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Abstract 
 
 
 
Trypanosoma vivax is a major animal pathogen causing African Animal 

Trypanosomiasis (AAT) in livestock across Africa and South America. No vaccine is 

available for AAT due to antigenic variation of the Variant Surface Glycoprotein (VSG) 

coating the parasite surface, which leads to effective immune evasion. However, the 

T. vivax genome contains diverse species-specific genes that encode cell-surface 

proteins (TvCSP) expressed during the bloodstream stage. This indicates that the 

surface coat includes invariant proteins besides the VSG, which might be vaccination 

targets. Using a reverse vaccinology approach, this thesis examines these TvCSP and 

their utility as vaccines against the parasite. In silico sequence analysis of TvCSP 

(Chapter 2) indicates that most TvCSP are transmembrane proteins, present in 

diverse clinical isolates and containing minimal polymorphism. The identification of 

immunogenic linear B-cell epitopes based on a customized peptide microarray 

(Chapter 3) reveals one protein family (FamX) to be the most immunogenic in natural 

infections (besides VSG), and four FamX proteins were successfully expressed in 

recombinant form. FamX proteins are used to immunize BALB/c mice with multiple 

adjuvants prior to parasite challenge (Chapter 4) to explore the resultant immune 

response and the protective properties of vaccination. Immunization stimulated high 

levels of pro-inflammatory cytokines indicating that FamX proteins stimulated a 

mixed Th1/Th2-type immune response, and one antigen (AJ6), co-administrated with 

a Quil-A adjuvant, induced partial protection with 60% efficacy in mice. AJ6 was also 

localized to the cell-surface based on immuno-fluorescence microscopy. Challenge 

experiments in goats were conducted using IFX antigen, another FamX protein, in 

order to analyze its possible protective immunity in a natural host (Chapter 5) but IFX 

failed to protect despite effective seroconversion. This thesis describes the discovery 

of a novel protein component of the T. vivax surface coat that is invariant and 

immunogenic, which offers promise of an effective vaccine for animal African 

trypanosomiasis.  
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Chapter 1  

General Introduction 

 

1.1. Animal African trypanosomiasis 

 

African trypanosomiasis is a parasitic disease in vertebrates with a global distribution 

caused by flagellate protozoa from the genus Trypanosoma. Trypanosomiasis is 

vector-borne, transmitted by the bite of a tsetse fly (Glossina spp.) or other biting fly 

and the disease is classified according to the trypanosome species, host and the 

geographic distribution (Bruce, 1915; Yaro et al, 2016). In sub-Saharan African 

countries, Trypanosoma brucei is the causative agent of Human African 

Trypanosomiasis (HAT), also known as “sleeping sickness”. Specifically, 95% of HAT 

cases are caused by T. brucei gambiense in Western and Central Africa, producing a 

more chronic form of the disease (Stijlemans et al, 2016). In contrast, T. brucei 

rhodesiense causes the acute form of HAT in Eastern and Southern Africa accounting 

only 5% of cases (Black and Seed, 2001; Barrett et al, 2003). These sub-species are 

morphologically indistinguishable and both can cause fatal syndromes affecting the 

central nervous system (Baral, 2010). Trypanosomes are also the causative agent of 

Animal African Trypanosomiasis (AAT) or Nagana, a livestock disease caused by three 

African trypanosome species: T. brucei brucei, T. congolense and T. vivax (Black and 

Seed, 2001). AAT affects wild and domestic animals causing chronic anemia, weight 

loss, severe effects on reproduction and cardiac lesions, and in some severe cases 

could develop neurological dysfunctions, resulting in death if untreated. 

 

 

1.1.1. Organism and taxonomy  

 

Trypanosomes are unicellular, flagellated haemoparasites belonging to the phylum 

Euglenozoa, class Kinetoplastida (See Table 1.1). They are transmitted by blood-

sucking arthropods and can be classified in two groups depending on their 

transmission mode: Stercoraria (Subgenus Megatrypanum, Herpetosoma and 
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Schizotrypanum) and Salivaria (Subgenus Dutonella, Nannomonas, Trypanozoon and 

Pycnomonas) (Botero et al, 2003). In the Stercoraria group, mammalian 

trypanosomes infect through feces by contaminative transmission after they develop 

and multiply in the digestive tract. In contrast, Salivarian parasites develop in the 

mouthparts of anterior gut and are transmitted via the flies’ saliva by inoculative 

transmission (Osório et al, 2008). This group includes all the African trypanosomes 

able to infect mammals. The Salivarian group comprises the subgenus Dutonella 

including T. vivax and T. uniforme, Trypanozoon including T. equiperdum, T. evansi 

and T. brucei and the subgenus Nannomonas including T. congolense, T. simiae and 

T. godfreyi (Desquesnes, 2004).  

 

Nagana in mainly caused by three types of trypanosomes; T. brucei, which can infect 

both humans and animals and T. congolense and T.vivax, both exclusively animal 

pathogens and are the main causative agents in livestock (Bruce, 1915). Nagana can 

be caused by one of these species or several in combination, causing single and mixed 

infections respectively. T. vivax is able to infect non-tsetse vector species and 

transmit mechanically, and has thereby spread to areas in northern Africa and South 

America (Finelle, 1974).  

 

African trypanosomes may be differentiated by their morphological features and 

developmental life cycles. T. vivax has three morphological forms: bloodstream-form 

trypomastigote (BSF), epimastigote and metacyclic-form trypomastigote (MET) 

(Hoare, 1972). T. vivax trypomastigotes have an elongated cell-body, within which 

the nucleus is characteristically the largest organelle. The cytoplasm is limited by the 

pellicle or outer membrane that enables body movement (Uilenberg and Boyt, 1998). 

The flagellum emerges from a small membrane invagination called the flagellar 

pocket (FP), a place for endocytosis and exocytosis (Field and Carrington, 2009). The 

free flagellum can extend (7 µm) helping the parasite to swim effectively.  

 

The kinetoplast of T. vivax BSF can be distinguished from other African trypanosomes 

by its size of 1.1 µm compared to 0.7 µm and 0.6 µm for T. congolense and T. brucei, 

respectively. The kinetoplast, which plays a fundamental role in energy metabolism 
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and reproduction, is always rounded in T. vivax and located at a terminal or 

subterminal position. In T. congolense, the kinetoplastid is rounded and in a 

subterminal position, whereas in T. brucei it is rod-shaped located at subterminal 

position (Hoare, 1938). T. vivax has a mean body length of 21-26 µm and a width of 

1.5-3 µm, although this can differ significantly depending on the isolate (Hoare, 

1972).  

 

In T. brucei, the species that accounts for most research on trypanosome 

development, the BSF displays pleomorphy and can also be divided in slender and 

stumpy forms (Matthews and Gull, 1994). In the mammalian host, T. brucei parasites 

undergo an irreversible developmental transition from long slender (LS) to short 

stumpy (SS) forms. LS cells are characterized by a rounded posterior end and rapid 

cell division, but are not infective to tsetse flies. During infection, LS cells are the 

predominate form at peaks of parasitemia, while non-replicative SS predominate 

when parasitemia declines (Seed and Black, 1997). If a bloodmeal is taken, stumpy 

cells are infective to the vector and will differentiate in the tsetse midgut, otherwise, 

these parasites will die. The LS to SS transition, therefore, represents a 

developmental commitment to transmission. Pleomorphic bloodstream forms have 

not been observed in T. vivax infections and it is not clear if the parasite undergoes a 

comparable developmental transition. 
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Table 1.1. Classification of trypanosomes. 
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1.1.2. Geographic distribution 

 

In contrast to HAT, which is distributed specifically within 20 sub-Saharan African 

countries, AAT has a wider geographic distribution (Namangala and Odongo, 2014) 

(Figure 1.1). In Africa, AAT is found where tsetse fly vectors live (Eshetu and Begejo, 

2015), and distributed throughout this ‘tsetse belt’ (Pollock, 1982). However, AAT 

caused by T. vivax is also found in tsetse-free areas of Ethiopia (Roeder et al, 1984) 

and Chad (Delafosse et al, 2006), due to mechanical transmission by other biting 

insects (Desquesnes and Dia, 2003). 

 

The tsetse-infested area is approximately between latitude 14° North and 29° South 

of the Equator (Steverding, 2008), specifically from the southern Sahara Desert to 

Angola, Zimbabwe and Mozambique (Finelle, 1974). This covers an area of 10 million 

km2 (more than a third of the African land area) and comprises 37 countries (Yaro et 

al, 2016). Although trypanosomes transmitted by tsetse flies are restricted to sub-

Saharan countries, the incidence of infection can vary according to region. T. 

congolense infection occurs in regions of East, West and Central Africa more 

frequently than in Southern Africa (Mamabolo et al, 2009). In contrast, T. vivax 

infections are predominant in West African regions (Adam et al, 2012; Sow et al, 

2012).  

 

AAT can extend beyond the tsetse belt due to mechanical transmission by other 

blood-sucking flies, most notably in south Asia and in Latin America (Silva et al, 1996). 

In fact, it was demonstrated that T. vivax has lost its capacity to develop in Glossina 

(Glossina palpalis) by Roubaud et al (Roubaud and Provost, 1939) suggesting that 

other vectors were implicated for the transmission. A plausible explanation for the 

dispersal of T. vivax to South America is the introduction of infected zebus (Bos 

indicus) from Senegal to Guyana and the French West Indies as a consequence of 

European colonization (Jones and Dávila, 2001; Dávila et al, 2003; Osório et al, 2008). 

It is well established that the first report of the introduction of T. vivax in the 

American continent was in French Guiana and the French West Indies, named then 

as T. guyanense (Leger and Vienne, 1919). In the New World, T. vivax has been 
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identified in naturally infected cattle in French Guyana, Colombia, Venezuela, Brazil, 

Peru, Bolivia, Costa Rica and Panama (Johnson, 1941; Clarkson, 1976; Silva et al, 1998; 

Tafur et al, 2002; Dávila et al, 2003; Quispe et al, 2003; Garcia et al, 2005; Osório et 

al, 2008; Oliveira et al, 2009; Cadioli et al, 2012). Here, AAT is known by different 

names according to the country like “Huequera”, “Cacho Hueco” or “Secadera” 

(Desquesnes, 2004).  

 

 

 

 

 

Figure 1.1. Geographical distribution of African animal trypanosomiasis in Africa and 

South America caused by T. evansi, T. brucei, T. vivax and T. congolense. In Africa, the 

distribution of AAT is in Sub-Saharain countries while in South America can be spread 

in almost the whole continent caused only by T. vivax. Picture taken from (Radwanska 

et al, 2018). 

 

 

1.1.3. Impact 

 

AAT has a direct impact on agriculture productivity and as a consequence, is an 

obstacle to the economy in Sub-Saharan African regions. In Africa, It has been 

T. evansi 

T. brucei 

T. vivax 

T. congolense 
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estimated that calf mortality goes up to 20% in infected regions (Shaw, 2009), and 

AAT can reduce cattle density by 37-70% and productivity by 50% (Gardiner, 1989). 

Losses in milk and beef production as well as secondary products like leather can be 

estimated in millions of dollars per year (Perry, 2015). Moreover, AAT not only has an 

impact in animal production but also in crop yields (Connor, 1994) since cattle 

draught is used as part of farming systems in many sub-Saharan countries. As a 

consequence, family income as well as human nutrition is affected. The economic 

impact of control strategies have also affect African farmers with an investment of  

US$35 million per year in trypanocidal drugs (Dagnachew and Bezie, 2015). 

 

In South America, AAT is spread throughout the whole continent with more than 11 

million head of cattle at risk of acquiring the disease, representing losses up to 

USS$160 million per year (Seidl et al, 1999). However, in some countries it is hard to 

establish the economic importance of AAT due to the fact that the prevalence of T. 

vivax can be variable in time and space.  

 

 

1.1.4. Vector 

 

African trypanosomes are transmitted by the bite of tsetse flies from the genus 

Glossina in sub-Saharan African countries (Figure 1.2). This genus comprises 31 

species and subspecies of flies, all are potential vectors for trypanosomes. The 

distribution of Glossina species depends on their different ecological requirements 

and geographical conditions such as temperature, vegetation and food.  
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Figure 1.2. Ditribution of Morsitans, Fusca and Palpalis group of tsetse flies across 

Africa. Figure taken from Tsetse flies (Glossinidae) (Krinsky, 2019). 

