
Intelligent Planning for Refractive Surgeries: A

Modelling and Visualisation-based Approach

Thesis submitted in accordance with the requirements of the University of Liverpool for

the degree of Doctor in Philosophy by

Wei Wang

June 2020





Intelligent Planning for Refractive Surgeries: A Modelling and Visualisation-based
Approach Wei Wang

Abstract

Laser refractive surgeries have been commonly used in ophthalmic operations. Considerable
research has been carried out and encouraging progress made in recent years. It covers
properties of the cornea and behaviour of tissue in different parts of the eye, topography
and material expression of individual patient’s eyes, prediction using finite element (FE)
analysis to estimate the corneal shape change and the change in refractive power. Further
effort is still required to advance the research to aid the decision making for laser refractive
surgeries. This study comprehensively reviews the latest techniques of refractive surgery
and research on computational analysis and modelling techniques and their applications,
especially the current prediction and planning techniques for laser refractive surgeries. The
aim of this study is to develop an intelligent assistant tool for the laser refractive surgeries
with prediction and visualisation functions. For this aim, two objectives will be achieved:
prediction with the clinical dataset and human vision simulation.

Due to clinical statistics, the clinical dataset is often incomplete, imbalanced, and
sparse. Three methods are proposed to predict surgery parameters and outcomes using the
clinical dataset. A multiple imputation method, with multiple regression, is proposed for
imputing the missing data. For the imbalance of data distribution in the clinical dataset,
an over-sampling of the minority data method is proposed. The accuracy of predicted
minority data is close to the accuracy of predicted majority data. Finally an ensemble
learning method which is optimised by the genetic algorithm is proposed to improve the
accuracy of the prediction results with a sparse dataset. According to the distribution
of the sample in the clinical data, the percentage of unacceptable results is 23.02%. The
methods in this study could provide an accuracy of 79.02% to find the possible unacceptable
cases, that is, the method could reduce the percentage of unacceptable results from 23.02%
to 4.82%.

In human vision simulation, the study focuses on how the human vision simulation
could be determined and obtained accurately within a required timeframe. The ray tracing
technique can provide more precise results than the rasterisation technique, especially for
the simulation of light reflection and refraction in the human eyeball. However, the thin lens
assumption affects the accuracy of the pathological vision simulation with the ray tracing
technique. An improved schematic human eye model is proposed to obtain a numerical
model predicting the size of the defocus blur for the pathological vision, which wraps the
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shape of the ray intersection area. In order to generalise this model to other healthy and
pathological vision, an intelligent blur range derivation method is proposed. On the other
hand, ray tracing scene rendering requires repeated iterative computing which takes a
significant amount of computation time. A GPU-based ray tracing computing method is
proposed to accelerate and optimise the rendering of scenes. With this method, the scene
rendering speed is about 75 times faster than using the CPU.
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Chapter 1

Introduction

1.1 Overview

The global prevalence of refractive errors has been estimated to range from 800 million to

2.3 billion. China is one of the countries with the highest myopic rates among its total

population of over 1.3 billion. A considerable number of studies have been conducted

on laser refractive surgeries. Many publications introduced the successful cases of laser

refractive surgeries. [1, 2, 3, 4, 5, 6]. Although laser refractive surgeries have been widely

accepted, the study of postoperative complications of laser refractive surgeries continues

to be a focus of research. [2, 6]. These postoperative complications may be associated

with the creation of corneal flap before the excimer laser ablation [7], wound healing after

the surgery and other biomechanical responses of the cornea to the change of structure

introduced by the surgery process [8, 9]. Currently, laser refractive surgery has developed

different surgery forms from Laser-Assisted In-situ Keratomi (LASIK) such as Femto-

LASIK, FLEx and SMILE, which are claimed to have advantage over LASIK [10, 11, 12].

However, these surgery forms all lead to changes in the biomechanical properties of the

corneal structure, thus causing postoperative complications which are the same as LASIK

[13, 14, 15, 16, 17].

Laser myopic correction has been successful in practice, while improvements are still

desired for more accurate and safer treatments for all the forms mentioned above. The

computer-aided refractive surgery planning and prediction is one of the important as-

pect. It requires novel computer modelling of the biological parameters of each individ-
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ual patient’s eyes to simulate refractive surgery procedures and advanced computational

techniques for determining optimum surgical procedure parameters. This project aims to

develop such an intelligent planning tool. It will develop a comprehensive database for nec-

essary information and knowledge representation and a dedicated graphical user interface.

It is undeniable that laser refractive surgeries are very successful in practice. However,

it is necessary to improve the problems of surgeries for obtaining more accurate and safe

treatment results. One of the critical aspects in the planning of refractive surgeries requires

a novel computer simulation model that simulates the surgical procedure based on corneal

biometrics to determine the optimal surgical parameters and possible surgical outcomes

for each patient. However, the models, algorithms and other technical details used in the

surgical equipment for laser refractive surgeries are limited by the protection of intellectual

property. They are not published; that is, this system is entirely unknown inside and is a

black-box system. For a black-box system, it is hard to construct the mathematical model

of simulation system using general approaches, such as an analytical approach, deductive

approach, theoretical modelling approach and mechanism modelling approach [18, 19].

Moreover, laser refractive surgeries are multi-input and multi-output nonlinear systems.

It is not easy to obtain a sufficiently accurate mathematical model of simulation system

using approaches such as a testing approach, inductive approach, or system identification

method. Machine learning provides an approach for obtained a mathematical model of

laser refractive surgeries. The number of input variables and outcomes for machine learn-

ing can be selected as needed, and some approaches in machine learning, such as regression,

artificial neural networks (ANN), and support vector machines (SVM), can approximate

arbitrary nonlinear functions. Furthermore, some methods in machine learning, such as

ANN and SVM, can generate the identification model, but not the computational model.

The tunable parameters of this model are reflected in the connections and weights inside

the networks. This model does not require the creation of an identification format based

on a mathematical model of the actual system (surgery process). The step of system

structure identification can be omitted. In theory, the mathematical model of laser re-

fractive surgeries can be established by a method of machine learning that selects, trains,

and adjusts without having to delve into the specific mechanism or system structure of

the laser refractive surgery. However, due to the statistical problems and other real-world

problems, the dataset used for the modelling process always has some defects, e.g. missing

data, imbalanced data distribution and sparse data distribution. These defects make the
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mathematical model unacceptably inaccurate. Therefore, the dataset problem is one of

the main problems that this study should solve.

Furthermore, the mathematical model of laser refractive surgeries simulation is used

to achieve surgical planning and the prediction of the surgical outcomes. It is better to

visualise the simulation results to evaluate the surgical planning and surgical outcome

intuitively. One of the prerequisites is to simulate human vision in an acceptable time

accurately. The principle of human vision is to project a three-dimensional (3D) scene of

the real world onto a two-dimensional (2D) retina. Similar to human vision, the process

of human vision simulation is to display a 3D scene on the 2D screen. There are two

approaches to accomplish this task. One is rasterisation, and the other is ray tracing.

Both approaches have a balance between how to handle real-time and high-fidelity in

rendering.

With the supporting of modern graphics processing units (GPUs), real-time rendering

and high-fidelity simulation can be achieved in rasterisation. Rasterisation has played a

dominating role in simulation for a long time. Furthermore, it is widely used in simulation

for the information visualisation. OpenGL and DirectX, both based on rasterisation are

the most famous application programming interfaces (APIs) in simulation. Rasterisation

uses the mesh of triangles or polygons to describe the 3D model in the scene. In the

mesh, the vertices of each triangle intersect the vertices of other triangles with different

sizes. Each vertex includes position, colour, texture, and normal information. All the

vertices in the 3D scene are then mapped to pixels or points on the 2D screen. In the 2D

screen, the initial colour of each pixel is determined by the vertices information of the 3D

scene. With scene illumination analysis, multi-layer texture application and other further

operation, the final colour of each pixel on the 2D screen is determined. However, the 3D

scene rendering process of rasterisation is not suitable for human vision simulation for the

following reasons:

1. Light intensity, reflection types and materials are considered during the scene il-

lumination analysis of rasterisation. All rays can only be reflected once in a scene. The

refraction is not considered. Nevertheless, for real human vision, rays may reflect and

refract multiple times before reaching the retina. Rasterisation is unable to simulate this

process.

2. In the 3D scene, the model details are approximated by mathematical approaches,

such as digital differential algorithm (DDA), Bresenham algorithm and anti-aliasing algo-
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rithm. For real human vision, the dioptre and the object distance are both the causes of

the detail loss. Rasterisation is unable to simulate this process.

However, simulation can also display a 3D scene on a 2D screen using the ray tracing

method. The ray tracing method uses a ray from the light source to reflect and refract

among the various models in the 3D scene. The intersections of the ray and the model,

the reflective and refractive direction and the ray intensity are computed. In this process,

the ray passes through the lens of a virtual camera. The intensity and colour of the ray

determine the image displayed on the 2D screen. Compared with rasterisation, the principle

of ray tracing is more similar to human vision. However, compared with the rasterisation

method, in order to obtain an accurate rendering result, the ray tracing method needs an

accurate schematic human eye model which takes into account the normal and pathological

human eye, and a large amount of computing time which is used to analyse the ray path.

That is another problem that this study aims solve.

The work is directed at the development of such an intelligent planning tool to predict

the surgical parameters and outcome for laser refractive surgeries. It is the focus of the

study. This planning tool is based on the vital information and knowledge representation

of the laser refractive surgeries, and with a dedicated graphical user interface.

The rest of this chapter is organised as follows. The additional discussion of the moti-

vations is presented in Section 1.2. Section 1.3 presents the research question and related

issues. The primary research methodologies adopted to address the research question and

related issues are discussed in Section 1.4. Section 1.5 highlights the research contributions.

Section 1.6 and Section 1.7 list the published works during the study and the outline of

this thesis, respectively.

1.2 Motivations

The main aim of the study presented in this thesis is to find effective and accurate ap-

proaches to establish simulation and visualisation mathematical models using the concepts

and methods of machine learning, which will enable reliable predictions of surgical param-

eters and outcomes for the laser refractive surgeries. Most of the studies on simulation

and visualisation of the human eye and human vision have tended to focus on the healthy

human eye and normal human vision. There is minimal published work on the modelling

for the abnormal human eye and pathological human vision. Simulation and visualisation
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of the abnormal human eye and pathological human vision should be the pre-condition

of the refractive surgeries. In practice, at least with respect to the clinical diagnosis of

laser refractive surgeries, this can be accomplished roughly by using a theoretical formula

and the experience of surgeons; although the surgical instruments can provide some sur-

gical parameters and possible surgical results in numerical form, due to the protection of

intellectual property, the approach has not been published. Meanwhile, it has not been

modified or optimised by the surgeons. On the other hand, this approach of using surgical

instruments to predict surgical outcomes is not efficient, given that patients who need to

complete the surgery are still waiting in the queue. Using a machine learning method for

the human eye modelling and the human vision simulation, and then implementing the

intelligent planning, prediction and evaluation of laser refractive surgeries, even if only

coarsely achieved, would significantly improve the prediction accuracy and reduce the time

to process the prediction. The areas, where intelligent planning would be of particular

value, are in screening programmes where large quantities of pre-surgery biological param-

eters need to be processed in such a way that surgeons and patients can receive the surgical

planning and post-surgery outcomes during the initial examinations. The results of this

study can also be applied to screen for glaucoma and other eye diseases caused by diabetes

using machine learning.

In summary, the motivations for choosing refractive surgeries as a focus for the study

presented in this thesis are as follows:

1. Little work has been reported for the planning, prediction and evaluation of refractive

surgeries in terms of machine learning applied to the clinical data. However, there have

been many studies that have used regression methods to perform statistical analysis of

refractive surgery results. The majority of the reviews are on the analysis of the patient

biological features [20, 21], the study of surgery parameters [22, 23] and the study of surgery

outcomes [24, 25].

2. With the widespread use of laser refractive surgery, many clinicians have found

that it is difficult to find new information and knowledge from existing clinical data using

traditional medical statistical methods such as regression. Besides, clinicians lack the tools

to predict and evaluate surgical outcomes. Most existing refractive surgery tools only

support the analysis of a patient’s biological parameters and suitability for surgery. In

practice, in refractive surgery, the subjective assessment of the clinician is the primary

method of preoperative evaluation. Although the success rate of refractive surgery is
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high, the process may still be affected by clinicians’ human errors and skills. Therefore,

intelligent planning based on a machine learning method proposed in this thesis is of

practical significance for the prediction and evaluation of the refractive surgeries. It can

provide more objective surgical plans, predictions, and evaluation recommendations. In

addition, it enables clinicians and patients to understand the outcomes of the surgery in

advance.

3. The Computer-Aided Diagnosis (CAD) is an essential element in the medical care

field and is certainly not limited to refractive surgeries. The method mentioned in this the-

sis could be used in the ophthalmological studies and other medical studies for supporting

the automatic CAD, and help the clinicians and scientists discover new information and

knowledge from the clinical data.

4. The accurate human eye model and human vision simulation could be used for many

other fields, such as glasses design, or the development of an optical system. In particular,

the abnormal human eye model and the pathological human vision simulation, including

myopia and hyperopia, could help to develop display systems suitable for the people with

the ophthalmic diseases.

5. The acceleration method for the ray tracing proposed in this thesis could provide

the support to develop a new real-time rendering engine for the simulation system, game

and virtual-reality system.

1.3 Research Questions and Aim

Based on the research motivations outlined in Section 1.2 above, the work in this thesis

aims to investigate methods that can help with the planning, prediction, and evaluation

of refractive surgery. More specifically, the study in this thesis intends to use machine

learning to complete the prediction of surgical parameters and surgical outcomes. Besides,

With the establishment of a mathematical model of human eyes, machine learning can

be used to simulate human vision, with the result that refractive surgery can be planned,

predicted, and evaluated. Thus the overall research question of this thesis is

Is it possible to design machine learning-based methods suitable for multi-input, multi-

output and non-linear system modelling so that effective data prediction and simulation

can be achieved in the presence of missing data, imbalanced data, spare dataand complex

datasets?
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The reasons for adopting a machine learning method as follows:

1. The raw data in the medical field are diverse and heterogeneous. These data include

the biological parameters of patients, clinical examination results, doctors’ observations

and consultations. These data are directly or indirectly related to the final diagnosis

result and treatment. The methods of medical statistics cannot solve the problems of

data diversity and heterogeneity, whereas the methods of machine learning can provide a

reference for doctors by establishing relationships among different properties by forming

various relational expressions.

2. It is difficult for medical data to express its structure and characteristics mathemat-

ically in the collection of medical data. It is not easy to integrate and structure the data

into a formula or model that reflects the relationship among the data. Machine learning

methods can obtain the association of species data through methods such as clustering,

regression, or sequence analysis.

3. It is difficult to avoid noise interference completely. Machine learning methods can

increase the fault tolerance of the model by ignoring specific bizarre samples, prevent the

over-fitting of the model, and improve the generalization of the model.

4. The medical data is inevitably lost. The method of medical statistics is to discard

these incomplete data, but the information in these data is lost along with it. Machine

learning methods can interpolate this part of the incomplete data to maximize the infor-

mation contained in the data.

5. The medical data often contains redundant, meaningless or additional attributes.

Machine learning can remove these attributes through correlation analysis and collinearity

analysis to improve the accuracy of the final model.

6. The medical data often face data shortage. Due to technical conditions and acquisi-

tion costs, certain types of properties or data volume are relatively small compared with the

total. Machine learning can solve such data shortages and imbalances by under-sampling

or over-sampling, or by using vision simulation to generate new data.

In summary, a core issue of using machine learning to model multiple-input, multiple-

output and the non-linear system is the problem of processing data sets. The reason for this

problem is that the medical data used in the mathematical modelling of medical diagnosis

is often a by-product of medical behaviour and is not explicitly collected for modelling.

These medical data may have problems such as missing data, imbalanced data and spare

data due to statistics, ethics, disease characteristics, and noise. Another core issue is the
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data shortage problem faced by using machine learning for system modelling. The reason

for this problem is that the amount of data required for modelling is large, the cost is high,

and it exceeds the current technology level.

The above research question thus encompasses five subsidiary research questions:

1. The issue of missing data

In a real system, due to the problems of statistics, the missing of input and output

data is unavoidable. During the process of modelling using a machine learning approach,

the deviation of the mathematical model is largely due to the missing data.

2. The issue of imbalanced dataset

In a real system, the amount of data outputted by one type of output is much less than

(or more than) the amount of data outputted by other types. The imbalanced dataset can

deviate the model built by machine learning.

3. The issue of sparse data distribution

Due to data statistics or real system characteristics, the data distribution is not con-

centrated, so that an effective model cannot be trained.

4. The ray tracing method uses blur to describe the loss of details.

The computing of the blur range and quantity are determined by the blur distribution

function (BDF). Currently, the BDF is determined for normal human vision and is not

suitable for pathological human vision.

5. The computing of ray intersection, ray reflection and ray refraction take significant

time.

For the existing algorithm and hardware technology, it is impossible to guarantee high-

speed and high-fidelity scene rendering. There is also a requirement for a novel accelerate

approach for ray tracing computing.

1.4 Research Methodology

Adaptive research methods have widely considered and evaluated many machine learning

methods, especially, data imputation, data over-sampling and ensemble learning, to solve

these questions.

It is firstly necessary to collect training and test datasets for refractive surgery. The data

source is the Eye Hospital of Wenzhou Medical University. This hospital is a specialised
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hospital for ophthalmology. The staffs at this hospital are also able to comment, verify

and evaluate the utility of the proposed methods.

For the prediction of surgical parameters and results, due to the absence of various

properties in the medical dataset, the dataset needs to be pre-processed first, such as by

data imputation. These data are then statistically analysed for evaluating the distribution

of the data. For Improving the sensitivity (true positive fraction, TPF)and specificity

(true negative fraction, TNF) of prediction results, while at the same time, reducing the

false positive fraction (FPF) and the false negative fraction (FNF), the high proportions

of data are under-sampled. On the other hand, to compensate for the minority data, over-

sampling is used. During the prediction process, different machine learning methods are

compared. Due to data sparseness, the accuracy of the predictor is only slightly higher

than that of random guessing when using a single machine learning method. The ensemble

learning method is used to integrate multiple predictors with low accuracy and optimise

the weight of each predictor by genetic algorithm. To avoid over-fitting and to improve

the generalisation of the predictor, the K-fold cross-validation is used.

