The set of these prefixes for a path ω′ of

D ′Xυ is denoted by Pref(ω′). Since the measure of each finite prefix extends to a measure

over the set of infinite paths sharing that prefix, it is sufficient to show that the sum of the

probabilities for these finite prefixes is equal to the probability of the unique prefix s0, s
F
1

of ω′, that is

PrDXυPref(ω′) = PrD′Xυ {s0, s
F
1}.

This can be written as

PrDXυPref(ω′) = P[Dom(υ)/υ](s0, s
F
1) +

∑
s∈Pred(sF

1)

P[Dom(υ)/υ](s0, s) · 1ks

= P[Dom(υ)/υ](s0, s
F
1) +

∑
s∈Pred(sF

1)

P[Dom(υ)/υ](s0, s),

where ks is the number of deterministic transitions that lead from s to sF
1 in DXυ . Now

recall that for any s ∈ S ′ \ {s0},

P′(s0, s) = P(s0, s) +
∑

s′∈Pred(s)

P(s0, s).
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Table 4.3: Reduction in state space and transitions for different model instances.

DX D ′X Reduction (%)
N T States Transitions States Transitions States Transitions

3 6 113 188 22 52 80.5 72.3
5 6 505 1030 127 389 74.9 62.2
8 6 2575 7001 793 3154 69.2 54.9
3 8 241 410 37 97 84.6 76.3
5 8 1585 3250 331 1097 79.1 66.2
8 8 12871 34615 3433 14519 73.3 58.1
3 10 441 752 56 156 87.3 79.3
5 10 4005 8114 716 2484 82.1 69.4
8 10 48621 128936 11441 50883 76.5 60.5

It has been shown that PrDXυPref(ω′) = PrD′Xυ {s0, s
F
1} and the lemma is proved.

4.6.4 Proof and empirical analysis

Proof of Theorem 1. Follows from Lemmas 5 and 6 for the reduction of states and transi-

tions respectively, and from Lemma 7 for the preservation of unbounded time reachability

properties.

Table 4.3 shows the number of reachable states and transitions of the PMC, and cor-

responding reduction, for different population sizes (N) and oscillation cycle lengths (T ),

using the Mirollo and Strogatz model of synchronisation discussed in Chapter 4.5.1. The

number of reachable states is stable under changes to the parameters R, ε, and µ, since

every possible firing state is always reachable from the initial state. For the results shown

here the parameters were arbitrarily set to R = 1, ε = 0.1. The underlying graph of the

model, and hence the number of transitions, is stable under changes to the parameter µ,

and is not of interest here.

Table 4.4 shows the number of transitions of the PMC, and corresponding reduction,

for various population model instances, and again uses the Mirollo and Strogatz model of
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Table 4.4: Reduction in transitions for different population model instances.

Transitions
N T R ε DX D ′X Reduction (%)

5 10 1 0.1 8114 2484 69.4
5 10 3 0.1 7928 2391 69.8
5 10 5 0.1 7568 2211 70.8
5 10 7 0.1 6976 1915 72.5
5 10 9 0.1 6006 1430 76.2
5 10 1 0.01 6006 1430 76.2
5 10 1 0.05 6426 1640 74.5
5 10 1 0.1 8114 2484 69.4
5 10 1 0.25 8950 2902 67.6
5 10 1 0.5 9382 3118 66.7

synchronisation. Increasing the length of the refractory period (R) results in an increase

in the reduction of transitions in the model. A longer refractory period leads to more

firing states where the firing of a group of oscillators is ignored. This results in succes-

sor states having oscillators with lower values for phase, and hence a longer sequence of

deterministic transitions (later removed in the reduction) leading to the next firing state.

Conversely, increasing the strength of the coupling between oscillators (ε) results in a de-

crease in the reduction of transitions in the model. For the Mirollo and Strogatz model of

synchronisation used here, increasing the coupling strength results in a linear increase in

the perturbation to phase induced by the firing of an oscillator. This results in successor

states of firing states having oscillators with higher values for phase, and hence a shorter

sequence of deterministic transitions leading to the next firing state.

4.7 Conclusion

A formal, parametric model for networks of pulse-coupled oscillators was presented, where

oscillation cycles are defined as sequences of discrete states. The model was instantiated
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for two models of synchronisation used for the coordination of wireless sensor networks or

robotic swarm systems. The parameter space was explored for each synchronisation model.

For each parameter valuation a model was automatically generated, encoded as a PMC.

The parametric influence on both the rate at which synchronisation occurs, and the time

taken for it to occur, were investigated, and trade-offs for parameter choices to minimise

the energy consumption of a network were discussed.

The formal model was then further refined. The state-space explosion typically encoun-

tered when model-checking was mitigated by collapsing sequences of transitions where there

are no interactions between oscillators and by removing all states of the model where no

oscillators fire. This resulted in a model that was equivalent to the original with respect

to the reachability of global firing states, but where the state space and number of non-

zero transitions of the model were reduced, allowing larger networks of oscillators to be

analysed.

A population model is appropriate when nodes in the network are indistinguishable

with respect to their behaviour, and when the network is fully coupled. To analyse dif-

ferent network topologies, for instance a network of fully connected subcomponents, each

subcomponent could be encoded as a single population model, and the product of all such

subcomponent models could then be analysed. While such an approach sounds promising,

encoding interactions between subcomponents would need to be defined, and further re-

finements to the model would clearly be necessary to offset the inevitable explosion in the

size of the explorable state space.

As discussed in Section 4.5, the total time taken to explore the state space for a single

parameter instantiation, and the total time taken to check desirable properties in those

models, accumulates greatly when exploring a large parameter space. For some parametric

models, small changes to a model parameter may result in relatively minor changes in the
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underlying graph – for example, the parameter R of the population model presented here,

where small changes to R result in the introduction, or removal, of a relatively small number

of transitions in the model. If this is the case, results from the analysis of the original model

can be used when analysing the model induced by the change in the parameter. This is

described in more detail in Chapter 6. Exploring the parameter space for model parameters

that do not induce structural changes can also be time consuming if the parameter space

is very large. Chapter 7 describes new techniques that allow such parameter spaces to be

explored more efficiently, in terms of resources used and time taken.

In the next chapter the binary notion of synchronisation introduced in this chapter is

extended to facilitate reasoning about different degrees of synchronisation for global states

of the model. It is then shown that by considering a subset of the state space of the formal

model presented in this chapter, properties of interest relating to the resynchronisation

of a destabilised network can be checked for much larger networks. Finally, new reward

functions are defined for the reduced model that allow formal reasoning about the expected

power consumption of a synchronising network (informally discussed in this chapter).
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Chapter 5

Power Consumption in Networks

of Pulse-Coupled Oscillators

Nature-inspired synchronisation protocols have been widely adopted to achieve consensus

within wireless sensor networks. In this chapter, an analysis of the the power consumption

of such protocols is conducted. In particular, the energy required to synchronise all nodes

across a network. The model of nature-inspired, pulse-coupled oscillators is used to achieve

network-wide synchronisation, and the formal model introduced in the previous chapter

is annotated with rewards for recording energy usage. An exhaustive analysis is then

carried out to calculate the resources consumed on each possible system execution. A

broad range of parameter instantiations are investigated, along with the trade-offs between

power consumption and time to synchronise. The results provides a principled basis for

the formal analysis of a broader range of large-scale network protocols.

Minimising power consumption is a critical design consideration for WSNs [129, 2].

Once deployed a WSN is generally expected to function independently for long periods

of time. In particular, regular battery replacement can be costly and impractical for
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remote sensing applications. Hence, it is important to reduce the power consumption of

the individual nodes by choosing low-power hardware and/or energy efficient protocols.

However, to make informed choices, it is also necessary to have good estimations of the

power consumption for individual nodes. While the general power consumption of the

hardware can be extracted from data sheets, estimating the overall power consumption of

different protocols is more demanding.

Surveys conducted by Irani and Pruhs [87] and Albers [2] investigated algorithmic prob-

lems in power management, in particular power-down mechanisms at the system and device

level. Soua and Minet provided a general taxonomy for the analysis of wireless network

protocols with respect to energy efficiency [136] by identifying the contributing factors of

energy wastage, for example packet collisions and unnecessary idling. More specifically,

Oller et al. analysed whether wake-up radio based medium-access control protocols are

more energy efficient than duty-cycle based protocols [119]. Detrimental effects such as

packet collisions can be overcome by allocating time slots for node communication. That

is, nodes in a network need to synchronise their clocks and use time slots for communication

to avoid packet collisions [128, 149].

The biologically inspired synchronisation protocols discussed in the previous chapter

are well-suited for WSNs, since centralised control is not required to achieve synchrony.

The protocols build on the underlying mathematical model of pulse-coupled oscillators[113,

117, 123]; integrate-and-fire oscillators with pulsatile coupling, such that when an oscillator

fires it induces some phase-shift response determined by a phase response function. Over

time mutual interactions can lead to all oscillators firing synchronously.

The population model presented in the previous chapter is extended with rewards to

associate different current draws with its states, thus enabling us to measure the energy

consumption of the overall network. An exhaustive analysis is then conducted using the
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probabilistic model checker PRISM, to investigate the average and worst-case energy con-

sumption for both the synchronisation of arbitrarily configured networks, and the restabil-

isation of a network, where a subset of oscillators desynchronised.

Exact time synchronisation, where all clocks always agree on their value, is never

achieved for real-world deployments of synchronising devices [15]. Hardware imperfections

result in different clock frequencies, environmental factors influence radio transmission,

and network congestion leads to package collisions and loss [85]. Consequently, the preci-

sion of synchronisation is not usually required to be exact, and it is often sufficient for all

oscillators to fire within some defined time window [15]. The size of this window depends

on the application. Some applications may require a very small window, for instance dis-

tributed sensing of mobile objects, while others may prefer energy efficiency at the cost

of synchronisation precision [128]. To this end we extend the binary notion of synchro-

nisation discussed in the previous chapter, and derive a new synchronisation metric from

the complex order parameter of Kuramoto [98], that captures the degree of synchrony of

a fully connected network of oscillators as a real value in the interval [0, 1].

The structure of the chapter is as follows. In Section. 5.1 related work is discussed.

Section 5.2 introduces the derived synchronisation metric. In Section 5.3 the reduced formal

population model of Chapter 4 is annotated with rewards corresponding to synchronisation

time and power consumption. Subsequently, in Section 5.4 it is shown how rewards for the

unreduced model can be translated into rewards for the reduced model. In Section 5.5 it

is shown how for some properties, larger networks of nodes can be analysed by considering

only a subset of the state space of the model. Then in Section 5.6 the results for certain

parameter instantiations are evaluated, and their trade-offs are discussed. with respect to

power consumption. Section 5.7 concludes the chapter.
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5.1 Related work

Heidarian et al. used model checking to analyse clock synchronisation for medium access

protocols [78]. They considered both fully-connected networks and line topologies with up

to four nodes. Model checking of biologically inspired coupled oscillators has also been

investigated by Bartocci et al. [6]. They present a subclass of timed automata suitable to

model biological oscillators, and a model checking algorithm. However, their analysis was

restricted to a network of three oscillators.

Wang et al. proposed an energy-efficient strategy for the synchronisation of pulse

coupled oscillators [147]. In contrast to this work, they consider real-valued clocks and

delay-advance phase response functions, where both positive and negative phase shifts can

occur. That is, if an oscillator is perturbed within the first half of its oscillation cycle the

perturbation is negative, while in the second half of the cycle the perturbation is positive. A

result of their choice of phase response function is that synchronisation time is independent

of the length of the refractory period, in contrast to the discrete model presented in the

previous chapter. Furthermore, they assume that the initial phase difference between

oscillators has an upper bound. They achieve synchrony for refractory periods larger than

half the cycle, while the models presented here do not always synchronise in these cases, as

a bound is not imposed on the phase difference of the oscillators. All possible differences in

phase are considered, since we examine the energy consumption for the resynchronisation

of a subset of oscillators.

Konishi and Kokame conducted an analysis of pulse coupled oscillators where a per-

ceived pulse immediately resets oscillators to the start of their cycle [95]. Their goal was

to maximise refractory period length, while still achieving synchronisation within some

number of clock cycles. Similarly to this work, they restricted their analysis to a fully cou-

pled network. They assumed that the synchronisation protocol was implemented as part
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of the physical layer of the network stack by using capacitors to generate pulses, therefore

their clocks were continuous and had different frequencies. Here the assumption is that the

synchronisation protocol resides on a higher layer, where the clock values are discretised

and oscillate with the same frequency.

5.2 Synchronisation metric

As discussed in the introduction to this chapter, exact time synchronisation where all

clocks always agree on their value, is often neither achieved, nor required, for real-world

deployments of synchronising devices, and instead it is often sufficient for all the oscillators

in a network to fire within some defined window of time. In this section a new metric for

sychronisation is defined; an extension of the work of Kuramoto [98]. The appropriateness

of the metric is later verified by the analysis conducted in Section 5.6.1.

In the previous chapter a binary metric of synchrony for a population model was in-

troduced. Given a population model P = (∆, N, T,R, ε, µ), a PMC DX = (S, s0,P, L,X )

was constructed, and a global state σ = 〈k1, . . . , kT 〉 ∈ Γ was labelled with

synchronised ≡
T∨

Φ=1

kΦ = N

if all oscillators in that state shared the same phase. Here, a state is either synchronised,

or not synchronised. However, it is clear that some global states appear to be closer

to achieving a truly synchronised state than others. Consider the global states σ1 =

〈0, 2, 0, 2, 0, 2〉 and σ2 = 〈0, 0, 0, 0, 1, 5〉 of some population model for a network of N = 6

nodes with an oscillation cycle over T = 6 discrete values. Using the binary notion of

synchrony all that is known is that both states are not synchronised (i.e. neither state is

〈0, 0, 0, 0, 0, 6〉). However, it is clear that for nearly all models of synchronisation encoded
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as some perturbation function, σ2 appears to be closer to converging to a state where all

oscillators share the same phase, since five oscillators already share the same phase.

The binary notion of synchrony can be extended by introducing a phase coherence

metric for the level of synchrony of a global state. The metric is derived from the order

parameter introduced by Kuramoto [98] as a measure of synchrony for a population of

coupled oscillators. We represent the phases of the oscillators as vectors on the unit circle

in the complex plane.

Definition 26. The function φC : [1 . . . T ] → C maps a phase value to a corresponding

vector on the unit circle in the complex plane, and is defined as φC(Φ) = eiθΦ, where

θΦ = 2π
T (Φ− 1).

Example 18. Given the global state 〈1, 0, 1, 0, 1, 0, 1, 0〉 of a population model where N = 4

and T = 8, Figure 5.1 shows the corresponding vectors on the unit circle in the complex

plane. Phase vectors are calculated for oscillator phases 1, 3, 5, and 7 as

θ1 =
2π

8
(1− 1) = 0 φC(1) =eiθ1 = ei·0 = 1,

θ3 =
2π

8
(3− 1) =

π

2
, φC(3) =eiθ3 = e

iπ
2 = i,

θ5 =
2π

8
(5− 1) = π, φC(5) =eiθ5 = eiπ = −1,

θ7 =
2π

8
(7− 1) =

3π

2
, φC(7) =eiθ7 = e

3π
2 = −i.

A measure of synchrony η ∈ [0, 1] can be obtained by calculating the magnitude of the

complex number corresponding to the mean of the phase vectors. A global state has a

maximal value of η = 1 when all oscillators are synchronised and share the same phase Φ,

mapped to the vector defined by φC(Φ). It then follows that the mean vector is also φC(Φ)
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Figure 5.1: Argand diagram of the
phase vectors for the global state
〈1, 0, 1, 0, 1, 0, 1, 0〉.
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Im
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−1
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Figure 5.2: Mutual counterpoise achieved
for the global state 〈0, 1, 0, 0, 0, 1, 0, 0〉.

and |φC(Φ)| = 1. A global state has η = 0 when the mean of all phase vectors is the zero

vector. This occurs when the phase vectors achieve mutual counterpoise, for example when

N
2 oscillators share some phase value Φ and the remaining N

2 oscillators have a phase value

whose corresponding vector on the complex plane is the negation of the complex conjugate

of φC(Φ).

Example 19. Given the global state 〈0, 1, 0, 0, 0, 1, 0, 0〉 of a population model where N = 2

and T = 8, Figure 5.2 shows the corresponding positions on the unit circle in the complex

plane for phases 2 and 5. Here mutual counterpoise is achieved, as N
2 = 1 oscillator has

phase value 2, the remaining N
2 = 1 oscillator has phase value 5 and φC(2) = e

iπ
4 = 1+i√

2
is

the complex conjugate of φC(5) = e
i5π
4 = −1+i√

2
.