 

There are three groups or subgenera of Glossina species: Morsitans (savannah 

species), Palpalis (riverine group) and Fusca (forest group) (Jordan, 1993). The 

subgenus Glossina sensu stricto or morsitans group correspond to species that are 

distributed in the grassy woodland of the African Savannah (Pollock, 1982) and are 

limited by climatic conditions, avoiding the wettest areas. The genus Nemorhina, or 

palpalis group, correspond to flies living in humid and wet areas like the rainforest 

and mangrove swamps of central and west Africa. They can live in periurban and 

urban areas due to their adaptation to environmental changes (Krafsur, 2009).  Flies 

from the subgenus called Austenina or fusca group have a more limited distribution 

depending of the subgroup. However, the majority of the species live predominantly 

in forest belts. Some of the factors affecting the transmission rate of T. vivax include 
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seasonal variations; the infection rate of G. palpalis is higher during heavy rainfall 

(July-October) (Squire, 1951), while the rate of G. morsitans is higher during hot 

seasons (Jordan, 1964). In addition, there is also evidence that vector species affects 

the virulence of the T. vivax isolate; Hoare (1972) comments that isolates transmitted 

by G. fuscipes cause chronic infections followed by death, whereas those transmitted 

by G. pallipides cause predominantly acute infections (Hoare, 1972). 

 

 

1.1.5. Development of T. vivax 

 

T. vivax is an heteroxenous parasite in Africa. Its development begins in the 

bloodstream of the mammalian host where the trypomastigotes proliferate (Figure 

1.3). When a tsetse fly ingests the parasite during a blood meal (day 0), a reduced 

population of elongated trypomastigotes stay in the foregut and proventriculus, 

while the majority degenerates in the midgut after a few days. T. vivax migrates (day 

1-3) to the cibarium and proboscis where they transform into epimastigotes. It is still 

unclear if there is an intermediate stage during this transition. Epimastigotes attach 

to the proboscis using their flagellum and multiply forming rosettes, colonizing the 

region in a process called metacyclogenesis. During their multiplication, 

epimastigotes can either undergo symmetric division generating two epimastigotes 

daughters or go under asymmetric division generating one epimastigote and one 

trypomastigote (day 3-7). The pre-metacyclic trypomastigote produced by the 

asymmetric division then becomes detached and migrates to the hypopharynx, 

where they mature into metacyclic trypomastigote forms (Ooi et al, 2016). 

Metacyclogenesis is one of the most important life cycle phases since the metacyclic-

forms are the only stage able to infect the mammalian host. The cycle is completed 

when the mammalian host is innoculated by the tsetse fly when it feeds. 

 

The development of T. vivax appears to be simpler when compared to the T. brucei 

or T. congolense life cycles. For example, in the T. brucei life cycle, once the BSF 

parasite is ingested, the procyclic form is the first stage of the cycle that develops in 

the mid-gut, which then migrates to the salivary glands to later differentiate into 
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epimastigotes (Matthews, 2005). T. vivax lacks the procyclic stage, and comparative 

genomics has shown that procyclin, the major surface glycoprotein of the procyclic-

form, is absent from the T. vivax genome (Jackson et al, 2013).  

 

 

 

 

 

Figure 1.3. A suggested model for the Trypanosoma vivax life cycle. Question marks 

indicate transitions in the cycle that are not fully understood. Trypo: trypomastigote, 

Epi: epimastigote. Life cycle model based on (Ooi et al, 2016). 
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1.1.6. Course of infection and pathogenesis 

 

African trypanosomes can infect a wide variety of animals; cattle, goats and sheep 

are the most important hosts with regard to economic impact in sub-Saharan African 

countries. AAT infect domestic and wild animals living alongside cattle, such as water-

buffalo, horses, donkeys and others (Spickler, 2010). In cattle infected with T. vivax, 

the incubation period is between 9-59 days, while in sheep and goats it is between 4-

12 days (Hoare, 1972; Stephen, 1986).  

 

The course of T. vivax infection can be divided into acute and chronic phases. During 

the acute phase, anaemia is the most common clinical symptom due to erythrocyte 

lysis and a consequent reduction in the Packed Cell Volume (PCV) and haemoglobin 

concentration. This form of inflammatory anaemia has been suggested to be the 

major contributor to deaths (Figure 1.4). Other typical signs of the acute phase are 

fever, lethargy, weight loss, decrease in milk production, diarrhoea, lacrimation and 

severe effects in reproduction leading to abortions and changes in sperm morphology 

(Murray et al, 1979).  

 

During the chronic, aparasitemic stage, T. vivax can be found in extravascular regions 

like lymph nodes and aqueous humour in eyes (Whitelaw et al, 1988). Clinical 

manifestations during chronic infections with African trypanosomes are 

characterized by cachexia, leucocytosis and leukopenia being the two latter one of 

the most important events during infections in cattle, sheep and goats. However, a 

decrease in white blood cell levels can be also seen during the acute phase (Fidelis 

Junior et al, 2016). During the chronic phase, the adaptive immune response plays a 

crucial role to controlling the infection. In some severe cases, the host develops 

neurological dysfunctions resulting in death if untreated; nonetheless animals can die 

whether or not they present clinical symptoms.  

 

Pathological manifestations, as well as the severity of the disease, depend on the 

parasite isolate and the host environment. In Africa, cattle are the principal host for 

T. vivax presenting severe disease with a 70% mortality rate. Sheep and goats present 
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a moderate disease severity, although mortality rate can reach 70% and 12% 

respectively (Hoof et al, 1948). It is usual to observe mixed infections with T. 

congolense. Moreover, it is clear that animals infected with trypanosomes are more 

susceptible to other pathogens  (Taylor and Authié, 2004). Interestingly, there are 

some African livestock breeds that live in tsetse fly areas and are able to survive to 

trypanosome infections naturally, without the need for treatment. This phenomenon 

is called trypanotolerance and refers to N’Dama cattle, Djallonke sheep and West 

African Dwarf goats (Yaro et al, 2016). The mechanisms of trypanotolerance are still 

unknown; nevertheless they might have developed their reduced susceptibility due 

to cross breeding with an old indigenous bovine population (Naessens, 2006). Due to 

the fact that trypanotolerant animals have lower parasite levels, less anaemia and 

greater productivity, their cultivation is considered an economically sustainable way 

to control AAT (Murray, 1983). 

 

The pathogenicity of AAT depends on the parasite strain, particularly if it is isolated 

from different geographical locations (Taylor and Authié, 2004). There are 

differences in virulence between West and East African isolates of T. vivax. East 

African strains are associated with a moderate infection and lower mortality 

compared to West African strains, which are more virulent and cause a more severe 

disease in cattle (Hornby, 1952; Black and Seed, 2001). This general trend 

notwithstanding, it has been shown that some East African strains can cause severe 

symptoms like haemorrhagic syndromes. In 1981, Mwongela et al monitored 

naturally infected cattle from two farms during an AAT outbreak in Kenya in an 

attempt to identify the etiological agent (Mwongela et al, 1981). The animals 

presented a haemorragic disease, became markedly anorexic, and showed both 

decreased rumenal motility and milk yield. All such animals were positive for T. vivax 

only, confirming that T. vivax caused this syndrome in cattle.  

 

In the case of South American strains, genetic analysis has indicated a close 

phylogenetic relationship with West African strains (Cortez et al, 2006). T. vivax can 

be found in diverse ruminants as well as horses causing severe disease and death (Da 

Silva et al, 2011). AAT in South America is highly pathogenic and has a high mortality 
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rate linked to newly infected animals (Desquesnes, 2004). The haemorrhagic 

syndrome described in East African strains has been also described in a Brazilian 

isolate (Strain ‘Lins’) (Cadioli et al, 2012).  

 

 

 

 

Figure 1.4. Examples of common clinical symptoms during T. vivax infection. A. Acute 

phase of a cow positive for T. vivax, displaying difficulties in walking in Rio Grande do 

Sul, Brazil (da Silva et al, 2009). B. Cattle displaying weight loss due to an AAT 

outbreak in Pantanal, Mato Grosso do Sul, Brazil (Osório et al, 2008). C. A goat 

naturally infected with T. vivax presenting enlargement of lymph nodes (Afrivip.org). 

D. A Zebu cow experimentally infected with T. vivax presenting oedema (indicated by 

black arrow) at 19 dpi (Dagnachew et al, 2015). 

 

 

1.1.7. Diagnosis 

 

An accurate diagnosis of AAT is needed to develop control strategies for tsetse flies 

and for epidemiological studies (Eshetu and Begejo, 2015). Signs presented during 

acute and chronic infection must be taken into consideration for clinical diagnosis,  

especially in endemic areas. However, they are unreliable since it can be confused 

A. B. 

C. D. 
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with other infections affecting the host. AAT diagnosis is particularly challenging due 

to the lack of specific clinical manifestations, and not applied effectively to improve 

treatment at village level (Luckins et al, 2004).   

 

The presence of actively motile T. vivax in blood samples diagnosed by parasitological 

tests provides a reliable measurement of the infection status (Luckins, 1992). The 

Woo technique (Woo, 1969) is the most common parasitological method of diagnosis 

but no parasitological method for diagnosis is entirely effective in the identification 

of infected animals, and the Woo technique has low sensitivity in chronic infections 

due to low parasitemia (Osório et al, 2008). The examination of lymph can also lead 

to the correct diagnosis of T. vivax when collected from lymph nodes (Taylor, 2016).  

 

Serological tests are another diagnostic technique developed to detect specific 

circulating antibodies produced by the mammalian host against trypanosomes. There 

are two main immunological tests: Indirect immunofluorescence assay (IFA) and the 

Enzyme-linked immunosorbent assay (Berriman et al) (Eshetu and Begejo, 2015). The 

sensitivity and specificity of detecting T. vivax with ELISA in naturally and 

experimentally infected livestock depends on the nature of the antigen and is 

variable within experiments (Eisler et al, 1998; Madruga et al, 2006). Typically, a 

crude antigen is produced by each laboratory for diagnosis, and there is no validated 

ELISA to diagnose AAT (Black and Seed, 2001). Using ELISA with recombinant proteins 

has been demonstrated in previous reports for AAT to have good sensitivity but not 

high specificity (Nguyen et al, 2015).  

 

Serological tests by antibody detection is not necessarily indicative of active infection; 

antibodies can still be detected in sera even after the infection is cleared. Yet, several 

T.vivax antigens are now used as candidates for diagnosis in cattle with high 

sensitivity (Pillay et al, 2013). However, they may show false negatives for recently 

infected animals and can cross-react with other trypanosomes like T. theileri and until 

now, there is no ELISA assay able to detect circulating antigens.  
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The diagnosis by molecular tests like Polymerase Chain Reaction (PCR) assay 

establishes the presence of trypanosome DNA using species specific primers. There 

have been several studies using different primer sets that have detected African 

trypanosomes in whole blood or sera (Masiga et al, 1992; Desquesnes, 1997; 

Desquesnes et al, 2001; Desquesnes and Davila, 2002; Cox et al, 2005; Hamilton et 

al, 2008; Fikru et al, 2014; Tran et al, 2014). PCR positive results are indicative of 

active infection due to the short period of time DNA remains in the host (Eshetu and 

Begejo, 2015). The specificity of diagnosis is highly improved compared to 

parasitological and serological tests but it is still uncertain if the primers can recognize 

all strains of species (Geysen et al, 2003). Low levels of parasitemia, a characteristic 

of chronic infections can lead to false negatives. 

 

Rapid diagnostic tests for AAT based on an immune-chromatography has been 

recently developed. The Very Diag test (Ceva, Africa) is a novel rapid test that can be 

used in the field being able to detect T. vivax and T. congolense simultaneously in the 

same sample (Boulangé et al, 2017). Likewise, another rapid test specifically for the 

detection of T. vivax using a recombinant species-specific antigen (TvY486_0045500 

and TvY486_0019690) was reported (Fleming et al, 2016). Despite having a high 

sensitivity and specificity with no cross-reaction with T. congolense, it is yet to be 

commercialized. 

 

 

1.1.8. Treatment and control strategies 

 

Control strategies are based on two approaches: vector control and treatment of the 

infected host. In endemic areas of sub-Saharan Africa, controlling tsetse using traps 

and insecticides by spraying is crucial to prevent control infections (Connor, 1992). 