On the other hand, in the modelling and visual simulation of human eyes, mathemat-

ical models of human eyes suitable for normal and abnormal human eyes are constructed

according to the image-forming principles of the human eye and the tenets of refractive

surgery. In the visual simulation, the blur distribution function (BDF) is introduced to

increase the accuracy and the speed of simulation. BDF is a multi-input, multi-output

non-linear function. The machine learning method is used to derive BDF. However, due to

the limitation of current technology, imaging data inside the human eye cannot be obtained

directly. The established human eye mathematical model and ray tracing method are used

to simulate human eye vision to obtain training and test datasets. By constructing neu-

ral networks, the BDF is derived. Finally, this study utilises GPU acceleration methods

and optimises threads and memory to speed up the generation of datasets and reduce the

computation time of ray tracing in simulation.

1.5 Contributions

This thesis makes several significant contributions, and these are summarised in this sec-

tion. This study achieves the planning, prediction and evaluation of refractive surgery with

machine learning methods, and proves the feasibility of modelling multiple inputs, multiple
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outputs, and nonlinear systems with machine learning. In pre-processing medical data of

refractive surgery, the multiple imputation method and the data over-sampling method of

medical data is proposed. The methods improve the accuracy of prediction indicators and

reduce the predicted FPF and FNF. Based on the actual prediction results of the refractive

surgery, an ensemble learning method optimised by the genetic algorithm is proposed for

the medical data to improve the accuracy of the predictor. Furthermore, a novel schematic

human eye model is proposed in this thesis. This model is based on the image-forming

principle of the human eye and the principle of refractive surgery. This model could sim-

ulate normal and abnormal human eyes. With the ray tracing method, the standard and

pathological human vision could be simulated by this model. This thesis proposes two

ways to improve the accuracy and the speed of human vision simulation. First, the BDF

is introduced to simulate the defocus blur in DoF effect. The BDF is derived from the

machine learning method. The training and test datasets are obtained by the schematic

human eye model proposed above and ray tracing. Second, with GPU acceleration technol-

ogy, and by optimising the thread and memory, the ray tracing computing is parallelised

and accelerated.

In summary, the main technical and practical contributions that this thesis makes can

be summarised as follows:

1. A novel and effective method is proposed for planning, predicting and evaluating

the refractive surgeries with the medical dataset.

2. A multiple imputation method is proposed for the missing medical data in the

training and test datasets.

3. An improved over-sampling method is designed for reducing FPF and FNF with the

imbalanced medical data.

4. An ensemble learning method with optimisation is proposed for increasing the

accuracy of the predictor in a sparse medical dataset.

5. An improved schematic human eye model with variable axial length and variable

corneal thickness is proposed for pathological human vision, e.g. myopia and hyperopia,

and refractive surgery.

6. A novel data augmentation method is proposed for machine learning using the

results of human vision simulation.

7. A BDF derivation method is proposed for using machine learning.

8. A GPU-accelerated ray tracing rendering engine is designed for human vision simu-
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lation.

In addition to the contribution mentioned above, this work has also made some contri-

butions to other fields.

1. A medical dataset with detailed explanations of each property was developed and

could be published for further machine learning research.

2. A universal optimisation workflow is designed for other GPU-accelerated applica-

tions.

1.6 Published Work

There are some materials in this thesis that have been published previously. This section

provides a summary of these publications:

1. Wei Wang, Yong Yue, Ahmed Elsheikh and Fangjun Bao. Intelligent Planning

for Laser Refractive Surgeries. Journal of Physics: Conference Series, 976(1), 2018. EI

Compendex. This paper discusses data mining techniques that can be utilized for the

prediction of laser refractive correction surgery parameters. It can provide the surgeon with

a reference for possible surgical parameters and outcomes of the patient before the laser

refractive correction surgery. The work described in this paper is used as the foundation

for work presented in Chapter 3 and Chapter 4.

2. Wei Wang, Yong Yue, Ahmed Elsheikh and Fangjun Bao. Using imbalanced learning:

A case study in refractive surgery outcome prediction. In 9th International Conference on

Information Technology in Medicine and Education (ITME 2018), 2018. EI Compendex.

This paper proposes an imbalanced learning method for the prediction of the refractive

surgery outcome. The content of this paper is used with respect to the work in Chapter 4.

3. Wei Wang and Yong Yue. An Improved Schematic Human Eye Model for the

Human Vision Simulation. In 2nd International Conference on Advances in Computer

Technology, Information Science and Communications (CTISC 2020), 2020. (Accepted)

This paper proposes an improved schematic human eye model for the pathological human

vision. The content of this paper is used with respect to the work in Chapter 5.

4. Software copyright registration, LASIK Refractive Surgery Assistant System, No.

2018R11L466994. The application document and software specification of this software

copyright registration introduces the improved schematic human eye model for the normal

and abnormal human eyeball, the BDF derived method using machine learning for human
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vision simulation, and the ray tracing based on GPU acceleration. The methods of this

software are used for Chapter 5 and Chapter 6.

1.7 Thesis Outline

The reminder of this thesis is organised in the following way. Chapter 2 presents a literature

review and related works of this study. Chapter 3 begins by analysing the dataset for this

study and the application domain. The chapter also introduces the multiple imputation for

the missing data in the dataset. The process of surgery parameters and outcomes prediction

is introduced in Chapter 4. This chapter proposes the imbalance learning method and the

ensemble learning method with optimisation. In Chapter 5, the improved schematic eye

model is introduced. In addition, the BDF derivation method using machine learning is

proposed in detail. Chapter 6 introduces the GPU-accelerated ray tracing method and its

specific optimisation process. Finally, Chapter 7 presents the conclusions and the main

findings of the work presented in this thesis, and some possible directions for future work.



Chapter 2

Literature Review and Previous

Work

2.1 Overview

This chapter provides an overview of previous work related to this thesis. In short, the

work described belongs to the field of Computer-Aided Diagnosis (CAD), which combines

machine learning with medical diagnostics. Thus, this chapter begins with a review of the

application of machine learning in refractive surgery in Section 2.2. Machine learning in

the medical field is a way to discover the information and knowledge needed for medical

diagnosis from large amounts of medical data. The application of machine learning methods

in medical diagnosis is mainly divided into two categories: one is the prediction method

(regression, classification and time series analysis), and the other is the description method

(clustering, association and sequence analysis). Because medical statistics are widely used

in the medical field, the regression method is a common approach for the study of refractive

surgery. The regression is used for the prediction, comparison, and evaluation of surgical

processes and outcomes. According to the literature review, it is found that most of the

studies only use the least-square method to fit regression functions or regression equations,

but lacking rigorous regression analysis, such as t-test, f-test and p-value. Moveover, the

datasets used in most studies are small, usually no more than 500 eyes. Most studies do

not analyse the data distribution in the datasets, and the datasets are not published. In

this case, the regression model is not confidence. Meanwhile, it is difficult to generalise for

13
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other diagnoses.

In the process of the literature research on machine learning methods in refractive

surgery, it is found that most machine learning research focuses on method innovation and

more attention is given to improving accuracy.

On the other hand, the dataset is often ignored. Datasets are the foundations of

machine learning to discover knowledge. In the dataset, the distribution of data affects the

accuracy of the model. Thus, the data imputation research and data resampling research

are reviewed in sections 2.3 and section 2.4, respectively. In the process of the literature

research, it is found that the multiple imputation method uses a series of possible values

to replace each missing value, which can reflect the uncertainty of the missing data being

replaced, thus, it could avoid the biased estimates in any single imputation method. The

multiple imputation method could produce more efficient model estimates. As mentioned

in Chapter 1, it is challenging to collect medical data for machine learning research. The

datasets are usually small.

Meanwhile, due to various reasons, e.g. privacy, the treatment, and the outcomes, one

type of sample may be less than others. Therefore, using the under-sampling method loses

the information hidden in the unselected data. The generalisation of the model is reduced.

Due to the data sparseness in the medical dataset, the accuracy of the predictor is only

slightly higher than random guessing. The concept of ensemble learning is proposed for

better accuracy of prediction. Ensemble learning is summarised in Section 2.5. With the

literature research, it is found that ensemble learning can improve the accuracy of the

model in the medical field.

On the other hand, in order to accurately evaluate the outcomes of refractive surgery,

it needs to model the human eye and simulate the human vision. The schematic human

eye models are reviewed in Section 2.6.1. It was found that all the schematic eye models

emphasised the changes of the refractive power. However, these models ignore the main

features of the abnormal human eye, such as the change of axial length for myopia. In

addition, all the schematic eye models do not consider laser refractive surgeries, that is, the

changes in the corneal thickness. In Section 2.6.2, the studies on human vision simulation

are summarised. It is found that ray tracing has been the focus of visual simulation research

in recent years. In addition, defocus blur is one of the main studies in ray tracing, and it

is also the key to describing the effect of DoF. In order to improve the accuracy of defocus

blur computing, two main methods have been proposed: the multi-pass method and the
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post-processing method. The multi-pass method has high accuracy, but the operation

efficiency is very low. With post-processing method, however, the accuracy is lower, but

the operation efficiency is high. In addition, there is no related study on the pathological

vision and post-surgery vision simulation. GPU-accelerated algorithms are introduced for

the computational efficiency of ray tracing, and a summary of GPU-accelerated methods

is provided in Section 2.7. Section 2.8 is the final summary of this chapter.

The following summarises the research contents of this study.

2.2 Prediction in Refractive Surgery

Because medical statistics are widely used in the medical field, the regression method

is common in medicine as a method of predicting, comparing, and evaluating medical

procedures and outcomes. There are some studies on refractive surgeries.

Before laser refractive surgery, Salz et al. used fresh human cadaver eyes to analyse the

relationship between incision depth, corneal curvature, corneal thickness, corneal diameter

and incision length with stepwise regression in the radial keratotomy and introduced the

prediction equation of the change in corneal curvature the correlation after radial kerato-

tomy [26, 27]. While the lack of long-term following for the cadaver eyes, they presented a

way to predict the outcomes of refractive surgery with linear regression. Block and Block

use multiple regression to determine the surface of the cornea in radial keratotomy [28].

Although they introduced the algorithm and ellipsoid equation, they did not, however,

provide the solution of this equation. In 2011, Bao et al. solved the ellipsoid equation

with 112 eyes multiple regression, moreover, they determined that the axial length is the

main morphological parameter related to myopia [29]. Villaseor et al. introduced a linear

regression equation which can obtain intraoperative central corneal thickness (CCT) with

preoperative CCT in the radial keratotomy [30]. While the size of the dataset is 395 eyes,

the dataset spanned a large timescale, from 6 days to 18 months. This situation may

increase the error in the regression equation.

Since laser refractive surgeries were invented; there have been studies on the data anal-

ysis of the risk of surgery, patient biological feature, surgical parameters and outcomes.

Ehlers and Hjortdal used 40 eyes stepwise linear regression to compare the difference be-

tween two types of attempted correction [31]. Dutt et al. used one-year results of excimer

laser photorefractive keratectomy (PRK) to analyse the correlation between the attempted
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refractive correction and the achieved correction with linear regression [32]. The dataset of

Srinivass study is 47 eyes of 39 patients. Kohlhaas used 297 eyes (divided into five linear

regression groups) to analyse the correlation among intraocular pressure (IOP), CCT and

corneal curvature after corneal refractive surgery [33]. There are slight correlations among

IOP, CCT and corneal curvature. With 50 eyes linear regression, Yuan-Chieh Lee et al.

presented the development of glare and halo symptoms was correlated with the attempted

correction of spherical equivalent (SE) and astigmatism, but not correlated with the pupil

size [34]. In contrast, with 92 eyes linear regression, Helgesen et al. claimed the large

pupil size is associated with postoperative visual disturbances during scotopic condition

[35]. Won-Mo Yi et al. introduced a linear regression method to evaluate the correlation

between corneal flap thickness and preoperative corneal thickness with 69 eyes [36]. The

correlation between corneal flap thickness and preoperative corneal thickness was found in

this study. With 20 eyes linear regression, Srivannaboon et al. claimed that the corneal

power changes measured by Orbscan-derived total optical power maps correlated highly

with the manifest refractive change produced by LASIK [37]. With 56 eyes linear regres-

sion, Bhren et al. claimed the postoperative wavefront error had limited influence on the

subjective quality of vision [38]. With 43 eyes linear regression, Lackerbauer et al. claimed

there is limited correlation between the corneal ablation and refractive outcomes in LASIK

[39]. Alio et al. evaluated PRK outcomes and introduced a predictive model for the re-

fractive changes in the long term with 33 eyes linear regression [40]. Given the small size

of these datasets, the results may be disturbed by the outliers in the dataset.

Juan et al. introduced a way to evaluate the effectiveness and safety of LASIK with

143 eyes linear regression [41]. In their studies, there was a significant correlation between

achieved correction and difference between preoperative and postoperative mean kerato-

metric readings. Huang et al. introduced a method to estimate the deviation in myopia

and astigmatism mixed refractive surgery with 523 eyes multiple regression [42]. He found

that the spherical ablation by LASIK has 19% greater refractive change than by PRK.

With 706 eyes linear regression, Recep claimed that the decrease in IOP was related to the

decrease in corneal stromal thickness after LASIK [43]. With 102 eyes linear regression,

Durairaj et al. presented the regression equation of actual stromal ablation [44]. After 484

eyes linear regression, Van Gelder et al. presented the suboptimal outcomes of attempted

correction in one eye, increasing the risk of a poor outcome in the other eye in the bi-

lateral LASIK [45]. After 196 eyes linear regression, Eleftheriadis claimed thinner flap is
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associated with the faster visual recovery and less myopic SE. Postoperative complications

are unrelated to the flap thickness [46]. Chen and Hamilton introduced the correlation

between corneal biomechanical properties, e.g., corneal hysteresis (CH) and a corneal re-

sistance factor (CRF), and attempted refractive correction in LASIK [47, 48]. Ogasawara

and Onodera analysed the correlation of residual stromal bed thickness and regression of

myopia after LASIK with linear regression [49]. While the values of P-value and R-squared

are used to evaluate the regression in these studies, more details of regression, e.g., stan-

dard error and correlation, are not mentioned. The accuracy of the results can not be

evaluated.

Choudhri used 250 eyes multiple linear regression to predict the corneal flap thickness in

LASIK [50]. The corneal thickness is most significantly correlated with corneal flap thick-

ness. With 8113 eyes linear regression, Chang presented a method to predict the change of

IOP after the LASIK with refractive change [51]. Razmjoo introduced a regression model

for correcting intraocular lens power after refractive surgery independent of preoperative

data with 148 eyes linear regression [52]. Wangsupadilok presented a regression equation

of IOP and CCT with 437 eyes linear regression [53]. Liyanage, Allan et al. developed a

systematic method for quantifying pre-treatment adjustments to the treatment sphere in

patients having myopic wavefront laser in situ keratomileusis with multiple linear regres-

sion [54, 55]. The mean-squared-error (MSE) is a measure of the quality of an estimator

[56]. The root-mean-square error (RMSE) is a measure of accuracy, to compare forecast-

ing errors of different models for particular data and not between datasets [57]. For the

prediction model with regression, MSE and RMSE could be used to evaluate the accuracy.

However, they were not mentioned in these studies.

The related work provided an efficient way to plan and evaluate laser refractive surgery

using data mining techniques. This study explores how to predict the corneal maximum

ablation depth with data mining. In addition, more details of regression (e.g., standard

error and correlation which have been neglected in previous studies) could be used to

evaluate the accuracy of model and results.

2.3 Data Imputation

Missing data is very common in medical statistics and medical diagnostic research. Com-

pared with no missing data, the missing data make the results of medical diagnosis deviate
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and undermine the effectiveness of the conclusions.

There are three main types of missing data: missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR)[58, 59]. In medical di-

agnosis, typical examples of MCAR include the inability to perform cardiology analysis

because the patient’s heart rate is not fully recorded, or the patient’s renal function is not

detected due to equipment failure. Therefore, with the MCAR assumption, missing data

does not depend on observed data or unobserved data [60].MAR is different from MCAR.

With the MAR assumption, missing data depends on what has been observed [60]. For

example, in medical surveys, women are less likely to fill in height, and weight items than

men, the missing data in such medical surveys belong to MAR. Once gender is considered,

the missing data does not depend on their height and weight values. In contrary to MAR,

With the MNAR assumption, missing data depends on unobserved data, such as the value

of the observation itself[60]. For example, people with myopia or hyperopia are more likely

to take vision measurements than people with normal vision, even after gender and age are

considered. If there is a lack of vision measurement data, it may be due to an individual’s

unobserved features (with normal vision). Donders and Little believe that in the field of

medical diagnosis, in most cases, the missing data is not attributed to either MCAR or

MNAR, but MAR. Based on the data that could be observed, it is possible to determine

whether the missing data is MCAR. However, it is impossible to evaluate whether the

missing data is MAR or MNAR. [60, 61]

For the missing data in the machine learning, there are many types of research which

have proposed several methods, e.g. list-wise deletion[62], missing indicator method[63],

and single imputation[62]. These methods all assume that the missing data type is MCAR.

With MCAR assumptions, these methods could provide unbiased estimates, but these

estimates are less accurate. List-wise deletion is the most popular method for the missing

data. Any row with missing data is deleted from the dataset. Only the rows with the

complete data are reserved for the analysis. However, the operations of list-wise deletion

method reduce the sample size and make a significant bias for the estimate; meanwhile,

the information hidden in the rows with missing data are discarded [62]. Missing indicator

method considers the missing data as a new group, named missing, or as a fixed value,

usually zero. This method could use all available data in the dataset, even if data are

missing in some rows. This method makes the direction of the bias hard to estimate [63].

Similar to the missing indicator method, single imputation method uses a single value, e.g.
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mean value, the possible value and most recently value, to replace the missing data [62].

Similar to the missing indicator, this method makes biased estimates.

Multiple imputation, as an effective method for missing data, solves the model uncer-

tainty caused by missing data [64]. Multiple imputation provides the associated unbiased

estimates based on valid data with the MAR assumption in most of the statistical tools

[65]. Buuren proposes that multiple imputation could also work with MCAR or MNAR

assumption [66]. Multiple imputation replaces each missing data with a series of possible

values to reflect the uncertainty of the missing data being replaced. Then, the standard

statistical analysis process is used to analyze these datasets generated after multiple im-

putation. Finally, the statistical results from each dataset are synthesized to obtain the

estimated values of the overall parameters. Because multiple imputation does not replace

missing data with a single value, it tries to generate a random sample of missing data. This

method reflects the uncertainty caused by missing data and could produce more effective

estimates. Combined with this method, it could easily infer the unknown properties of

missing data without discarding any information.