Definition 27. The phase coherence function PCF : Γ → [0, 1] assigns a measure of

149



φC(6)

φC(7) φC(10)

Im

Re

θ6
θ7
θ10

1−1

i

−i

Φ

Figure 5.3: Argand diagram of the phase vector for the global state 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉,
and mean phase vector Φ.

synchrony to each global state, and is defined as

PCF(〈k1, . . . , kT 〉) =

∣∣∣∣∣ 1

N

T∑
Φ=1

kΦφ
C(Φ)

∣∣∣∣∣ .

Example 20. Figure 5.3 shows a plot on the complex plane of the phase vectors for some

global state

σ = 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉

of a population model where N = 8, T = 10 The phase vectors are given by φC(6) = eiπ for

2 oscillators with phase 6, φC(7) = e
6iπ
5 for 1 oscillator with phase 7, and φC(10) = e

9iπ
5
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for 5 oscillators with phase 10. The phase coherence can then be determined as

PCF(σ) =

∣∣∣∣18(2eiπ + e
6iπ
5 + 5e

9iπ
5 )

∣∣∣∣ = 0.4671.

The mean phase vector is indicated on the diagram by Φ.

Later in Section 5.6 this metric is used to analyse the expected power consumption of

a networks of nodes that must achieve some desirable degree of synchrony.

5.3 Reward functions for time and power consumption

The reduced models are now annotated with rewards for which expected values over runs

of the model can be obtained. For a network of WSN nodes the properties of interest are

the time taken for the network to reach a state where some desirable degree of synchrony

has been achieved, and the power consumption of the network.

5.3.1 Synchronisation time

The properties of interest here are the mean and maximum times taken for a network of

WSN nodes to reach a state where some desirable degree of synchrony has been achieved.

By accumulating the reward along a path until such a state is reached a measure of the

time taken to synchronise can be obtained. We denote the reward function corresponding

to synchronisation time by Rt.

Recall that deterministic transitions are omitted in the reduced model, and instead a

transition is taken directly from a firing state to the next firing state. For each firing state

sF recall that

y
Next(sF) = { y

succ(
→

succ(sF, f)) | f ∈ FsF},
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is the set of all possible successor firing states of sF. For each s ∈
y

Next(sF), with corre-

sponding failure vector f ∈ FsF for sF and successor state
→

succ(sF, f) = 〈k1, . . . , kT 〉 in the

unreduced model, the highest phase of any oscillator in its successor state is given by

δ = max{Φ | kΦ > 0 and 1 6 Φ 6 T}.

From Definition 23 it is then clear that in the unreduced model T − δ deterministic tran-

sitions would have been taken from
→

succ(sF, f) to the next firing state

y
succ(

→
succ(sF, f)).

Therefore, the reward for taking a transition from sF to s is set to

Rt(sF, s) =
T − δ
T

.

The detailed calculation for the reward for taking a transition from the initial state

to some firing state sF is more involved, and is discussed in more detail in Section 5.4.

By observing that each path of the reduced model, where sF is the first firing state along

that path, corresponds to several paths of the unreduced model, the reward is obtained

by taking the sum of the total number of initial deterministic transitions taken to sF

across such paths, weighted by the probability of taking each path, and where the total is

normalised by the probability of taking any of those paths.

5.3.2 Power consumption

The property of interest here is the total power consumed by a network of WSN nodes to

reach a state where some desirable degree of synchrony has been achieved. We denote the
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reward function corresponding to synchronisation time by Rp. Let Iid, Irx, and Itx be the

current draw in amperes for the idle, receive, and transmit modes, V be the voltage, C

be the length of the oscillation cycle in seconds, and M be the time taken to transmit a

synchronisation message in seconds. The power consumption in Watt-hours of one node

for one discrete step within its refractory period, that is, the node is in the idle mode, is

Wid =
IidV C

3600T
.

Similarly, if the node is outside of the refractory period, that is, it is in the receive mode,

the corresponding power consumption is defined by

Wrx =
IrxV C

3600T
.

Finally, let

Wtx =
ItxVM

3600

be the power consumption in Watt-hours to transmit one synchronisation message. The

power consumption of the network consists of the power necessary to transmit the syn-

chronisation messages, and that of the node in the idle and receive modes.

We associate a reward with each state s = 〈k1, . . . , kT 〉 that corresponds to the total

power consumption for nodes in the idle and receive modes in that state,

Rp(s) =

R∑
Φ=1

kΦWid +

T∑
Φ=R+1

kΦWrx.

For any firing state sF and any failure vector f for that state, the power consumed by

the network to transmit synchronisation messages and then reach the next firing state is
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equivalent to the accumulation of the power consumption of the network in sF and all

non-firing successor states of sF in the unreduced model – those that are skipped in the

transition from sF to
y

succ(
→

succ(sF, f)) in the reduced model. Given

→
succ(sF, f) = 〈k1, . . . , kT 〉,

the successor of sF with respect to f in the unreduced model, let δ = max{Φ | kΦ >

0 and 1 6 Φ 6 T} be the maximal phase of any oscillator in that state. The reward for

taking the transition from sF to
y

succ(
→

succ(sF, f)) is then given by

Rp(sF,
y

succ(
→

succ(sF, f))) = k1Wtx +

(T−δ)−1∑
j=0

R−j∑
Φ=1

kΦWid +
δ∑

Φ=(R+1)−j

kΦWrx

 ,

where k1Wtx is the total power consumption for the transmission of k1 synchronisation

messages, and where the summand accumulates the power consumption over
→

succ(sF, f)

and subsequent (T − δ) − 1 non-firing states. The left and right and right summands

inside the brackets accumulate the power consumption of nodes within, and outside of the

refractory period, respectively.

Again the detailed calculation for the reward for taking a transition from the initial

state to some firing state sF is more involved, and is discussed in more detail in the next

section.

5.4 Reward functions for reduced models

In the previous section, two reward functions were defined for the reduced population model

that encoded rewards accumulated across the states and transitions removed as part of the

model reduction process. The definitions are now generalised so that a reward function for
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the reduced model can be derived from any reward function for the unreduced model.

Theorem 2. For every population model P with corresponding PMC DX = (S, s0,P, L,X )

and reduction D ′X = (S ′, s0,P
′, L′,X ) of DX , and for every reward function R for DX ,

there is a reward function R′ for D ′X such that unbounded-time reachability reward prop-

erties with respect to synchronised firing states in DX are preserved in D ′X for all total

well-defined evaluations for X .

Given a reward function R for DX the corresponding reward function for D ′X is con-

structed as follows:

• There is no reward for the initial state, since oscillators are not configured here, and

R′(s0) = 0.

• For every firing state sF in S with R(sF) = r also R′(sF) = r.

• For every pair of distinct firing states sF
1, s

F
2 ∈ S ′, where there is a non-zero transition

from sF
1 to sF

2 in D ′X , there is a (possibly empty) sequence sNF
1 · · · sNF

k of k deterministic

predecessors of sF
2 in S such that k > 0 implies P(sF

1, s
NF
1 ) > 0, P(sNF

k , s
F
2) = 1, and

P(sNF
i , s

NF
i+1) = 1 for 1 6 i < k. The reward for taking the transition from sF

1 to sF
2

in D ′X is set to be the sum of the rewards that would be accumulated across that

sequence by a path in DX , formally

R′(sF
1, s

F
2) = totalR(sF

1s
NF
1 · · · sNF

k s
F
2).

• For every firing state sF in S ′ there is a non-zero transition from the initial state s0

to sF in P′. Therefore, all paths of D ′X where sF is the first firing state along that

path share the same prefix, namely s0, s
F. For paths of DX this is not necessarily

the case, since sF is the first firing state not only along the path where the initial
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transition is taken to sF itself, but also along any path where the initial transition is

taken to a non-firing state from which a sequence of deterministic transitions leads

to sF (that state is a deterministic predecessor of sF). We therefore set the reward

along a path ω′ = s0s
F
1s

F
2 · · · for taking the initial transition to sF in D ′X to be the

sum of the total rewards accumulated along all distinct path prefixes of the form

s0ω
NFsF, normalised by the total probability of taking any of these paths, where ωNF

is a possibly empty sequence of deterministic predecessors of sF, and where the total

reward for each prefix is weighted by the probability of taking the transitions along

that sequence,

R′(s0, s
F) =

∑
ωpre∈Pref(ω′) totalR(ωpre)PrDX {ωpre}

PrD′X {s0sF
1}

Proof of Theorem 2. It is sufficient to show that for every reward function R for DX and

corresponding reward function R′ for D ′X , every ./ ∈ {<,6,>, >} and every r ∈ R, if

s0 |= R./r[F synch] holds in DX then it also holds in D ′X . Assume that we have some total

well-defined evaluation for X , yielding the DTMCs

DXυ = (S, s0,P[Dom(υ)/υ], L,Xυ),

D ′Xυ = (S ′, s0,P[Dom(υ)/υ]′, L′,Xυ).

Let XSat(F synch) and X ′Sat(F synch) respectively denote the random variables over PathsDXυ (s0)

and PathsD′Xυ (s0) whose expectations correspond to R and R′. From the semantics of
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PCTL over a DTMC,

s0 |= R./r[F synch] ⇔ E[XSat(synch)] ./ r

⇔
∑

ω∈Paths

XSat(synch)Prs0{ω} ./ r.

Therefore, if is sufficient to show that

∑
ω∈PathsDXυ

XSat(synch)(ω)PrDXυ {ω} =
∑

ω′∈Paths
D′Xυ

X ′Sat(synch)(ω
′)PrD′Xυ {ω′}, (5.1)

where PrDXυ and PrD′Xυ denote the probability measures with respect to the sets of infinite

paths from s0 in DXυ and D ′Xυ respectively. There are two cases:

Firstly, if there exists some path of DXυ that does not synchronise then by definition

XSat(synch) =∞. Also, from Lemma 7 there is a corresponding path of D ′Xυ that does not

synchronise, and hence that X ′Sat(synch) = ∞. By definition the probability measure of all

paths of DXυ and D ′Xυ are strictly positive. Therefore, all summands of Equation 5.1 are

defined, and the expectation of both XSat(synch) and X ′Sat(synch) is ∞.

Secondly, the case where all possible paths of DXυ and D ′Xυ synchronise. First let

reduce : PathsDXυ → PathsD′Xυ

be the function mapping paths of DXυ to their corresponding path in the reduction D ′Xυ ,

reduce(s0ω
NF
1 s

F
1ω

NF
2 s

F
2 · · · ) = s0s

F
1s

F
2 · · · ,

where ωNF
i is the (possibly empty) sequence of deterministic predecessors of the firing state

sF
i . Let reduce−1(ω) denote the preimage of ω under reduce. Then the left side of (5.1) can
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be rewritten to

∑
ω′∈Paths

D′Xυ

∑
ω∈reduce−1(ω′)

XSat(synch)(ω)PrDXυ {ω}.

For any path ω of DXυ or D ′Xυ let prefs(ω) be the prefix of that path whose last state

is the first firing state along that path that is in the set Sat(synch). It is now sufficient to

show that the following holds for any path ω′ of D ′Xυ ,

∑
ω∈reduce−1(ω′)

XSat(synch)(ω)PrDXυ {ω} = X ′Sat(synch)(ω
′)PrD′Xυ {ω′}

∑
ω∈reduce−1(ω′)

totalR(prefs(ω))PrDXυ {ω} =
∑

ω′∈Paths
D′Xυ

totalR′(prefs(ω
′))PrD′Xυ {ω′}. (5.2)

Given some path ω let ω[i : j] denote the sequence of states in ω from the ith firing state

to the jth firing state along that path (inclusively). The notation ω[− : j] indicates that

no states are removed from the start of the path i.e. the first state is s0, and the notation

ω[i : −] indicates that no states are removed from the end of the path. By recalling that

Pr{s0s1 · · · sn} =
n∏
i=1

P(si−1, si)

we can see that

Pr{s0s1 · · · sn} = Pr{s0 · · · si}Pr{si · · · sn}

for any 0 < i < n. Also from (2.1) it is clear that for any reward function R,

totalR(s0 · · · sn) = totalR(s0 · · · si) + totalR(si · · · sn)
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holds for all 0 < i < n. Now (5.2) can be rewritten to

∑
ω∈reduce−1(ω′)

(totalR(prefs(ω)[− : 1]) + totalR(prefs(ω)[1 : −])) PrDXυ {ω[− : 1]} =

(
totalR′(prefs(ω

′)[− : 1]) + totalR′(prefs(ω
′)[1 : −])

)
PrD′Xυ {ω′[− : 1]}.

(5.3)

By the definition of R′ the right hand side of (5.3) can be rewritten as

((∑
ωpre∈Pref(ω′) totalR(ωpre)PrDXυ {ωpre}

PrD′Xυ {ω′[− : 1]}

)
+ totalR′(prefs(ω

′)[1 : −])

)
PrD′Xυ {ω′[− : 1]} =

∑
ωpre∈Pref(ω′)

(
totalR(ωpre)PrDXυ {ωpre}

)
+ totalR′(prefs(ω

′)[1 : −])PrD′Xυ {ω′[− : 1]}.

From Lemma 7 it is known that

PrD′Xυ {ω′[− : 1]} = PrDXυPref(ω′) =
∑

ωpre∈Pref(ω′)

PrDXυ {ωpre},

and hence

∑
ωpre∈Pref(ω′)

(
totalR(ωpre)PrDXυ {ωpre}

)
+

∑
ωpre∈Pref(ω′)

totalR′(prefs(ω
′)[1 : −])PrDXυ {ωpre} =

∑
ωpre∈Pref(ω′)

(
totalR(ωpre) + totalR′(prefs(ω

′)[1 : −])
)

PrDXυ {ωpre}.

(5.4)

Since Pref(ω′) is the set of all possible finite prefixes from the initial state s0 to the

first firing state sF
1, and since ω[− : 1] = prefs(ω)[− : 1] clearly holds,

⋃
ωpre∈Pref(ω′)

{ωpre} =
⋃

ω∈reduce−1(ω′)

{ω[− : 1]}. =
⋃

ω∈reduce−1(ω′)

{prefs(ω)[− : 1]}.
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Using this fact, and by observing that by definition

totalR′(prefs(ω
′)[1 : −]) = totalR(prefs(ω)[1 : −]),

(5.4) can be written as

∑
ω∈reduce−1(ω′)

(
totalR(prefs(ω)[− : 1]) + totalR′(prefs(ω

′)[1 : −])
)

PrDXυ {ω[− : 1]}.

This is the same as the left hand side of (5.3) and the theorem is proved.

5.5 Restabilisation

A network of oscillators is restabilising if it has reached a synchronised state, synchrony

has been lost due to the occurrence of some external event, and the network must then

again achieve synchrony. One could, for instance, imagine the introduction of additional

nodes with arbitrary phases to an established and synchronised network. While such a

change is not explicitly encoded within the population model, it can be represented by

partitioning the set of oscillators into two subsets. Let the parameter A be the number of

oscillators with arbitrary phase values that have been introduced into a network of N −A

synchronised oscillators, or to be the number of oscillators in a network of N oscillators

whose clocks have reset to an arbitrary value, where A ∈ N and 1 6 A < N . Destabilising

A oscillators in this way results in configurations where at least N − A oscillators are

synchronised, since the destabilised oscillators may coincidentally be assigned the phase of

the synchronised group. the set of initial configurations can be restricted by identifying
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the set

SA = {〈k1, . . . , kT 〉 ∈ S | ki > N −A for some 1 6 i 6 T},

where each s ∈ SA is a configuration for the phases such that at least N − A oscillators

share some phase and the remaining oscillators have arbitrary phase values. As the value

of A is decreased, the number of initial configurations for the phases of the oscillators (and

hence, states of the PMC) also decreases. Since the model does not encode the loss or

addition of oscillators it is clear that all global states where there are less than N − A

oscillators sharing the same phase are unreachable from any state in SA.

5.6 Evaluation

In this section, the results of model checking instantiations of the reduced population model

with respect to the property of interest are given – the expected power consumption of the

network to reach a state where some desirable degree of synchronisation has been achieved.

The models that are analysed in this section are again programmatically generated

using an extended version of the script described in Section 4.4, that generates rewards for

the models according to the reward functions defined in Section 5.4 and annotates model

states with their phase coherence, as defined in Section 5.2.

The phase response function is instantiated to correspond to the Mirollo and Strogatz

model of synchronisation presented in Chapter 4.5.1, where the perturbation induced by

the firing of other oscillators is linear in the phase of the perturbed oscillator and the

number of firing oscillators, and the coupling constant determines the slope of the linear

dependency: ∆(Φ, α, ε) = bΦαεe.