These control strategies are commonly used locally due to their low cost and time 

required, but, while they can be very effective, they are expensive and require 

considerable logistical support on a country-wide scale. In this regard, vector control 

is not always sustainable and other measures are needed for an effective control 

(Holmes, 2013).  
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The current treatment for AAT is focused focussed on endemic areas and relies on 

chemotherapy and chemoprophylaxis. Drugs like diminazene aceturate and 

isometamidium chloride have been widely used in chemotheraphy (Kuzoe and 

Schofield, 2004). A successful treatment is usually combined with quarantines, 

movement controls and euthanasia of infected animals (Spickler, 2010). Despite this, 

other factors like a good nutrition plan and monitoring clinical signs are crucial for 

the animals’ recovery. The antitrypanosomal activity of certain drugs like 

isometamidium is very high for T. vivax and T. congolense in cattle and in T. brucei 

and T. evansi in infections in horses and donkeys. Transition of infected animals to 

the chronic phase usually occurs after failed drug treatment, and even successful 

drug treatment may not clear the pathogen, leaving treated animals with residual 

signs like anaemia and weight loss (Kinabo, 1993).  

 

Drug resistance among African trypanosomes is well documented. There are 17 sub-

Saharan African countries, with drug resistance reports in which 8 of them present 

multiple resistance. However, this number might be underestimated due to the lack 

of reports in several countries (Delespaux et al, 2008). A plausible explanation for 

drug resistance is the long-term usage and lack of choice among drugs available in 

the market (Geerts et al, 2001). This leads to treatment failure and ineffective disease 

control. Therefore, it remains the case that alternative trypanocidal drugs are 

needed.  

 

Vaccination of the host against AAT has been an elusive prospect and persistent 

challenge over the years. There is no commercially available vaccine for AAT, and it 

has often been thought that such a vaccine is implausible due to antigenic variation 

(Van Meirvenne et al, 1975; Van Meirvenne et al, 1975; La Greca and Magez, 2011; 

Black and Mansfield, 2016). Potential immunological targets have been identified in 

pursuit of a vaccine (see 1.4) without success. In the absence of an effective vaccine, 

trypanocidal drugs are still the key to control trypanosomiasis. 
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1.2. Antigenic variation 

 

Antigenic variation describes the ability of a pathogen to escape from the host 

immune response by changing their surface molecules (Clements et al, 1988). Besides 

African trypanosomes, variation of surface glycoproteins as to avoid the antibody 

response is the principal mechanism of immune evasion in diverse pathogens such as 

Plasmodium spp., viruses such as Influenza spp., and Mycobacterium spp. (Clements 

et al, 1988).  

 

During an infection with African trypanosomes, specific antibodies against the 

surface of the parasites are produced by the host. Antigenic variation refers to the 

ability of Salivarian trypanosomes to express distinctive antigens on their surface 

facilitating the evasion of such antibodies. The principal target of host antibodies, and 

the phenotypic basis to antigenic variation, in African trypanosomes are the Variable 

Surface Glycoproteins (VSG). VSG are the major constituent of the BSF cell surface 

glycocalyx; the coat contains approximately 107 VSGs displayed as homodimers (50-

60 kDa subunits), and attached via glycophosphatidylinositol (GPI) anchors, 

producing a thick monolayer over the entire parasite’s surface, and representing 

about 20% of the total cell protein (Horn, 2014). The surface organization of the VSG 

coat consists of molecules firmly packed with an orientation of the C-terminal domain 

close to the membrane (Borst and Cross, 1982). The arrangement of the coat serves 

as a physical barrier with two main purposes: (1) to protect the parasites from the 

immune system and lysis by the complement system and (2) to shield from the 

immune system invariant proteins that might also have a surface location (Stijlemans 

et al, 2016). 

 

VSG are highly immunogenic but serial replacement of the VSG renders the prevalent 

antibody response redundant and leads to chronic infections (Gardiner et al, 1996) 

(Figure 1.5). During an infection the host immune system recognizes VSGs, the 

antibody titre increases and as a consequence, most of the parasites expressing that 

same VSG are destroyed. Nevertheless, a few parasites remain alive since they have 

switched their active VSG (Horn, 2014).  The serial replacement of the dominant 
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parasite clone by another expressing a distinct VSG gives parasitaemia a particular 

pattern. During the early stage of the infection, peaks or “waves” of parasitaemia are 

seen; the ascending phase corresponds to a high level of parasites occurring before 

the antibody response, while the descending phase reflects a successful, but 

temporary, protective effect (Osório et al, 2008).   

 

African trypanosome genomes contain a library of over a thousand alternative VSG 

providing ample material for repeated antigenic switches (Berriman et al, 2005; 

Jackson et al, 2012), but VSG genes display monoallelic expression (Pinger et al, 

2017).  

 

 

 

 

Figure 1.5. Waves of parasitaemia characteristic of African trypanosome 

bloodstream infections, and reflective of VSG switching. Antigenic variation of VSG 

produces waves of parasitaemia (different colors).  Highly immunogenic VSG trigger 

the production of specific antibodies, however low frequency  parasite clones express 

an alternative VSG and evade the antibody response, resulting in chronic infection. 

 

 

1.3. Immune response to African trypanosomes 

 

The interaction between African trypanosomes and their mammalian host begins 

when the tsetse fly injects metacyclic trypomastigotes intradermally. The parasite 
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must fight against the two types of immune response: (1) the non-specific innate 

immune response and (2) the antigen-specific adaptive immune response.  

 

The immunology and the mechanisms of immune evasion have been widely studied 

in T. brucei since its relevance as human pathogen. The immunology of livestock 

trypanosomes has focused on T. congolense infections in cattle. By contrast, the 

immune response to T. vivax is poorly understood. Therefore, it is important to note 

that most of the immunobiology described in the following sections are based on 

studies of T. brucei. 

 

 

1.3.1. Innate immune response 

 

After a blood-meal, the saliva of tsetse flies plays a crucial role in the parasite 

transmission. The saliva proteins are highly immunogenic, and have two broad effects 

on the injection site micro-environment  (Telleria et al, 2014). First, they allow blood-

feeding by inhibiting coagulation, vasoconstriction and platelet aggregation (Ribeiro 

and Francischetti, 2003). Second, they inhibit innate immunity effectors (Bai et al, 

2015).  

 

One crucial event during the infection is the activation of myeloid lineage cells like 

macrophages (MØs), monocytes, dendritic cells (Cuglovici et al) and some 

granulocytes, which contribute the first line of defense against trypanosomes 

(Namangala, 2012). The classical activation of macrophages (caMØs) is established 

during early stages of infection (Figure 1.6). Activation occurs in a type-I cytokine 

environment (interferon gamma (IFN-), interleukin 12 (IL-12) and tumour necrosis 

factor alpha (TNF-)) and is inhibited by type-II cytokines (interleukin 4 (IL-4), 

interleukin 10 (IL-10)). caMØs release reactive oxygen species (ROS) as part of a pro-

inflammatory process, performing an anti-proliferative role (Namangala et al, 2001). 

Activation of these cells occurs when damage-associated molecular patterns 

(DAMPs) and pathogen-associated molecular patterns (PAMPs) like lipoproteins and 

flagellin from the parasite are bound by host membrane pattern recognition 
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receptors (PRRs) (Namangala, 2012). Receptor-mediated MØs secrete pro-

inflammatory cytokines, chemokines and IFN- generating an inflammatory response 

(Stijlemans et al, 2016), contributing to control the first peak of parasitemia (Baral, 

2010).  

 

The activation of macrophages is due to their interaction with different parasite-

derived molecules. The parasite-derived GPI-anchor of the VSG is a macrophage-

activating agent activating TNF-, a cytokine involved in immunesupression in cattle 

(Stijlemans et al, 2010). The endogenous GPI-phospholipase C (GPI-PLC) is activated 

and cleaves the GPI anchor of the membrane form of VSG molecules (mfVSG) 

releasing the soluble glycosylinositolphosphate VSG (GIP-sVSG) from the membrane 

into tissues and blood (Stijlemans et al, 2016). The GIP residues of sVSG molecules 

activate MØs by binding to their Type A scavenger receptor (SR-A) (Leppert et al, 

2007); this results in the induction of the nuclear factor kappa-light-chain-enhancer 

of activated B cells (NF-κB) and MAPK pathways, triggering a pro-inflammatory 

immune response (Mansfield et al, 2014). The GIP-sVSG/SR-A interaction also leads 

the activation of toll-like receptors (TLR) and myeloid differentiation factor 88 

(MyD88) (Mansfield et al, 2014).  

 

At this point of the infection, a large number of trypanosomes are destroyed by 

innate immune cells, releasing internal components into circulation which are also 

detected. The unmethylated CpG DNA released by damaged or dead trypanosomes 

is another PAMP recognized by the immune system. CpG DNA activates toll like 

receptor 9 (TLR9) resulting in caMØs, triggering the expression of pro-inflammatory 

genes and cytokine production (Stijlemans et al, 2016).  

 

 

1.3.2. Adaptive immune response 

 

The immune response caused by pro-inflammatory cytokines produced during early 

infection can cause pathology if prolonged. caMØs, as well as pro-inflammatory 

cytokines, are down-regulated by switching from a type I to a type II immune 
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response (Figure 1.4). Anti-inflammatory cytokines (transforming growing factor beta 

(TGF-), IL-4, IL-10) are secreted by the alternative-activated macrophages (aaMØs) 

once the infection is established and in a type-II cytokine environment (Namangala 

et al, 2001). As a result, a shift from type I to type II immune response benefits the 

host leading to a longer survival (Baral, 2010).  

 

T-cells are essential for African trypanosome control and in preventing further 

pathology like anaemia (Stijlemans et al, 2010). The presence of pro-inflammatory IL-

12 is required for T-cell polarization to T helper type 1 (Th1) cells producing a Th1 

cytokine pattern (Swain, 1995; Mansfield et al, 2014). Th1 cells potentially recognize 

peptides located in the N-terminal domain of the VSG molecule (Mansfield et al, 

2014). However, the parasite evades the immune system by inducing non-essencial 

responses during early infection and by supressing T-cells (Namangala, 2011). This 

suppressive phenotype is due to a down-regulation of IL-2 secretion and the IL-2 

receptor (IL-2R) (Stijlemans et al, 2016). Another means of immuno-suppression is IL-

10 production (Taylor and Mertens, 1999). As described above, IL-10 triggers the 

aaMØs and plays a key role in regulating both trypanotolerance and pathogenicity. 

Regulatory T-cells (Treg cells) produce IL-10, inhibiting caMØs activation and IFN- 

production by T-cells (Namangala, 2012). As a result, this Treg cell-mediated 

suppression reduces immunopathology, allowing chronic infection and extended 

parasite survival (Guilliams et al, 2008). Furthermore, there is a lack of immunological 

memory by T-cell populations associated with a defects in the function of antigen 

presenting cells (APC), which allowing trypanosomes to maintain chronic infections 

(Mansfield et al, 2014).  
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Figure 1.6. A model of the role of macrophages during an African trypanosome 

infection. During early stages of infection, the parasite releases TLTF activating CD8+ 

and NKT cells to secrete IFN-. PAMPs, in concert with IFN-, will activate caMØ 

releasing pro-inflammatory cytokines such as TNF- and NO, controling the parasite 

load during the first peak of parasitemia. During later stages, there is a switch from 

caMØ to aaMØ secreting anti-inflammatory cytokines like IL-10 to reduce 

inflammation enabling survival of the host. TLTF: trypanosome-derived lymphocyte-

triggering factor, PAMPs: pathogen-associated molecular patterns, PRRs: pattern 

recognition receptors, caMØ: clasically activated macrophages, aaMØ: alternatively 

activated macrophages, NO: nitric oxide, Tip-DC: TNF-  and inducible NO synthase 

producing dendritic cell,  Source: (Baral, 2010; Stijlemans et al, 2010; Namangala, 

2012).
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Figure 1.6 
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1.3.3. Humoral immune response 

 

The humoral immune response starts with polyclonal B-cell activation by 

trypanosome-derived factors (Figure 1.7). Immature B-cells, which express large 

amounts of  immunoglobulin M antibody, migrate from the bone marrow to the 

spleen as transitional B cells (T1) to complete their development. In the spleen, 

immature B-cells differentiate into mature naïve cells called marginal zone B cells 

(MZB) (Stijlemans et al, 2017). This activation is fast, T-cell independent and leads to 

the production of low-affinity IgM antibodies. These antibodies have a short life and 

attain their maximum level between 3-4 days after the peak of parasitemia; they are 

crucial for parasitaemia control (Magez and Radwanska, 2014).  