Therefore, the multiple imputation method is chosen for the missing data in the dataset

of the refractive surgery. The possible values for replacing the missing data should be

discussed in the following chapter.

2.4 Data Resampling

In medical diagnosis, the datasets often suffer from sample data imbalanced across classes.

The causes of the situation include the patients’ privacy, the feature of the disease and

the approach of the diagnosis. For the refractive surgeries, because of the cautious of

the clinicians and the maturity of the surgery, the successful outcomes hold an absolute

advantage position in the dataset. With this type of dataset, the model produced by the

machine learning method tends to output the positive results with any input data. It is a

substantial bias of estimate.

A series of data resampling methods are proposed for balanced data distribution among

the different classes. These methods could be divided into two main categories: one is

under-sampling, the other is over-sampling. The under-sampling is for the majority class.

By under-sampling the majority class, the data sample size could be balanced between the

majority class and minority class. The popular under-sampling methods include NearMiss
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family [67], Condensed Nearest Neighbor (CNN) [68], Edited Nearest Neighbor (ENN)

[69] and Tomek Link Removal [70, 71]. The main disadvantage of this method is that

the information contained in the samples which are not resampled in the majority class is

discarded. It causes bias in the estimate. In particular, the dataset size is always small

in medical diagnosis. With the under-sampling method, the model produced by machine

learning is inaccuracy.

In contrary to the under-sampling method, the over-sampling method is suitable for

the minority class. By oversampling the minority class, the data distribution between the

two imbalanced class could be kept consistent. The over-sampling method includes random

over-sampling of the minority class, synthetic minority over-sampling technique (SMOTE)

[72], borderline SMOTE [73] and the combination with under-sampling [74, 75, 76, 77]. The

combination with under-sampling methods is the new development direction of the data

resampling. Due to the uncertainty of the data obtained by the over-sampling, the main

disadvantage of the over-sampling method is that the direction of the bias is uncertain.

However, if the data obtained by the over-sampling is a small part of the entire dataset,

this bias could be corrected by other machine learning method.

Therefore, in medical diagnosis, when the dataset size is not big enough for the under-

sampling method, the over-sampling method, especially the combination method of SMOTE,

could be a better choice for the data resampling.

2.5 Ensemble Learning

In medical diagnosis, supervised learning is performed using machine learning to achieve

the goals of prediction and classification. The desired result is a model that is stable and

performs well in all respects. In other words, the generalization ability of the model should

be good enough for other datasets. However, the actual model is often not so ideal. In

most cases, the only model with preferences (weakly supervised models) can be obtained

by machine learning methods. These models may perform well with some datasets and

perform poorly in other datasets. The performance of these models may be inconsistent.

That is, some models obtain wrong predictions, while others make correct predictions.

It could correct wrong predictions by the correct ones. It is the core idea of integrated

learning. Ensemble learning is the combination of multiple weakly supervised models to

obtain a better and more generalized robust supervised model. Ensemble learning is a
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meta-algorithm that combines several machine learning methods into a prediction model

to achieve reducing bagging, boosting and improving stacking.

In order to adapt to different dataset sizes, the various data strategies are formulated

for ensemble learning:

1. For the large dataset: Divide the dataset into multiple small datasets, use multiple

machine learning methods for model training and testing, and combine these models to

form the final model.

2. For the small data set: Use Bootstrap method for sampling to obtain multiple data

sets, use multiple machine learning methods for model training and testing, and combine

these models to form the final model.

The methods of ensemble learning combination models are mainly divided into two

categories:

1. Sequential method

Weakly supervised models for training and testing are obtained in order, such as Ad-

aBoost methods. The principle of the sequential method is to use the dependencies between

weakly supervised models. By assigning higher weights to the wrong samples during train-

ing and testing, the prediction and classification accuracy of the final model is improved.

2. Parallel method

Weakly supervised models for training and testing are obtained simultaneously, such as

Random Forest method. The principle of the parallel method is to make use of the mutual

relationship of independence among the weakly supervised models. The error rate of the

final model could be reduced by averaging or simple majority voting.

For the ensemble learning, there are several classical ensemble learning methods, such as

Breimans bagging [78], Schapires boosting [79], Adaptive Boosting [80], Wolperts stacked

generalization [81] and Mixture of Experts [82].

In medical diagnosis, the datasets for model training and testing always suffer the

data sparseness. That is, there are many redundant and noisy data in these datasets,

and it is difficult to extract useful information from the datasets. If the accuracy of

the model obtained by using a single predictor or classifier is only slightly better than

random guessing, it could use ensemble learning to combine weak predictors or classifiers

to improve the accuracy of the final model with optimizing the algorithm. Therefore,

several studies focus on the combination of ensemble learning and other machine learning

methods. Tekin et al. propose the adaptive ensemble learning with confidence bounds for
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medical information. [83]. Maji et al. propose the deep convolutional neural networks

ensemble learning method for detecting retinal vessels in fundus images [84]. Moreira et

al. propose an ensemble learning method to predict neonatal condition in pregnancy care

[85]. Hosni et al. propose an ensemble learning method to classify lung cancer [86].

2.6 Human Eye Modelling and Human Vision Simulation

With the development of ophthalmology and computer science, especially the exploration of

the causes of pathological vision and the requirement for the pre-evaluation of the refractive

surgeries, the studies begin to focus on how to model the human eye and simulate the

human vision accurately. For human eye modelling, it is mainly formed an image on the

retina by using a combination of the spherical lenses as the optical media of the eyeball.

These studies are focus on the schematic human eye model. For human vision simulation,

it is mainly expressed the defocus blur effect in the scene by using various types of blur.

These studies are focus on the methods and technologies of human vision simulation.

2.6.1 Schematic Eye Model

Schematic eye model is a model based on the human eye’s optical characteristics based

on the anatomy of the human eye. There are some schematic eye models proposed for

emmetropia modelling. Gullstrand firstly proposed a human eye model in 1909. This

model includes some spherical lenses to simulate the optical structure of the human eye.

The optical properties and the anatomical structure of the human eye are both considered in

this model. This model provides the foundation of the later study of human eye modelling.

In 1911, Gullstrand received the Nobel Prize for his work [87]. In 1980, Grand improved

Gullstrand’s eye model and proposed Gullstrand-Le Grand eye model. This model takes

the aspheric surface of the cornea into account [88]. In 1985, Navarro et al. propose a

novel human eye model which takes the accommodation process into account. Navarros

model takes the focus ability of the human eye into account. It is suitable for objects

with different distance [89]. In 1999, to be compatible with the large-angle incident light,

Escudero-Sanz and Navarro propose an improved Navarro eye model [90]. In recent years,

Navarro eye model is widely used in the studies of human vision, e.g. intraocular lens

design [91, 92], near-eye display system [93, 94], head-mounted display system [95, 96] and
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the eyeball physiological structure [97, 98] and visual quality evaluation [99, 100, 101].

In summary, most studies focus on modelling healthy human eyes, but few studies

focus on modelling pathological human eyes. The main reason for this situation is that the

causes of pathological vision are complicated. For example, the causes of myopia include

genetic factors, drug factors, abnormal lens refractive power, abnormal axial length and

other unknown reasons. It is a complex system still with multiple unknown factors. The

models lack medical interpretation and rationality. For example, if the myopic eye model

only considers changes in the refractive power of the eyeball and do not consider changes

in the axial length of the eyeball. This model does not conform to the actual medical

situation.

2.6.2 Human Vision Simulation

To accurately simulate the human vision, the schematic human eye model is considered as

a group of spherical lenses. These lenses are integrated into a ray-tracing rendering engine.

The rendering results provide the simulation of the human vision.

There are some studies using ray tracing to simulate the defocus blur in DoF effects.

The methods used in these studies can be divided into two categories: one is the multi-pass

method [102, 103, 104, 105] and the other is the post-processing method [106, 107, 108,

109]. The multi-pass method can achieve accurate DoF effect simulation by computing the

positions where the image plane intersects with multiple rays. Due to the high computation

cost and long rendering time, the method cannot be used for real-time rendering. On

the other hand, the post-processing method is to reduce the amount of computing by

pre-processing the blur level of the vertex for the pixels in the image plane, e.g. blur

distribution function (BDF). This method can increase the rendering speed, but it will

reduce the accuracy of the DoF effect. However, all of the above methods generate the

DoF effect based on the thin lens principle and do not consider the change of the axial

length and the thickness of the lens caused by the pathological eyeball and the refractive

surgery, so it cannot accurately describe the change in DoF effect before and after refractive

surgery.

Therefore, in Chapter 5, an improved schematic human eye model is proposed. The

variables of the axial length and the corneal thickness are added into Navarro eye model.

It is suitable for both normal and pathological eyeball and human vision, included em-
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metropia, myopia, hyperopia and post-refractive surgeries. Moreover, an improved pre-

processing algorithm is proposed to obtain BDF to compute the defocus blur of DoF

effect.

2.7 GPU-Accelerated Related Work

The GPU-based parallel computing is similar to SMP, with shared system bus and memory,

but it integrates thousands of computing cores in one chip. It is a highly cost-effective

method for parallel computing.

The concept of GPU was defined in the mid-1990s. Initially, the function of GPU

was a co-processor to complete the 3D graphics acceleration, including triangle drawing,

materials, texture and lighting. The architecture of this GPU was not programmable.

For the complicated 3D graphics functions in the Computer-Aided Design software and

the video games, the concept of 3D graphics application programming interface (API) is

presented for accessing the rendering pipeline, e.g. DirectX and OpenGL.

Around 2000, with the advent of programmable GPU, the concept of programmable

shaders was proposed. Subsequently, three relatively advanced shader languages were

proposed, e.g. High-Level Shading Language (HLSL), OpenGL Shading Language (GLSL)

and C for Graphics (Cg). Since programmability vertex and rasterization units were added

to the architecture of GPU as part of rendering pipeline, the developer turned the scientific

computing problems into graphics processing problems and then used shader language to

complete the coding and computing. At that time, GPU-based parallel computing has

not entirely escaped the constraints of graphics processing, not general computing on the

GPU.

In 2003, the Stanford University graphics group, Ian Buck and partners, proposed

Brook which is based on Cg and is a variant of ANSI C. Brook was early and influen-

tial attempts to general-purpose computing on GPU [110]. In the Brook and later, the

developers do not care about graphics processing problems caused by different shading

languages generated. In 2007, NVIDIA created a GPU-based parallel computing platform

named Computer Unified Device Architecture (CUDA) for general-purpose computing.

The CUDA platform is designed for working with a high-level language, e.g. C/C++

and Fortran [111]. With the CUDA platform, developers do not need advanced skills in

shader language programming at all. As a software layer between developers and GPUs,
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the CUDA platform supports direct access to the instruction set and parallel computing

units in the GPUs. The developers have lower-level control of parallel operations and can

optimize parallel programs. In 2008, Khronos Group released the Open Computing Lan-

guage (OpenCL) specification. OpenCL is a framework for parallel programs what execute

on heterogeneous systems consisting of CPU, GPU, Digital Signal Processor (DPS), Field

Programmable Gate Array (FPGA) and other processors. OpenCL provides a unified

programming environment based on C/C++. OpenCL can support GPUs designed and

manufactured by Intel, AMD and NVIDIA.

However, to adapt to the normal execution of different CPUs, GPUs and devices,

OpenCL has made some sacrifices in performance. In 2010, NVIDIA published a ray tracing

engine based CUDA technology, named OptiX [112]. There are some studies for human

vision simulation based on OptiX [113, 114]. However, because the OptiX is controlled and

maintained by NVIDIA, that is, OptiX only provides some APU. The accuracy of the ray

tracing algorithm of the OptiX is hard to measure. On the other hand, the optimization

of OptiX is determined by the hardware and NVIDIA. Therefore, it is necessary to design

an accurate GPU-accelerated ray-tracing rendering engine to simulate human vision based

on the improved schematic eye model and BDF.

2.8 Summary

In this chapter, the studies of the planning, prediction, and evaluation of the refractive

surgery using machine learning-related methods are summarized. Based on the features of

the dataset used in medical diagnostic modelling, the related studies of data interpolation,

data resampling and ensemble learning is introduced. And then, the related studies of the

human eye modelling and the human vision simulation are summarized. The reviews on

the schematic eye model and defocus blur are focused. The previous work plays a guiding

and enlightening role in the follow-up research of this thesis. In the next chapter, the

dataset and the related pre-processing are introduced.
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Chapter 3

Clinical Dataset and Data

Pre-process

3.1 Overview

Refractive surgery has been proven to the most effective treatment for myopia. Although

patient satisfaction with LASIK surgery exceeds 90%, it may not be recommended for

everyone. There are two main reasons: (1) for some patients. There may not be a significant

visual improvement; (2) for some patients, it is not suitable for surgery or has side effects

after surgery [115]. The thickness of the cornea to be ablated in the surgery determines

whether the patient’s cornea can be operated and the refractive power after the operation.

These factors affect the patient’s post-surgery vision. Currently, surgeons make predictions

based on the patient’s biological parameters, surgical parameters, theoretical formulas and

some assumptions. This prediction is a theoretical result. Based on this result, surgeons

can rely on their experience and make rough estimates of surgical outcomes based on the

surgical equipment manual [116, 117, 118, 119]. The work presented in this thesis proposes a

way based on medical data and machine learning methods to predict the surgery parameter

and post-surgery outcome for a patient without theoretical formulas, assumptions, and

surgeon experience. It could provide additional references for surgeons to adjust surgical

parameters for better surgical results, and patients could receive the possible methods.

In this chapter, the process of Laser Assisted in-situ Keratomileusis (LASIK) is intro-

duced for a better explanation of the following dataset researches in Section 3.2. And the

27
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dataset used for this research is presented and analysed with statistical methods in Section

3.3. The multiple imputation method is proposed and tested for the missing data of the

dataset in Section 3.4. Finally, in Section 3.5, the prediction regression model is proposed

with this dataset to check whether machine learning could provide a better prediction than

the theoretical formula and surgeon’s experience.

3.2 Introduction of LASIK

LASIK is laser assisted in situ keratomileusis, which means using the excimer laser under-

neath a corneal flap (in situ) to reshape the cornea (keratomileusis). Before the LASIK

surgery, the surgeon will examine the patients’ eyes in detail. Age, gender, spherical equiv-

alent, dioptre of spherical power and cylinder power, dioptre of spherical equivalent, the

diameter of cornea, central corneal thickness and intraocular pressure (measured with non-

contact tonometer) are recorded by the surgeon. As shown in Figure 3.1[120], it is a sample

report of the LASIK [120].

The report is made by LASIK surgical equipment. There are two main parts in this

report, the biological parameters and the surgery parameters. The biological parameters

are input by the surgeon, who examined the patient’s eye. The surgical equipment obtains

the surgery parameters with an internal algorithm. With this report, surgeons could deter-

mine whether a patient is suitable for LASIK and the possible outcomes after surgery. The

main surgery parameter is the maximum ablation depth. According to corneal features, to

keep the stable structure of the cornea, the residual bed depth should greater than 250 µm.

The residual bed depth is the difference of the central corneal thickness and the maximum

ablation depth. The report is also used to guide the process of the surgery.

As shown in Figure 3.2[121], there are four main steps in the LASIK. During the LASIK

procedure, a specially trained eye surgeon first creates a precise, thin hinged corneal flap

using a microkeratome. The surgeon pulls back the flap to expose the underlying corneal

tissue, and then the excimer laser ablates (reshapes) the cornea in a unique pre-specified

pattern for each patient. The flap is then gently repositioned onto the underlying cornea

without sutures.

As same as the majority of surgeries, there are some side effects after LASIK. Residual

refractive error (RRE) is the commonest one. The post-surgery visual acuity is affected by

the RRE. We had better predict the RRE before the surgery. The surgeon could adjust
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Figure 3.1: The sample report of the LASIK

the surgery parameters to reduce the RRE, and the patients could know the possible visual

acuity after the LASIK surgery.

3.3 Refractive Surgery Dataset

In this study, the surgery data is collected from the Eye Hospital of Wenzhou Medical

University (Zhejiang Eye Hospital) from 2013 to 2015. The original surgery data is recorded

on paper which is similar to the reported shown in Figure 3.1. These data are entered into

the computer and verified. The dataset has 30 items for 1559 eyes of 786 patients in total.

There are four items of patient demography, age, gender, preoperative examination date

and surgery date. There are six items of preoperative examination, diopter of spherical

power (SP) and cylindrical power (CP), astigmatism axial (AA), best-corrected visual

acuity (BCVA), CCT and IOP with non-contact tonometer (NCT). The diopter of SP is

about the spherical error. That means the image of human vision appears blurred in all
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Figure 3.2: The process of the LASIK

meridians. The diopter of CP is the cylindrical error, which means the blurring only occurs

in a single direction. The angle of this direction is described by astigmatism axial. The

value of BCVA is a measurement of the best correction vision that can be achieved, such as

with glasses. For example, if the patient’s uncorrected eyesight is 20/200, which is tested

by the Snellen eye chart, meanwhile, the patient can see 20/20 with glasses. That means

that the BCVA of this patient is 20/20. For different locations on the cornea, the thickness

of the cornea is different. The centre of the cornea is thicker than the rest of the cornea.

CCT is a value used to describe the corneal thickness at the centre. The normal CCT value

is around 510-520µm. This value is measured by optical or ultrasound methods. Thicker

cornea always means higher IOP. IOP is the fluid pressure inside the eye. The unit of IOP

is millimetres of mercury (mmHg). In this dataset, the IOP is measured by NCT. The

mean values and standard deviation of biological parameters are shown in Table 3.1.