For many experiments ε is set to 0.1 and µ is set to 0.2. Of course, other analyses
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could have been conducted for different values for these parameters. For a real system,

the probability µ of broadcast failure occurrence is highly dependent on the deployment

environment. For deployments in benign environments a relatively low rate of failure

would be expected, for instance a WSN within city limits under controlled conditions,

whilst a comparably high rate of failure would be expected in harsh environments such

as a network of off-shore sensors below sea level. The coupling constant ε is a parameter

of the system itself. The results suggest that higher values for ε are always beneficial,

however this is because analysis is restricted to fully connected networks. High values for ε

may be detrimental when considering different topologies, since firing nodes may perturb

subcomponents of a network that have achieved local synchrony. However, such an analysis

is deferred to future work.

As an example, power consumption is analysed for values taken from the datasheet

of the MICAz mote [115]. The transceiver of the MICAz mote has several modes. It

can either transmit, receive, or remain idle. The idle and transmit modes are composed

of several sub-modes. The transmit mode has three sub-modes for different transmission

ranges, each of which influence the amount of current draw. The current draw of the idle

mode depends on whether the voltage regulator is turned on or off. To account for the

worst-case, only sub-modes with the maximal current draw are considered. The current

draw of the mote is then assumed to be

Itx = 17.4 mA in transmit mode,

Irx = 19.7 mA in receive mode,

Iid = 20 µA when the transceiver is idling.

The MICAz is powered by two AA batteries or an external power supply with a voltage of

2.7− 3.3 V . For consistency, it is assumed that the voltage of its power supply is 3.0 V .

162



5.6.1 Power consumption of a synchronising network

The power consumption and time taken for a fully connected network of oscillators to reach

a state where some desirable degree of synchrony has been achieved is now analysed, where

the granularity of the discrete oscillation cycle is given by T = 10. For this granularity

it was possible to analyse larger networks than those considered in Chapter 4. Given

the memory resources of the machine used for the analysis (16GB) networks of up to 10

oscillators could be analysed. However, since the cumulative model checking time over all

model instantiations was very large (The results shown in Figure 5.4a already amount to

80 distinct runs.) a network of size N = 8 was chosen for the analysis.

Figures 5.4a and 5.4b show both the average and maximal power consumption per

node (in mWh) and time (in oscillation cycles) needed to achieve some desirable degree

of synchrony, with respect to different lengths of the refractory period, where ε = 0.1 and

µ = 0.2. That is, they show the average, and maximal, power that is consumed (time that

is needed, respectively) for a system in an arbitrary state to reach a state where some degree

of phase coherence has been achieved. Let coherentλ be a predicate that holds for any state

s where PCF(s) > λ. Then for the average case, the corresponding PCTL property checked

is R[F coherentλ], with respect to the reward function Rp for power consumption and Rt for

synchronisation time. For the maximal case the max filter1 of the PRISM model checker

is used. This filter gives the maximum expected reward across all paths starting in states

that satisfy some given predicate. The desired maximal values are therefore obtained by

checking the property R[F coherentλ] against all states of the model where oscillators are

configured i.e. all s ∈ S \ s0, again with respect to the reward function Rp for power

consumption and Rt for synchronisation time. The results show that for both the average

and maximal cases the power consumption of the network increases monotonically with

1https://www.prismmodelchecker.org/manual/PropertySpecification/Filters
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Figure 5.4: Expected rewards for power consumption (a) and synchronisation time (b) for
a network of 8 nodes to achieve different degrees of phase coherence.
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Figure 5.5: The relationship between broadcast failure probability and power consumption.

the required degree of phase coherence, as expected, which validates the metric defined in

Section 5.2.

The much larger values obtained for R = 1 and phase coherence > 0.9 are not shown

here, to avoid distortion of the figures. The energy consumption for these values is ap-

proximately 2.4mWh, while the time needed is approximately 19 cycles. Observe that

only values for the refractory period R with R < T
2 are shown. For larger values of R not

all runs synchronise, as shown in Section 4.5, resulting in an infinitely large reward being

accumulated for both the maximal and average cases. Results are not presented for the

minimal power consumption (or time) as it is always zero, since all initial configurations

(global states) for oscillator phases are considered. In particular, runs where the initial

state is already synchronised are considered.

As expected when starting from an arbitrary state, the time and power consumption

increases monotonically with the order of synchrony to be achieved. On average, networks

with longer refractory periods (less than T
2 ) require less power for synchronisation, and
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take less time to achieve it. The only exception is that the average time to achieve syn-

chrony with a refractory period of four is higher than for two and three. However, if lower

phase coherence is sufficient then this trend is stable. In contrast, the maximal power

consumption of networks with R = 4 is consistently higher than of networks with R = 3.

In addition, the maximal time needed to achieve synchrony for networks with R = 4 is

higher than for lower refractory periods, except when the phase coherence is greater than

or equal to 0.9. Networks with a refractory period of three will need the shortest times to

synchronise, regardless of whether the maximal or average values are considered. Further-

more, the average power consumption for full synchronisation (phase coherence 1) differs

only slightly between R = 3 and R = 4 (less than 0.3mWh). Hence, for the given example,

R = 3 gives the best results. These relationships are stable even for different broadcast

failure probabilities µ, while the concrete values increase only slightly, as illustrated in

Figure 5.5, which shows the power consumption for different µ when ε = 0.1.

The general relationship between power consumption and synchronisation time is shown

in Figures 5.6a and 5.6b. Within these figures, different coupling constant values and

broadcast failure probabilities are not distinguished. The two values for R = 1, ε = 0.1

and µ ∈ {0.1, 0.2} are omitted in Figure 5.6b to avoid distortion of the graph, since the low

coupling strength and low probability of broadcast failure leads to longer synchronisation

times and hence higher power consumption. While this might seem surprising it has been

shown that uncertainty in discrete systems often aids convergence [56]. The relationship

between power consumption and time to synchronise is linear, and the slope of the relation

decreases for higher refractory periods. While the linearity is almost perfect for the average

values, the maximal values have larger variation. The figures again suggest that R = 3

is a sensible and reliable choice, since it provides the best stability in terms of power

consumption and synchronisation time. In particular, if the broadcast failure probability
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changes, the variations are less severe for R = 3 than for other refractory period lengths.

5.6.2 Power consumption for network restabilisation

The power consumption of a resynchronising network is now investigated. A network is

resynchronising if it has already achieved a synchronised state but some event has caused

synchrony to be temporarily lost. This event could be the clocks of one or more nodes

changing due to clock drift or some internal error, an environmental factor causing some

nodes to reset or temporarily lose connection to the network, or one or more new nodes

being introduced to an existing network. The approach presented in Section 5.5 greatly

decreases the state space of the models to be analysed, when compared to both the unre-

duced, and reduced, population models presented in the previous chapter, and hence allow

the network size to be increased significantly. In particular, the smallest network analysed

is already larger than that in the analysis above, while the largest is almost five times as

large.

The average power consumption per node for networks of size N ∈ {10, 15, . . . , 35},

where the oscillators are coupled with strength ε = 0.1, and broadcast failure probability

µ = 0.3, is shown in Figure 5.7. Here the power consumption until the system is in fully

synchronised is of interest, and the PCTL property checked is R[F coherent1] with respect

to the reward function Rp. The solid lines denote the results for a single redeployed node,

while the dashed lines represent the results for the redeployment of two and three nodes,

respectively. As expected, more nodes consume more energy to resynchronise. However,

it can also be seen that for higher refractory periods, the amount of energy needed is

more or less stable; in particular, for the case where R = 4, which is already invariant for

more than ten nodes. For smaller refractory periods, increasing the network size decreases

the average energy consumption. This behaviour can be explained as follows. The linear
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Figure 5.6: Average (a) and maximal (b) expected power consumption for different syn-
chronisation times.
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Figure 5.7: Power consumption for restabilisation for a range of network sizes.

synchronisation model implies that oscillators with higher phase values will incur higher

perturbation to their phase, and thus are more likely to fire. Hence, in general a larger

network will force the node to resynchronise faster. The refractory period determines how

large the network has to be for this effect to stabilise.

5.7 Conclusion

A new metric for synchronisation was introduced that extended the binary notion of syn-

chronisation used in the previous chapter. The metric facilitated reasoning about a network

of oscillators reaching some state where it has achieved some desirable degree of synchrony;

in particular, the property of interest investigated was the power consumed by such a net-

work to achieve that state. A suitable reward function was then defined that would encode

the rate of power consumption for a wireless sensor node, or member of a swarm, given

some concrete values for the power consumption of such a device. It was also shown that
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for any reward function for the unreduced model, there is a reward function for the re-

duced model that is equivalent with respect to unbounded reachability reward properties

for states where one or more oscillators are firing.

Properties relating to the restabilisation of a small number of oscillators – when the

network has synchronised, and synchrony has then been lost – in a network was then

discussed, and it was shown that only a fraction of the state-space of the model needs

to be explored, since only a small subset of the number of initial configurations for the

oscillators needs to be considered.

The introduced techniques were then used to analyse the power consumption for the

synchronisation and restabilisation of a network of MICAz motes, by instantiating the

reduced population model with the model of synchronisation defined by Mirollo and Stro-

gatz [117], and by instantiating the power consumption reward function using the values

taken from the datasheet for the mote [115]. Using the reduced model it was possible

to extend the size of the networks that could be analysed in the previous chapter, and

trade-offs between the time and power needed to synchronise for different lengths of the

refractory period (or duty-cycle of a node) were then discussed for these networks.

Results obtained using these techniques can be used by designers of WSNs to estimate

the overall energy efficiency of a network during its design phase. Unnecessary energy

consumption can be identified and rectified before network deployment. Also, the results

provide guidance for estimating the battery life of a network depending on the anticipated

frequency of restabilisations. Of course, these considerations only hold for the maintenance

task of synchronisation. The energy consumption of the functional behaviour has to be

examined separately.

It is clear that the approach is inhibited by the usual limitation of exact probabilistic

model checking for large-scale systems. This could be overcome by using approximated
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techniques, such as statistical model checking (see Section 2.6), or approaches based on

fluid-flow approximation extended with rewards [20]. This would, of course, come at the

expense of precision. An investigation of such a trade-off is deferred to future work. The

current approach is restricted to fully connected networks of oscillators. While this is

sufficient to analyse the behaviour of strongly connected components within a network,

further investigation is needed to assess different network topologies. To that end, several

interconnected population models could be used, thus modelling the interactions of the

networks subcomponents. Furthermore, topologies that change over time are of particular

interest. However, it is not obvious how the approach could be extended to consider

such dynamic networks. The work of Lucarelli and Wang may serve as a starting point

for further investigations [113]. Stochastic node failure, as well as more subtle models of

energy consumption, present significant opportunities for future extensions. For example,

in some cases, repeatedly powering nodes on and off over short periods of time might use

considerably more power than leaving them on throughout.
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Chapter 6

Incremental Verification of

Parametric and Reconfigurable

Markov Chains

The case studies presented in the Chapters 3, 4, and 5 explored the parameter space

for families of parametric probabilistic models. The method used was the same that is

often applied by practitioners: adjust the parameters, produce a model, and use a tool like

ePMC [71], PRISM [101], or Storm [45] to analyse it.

Parameters investigated were typical of these considered when evaluating distributed

systems, for instance the number of interacting entities, or the likelihood of interactions

between entities exhibiting some external factor. The reason to explore the parameter

space for models such as those investigated can be manifold. Depending on the appli-

cation, the analyst might simply want to obtain a feeling of how the parameters impact

on the behaviour. Another motivation is to see how the model behaves, compare it with

observations, and adjust it when it does not match the observations. Regardless of the
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reason to adjust the parameter, the changes often lead to structurally similar models.

When analysing hundreds of similar models, it becomes paramount to re-use as much of

the analysis as possible.

The effects of parameters that do not change the underlying graph of a model are

well-studied, however parameters that induce structural change have received less interest.

When analysing hundreds of parameterwise different, yet similar, models with such pa-

rameters, the time and resources taken can be reduced by re-using as much of the analysis

as possible at each step. Some parameters result in dramatic changes to the structure of

the underling model; others result in only minor changes where much of the information

obtained from the analysis of the previous instance can be re-used for its analysis.

In this chapter novel algorithms built on the state elimination procedures of Hahn [70]

discussed in Section 2.5 are introduced. The novelty is to heavily exploit the similarity

between instances of parametrised systems. When the parameter grows, the system for

the smaller value of the parameter is, broadly speaking, present in the larger system. This

observation is used to guide the state-elimination method for parametric Markov chains

in such a way, that the model transformations will start with those parts of the system

that are stable under increasing the parameter. It is argued that this can lead to a very

cheap iterative way to analyse parametric systems, and shown that the approach extends to

reconfigurable systems. Finally, it is demonstrated on two benchmarks that the approach

scales.

To recall from Section 2.5, state elimination is a technique that successively changes

the model by removing states. A state is removed, and the new structure has all successors

of this state as (potentially new) successors of the predecessors of this state, with the

respectively adjusted probabilities (and, if applicable, expected rewards). If these models

are changed in shape and size when adjusting with the parameters, then these changes
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tend to be smooth: small changes of the parameters lead to small changes of the model.

Moreover, the areas that change – and, consequentially, the areas that do not change—

are usually quite easy to predict, be it by an automated analysis of the model or by the

knowledge of the expert adjusting her model, who would know full well which parts do or

do not change when increasing a parameter. These insights inform the order in which the

states are eliminated.

When, say, the increase of a parameter allows for re-using all elimination steps but

the last two or three, then repeating the analysis is quite cheap. Luckily, this is typically

the case in structured models, for example those that can be inductively defined such as a

chain-, ring-, or tree-like structure. The Zeroconf protocol [13] is used here as a running

example of a structured model. Zeroconf is a protocol for the autonomous configuration

of multiple hosts in a network with unique IP addresses (Figure 6.1). When a host joins

the network, indicated by state i in the diagram, it selects an address uniformly at random

from a available addresses. If the network consists of h hosts then the probability that the

selected address is already in use is q = h
a .

The host then checks n times if the selected address is already in use by sending a

request to the network. If the address is fresh (which happens with a probability of 1− q),

none of these tests will fail and the address will be classed as new, indicated by state ok in

the diagram. If the address is already in use (which happens with a probability of q), then

each test is faulty. Collisions go undetected with some likelihood p due to message loss

and time-outs. When a collision is detected (which happens with a likelihood of 1 − p in

each attempt, provided that a collision exists), then the host restarts the process, denoted

by a transition back to state i in the diagram. If a collision has gone undetected after

n attempts then the host will incorrectly assume that its address is unique, indicated by

state err in the diagram.
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iok k k−1 . . . 1 err
1− q q p p p p

1− p
1− p

1− p

(a)

iok k+1 k k−1 . . . 1 err
1− q q p p p p p

1− p
1− p

1− p
1− p

(b)

Figure 6.1: The zeroconf protocol for n = k (a) and n = k + 1 (b), where n is the number
of attempts to check if the selected IP address is already in use.

While the Zeroconf protocol is also parametrised in the transition probabilities, the pri-

mary interest is their parametrisation in the structure of the model. Figures 6.1a and 6.1b

show the models for n = k and n = k + 1 successive checks after each selection of an

IP. These two models are quite similar: they structurally differ only in the introduction

of the single state k + 1, the removal of the transition (i, k), and the introduction of the

transitions (i, k+1), (k+1, k), and (k+1, i). If we are interested in calculating the function

that represents the probability of reaching the state err in both models, where this function

is given in terms of individual rational functions that label the transitions, then the struc-

tural similarities allow us to re-use the intermediate terms obtained from the evaluation

for n = k when evaluating for n = k + 1.

The structure of the rest of this chapter is as follows. The work presented here is

compared to similar approaches in the literature in Section 6.1. In Section 6.2, the novel

algorithms for the analysis of reconfigured models are introduced. The approach is then
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evaluated on two different types of parametric models and discussed in Section 6.3. Sec-

tion 6.4 concludes the chapter and outlines future work.

6.1 Related work

The techniques introduced in this chapter build on previous results in the area of parametric

Markov model checking and incremental runtime verification of stochastic systems.

Daws [41] considered Markov chains that are parametric in the transition probabilities,

but not in their graph structure. He introduced an algorithm to calculate the function that

represents the probability of reaching a set of target states for all well-defined evaluations

for a parametric Markov chain. For this, he interpreted the Markov chain under considera-

tion as a finite automaton, in which transitions are labelled with symbols that correspond

to rational numbers or variables. He then used state elimination [84] to obtain a regular

expression for the language of the automaton. Evaluating these regular expressions into

rational functions yields the probability of reaching the target states. One limiting factor

of this approach is that the complete regular expression has to be stored in memory.