 

The host mounts a humoral immune response after VSG-specific B-cell activation by 

producing VSG-specific IgM antibodies that results in parasite destruction and control 

of the first peak of parasitemia. However, polyclonal B-cell activation is suppressed, 

making it difficult to control the infection during late stages of infection  (Baral, 2010). 

Linear VSG epitopes of dead or damaged trypanosomes are exposed in a way they 

can be recognized by IgMs (Taylor, 1998). Buried epitopes are not accesible to these 

antibodies due to the density of the VSG coat (Schwede et al, 2015). As described 

above, antibodies against specific epitopes are not able to kill trypanosomes with 

new VSG antigens on their surface, producing a new peak of parasitemia. Although 

these antibodies are polyspecific and do not confer memory against other VSGs 

(Magez and Radwanska, 2014), the massive production of IgM antibodies due to non-

specific B-cell activation can, nonetheless, lead to hyperplasia in lymph nodes and 

spleen causing pathology (Donelson et al, 1998).  

 

It is important to note that the peak in parasitaemia is independent of the production 

of IgM VSG-antibodies. Some researchers suggest that there is an immunoglobulin G 

(IgG) production with normal amounts comparable to IgMs levels (Sendashonga and 

Black, 1982).  Still, it is now known that cattle and mice infected with African 

trypanosomes are able to produce long-lived IgG antibodies helping the clearance of 

circulating parasites (Stijlemans et al, 2007). Moreover, a long term IgG1 and a 
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temporal IgG2 isotypes response against buried VSG epitopes are detected in bovine 

trypanosomiasis (Williams et al, 1996). In general, trypanosusceptible bovines 

present an unsatisfactory humoral immune response with defects in the switch 

mechanism from IgM to IgG antibodies, lower levels of VSG-specific IgG1 and an IgG 

response that occurs later and weaker when compared with trypanotolerant cattle 

(Taylor et al, 1996).  

 

 

 

Figure 1.7. A model of B-cell development and humoral immune response against 

African trypanosomes within the mammalian host. Polyclonal B-cell activation leads 

to short-lived non-specific IgM antibodies able to control the first peak of 

parasitemia. B-cells differentiate into short-lived plasmablast producing unspeficic 

IgMs for immediate protection and IgGs for long-term response. Figure based on 

(Stijlemans et al, 2016; Stijlemans et al, 2017). 

 

 

 

 

Unspecific 
IgM 
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1.3.4. Immuno-suppression 

 

One of the hallmarks of an African trypanosome infection is immuno-suppression. It 

has been shown that the immuno-suppression in African trypanosomiasis varies 

according to the species of parasite and strain. Chronic infections of cattle with T. 

congolense and T. brucei seem to suppress the antibody response to a greater extent 

compared to T. vivax (Rurangirwa et al, 1983). 

 

Immuno-suppression seems to be a universal feature of an infection with African 

trypanosomes characterized by a generalized suppression that affects humoral and 

cellular immune functions leading to immuno-pathology (Baral, 2010). Suppression 

is marked by a decrease in T-cell proliferation and subsequent cytokine production 

(Taylor, 1998). In T. brucei, immuno-suppression is closely related to a decrease in IL-

2 production and its receptor (IL-2R) (Sileghem et al, 1986). The mechanisms to 

control T-cell suppression are not fully understood but there are clear differences 

between phases of T. brucei infections. During early stages, activated macrophages 

secrete NO and prostaglandins in the lymph node that inhibit IL-2 production. A 

reduction of IL-2R can be reversed by anti-IFN- specific antibodies (Darji et al, 1993). 

During late stages of the infection, the inhibition of T-cell proliferation is independent 

of NO and prostaglandins, instead anti-inflammatory cytokines like IL-10 might play 

a crucial role (Baral, 2010).  

 

It has been suggested that IL-10 might contribute to the failure of macrophages to 

produce inflammatory products in infected cattle. Indeed, it is suggested that this 

cytokine might be related to the de-activation of macrophages during T. congolense 

infections (Taylor and Mertens, 1999). Downregulation of macrophages and Th1 

cytokines by IL-10 have been demonstrated to protect against different pathogens 

but can also be ineffective for parasite clearance (Heinzel et al, 1991). 
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1.4. Vaccination against African trypanosomes 

 

Anti-trypanosomiasis vaccines should be a crucial component in the fight against AAT 

and are the best strategy to protect animals from re-infection. However, after many 

attempts and approaches using different antigens from distinct life cycle stages, not 

a single vaccine trial has showed to be effective with full protection. As previously 

stated, antigenic variation is the major obstacle to vaccination. Anti-VSG specific 

antibodies are able to control the first peak of parasitaemia but immuno-supression 

and the destruction of B-cell memory leads to chronic infection and in unsuccessful 

vaccine development. Before this was fully appreciated, various studies over the last 

50 years tried to apply conventional vaccinology approaches (Table 2).   

 

One of the first attempts to vaccinate used irradiated parasites as antigen in different 

animals experimentally infected with T. congolense (Duxbury et al, 1972). In this 

study, T. congolense parasites were first exposed to radiation in a gammacell with 

cobalt and then used to immunize mice, dogs and cattle. All animals were challenged 

observing differences between animal models but only partial protection was 

observed in mice.  

 

In 1982, 107 irradiated T. brucei parasites and purified VSG were used to immunized 

cattle prior infection with 104 trypanosomes (Morrison et al, 1982). They 

demonstrated a high antibody response against both antigens with complete 

protection but the effect was not reproducible when the inoculum was lower (partial 

protection only).  

 

Vaccines against other pathogens have also been tested for their ability to protect 

against trypanosomes. Rurangirwa et al (Rurangirwa et al, 1980) examined the effect 

of the live rinderpest virus vaccine on Boran cattle experimentally infected with T. 

vivax and T. congolense. Animals from vaccinated and control groups showed no 

significant differences in parasitaemia against either trypanosome. In addition, the 

same vaccine was tested against both parasites in Orman Boran and Galana Boran 

cattle producing the same negative results (Stevenson et al, 1999). Vaccination with 
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the Brucella abortus S19 vaccine against T. congolense and T. vivax in experimental 

bovine infections (Rurangirwa et al, 1983) demonstrated only partial protection with 

a reduction in specific IgG subclasses against T. congolense but not for T. vivax 

(Rurangirwa et al, 1983). 

 

With vaccination using the entire parasite or with vaccines against other pathogens 

unsuccessful in cattle, other approaches then focused on specific parasite antigens. 

In 1982, Well and collaborators immunized cattle with soluble variant-specific 

antigen of T. brucei (VSSA) from the ILTat 1.3 clone with a panel of different adjuvants 

including incomplete (IFA) and complete Freund’s adjuvant (CFA), saponin and 

aluminum hydroxide (AH) (Wells et al, 1982). The experiment showed a complete 

protection against an homologous challenge in cattle immunized against T. brucei 

infection with VSSA, but only in combination with certain adjuvants. However, the 

majority induced high antibody titres after immunization. Membrane proteins were 

also used as vaccine antigens in experimentally infected cattle. In 1984, a purified 

membrane protein of 83kDa from T. brucei, apparently present in other African 

trypanosomes, was used to vaccinate goats using IFA and rabbits prior to challenge 

with tsetse-transmitted T. vivax and T. brucei  (Rovis et al, 1984). Despite supposedly 

being conserved among species, the vaccine did not elicit antibody production and 

was therefore unprotective. Other purified membrane proteins like the flagellar 

protein antigen against T. brucei rhodesiense in a cattle model showed partial 

protection with a mean prevalence of infection of 12% (Mkunza et al, 1995), the 

flagellar fraction against T. brucei in a murine model (Radwanska et al, 2000) and 

tubulin from T. brucei against the same parasite, T. brucei rhodesiense and T. 

congolense have conferred partial protection of 60% and 33%, respectively.  

 

Immunization against African trypanosomes using specific recombinant proteins has 

been widely used in recent years. In 2001, recombinant cysteine proteases from T. 

congolense, which have been demonstrated to ellicit high levels of IgG in 

trypanotolerant cattle and low levels in susceptible cattle, were used to vaccinate 

cattle in combination with a saponin adjuvant (Authié et al, 2001). Cattle were 

challenged one month later from the last immunization with T. congolense IL 12-E3 
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parasites and both vaccinated and control groups exhibited similar prepatent 

periods. Vaccination showed no protection, with both groups displaying similar 

parasite load. In other experiments, recombinant beta-tubulin and actin both from T. 

evansi were used to vaccinate BALB/c mice against T. evansi, T. equiperdum and T. b. 

brucei (LI et al, 2007; Li et al, 2009). In both cases, the antibody response of 

vaccinated mice recognized the specific antigens with high levels of IgG. The immuno-

protection in mice showed a partial protection against each trypanosome with 

parasitaemia emerging later in the vaccinated groups compared with control groups. 

More recently a recombinant trans-sialidase was used to vaccinate BALB/c mice 

against T. congolense infection but again partial protection was observed after 

challenge (Coustou et al, 2012). 

 

DNA vaccines using plasmids that encode specific antigens have also been applied to 

African trypanosomes. Silva et al (2009) produced a plasmid encoding T. brucei trans-

sialidase to vaccinate mice prior to challenge with T. brucei GVR 35/1.5 (Silva et al, 

2009). This produced high IgG antibody titre and sterilely protected 60% of 

challenged mice, perhaps demonstrating an application in a potential control 

strategy against African trypanosomiasis. Two years later in 2011 another vaccine 

against T. brucei was tested using plasmid DNA encoding one invariant surface 

glycoprotein (ISG) in a murine model (Lança et al, 2011). ISGs are immunogenic 

antigens conserved among all African trypanosomes and expressed in the BSF but at 

low level (Black and Mansfield, 2016). A plasmid DNA encoding a single ISG gene from 

T. brucei showed it was able to elicit a humoral response of Th1-like IgG2a antibodies 

and partial protection with 40% survival rate against infection in BALB/c mice (Lança 

et al, 2011).  

 

ISGs are immunogenic, able to induce a Th2 cell-dependent antibody response during 

T. congolense infection (Fleming et al, 2014). Since they can induce a T-dependent B-

cell immune response, it has been suggested that it would be possible to use them 

for vaccinaion. To date, they are consider the most abundant cell-surface proteins 

after VSGs. Studies in T.brucei invariant proteins demonstrated that VSGs present a 

copy number between 50,000 -70,000 molecules per cell and a ratio of 1 ISG per 100 
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VSGs (Overath et al, 1994). Their structure consists of N-terminal signal sequences 

with a short intracellular domain and are possibly attached to the lipid bilayer by -

helix between VSG molecules. In live cells, ISGs are expressed on the surface but not 

detected by antibodies from the host since they are hidden by the VSGs and so having 

poor accesibility. 

 

The majority of vaccine candidates and challenge experiments so far have used BSF 

rather than MET. Thus, another approach to vaccination against AAT could be to use 

MET targets characterized with a lower number of variant antigenic types (VAT) 

(Magez et al, 2010). In addition, motility proteins beneath the surface membrane like 

microtubules and actin have also been used as vaccine targets due to their non-

variable constitution. Nevertheless, most studies have only reported promising 

results but no experimental vaccine against African trypanosomes has been reported 

to deliver complete and reproducible protection against heterologous challenge in a 

natural host.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.2. Chronological list of examples of previous attempts for the identification 

of vaccine candidates against African trypanosomes. Vaccines against different 

trypanosomes were used predominantly in either a murine or a bovine model giving 

partial or no protection against infection.
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Table 1.2 
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1.5. Profile of an effective vaccine 

 

An effective AAT vaccine has several requirements (Figure 1.8). It is well established 

that B-cell compartments in the host are constantly suppressed during infection 

(Radwanska et al, 2008). Based on this and other immunological events occurring 

during infection, an important criterion for an effective vaccine is the availability to 

eliminate circulating trypanosomes before the suppression and destruction of B-cell 

memory. While most research is done, by necessity, in murine models, it is also 

necessary that positive results are reproduced in natural hosts. 