There are five items of surgery parameters, optical zone diameter (OpD, in mm), cut-

ting zone diameter (CuD, in mm), corneal flap thickness (CFT, in µm), residual corneal

thickness (RCT, in µm) and corneal maximum ablation depth (CMAD, in µm). The op-

tical zone is the laser ablation zone. The value of optical zone diameter is set by the
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Table 3.1: Mean Values and Standard Deviation of Biological Parameters
Parameter Mean Difference±Standard Deviation

Age (year) 23.91±5.95
Preoperative SP (diopter) -5.16±2.12
Preoperative CP (diopter) -0.82±0.69
Preoperative AA (degree) 86.85±73.55
Preoperative CCT (µm) 540.62±30.47

Preoperative NCT (mmHg) 15.59±2.91
Preoperative BCVA 1.07±0.12

surgeons. The optical zone diameter should match the size of the pupil in the dark. Oth-

erwise, after surgery, the patient may suffer permanent, debilitating visual aberrations,

such as starbursts, halos, and multiples images at night. Therefore, generally, the optical

zone diameter is always smaller than the largest size of the pupil. Most of optical zones

diameter with modern laser refractive surgeries are from 6.0 mm to 6.5 mm. If the optical

zone diameter is too large, the more corneal tissue will be removed during the surgery. If

too much tissue is removed, the patient will likely develop a post-surgery complication,

Keratoconus. There is an annular zone around the optical zone named the transition zone

for a better surgery outcome. The transition zone is to avoid the night vision problem

for the patients with large pupil size. The size of the transition zone is 0.5 mm to 1 mm

larger than the pupil. The cutting zone diameter is a sum of optical zone diameter and

the size of the transition zone. The corneal flap thickness is always a fixed value for one

type of laser refractive surgery. It is determined by the surgery instruments and the sur-

geons. The residual corneal thickness is the ablated corneal central thickness without the

corneal flap. The corneal maximum ablation depth is the maximum ablation depth in the

centre of the optical zone. In theory, the central corneal thickness is a sum of corneal flap

thickness, residual corneal thickness and corneal maximum ablation depth. To avoid the

post-surgery complication, such as Keratoconus, the patient should have a minimum of

250 µm of corneal thickness remaining after laser refractive surgery. Meanwhile, the scope

of corneal ablation depth is determined by the correct refractive error, such as spherical

power and cylindrical power. The maximum correctable refractive error is determined by

the patient’s central corneal thickness. The relationship among the pre-surgery biological

parameters, surgery parameters and post-surgery outcomes could be described as a func-

tion in theory. The mean values and standard deviation of surgery parameters are shown
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in Table 3.2.

Table 3.2: Mean Values and Standard Deviation of Surgery Parameters
Parameter Mean Difference±Standard Deviation

OpD (mm) 6.58±0.42
CuD (mm) 7.72±0.37
CFT (µm) 97.67±18.90
RCT (µm) 348.46±31.46

CMAD (µm) 93.40±24.26

The post-surgery outcomes are from three post-surgery examinations, diopter of spher-

ical power and cylindrical, astigmatism axial, BCVA and IOP with NCT, the first week,

the first month and the third month, respectively. The mean value and standard deviation

are shown in Table 3.3.

Table 3.3: Mean Values and Standard Deviation of Post Surgery Outcomes
Parameter Mean Difference±Standard Deviation

First-week Postoperative SP (diopter) 0.36±0.47
First-week Postoperative CP (diopter) -0.36±0.34
First-week Postoperative AA (degree) 74.14±63.94

First-week Postoperative BCVA 1.05±0.19
First-week Postoperative IOP (mmHg) 11.19±2.88
First-month Postoperative SP (diopter) 0.32±0.47
First-month Postoperative CP (diopter) -0.38±0.46
First-month Postoperative AA (degree) 76.69±64.42

First-month Postoperative BCVA 1.09±0.15
First-month Postoperative IOP (mmHg) 11.36±3.02
Third-month Postoperative SP (diopter) 0.30±0.46

Third-month Postoperative CP
(diopter)

-0.37±0.33

Third-month Postoperative AA (degree) 74.73±62.84
Third-month Postoperative BCVA 1.13±0.29
Third-month Postoperative IOP

(mmHg)
10.23±2.74

The data contains information for 786 patients in the age range of 16 to 51. 41 patients

are under 18-year-old. LASIK surgery is not recommended in theory for patients under 18

years old. Five patients have single eye LASIK surgery. Four hundred nineteen patients
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are females, and the rests are males. The histogram of preoperative SP is shown in Figure

3.3. One thousand five hundred fifty-four eyes are in the spherical power range of -1D

to -12D, which are suitable for LASIK surgery in theory. All the patients’ cylindrical

power is suitable for LASIK surgery in theory. The central corneal thickness of 80 eyes

are below 490µm, and these are not suitable for LASIK surgery in theory. Fifty-seven of

these have flapless LASIK surgery, and the rests have Femto-LASIK surgery. The post-

surgery spherical power of 10 eyes is below -1D. Half of these eyes are super-high myopia

(below -10D). There are 63 eyes which have an intra-ocular pressure out of the normal

range (10mmHg-21mmHg). More than half of these (34 eyes) still have more than -0.5D

spherical power after LASIK surgery. The histogram of CMAD is shown in Figure 3.4.

Both of these two parameters are with a similar distribution. One of the hypotheses in

regression analysis is normal data distribution. The normal q-q plot is used to check the

variable data normal distribution. Figure 3.5 is the preoperative SP normal distribution.

Figure 3.6 is the central corneal thickness (CCT) normal distribution. These two figures

show that the normal data distribution is close to normal distribution. It can be used

to model regression equations. There are four eyes which are presbyopia. All the data is

collected manually, and some of the items are missing.

Figure 3.3: Preoperative SP Histogram Figure 3.4: CMAD Histogram

Five patients only have single eye LASIK surgery, and the other five eyes which do not

have any surgery parameters should be removed from the dataset. In Figure 3.7, there is
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Figure 3.5: Preoperative SP Distribution Figure 3.6: CCT Distribution

one eye missing pre-operative cylindrical power and axis. There are forty-four eyes missing

cutting zone diameter data. Seventeen eyes are missing the first-week post-surgery data.

Fifty-six eyes are missing the first-month post-surgery data. Thirteen eyes are missing the

third-month post-surgery data.

Figure 3.7: The missing data visualization

In the following sections, the multiple imputation for missing data is introduced. The

first-month post-surgery SP is an example of this multiple imputation method. A regression

model for predicting the CMAD is set as a test for this dataset.
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3.4 Multiple Imputation for Missing Data

Since there are multiple methods for establishing a missing data fitted model, the com-

bination of multiple interpolations is very flexible. The methods that can better respond

the distribute of the missing data include Predictive Mean Matching (PMM), Bayesian

linear regression, and ordinary linear regression. Due to a large number of previous works

mentioned in Section 2.2, the relationship among the data of refractive surgery could be

described by regression. In addition, the amount of missing data of the first-month post-

surgery SP is the most in the dataset, and this research intends to take the imputation

of this missing data as an example. By constructing a multiple regression equation of the

missing data, the multiple imputation is implemented for the missing data. The results are

compared with the PMM method and the Bayesian linear regression method to determine

the appropriate multiple imputation method for the dataset.

The stepwise regression is used for regression model variable selection. In each step, a

variable is considered for addition to or subtraction from the set of explanatory variables

based on some prespecified criteria. In this research, Akaike information criteria (AIC)

and t-stats are used as the standards of fit effect.

AIC = 2k + nobsln(
SSR

nobs
) (3.1)

k is the number of items.

nobs is observed number.

SSR is sum square of residue.

The lower the AIC means the better-fit effect. There are eight explanatory variables,,

i.e., Age, Gender, Pre-operative spherical power (PreS), Pre-operative cylindrical power

(PreC), Pre-operative cylindrical axis (PreAxis), Pre-operative BCVA (PreBCVA), Pre-

operative non-contact tonometer result (PreNCT) and Pre-operative CCT (PreCCT). Ta-

ble 3.4 shows the AIC values of each step in the First-month post-surgery SP regression.

Table 3.4: AIC Values of the First-month Post-surgery SP Regression
Initial PreC PreAxis PreCCT

-8197.51 -8199.43 -8202.09 -8201.0

Table 3.5 shows the t-stats in regression, gender, and pre-operative BCVA are 0.1255
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and 0.1195, which are above 0.1, and these are not significant. Therefore, gender, PreC,

PreAxis, PreBCVA and PreCCT are rejected in the regression analysis.

Table 3.5: t-state of the first-month Post-surgery SP Regression
Estimate Std. Error t Value Pr(> |t|)

(Intercept) 0.656266 0.013856 47.362 < 2e−16

Age -0.134863 0.012056 -11.187 < 2e−16

Gender -0.006164 0.004022 -1.533 0.1255
PreS -0.114833 0.018016 -6.374 2.42e−10

PreBCVA 0.024392 0.015659 1.558 0.1195
PreNCT -0.023430 0.014201 -1.650 0.0992

For the first-month Post-surgery SP regression, the regression equation is Formula 3.2.

Y = 0.656266− 0.134863x0 − 0.114833x1 − 0.02343x2 (3.2)

Where Y is the first-month Post-surgery SP, x0 is Age, x1 is PreS, x2 is PreNCT.

In Figure 3.8, result with this method are closer to the average value. Meanwhile, the

root-mean-square error (RMSE) of the three methods is 0.32(PMM), 0.38(Bayesian linear

regression) and 0.17(this method with multiple regression), respectively. Therefore, this

method with multiple regression is suitable for the multiple imputation of the dataset.

Figure 3.8: Multiple Imputation Methods

The rest of the missing data are imputed by this method. After the data imputation,

the mean value and standard deviation are shown in Table 3.6. In the following section,

the prediction of CMAD is a test for this dataset.
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Table 3.6: Mean Values and Standard Deviation of All Measures
Parameter Mean Difference±Standard Deviation

Age (year) 23.85±5.90
Preoperative SP (diopter) -5.15±2.11
Preoperative CP (diopter) -0.81±0.69
Preoperative AA (degree) 86.93±73.63
Preoperative CCT (µm) 540.81±30.24

Preoperative NCT (mmHg) 15.59±2.91
Preoperative BCVA 1.06±0.12

OpD (mm) 6.58±0.42
CMAD (µm) 93.38±24.15

the first-month Postoperative SP
(diopter)

0.35±0.46

the first-month Postoperative CP
(diopter)

-0.35±0.34

3.5 Prediction of CMAD

For the prediction of CMAD, the biological features and optical zone diameter are consid-

ered as the known conditions of the regression equations. The prediction model of CMAD

is studied by correlation and regression analysis. The QR decomposition algorithm is

used to complete the regression linear fit in R. A P-value of less than 0.05 is statistically

significant.

The correlation is calculated between ablation depth and other parameters with a

Pearson correlation coefficient for judging whether the ablation depth and other parameters

have a high correlation, as shown in Tables 3.7 and 3.8.

Table 3.7: Correlation between Ablation Depth and Other Parameters
Age Gender Preoperative Preoperative Preoperative

SP CP Axis

Correlation 0.05 0.07 -0.85 -0.35 0.03

Table 3.8: Correlation between Ablation Depth and Other Parameters
Preoperative Preoperative Preoperative OpD Preoperative Preoperative
CCT NCT BCVA SP CP

Correlation 0.05 0.07 -0.17 -0.53 0.19 -0.19
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According to the correlation among the parameters, preoperative spherical power, pre-

operative cylindrical power and optical zone diameter have a high correlation with corneal

maximum ablation depth. The three parameters are used in the multiple regression. The

correlation of the ablation depth and the preoperative spherical power is the highest than

others; therefore, the preoperative spherical power will be used in single regression, sepa-

rately.

Figure 3.9: Linear Regression between Preoperative SP and CMAD

For the preoperative SP and CMAD regression, as shown in Figure 3.9, the regression

equation is shown below. The residual standard error (σ) is 12.36µm. The R-squared is

0.738. The P-value is less than 2.2e−16.

Y = 42.7577− 9.8297x (3.3)

where Y is expected ablation depth. x is preoperative SP.

For the multiple regression, the regression equation is shown below. The residual
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standard error (σ) is 8.35µm. The R-squared is 0.8806. The P-value is less than 2.2e−16.

The multiple regression is with less residual standard error and greater R-squared values

than single linear regression.

Y = −146.0074− 13.1426x0 − 11.9439x1 + 24.5865x2 (3.4)

where Y is expected ablation depth. x0 is preoperative SP. x1 is preoperative CP. x2 is

OpD.

The predictions are compared between the regression equation and Munnerlyn approx-

imate formula [116] for the evaluation of the regression equation.

ApproximateAblationDepth =
|OZ|2

3
D (3.5)

OZ is optical zone diameter. D is the correction in dioptres.

The mean-squared-error (MSE) is a measure of the quality of an estimator. The root-

mean-square error (RMSE) is a measure of accuracy, to compare forecasting errors of

different models for a particular dataset and not between datasets. For the prediction model

with regression, MSE and RMSE can be used to evaluate the accuracy. The comparison

includes the mean difference, MSE and RMSE, and the results are shown in Table 3.9.

The multiple regression equation with less MSE and RMSE means the accuracy is better

than the accuracy of Munnerlyn approximate formula.

Table 3.9: Comparison of Multiple Regression and Munnerlyn Approximate Formula
Mean Difference MSE RMSE

Multiple Regression Equation 0.01016±6.104959 69.49518 8.336161
Munnerlyn Approximate Formula 21.5491±8.148693 584.3581 24.1735

3.6 Summary

The chapter presents an overview of the refractive surgery. In this chapter, the dataset

used in this research is analysed in detail, including the distribution of data values and the

distribution of missing data. The multiple imputation with the multiple regression method

is proposed for the missing data. Compared with PMM and Bayesian linear regression

methods, this RMSE of this method is less than the other two methods. It is suitable for
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the dataset used in this research. In the final part of this chapter, the prediction of CMAD

with regression methods is implemented as an initial test of the dataset. The results are

proved more accurate than the Approximate Ablation Depth formula used by the surgeon.

It is initial proved that the machine learning method could provide a more reasonable and

accurate prediction in refractive surgery. In the following chapter, the furthermore work

are done for improving the accuracy of the model obtained by machine learning methods.



Chapter 4

Prediction of Surgery Outcomes

4.1 Overview

In the refractive surgery, the surgeon and patient need to evaluate the surgery outcome.

The surgeon performs the prediction with the patient’s biology features, surgery param-

eters, theoretical formulas and hypotheses. This prediction could roughly estimate the

surgery outcomes. With the popularity of refractive surgery, the clinical data are enough

to implement a surgery outcomes prediction with machine learning methods, including

regression, support vector machine and neural network. However, as the imbalanced data

distribution, these data-driven methods still have drawbacks, including poor accuracy, high

data size request and limited interpretability in the minority class. This chapter introduces

an over-sampling method to improve these situations in the surgery outcome prediction.

The approach over-samples the minority class to achieve better performance and accuracy.

With the experiment, it is obtained a much more accurate result than that with an imbal-

anced dataset. Also, this method solves the result interpretability issue and the small data

size issue in medical cases. Meanwhile, in order to solve the data sparseness problem and

improve the accuracy of the model, an ensemble learning method with genetic algorithm

optimisation is proposed in this chapter. The comparison between this method and other

machine learning methods shows that this method is good at sensitivity and specificity

and makes less error in false positives fraction (FPF) and false negative fraction (FNF).

In this chapter, the imbalanced data distribution of the dataset is analysed in Section

4.2. The over-sampling method is proposed and verified in Section 4.3. In Section 4.4, the

41
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ensemble learning method with genetic algorithm optimisation is proposed and verified for

improving the accuracy of the model. In Section 4.5, the method proposed in this chapter

is compared with other machine learning methods.

4.2 The Imbalanced Data Distribution

Figure 4.1: The distribution of 3-month Post-surgery SP

In this study, the clinical data were collected from the Eye Hospital of Wenzhou Med-

ical University (Zhejiang Eye Hospital) from July 2013 to March 2015. The case records

of 1559 eyes of 786 patients. Dataset obtained from the case records included patient age,

gender preoperative spherical power (SP, in diopter) and cylindrical power (CP, in diopter),

astigmatism axial value (Axis), best-corrected visual acuity (BCVA), central corneal thick-

ness (CCT, in µm) and IOP with non-contact tonometer (NCT). Dataset also obtained

five items of surgery parameters, optical zone diameter (OpD, in mm), cutting zone diam-

eter (CuD, in mm), corneal flap thickness (Flap, in µm), corneal residual thickness (RT,

in µm) and corneal maximum ablation depth (CMAD, in µm). The third-month post-

surgery spherical power (SP) data what is more stable than the first week and first-month

post-surgery data relatively are selected as the surgery outcomes. The dataset contains
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information for 786 patients in the age range of 16 to 51. 419 patients are females, and the

rests are males. The histogram of post-surgery SP is shown in Figure 4.1. The distribu-

tion is imbalanced. The majority of post-surgery SP is between -0.5 and 0.5 diopter. The

sample of post-surgery outcome is imbalanced.

As the imbalance of the postoperative outcomes, in this study, the post-surgery SP can

be classified into two groups. In Group 1, the absolute value of post-surgery SP is greater

than 0.5 diopter, it is an unacceptable result. In Group 2, the absolute value of post-

surgery SP is less than or equal to 0.5 diopter. It is an acceptable result. The comparison

between the two groups is shown in Table 4.1.

Table 4.1: Biometrics, Refractive and Treated Parameters

Group 1 (n = 359) Group 2 (n = 1200)

Mean±SD Mean±SD

Age 23.59±6.07 24.00±5.91

Preoperative SP -5.50±2.10 -5.05±2.11

Preoperative CP -0.88±0.70 -0.80±0.69

Preoperative Axis 86.89±73.30 86.83±73.60

Preoperative BCVA 1.07±0.11 1.07±0.12

Preoperative NCT 15.47±2.89 15.63±2.92

Preoperative CCT 540.15±31.93 540.76±30.02

OpD 6.52±0.42 6.60±0.42

CuD 7.73±0.36 7.71±0.37

Flap 97.28±20.12 97.78±18.51

RT 343.39±28.62 349.98±32.10

CMAX 98.65±22.42 91.83±24.56

Therefore, the prediction of the postoperative outcome has transformed itself from

numerical prediction into classification. In the following section, an over-sampling method

is proposed to solve the imbalance of dataset. In addition, to improve the accuracy of the

neural networks classifier, the members of input and hidden layer are also be selected by

mean impact value (MIV) and mean square error (MSE).



44 Wei Wang

4.3 The Over-sampling Method

In this section, the original imbalanced dataset is tested by backpropagation (BP) neural

networks as the baseline. By the over-sampling method, the dataset can be reconstructed.

After the selection of input and hidden layer member, the balanced dataset is tested again.

The result will compare with the baseline.

4.3.1 The Baseline for Evaluation

At first, an initial test should be done for evaluating the performance of the data in the

classified prediction. With backpropagation (BP) neural networks (with one hidden layer

and the size of the hidden layer is 5), the dataset is divided into training and validation

dataset. One thousand one hundred sixty-nine eyes (75%) are the training dataset, and 390

eyes (25%) are the validation dataset. The initial test results are shown by the confusion

matrix in Table 4.2.