Hahn et al. introduced [70] and implemented [69] a simplification and refinement

of Daws’ algorithm. Instead of using regular expressions, they stored rational functions

directly. This has the advantage that possible simplifications of these functions, such as

cancellation of common factors, can be applied on the fly. This allows memory to be saved.

It also provides a more concise representation of the values computed to the user. The

scope of the approach has also been extended from reachability, to additionally handle

accumulated reward properties. Several works from RWTH Aachen have followed up on

solution methods for parametric Markov chains [43, 88, 126]. This type of parametric model

checking has been used in [7] to build a model-repair framework for stochastic systems and

in [89, 90, 91] to reason about the robustness of robot controllers against sensor errors.
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The technique presented here borrows some ideas from the work of Kwiatkowska et

al. [102]. Their work considered MDPs that are labelled with parametric transition prob-

abilities. The authors did not aim to compute a closed-form function that represents

properties of a model, but rather to accelerate the computation of results for individual

instantiations of parameter values. Rather than state elimination, they used value iter-

ation and other methods to evaluate the model for certain parameter values. In doing

so, they could for instance, re-use computations for different instantiations of parameters

that only depend on the graph structure of the model that remains unchanged for different

instantiations.

Inspiration is also taken from Forejt et al. [60], where the role of parameters is different.

Forejt et al. described a policy iteration-based technique to evaluate parametric MDPs.

While they also considered parameters in [60] that can influence the model structure,

they would exploit similarities to inform the search for the policy when moving from one

parameter value to the next. The repeatedly called model checking of Markov chains, on

the other hand, is not parametric. The approach presented here is therefore completely

orthogonal, as the focus is on the analysis of Markov chains. In more detail, Forejt et al. [60]

used an incremental approach to find a good starting point for a policy iteration approach

for MDPs. The intuition is that an optimal policy is likely to be good, if not optimal, on

the shared part of an MDP that grows with a parameter. This approach has the potential

to find the policy in less steps, as less noise disturbs the search in smaller MDPs, but its

main promise is to provide an excellent oracle for a starting policy. Moreover, in the lucky

instances where the policy is stable, it can also happen that there is a part of the Markov

chain, obtained by using a policy that builds on a smaller parameter, that is outside of the

cone of influence of the changes to the model. In this case, not only the policy, but also

its evaluation is stable under the parameter change.
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6.2 Algorithms

A novel algorithm that substantially reduces the cost of recomputation of the parametric

reachability probability for a reconfigured PMC is now discussed. Recall that the goal is

to re-use information when recalculating reachability for a reconfigured PMC. This can be

achieved by choosing the order in which states are eliminated in the original PMC. The

general idea is that if the set of states where structural changes might occur is known a

priori, then state elimination can be applied to all other states first. States where structural

changes might occur are called volatile states.

6.2.1 Definitions

Definition 28. A volatile parametric Markov chain (VPMC), V = (S, s0,P,X ,Vol), is a

PMC augmented with a set Vol ⊆ S of volatile states.

An elimination ordering for a VPMC V is a bijection

≺V : S → {1, . . . , |S|}

that defines an ordering for the elimination of states in S, such that ≺V (s) < ≺V (s′) holds

for all s ∈ S \ Vol, s′ ∈ Vol, where ≺V (s) < ≺V (s′) indicates that s is eliminated before s′.

Observe that a volatile state in V is only eliminated after all non-volatile states.

Definition 29. A reconfiguration for a VPMC V = (S, s0,P,X ,Vol) is a PMC V R =

(SR, s0,P
R,X ), where SR is a set of states with {s0} ⊂ SR ∩ S, s0 is the initial state,

and X is the finite set of parameters for V . The reconfigured probability matrix PR is a

total function PR : SR × SR → QX such that, for all s, s′ ∈ SR where P(s, s′) is defined,

P(s, s′) 6= PR(s, s′) implies s, s′ ∈ Vol.

Given a VPMC V and a reconfiguration V R for V , a state s in S is
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S

SR

Vol ConRec Int

Figure 6.2: Venn diagram showing the consistent, reconfigured, and introduced states for
a VPMC V and reconfiguration V R.

• consistent in V R if s is also in SR, and the set of all predecessors and successors

of s remains unchanged in V R (that is preV (s) = preV R(s), postV (s) = postV R(s),

P(s1, s) = PR(s1, s) for every s1 ∈ preV (s), and P(s, s2) = PR(s, s2) for every

s2 ∈ postV (s)),

• reconfigured in V R if s is also in SR and s is not consistent,

• introduced in V R if s is neither consistent nor reconfigured.

The sets of all consistent, reconfigured, and introduced states are denoted by Con(V, V R),

Rec(V, V R), and Int(V, V R), respectively. Figure 6.2 shows the consistent, reconfigured,

and introduced states for V and V R.

Example 21. Consider the Zeroconf models from Figures 6.1a and 6.1b. Let

Zk = (S, i,P,X ,Vol)
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be a VPMC for n = k, such that

S = {1, . . . , k} ∪ {s0, i, err},

X = {p, q},

Vol = {i, k}.

Now let

Zk+1 = (SR, s0,P
R,X )

be a reconfiguration for Zk such that SR = S ∪ {k + 1}. Then

Con(Zk, Zk+1) = {1 . . . k − 1} ∪ {s0, err},

Rec(Zk, Zk+1) = {k, i},

Int(Zk, Zk+1) = {k + 1}.

6.2.2 Parametric reachability for VPMCs

Algorithm 6 was developed to compute the parametric reachability probability of some

target state in a VPMC V = (S, s0,P,X ,Vol) for a given elimination ordering for V ,

and is based on the state elimination algorithm described in Section 2.5. The procedure

Preprocess is the same as that presented in Algorithm 1, where states from which Ω are

unreachable are removed, and a new target state st is introduced to the model. Algorithm 6

computes a partial probability matrix P′, initialised as a zero matrix, that stores the

probability of reaching s2 from s1 via any eliminated non-volatile state, where s1, s2 are

either volatile states, the initial state, or the target state. It also computes an elimination
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Algorithm 6 Parametric reachability probability for VPMCs.

1: procedure VPMCParametricReachability(V , Ω, ≺V )
2: requires: a VPMC V = (S, s0,P,X ,Vol), a set of target states Ω ⊆ S, and an

elimination ordering ≺V for V .
3: S,P← Preprocess(V,Ω)
4: Elim← S \ {s0, st}
5: P′ ← 0|S|,|S| // partial probability matrix
6: mV ← ∅ // elimination map
7: while Elim 6= ∅ do
8: se ← arg min ≺V �m
9: for all (s1, s2) ∈ pre(se)× post(se) do

10: p = P(s1,se)P(se,s2)
1−P(se,se)

11: if s1 ∈ Vol ∪ {s0, st} and s2 ∈ Vol ∪ {s0, st} then
12: if se 6∈ Vol then
13: P′(s1, s2)← P′(s1, s2) + p
14: else
15: mV ← mV ⊕ {(se, s1, s2) 7→ p}
16: end if
17: end if
18: P(s1, s2)← P(s1, s2) + p
19: end for
20: Eliminate(V, se)
21: Elim← Elim \ {se}
22: end while
23: return (P(s0, st),P

′,mV )
24: end procedure

map mV , a function mapping tuples of the form (se, s1, s2), where se is an eliminated

volatile state and s1, s2 are either volatile states, the initial state, or the target state, to

the value computed during state elimination for the probability of reaching s2 from s1 via

se. The only transitions of interest are those between volatile states, the initial state, or

the target state, since all non-volatile states in any reconfiguration of V will be eliminated

first. Computed values for transitions to or from these states therefore serve no purpose

once they have been eliminated.
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Algorithm 7 Parametric reachability probability for a reconfigured VMPC.

1: procedure ReconfiguredParametricReachability(V , V R, Ω, ≺V , P′, mV )
2: requires: a VPMC V = (S, s0,P,X ,Vol), a reconfiguration V R = (SR, s0,P

R,X )
for V , a set of target states Ω ⊆ S, the elimination ordering ≺V for V , the partial
probability matrix P′, and the elimination map mV .

3: S,P← Preprocess(V,Ω)
4: M ← (Vol ∩ SR) ∪ {s0, st}
5: Elim← Con(V, V R) \M
6: Eliminate(V R,Elim)
7: Elim← Vol ∩ SR
8: Infected← Rec(V, V R)
9: PR(s0, st) = P′(s0, st)

10: while Elim 6= ∅ do
11: se ← arg min ≺V �Elim

12: if Infected ∩ Neigh(se) = ∅ then
13: for all (s′e, s1, s2) ∈ Dom(mV ) �{se}×M2) do
14: P′(s1, s2)← P′(s1, s2) +mV (s′e, s1, s2)
15: end for
16: Eliminate(V R, se)
17: else
18: for all {(s1, s2) ∈ SR × SR | s1 = se or s2 = se} do
19: PR(s1, s2)← PR(s1, s2) + P′(s1, s2)
20: P′(s1, s2)← 0
21: end for
22: V R ← StateElimination(V R, se)
23: Infected← Infected ∪ Neigh(se)
24: end if
25: Elim← Elim \ {se}
26: end while
27: for all se ∈ Int(V, V R) do V R ← StateElimination(V R, se)
28: return PR(s0, st)
29: end procedure
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6.2.3 Parametric reachability for reconfigured VPMCs

Given a reconfiguration V R = (SR, s0,P
R,X ) for V , an elimination ordering for V , and

the partial probability matrix and mapping computed using Algorithm 6, Algorithm 7

computes the parametric reachability probability for V R as follows. Firstly the set of

all non-volatile states of V and incident transitions are removed from V R, though state

elimination itself does not occur. A set of infected states is then initialised to be the set

of all states that are reconfigured in V R. Then, for every other remaining state that is

not introduced in V R, if that state or its neighbours are not infected this state is treated

as a non-volatile state. That is, P′ is updated with the corresponding values in mV and

the state and its incident transitions are removed without performing state elimination. If

the state, or one of its neighbours, is infected then the probability matrix is updated such

that all transitions to and from that state are augmented with the corresponding values

in P′. These entries are then removed from the mapping. Subsequently, state elimination

(Algorithm 3 in Section 2.5) is applied, and the infected area is expanded to include the

immediate neighbourhood of the eliminated state. Finally, state elimination is applied to

the set of all remaining introduced states in V R.

Example 22. Consider again the Zeroconf models from Figures 6.1a and 6.1b, and Ex-

ample 21. Recall that Zk = (S, i,P,X ,Vol) is a VPMC for n = k, with S = {1, . . . , k} ∪

{s0, i, err}, X = {p, q}, Vol = {i, k}, and Zk+1 = (SR, s0,P
R,X ) is a reconfiguration for

Zk with SR = S ∪ {k + 1}, and where

Con(Zk, Zk+1) = {1 . . . k − 1} ∪ {s0, err},

Rec(Zk, Zk+1) = {k, i},

Int(Zk, Zk+1) = {k + 1}.
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The property of interest is the parametric reachability probability of the state err. Note

that preprocessing removes the state ok from Zk since reach(ok, err) does not hold. As there

is only one target state, namely err, without loss of generality the introduction of a new

target state st is simply omitted here, and the same result can be obtained by eliminating all

states except the initial state i and the target state err. Now define an elimination ordering

for Zk

≺Zk= {1 7→ 1, 2 7→ 2, . . . , k 7→ k, i 7→ k + 1}.

State elimination then proceeds according to ≺Zk , and after the first k− 1 states have been

eliminated,

P′(k, err) = pk,

P′(k, i) =
k−1∑
j=1

(pj − pj+1).

Eliminating the remaining volatile states k and i then yields

mZk =


(k, i, err) 7→ qpk,

(k, i, i) 7→ q(1− pk),

(i, s0, err) 7→ qpk

1−q(1−pk)

 .

First, all states 1, . . . , k − 1 and their incident transitions are simply eliminated from

Zk+1, and the infected set is initialised to be {k, i}. Since k is already infected the probability
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matrix is updated as follows,

PR(k, err)← PR(k, err) + P′(k, err)

= 0 + pk

= pk,

PR(k, i)← PR(k, i) + P′(k, i)

= (1− p) +
k−1∑
j=1

(pj − pj+1)

=

k−1∑
j=0

(pj − pj+1)

= 1− pk.

State elimination is then applied to state k and the corresponding entries in P′ are set to

zero. The state of the model after this step is shown in Figure 6.3a. State i is also infected,

but this time there are no corresponding non-zero values in P′. State elimination is then

applied to state i resulting in the model shown in Figure 6.3b. Finally, state elimination

is applied to the single introduced state k+ 1, resulting in the model shown in Figure 6.3c,

and the algorithm terminates.

6.2.4 Extension to parametric Markov reward models

The algorithms can also be extended to PMCs annotated with rewards. The notion of

volatility is extended to PMRMs as follows. A state is volatile if structural changes might

occur in that state or if the reward labelling that state or an adjacent transition might

change. The constructions are straightforward. Algorithms 2 to 7 are extended to incor-

porate rewards. For Algorithm 2, in addition to updating the probability matrix for the
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Figure 6.3: Zk+1 after the elimination of states k (a), i (b), and k + 1 (c).

elimination of some state se, the state rewards are updated as follows,

R(s1)← R(s1) + P(s1, se)
P(se, se)

1−P(se, se)
R(se).

The updated value for R(s1) reflects the reward that would be accumulated if a transition

would be taken from s1 to se, where the expected number of self transitions would be

P(se, se)

1−P(se, se)
.
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Algorithm 6 then constructs additional mappings to record these computed expected re-

ward values, which are then used for reconfiguration in Algorithm 7.

6.3 Case studies

A prototypical implementation of the technique was developed, and a metric that can be

used for the evaluation of different models can be defined as the total number of arithmetic

operations performed for the elimination of all states in a model. The implementation

serves only to illustrate the potential of the method.

Two classes of models are analysed. Firstly, the family of Zeroconf protocols described

in the introduction to this chapter are discussed, and secondly the family of synchronisation

models presented in Chapters 4 and 5.

The prototype tool used for the analysis takes as input a set of model states and a set

of model transitions. The underlying graphs of Zeroconf models have simple structures,

and are programmatically generated by the tool itself. The underlying graphs of the

synchronisation models have more complex structures. A modified version of the script

described in Section 4.4 is used, where given a set of parameters defining the model the sets

of all sets and transitions of the model are generated, and are written to files in a format

that is widely accepted by probabilistic model checking tools, as illustrated in Figure 6.4.

6.3.1 Zeroconf

The property of interest is the reachability of the error state for the family of Zeroconf

models, parametrised in the number n of attempts, after which the protocol will (potentially

incorrectly) assume that it has selected an unused address. The initial model for n = 1 is

defined, its volatile region is determined as in Example 22, and Algorithm 6 is applied. At

each step we increment n and apply Algorithm 7 to the model. The set of volatile states
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Figure 6.4: The automation of low-level model generation for synchronisation models, given
a set of model parameters.

can always be identified at each step as the state i and the state introduced in the previous

step.

Figures 6.5a and 6.5b show the total number of performed arithmetic operations accu-

mulated during the incremental analysis of the models and the per instance and cumulative

ratios of the number of arithmetic operations performed for regular state elimination, re-

spectively. Each entry n = x corresponds to the incremental step from n = x to n = x+ 1.

This ratio shows the small share of the number of iterations required when the values

are calculated for a range of parameters using reconfiguration (repeated applications of

Algorithm 7), when compared to the naive approach to re-calculate all values from scratch

(applying Algorithm 6).

Figure 6.5a shows that the total number of operations is approximately quadratic in

the parameter when regular state elimination (applying Algorithm 6) is repeatedly applied

from scratch. This is a consequence of the number of operations for each parameter

being linear in the parameter value when naively applying Algorithm 6. This is in stark

contrast to the number of operations needed when the parameter is stepwise incremented
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Figure 6.5: Cumulative total of arithmetic operations performed for iterative analysis of
Zeroconf for n = 1 . . . 200 (a), and the per instance/cumulative ratios of total operations for
reconfiguration to total operations for regular state elimination, given as a percentage (b).

using Algorithm 7, in each case capitalising on the analysis of the respective predecessor

model. Here the update cost is constant, since the extent of structural change at each

step is constant. This leads to dramatic savings (quadratic vs. linear) when exploring the

parameter space, as illustrated by Figure 6.5b.