 

Destruction of B-cell memory in T. vivax infection is associated with B-cell depletion 

as confirmed in a murine model (Blom-Potar et al, 2010). The experiment was 

performed in male outbred CD-1 mice experimentally infected with T. vivax ILRAD 

1392 strain and lymphocyte populations were examined by flow cytometry using 

different organs. The results demonstrated an increase of immature B-cells in the 

spleen while MZB decreases and a severe depletion of follicular B-cells. Moreover, 

pro-B cells maturation into pre-B-cells was also compromised indicating a deficiency 

in B-cell precursors. This impacts directly on B-cell maturation and therefore a 

reduction in their number in the periphery preventing a suitable control of the 

infection. 

 

To date, the majority of experimental vaccines against African trypanosomiasis have 

been achieved with intracellular and extracellular proteins. Extracellular proteins are 

of great importance since their epitopes are accessible and recognized by antibodies. 

However, in order to have a successful immune response, proteins must be abundant 

and invariant. Proteins expressed on the surface of trypanosomes like ISG and VSG 

have been used demonstrating partial or no protection at all. A reasonable approach 

for vaccine design is then identifying invariant and abundant antigens located at the 

cell-surface that can eliminate circulating trypanosomes.  

 

The profile of an effective vaccine should also be focused on its mechanism of action 

leading to high titres of protective anti-trypanosome antibodies, even in the absence 
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of circulating antigens (Magez and Radwanska, 2014). This humoral immune 

response stimulation could therefore prevent a bloodstream-stage infection from 

becoming established. Moreover, the protective stimulation has to be maintained 

throughout the infection even under limited immuno-pathology and must confer 

protection in all populations.  

 

Another major pitfall of vaccine candidates is their immunogenicity or their capacity 

to provoke a robust immune response against the parasite. This requirement makes 

the vaccine dose-dependent; the more immunogenic the antigen is, the lower the 

amount needed to elicit a good immune response (Mahanty et al, 2015). Moreover, 

the greater the immunogenicity of an antigen, the more it leads to a strong peripheral 

memory and higher affinity in the epitope-target interaction.  

 

 

 

Figure 1.8. Requirements for an effective vaccine against African trypanosomes. The 

vaccine strategy must overcome different difficulties to prevent animals for re-

infection. 
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1.6. Potential vaccine targets on trypanosomes cell-surfaces 

 

Although VSG dominate the cell-surface of all BSF and MET African trypanosomes, 

characterization of the parasites’ genomes, and latterly, cell surface revealed that 

there are invariant proteins distributed beside the VSG or in the FP. As stated before, 

the FP is an invagination of the plasma membrane that serves as the main site of 

membrane exchange for all African trypanosomes. In general, the FP membrane 

contains invariant receptors for host-derived nutrients (Field and Carrington, 2009). 

These include surface receptors of vital importance for the parasite survival, even 

though the majority have not been characterized. For example in T. brucei, the 

transferrin receptor (Tf-R) is required for iron uptake (Steverding et al, 1995), while 

high density lipoproteins (HDL) is taken up by haptoglobin-haemoglobin (HpHb) 

receptor (Vanhollebeke et al, 2008). As an invagination, the FP membrane is 

concealed and in the past it was stablished that host antibodies are thought to be 

unable to access invariant antigens restricted to this compartment (Black and Seed, 

2001). Nonetheless, this assumption was later rejected demonstrating antibody 

clearance of the cell surface; IgG antibodies can entre the FP by endocytosis when 

they form an immunocomplex with VSG molecules (Engstler et al, 2007). There have 

been several attempts to a develop vaccines using FP membrane antigens like the 

purified FP portion derived from T. brucei rhodesiense or the FP fraction from T. 

brucei AnTat 1.1E clone with little success (Mkunza et al, 1995; Radwanska et al, 

2000).  

 

During the past decade, efforts for an effective vaccine have been focused on 

invariant proteins able to overcome immuno-suppression and antigenic variation 

(Authié, 1994). It is now well stablished that the genome of the different African 

trypanosomes that cause AAT contains species-specific cell surface gene families 

(Jackson et al, 2013). These genes are very important particularly in T. vivax as they 

encode developmentally regulated proteins that could be vaccine targets (Jackson et 

al, 2015). This thesis concerns those diverse T. vivax-specific cell surface gene families 

and the extent to which they fulfil the profile of ideal vaccine antigens.  
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1.7. Reverse vaccinology  

 

This thesis will take a reverse vaccinology (RV) approach to the identification of 

potential vaccine antigens among T. vivax genes. The conventional vaccinology 

approach has been applied for decades in antigen discovery (Figure 9). This approach 

can be divided into two main steps: (1) obtaining live-attenuated pathogens by serial 

passage in vitro or in vivo (Rappuoli, 2000). In other words, it is a requirement to grow 

the pathogen in laboratory conditions, which in many cases is not feasible; and (2) 

identification of possible protective antigens useful for subunit vaccines. Antigens are 

identified and separated one at the time by serological, biochemical and genetic 

methods. Although this approach has succesfully identified vaccine candidates, the 

major disadvantages of this last step are that it is time-consuming and only identifies 

purified proteins with high levels of expression.  

 

The term reverse vaccinology was first used by Rino Rappuoli in 2000 and describe 

the identification of candidate antigens using the pathogen genome sequence, 

selecting from among the many different proteins the pathogen can plausibly express 

and using various rational criteria or assays to select only the potential antigen 

candidates (Rappuoli, 2000). The advantage of RV compared with the classical 

vaccinology is that, by applying genomic technologies, many proteins that were not 

previously considered become scrutable, providing a much wider variety of 

candidates (Donati and Rappuoli, 2013). In fact, the entire protein repertoire of the 

pathogen is considered by the RV approach, leading to the discovery of many novel 

and unique antigens (Sette and Rappuoli, 2010). Another difference between 

conventional and reverse vaccinology is the immunology of the antigens. The 

traditional approach selects highly immunogenic antigens mostly with high diversity 

in protein sequence due to immune selective pressure. Instead, RV identifies and 

selects conserved antigens with potential protection despite their immunogenicity. 

Moreover, RV can consider in silico screening of immune epitopes available including 

overlapping peptides that can identify every possible T-cell epitope, while the 

traditional approach only identifies limited and known epitopes (Sette and Rappuoli, 

2010) 
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RV has succesfully been used for the development of veterinary vaccines against 

bacterias and viruses (Donati and Rappuoli, 2013). However, the number of 

veterinary parasite vaccines is still small and mostly based on live-attenuated 

organisms (Lew-Tabor and Valle, 2016). Several approaches to vaccine design now 

apply not only RV but also structural biology. In this way, RV pipelines are enhanced 

with crystallography and NMR spectroscopy techniques identifying the protein 

structure and epitopes. In addition, the use of different omic tools has helped the 

creation of immuno-informatics leading to the identification of B and T cell epitopes, 

antigenic regions and pathway interactions (Hegde et al, 2018).  

 

 

 

 

Figure 1.9. Comparative pipelines for the conventional and reverse vaccinology 

approaches. The application of bioinformatic tools in the reverse vaccinology brings 

advantages for antigen discovery compared to the classical vaccinology.

CONVENTIONAL VACCINOLOGY REVERSE VACCINOLOGY 
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1.8. Aims of the thesis 

 

The identification of antigens for experimental vaccines against African 

trypanosomes has been a major challenge over the past decades. The failure of the 

different vaccine strategies to provide sterile immunity to AAT has been caused 

mainly due to the antigenic variation and  immuno-suppression (Black and Mansfield, 

2016). Moreover, the individual surface proteins used as vaccine antigens so far, like 

VSG or ISG, are known to confer no immunity to heterologous challenge (Wells et al, 

1982) or to be concealed beneath the VSG coat, respectively. The recent description 

of the cell surface phylome in African trypanosomes has demonstrated that T. vivax 

in particular presents a great diversity of species-specific gene families indicating 

that, besides the VSG, the surface presents other abundant proteins that might be 

exposed to host antibodies (Jackson et al, 2013). Moreover, these proteins are mainly 

expressed in the bloodstream form of the parasite suggesting that they might be 

exploited (Jackson et al, 2015). Hence, the aim of this thesis was the identification of 

invariant novel antigens in T. vivax and their analysis as candidates for a vaccine 

against animal African trypanosomiasis, using a reverse vaccinology approach. 

Specifically, it investigates whether I) the candidate antigens are surface expressed, 

II) are expressed throughout the population, III) are immunogenic, IV) they have the 

ability to stimulate an immune response and confer protection against infection in a 

murine model and V) they confer protection when used to immunize goats against 

experimental infections.  

 

These objectives are reflected in the structure of  the thesis:   

 

 CHAPTER 2: In silico sequence analysis of families of T. vivax-specific cell-surface 

protein (TvCSP) genes.  

 CHAPTER 3: Identification of immunogenic linear B-cell epitopes among TvCSP 

and expression of recombinant proteins. 

 CHAPTER 4: Evaluation of the immune response and protection against 

heterologous challenge of TvCSP in BALB/c mice and immunofluorescent cellular 

localization of TvCSP. 
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 CHAPTER 5: A vaccination-challenge trials in goats to evaluate the protective 

efficacy of the V23 recombinant antigen. 
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CHAPTER 2 
 

In silico sequence analysis of Trypanosoma vivax-specific cell-
surface gene families 

 
 
2.1. INTRODUCTION 
 
 
Cell surface proteins play an essential role in host-parasite interactions, and those of 

African trypanosomes are vital in the establishment and maintenance of bloodstream 

infections (Shimogawa et al, 2015). Trypanosome cell surface proteins have diverse 

roles in evasion of the immune system, as well as nutrient acquisition and energy 

metabolism pathways (Borst and Fairlamb, 1998). 

 

There is no vaccine available for T. vivax due largely to antigenic variation of its 

Variant Surface Glycoprotein (VSG). Although VSGs represent about 20% of the total 

cell-surface protein content (Horn, 2014), and cover a great proportion of the cell 

surface, there are other surface proteins located beneath the VSG surface coat in the 

FP (Overath et al, 1994). Having established that there was no way to vaccinate 

against VSG, research efforts have become focused on identifying and exploiting 

invariant surface proteins as vaccine candidates (Morrison et al, 2016). In the case of 

T. vivax, recent studies have identified diverse genes with possible cell-surface 

expression. The Cell Surface Phylome (CSP) described in Jackson et al. (2013) 

described the species-specific gene families from T. brucei, T. congolense and T. vivax 

with putative cell-surface location (Jackson et al, 2013). Numerous differences 

between T. vivax and other African trypanosomes in terms of specific gene families 

and gene expression were discovered, which may have importance in pathogenesis, 

but otherwise point to substantial inter-species differences in the composition of cell 

surface coat (Greif et al, 2013; Jackson et al, 2013; Jackson et al, 2015). 

 

In a three-way genomic comparison, T. vivax has a greater number of species-specific 

gene families with predicted cell-surface expression (19) than either T. congolense 

(5) or T. brucei (9) (Jackson et al, 2013). This certainly reflects the more recent 
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common ancestor of T. brucei and T. congolense, (and therefore, a higher degree of 

orthology between gene families in those species), but it may also reflect 

compositional differences in the T. vivax surface coat, which is considered to be less 

dense compared to T. brucei (Gardiner, 1989). Jackson et al. (2013) grouped these T. 

vivax cell-specific surface proteins (TvCSP) into multi-copy gene families (‘Fam27-

Fam45’ inclusive) that vary in the number of gene copies (paralogs) derived by 

duplication, but are each descended from a single common ancestor and are absent 

from other species (Jackson et al, 2013). Evidence for gene expression from 

proteomic and transcriptomic data revealed most of the TvCSP families to be 

developmentally regulated (Jackson et al, 2015). Fam27, Fam35 and Fam43 are 

preferentially expressed in metacyclic-forms while Fam28-32, Fam34, Fam36-39, 

Fam42 and FamX are preferentially expressed in bloodstream-forms. Four sequence 

families (Fam33, Fam40, Fam41 and Fam45) did not show any evidence of expression 

and were excluded from further analysis (Jackson et al, 2015). The 15 remaining 

TvCSP families are listed in Table 2.1; in addition, ‘FamX’ is listed as a family of 44 

uncharacterized genes in the T. vivax genome, not included in the CSP but observed 

subsequently in bloodstream-forms displaying the greatest differential expression of 

all T. vivax genes besides VSG (Jackson et al, 2015). TvCSP genes do not have any 

known predicted protein structure nor any evidence regarding their cellular function.  