Table 4.2: The Confusion Matrix without Over-sampling

Predicted Acceptable Predicted
Unacceptable

Actual Acceptable 296 3

Actual Unacceptable 90 1

4.3.2 The Over-sampling Method

It is a limited recall on the minority class (unacceptable results) while maintaining a

high precision on the majority class. Although the SMOTE method mentioned in Section

2.4 could provide a better performance in the majority imbalanced dataset. However,

the dataset used in this research is complex. The majority and minority class is mixed

together and determined by multiple variables. Using SMOTE method resampling, the

dataset may produce much more noise data. And it makes the model uncertain direction

bias. Therefore, in this research, with the imbalanced dataset, an improved over-sampling

method is proposed to resample the minority data. This method pays more attention to the

mixed area between majority class and minority class and checks the synthetic examples,
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which may be the noise in the dataset. The algorithm is shown below:

Algorithm 1 The Over-sampling Algorithm

Input: S: minority class; L: majority class; T : total dataset; F : mixed area dataset; m:

size of S; n: size of F; pi: data of minority class; qj : data of mixed area set; i ∈ [1,m];

j ∈ [1,n]; r: size of synthetic data;

Output: over-sampled minority class S
′

1: for each i ∈ [1,m] do

2: Compute m nearest neighbours of in pi in T . This set is called M

3: Let q = |M ∩ L|
4: If q = m, pi may be a noisy point. Reject pi and continue to next point.

5: If 0 6 q 6 m
2 , pi may be minority class point. Reject pi and continue to next point.

6: If m
2 < q 6 m, pi may be a mixed area point. add pi to mixed area set F .

7: end for

8: initial S
′
’s length with n(r + 1);

9: for each j ∈ [1, n] do

10: Compute k nearest neighbours of qj in F ;

11: Randomly choose r ≤ k of the neighbours;

12: Choose a random data q
′
r along the line joining qj and each of the r selected neigh-

bours;

13: Add q
′
r to S

′
;

14: end for

15: Add S to S
′

16: Output S
′

In this algorithm, k is assigned 3, and r is assigned 3. The comparison among Group 1,

Group 1 with synthetic data and Group 2 is shown in Table 4.3.
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Table 4.3: Biometrics, Refractive and Treated Parameters with Over-sampling

Group 1 Group 1 with
Over-sampling

Group 2

(n = 359) (n = 1077) (n = 1200)

Mean±SD Mean±SD Mean±SD

Age 23.59±6.07 23.01±4.96 24.00±5.91

Preoperative SP -5.50±2.10 -5.51±1.96 -5.05±2.11

Preoperative CP -0.88±0.707 -0.87±0.61 -0.80±0.69

Preoperative Axis 86.89±73.30 86.83±73.39 86.83±73.60

Preoperative BCVA 1.07±0.11 1.08±0.09 1.07±0.12

Preoperative NCT 15.47±2.89 15.43±2.47 15.63±2.92

Preoperative CCT 540.15±31.93 539.96±30.82 540.76±30.02

OpD 6.52±0.42 6.53±0.36 6.60±0.42

CuD 7.73±0.36 7.75±0.31 7.71±0.37

Flap 97.28±20.12 97.60±19.77 97.78±18.51

RT 343.39±28.62 342.87±26.75 349.98±32.10

CMAX 98.65±22.42 98.94±20.98 91.83±24.56
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4.3.3 The Prediction Model of Surgery Outcome

In this study, the BP neural networks is selected as the classifier. To optimum, the BP

neural networks , the mean impact value (MIV) is introduced to select the member of the

input layer. There are 13 input layer candidates, include age, gender, Preoperative SP,

Preoperative CP, Preoperative Axis, Preoperative BCVA, Preoperative NCT, Preopera-

tive CCT, OpD, CuD, Flap, RT and CMAX. Because the RT is the difference between

preoperative CCT and Depth, it is multicollinearity. RT will remove from the input layer.

The MIV of these input layer candidates is shown in Table 4.4.

Table 4.4: Mean Impact Value

Mean Impact Value

Age 0.266

Gender -0.1089

Preoperative SP 0.1003

Preoperative CP 0.0021

Preoperative Axis -0.1710

Preoperative BCVA 0.0266

Preoperative NCT -0.0054

Preoperative CCT -0.1238

OpD 1.7141

CuD 0.1423

Flap -0.0755

CMAX -1.2674

According to the absolute value of MIV, age, gender, preoperative SP, preoperative

Axis, preoperative CCT, OpD, CuD, Flap and Depth are selected as the input layer mem-
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bers. The mean square error (MSE) is used to decide the size of the hidden layer member.

The MSE values with different size of the hidden layer are shown in Table 4.5. The lowest

MSE is seven members in the hidden layer. Therefore, the construction of the member

classifier is nine members in the input layer, seven members in the hidden layer and one

member in the output layer. The dataset is divided into two parts, 1977 eyes (75%) is the

training dataset, and 659 eyes (25%) are the validation dataset.

Table 4.5: MSE of different numbers of member in hidden layer

Number of members Mean Square Error

1 0.91

2 0.64

3 0.61

4 0.62

5 0.63

6 0.67

7 0.59

8 0.63

9 0.60

10 0.64

11 0.60

12 0.63

13 0.64

4.3.4 Results and Analysis

With the over-sampling method, although the predictive accuracy is about 67.98%, lower

than the baseline, 76.15%. The accuracy of predicted unacceptable results is 34.90%, much

higher than the baseline, 0.25%. The specificity of the model is 65.90%, much greater than
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the baseline, 1.09%. Therefore, the prediction model with the over-sample method provides

better performance than the baseline model. The confusion matrix is shown in Table 4.6.

Table 4.6: Confusion Matrix with Over-sampling

Predicted Acceptable Predicted

Unacceptable

Actual Acceptable 218 92

Actual Unacceptable 119 230

In the following section, the ensemble learning method and optimization algorithm are

used to combine a novel ensemble learning method to improve the accuracy of the model.

4.4 The Ensemble Learning with Genetic Algorithm Opti-

mization

As mentioned in the previous section, by resampling the imbalanced dataset, the accu-

racy of the model could be improved. However, using a single machine learning method

may receive limited accuracy, which is only better than a random guess. The prediction

error is composed of two components: bias, the accuracy of the predictor; and variance,

the precision of the predictor when trained on different training sets. Meantime, these

two components have a trade-off relationship: predictors with low bias tend to have high

variance and vice versa. On the other hands, some mathematical methods have smoothing

(variance-reducing) effect, i.e. averaging. Hence, in this section, the accuracy of prediction

can be significantly improved through an ensemble of neural networks , i.e. training several

neural networks with relatively fixed or similar bias and then combining the outputs reduce

the variance. The motivation for combining neural networks in redundant ensembles is that

of improving their generalisation ability. Combining a set of imperfect basis predictors can

be thought of as a way of managing the recognised limitations of the individual predictors;

each component neural networks is known to make errors, but they are combined in such a

way as to minimise the effect of these errors. In order to obtain more accurate results, the

initial weights and thresholds of the basis predictors are optimised by the genetic algorithm
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(GA).

4.4.1 The Optimisation Algorithm

GA is employed to optimize the initial weight and threshold of basis predictor. The pur-

pose of the optimization is to improve the output accuracy of the basis predictor. The

optimization includes five steps:

1. Population Initialization

The individual coding method is a real number based coding method. The individual

code is a real number string which includes the weights between the input layer and hidden

layer, the weights between the hidden layer and output layer, the hidden layer thresholds

and the output layer threshold. Therefore, the string includes all weights and thresholds

used by the neural network.

2. Fitness Function

The training set is used to train the BP neural network. By this BP neural network,

the result of the predicted output is compared to the value of the desired output. The sum

of the absolute values of the errors in individual fitness, F . The function of F is as follows:

F = k(

n∑
i=1

abs(yi − oi)) (4.1)

In this function, n is the number of output node in BP neural network. yi is the value of

the desired output of output node i in BP neural network. oi is the value of the predicted

output of output node i in BP neural network. k is coefficient

3. Selection Operation

The selection operation employs the roulette method, which is fitness-proportionate

selection. The probability p of each individual i is as follows:

fi =
k

F
(4.2)

pi =
fi∑N
j=1 fj

(4.3)

fi is the fitness-proportionate of individual i. k is coefficient. N is population size.

4. Crossover Operation
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The individual is coded by a real number string. Therefore, the real number crossover

method is employed in this step. The k − th chromosome ak and the l − th chromosome

al perform the crossover operation at position j with the function which is as follow:akj = akj(1− b) + aijb

alj = alj(1− b) + akjb
(4.4)

b is between 0 and 1.

5. Mutation Operation

To complete the mutation operation at the j − th chromosome aj of i− th individual,

the mutation operation function is as follow:

f(g) = r2(1−
g

Gmax
) (4.5)

aij =

aij + (aij − amax) ∗ f(g)r ≥ 0.5

aij + (amin − aij) ∗ f(g)r < 0.5
(4.6)

amax is the upper bound of the chromosome aij. amin is lower bound of the chromosome

aij. r2 is a random number, g is the current iterative time. Gmax is the maximum

evolution time. r is between 0 and 1

4.4.2 The Ensemble Learning

In order to ensemble several predictors together, the first step is the initialisation of the

training and testing datasets and the basis predictors. Because of the limited size of the

dataset using in this research, it uses Bootstrap method for sampling to obtain multiple the

training and test datasets for training the different predictor. As mentioned in the previous

section, the structure of the basis predictor is defined by MIV method and optimised by

GA. With the training and testing datasets and the basis predictors, the basis predictors

are trained. The sum of the prediction error of each predictor is et. If the et is greater than

0.5, that is, the accuracy of this predictor is worse than a random guess. This predictor

should be rejected. If the et is lower than 0.5, the prediction weight of this predictor is

computed. According to the prediction weights of the basis predictors, the weights of the

training datasets are modified. After several loops, the final predictor could be obtained
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by the combination of the final rest of basis predictors.

The pseudocode of this ensemble algorithm is as follow:

Algorithm 2 The Ensemble Algorithm

Input: Trainingdata = {xi, yi}, i = 1, ...,m, y ∈ {ω1, ..., ωi} K ensemble size of the basis

predictor

Set D(i) = 1
m

2: for each t ∈ [1,K] do

Use Bootstrap method sampling the dataset to obtain the subset St from the dis-

tribution Dt.

4: Train Basis Predictor on St, receive hypothesis ht : X → Y

Calculate the error of ht:

6: et =
∑m

i=1D(i)(ht(xi 6= yi))

et >
1
2 abort.

8: Set the prediction weight of the basis predictor as at:

at = 1
2 ln(1−etet

)

10: Update sampling distribution

Dt+1 = Dt(i) ∗ exp[−aiyihi(xi)]Bt
i = 1, ...,m

12: Where Bt =
∑m

i=1D(i) is a normalization constant to ensure that Dt+1 is a proper

distribution function.

end for

14: Given unlabeled instance z, obtain total vote received by each class

Vc = sign[
∑K

t=1 kat · f(ht, at)]

Output: Class with the highest Vc.

The core of this algorithm is the distribution update rule: the distribution weights of

the instances correctly classified by the current hypothesis ht are reduced by a fact of et,

whereas the weights of the misclassified instances are left unchanged. When the updated

weights are renormalized by Bt to ensure that Dt+1 is a proper distribution, the weights

of the misclassified instances are effectively increased. Therefore, with each new classifier

added to the ensemble, the algorithm focuses on increasingly tricky instances. At each

iteration t, this step raises the weights of misclassified instances such that they add up 1
2 ,

and lowers those of correctly classified ones, such that they too add up to 1
2 . Since the

basis predictors optimized GA is required to have an error less than 1
2 , it can guarantee to
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classify one previously misclassified training example correctly at least. When it is unable

to do so, the algorithm aborts; otherwise, it continues until K classifiers are generated,

which are then combined using the weighted majority voting.

4.4.3 Results and Analysis

With BP neural networks and over-sampling algorithm, the predicted accuracy is 67.95%.

The confusion matrix is shown in Table 4.6. With the ensemble algorithm, the predicted

accuracy is about 71.32%. The genetic algorithm initial parameters are shown in Table

4.7:

Table 4.7: Genetic Algorithm Initial Parameters

Initial Parameters

Iterations 100

Population Size 200

Probably of Crossover 0.6

Probably of Mutation 0.4

With GA optimisation, the ensemble learning method combines 25 basis prediction.

The predicted accuracy is about 76.09%. The accuracy of predicted unacceptable results is

37.56%, greater than the over-sample method model, 34.90%. The specificity of the model

is 79.02%, greater than the over-sampling method model, 65.90%. Therefore, the prediction

model with the GA optimised ensemble learning method provides better performance than

the baseline. The confusion matrix is shown in Table 4.8.

Table 4.8: Confusion Matrix with Final Model

Predicted Acceptable Predicted

Unacceptable

Actual Acceptable 282 102

Actual Unacceptable 73 275
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4.5 Summary

The study has achieved a data-driven model automated method to obtain a possible surgery

outcome, the postoperative spherical power, with genetic algorithm optimized ensemble

learning. According to the results, for the medical diagnosis, the genetic algorithm op-

timized ensemble learning is proved that it could improve the prediction accuracy of the

model. In the following chapter, the methods of human eye modelling and human vision

simulation are proposed.



Chapter 5

Simulation of Human Vision using

Ray Tracing

5.1 Overview

The human eye is a complex and precise optical imaging system. The external light signals

are projected onto the retina, converted into electrical signals, and then transmitted to the

brain to reconstruct the image through neurons. However, the human eye may suffer from a

variety of diseases caused a refractive error, such as common myopia and hyperopia. Earlier

methods to correct the refractive error were mainly by wearing glasses or contact lenses.

In recent years, excimer laser technology has widely used in clinical medicine, especially in

refractive error treatment of ophthalmology. The refractive surgeries based on excimer laser

technology, e.g. Photorefractive Keratectomy (PRK), Laser-assisted in situ Keratomileusis

(LASIK) and Small-incision Lenticule Extraction (SMILE), aim to correct the refractive

error of the human eye. As the requirements of visual quality become higher, refractive

surgeries are also developing personally. To accurately predict and evaluate the refractive

surgery, the modelling of the human eye should be achieved first.

The normal monocular vision could be described as Figure 5.1. Compared with the

original scene (Figure 5.2), in human vision, only the very central part of the scene can

be focused correctly. The rest of the scene is defocused. Because the brain forms a clear

vision through rapid eyeball movements, it is difficult to perceive such images. Modelling

the human eye is useful in many studies, e.g. the prediction and the evaluation of refractive

55
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surgeries, the design intraocular lens and progressive lenses, and other ophthalmic studies.

It is also meaningful as information visualisation for the studies that are related to the

human vision, e.g. the design of near-eye display systems and virtual reality systems.

However, it still lacks an accurate human eye modelling method to simulate the refractive

error of the human eye.

Figure 5.1: The Normal Monocular Vision

Figure 5.2: The Original Scene

To accurately model the human eye, the ray-tracing method is widely used. However,

the simplified thin-lens camera which produces the depth-of-field (DoF) defocus blur effect
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in the ray-tracing method cause the scene distortion. The computation cost of the ray

tracing and the defocus blur make this method impossible to render in real-time. Wu et al.

[122] use ray tracing method based on Navarro eye model. This method treats each eyeball

optical media as a spherical lens. An incident ray is refracted by these lenses and forms

an image on the retina. The refractive power of each optical media has been considered

in this model. However, the axial length, which is the primary factor of myopia, is not

considered in this model.

In this study, a novel approach is proposed to achieve the personalised modelling of

the human eye, and the visual quality visualised evaluation of refractive surgeries. This

approach adds an extra-axial length variable for myopia based on the Navarro eye model

and improves the computation of defocus blur with a blur distribution function (BDF).

Moreover, the BDF is calculated by the neural networks. In Section 5.2, the image-forming

principle of the human eye and the principle of refractive surgeries are introduced. The

improved eye model is proposed in Section 5.3. The process of establishing BDF and the

method of calculation with a machine learning method is discussed in Section 5.4. Section

5.5 analyses the results and evaluates this model. The summary of this chapter is in Section

5.6.

5.2 The Related Basis Principles

For a better understanding of the modelling the human eye, the image-forming principle

of the human eye and the principle of the refractive surgery are introduced firstly.

5.2.1 The Image-forming Principle of Human Eye

Figure 5.3 is an abridged general view of the human eye. As shown in Figure 5.3, the

main structure of the human eye in the direction of incident light includes the cornea,

aqueous humour, pupil, lens, vitreous and retina. The cornea and lens are two primary

refractive media of the human eye. Due to the density difference between media, such as

air and cornea, cornea and aqueous humour, aqueous humour and lens, lens and vitreous,

the light will be refracted on the four surfaces before and after the cornea and lens. The

curvature of the four surfaces has a significant impact on visual quality. The refractive

power of the human eye without any adjustment is called static refractive power, and the
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Figure 5.3: The Abridged General View of Human Eye

static refractive power of the standard human eye (emmetropia) is +58.64D. Generally,

the corneal refractive power can be adjusted from +42.0D to +44.0D. The cornea provides

most of the refractive power of the human eye. Refractive surgery is mostly achieved by

changing the corneal curvature the aperture of pupil changes with the brightness of the

ambient light. The retina, like a photodetector, is a light-sensitive tissue that converts

light signals into neural electrical signals. Between the optical axis and visual axis, there

is a Kappa angle of 5 degrees off nose side. For the emmetropia, the total refractive power

of the eyeball matches the axial length of the eyeball.

Meanwhile, the incident light can focus on the retina after passing through the various

optical media of the eyeball, thereby obtaining good vision. For myopia, there is a mismatch

between the axial length of the eyeball and its refractive power. As shown in Figure 5.3,

a red arc indicates an increase in the size of the vitreous increases and the axial length,

causing the position of the retina to move backwards. The defocus blur occurs when the

size of the defocused light spot is larger than the retinal resolution. Approximately 1mm

backwards produces +3.0D spherical power. The principle of corneal refractive surgeries

to correct the refractive error is to cut the corresponding amount of corneal stroma to

flatten the front surface of the cornea. As shown in Figure 5.3, the green dotted line shows

that the total refractive power matches the longer length of the eyeball.
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5.2.2 The Principle of Refractive Surgery

LASIK is based on the image-forming principle of the human eye. LASIK performs a

spherical cutting with the guidance of the Munnerlyn formula. As shown in Figure 5.3,

the principle of the spherical cutting is to cut the corresponding amount of corneal stroma

to flatten the front surface of the cornea. After the surgery, the curvature radius of the

front corneal surface R∗
c is increasing. Meanwhile, the corneal refractive error is reduced.