6.3.2 Oscillator synchronisation

The models described in Chapters 4 and 5, for the clock synchronisation of nodes in a

network, are now revisited. Recall that consensus on clock values emerges from interactions

between the nodes. The underlying mathematical model is that of pulse-coupled oscillators.

This family of models is parametric in the number N of nodes that form the network; the

granularity T of the discretisation of the oscillation cycle; the length R of the refractory

period, during which nodes ignores interactions with their neighbours; the strength ε of the

coupling between the oscillators; and finally the likelihood µ of any individual interaction

between two nodes not occurring due to some external factor. Each state of the model

corresponds to some global configuration for the network—a vector encoding the size of
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node clusters that share the same progress through their oscillation cycle. The target states

of interest are those in which all nodes share the same progression through their cycle and

are therefore synchronised.

Changing the parameters N and T redefines the encoding of a global network state.

This results in drastic changes to the structure of the model and therefore makes it hard to

identify volatile states. The prototypical implementation only considers low-level models

defined explicitly as a set of states and a transition matrix, which trivialises the identifica-

tion of volatile areas. Future implementation into a model checker, however, might allow

volatile states to be clearly identified by analysing the guards present in high-level model

description languages like the one described in Section 2.7.1.

Changing the parameter ε results in such significant changes in the structure of the

model and it is not clear how the synergistic effects that have been observed can be ported

to analysing its parameter space, while changing µ does not change the structure of the

underlying graph and hence is not of interest in this chapter.

Here, the focus is on the incremental analysis for the parameter R. Arbitrarily, N is

fixed to 5 and ε is fixed to 0.1, and the incremental analysis is repeated for four different

values for T . The parameter R varies from 1 to T (for each of the different values of T

considered).

Figures 6.6 and 6.7 show the cumulative total of performed arithmetic operations and

the per instance and cumulative ratios of the totals for regular state elimination to the totals

for reconfiguration given as a percentage, respectively. Each entry R = x corresponds to

the incremental step from R = x to R = x+ 1.

The effectiveness of the approach increases slightly as T increases. Incrementing R for

models with a higher value for T results in greater structural changes than for a model

with a lower value for T . This is because an increment to R of 1 corresponds to an increase
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Figure 6.6: Cumulative total of arithmetic operations performed for iterative analysis of
synchronisation models with respect to R.

of 1
4 in the length of the refractory period (in oscillation cycles), and therefore a larger

number of states and transitions are affected than when such an increment corresponds

to an increase of only 1
7 when T = 7. Increasing R up to half of the length of a cycle

increases the amount of structural change, and consequentially a decrease in the amount

of information that can be reused from the previous analysis at each step, while increasing

R past half the length of a cycle decreases the structural changes. The increase is because

the low value for the coupling strength (ε = 0.1) results in very small perturbations being

lost due to rounding, and hence the refractory period has a very minor effect when it is
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short. In the extreme case no structural changes occur at all in the step from R = 0 to

R = 1 for all instances of T , and all of the information from the analysis of the initial

instance R = 0 can be reused. The decrease is because as the length of the refractory

period increases past half of a cycle nearly all interactions between oscillators are lost, as

was shown in Figure 4.5. Eventually increasing the parameter has no effect and again all

of the information from the analysis can be reused, namely for the incremental step from

R = T − 1 to R = T . While for many individual instances the cost of incremental analysis

is low, the initial cost of constructing the first instance of the model cannot be avoided, as
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illustrated by the cumulative ratios.

Overall it is clear that, while still substantial, the gains here are not as pronounced

as those seen for the analysis of the Zeroconf protocol. This is to be expected, since

the structural changes induced by changing the parameter R are not constant for each

iteration.

6.4 Conclusion and future work

It is clear that the approach presented here works well for structured Markov chains, such

as chain-, ring-, or tree-like structures. The Zeroconf experiments evidence this by showing

that where the cost of model-checking an individual model grows linearly with a parameter,

model checking up to a parameter becomes linear in the maximal parameter considered,

whereas the overall costs grew quadratically if all models were considered individually.

Therefore, significant gains would be expected whenever changes can be localised and

isolated. Moreover, it is likely that this would be the norm, rather than the exception,

since chains, rings, and trees are common structures in models. For an analyst constructing

a specialised structure corresponding to some system of interest, it may be the case that a

closed form solution exists for the analysis of that structure. However, if the structure of

the model is slightly different, or if the analyst either fails to identify the existing solution,

or, knows it exists yet does not want to invest the time to research it, then a naive analysis

of the model needs to be conducted. The technique presented here provides a sweet spot

between these extremes: the speed is close to that for evaluating closed form solutions, but

applying the method does not put any burden on the analyst who creates the parametrised

model.

The limitation of this approach is that much of the advantage is lost when a change

in a parameter induces severe structural changes in the model. For the synchronisation
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protocols presented in Chapters 4 and 5, some model parameters changed the structure

of the model. For the parameters N , the number of nodes in the network, and T , the

granularity of the discretisation of the oscillation cycle, it is unclear how any similarity at

all can be identified between the two structures obtained when moving from one parameter

instantiation to the next by incrementing (or decrementing) one of the parameters, since

the encoding of a global state of the network is redefined for each instance. Incrementing

the parameter ε results in new models where the encoding of a state remains the same, but

where changes to the transitions in the underlying graph of the model appear sporadically

throughout the structure. Here the density of the graphs (observe for example, the initial

fan-out from the initial state to an initial configuration for the oscillators, as described

in Section 4.4) results in such structural changes having a huge cone of influence. In the

worst case, for example a fully-connected graph, a cubic overhead would be incurred [69].
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Chapter 7

Accelerated Model Checking of

Parametric Markov Chains

As discussed in Chapter 1, parametric Markov chains occur quite naturally in various

applications: they can be used for conservative analyses of probabilistic systems, to find

optimal settings for parameters, to visualise the influence of parameters, or to facilitate

the adjustment of a system in case parameters change. Unfortunately, these advancements

come at a cost: parametric model checking is very slow. When an analysis of a large family

of parametric probabilistic models is conducted, as was the case in Chapters 3 through 5,

it is often the case that either the parametric analysis takes a substantial amount of time,

or is not feasible at all, when the models are quite large. The analysis of families of models

is then reduced to instantiating the models for some set of parameter values, obtaining

results, and then re-instantiating the model when the parameters change.

A wide variety of existing techniques and tools can be used for the analysis of parametric

Markov chains. However, when analysing thousands of parameter instantiations their

analysis is often slow. The previous chapter investigated how the parametric analysis of

195



such families of models could be accelerated, when the parameters changing the model

structure are changed. In this chapter, new ideas are introduced for accelerating the

analysis when changes to model parameters do not result in changes in the underlying

graph; for instance when investigating the effect of environmental effects on communication

(broadcast failure) in Chapters 4 and 5.

As described in Section 2.5, the application of parametric model checking yields a

rational function corresponding to some simple temporal property or expected reward,

that can be evaluated for different parameter instances. Traditionally, co-prime polynomial

nominator-denominator representations have been used to represent rational functions.

During the analysis, it is often the case that there are few large common factors that

could be cancelled to simplify the function. This can result in the representation growing

in size and slowing down the analysis. This work proposes the use of arithmetic circuits

(ACs) to represent these functions. The arithmetic circuits are essentially directed acyclic

graphs (DAGs). Using ACs ensures that expensive methods are not required to cancel out

common factors, and common sub-expressions can be shared by different formulae, greatly

reducing the overall memory footprint.

The AC representation introduced here was integrated into the probabilistic model

checker ePMC. As was the case in the previous chapter, the backbone of the verification

technique used here was the state elimination algorithm of Hahn [70]. The extended tool

was then used to analyse a range of case studies, including the synchronisation models

introduced in Chapters 4 and 5. A speed-up of a hefty factor of 20 to 120 when compared

to storing functions in terms of co-prime numerator and denominator polynomials.

In section 7.2 it is shown how ACs can be used for the representation of rational

functions, and are constructed during the successive elimination of states from the model.

In Section 7.3, the approach is evaluated on a range of benchmarks, and the chapter is
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concluded in Section 7.4.

7.1 Related work

Daws [41] devised a language-theoretic approach for the parametric model checking of

discrete-time Markov chains. In this approach, the transition probabilities are considered

as letters of an alphabet, and the model can be viewed as a finite automaton. Then, based

on the state elimination method [84], a regular expression that describes the language

of such an automaton is calculated. In a post-processing step, this regular expression is

recursively evaluated, resulting in a rational function over the parameters of the model.

This approach was extended and tuned in [70] so as to operate with rational functions,

which are stored as co-prime numerator and denominator polynomials, rather than with

regular expressions.

The process of computing a function that describes properties like reachability prob-

abilities or long-run average rewards that depend on model parameters is often costly.

However, once the function has been obtained, it can very efficiently be evaluated for given

parameter instantiations. Because of this, parametric model checking of Markov models

has also attracted attention in the area of runtime verification, where the acceptable time

to obtain values is limited. Calinescu et al.[28] showed how probabilistic verification can

extend its operation to runtime, where system parameters change and new verification

results are needed immediately. The transition of probabilistic verification to efficiently

address runtime scenarios was left as an open problem. In [59] Filieri et al. worked towards

addressing this problem by proposing a new method to compute closed form solutions for

reachability properties of DTMCs. They obtained speed ups that were equivalent to the

results presented in [70], however suggestions for how this could be further improved were

given.
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In [126], Quatmann et al. proposed a new technique for the analysis of PMCs, where

the model is transformed into a parameter-free Markov decision process that can be solved

efficiently using existing techniques. While their solution is scalable and fast, it does

not give a closed form solution. Other works in the area are centred around deciding

the validity of boolean formulas depending on the parameter range using SMT solvers or

extending these techniques to models that involve nondeterminism [44, 68, 40].

7.2 Representing formulas as arithmetic circuits

In existing tools for parametric model checking of Markov models, rational functions have

traditionally been represented in the form presented in Section 2.2:

q(x1, . . . , xn) =
ρ1(x1, . . . , xn)

ρ2(x1, . . . , xn)
,

where ρ1(x1, . . . , xn) and ρ2(x1, . . . , xn) are co-prime polynomials, where each polynomial

is represented as a list of monomials [69, 45, 101]. As a result, for some cases the rep-

resentations of such functions are very short. Often, during the state elimination phase,

large common factors can be cancelled out, such that one can operate with relatively small

functions throughout the whole algorithm. There are, however, many cases without, or

with very few, large common factors. The nominator-denominator representations then

become larger and larger during the analysis. In this case, the analysis is slowed down

severely, mostly by the time taken for the cancellation of common factors. Cancelling out

such factors is non-trivial, and indeed a research area in itself. In addition, if formulas

become large, this can also lead to out-of-memory problems. To overcome this issue, the

representation of rational functions by arithmetic circuits (ACs) is proposed. These ACs

are directed acyclic graphs (DAGs).
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7.2.1 Arithmetic circuit representation

Definition 30. An arithmetic circuit (AC) is a tuple A = (N,X , L) where

• N ∈ N is the size of the AC,

• X is the finite set of parameters,

• LA = Q ∪ X ∪ ({+, ·} × N× N) ∪ ({−, /} × N) is the set of labels for the AC,

• L : {0, . . . , N − 1} → LA is the labelling function.

It is required that for any k ∈ {0, . . . , N − 1} if L(k) = (./, n,m) then n < k and m < k,

and if L(k) = (./, n) then n < k, where ./ ∈ {+, ·,−, /}. An n ∈ {0, . . . , N − 1} is called a

node index and L(n) is called a node. Any node L(n) ∈ Q ∪ X is called a terminal node.

Accordingly, a node L(n) ∈ ({+, ·} × N× N) ∪ ({−, /} × N) is called a non-terminal node.

An AC is reduced if L(n) 6= L(m) for all n,m with 0 6 n < m < N .

Terminal nodes are either numbers or parameters, with non-terminal nodes describing

operators to be applied on nodes. The restrictions of the non-terminal nodes are used to

ensure that the AC forms a DAG by enforcing acyclicity. Terminal nodes that are numbers

are restricted to Q rather than R, because the AC should be represented by a computer.

If an AC is reduced it contains no duplicate nodes. This is usually a desirable property,

because duplicate nodes are equivalent and lead to an unnecessarily large DAG.

Definition 31. The function represented by a node index k of an AC A = (N,X , L) is

defined as fA ,k : QX → Q, where QX is the set of all functions from X into Q, and for

υ ∈ QX

• if L(k) ∈ Q then fA ,k(·) = L(k),

• if L(k) ∈ X then fA ,k(υ) = υ(L(k)),
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Figure 7.1: Parametric model of a dice simulated using a biased coin (a), and the model
after preprocessing with respect to the parametric reachability probability of (b).

• if L(k) = (+, n,m) then fA ,k(υ) = fA ,n(υ) + fA ,m(υ),

• if L(k) = (·, n,m) then fA ,k(υ) = fA ,n(υ) · fA ,m(υ),

• if L(k) = (−, n) then fA ,k(υ) = −fA ,n(υ),

• if L(k) = (/, n) then fA ,k(υ) = 1
fA,n(υ) .

Example 23. Figure 7.1a shows the Knuth and Yao [94] model of a six-sided dice, sim-

ulated by repeatedly tossing a coin. Here the model has been extended to simulate the

tossing of a biased coin, where with probability x the coin toss results in heads, and with

probability 1 − x the coin toss results in tails. The model is a PMC DX with states S =

{0 . . . 6}∪{ . . . } and parameters X = {x}. The property of interest is Reach(DX , { }),

the probability that the final result is . Recall from Section 2.5 that as a preprocessing

step for state elimination, all states from which the target state is unreachable are removed

from the model. Without loss of generality, the introduction of a new target state is simply

omitted here, and the same result can be obtained by eliminating all states except the initial

state 0 and the target state . The preprocessed model is shown in Figure 7.1b. Figure 7.2
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then shows the stepwise elimination of states from the model (left) and corresponding en-

tries in the AC (right). Initially (Figure 7.2a), a terminal node is introduced to the AC

for the single parameter x. Next, new nodes are introduced to the AC to represent the

expression 1− x (Figure 7.2b). A new terminal node is introduced for the constant 1, and

the expression 1−x is then represented by the AC node annotated with I, as the sum of the

constant 1 and the additive inverse of x. Figure 7.2c then shows the model and AC after

the elimination of state 6. The introduced AC nodes annotated with I and II correspond

to the new expressions (1− x)2 and (1− x)x, respectively. Finally, state 2 is eliminated in

Figure 7.2d, and the introduced AC nodes annotated with I-IV correspond to the following

expressions

I: 1− (1− x)2

II:
1

1− (1− x)2

III:
(1− x)x

1− (1− x)2

IV:
(1− x)(1− x)x

1− (1− x)2

and Reach(DX , { }) is given by the expression represented by AC node IV.

7.2.2 Simplifications

When operating with arithmetic circuits, there are a number of ways to reduce their

memory footprint at the expense of higher running times. The simplest one is that, while

creating a new node to represent a function, it might be the case that a node already exists

with exactly the same operator and operand. In this case, it is better to drop the newly

created node and use a reference to the existing node to counter the growth of the AC.

Another optimisation is to use simple algebraic equivalences. This includes computing the
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Figure 7.2: Construction of the AC for the parametric reachability probability of .
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values of constant functions. For example, instead of creating a node representing 2 + 3

a new terminal node can be introduced with the label 5, and if a new node needs to be

introduced for the expression y + x, but a node already exists for x + y, then this node

can be reused instead. In addition, additive and multiplicative neutral elements can be

identified (rather than creating a new node for 0 + x, the node for x is reused, and so

forth). A further optimisation is to define a set of sample points for the parameters, and

then evaluate these points for each function (internal node) represented in the AC. If the

result of this evaluation is the same for two nodes then these nodes might represent the same

function, and the AC can be simplified accordingly. The probability that two functions

are mistakenly identified as being equivalent can be bound by using the Schwartz-Zippel

Lemma [133, 152, 46].

7.2.3 Applications

Arithmetic circuits sometimes become very large, consisting of millions of nodes. Therefore,

they cannot serve as a concise, human-readable description of the analysis result. However,

compared to performing a non-parametric analysis, it is still beneficial to obtain a function

representation in this form. Even for large ACs, evaluating parameter instantiations is very

fast, and linear in the number of AC nodes. This is particularly useful if a large number

of points need to be sampled, for instance when plotting a graph. In this case, results

can be obtained much faster than using non-parametric model checking, as demonstrated

in Section 7.3. In particular, for any instantiation values can be obtained in the same

predictable time. This is quite in contrast to value iteration (see Section 2.4.2), where the

number of iterations required to obtain a certain precision varies with the concrete values

of parameters.