 

 

Family No. paralogs Stage 

Fam27 5 MET 

Fam28 6 BSF 

Fam29 21 BSF 

Fam30 51 BSF 

Fam31 38 BSF 

Fam32 8 BSF 

Fam34 34 BSF 

Fam35 17 MET 

Fam36 5 BSF 

Fam37 5 BSF 

Fam38 5 BSF 

Fam39 5 BSF 

Fam42 15 BSF 
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Fam43 9 MET 

Fam44 13 BSF 

FamX 44 BSF 

 

Table 2.1. List of TvCSP families with potential cell-surface location, their respective 

number of paralogs and the life cycle stage in which they are preferentially expressed 

(MET: metacyclic-forms; BSF: bloodstream-forms). 

 

The discovery of these TvCSP families, and their abundant expression during 

bloodstream infections (Greif et al, 2013; Jackson et al, 2015) indicates that the T. 

vivax surface coat could have very different composition compared to T. brucei, and 

perhaps immunological properties. Setting aside the fact that the functions of TvCSP 

families are entirely unknown, and much remains to be done to resolve this, we may 

say a priori that secreted and surface-exposed antigens play a key role in vaccine 

formulations since they can be easily recognized by the immune system and, 

therefore, TvCSP families are plausible candidates for vaccine development against 

T. vivax. However, considering the current level of understanding, there are various 

basic aspects that must be addressed before pursuing them in this regard. Hence, this 

chapter develops our understanding of TvCSP families through analysis of protein 

domain organisation, polymorphism and antigenic properties.  

 

The immune response of African trypanosomes in the mammalian host has been 

widely studied using T. brucei as a model organism (Stijlemans et al, 2016). However, 

gene expression in T. vivax has indicated that its surface architecture differs from the 

other African trypanosomes, suggesting that the model used so far to understand 

immunological events might be inappropriate for T. vivax. In this sense, the 

immunology of T. vivax infections and wider host-parasite interactions requires 

attention when antigens are tested as potential vaccine candidates. The immune 

response elicited by TvCSP in the host remain obscure but will be addressed in this 

chapter in silico. To examine the potential of antigens to be recognised by the 

immune system, bioinformatic algorithms have been developed (Sette and Rappuoli, 

2010). Computer algorithms for identifying antigenic peptides have been applied 
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previously to Kinetoplastids. For example, the identification of epitopes in T. cruzi, 

the etiologic agent of Chagas disease, has been widely used for vaccine development 

(Nakayasu et al, 2011; Eickhoff et al, 2015) as well in Leishmania spp (Guerfali et al, 

2009; Seyed et al, 2011; e Silva et al, 2016). 

 

The humoral and cellular adaptive immune system is driven by T and B-cells that 

present specific receptors at their surface, which are able to recognize foreign 

antigens. In the case of B-cells, they differentiate and release specific antibodies that 

then bind to epitopes on the antigen. T-cells also recognize specific epitopes 

presented by APCs bound to major histocompatibility complex I and II (MHC-I and II 

respectively) (Sanchez-Trincado et al, 2017). Thus, in silico prediction tools identifying 

T and B-cell epitopes are available to understand the potential immunogenicity of 

antigens and the possible interaction between the parasite and the host.  

 

The purpose of predicting T-cell epitopes is to identify sequences that can stimulate 

CD4 and CD8 T-cells, which bind to MHC-II and MHC-I molecules respectively (Desai 

and Kulkarni-Kale, 2014). Epitope production begins when potentially antigenic 

proteins are cleaved by proteolytic enzymes in the APC producing several different 

protein fragments. However, only around 2% of these fragments will later become 

epitopes since they have the correct amino acid sequence to bind the MHC molecule 

at the APC surface (Weber et al, 2009). The prediction of T-cell epitopes can be 

achieved using bioinformatics tools available online, and are classified in two main 

groups: direct and indirect methods. Direct methods rely on protein sequence and 

structure analysis of the epitopes but the predictions often have high false positives 

and low accuracy (Desai and Kulkarni-Kale, 2014). On the other hand, indirect 

methods like artificial neural networks (ANN), the stabilized matrix method (SMM), 

or support vector machines (SVM) are based on quantitative matrices and have the 

advantage of avoiding high rates of false positives.  

 

The aim of predicting B-cell epitopes is to identify peptides that can replace an 

antigen for antibody detection and production (Ponomarenko and Van Regenmortel, 

2009). These epitopes are more difficult to predict since the software uses sequence-
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based propensity scales and machine learning algorithms to discriminate 

experimental from non B-cell epitopes (Potocnakova et al, 2016). Nevertheless, B-

cell predictions are used to identify vaccine candidates on a panel of antigens and for 

the improvement of diagnostic methods. Previous studies have demonstrated the 

characterization of in silico B-cell epitopes in T. vivax to identify potential epitopes 

for diagnosis purposes (Guedes et al, 2018). The epitopes were identified based on 

transcriptome data and considered diverse intracellular proteins besides TvCSP. The 

findings based on in silico and bioinformatics predictions are of great interest as they 

facilitate the identification of potential epitopes with time and cost savings. However, 

they must be validated experimentally to corroborate their accuracy. 

 

 

 

This chapter aims to: 

 

1. Predict the secondary protein structures and glycosylation sites of 12 T. vivax-

specific gene families preferentially expressed in bloodstream-forms using in 

silico approaches.  

2. Quantify the polymorphism of each TvCSP family (i.e. number of isoforms) 

among various clinical strain genome sequences, relative to the reference 

strain by phylogenetic and population genetic analyses. 

3. Predict T-cell and B-cell epitopes from TvCSP sequences in silico and evaluate 

their antigenicity properties.  
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2.2. MATERIALS AND METHODS 
 

 
2.2.1. Data sources 

 

The African trypanosome Cell Surface Phylome (Jackson et al, 2013) was used as the 

basis for TvCSP families. Gene sequences belonging to 12 bloodstream-form families 

(Fam28-32, Fam34, Fam36-38, Fam42, Fam44 and FamX) and three metacyclic-forms 

families (Fam27, Fam35 and Fam43) were extracted from the T. vivax Y486 reference 

genome sequence (Release 44) through the TriTrypDB portal (www.TriTrypDB.org). 

‘FamX’ is a gene family consisting of uncharacterized genes unique to T. vivax that 

was not included in the original CSP but was subsequently observed to be among the 

most abundant transcripts preferentially expressed in bloodstream-forms (Jackson et 

al, 2015). 

 

2.2.2. In silico structural characterization 

 

TvCSP gene sequences were used to perform in silico predictions of protein 

secondary structure. For all family members, the InterProScan (Quevillon et al, 2005) 

and Predictprotein servers (Rost et al, 2004) were used to identify protein domains. 

GPI anchor prediction was made using PredGPI (Pierleoni et al, 2008) and Big-Pi 

predictor (Eisenhaber et al, 1999) webservers. Predictions of post-translational 

modification sites in all predicted proteins were made using the ModPred server 

(Pejaver et al, 2014) and compared with N, C and O-glycosylation sites identified by 

NetNGlyc 1.0, NetCGlyc 1.0 and NetOGlyc 4.0, servers respectively. Tertiary structure 

prediction was carried out on predicted amino acid sequences with Phyre2 V2.0 

(Kelley et al, 2015). 

 

2.2.3. Gene family phylogenetic analysis  

 

To understand antigenic variability within a protein family, it is necessary to know if 

gene paralogs are capable of recombination, potentially producing new sequence 

variants. While not variant antigens, it is possible that recombination diversifies 

http://www.tritrypdb.org)/
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TvCSP genes. I approached this issue first by comparing phylogenies for protein 

coding sequences (CDS) and untranslated regions (UTRs) of each gene family. 

Paralogs from each gene family were aligned and phylogenies were generated for 

CDS, 5’ UTR and 3’ UTR, and then compared to identify possible recombination 

events. In addition, the CDS phylogeny for each gene family was analysed to identify 

the number of isoforms within each family. 5’ and 3’ UTRs were equated with the 

500bp regions upstream and downstream of each CDS. For the phylogenetic analysis, 

nucleotide sequences of the CDS, 5’UTR and 3’UTR respectively of specific genes 

within a family were aligned using ClustalW and manually edited using BioEdit 7.1.13. 

Maximum likelihood phylogenies were estimated using Tamura-Nei model (Tamura 

and Nei, 1993) as it takes into account variable base frequencies and transition rates 

but equal transversion rates. The trees were generated in Mega7 (Kumar et al, 2016) 

with 100 non-parametric bootstrap replicates and were mid-point rooted due to the 

lack of an obvious outgroup. 

 

To complement the phylogenetic comparison, CDS alignments were also analysed for 

incompatible sites (a signature of historical recombination) using the Pairwise 

Homoplasy Index statistical test (PHI) in SplitsTree v.4 (Huson, 1998) with a p-value 

<0.05 set as the threshold for significant evidence for recombination. 

 

2.2.4. Population genetic analysis 

 

Highly polymorphic antigens are not suitable for vaccines given that the precise 

composition of the antigen in the disease setting cannot be predicted securely. 

Population genetic analysis was carried out on TvCSP gene sequences to identify 

possible antigen genes that are found universally throughout the population with low 

polymorphism. Twenty isolates from countries across Africa and South America 

(Table 2.2) previously described were used for the analysis (Pereira et al, 2019). 

Briefly, DNA sequence data were generated from blood stabilates derived from 

natural T. vivax infections of cattle in Ivory Coast (n=3), Nigeria (n=11), Uganda (n=4) 

and The Gambia (n=1). Parasite isolates were selected from the International 

Livestock Research Institute (ILRI) Azizi repository. In addition, one sample from Brazil 
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(n=1) was selected, originating from an experimental infection of goats using the T. 

vivax Lins strain (Cadioli et al, 2012). DNA sequence data were generated on the 

Illumina Hiseq platform (Pereira et al, 2019). 

 

2.2.5. Mapping sequence data to reference genome 

 

The Burrows-Wheeler Alignment tool (BWA-MEM) (Li and Durbin, 2010) applying 

default parameters was used to map the raw reads from the 20 isolates to the T. vivax 

Y486 reference genome. The resulting mapping reads were saved in a Sequence 

Alignment/Map format (SAM) file and converted into BAM files (binary format of 

SAM file) to further perform the data analysis.  

 

Table 2.2. List of clinical isolates used to generate DNA sequence data for the 

population genetic analysis, according to location, host, passage species and 

genome completeness (Pereira et al, 2019). 

ID Date Location Host 
Passage 
species 

Genome 
Completeness 

IL11 1973 Zaria, Nigeria Bovine Mice 0.79 

IL1392 1981 Yakawada, Nigeria Bovine Goat 0.77 

IL2005 1969 Lugala, Uganda Tsetse Fly  Goat 0.61 

IL2323 1969 Luuka, Uganda Tsetse Fly Rat 0.71 

IL2714  1969 Lugala, Uganda Tsetse Fly Rat 0.70 

IL306 1973 Zaria, Nigeria Bovine Mice 0.79 

IL3171 unknown The Gambia Bovine Bovine 0.55 

IL319 1973 Zaria, Nigeria Bovine Mice 0.70 

IL338 1973 Yakwada, Nigeria Bovine Mice 0.80 

IL340 1962 Zaria, Nigeria Bovine Mice 0.78 

IL3638 1990 Ivory Coast  Bovine unknown 0.72 

IL3651 1990 Ivory Coast  Bovine Rat 0.71 

IL3658 1990 Ivory Coast  Bovine unknown 0.72 

IL462 1973 Yakwada, Nigeria Bovine Mice 0.79 

IL465 1973 Yakwada, Nigeria Bovine Mice 0.79 

IL493 1973 Yakwada, Nigeria Bovine Mice 0.79 

IL596 1973 Yakawada, Nigeria Bovine Mice 0.80 

IL684 1973 Yakawada, Nigeria Bovine Mice 0.80 

ILV-21 1972 Antapar Teso, 
Uganda 

Bovine Goat 0.51 

Lins 2012 Lins, Brazil Bovine Goat 67.2 
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The program for High-Throughput Sequencing data (HTS) SAMtools was used to view, 

sort and index the genomic reads (Li et al, 2009) using the sort and index options 

respectively under default parameters. In addition, specific tools from Picard 1.97 

were applied in order to process the data. The read groups were added with the 

Picard argument AddOrReplaceReadGroups and afterwards each BAM file was 

cleaned with CleanSam. To ensure that all read information retained mate-pairs, the 

option FixMateInformation was used and duplicates within a file were identified with 

MarkDuplicates. The BuildBamIndex option was then used to create an index file for 

each BAM file respectively.  