The post-surgery corneal front surface could be represented as below:

Z [s]
c (ρ) =

ρ2

R∗c

1 +
√

1− ρ2

R∗c

(5.1)

R∗
c =

(nc − 1)Rc
SERc + (nc − 1)

(5.2)

In Formula 5.2, nc is the corneal refractive index. SE is the spherical equivalence which

is used to represent the defocus value of myopia. ρ-factor is the aspheric parameter. In

surgery, a 100µm corneal flat is created, and the excimer laser ablates the corneal stroma.

The relationship between ablation depth and horizontal radius is represented as below:

∆Z [s]
c (ρ) =

√
R2
c − (1 +Q)ρ2

1 +Q
−

√
R2
c − (1 +Q)(O2 )2

1 +Q
−
√
R∗
c
2 − ρ2 +

√
R∗
c
2 − (

O

2
)2 (5.3)

O is the diameter of the pupil. Q is the coefficient of aspheric surface. After surgery, the

Q becomes 0. During the practical ablation, the ablation depth is always calculated by the

parabolic approximation of the Munnerlyn formula. It is a simplified Munnerlyn formula

which is represented by the corrected dioptre of spherical equivalence, the ablation zone

diameter and the radial distance from the optical axis. This simplified Munnerlyn formula

assumes that the corneal refractive index nc is 1.375.

s(y) =
4Dy2

3
− Dd2

3
(5.4)

As shown in Formula 5.4, s(y) is the ablation depth in micrometre (µm), D is the refractive

error (in dioptre) which will be corrected, d and y are the diameter of the ablation zone

and the radial distance from the optical axis in millimetre (mm) separately. This simplified
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Munnerlyn formula is widely applied to the evaluation and the performance of refractive

surgeries. With the ablation depth, the post-surgery corneal thickness could be calculated.

According to the principle of human eye imaging and the principle of refractive surgery,

in order to accurately describe the situation of emmetropia, myopia, hyperopia and refrac-

tive surgery, the changes in axial length and corneal thickness should be considered in the

human eye model.

5.3 Methodology

The target of this study is to model the human eye and simulate the human vision for visual

quality evaluation of refractive surgeries. As mentioned in Section 2.6 and Section 5.2, the

pathological vision is complicated. The change of the refractive power of the eyeball is

only a manifestation of the pathological vision. The cause of the pathological vision is the

change of the axial length. In addition, Refractive surgery adjusts the refractive power

by changing the corneal thickness. Therefore, to accurately model the human eye and

simulate the human vision, the changes of the axial length and the corneal thickness are

added into the schematic human eye model. Since the Navarro eye model has been widely

used in various types of human vision simulation studies, by modifying this model, it can

inspire more human vision studies. In this study, Navarro eye model is chosen.

On the other hand, in order to accurately describe the defocus blur of DoF effect in

human vision simulation, while reducing the computation cost of ray tracing, this study

introduces a BDF in human vision simulation. BDF is different from the computation of

the Circle of Confusion (CoC) in the multi-pass method. Since BDF is a complex unknown

expression with multiple inputs and multiple outputs, it could be considered as a black box

system with multi-input and multi-output. In order to derive the expression of BDF, this

study uses the neural networks to find the relationships between the input variables and

output results. As shown in Figure 5.4, the process of human vision model and simulation

contains two stages, the human eye model stage and the human vision simulation stage.

5.3.1 Modelling the Human Eye

As shown in Figure 5.5, in the human eye model stage, there are four main parts in the

human eye model, cornea, pupil, lens and retina. The surface and media of the cornea
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Figure 5.4: The Process of Human Vision Model and Simulation

and lens provide the refractive power which could be considered as the lens of a camera.

The pupil could be considered as the aperture of a camera which controls the amount of

incident ray. The retina could be considered as the film of a camera. The optical properties

of a fully relaxed eye (the unaccommodated state) are shown in Table 5.1.

Table 5.1: The Optical Properties of a Fully Relaxed Eye

Surface Pos Rad Asph Thick Ref Aper

Cornea 1 0.0 7.72 -0.26 0.55 1.367 12

2 0.55 6.5 0 3.05 1.3374 12

Lens 3 3.6 10.2 -3.1316 4 1.42 10

4 7.6 -6 -1 16.3203 1.336 10

Retina 5 24.4 -12 0 0 0 24

As mentioned in Section 5.2, because of the difference of the refractive index between

the optical media, there are four optical refracture surfaces in the eyeball, including air to

the cornea, cornea to aqueous, aqueous to the lens, lens to vitreous. The optical properties
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Figure 5.5: The Anatomical Structure of the Human Eyeball

of the anterior and posterior surfaces of the cornea and lens are considered in the eye model.

In addition, because of the relationship the increasing of the axial length for myopia, as

shown in Formula 5.4, the variable of the retina position is considered in the eye model.

∆L =
1000

S + ∆s
− 1000

S
(5.5)

In Formula 5.5, ∆L is the change of the axial length (in mm), ∆s is the spherical equivalent

of the refractive error (in dioptre). S is the total refractive power of the emmetropia (in

dioptre). In this formula, the value of S is +58.64D. The human eye can accommodate

the lens to focus the incident ray accurately on the retina within a reasonable range.

According to the study of Navarro [89], the relationship among the spherical equivalent of

the refractive error and the properties of the optical media are shown below.

RS3 = 10.2− 1.75ln(∆s+ 1.0) (5.6)

RS4 = −6.0 + 0.2294ln(∆s+ 1.0) (5.7)

Taqueous = 3.05− 0.05ln(∆s+ 1.0) (5.8)
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Tlens = 4.0 + 0.1ln(∆s+ 1.0) (5.9)

QS3 = −3.1316− 0.34ln(∆s+ 1.0) (5.10)

QS4 = −1.0− 0.125ln(∆s+ 1.0) (5.11)

nindex = 1.42 + 9.0x10−5ln(∆s+ 1.0) (5.12)

In these formulas, ∆s is the spherical equivalent (in diopter) of refractive error. RS3

represents the accommodated front radius of the lens (in mm) when the refractive error

is ∆s. RS4 represents the accommodated posterior radius of the lens (in mm) when the

refractive error is ∆s. Taqueous is the accommodated thickness of the aqueous (in mm)

while the refractive error is ∆s, and Tlens is the accommodated thickness of the lens (in

mm) while the refractive error is ∆s. The accommodated front aspheric degree after lens

adjustment is QS3, and the accommodated posterior aspheric degree after the lens is QS4.

The accommodated total refractive index is represented as nindex.

For the refractive surgeries, since the corneal thickness is changed. The front radius

of the cornea is changed. According to the simplified Munnerlyn formula (Formula 5.4)

mentioned in Section 2, the front radius of the cornea RS1 is represented below.

RS1 =

√
3∆t

4∆s
+
d2

4
(5.13)

In Formula 5.13, ∆t is the corneal ablation depth (in mm), d is the diameter of the ablation

zone (in mm), ∆s is the corrected refractive error (in dioptre).

According to the image-forming principle of the human eye and the principle of the

refractive surgeries, this study improved the Navarro eye model. The change of the axial

length and the change of corneal front radius are considered in this schematic eye model.

In the following section, this improved model is analysed by visualising the anatomical

structure of the human eye and the path of the incident light.

5.3.2 Human Vision Simulation

As shown in Figure 5.6, in the human vision simulation stage, there are online rendering

section and offline computing section.

In the offline computing section, the ray-tracing method is used to compute the re-

fraction and occlusion with the schematic eye model and the ophthalmologic parameters.
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Figure 5.6: The Framework of Human Vision Simulation

By sampling the ophthalmologic parameters (focus distance and pupil size), object posi-

tion (distance and angle from the observer), and the image information on the retina, a

training dataset is established. With the neural networks, the blur distribution function

(BDF) is obtained to describe the CoC size of each pixel of the image on the retina. If the

schematic eye model and the ophthalmologic parameters are fixed, the BDF is constant;

that is, the offline computing section only needs to execute once. In the online rendering

section, the texture rendering of the rendering pipeline is divided into two parts. One is

the colour texture used to compute the material and the light effect. The other is depth

texture, which is used to compute the three-dimensional (3D) space position corresponding

to each pixel by the reconstructing the scene. After that, the 3D space position is converted

into the spherical coordinate; the origin of this spherical coordinate is the observer posi-

tion. The spatial position and the observer’s visual ophthalmologic parameters are used

together as the inputs of the BDF derived by the offline computing section. Then, the

BDF is solved, and the CoC size of the pixel of the image corresponding to the 3D spatial

position is obtained. Finally, according to the CoC size and colour texture, a blurred/clear

rendered image is obtained. For a better explanation of the process, the CoC calculation

is introduced firstly.
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Figure 5.7: The CoC Calculation

As shown in Figure 5.7, in a thin lens optical system, the distance between the image

plane and the surface of the lens Vf could be calculated by Formula 5.14.

Vf =
Uf ∗ f
Uf − f

(5.14)

Uf is the distance between the focal plane and the surface of the lens. And f is the focal

length of the thin lens, D is the diameter of the lens. The relationship between Vf and Uf

is represented as the magnification m.

m =
Vf
Uf

(5.15)

With the similar triangle theory, in the focal plane, the diameter of the blur disk, C,

produced by point P can be expressed as

C = D ∗
|U − Uf |

U
(5.16)

U is the object distance and represents the distance between P and the surface of the lens.

Therefore, the CoC size, c, could be obtained by the product of m and C.
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c = mC = D ∗
|U − Uf | ∗ Vf

Uf ∗ U
= D ∗

|U − Uf | ∗ f
U(Uf ∗ U)

(5.17)

The CoC size is determined by the lens diameter, focal length, object distance and focal

distance. For a thin lens system, the thickness of the lens is 0, the CoC is always assumed

to be circular, and the distribution of blurring is uniformly distributed. However, for a real

lenses system, e.g. the human eye, including multiple lenses, the CoC size and distribution

is complicated and non-linear. It is difficult to calculate for the complex optical system.

In this study, the neural networks provide a possible way to obtain the CoC size and

distribution using the correlative factors, such as the focal length, the lens diameter and

the object distance. The CoC size and distribution function is described as below

BDF (F, P,Rm,Θm, φm) (5.18)

BDF is a multivariate function consisting of five parameters. In this function, F represents

the focal length of the human eye. According to the principle of the thin lens, the different

focal length is the direct cause of the different CoC sizes. Meanwhile, the pupil size, P ,

which is similar to the diameter of the thin lens, is also the cause of the different CoC size.

The object distance and angle should also be considered in the function; therefore, m is the

point of the scene formed at the pixel p position in the image. Rm,Θmandφm are spherical

coordinates corresponding to m point position and the origin of the spherical coordinate

system where m is located in the centre of the front corneal surface in the eye model.

For deriving function BDF , the improved Navarro eye model is used to generate a

sample dataset for the training neural networks. By tracing the rays from different point

position in the 3D scene, the areas where the ray intersects on the retina are recorded as

the sample dataset. The sampling algorithm is shown in Algorithm 3.

Algorithm 3 The Sample Intersection Point Algorithm

Set model focus as F

Set pupil diameter as P

3: Ps is the point set evenly distributed points on the first lens

for each p ∈ Ps do
ray ← rayoriginsat(Rm,Θm, φm)pointingtop

6: oray ← SchematicEyeModel(ray)
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if oray exists record intersection point of oray and retina

end for

Output: SampleIntersection(F ;P ;Rm; Θm;φm)

In order to keep the interpretability and confidence of BDF , the range of the five param-

eters in BDF should be defined. As shown in Table 5.2, the range of focal length, F , is

defined from 100mm to 5000mm. According to the definition of the improved Navarro eye

model, the CoC size on the retina is highly similar, whether at a focal length of 5000mm or

at infinity far. Around the corresponding value of F , in order to obtain a better fitting to

the BDF , this study performed a denser sampling of Rm. According to the ophthalmologic

theory, the range of pupil size, P , is from 2mm to 8mm, covering from the minimum to

maximum pupil diameter of the human eyeball. The zenith angle Θ and azimuth angle φ

range from 0◦ to 40◦ every 5◦ respectively, covering from the minimum to the maximum

viewing angle in the improved model. The total number of sample data is 40500.

Table 5.2: The Sample Data

F(mm) 100 200 400 700 1000 1600 2200 2500 3000 5000

50 50 100 100 100 200 200 200 200 200

100 100 250 250 300 500 600 800 800 800

120 150 350 400 500 800 1000 1100 1500 1500

130 180 450 500 800 1200 1300 1500 1900 2000

R(mm) 150 200 500 700 900 1400 1700 2000 2300 2500

200 250 550 800 1000 1600 2000 2400 2500 3000

300 300 600 900 1100 1700 2200 2500 2700 3500

500 500 800 1000 1500 1800 2300 2600 3000 4000

1000 1000 1000 1500 2000 2000 2500 3000 3500 4500

5000 5000 5000 5000 5000 5000 5000 5000 5000 5000
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Figure 5.8: The Anatomical Structure View of the Intersection of the Ray

With Algorithm 3, the ray-tracing computing results corresponding to each set of val-

ues can be obtained. Then, the position of the 3D intersection point of the ray cone and

the retina is converted into 2D pixel coordinates of the retinal image. Figure 5.8 is an

anatomical structure view of the intersection of the ray cone and the retina, and Figure 5.9

is the 2D schematic ray intersection view after conversion. Since the shape of the intersec-

tion areas is irregular, this study uses a 2D rectangular envelope method to represent the

size of the intersection area. By obtaining the height, h, and width, w, of the rectangle,

Gaussian blur is applied to the rectangle area for the corresponding pixel.

There are seven dimensionalities in the sample dataset, including five input items

and two output items. It could be considered BDF as a multiple regression function,

D(F, P,Rm,Θm, φm), that is, for the i− th input items (F i, P i, Rim,Θ
i
m, φ

i
m), there are the

output items, wi and hi. i ∈ [1, n], and n is the amount of the intersection point of the

ray on the retina. This multiple regression function could be optimised by minimizing the

least-squares error:

E =
n∑
i=1

‖(wi, hi)−D(F i, P i, Rim,Θ
i
m, φ

i
m)‖2 (5.19)

On the other hand, the neural networks could be used to model the regression function and

find the closed-form solution for this multiple regression function. The back-propagation

neural network is selected for fitting the non-linear regression function. In this process,

for better performance and generalisation of the neural networks, with several testing, the

mean squared error (MSE) of closed-form fitting is set as 1 ∗ 10−2. The structure of the
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Figure 5.9: The 2D Schematic View of the Intersection of the Ray

neural networks is two hidden layers with 12 nodes separately. With the training, the final

MSE of the neural networks is 1.9587 ∗ 10−4. While σ = 1
1+e−x the CoC size could be

represented as below.

[wi, hi] =
∑
k>0

w2
jkσ(

∑
i>0

w1
kixi + b1k) + b2j (5.20)

In this section, an improved schematic human eye model is proposed. This model takes

into account the changes in the axial length and the corneal thickness for the pathological

vision and the refractive surgeries, respectively. In addition, a novel method is proposed to

obtain a BDF function for the CoC size and the defocus blur in DoF effects. In the following

section, the improved schematic model and BDF function are verified and analysed.

5.4 Results and Analysis

5.4.1 The Improved Human Eye Model

In order to evaluate the improved human eye model, with the ray-tracing method, the

incident ray path is illustrated on the anatomical structure of the human eye. As shown in
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Figure 5.10, The emmetropia is simulated by the improved human eye model accurately.

The incident rays are correctly focused on the retina. In Figure 5.11, the ray intersection

points of the retina could reflect the real situation which the rays could be focused in the

centre of the retina. In Figure 5.11, there are some disperse points around the central

focus, which are the aberration of the human eye. For example, at night, a distant point

light source is often recognized as the star shape by the human eye.

Figure 5.10: The Incident Ray Path of Emmetropia with the Improved Human Eye Model

Figure 5.11: The Intersection Points of Incident Rays on the Retina
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Figure 5.12 illustrates the near object, which is 50mm from the central point of the

front corneal surface. The incident rays are not correctly focused on the retina. This

situation is also reflected in Figure 5.13. The intersection points of incident rays on the

retina are spread like circle shape. The distance between any two points is greater than

30µm. The size of the typical retinal neural cells is only 2-4µm. It causes severe defocus

blur in human vision. It is consistent with real-world experience.

Figure 5.12: The Incident Ray Path of Emmetropia for Near Object

Figure 5.13: The Intersection Points of Incident Rays for Near Object
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The case of the large incident angle rays is illustrated in Figure 5.14. Due to the large

incident angle, the incident rays can not be properly focused on the retina, resulting in a

triangular aberration. As shown in Figure 5.15, the triangular aberration makes the blur

vision. As in the real world, objects at the edges of the perspective are always blurred.

Figure 5.14: The Incident Ray Path of Emmetropia for Large Incident Angle

Figure 5.15: The Intersection Points of Incident Rays for Large Incident Angle

The cases of Myopia with a different refractive error are described in Figure 5.16 and
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Figure 5.18. The incident rays have formed a circle of confusion on the retina with the

increase of the axial length. With the different axial length, the shapes and the sizes of

the circle of confusion are different, as shown in Figure 5.17 and Figure 5.19.

Figure 5.16: The Myopia with 1mm Ad-

ditional Axial Length

Figure 5.17: The Retinal Intersection

Points of Myopia with 1mm Additional

Axial Length

Figure 5.18: The Myopia with 2mm Ad-

ditional Axial Length

Figure 5.19: The Retinal Intersection

Points of Myopia with 2mm Additional

Axial Length

According to the principle of refractive surgery, the corneal thickness is reduced by

ablating the cornea. The refractive error is corrected by this process. The outcome of

refractive surgery is illustrated in Figure 5.20. The 178µm corneal stroma is ablated, and
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the -3.0D spherical equivalent refractive error is corrected by the surgery. In Figure 5.20,

the incident rays are properly focused in the centre of the retina. The size of the spread is

significantly larger than the emmetropic eye (Figure 5.21). That is aberrations caused by

corneal ablation, which is also a side effect of LASIK. It may cause halo vision at night.

Figure 5.20: The Incident Ray Path of Post-surgery

Figure 5.21: The Intersection Points of Post-surgery

If corneal stroma ablation exceeds what is required for refractive error, myopia will
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not change to hyperopia simply. In Figure 5.22, after ablating 294µm corneal stroma, the

-4.0D spherical equivalent refractive error is corrected to +2.0D. The incident rays should

be focused behind the retina. A circle of confusion is formed on the retina. As shown

in Figure 5.23, the defocus blur effect and size is different from myopia. Meanwhile, the

aberration is also different.