For this reason, parametric model checking is particularly useful for online model check-
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ing or runtime verification [28]. Here, one can precompute the AC before running the actual

system, while concrete values can be instantiated at runtime, with a running time that can

be precisely calculated offline. Using arithmetic circuits expands the range of systems for

which this method is applicable.

7.3 Experiments

Four case studies now illustrate the efficiency and scalability of the approach. Three mod-

els [79, 86, 127] are taken from the PRISM benchmark suite1, and the last considers the

synchronisation models of Chapters 4 and 5. All experiments were conducted on a PC

with an Intel Core i7-2600 (tm) processor at 3.4GHz, equipped with 16GB of RAM, and

running Ubuntu 16.04. For each case study a comparison is made between the performance

times obtained for model analysis when using the parametric engine of the model checker

ePMC [71], using either polynomial fractions or ACs to represent the functions correspond-

ing to transition probabilities and state rewards. Basically, the AC is implemented as an

array of 64-bit integers. Functions are represented as indices to this array. 4 bits describe

the type of the node. For terminal nodes, the remaining bits denote the parameter or

number used. For non-terminal nodes, 2× 30 bits are used to refer to the operands within

the AC. The results are also compared to those obtained using the parametric engine of

PRISM, and the parametric and sampling engines of Storm.

Given a parametric model, and a set of valuations for its parameters, we are interested

in the total time taken to check some property of interest for every valuation for the

parameters. Since the primary concern is the efficiency of multiple evaluations of an existing

model, model construction times are omitted, and the analysis is restricted to the total time

taken for the evaluation of all parameter valuations. For the parametric engines of ePMC,

1http://www.prismmodelchecker.org/benchmarks/

204

http://www.prismmodelchecker.org/benchmarks/


PRISM, and Storm, the total time taken for both state elimination and the evaluation of

the resulting function for all parameter valuations is recorded. For the sampling engine of

Storm, we record the total time taken for value iteration. To determine convergence the

precision is set to 10−10 rather than the default of 10−6. This had a very minor influence

on the runtime, and allowed a better comparison to ePMC, the results of which have a

precision of < 10−13.

In the following tables the following terminology is used: ePMC and PRISM denote the

parametric engines of ePMC and PRISM, respectively. The parametric and sparse engines

of Storm are denoted by Storm(P) and Storm(S), respectively. The parametric engine of

ePMC using ACs is denoted by ePMC(D), and the engine using simplified ACs is denoted

by ePMC(DS). All performance time listed in the tables are given in seconds.

7.3.1 Crowds protocol

The Crowds protocol [127] provides anonymity for a crowd consisting of N Internet users,

of whom M are dishonest, by hiding their communication via random routing, where there

are R different path reformulates. The model is a PMC parametrised by B = M
M+N , the

probability that a member of the crowd is untrustworthy, and P , the probability that a

member sends a package to a randomly selected receiver. With probability 1−P the packet

is directly delivered to the receiver. The property of interest is the probability that the

untrustworthy members observe the sender more than they observe others.

Table 7.1 shows the performance statistics for different values of N and R, where each

entry shows the total time taken to check all pairwise combinations of values for B,P taken

from {0.002, 0.004, . . . , 0.998}. There is a substantial increase in the performance of ePMC

when using non-simplified ACs (ePMC(D)), and using ACs (ePMC(DS)) that have been

simplified by evaluating random points (see Section 7.2), instead of polynomial fractions
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N R States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

5 3 1198 2038 722 737 13 13 681 26
5 5 8653 14953 745 806 15 15 723 64
5 7 37291 65011 818 900 19 17 735 153

10 3 6563 15143 732 771 15 14 690 26
10 5 111294 261444 1146 910 23 16 712 63
10 7 990601 2351961 –T– –T– 103 42 737 159
15 3 19228 55948 761 825 16 16 703 26
15 5 592060 1754860 –T– –M– 42 28 709 64
15 7 8968096 26875216 –M– –M– –M– –M– 777 174
20 3 42318 148578 814 805 15 14 709 26
20 5 2061951 7374951 –M– –M– 108 90 720 67

Table 7.1: Performance statistics for the crowds protocol.

(ePMC) to represent functions. Here, ePMC with AC representations clearly outperforms

the parametric engines of both PRISM and Storm. In some instances, ePMC turns out

to be the fastest choice, while the sampling engine of Storm proves to be faster for other

instances. Processes that exceeded the time limit of one hour are indicated by –T–, and

processes that ran out of memory are indicated by –M–. In Figure. 7.3 the results for N = 5

and R = 7 are plotted.

7.3.2 Bounded retransmission protocol

The bounded retransmission protocol [79] divides a file, which is to be transmitted, into

N chunks. For each chunk, there are at most MAX retransmissions over two lossy chan-

nels K and L that send data and acknowledgements, respectively. The model is a PMC

parametrised by pK and pL, the reliability of the channels. The property of interest is the

probability that the sender reports an unsuccessful transmission after more than 8 chunks

have been sent successfully.

The performance statistics for different values of N and MAX are shown in Table 7.2,
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Figure 7.3: Parametric analysis of the crowds protocol for N = 5 internet users and
R = 7 path reformulates. P is the probability that a user is untrustworthy, and B is
the probability that a user sends a packet to a randomly selected receiver. The property
of interest is the probability that untrustworthy users observe the sender more than they
observe others.

where each entry shows the total time taken to check all pairwise combinations of values

for pK, pL taken from {0.002, 0.004, . . . , 0.998}. Here, ePMC with ACs again has the

best performance: the running time remains approximately constant when using this data

structure, even for much larger problem instances. In contrast, the running time for both

engines of Storm scale linearly. Both the parametric engines of PRISM and ePMC, with

polynomial fraction representation, run out of memory for all larger problem instances.

Figure 7.4 plots the results obtained for N = 256 and MAX = 4. The probability of

interest first increases with increasing channel reliability, but then decreases again. The

reason is that, on the one hand, if the channel reliability is low, then not many chunks are

sent successfully. On the other hand, if the channel reliability is high, transmission will fail.
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N MAX States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

64 4 4139 5543 1029 1016 36 38 991 160
64 5 4972 6695 1145 1118 36 33 1021 188

256 4 16427 22055 –M– –M– 48 40 3332 403
256 5 19756 26663 –M– –M– 35 15 –T– 318
512 4 32811 44071 –M– –M– 29 19 –T– 491
512 5 39468 53287 –M– –M– 28 23 –T– 596

Table 7.2: Performance statistics for the bounded retransmission protocol.

7.3.3 Cyclic polling server

This cyclic server polling model [86] is a model of a network, described as a continuous-time

Markov chain. There are two parameters, µ and γ. The model consists of one server and N

clients. When a client is idle, then a new job arrives at this client with a rate of µ/N . The

server polls the clients in a cyclic manner. At each point of time, it observes a single client.

If there is a job waiting for a given client, the server servers its job (provided there is one)

with a rate of µ. When the client it observes is idle, then the server moves on to observe the

next client with a rate of γ. Even though the AC technique targets discrete-time models,

this model can be handled by computing the embedded DTMC [100].

In this case study, the property of interest is the probability that, in the long run,

Station 1 is idle. That is, the expected limit average of the time that Station 1, or,

due to symmetry, any other station, is idle. Probabilities are displayed as a function

of the parameters in Figure 7.5, and Table 7.3 shows how the various tools perform on

this benchmark. With increasing γ the likelihood that Station 1 is idle increases: if γ is

increased, then the server will find stations to be served more quickly. As the long-run

average idle time only depends on the rate between µ and γ, the likelihood that Station 1

is idle falls with increasing µ.

Here classic parametric model checking does not seem to be advantageous. Using the
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Figure 7.4: Parametric analysis of the bounded retransmission protocol for N = 256 file
chunks and MAX = 2 maximum retransmissions over two lossy channels. The parameters
pK and pL are the reliability of the data and acknowledgement channels, respectively. The
property of interest is the probability that the sender reports an unsuccessful transmission
after more than 8 chunks have been sent successfully.

AC-based implementation, however, is much more efficient than classic parametric model

checking, but it is space consuming. With the chosen number of parameter instantiations,

the method does not quite compete with non-parametric model checking.

7.3.4 Oscillator synchronisation

Finally, the synchronisation models presented in Chapters 4 and 5 are considered. To

recall, the models encode the behaviour of a population of N coupled nodes in a network.

Each node has a clock that progresses, cyclically, through a range of discrete values 1 . . . T .

At the end of each clock cycle a node transmits a message to other nodes in the network.

Nodes that receive this message adjust their clocks to more closely match those of the

firing node. All nodes have a refractory period during which they ignore synchronisation

messages from other modes. The length of this period is given by the parameter R, that
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N States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

4 96 272 1166 888 14 14 953 50
5 240 800 –T– –T– 28 25 –T– 121
6 576 2208 3550 –T– 108 102 –T– 305
7 1344 5824 1399 –T– 759 736 –T– 801
8 3072 14848 1052 –T– –T– –T– –T– 1991
9 6912 36864 –T– –T– –M– –M– –T– –T–

Table 7.3: Performance statistics for the cyclic polling server model.

1
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Figure 7.5: Parametric analysis of the cyclic polling server model for N = 4 clients. µ is
the service rate and γ is the rate at which the token is moved. The property of interest is
the probability that, in the long run, a station is idle.

is fixed to 1 for all instances investigated here. The model is a PMC, parametrised by the

likelihood µ that a firing message is lost in the communication medium. The property of

interest is the expected power consumption of the network (in Watt-hours) to reach a state

where the clocks of all nodes are synchronised.

Table 7.4 shows the results for different values of N and T , where each entry shows the

total time taken to check all values of µ taken from {10−5, 2·10−5, . . . , 1−10−5}. Figure 7.6

plots the results obtained for N = 6 and T = 8. For extremal values of µ, the network is
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N T States Trans. PRISM ePMC ePMC(D) ePMC(DS) Storm(P) Storm(S)

4 6 218 508 280 304 6 4 6 20
4 7 351 822 302 399 7 4 6 28
4 8 535 1257 542 1520 9 5 13 37
5 6 449 1179 354 499 10 5 11 39
5 7 799 2094 1694 –T– 11 6 34 60
5 8 1333 3533 –T– –T– 17 8 137 90
6 6 841 2491 1070 –T– 12 7 48 74
6 7 1639 4820 –T– –T– 19 8 239 130
6 8 2971 8871 –T– –T– 33 10 2311 211

Table 7.4: Performance statistics for the oscillator synchronisation model.

expected to use much more energy to synchronise, because the expected time required for

this to occur increases. Very high values of µ result in nearly all firing messages being lost,

and hence nodes cannot communicate well enough to coordinate, while very low values

of µ lead to perpetually asynchronous states for the network. This is an artefact of the

discreteness of the clock values, and was discussed in Section 4.5.

In this case study, the AC-based method, in particular with random points evaluation,

performs best, followed by the sampling-based method of Storm. The time required for

each value iteration is relatively high, while the cost of evaluating a point for the AC-based

method is quite low. Therefore, the advantage of the approach would have been even more

pronounced if more parameter instantiations had been evaluated in the experiments above.

The choice of which technique to use therefore depends on whether such a high number of

instantiations is required.

7.3.5 Heuristics

An important consideration when performing state elimination is the order in which dif-

ferent states are eliminated from the graph. Using different elimination orders to evalu-

ate the same model can result in different functions, whose representations (nominator-
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Figure 7.6: Parametric analysis of the oscillator synchronisation model for N = 6 nodes
and T = 8 clock values. The parameter µ is the probability of synchronisation messages
being lost in the communication medium. The property of interest is the expected power
consumption of the network (in Watt-hours) to reach a state, where the clocks of all nodes
are synchronised.

denominator or ACs) vary greatly in size, and hence also in the corresponding memory

footprint and analysis time. Heuristics for efficient state elimination have been studied in

automata theory, to obtain shorter regular expressions from finite-state automata [74, 73],

and in graph theory, for efficient peeling of a probabilistic network [76]. The following

heuristics were implemented into the model checker ePMC, consisting of both existing

schemes taken from the literature, and novel schemes that prove to be effective for some

models.

• NumNew: each state is weighted by the number of new transitions that are introduced

to the model when that state is eliminated. That is, for each predecessor-successor

pair for that state, add one to the weight if the transition from the predecessor to the

successor was not already defined in the underlying graph before state elimination.

States with the lowest weight are eliminated first. The aim here is to minimise the
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Model Elimination Heuristic
NumNew MinProd TargetBFS Random BFS ReverseBFS

Crowds (N=10,R=5) 19 103 5 14 22 6
BRP (N=512,MAX=5) 4 11 4 –M– 5 4
Cyclic (N=7) 7 9 8 8 8 8
Synch (N=6, T=8) 18 18 17 19 18 17

Table 7.5: Performance statistics for different heuristics.

total number of transitions as elimination progresses.

• MinProd: similarly to NumNew, each predecessor-successor pair is considered. How-

ever, one is added to the weight irrespective of whether that transition already existed

in the underlying graph. Again states with the lowest weight are considered first.

• TargetBFS: states are eliminated in the order in which they are discovered when

conducting a breadth-first search backwards from the target states.

• Random: a state is selected uniformly at random for elimination from the set of

remaining states.

• BFS: states are eliminated in the order in which they are discovered when conducting

a breadth-first search from the initial state(s) of the model.

• ReverseBFS: similar to BFS, except states are eliminated in reverse order.

Table 7.5 shows the times taken for state elimination of a medium-sized instance of

each of the case studies, when employing each of the heuristics described above. In general,

TargetBFS appears to be a good choice. In one case, however, NumNew turns out to be

faster.
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7.4 Conclusion and future work

An approach has been presented for the evaluation of parametric Markov chains that

exploits the synergies of using ACs in a state-elimination based analysis and using ACs

in an encoding of rational functions as arithmetic circuits. The experimental evaluation

suggests that these two approaches integrated so seamlessly that they often provide a

notable speed up. The nicest observation is that this seems so natural in hindsight, and it

is surprising that to the best of our knowledge this has not been attempted before.

Of particular interest here is the analysis of the synchronisation model introduced in

Chapters 4 and 5. Using the existing parametric engine of the model checker PRISM failed

to give a closed form solution for nearly all of the model instances explored in Chapter 4.

The new technique allowed the influence of the broadcast failure parameter to be easily

visualised, and accordingly analysed. A similar analysis could now be conducted for the

models presented in Chapter 3, where the influence of the parameter determining the

likelihood of choosing unexplored paths over explored paths could be visualised, and more

thoroughly analysed, even for large model instances.
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Chapter 8

Summary and Discussion

In this chapter the main contributions of this thesis are summarised. Directions for future

research for the formal analysis of artificial collectives are given, focusing on the devel-

opment of new techniques for the analysis of parametric Markov chain models of these

systems. Finally, a discussion of how the work presented in this thesis addresses the re-

search questions presented in Section 1.3 is given.

In the case study presented in Chapter 3 a formal, parametric population model of

a swarm of flying vehicles is developed. The swarm imitates the foraging behaviour of a

colony of ants, with the aim of locating a target at some unknown location in a potentially

hostile environment. The formal model is validated by comparing the results of an initial

analysis to those obtained through simulation. The parametric model is instantiated and

by checking probabilistic reachability and reachability reward properties it is demonstrated

that results could be obtained that could be used to plan the deployment of a real swarm.

Battery life greatly impacts the flight duration of swarm members, and the a priori calcu-

lation of the total expected flight time, or total expected distance travelled, would ensure

that sufficient resources could be made available to ensure that the swarm achieves its
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objectives.

A natural extension of this work would be to perform a parametric analysis of the

developed model, to investigate the relationship between the parameter defining the rate

of exploration and the likelihood of the swarm finding the target. Such an analysis could

determine the optimal values for this parameter to maximise or minimise probabilistic

reachability or reachability reward properties of interest. In addition, new reward functions

could be developed for a more detailed analysis of the power consumption of the swarm,

similar to those presented in Chapter 5, since the rate of power consumption for each micro

air vehicle in the swarm would differ according to its current mode of operation, and the

rate at which it communicates with the rest of the swarm.