 
The genome Analysis Toolkit (GATK) (McKenna et al, 2010) was used to avoid 

mismatches due to the presence of insertions and deletions (indels) in the sample 

genomes. The RealignerTargetCreator GATK tool was applied creating intervals to use 

in the local realignment around indels using the BAM file from the last step with 

Picard analysis as input. Other tools like IndelRealigner and tool CallableLoci were 

applied to perform the realignment of all reads and to analyse the number of callable 

bases respectively. Finally, HaplotypeCaller was applied to call all single nucleotide 

polymorphisms (SNPs) and indels simultaneously. The intermediate genomic gVCF 

and the option “discovery” for genotyping mode parameters were set up to generate 

a variant call format file (VCF) as output. All VCF files were joined with 

GenotypeGVCFs tool. 

 

Selection and extraction of SNPs and indels were performed under the SelectVariants 

tool creating new VCF files. Both SNPs and indels variant calls were filtered with 

VariantFiltration using the hard filtering method suggested for GATK. The parameters 

were as follows: variance confidence with QualByDepth (QD) < 2.0, Fisher Strand 

(Krafsur, 2009) > 60.0, mapping quality ranksum test (MQRankSum) <-12.5 and rank 

sum test (ReadPosRankSum) < -8.0. All filtered SNPs and indels of each sample were 

joined into a single file. The number of mapped reads and the number of reads 

mapped to the reference genome was calculated with SAMTOOLS flagstat.  
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2.2.6. Population genetic variation 

 

The R package PopGenome 2.2.4 (Pfeifer et al, 2014) and the program SNPgenie 

(Nelson et al, 2015) were used to analyse genetic polymorphisms based on neutrality 

tests as well as nucleotide diversity statistics. For each population, the number of 

segregating sites was calculated. 

 

For all TvCSP genes expressed in bloodstream-forms, statistical tests for neutrality 

were carried out using Tajima’s D (Tajima, 1989). This was calculated to ask if the 

genes were evolving neutrally or under selection. In addition, the genes were also 

used to analyse the nucleotide diversity within populations (Nei, 1987). Tajima’s D 

could not be computed for the Brazilian and Gambian sequences (since N = 1) and 

were not considered in the analysis for this reason. Tajima’s D neutrality test is based 

on the number of segregating sites and pairwise diversity. The number of samples for 

this and other neutrality tests are crucial since they are all sensitive to the structure 

of the population. Taking this into account, Tajima’s D test requires a sample size 

large enough to calculate values with small error (Weedall and Conway, 2010). A low 

sample size number used for neutrality tests can directly affect the calculation 

creating bias (Subramanian, 2016). 

 

2.2.7. T-cell epitope prediction 

 

To identify peptides that could be recognised as epitopes located on the surface of 

APC’s, an in silico prediction for MHC-I and MHC-II T-cell epitopes was made. The 

predicted protein sequences from all TvCSP genes were used as input to predict MHC-

I epitopes using the Immune Epitope Database (IEDB) (Vita et al, 2014) available 

online (http://tools.iedb.org). This database was used as it is one of only two 

prediction programs available for MHC molecules that considers non-human 

organisms (the second being NetMHC 4.0 Server, which uses the ANN method). 

 

The IEDB recommended prediction method was selected using six bovine leucocyte 

antigen (BoLA) alleles (Table 2.3) with a percentile rank of 0.3 and epitope length of 

http://tools.iedb.org)/
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11 aa. The MHC alleles were selected on the basis of the common BoLA molecules 

between both NetMHC and IEDB servers.  

 

In the case of MHC-II predictions, BoLA alleles were not used for the analysis because 

there is no software able to make predictions for other MHC-II molecules besides 

human or mouse. Instead, the human leucocyte antigen (HLA) on seven human HLA-

DR alleles were used as previously done (Farrell et al, 2016). Predictions were carried 

out by the TEPITOPEpan server (Zhang et al, 2012), based on the position specific 

scoring matrix (PSSM), and the IEDB server. Seven HLA selected alleles (Table 2.3) 

were assumed in both cases, with a 3% of percentile rank cut-off and a peptide length 

of 15-mer. In addition, all the predicted epitopes were evaluated for antigenicity 

capacity with VaxiJen v2.0 (Doytchinova and Flower, 2007) selecting parasite as 

target organism and using 0.05 as threshold. 

 

No. BoLA allele HLA allele 

1 D18.4 (BoLA-1*02301) DRB1*0401 

2 HD6 (BoLA-6*01301) DRB1*0301 

3 JSP.1 (BoLA-3*00201) DRB1*1401 

4 T2A (BoLA-2*01201) DRB1*1101 

5 T2B (BoLA-6*04101) DRB3*0201 

6 T2C (BoLA-3*00101) DRB1*0801 

7 - DRB3*0101 

Table 2.3. List of BoLA and HLA alleles used for the in silico prediction of MHC-I and 

MHC-II epitopes respectively in TvCSP protein sequences. 

 

2.2.8. Linear B-cell epitope prediction 

 

The identification of B-cell linear epitopes was performed with three tools. First, 

BCPred (EL‐Manzalawy et al, 2008) using the ANN prediction method. Second, 

ABCPred (Saha and Raghava, 2006) using string kernels method. And third, the IEDB 

server and Bepipred Linear Epitope Prediction (Jespersen et al, 2017) using a random 
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forest algorithm. The threshold was set to 0.8 and 20aa for peptide length in BCPred 

and ABCPred predictions.  
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2.3. RESULTS 
 

 

2.3.1. Secondary protein structure prediction 

 

To evaluate and make predictions from sequence data for T. vivax cell-specific surface 

families, a secondary structure prediction was performed with InterProscan, 

Predictprotein, PredGPI, Big-Pi, NetNGlyc 1.0, NetCGlyc 1.0 and NetOGlyc, 4.0 and 

Phyre2 V2.0 servers. The analysis showed that most predicted proteins, regardless of 

the family or the parasite stage in which they are mainly expressed, included 

probable signal peptides (SP); 83% (BSF) and 74% (MET) (Table 2.4). The secondary 

structure of many TvCSP were also highly hydrophobic at the C-terminal region where 

transmembrane domains (TMD) were predicted to be present in 36% of proteins 

expressed in bloodstream-forms. TMD were located between positions 7-29 of the 

protein sequences. None of the sequences preferentially expressed in metacyclic-

forms included a probable TMD.  

 

2.3.2. Prediction of glycosylation sites  

 

In addition to the predictions performed by InterProScan, glycosylation sites were 

analysed in silico. The average number of glycosylation sites per TvCSP family was 

estimated (Table 2.4), showing that each sequence had multiple O- and N-

glycosylation sites. Fam28, Fam31 and Fam27 have the greatest number of N-

glycosylation sites with 16, 16 and 19 sites respectively. This scenario was different 

when compared with the average number of O-glycosylation predictions in which all 

families except Fam29 and Fam37 presented at least 12 sites. This indicates that O-

glycosylation sites were present in all TvCSP families with a higher average number 

than N-glycosylation sites. C-glycosylation sites were found in few proteins only from 

Fam29-30, Fam34, Fam38 and Fam42.  

 

The position of the glycosylation sites predicted for bloodstream-form protein 

families showed no specific distribution pattern within the protein sequence, being 
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distributed along the protein structure. In the case of metacyclic-form proteins, sites 

were present between amino acid 68-287 for N- glycosylation and 22-305 for O-

glycosylation.  

 
 
 
 
 

 

 

Table 2.4. In silico structural predictions for TvCSP families. N describes the number 

of genes in each family in the Y486 reference genome sequence. SP+, TM and GPI+ 

denote the number of family members with predicted signal peptides, 

transmembrane helices and a glycosylphosphatidylinositol (GPI) anchor. The number 

of N-, O- and C-linked glycosylation sites are shown. AN denotes the average number 

of glycosylation sites. AP denotes the average position of a glycosylation site in the 

protein sequence. 

 
  

Family N SP+ TM GPI+ 

Glycosylation sites per family 

N O C 

AN AP AN AP AN AP 

Fam28 6 6 3 0 16 61-647 21 68-616 0 - 

Fam29 21 15 0 0 6 43-275 3 152-274 3 267-334 
Fam30 51 38 4 3 12 38-559 23 104-616 5 27-317 
Fam31 37 28 4 2 16 66-621 20 88-620 0 - 
Fam32 8 7 1 5 2 225-273 12 174-314 0 - 
Fam34 34 33 27 1 6 97-372 13 80-465 2 2-397 
Fam36 5 5 0 0 6 79-496 14 88-587 0 - 
Fam37 5 4 1 0 6 59-249 6 43-230 0 - 
Fam38 5 2 0 1 6 113-250 15 120-241 1 13 
Fam42 15 13 7 5 10 58-511 32 102-646 2 99-292 
Fam44 13 11 5 0 8 70-640 24 93-679 0 - 
FamX 44 32 36 2 2 138-290 15 84-305 0 - 
Fam27 5 1 0 2 19 83-287 21 22-315 0 - 
Fam35 17 15 0 11 3 82-283 44 35-305 0 - 
Fam43 9 7 0 6 5 68-222 20 145-305 0 - 

Total 275 218 88 38       
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Figure 2.1. A schematic representation of the secondary structure of each BSF TvCSP 

family. Only one protein per family was selected to show the different motifs and its 

possible cell-surface location. Fam 31, 32 and 38 are predicted to be membrane-

tethered via a C-terminal GPI anchor molecule. Fam 34, 36, 42, 44 and FamX are 

predicted to be type 1 transmembrane proteins, attached to the membrane by a 

single C-terminal transmembrane domain. Fam28, 29, 30 and 37 are predicted to be 

secreted. 
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2.3.3. Prediction of tertiary structures 

 

Tertiary structure predictions based on each amino acid sequence was predicted 

through comparison with homologous proteins. Most predictions for bloodstream-

stage proteins showed low confidence and model coverage percentages respectively 

(< 50% in both cases). In some proteins, the coverage was less than 10% indicating 

that approximately 40 residues were modelled based on the highest scoring 

template. Metacyclic-stage proteins showed a higher confidence model (more than 

95%) with a moderate coverage level. For example, the Fam27 protein 

TvY486_0043530 showed a tertiary structure prediction (Figure 2.2A) modelled with 

99.2% confidence and with 94% sequence coverage (311 residues) being homologous 

to collagen alpha 1 (template code: c1ygvA). Moreover, the protein TvY486_0019430 

also from the same family showed a 3D prediction (Figure 2.2B) of 99.6% confidence 

and 84% coverage (245 residues) modelled on to the same template.  

 

The predictions for these sequences had contained up to 95% disordered regions in 

their secondary structure. Disordered regions are often difficult to predict even 

though they can perform important functions within the structure. These results are 

validated based on the criteria of Phyre server only if there is a high number of 

different sequences homologous on the position-specific iterated blast basic local 

alignment search tool (PSI-BLAST) results (Kelley et al, 2015). Taking this into account, 

the accuracy of the prediction of these regions was on average 80% (moderate 

confidence) as all the proteins displayed a high number of different sequence 

homologues. Overall, the prediction of tertiary structures for both BSF and MET 

proteins indicated they do not match with any template and their protein modelling 

does not seem to be represented by any protein from the database. 
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Figure 2.2. Tertiary structure predictions based on the amino acid sequence for A) 

TvY486_0043530 and B) TvY486_0019430. 

 

2.3.4. Phylogenetic analysis 

 

Phylogenetic trees were constructed with the maximum likelihood method for 12 

gene families preferentially expressed in bloodstream-forms and three preferentially 

expressed in metacyclic-form T. vivax. Recombination between paralogous genes can 

lead to unique sequence types and protein polymorphism that would undermine the 

universality of any vaccine based on that protein. In order to explore and understand 

recombination events, a comparison between the CDS, 3’UTR and 5’UTR was 

analysed. In addition, the CDS sequences were also used to identify the number of 

isoforms within a family.  