Figure 5.22: The Incident Ray Path of Overtreatment

Figure 5.23: The Intersection Points of Overtreatment
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5.4.2 Simulation of the Human Vision

With improved human eye models and ray tracing methods, training and test datasets can

be obtained, including where the incident rays intersect on the retina. By neural networks

and the datasets, the BDF is derived. The simulation of the human vision is rendered as

the image. Figure 5.24 shows the scene without the defocus blur. Figure 5.25 shows the

DoF effect for the thin lens; that is, it is a camera vision simulation.

Figure 5.24: The Scene without De-

focus Blur

Figure 5.25: The Scene with DoF

Effect for Thin Lens

As shown in Figure 5.26, it is the simulation of human vision using the improved human

eye model. The front blur is lighter than the DoF effect of the camera vision. That is more

accurate than that in Figure 25, and it is consistent with real human vision.

Figure 5.26: The Defocus Blur with Improved Human Eye Model
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The myopia vision is simulated in Figure 5.27. The near objects are clear, and the

distant objects are blurry. It accurately simulates the myopia vision. The post-surgery

vision is simulated in Figure 5.28. There is an idea about LASIK because the surgery

establishes the natural difference of the corneal stroma; the distant objects may be clearer

than emmetropia. The simulation result in Figure 5.28 supports this idea.

Figure 5.27: The Myopia Simulation

Figure 5.28: The Post-surgery Simulation

In order to compare the simulation results with real human vision, a special test based

on subjective evaluation has been conducted as a reference for this study. As shown in

Figure 5.29, the right eye is chosen for this test. The spherical power is -4.25D without
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the cylindrical error. The optical properties of the test eye are shown in Table 5.3. The

optical properties are measured by the ultrasonic tomography.

Figure 5.29: The Original Optometry data for the Subjective Evaluation

Table 5.3: The Optical Properties of the Test Eye

Surface Pos Rad Asph Thick Ref Aper

Cornea 1 0.0 7.75 -0.24 0.54 1.367 12

2 0.54 6.67 0 3.55 1.3374 12

Lens 3 4.09 10.42 -2.97 3.76 1.42 10

4 7.58 -6 -1 17.25 1.336 10

Retina 5 25.1 -12 0 0 0 24

The vision simulation is shown in Figure 5.30. According to the discriminated by the

tester, the subjective and the blur level of the vision simulation are similar to the real

vision.
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Figure 5.30: The Myopia simulation for the Subjective Evaluation

5.5 Summary

This chapter introduces the image-forming principle of the human eye and the principle of

refractive surgery. Based on the principles, the improved human eye model is proposed.

The model supports changes in the axial length and the corneal thickness for the patholog-

ical human eye and the refractive surgeries. In addition, in the human vision simulation, a

novel BDF derivation method is proposed. This method is based on the machine learning.

The training dataset is generated by the improved human eye model and ray tracing. The

BDF is derived from the neural networks and the training dataset. The final rendering

results have proven the efficiency of the model and the BDF derivation method. The

GPU-accelerated ray tracing method is proposed in the following chapter. This method

can reduce the computation cost of the ray tracing in the human vision simulation. It can

speed up the rendering in the human vision simulation.



80 Wei Wang



Chapter 6

GPU-Accelerated Ray Tracing

Method

6.1 Overview

In the previous chapter, the improved human eye model and the BDF derivation method

are proposed for the human vision simulation. Both of these works are based on ray tracing.

Ray tracing can accurately compute the reflection and refraction of the rays. This method

is suitable for human vision simulation. However, as mentioned in Chapter 1, compared

with rasterisation, ray tracing needs more computation cost. For example, in order to

render a Full-HD size (1920x1080) image for the human vision simulation, it needs about

15 minutes with a modern computer.

On the other hand, with rasterisation method, it needs less than 167ms. The reason

is the rasterisation is optimised by GPU for years. The majority of the computing pro-

cesses using in rasterisation have been accelerated by GPU. While NVIDIA presented the

novel GPUs and APIs for the acceleration of ray tracing, there are only limited GPUs

supported the new speciality. Meanwhile, the APIs, such as OptiX, have limited in the

multiple lenses computing. As mentioned in Section 2.7, with the development of modern

GPU architecture, a GPU-based parallel computing platform can provide an evident ad-

vantage in floating-point operations and memory bandwidth compared with CPU-based

serial computation platform.

Meanwhile, the GPU can also provide the same general purpose computing ability as

81
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the CPU platform. Therefore, in this chapter, the GPU-accelerated ray tracing method

based on CUDA is proposed. This method can reduce the computation cost of the ray

tracing in the human vision simulation. It can speed up the rendering in the human vision

simulation.

For a better description and explanation of the work in this thesis, a summary of the

principal and architectural structure of the CUDA platform will be given in Section 6.2.

The framework of the GPU-accelerated ray tracing is proposed in Section 6.3. In Section

6.4, the performance analyses and optimisations are introduced.

6.2 Overview of CUDA Platform

Figure 6.1: The SM Structure of the GPU Used by the Quadro P5000
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As a GPU-based general-purpose computing platform, the basic computing unit of the

CUDA platform is Streaming Multiprocessor (SM). There are hundreds of CUDA cores

in each SM. Each CUDA core can perform integer and floating-point operations indepen-

dently. To enhance the arithmetic performance, SM also includes the special function units

(SFU) which provide the complete transcendental function instructions, e.g. trigonomet-

ric functions, reciprocal and square root. For the complex general-purpose computing,

L1/L2 data cache, instruction buffer and scheduling units are added to the SM. The SM

structure of the Quadro P5000 is illustrated in Figure 6.1. The SM includes instruction

cache, four processors, texture/L1 cache, eight texture units and 96KB shared memory.

Each processor includes 32 FP32 CUDA cores for single-precision floating-point operation,

4 FP64 CUDA cores for double-precision floating-point operation, 1 FP16 x 2 CUDA core

for half-precision floating-point operation, 8 SFU units, register (16384 x 32-bit), two dis-

patch units, warp scheduler and instruction buffer. The compute capability is a concept

that describes the GPU architecture. The compute capability of this GPU is 6.1.

Figure 6.2: GPU Parallel Computing System

As shown in Figure 6.2, it is a schematic GPU parallel computing system based CUDA

platform. The program consists of two main parts: The host program run on the CPU.

Sub-program that run natively on the GPU is called Kernel Function. The red arrow lines

present the host program processing on the CPU. The blue arrow lines present Kernel

Function running on the GPU. CPU only operates Host memory.

Similarly, GPU only operates Device memory. The only transmission channel for the



84 Wei Wang

data transfer between CPU and GPU is PCI-Express Lanes in CPU. The green arrow

lines present the data transfer between CPU and GPU. Since the limited throughput of

PCI-Express Lanes (15.75GBps with 16 Lanes PCI-Express Gen3), the data transfer rate

through the PCI-Express Lanes is lower than the data transfer rate in the throughput

between CPU (up to 130GBps with E5-2650 v4) and Host memory or between GPU and

Device memory (up to 288GBps with NVIDIA Quadro P5000).

Figure 6.3: Schematization of Thread organization

In order to get the best efficiency of hardware, the logical structure of the Kernel

Function is highly correlated with the hardware structure of GPU. As shown in Figure

6.3 [123], the design of Kernel Function should follow the Threads organization, including

Grid, Block and Thread. The Grid is composed of Blocks. The Block is composed of
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Threads. The dimension sizes of Thread, Block and Grid are defined by the GPU compute

capability, e.g. NVIDIA Quadro P5000 with compute capability 6.1, the maximum number

of threads per block is 1024, the maximum number of threads per SM is 2048, the maximum

dimension size of a thread block is (1024, 1024, 64), the maximum dimension size of a grid

is (2147483647, 65535, 65535).

Table 6.1: GPU Memory Hierarchy
Storage Type Location Cached Access Scope

Register On-chip N�A R�W Thread
Local Off-chip No R�W Thread

Shared On-chip N�A R�W Block
Constant Off-chip Yes R Grid
Global Off-chip Yes R�W Grid
Texture Off-chip Yes R Grid

When the Kernel Function is launched by the GPU, the Blocks in the Kernel Function

are mapped to SM, and the Threads are mapped to the CUDA core. It could be found that

the maximum number of Blocks and Threads is much larger than the number of SMs and

CUDA cores, respectively. The cost of threads switching should be considered, although

GPU thread switching is shorter than the Kernel Function launch and data transmission.

The CUDA platform is considered as a single-instruction multiple data (SIMD) execution

model. Threads execute the same instructions to process different data in Warp units.

Warp occupancy is a measure of the utilization of cores in SM and is one of the issues to

be considered for parallel program optimization.

On the other hand, as shown in Table 6.1, there are six types of memory defined in

the CUDA platform. The register and shared memory are on-chip memory. The constant

memory and texture memory are read-only and cached by the on-chip cache. In order to

achieve the best Warp execution efficiency, the data should be aligned in the memory and

stored in the fastest memory. Therefore, in the CUDA platform, memory optimization is

another issue that should be considered.

6.3 The Method of GPU-Accelerated Ray Tracing

The basic principle of the ray-tracing could be explained in Figure 6.4. Assume that a

human eye E is out of the screen, and a ray l1 is emitted from a pixel on the connection
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screen of E, if l1 intersects with object M at point P , connects the line from point P to

the light source. The line to light source L2 is not blocked by any object. The colour value

of point P projected by L2 light source on object M is recorded. The line to a light source

L1 is blocked by other objects. L1 does not affect on the colour of the P point or forms a

shadow. The ray-traced reflection and refraction functions follow the law of refraction and

reflection. These are not described in detail here.

Figure 6.4: The Basic Principle of the Ray Tracing

In the simulation of human vision using the ray-tracing method, the ray is traced

from the pixel position (retina) through the lenses group representing the lens, pupil, and

cornea to the scene. According to the laws of reflection and refraction, the ray traversal

operations among the objects are completed sequentially. The pixel colour is computed by

the radiance along the ray path. The computation complexity increases as the resolution

increases. And the computation complexity increases as the number of intersections of the

ray path. If the ray-tracing computation is performed by the CPU, one computation cycles

could process one pixel. If it is a Full-HD (1920 * 1080) resolution image, it needs 2073600

computation cycles. Figure 6.5 illustrates the CPU usage of the serial process. 86.45 %

of the CPU time is used to complete the intersection computation and the intersection

judgement, and about one half of the time is for the intersection judgement.

The GPU-based parallel computing is similar to multi-core CPU, with shared system

bus and memory, but it integrates thousands of computing cores in one chip. If the
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Figure 6.5: The CPU Usage of Serial Process

computation can be parallelised, that is, the computation of each ray path is assigned

to one thread on the GPU. If there are not any differences among the threads, GPU-

accelerated ray tracing method can achieve thousands of times speedup than on CPU. The

GPU-accelerated ray tracing method without optimisation can only achieve about 40 times

speedup than on CPU. The main reason for this is that the number of objects that the

ray path corresponding from different pixels intersect in the scene is different, that is, the

computation complexity of the threads is different, which causes low in GPU thread block

utilisation and memory utilisation. Each pixel computation and its ray path computation

are assigned to one thread on the GPU. The usages of the thread and the memory are

optimised for better performance.

6.4 The Performance Analyses and Optimisations

The hardware specification for the performance analyses of the GPU-based parallel model is

shown in Table 6.2. The CPU of the test platform is double E5-2650 v4 with 2.2GHz,12cores

and 24 threads. The Host memory is 128 GB cached by 30MB L2 cache in CPU. In the

test platform, double Quadro P5000 of NVIDIA with 2560 cores GP104 GPU is selected as

the Devices for the algorithm performance testing. The 2560 cores are divided into 20 SMs

which are included in 5 GPCs. Each SM has 256KB register, 48KB L1 cache (shared with

texture cache) and 96KB shared memory. The GP104 memory is 16GB 256-bit GDDR5,
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which is cached by 2048KB L2 cache. The memory bandwidth of GP104 is 192 GB/s.

The compute capability of GP104 is 6.1. The peak floating-point performance with single

precision of GP104 is 8.873 TFLOPS. The peak floating-point performance with double

precision of GP104 is 277.3 GFLOPS. The pixel rate of GP104 is 110.9 GPixel/s.

Table 6.2: Performance Test Platform Specifications
Module Module Specification

CPU Intel Xeon E2650 v4 12 cores@2.2Ghz (1 core in
use) with 30MB L3 cache

Operating system Windows 10 for Workstation
GPU Quadro P5000 with GP104

CUDA cores 2560 cores
GPU memory 16GB 256-bit GDDR5

GPU bandwidth 192 GB/s
GPU peak single precision
floating-point performance

8.873 TFLOPS in theory

CPU compiler Microsoft C/C++ optimizing compiler 19.00
GPU compiler NVCC 9.0

6.4.1 Analysis of computing speedup

In order to accurately and fully test the speedup of this parallel computing model, there are

20 different amount of objects in the scene chosen to take part in the test. The objects are

randomly placed into the scene. There are three materials for the objects, metal, glass and

diffuse. The materials are randomly assigned to the objects. And the amount of objects

is a multiple of 2 from 1 to 524228. For the accurate evaluation of the speedup, the codes

compiled for the serial and parallel algorithm are optimized with Maximize Speed (/O2).

On both CPU and CUDA platform, each scene with a fixed virtual viewpoint at (13, 2, 3).

The original point is (0, 0, 0). Each scene is run ten times, and an average of these tests is

chosen to be the test result of each dataset. The amount of Threads of each Block, the size

of Block, is 512. The size of the Grid is the ratio of the number of objects to Threads, and

the minimum value is 1. There is only 1 Grid in the computing process. The dimensions

of Block and Grid are 3. The other rendering parameters are shown in Table 6.3.

The objective of parallel computing is to provide faster computation. Thus, certain

defined parameters are needed to measure the performance of the parallel computing algo-
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Table 6.3: The Rendering Parameters for Test
Module Module Specification

Resolution 1000 pixels by 1000 pixels
Color Depth Red 8 bits, Green 8 bits and Blue 8 bits

Number of Scene 20 Scenes
Number of Objects in

Scene
Multiple of 2 from 1 to 524228

Objects’ Material Metal, Glass and Diffuse

rithm versus the serial computing algorithm. Amdahl [124] proposes two common measures

of effectiveness that account for both the hardware and the algorithm design are speedup

and efficiency. Speedup, Sp is defined as the ratio between the time of executing a serial

algorithm for a set of computations, Ts, and the time to perform these same computations

with a parallel algorithm, Tp.

Sp =
Ts
Tp

(6.1)

The other measure, efficiency, Ep, is defined as the ratio of speedup to the number of

processors. Efficiency accounts for the relative cost in terms of the number of the processors

required in achieving a certain speedup.

Ep =
Sp
p

(6.2)

The two formulas are used to measure the parallel algorithm performance in the following

analyses.

For a better representation, in Figure 6.6, the value of Y-axis is the logarithm of the

computing time of CPU-based and GPU-based, respectively. When the number of objects

is below 256, the GPU-based parallel computing time is slower than the CPU-based serial

computing time. In contract, while the number of objects is more than 256, the speed

of the GPU-based parallel computing is significantly faster than that of the CPU. The

advantage of GPU-based parallel computing increases as the number of objects increases.

The phenomenon can be explained with the principles of the CUDA platform. If the

number of objects below 256, the computing of CPU is not affected, however, the time

cost of Kernel Function launch, Wrap switch and GPU memory access on the CUDA
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Figure 6.6: One Pixel Computing Time between CPU-based Serial Computing and GPU-
based Parallel Computing

platform offsets the benefits of CUDA parallel computing. With the increasing of objects,

the advantages of computational parallelism become obviously.

In Figure 6.7, the total rendering time cost comparison between CPU-based serial

computing and GPU-based parallel computing is illustrated for evaluating the performance

of human vision simulation. When the number of objects reaches 2048, the performance of

CPU-based serial computing is lower than GPU-based parallel computing. The time cost

is 39.37s. Meanwhile, until 524288 objects in the scene, the performance of GPU-based

parallel computing is still acceptable, the total rendering time is only 112.36s. On the

other hand, the performance of CPU-based serial computing reaches 5000s.

The trend of speedup of the CUDA platform is shown in Figure 6.8. With more than

16384 objects, the CUDA platform provides a significant speedup compared that on the

CPU. The maximum speedup of the CUDA platform is 44.50. This trend can also be

observed in the efficiency of GPU-based parallel computing shown in Figure 6.9. The

maximum efficiency of the CUDA platform is 0.02.

According to the above results and analysis, GPU-based parallel computing has greatly

surpassed CPU-based computing. As mentioned in the previous section, the potential of

the GPU-based parallel should be inspired by the optimisation. In order to enhance the

computing performance on the CUDA platform, several methods mentioned in the previous

section are taken, including a reasonable allocation of the size of Threads, Blocks and Grids
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Figure 6.7: The Total Time Cost Comparison between CPU-based Serial Computing and
GPU-based Parallel Computing

for a specific scene and the adoption of the register, shared memory and constant memory.

These optimisations above are discussed in the following parts.

6.4.2 Threads Optimisation

For an accurate evaluation of optimisation, the impact of the Block size on the computing

performance of the objects simulation is evaluated by varying the block size while keeping

the registers per thread at 64. Meanwhile, the number of objects is 524288. Figure 6.10

shows the speedup of the different block size with 524288 objects. In order to obtain this

plot, 32 executions of the parallel programs are executed in a row for each given block size.

From this study, it is found that the block size of 544 produces the best performance, 58.51

times speedup, with 524288 objects.

As shown in Figure 6.11, with 554 Threads in each Block, the amount of register used by

Threads is 34,816. However, the maximum number of registers per each Block is 65,536 for

the Quadro P5000. In order to find the best performing combination of the Block size and

register count per Thread, the parallel program is tested with the different combination of

Block size and the number of registers per Thread. One hundred ninety-two combinations

of the Block size and number of registers per Thread are executed. The register at 70 per
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Figure 6.8: The Speedup of GPU-based Parallel Computing Compared with the CPU-
based Serial Computing

Figure 6.9: The Efficient of GPU-based Parallel Computing Compared with the GPU-
based Serial Computing

Thread is chosen by the CUDA compiler with unlimited max registers compiler option,

-maxrregcount=0. Since the total number of registers in combination with the register at

70 and Block size greater than 896 exceeds the maximum register limit allowed for each

Block, the Kernel Function cannot be launched, so these tests have no results.