In Chapter 4 a further case study investigates the phenomenon of emergent synchroni-

sation in a network of nodes, where nodes reach consensus on their local clocks by imitating

the behaviour of fireflies. This behaviour is achieved through the dynamics of interacting

pulse-coupled oscillators, whose cyclic behaviour and discrete interactions lead to global

synchronisation. Again, a formal, parametric population model is developed, where os-

cillation cycles for each node were defined as sequences of discrete states. Models are

generated for two models of synchronisation that have been used for the coordination of

swarm robotic systems or wireless sensor nets. Each formal model is instantiated for a

range of parameter values, and the parametric influence on both the rate at which syn-

chronisation occurs, and the time taken for it to occur, are investigated, and trade-offs

with respect to properties of interest are discussed. The population model is then further

refined, and the state-space explosion typically encountered during the analysis of large

models is mitigated by collapsing deterministic paths in the model. This results in mod-

els that are equivalent to the original model with respect to the likelihood of reaching a

synchronised state.
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Formal population models are appropriate when nodes in the network are indistinguish-

able with respect to their behaviour, and when all nodes in that network can communicate

with each other. To analyse more complex network topologies, each component of the

system could be encoded as a separate population model, and then the product of all such

components could then be analysed. However, interactions between components would

need to be refined, to offset the inevitable explosion in the size of the model. Furthermore,

topologies that change over time are of particular interest. However, it is not obvious how

the approach could be extended to consider such dynamic networks. The work of Lucarelli

and Wang may serve as a starting point for further investigations [113].

The work in Chapter 5 extends the work presented in Chapter 4. A new metric for

the synchronisation of a network of nodes is introduced, derived from existing work in

the literature. This metric is then used to investigate the power consumption of the

synchronising networks described in Section 4. Suitable reward functions are defined that

would encode the rate of power consumption for nodes in a wireless sensor network, or

member of a swarm, given real values obtainable from hardware specifications for those

devices. It is also demonstrated how these reward functions could be automatically applied

to models resulting from the refinement presented in Section 4.6. Properties relating to

the restabilisation of a small number of oscillators, when the network has synchronised,

and synchrony has then been lost, in a network are investigated, and it is demonstrated

that only a fraction of the state-space of a model needs to be explored for their analysis.

The introduced techniques are used to analyse the power consumption of a network of

MICAz motes, and a reduced population model is generated for a widely-used model of

synchronisation taken from the literature, and then instantiated for a range of parameter

values. Using the reduced model it is possible to extend the size of the networks that

could be analysed in Chapter 4. The results obtained using these techniques could be used
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during the design phase of wireless sensor networks, or swarm robotic systems, to identify

and rectify unnecessary energy consumption.

While the development of more refined population models allow larger networks to

be analysed, it is clear that the approach is still inhibited by the limitation of exact

probabilistic model checking for large-scale systems. While this could be overcome by

using approximated techniques, such as statistical model checking (see Section 2.6), or

approaches based on fluid-flow approximation extended with rewards [20], this would, of

course, come at the expense of precision. An investigation of such a trade-off is deferred

to future work.

In Chapter 6, new algorithms are introduced that exploit the structural similarity

between instances of parametrised models. Small changes to the value of a parameter

sometimes result in comparably small changes in the structure of the underlying graph. It

is shown that this observation can be used to reuse much of the analysis between different

instances of parametric models, by maintaining information about subformulae of rational

functions between model instances. This technique is shown to be highly effective for mod-

els where the underlying graph was composed of replicated sub-structures. The limitation

of this approach are that much of the advantage was lost when a change in a parameter in-

duced severe structural changes in the model. For the synchronisation protocols presented

in Chapters 4 and 5, some model parameters change the structure of the model. Changing

some parameters results in a large amount of structural change in the underlying graph of

the model. However, the cone of influence for other parameters lead to relatively minor

changes in the graph, and the technique is shown to be effective for their analysis.

A natural extension of this work would be to tap the full potential of the approach

by integrating it into existing probabilistic model checking software. Here the symbolic

descriptions of the system would expose those volatile areas of the underling graph of the
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model where structural changes might occur, and more importantly, those areas where

the structure appears to be stable under successive increments of a parameter value. For

example, it is likely that volatile areas of a model formalised using the state-based lan-

guage described in Section 2.7.1 could be identified by analysing the guards of commands.

Synergies might also be obtained by combining this method with the approach of [60], by

extending the approach to models with non-determinism, such as Markov decision pro-

cesses.

In Chapter 7 an approach is presented for the analysis of parametric Markov chains,

where arithmetic circuits are used to encode the rational functions labelling the transitions

of the model. Empirical results show the effectiveness of the technique when applied to

a range of distributed network protocols taken from the literature. In particular, the

technique is applied to the synchronisation model introduced in Chapters 4 and 5. Using

the existing parametric engine of the model checker PRISM fails to give a closed form

solution for nearly all of the model instances explored in Chapters 4. The new technique

allows the influence of the parameter defining the likelihood of message loss to be analysed.

A similar analysis could now be extended to the the models presented in Chapter 3, to

investigate the influence of the parameter determining the rate of exploration.

A natural extension of this work would be to combine the approach with the incremental

techniques introduced in Chapter 6. Instead of maintaining information about subformulae

of rational functions between model instances, substructures of the arithmetic circuit could

be maintained. A possible next step in exploiting the approach could be its integration in

the context of parameter extraction, which would be expected to work similar to model

extraction, for online model checking. The growing knowledge of the model could be used

to refine or adjust the parameters in the application. The technique could help to provide

the speed required to make the approach scale, and to keep the analysis and, if required,
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the visualisation of the effect of the learnt parameters efficient.

To address the first research question posed in this thesis, that asks if parametric

Markov models could be used to efficiently reason about artificial collectives, case studies

are conducted in Chapters 3, 4, and 5. For each of these case studies, macroscopic models

are constructed that alleviate state-space explosion. The formal models of the ant-inspired

behaviour of a swarm of vehicles developed in Chapter 3 are validated against results ob-

tained through simulation, and then properties relating to the logistics of the deployment

of such a swarm are checked in the models. While model checking is possible to analyse

swarms of up to eight individuals, statistical methods have to be used for the analysis of

larger swarms. The formal analysis of the models of synchronising network nodes devel-

oped in Chapters 4 and 5 yields results that match those obtained from both simulation

and empirical evaluation. However, the analysis is similarly impeded by the state-space

explosion encountered when checking desirable properties for networks of more than eight

nodes. A further refinement of the macroscopic model helps to mitigate state-space explo-

sion to some extent, however the reduction achieved becomes increasingly insignificant as

the size of the formal models increases.

The macroscopic models developed in the case studies help to delay state space ex-

plosion, and allow larger models to be analysed. However, it is clear that the analysis

of such models is still restricted by both state explosion, and the time taken to analyse

large number of model instances. To combat this, and to address the second research

question that asks whether new techniques could be developed to facilitate the parametric

analysis of large families of parametric Markov models, novel algorithms are proposed in

Chapter 6 for their analysis. These algorithms exploited structural similarities between

parameterwise-different instances of a model to reduce the time and resources required for

their analysis, and are shown to be effective for the analysis of the family of synchronisation
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models developed in Chapters 4 and 5, and for a model taken the literature.

To address the third research question, that asks how the efficiency of existing tech-

niques for the parametric analysis of families of parametric Markov chains could be im-

proved, the representation of the rational functions labelling model transitions as arith-

metic circuits is proposed. It is demonstrated that this new representation integrates with

existing techniques for the analysis of such models, and its implementation into an exist-

ing probabilistic model checker yields results that demonstrated the effectiveness of the

technique in facilitating the analysis of much larger models.
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[147] Yongqiang Wang, Felipe Nuñez, and Francis J Doyle. Energy-efficient pulse-coupled

synchronization strategy design for wireless sensor networks through reduced idle

listening. IEEE Transactions on Signal Processing, 60(10):5293–5306, 2012.

[148] Geoffrey. Werner-Allen, Geetika Tewari, Ankit Patel, Matt Welsh, and Radhika Nag-

pal. Firefly-inspired sensor network synchronicity with realistic radio effects. In

240



International Conference on Embedded Networked Sensor Systems, pages 142–153.

ACM, 2005.

[149] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network

survey. Computer Networks, 52(12):2292 – 2330, 2008.

[150] Hakan L Younes. Verification and planning for stochastic processes with asyn-

chronous events. Technical report, Carnegie-Mellon University Pittsburgh PA School

of Computer Science, 2005.

[151] Haidi Yue and Joost-Pieter Katoen. Leader election in anonymous radio networks:

Model checking energy consumption. In International Conference on Analytical and

Stochastic Modeling Techniques and Applications, volume 6148 of LNCS, pages 247–

261. Springer, 2010.

[152] Richard Zippel. Probabilistic algorithms for sparse polynomials. In International

Symposiumon on Symbolic and Algebraic Computation, pages 216–226, London, UK,

UK, 1979. Springer-Verlag.

241



Appendices

A Synchronisation PRISM Model

Listing 1: Generated PRISM code for the Mirollo and Strogatz synchronisation model with

parameters N = 4, T = 5, ε = 0.1, and R = 1.

1 // ==============================================================================

2 // model name: mirollo -strogatz

3 // ==============================================================================

4 dtmc

5

6 // ------------------------------------------------------------------------------

7 // parameters

8 //

9 // N = 4

10 // T = 5

11 // EPSILON = 0.1

12 // R = 1

13 // ------------------------------------------------------------------------------

14

15 // ==============================================================================

16 // rewards

17 // ==============================================================================

18 // ------------------------------------------------------------------------------

19 // records power consumption in watt hours

20 // ------------------------------------------------------------------------------
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21 rewards "power_consumption"

22 assigned :

23 (k_1 * 0.0000002778)

24 + ((k_1) * 0.0000000333)

25 + ((k_4 + k_3 + k_2) * 0.0000328333);

26 endrewards

27

28 // ==============================================================================

29 // order parameter

30 // ==============================================================================

31 const double unit_vector_x_1 = 1.000000000000;

32 const double unit_vector_y_1 = 0.000000000000;

33 const double unit_vector_x_2 = 0.309016994375;

34 const double unit_vector_y_2 = 0.951056516295;

35 const double unit_vector_x_3 = -0.809016994375;

36 const double unit_vector_y_3 = 0.587785252292;

37 const double unit_vector_x_4 = -0.809016994375;

38 const double unit_vector_y_4 = -0.587785252292;

39 const double unit_vector_x_5 = 0.309016994375;

40 const double unit_vector_y_5 = -0.951056516295;

41

42 formula unit_vector_x_avg_squared = pow (((( unit_vector_x_1 * k_1) +

(unit_vector_x_2 * k_2) + (unit_vector_x_3 * k_3) + (unit_vector_x_4 *

k_4) + (unit_vector_x_5 * k_5)) / 4), 2);

43 formula unit_vector_y_avg_squared = pow (((( unit_vector_y_1 * k_1) +

(unit_vector_y_2 * k_2) + (unit_vector_y_3 * k_3) + (unit_vector_y_4 *

k_4) + (unit_vector_y_5 * k_5)) / 4), 2);

44 formula order_parameter = pow(unit_vector_x_avg_squared +

unit_vector_y_avg_squared , 0.5);

45

46 // ==============================================================================

47 // constants

48 // ==============================================================================

49 // ------------------------------------------------------------------------------

50 // infinity

51 // ------------------------------------------------------------------------------
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52 const int INFINITY = 5;

53

54 // ------------------------------------------------------------------------------

55 // broadcast failure probability

56 // ------------------------------------------------------------------------------

57 const double mu;

58

59 // ==============================================================================

60 // formulae

61 // ==============================================================================

62 // ------------------------------------------------------------------------------

63 // the total number of oscillators at any given time

64 // ------------------------------------------------------------------------------

65 formula num_oscillators = k_1 + k_2 + k_3 + k_4 + k_5;

66

67 // ------------------------------------------------------------------------------

68 // true after all oscillators have been assigned phases

69 // ------------------------------------------------------------------------------

70 formula assigned = num_oscillators = 4;

71

72 // ------------------------------------------------------------------------------

73 // true if all oscillators have the same phase

74 // ------------------------------------------------------------------------------

75 formula synchronised = k_1 = 4 | k_2 = 4 | k_3 = 4 | k_4 = 4 | k_5 = 4;

76

77 // ------------------------------------------------------------------------------

78 // message loss probabilities

79 // ------------------------------------------------------------------------------

80 formula pr_fail_0_0 = 1;

81 formula pr_fail_1_0 = (pow(mu, 0) * pow(1 - mu, 1) * 1.0);

82 formula pr_fail_1_1 = (pow(mu, 1) * pow(1 - mu, 0) * 1.0);

83 formula pr_fail_2_0 = (pow(mu, 0) * pow(1 - mu, 2) * 1.0);

84 formula pr_fail_2_1 = (pow(mu, 1) * pow(1 - mu, 1) * 2.0);

85 formula pr_fail_2_2 = (pow(mu, 2) * pow(1 - mu, 0) * 1.0);

86 formula pr_fail_3_0 = (pow(mu, 0) * pow(1 - mu, 3) * 1.0);

87 formula pr_fail_3_1 = (pow(mu, 1) * pow(1 - mu, 2) * 3.0);

244



88 formula pr_fail_3_2 = (pow(mu, 2) * pow(1 - mu, 1) * 3.0);

89 formula pr_fail_3_3 = (pow(mu, 3) * pow(1 - mu, 0) * 1.0);

90 formula pr_fail_4_0 = (pow(mu, 0) * pow(1 - mu, 4) * 1.0);

91 formula pr_fail_4_1 = (pow(mu, 1) * pow(1 - mu, 3) * 4.0);

92 formula pr_fail_4_2 = (pow(mu, 2) * pow(1 - mu, 2) * 6.0);

93 formula pr_fail_4_3 = (pow(mu, 3) * pow(1 - mu, 1) * 4.0);

94 formula pr_fail_4_4 = (pow(mu, 4) * pow(1 - mu, 0) * 1.0);

95

96 // ==============================================================================

97 // modules

98 // ==============================================================================

99 // ------------------------------------------------------------------------------

100 // initial state indicator module

101 // ------------------------------------------------------------------------------

102 module initial_state_indicator

103 is_initial_state : bool init false;

104 is_non_initial_state : bool init false;

105

106 [step] (! assigned) ->

107 (is_initial_state ’ = true) &

108 (is_non_initial_state ’ = false);

109 [step] (assigned) ->

110 (is_initial_state ’ = false) &

111 (is_non_initial_state ’ = is_initial_state | is_non_initial_state);

112 endmodule

113

114 // ------------------------------------------------------------------------------

115 // oscillator population module

116 // ------------------------------------------------------------------------------

117 module oscillator_population

118 // ------------------------------------------------------------------------------

119 // counters for oscillators in each state

120 // ------------------------------------------------------------------------------

121 k_1 : [0..4] init 0;

122 k_2 : [0..4] init 0;

123 k_3 : [0..4] init 0;
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124 k_4 : [0..4] init 0;

125 k_5 : [0..4] init 0;

126

127 // ------------------------------------------------------------------------------

128 // transitions from starting state

129 // ------------------------------------------------------------------------------

130 [step] (! assigned) ->

131 (1 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 4) +

132 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 1) &

(k_5 ’ = 3) +

133 (6 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 2) &

(k_5 ’ = 2) +

134 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 3) &

(k_5 ’ = 1) +

135 (1 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 4) &

(k_5 ’ = 0) +

136 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 0) &

(k_5 ’ = 3) +

137 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 1) &

(k_5 ’ = 2) +

138 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 2) &

(k_5 ’ = 1) +

139 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 3) &

(k_5 ’ = 0) +

140 (6 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 2) & (k_4 ’ = 0) &

(k_5 ’ = 2) +

141 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 2) & (k_4 ’ = 1) &

(k_5 ’ = 1) +

142 (6 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 2) & (k_4 ’ = 2) &

(k_5 ’ = 0) +

143 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 3) & (k_4 ’ = 0) &

(k_5 ’ = 1) +

144 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 3) & (k_4 ’ = 1) &

(k_5 ’ = 0) +
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145 (1 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 0) & (k_3 ’ = 4) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

146 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 3) +

147 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 1) &

(k_5 ’ = 2) +

148 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 2) &

(k_5 ’ = 1) +

149 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 3) &

(k_5 ’ = 0) +

150 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 1) & (k_3 ’ = 1) & (k_4 ’ = 0) &

(k_5 ’ = 2) +

151 (24 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 1) & (k_3 ’ = 1) & (k_4 ’ = 1) &

(k_5 ’ = 1) +

152 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 1) & (k_3 ’ = 1) & (k_4 ’ = 2) &

(k_5 ’ = 0) +

153 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 1) & (k_3 ’ = 2) & (k_4 ’ = 0) &

(k_5 ’ = 1) +

154 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 1) & (k_3 ’ = 2) & (k_4 ’ = 1) &

(k_5 ’ = 0) +

155 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 1) & (k_3 ’ = 3) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

156 (6 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 2) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 2) +

157 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 2) & (k_3 ’ = 0) & (k_4 ’ = 1) &