The results are displayed in Figure 6.12 for the different combination of Block size and

the number of registers per Thread. It shows that the optimal computing performance

occurs at 70 registers with 480 thread for 524288 objects, 65.94 times speedup, and the

speedups seem to keep dropping beyond this number of registers and Threads.
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Figure 6.10: The Speedup with the Different Block Size

Figure 6.11: The Number of Registers of the Different Block Size

6.4.3 Device Memory Optimisation

The fastest memory is the registers. However, the register is non-programming; that is, the

using of the register cannot be controlled by the developer directly, which has mentioned in

the previous section. As shown in Table 6.4, the speed of memory access is different among

the different Device memories. According to the bandwidth and latency comparison, the

shared memory is faster than global memory; however, on-chip design of shared memory

makes the size is much smaller than the global memory. Therefore, shared memory is often

used for limited variables that need to load and store among Threads in the same Block

quickly.
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Figure 6.12: The Comparison among the Different Combination of Block Size and Number
of Registers per Thread

Table 6.4: The Comparison among the GPU Memories

Storage Type Bandwidth Latency

Shared Memory 3,919GB/s 1 to 32 clocks

Constant Memory 288GB/s 400 to 800 clocks

Global Memory 288GB/s 400 to 800 clocks

Texture Memory 288GB/s 400 to 800 clocks

As mentioned in the previous section, the majority of computation time is for the

intersection computation and intersection judgement. In this process, 22 single-precision

floating-point variables need to load and store frequently. For reducing the latency of the

memory access, in this study, the 22 variables are move to the shared memory from the

global memory. The usage of the shared memory is calculated as below:

Fs = Ct · Sv · Cv (6.3)

The usage of the shared memory, Fs is defined as the product of the number of Threads,

Ct, the memory usage of variable, Sv, and the number of variables, Cv. According to For-

mula 6.3, 22 single-precision floating-point variables of 480 Threads per Block optimized
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by previous work require 42240 bytes of the shared memory, which is less than the maxi-

mum shared memory limit of 49152 bytes per Block. By transferring these variables from

global memory to shared memory, it reduces the memory access time of variables, thereby

improves the performance of the program. As shown in Table 6.5, the speedup with shared

memory is up to 75.18 times than serial programs on CPU.

Table 6.5: The Speedup of Memory Optimisation

Runtime(ms) Speedup

With shared memory optimization 2.40138 75.18 times

Without shared memory optimization 2.73779 65.94 times

6.5 Summary

In this chapter, an efficient GPU-accelerated ray-tracing method for human vision simula-

tion is proposed. From the performance analyses with the Quadro P5000, the Block size

and Device memory allocation are the main limiting factors for computing performance of

simulation on the CUDA platform. This limitation holds for the other parallel computing

model with domain decomposition strategy as well. In order to solve the problems, some

optimizations are made to improve computing performance. With Threads optimization,

the speedup of GPU-based parallel computing increases from 44.50 times to 58.51 times.

Moreover, with register allocation optimization, the speedup increases to 65.94 times.

And then, after the memory access optimization, the frequently loaded and stored variables

are move to the shared memory, which is with lower latency and greater bandwidth than

the original global memory. This optimization makes the speedup increased to 75.18 times.

In the following chapter, it is the final summary of the thesis.
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Chapter 7

Conclusion

7.1 Overview

The chapter summarises the proposed methods and model for the intelligent assistant

tool of the laser refractive surgeries with predictive and visualised functions in this thesis,

especially the application to surgery prediction and human vision simulation. In this

chapter, the main findings of the study and the contributions are presented with respect

to the research question and subsidiary questions mentioned at the very beginning of this

thesis. Some possible directions of the further work are provided at the end of this chapter.

There are four sections in this chapter. Section 7.2 summarised the proposed methods

and model in this thesis. The main findings and contributions are presented in Section 7.3

and Section 7.4, respectively. In Section 7.5, future work is proposed.

7.2 Summary

This study comprehensively has reviewed the technical development level of refractive

surgery and explored the computational analysis and modelling techniques about refrac-

tive surgery. In particular, it summarises the current research status of prediction and

planning of laser refractive surgery. This study aims to develop intelligent assistant tools

for laser refractive surgery with prediction and visualisation functions. In order to achieve

this aim, this study has two objectives: using clinical datasets to predict surgical param-

eters and outcomes, and simulating the human vision. In order to complete the above

97
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two objectives, this study proposes several methods and model, including multiple data

imputation methods, imbalanced dataset resampling method, genetic algorithm-optimised

ensemble learning method, the improved human eye model, machine learning-based BDF

derivation methods, and GPU accelerated ray-tracing method and optimisation. Based on

these, this research has completed an intelligent assistant tool for laser refractive surgery

with prediction and visualisation functions, as shown in Figure 7.1. This software has

obtained the certification of software copyright.

Figure 7.1: The Intelligent Assistant Tool of the Laser Refractive Surgery

Among these methods and model, multiple data interpolation method is used to com-

plete data pre-processing. Based on the correlation analysis of each property in the dataset,

a multiple regression model is established for the properties with missing data, and the

missing data can be obtained by this multiple regression model. The method can predict

possible missing data, and the biased direction of the model could be calculated.

After completing the data imputation, according to the distribution of medical dataset,

this study proposes a resampling method for imbalanced datasets. This method focuses

on over-sampling the mixed area between the majority data and minority data. The

relatively conservative thresholds are used to control the generation of over-sampling data.

This method is used to avoid model deviation.

After completing the data resampling, for the data sparseness problem in the medical

field, this study proposes an ensemble learning method optimized by genetic algorithms.

This method uses genetic algorithms to optimize the basis predictor of ensemble learning, to

improve the prediction accuracy of the basic predictor, and then to improve the prediction
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accuracy of the final model of ensemble learning.

For human eyeball modelling, this study focuses on the modelling of abnormal eyeball

and surgical eyeball. Based on the analysis of the causes of myopia and hyperopia and the

principle of refractive surgery. This study adds the changes of the axial length and the

corneal thickness into the existing Navarro eye model and proposes an improved human

eye model. This model is suitable for the normal eyeball, abnormal eyeball and refractive

surgery eyeball.

In the human visual simulation, this study focuses on the derivation of the defocus blur

range function for pathological and post-operative vision simulation. Based on the previous

improved eye model, this study uses ray tracing method to generate training datasets.

And then, the blur distribution function (BDF) is derived by the neural networks and the

training datasets. With BDF, it could accurately simulate the human vision. In addition,

in order to improve the generation speed of the training datasets and the rendering speed

of the simulation results, this study proposes a GPU-accelerated ray tracing method and

its optimization method, which can achieve 75 times acceleration.

The different methods and model presented in this thesis are tested and verified. The

positive results are obtained, and these are discussed further in the next section.

7.3 Main Findings

This section presents the main findings from the conducted research presented in this

thesis. Referring back to Chapter 1, the initial research question is:

Is it possible to design machine learning-based methods suitable for multi-input, multi-

output and non-linear system modelling so that effective data prediction and simulation

can be achieved in the presence of missing data, imbalanced data, spare dataand complex

datasets?

The solution to this research question requires that several subsidiary issues be ad-

dressed. And Each of them is discussed below.

1. The issue of missing data

In a real system, due to the problems of statistics, the missing of input and output

data is unavoidable. During the process of modelling using a machine learning approach,

the deviation of the mathematical model is largely due to the missing data. In chapter 3,

the multiple imputation method based on the multiple regression is proposed. With the
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test in Section 3.5, this method is accurate and effective.

2. The issue of imbalanced dataset

In a real system, the amount of data outputted by one type of output is much less

than (or more than) the amount of data outputted by other types. The dataset imbalance

may make the model deviate while using the machine learning approach to establish the

mathematical model of the simulation system. To solve this issue, in Chapter 4, an imbal-

anced dataset resampling method is proposed. By the testing in Section 4.3.4, the method

proved to be accurate and effective.

3. The issue of sparse data distribution

Due to data statistics or real system characteristics, the data distribution is not concen-

trated, so that an effective model cannot be trained. For this issue, the genetic algorithm

optimised ensemble learning method is proposed in Chapter 4. A comparison between the

single machine learning method, and this method shows that this method is more effective

and accurate.

4. The ray tracing method uses blur to describe the loss of details.

The computing of the blur range and quantity are determined by the blur distribution

function (BDF). Currently, the BDF is determined for normal human vision and is not

suitable for pathological human vision. The pre-condition of this solution is an improved

human eye model which supports normal eye, abnormal eye and refractive surgery eye.

This model is proposed in Section 5.3. The BDF derivation method is also proposed in

Section 5.3. Both model and method are tested and verified in Section 5.4.

5. The computing of ray intersection, ray reflection and ray refraction take significant

time.

For the existing algorithm and hardware technology, it is impossible to guarantee high-

speed and high-fidelity scene rendering. There is also a requirement for a novel accelerate

approach for ray tracing computing. For this issue, chapter 6 provides a detail description

of the GPU-accelerated ray tracing method and optimisation. This method provides 75

times speedup.

Returning to the research question posed at the very beginning of this thesis, the

above methods and model proposed in this thesis could combine an intellectual toolkit for

the solve this research question. In addition, these methods and model also extend the

application scope of the machine learning from data field to the simulation field. It also

the main finding in this study.
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7.4 Research Contributions

The findings from this study make several contributions to the body of knowledge. These

contributions can be summarised as follows:

1. A novel and effective method to plan, predict and evaluate the refractive surgeries

with a medical dataset.

According to the distribution of the sample in clinical data, the percentage of the

unacceptable results is 23.02%. The method in this study could provide 79.02% accuracy

to find the possible unacceptable cases, that is, the method could reduce the percentage of

unacceptable results from 23.02% to 4.82%.

2. A multiple imputation method is proposed for the missing medical data in the

training and test datasets.

3. An improved over-sampling method is designed for reducing FPF and FNF with the

imbalanced medical data.

4. An ensemble learning method with optimisation is proposed for increasing the

accuracy of the predictor in a sparse medical dataset.

5. An improved schematic human eye model with variable axial length and corneal

thickness is proposed for pathological human vision, e.g. myopia and hyperopia, and

refractive surgery.

6. A novel data augmentation method is proposed for machine learning using the

results of human vision simulation.

7. A BDF derivation method is proposed for using machine learning.

8. A GPU-accelerated ray tracing rendering engine is designed for the human vision

simulation.

In addition to the contribution mentioned above, this work has also made some contri-

butions to other fields.

1. A medical dataset with detailed explanations of each property was developed and

can be published for the further machine learning research.

2. A universal optimisation workflow is designed for other GPU-accelerated applica-

tions.

With this proved workflow, the speedup of GPU acceleration from 44.50 times to 75.18

times, increase about 68.94
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7.5 Future Work

Several possible directions for the future work as introduced as below:

1. The clinical data will be collected for further research continually.

2. Both the over-sampling method and the under-sampling method will be combined

for a novel data resample method.

3. The aberration of the human eye will be considered in the visual simulation.

4. As one of the future works, machine learning will be applied in other virtual envi-

ronments.

This paper only planted seeds for the above research direction. Perhaps one of these

directions can change the world in the near future.
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[43] Ömer F Recep, Nurullah Çağıl, and Hikmet Hasıripi. Correlation between intraocular

pressure and corneal stromal thickness after laser in situ keratomileusis. Journal of

Cataract & Refractive Surgery, 26(10):1480–1483, 2000.

[44] Vikram D Durairaj, Jennifer Balentine, Gregory Kouyoumdjian, Janet A Tooze,

David Young, Lawrence Spivack, and Michael J Taravella. The predictability of



108 Wei Wang

corneal flap thickness and tissue laser ablation in laser in situ keratomileusis. Oph-

thalmology, 107(12):2140–2143, 2000.

[45] Russell N Van Gelder, Karen Steger-May, and Jay S Pepose. Correlation of visual

and refractive outcomes between eyes after same-session bilateral laser in situ ker-

atomileusis surgery. American journal of ophthalmology, 135(5):577–583, 2003.

[46] H Eleftheriadis, B Prandi, A Diaz-Rato, M Morcillo, and JB Sabater. The effect

of flap thickness on the visual and refractive outcome of myopic laser in situ ker-

atomileusis. Eye, 19(12):1290, 2005.

[47] Michael C Chen, Nancy Lee, Nirit Bourla, and D Rex Hamilton. Corneal biomechan-

ical measurements before and after laser in situ keratomileusis. Journal of Cataract

& Refractive Surgery, 34(11):1886–1891, 2008.

[48] D Rex Hamilton, R Duncan Johnson, Nancy Lee, and Nirit Bourla. Differences

in the corneal biomechanical effects of surface ablation compared with laser in situ

keratomileusis using a microkeratome or femtosecond laser. Journal of Cataract &

Refractive Surgery, 34(12):2049–2056, 2008.

[49] Kosuke Ogasawara and Tsuyoshi Onodera. Residual stromal bed thickness correlates

with regression of myopia after lasik. Clinical ophthalmology (Auckland, NZ), 10:1977,

2016.

[50] Saira A Choudhri, Susan K Feigenbaum, and Jay S Pepose. Factors predictive of

lasik flap thickness with the hansatome zero compression microkeratome. Journal of

refractive surgery, 21(3):253–259, 2005.

[51] Daniel H Chang and R Doyle Stulting. Change in intraocular pressure measurements

after lasik: the effect of the refractive correction and the lamellar flap. Ophthalmology,

112(6):1009–1016, 2005.

[52] H Razmjoo, A Peyman, A Kashfi, M Peyman, and A Dehghani. A regression model

for correcting intraocular lens power after refractive surgery independent of preoper-

ative data. European journal of ophthalmology, 16(4):525–529, 2006.

[53] Boonchai Wangsupadilok and Orasa Horatanaruang. The impact of central corneal

thickness on intraocular pressure measured by non-contact tonometry. Journal of

the Medical Association of Thailand, 94(5):574, 2011.



Bibliography 109

[54] Sidath E Liyanage and Bruce D Allan. Multiple regression analysis in myopic wave-

front laser in situ keratomileusis nomogram development. Journal of Cataract &

Refractive Surgery, 38(7):1232–1239, 2012.

[55] Bruce D Allan, Hala Hassan, and Alvin Ieong. Multiple regression analysis in nomo-

gram development for myopic wavefront laser in situ keratomileusis: improving astig-

matic outcomes. Journal of Cataract & Refractive Surgery, 41(5):1009–1017, 2015.

[56] Erich L Lehmann and George Casella. Theory of point estimation. Springer Science

& Business Media, 2006.

[57] Rob J Hyndman and Anne B Koehler. Another look at measures of forecast accuracy.

International journal of forecasting, 22(4):679–688, 2006.

[58] John W Graham. Missing data analysis: Making it work in the real world. Annual

review of psychology, 60:549–576, 2009.

[59] Donald B Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976.

[60] A Rogier T Donders, Geert JMG Van Der Heijden, Theo Stijnen, and Karel GM

Moons. A gentle introduction to imputation of missing values. Journal of clinical

epidemiology, 59(10):1087–1091, 2006.

[61] Roderick JA Little. A test of missing completely at random for multivariate data with

missing values. Journal of the American statistical Association, 83(404):1198–1202,

1988.

[62] Roderick JA Little. Regression with missing x’s: a review. Journal of the American

Statistical Association, 87(420):1227–1237, 1992.

[63] Sander Greenland and William D Finkle. A critical look at methods for handling

missing covariates in epidemiologic regression analyses. American journal of epi-

demiology, 142(12):1255–1264, 1995.

[64] Mark A Klebanoff and Stephen R Cole. Use of multiple imputation in the epidemi-

ologic literature. American journal of epidemiology, 168(4):355–357, 2008.

[65] Joseph L Schafer and John W Graham. Missing data: our view of the state of the

art. Psychological methods, 7(2):147, 2002.



110 Wei Wang

[66] Stef Van Buuren. Flexible imputation of missing data. Chapman and Hall/CRC,

2018.

[67] Inderjeet Mani and I Zhang. knn approach to unbalanced data distributions: a case

study involving information extraction. In Proceedings of workshop on learning from

imbalanced datasets, volume 126, 2003.

[68] Peter Hart. The condensed nearest neighbor rule (corresp.). IEEE transactions on

information theory, 14(3):515–516, 1968.

[69] Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data.

IEEE Transactions on Systems, Man, and Cybernetics, (3):408–421, 1972.

[70] Ivan Tomek. Two modifications of cnn. IEEE Trans. Systems, Man and Cybernetics,

6:769–772, 1976.

[71] T Elhassan and M Aljurf. Classification of imbalance data using tomek link (t-link)

combined with random under-sampling (rus) as a data reduction method.”. 2016.

[72] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

Smote: synthetic minority over-sampling technique. Journal of artificial intelligence

research, 16:321–357, 2002.

[73] Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-

sampling method in imbalanced data sets learning. In International conference on

intelligent computing, pages 878–887. Springer, 2005.

[74] Chao Liu, Jia Wu, Labrador Mirador, Yang Song, and Weiyan Hou. Classifying dna

methylation imbalance data in cancer risk prediction using smote and tomek link

methods. In International Conference of Pioneering Computer Scientists, Engineers

and Educators, pages 1–9. Springer, 2018.

[75] Li Sun, Ziwei Shang, Qing Cao, Kang Chen, and Jiyun Li. Electrocardiogram di-

agnosis based on smote+ enn and random forest. In International Conference on

Intelligent Computing, pages 747–757. Springer, 2019.

[76] Ahmed Saad Hussein, Tianrui Li, Wondaferaw Yohannese Chubato, and Kamal

Bashir. A-smote: A new preprocessing approach for highly imbalanced datasets



Bibliography 111

by improving smote. International Journal of Computational Intelligence Systems,

2019.

[77] Lina Gong, Shujuan Jiang, and Li Jiang. Tackling class imbalance problem in soft-

ware defect prediction through cluster-based over-sampling with filtering. IEEE Ac-

cess, 7:145725–145737, 2019.

[78] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[79] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–

227, 1990.

[80] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of computer and system sciences,

55(1):119–139, 1997.

[81] Shuang-Quan Wang, Jie Yang, and Kuo-Chen Chou. Using stacked generalization to

predict membrane protein types based on pseudo-amino acid composition. Journal

of theoretical biology, 242(4):941–946, 2006.

[82] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em

algorithm. Neural computation, 6(2):181–214, 1994.

[83] Cem Tekin, Jinsung Yoon, and Mihaela Van Der Schaar. Adaptive ensemble learning

with confidence bounds. IEEE Transactions on Signal Processing, 65(4):888–903,

2016.

[84] Debapriya Maji, Anirban Santara, Pabitra Mitra, and Debdoot Sheet. Ensemble of

deep convolutional neural networks for learning to detect retinal vessels in fundus

images. arXiv preprint arXiv:1603.04833, 2016.

[85] Mário WL Moreira, Joel JPC Rodrigues, Guilherme AB Marcondes, Augusto
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