(k_5 ’ = 1) +

158 (6 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 2) & (k_3 ’ = 0) & (k_4 ’ = 2) &

(k_5 ’ = 0) +

159 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 2) & (k_3 ’ = 1) & (k_4 ’ = 0) &

(k_5 ’ = 1) +

160 (12 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 2) & (k_3 ’ = 1) & (k_4 ’ = 1) &

(k_5 ’ = 0) +

161 (6 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 2) & (k_3 ’ = 2) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

162 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 3) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 1) +
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163 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 3) & (k_3 ’ = 0) & (k_4 ’ = 1) &

(k_5 ’ = 0) +

164 (4 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 3) & (k_3 ’ = 1) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

165 (1 / pow(5, 4)): (k_1 ’ = 0) & (k_2 ’ = 4) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

166 (4 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 3) +

167 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 1) &

(k_5 ’ = 2) +

168 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 2) &

(k_5 ’ = 1) +

169 (4 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 3) &

(k_5 ’ = 0) +

170 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 0) &

(k_5 ’ = 2) +

171 (24 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 1) &

(k_5 ’ = 1) +

172 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 2) &

(k_5 ’ = 0) +

173 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 2) & (k_4 ’ = 0) &

(k_5 ’ = 1) +

174 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 2) & (k_4 ’ = 1) &

(k_5 ’ = 0) +

175 (4 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 3) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

176 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 2) +

177 (24 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 1) &

(k_5 ’ = 1) +

178 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 2) &

(k_5 ’ = 0) +

179 (24 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 1) & (k_4 ’ = 0) &

(k_5 ’ = 1) +

180 (24 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 1) & (k_4 ’ = 1) &

(k_5 ’ = 0) +
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181 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 2) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

182 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 2) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 1) +

183 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 2) & (k_3 ’ = 0) & (k_4 ’ = 1) &

(k_5 ’ = 0) +

184 (12 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 2) & (k_3 ’ = 1) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

185 (4 / pow(5, 4)): (k_1 ’ = 1) & (k_2 ’ = 3) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

186 (6 / pow(5, 4)): (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 2) +

187 (12 / pow(5, 4)): (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 1) &

(k_5 ’ = 1) +

188 (6 / pow(5, 4)): (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 2) &

(k_5 ’ = 0) +

189 (12 / pow(5, 4)): (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 0) &

(k_5 ’ = 1) +

190 (12 / pow(5, 4)): (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 1) &

(k_5 ’ = 0) +

191 (6 / pow(5, 4)): (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 2) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

192 (12 / pow(5, 4)): (k_1 ’ = 2) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 1) +

193 (12 / pow(5, 4)): (k_1 ’ = 2) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 1) &

(k_5 ’ = 0) +

194 (12 / pow(5, 4)): (k_1 ’ = 2) & (k_2 ’ = 1) & (k_3 ’ = 1) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

195 (6 / pow(5, 4)): (k_1 ’ = 2) & (k_2 ’ = 2) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

196 (4 / pow(5, 4)): (k_1 ’ = 3) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 1) +

197 (4 / pow(5, 4)): (k_1 ’ = 3) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 1) &

(k_5 ’ = 0) +

198 (4 / pow(5, 4)): (k_1 ’ = 3) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 0) &

(k_5 ’ = 0) +
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199 (4 / pow(5, 4)): (k_1 ’ = 3) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 0) +

200 (1 / pow(5, 4)): (k_1 ’ = 4) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) &

(k_5 ’ = 0);

201

202 // ------------------------------------------------------------------------------

203 // update oscillator phases , no flashes

204 // ------------------------------------------------------------------------------

205 [step] (assigned & k_5 = 0) -> (k_2 ’ = k_1) & (k_3 ’ = k_2) & (k_4 ’ = k_3)

& (k_5 ’ = k_4) & (k_1 ’ = k_5);

206

207 // ------------------------------------------------------------------------------

208 // update oscillator phases , flashes

209 // ------------------------------------------------------------------------------

210 [step] (assigned & k_1 = 0 & k_2 = 0 & k_3 = 0 & k_4 = 0 & k_5 = 4) ->

211 (k_1 ’ = 4) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 0);

212 [step] (assigned & k_1 = 0 & k_2 = 0 & k_3 = 0 & k_4 = 1 & k_5 = 3) ->

213 (( pr_fail_1_0 * pr_fail_3_0) + (pr_fail_1_1 * pr_fail_3_0) +

(pr_fail_1_0 * pr_fail_3_1) + (pr_fail_1_1 * pr_fail_3_1)):

214 (k_1 ’ = 4) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 0) +

215 (( pr_fail_3_2) + (pr_fail_3_3)):

216 (k_1 ’ = 3) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 1);

217 [step] (assigned & k_1 = 0 & k_2 = 0 & k_3 = 0 & k_4 = 2 & k_5 = 2) ->

218 (( pr_fail_2_0 * pr_fail_2_0) + (pr_fail_2_1 * pr_fail_2_0) +

(pr_fail_2_2 * pr_fail_2_0)):

219 (k_1 ’ = 4) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 0) +

220 (( pr_fail_2_1) + (pr_fail_2_2)):

221 (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 2);

222 [step] (assigned & k_1 = 0 & k_2 = 0 & k_3 = 0 & k_4 = 3 & k_5 = 1) ->

223 (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 3);

224 [step] (assigned & k_1 = 0 & k_2 = 0 & k_3 = 1 & k_4 = 0 & k_5 = 3) ->

225 (( pr_fail_0_0 * pr_fail_3_0) + (pr_fail_0_0 * pr_fail_3_1)):

226 (k_1 ’ = 3) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 1) +

227 (( pr_fail_3_2) + (pr_fail_3_3)):

228 (k_1 ’ = 3) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 1) & (k_5 ’ = 0);

229 [step] (assigned & k_1 = 0 & k_2 = 0 & k_3 = 1 & k_4 = 1 & k_5 = 2) ->
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230 (( pr_fail_1_0 * pr_fail_2_0) + (pr_fail_1_1 * pr_fail_2_0)):

231 (k_1 ’ = 3) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 1) +

232 (( pr_fail_2_1) + (pr_fail_2_2)):

233 (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 1) & (k_5 ’ = 1);

234 [step] (assigned & k_1 = 0 & k_2 = 0 & k_3 = 1 & k_4 = 2 & k_5 = 1) ->

235 (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 1) & (k_5 ’ = 2);

236 [step] (assigned & k_1 = 0 & k_2 = 0 & k_3 = 2 & k_4 = 0 & k_5 = 2) ->

237 (( pr_fail_0_0 * pr_fail_2_0)):

238 (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 2) +

239 (( pr_fail_2_1) + (pr_fail_2_2)):

240 (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 2) & (k_5 ’ = 0);

241 [step] (assigned & k_1 = 0 & k_2 = 0 & k_3 = 2 & k_4 = 1 & k_5 = 1) ->

242 (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 2) & (k_5 ’ = 1);

243 [step] (assigned & k_1 = 0 & k_2 = 0 & k_3 = 3 & k_4 = 0 & k_5 = 1) ->

244 (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 3) & (k_5 ’ = 0);

245 [step] (assigned & k_1 = 0 & k_2 = 1 & k_3 = 0 & k_4 = 0 & k_5 = 3) ->

246 (( pr_fail_0_0 * pr_fail_3_0)):

247 (k_1 ’ = 3) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 1) & (k_5 ’ = 0) +

248 (( pr_fail_0_0 * pr_fail_3_1) + (pr_fail_3_2) + (pr_fail_3_3)):

249 (k_1 ’ = 3) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 0) & (k_5 ’ = 0);

250 [step] (assigned & k_1 = 0 & k_2 = 1 & k_3 = 0 & k_4 = 1 & k_5 = 2) ->

251 (( pr_fail_1_0 * pr_fail_2_0)):

252 (k_1 ’ = 3) & (k_2 ’ = 0) & (k_3 ’ = 0) & (k_4 ’ = 1) & (k_5 ’ = 0) +

253 (( pr_fail_1_1 * pr_fail_2_0)):

254 (k_1 ’ = 3) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 0) & (k_5 ’ = 0) +

255 (( pr_fail_2_1) + (pr_fail_2_2)):

256 (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 0) & (k_5 ’ = 1);

257 [step] (assigned & k_1 = 0 & k_2 = 1 & k_3 = 0 & k_4 = 2 & k_5 = 1) ->

258 (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 0) & (k_5 ’ = 2);

259 [step] (assigned & k_1 = 0 & k_2 = 1 & k_3 = 1 & k_4 = 0 & k_5 = 2) ->

260 (( pr_fail_0_0 * pr_fail_2_0)):

261 (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 0) & (k_5 ’ = 1) +

262 (( pr_fail_2_1) + (pr_fail_2_2)):

263 (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 1) & (k_5 ’ = 0);

264 [step] (assigned & k_1 = 0 & k_2 = 1 & k_3 = 1 & k_4 = 1 & k_5 = 1) ->

265 (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 1) & (k_5 ’ = 1);
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266 [step] (assigned & k_1 = 0 & k_2 = 1 & k_3 = 2 & k_4 = 0 & k_5 = 1) ->

267 (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 1) & (k_4 ’ = 2) & (k_5 ’ = 0);

268 [step] (assigned & k_1 = 0 & k_2 = 2 & k_3 = 0 & k_4 = 0 & k_5 = 2) ->

269 (k_1 ’ = 2) & (k_2 ’ = 0) & (k_3 ’ = 2) & (k_4 ’ = 0) & (k_5 ’ = 0);

270 [step] (assigned & k_1 = 0 & k_2 = 2 & k_3 = 0 & k_4 = 1 & k_5 = 1) ->

271 (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 2) & (k_4 ’ = 0) & (k_5 ’ = 1);

272 [step] (assigned & k_1 = 0 & k_2 = 2 & k_3 = 1 & k_4 = 0 & k_5 = 1) ->

273 (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 2) & (k_4 ’ = 1) & (k_5 ’ = 0);

274 [step] (assigned & k_1 = 0 & k_2 = 3 & k_3 = 0 & k_4 = 0 & k_5 = 1) ->

275 (k_1 ’ = 1) & (k_2 ’ = 0) & (k_3 ’ = 3) & (k_4 ’ = 0) & (k_5 ’ = 0);

276 [step] (assigned & k_1 = 1 & k_2 = 0 & k_3 = 0 & k_4 = 0 & k_5 = 3) ->

277 (k_1 ’ = 3) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 0);

278 [step] (assigned & k_1 = 1 & k_2 = 0 & k_3 = 0 & k_4 = 1 & k_5 = 2) ->

279 (( pr_fail_1_0 * pr_fail_2_0) + (pr_fail_1_1 * pr_fail_2_0)):

280 (k_1 ’ = 3) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 0) +

281 (( pr_fail_2_1) + (pr_fail_2_2)):

282 (k_1 ’ = 2) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 1);

283 [step] (assigned & k_1 = 1 & k_2 = 0 & k_3 = 0 & k_4 = 2 & k_5 = 1) ->

284 (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 2);

285 [step] (assigned & k_1 = 1 & k_2 = 0 & k_3 = 1 & k_4 = 0 & k_5 = 2) ->

286 (( pr_fail_0_0 * pr_fail_2_0)):

287 (k_1 ’ = 2) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 1) +

288 (( pr_fail_2_1) + (pr_fail_2_2)):

289 (k_1 ’ = 2) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 1) & (k_5 ’ = 0);

290 [step] (assigned & k_1 = 1 & k_2 = 0 & k_3 = 1 & k_4 = 1 & k_5 = 1) ->

291 (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 1) & (k_5 ’ = 1);

292 [step] (assigned & k_1 = 1 & k_2 = 0 & k_3 = 2 & k_4 = 0 & k_5 = 1) ->

293 (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 0) & (k_4 ’ = 2) & (k_5 ’ = 0);

294 [step] (assigned & k_1 = 1 & k_2 = 1 & k_3 = 0 & k_4 = 0 & k_5 = 2) ->

295 (k_1 ’ = 2) & (k_2 ’ = 1) & (k_3 ’ = 1) & (k_4 ’ = 0) & (k_5 ’ = 0);

296 [step] (assigned & k_1 = 1 & k_2 = 1 & k_3 = 0 & k_4 = 1 & k_5 = 1) ->

297 (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 1) & (k_4 ’ = 0) & (k_5 ’ = 1);

298 [step] (assigned & k_1 = 1 & k_2 = 1 & k_3 = 1 & k_4 = 0 & k_5 = 1) ->

299 (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 1) & (k_4 ’ = 1) & (k_5 ’ = 0);

300 [step] (assigned & k_1 = 1 & k_2 = 2 & k_3 = 0 & k_4 = 0 & k_5 = 1) ->

301 (k_1 ’ = 1) & (k_2 ’ = 1) & (k_3 ’ = 2) & (k_4 ’ = 0) & (k_5 ’ = 0);
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302 [step] (assigned & k_1 = 2 & k_2 = 0 & k_3 = 0 & k_4 = 0 & k_5 = 2) ->

303 (k_1 ’ = 2) & (k_2 ’ = 2) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 0);

304 [step] (assigned & k_1 = 2 & k_2 = 0 & k_3 = 0 & k_4 = 1 & k_5 = 1) ->

305 (k_1 ’ = 1) & (k_2 ’ = 2) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 1);

306 [step] (assigned & k_1 = 2 & k_2 = 0 & k_3 = 1 & k_4 = 0 & k_5 = 1) ->

307 (k_1 ’ = 1) & (k_2 ’ = 2) & (k_3 ’ = 0) & (k_4 ’ = 1) & (k_5 ’ = 0);

308 [step] (assigned & k_1 = 2 & k_2 = 1 & k_3 = 0 & k_4 = 0 & k_5 = 1) ->

309 (k_1 ’ = 1) & (k_2 ’ = 2) & (k_3 ’ = 1) & (k_4 ’ = 0) & (k_5 ’ = 0);

310 [step] (assigned & k_1 = 3 & k_2 = 0 & k_3 = 0 & k_4 = 0 & k_5 = 1) ->

311 (k_1 ’ = 1) & (k_2 ’ = 3) & (k_3 ’ = 0) & (k_4 ’ = 0) & (k_5 ’ = 0);

312 endmodule

253


	Introduction
	Artificial collectives
	Formal analysis of artificial collectives
	Thesis contributions
	Related formal approaches for macroscopic analysis
	Corresponding publications
	Thesis outline

	Preliminaries
	Discrete-time Markov chains
	Parametric Markov chains
	Markov reward models
	Probabilistic model checking
	Probabilistic computation tree logic
	Model checking PCTL

	Parametric model checking
	Statistical model checking
	Tools for probabilistic model checking
	PRISM guarded command language


	Probabilistic Model Checking of Ant-Based Positionless Swarming
	Related work
	The ant-based swarming scenario
	MAV behaviour
	Path probabilities

	Modelling the scenario
	Discretisation
	Abstractions and assumptions
	Model generation

	Experiments
	Model validation
	Reachability and reachability reward targets

	Conclusions and further work

	Investigating Parametric Influence on Discrete Synchronisation  Protocols
	Related work
	Discrete oscillator model
	Population model
	Transitions
	Failure vector calculation
	Synchronisation

	Model generation
	Evaluation
	Mirollo and Strogatz synchronisation model.
	Mean phase synchronisation model.
	Summary of the two synchronisation methods.
	Network synchronisation scalability.
	Model checking scalability.

	Population model refinement
	Reachable state reduction.
	Transition matrix reduction.
	Preservation of reachability properties
	Proof and empirical analysis

	Conclusion

	Power Consumption in Networks of Pulse-Coupled Oscillators
	Related work
	Synchronisation metric
	Reward functions for time and power consumption
	Synchronisation time
	Power consumption

	Reward functions for reduced models
	Restabilisation
	Evaluation
	Power consumption of a synchronising network
	Power consumption for network restabilisation

	Conclusion

	Incremental Verification of Parametric and Reconfigurable Markov  Chains
	Related work
	Algorithms
	Definitions
	Parametric reachability for VPMCs
	Parametric reachability for reconfigured VPMCs
	Extension to parametric Markov reward models

	Case studies
	Zeroconf
	Oscillator synchronisation

	Conclusion and future work

	Accelerated Model Checking of Parametric Markov Chains
	Related work
	Representing formulas as arithmetic circuits
	Arithmetic circuit representation
	Simplifications
	Applications

	Experiments
	Crowds protocol
	Bounded retransmission protocol
	Cyclic polling server
	Oscillator synchronisation
	Heuristics

	Conclusion and future work

	Summary and Discussion
	References
	Appendices
	Synchronisation PRISM Model