 

The multiple sequence alignment from Fam27 showed that all members possess a 

repetitive domain of 9 residues (ESDQDAKGN) from position 80 to the end of the 

sequences. This repetitive domain was absent in the other TvCSP families. Instead, 

all gene members from Fam35 and Fam43 displayed conserved cysteine residues at 

the C-terminal and hydrophobic amino acids at N-terminal positions. The phylogenies 

for metacyclic-form families were constructed and gene clusters (clades) were 

identified where CDS sequences exceeded a threshold of 70% identity in a reciprocal 

BLAST. Figure 2.3 shows that Fam27 showed four robust clades in the CDS tree, three 

of which contain only one gene member, indicating that only two sequences from 

the family shared >90% nucleotide identities. Likewise, the CDS trees from Fam35 

A. B. 
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(Figure 2.4; 9 clades) and Fam43 (Figure 2.5; 7 clades) contained 4 and 5 clades with 

one gene member only.  

 

The comparison of phylogenies for CDS and both UTRs relating to metacyclic-form 

gene families revealed a lack of topological conservation. Clades with more than one 

paralog often showed a different relative position within the phylogeny (robustly 

supported by bootstrap values) when CDS trees were compared to 3’ and 5’ UTR 

trees, indicating possible historical recombination events between genes from the 

same family. For example, CDS trees from Fam35 (Figure 2.4.) showed 7 robust clades 

which are conserved in the 5’UTR phylogeny. However, clade 1 and 3 from CDS tree 

are split in the 3’UTR tree. Likewise, when considered the CDS from Fam43 (Figure 

2.5), clade 1 is divided in two small clades with one paralog each in both 3’UTR and 

5’UTR trees, respectively. 

 

To extend this result, an analysis of recombination breakpoints in the CDS alignments 

of each gene family was carried out using PHI test. Table 2.5 shows that this detected 

significant incompatibility between sites, and therefore evidence for historical 

recombination, in all metacyclic-form gene family sequence alignments (p<0.05).  
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Figure 2.3. Comparison of Maximum likelihood phylogenetic trees based on the 

Tamura-Nei model of CDS and 3’ and 5’UTR sequences for Fam27. Clusters were 

defined based on the CDS sequences that shared an identity >90%. The different 

clusters are represented by a colour and number at the right side of each tree (C: 

clade). A distance scale is shown for each tree. The trees are mid-point rooted. 

 

Figure 2.4 (overleaf). Comparison of Maximum likelihood phylogenetic trees based 

on the Tamura-Nei model of CDS and 3’ and 5’UTR sequences for Fam35. Clusters 

were defined based on the CDS sequences that shared an identity >90%. The different 

clusters are represented by a colour and number at the right side of each tree (C: 

clade). A distance scale is shown for each tree. The trees are mid-point rooted. 

 

Figure 2.5 (overleaf). Comparison of Maximum likelihood phylogenetic trees based 

on the Tamura-Nei model of CDS and 3’ and 5’UTR sequences for Fam43. Clusters 

were defined based on the CDS sequences that shared an identity >90%. The different 

clusters are represented by a colour and number at the right side of each tree (C: 

clade). A distance scale is shown for each tree. The trees are mid-point rooted. 
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The 5’ and 3’UTR trees showed changes in the topology when compared to the CDS 

tree of each family but with the conservation of the cladistics structure. For example, 

3’UTR and CDS trees from Fam27 showed topological congruence in which the 

structure of the 7 clades are well conserved but there is a disagreement when 

compared with the CDS topology (Figure 2.3). This scenario was consistent for all BSF 

families except for Fam38 that presented the same phylogenetic structure for CDS 

and 3’UTR trees (Figure 2.12A). In addition, the comparison between CDS and 5’UTR 

trees showed distinct topologies for all families with only some conserved clades 

within CDS and the 5’UTR region. Clear examples of incongruence between 5’UTR 

regions and CDS trees are showed in Fam35 (Figure 2.4), Fam32 (Figure 2.9) and 

Fam34 (Figure 2.10) in which the majority of the clades displayed an agreement with 

the CDS tree but others showed a different topology. 

 

When applied to bloodstream-form families, the PHI test showed variable levels of 

evidence for recombination among paralogs. Fam28-31, Fam34 and Fam38-44 

showed no statistically significant evidence for within-family recombination (Table 

2.5). However, results for Fam32, Fam36 and Fam37 did indicate statistically 

significant evidence for recombination. Interestingly, these families have the smallest 

number of genes of all bloodstream-form families (n = 5 for Fam36 and Fam37 and 

n=8 for Fam32). Moreover, the phylogenies from these families displayed very short 

branches indicating a short genetic distance between members compared to the 

other families, consistent with frequent genetic exchange (Bell and McCulloch, 2003). 

 

FamX is the second biggest family expressed in the bloodstream-form, and described 

formally for the first time here. FamX consists of 44 hypothetical genes that can vary 

in length from 245 to 433 amino acids. The multiple sequence alignment from the 

translated nucleotide sequences showed that there are five highly conserved 

cysteine residues in all proteins positioned towards the N-terminal and central 

region. The similarity between FamX genes was determined in order to subgroup the 

family and identify the number of possible isoforms. This was performed by a basic 

local alignment search with BLASTp using each FamX gene against the rest of the 

family.  
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The differentiation criteria into clades was set based on sequence similarities with a 

cut-off > 70%. The maximum likelihood phylogeny showed that this novel family is 

divided into 14 different robust clades (Figure 2.14). Four genes occupy long branches 

and are not closely related to any other paralog: clade 2 (TvY486_0027210), clade 3 

(TvY486_0900440), clade 9 (TvY486_0008690) and clade 13 (TvY486_00003390). All 

FamX genes occupy loci in the genome ‘bin’ of unassembled sequence (primarily sub-

telomeric regions), except for one. TvY486_0900440 (clade 3) is the only FamX gene 

to be located at a chromosome-internal locus (on chromosome 9). FamX also 

presents 8 clades containing between two and five members (clade 4, 5, 6, 7, 8, 10, 

11, 12) and only two clades with more than 5 members (clade 1 and 14). The FamX 

alignment was also examined for recombination events using PHI test. The results 

indicated that there is no statistically significant evidence for incompatibility among 

sites that would indicate a history of recombination (p=1).  

 

In summary, among TvCSP gene families, those preferentially expressed in 

metacyclic-forms contain a lower number of genes compared with those expressed 

in bloodstream-forms. The latter are variable in size, some of them more abundant 

(e.g. Fam30, FamX) than others (e.g. Fam36-38). TvCSP phylogenies show that all 

metacyclic-form families and three bloodstream-form families (Fam32, Fam36-37) 

show signs of recombination among gene copies.  

 

Figure 2.6 (overleaf). Comparison of Maximum likelihood phylogenetic trees based 

on the Tamura-Nei model of CDS and 3’ and 5’UTR sequences for Fam28 (A) and 

Fam29 (B). Clusters were defined based on the CDS sequences that shared an identity 

>90%. The different clusters are represented by a colour and number at the right side 

of each tree (C: clade). A distance scale is shown for each tree. The trees are mid-

point rooted. 
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Figure 2.7. Comparison of Maximum likelihood phylogenetic trees based on the 

Tamura-Nei model of CDS and 3’ and 5’UTR sequences for Fam30. Clusters were 

defined based on the CDS sequences that shared an identity >80%. The different 

clusters are represented by a colour and number at the right side of each tree (C: 

clade). A distance scale is shown for each tree. The trees are mid-point rooted. 
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Figure 2.8. Comparison of Maximum likelihood phylogenetic trees based on the 

Tamura-Nei model of CDS and 3’ and 5’UTR sequences for Fam31. Clusters were 

defined based on the CDS sequences that shared an identity >70%. The different 

clusters are represented by a colour and number at the right side of each tree (C: 

clade). A distance scale is shown for each tree. The trees are mid-point rooted. 
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Figure 2.9. Comparison of Maximum likelihood phylogenetic trees based on the 

Tamura-Nei model of CDS and 3’ and 5’UTR sequences for Fam32. Clusters were 

defined based on the CDS sequences that shared an identity >90%. The different 

clusters are represented by a colour and number at the right side of each tree (C: 

clade). A distance scale is shown for each tree. The trees are mid-point rooted. 

 

Figure 2.10 (overleaf). Comparison of Maximum likelihood phylogenetic trees based 

on the Tamura-Nei model of CDS and 3’ and 5’UTR sequences for Fam34. Clusters 

were defined based on the CDS sequences that shared an identity >70%. The different 

clusters are represented by a colour and number at the right side of each tree (C: 

clade). A distance scale is shown for each tree. The trees are mid-point rooted. 
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Figure 2.11. Comparison of Maximum likelihood phylogenetic trees based on the 

Tamura-Nei model of CDS and 3’ and 5’UTR sequences for Fam36 (A) and Fam37 (B). 

Clusters were defined based on the CDS sequences that shared an identity >90%. The 

different clusters are represented by a colour and number at the right side of each 

tree (C: clade). A distance scale is shown for each tree. The trees are mid-point 

rooted. 

 

Figure 2.12 (overleaf). Comparison of Maximum likelihood phylogenetic trees based 

on the Tamura-Nei model of CDS and 3’ and 5’UTR sequences for Fam38 (A) and 

Fam42 (B). Clusters were defined based on the CDS sequences that shared an identity 

>90%. The different clusters are represented by a colour and number at the right side 

of each tree (C: clade). A distance scale is shown for each tree. Trees are mid-point 

rooted. 
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Figure 2.13. Comparison of Maximum likelihood phylogenetic trees based on the 

Tamura-Nei model of CDS and 3’ and 5’UTR sequences for Fam44. Clusters were 

defined based on the CDS sequences that shared an identity >80%. The different 

clusters are represented by a colour and number at the right side of each tree (C: 

clade). A distance scale is shown for each tree. Trees are mid-point rooted. 
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Figure 2.14. Comparison of Maximum likelihood phylogenetic trees based on the 

Tamura-Nei model of CDS and 3’ and 5’UTR sequences for FamX. Clusters were 

defined based on the CDS sequences that shared an identity >70%. The different 

clusters are represented by a colour and number at the right side of each tree (C: 

clade). A distance scale is shown for each tree. Trees are mid-point rooted.
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Table 2.5. Comparison of phylogenetic relationships among TvCSP gene members 

based on sequence domain. Ng and Nc denote the number of genes and clades in each 

family respectively. The number of genes retaining the same sister taxon in 

comparisons of trees based on CDS and 3’UTR or 5’UTR respectively are indicated. 

The length of the sequence alignment used in estimation of recombination frequency 

using PHI is shown. The p value of the PHI test is shown; TvCSP families showing 

significant evidence for recombination in their sequence alignments are shown in 

bold. 

 

 

2.3.5.  Population genetic analysis 

 
Single nucleotide polymorphisms (SNPs) among 20 different T. vivax clinical isolates 

from across four countries in Africa and one from South America were analysed to 

evaluate genetic variation among TvCSP genes. A total number of 1,082,148 SNPs 

were identified across the genome, representing 1 SNP every 44bp. From the total 

number of SNPs, 35,671 of them were present in all isolates with only one allele in 

one site (also called monomorphic or monoallelic) were excluded from the analysis, 

leaving 1,046,477 SNPs polymorphic SNPs in the analysis.  

Stage Fam Putative role Ng Nc 
CDS = 
3’UTR 

CDS = 
5’UTR 

Length 
(bp) 

p 

MET 27 membrane protein 5 4 3 3 2016 9.184x10-4 
MET 35 MASP-like protein 17 9 7 8 1074 0.003 
MET 43 secreted protein 9 7 6 6 2313 1.418x10-4 
BSF 28 membrane protein 6 3 3 3 1224 0.118 
BSF 29 secreted protein 21 11 18 18 963 0.845 
BSF 30 secreted protein 51 26 23 15 2013 1 
BSF 31 secreted protein 38 20 12 15 1839 1 
BSF 32 membrane protein 8 5 4 4 630 2.662x10-7 
BSF 34 secreted protein 34 22 19 20 888 1 
BSF 36 secreted protein 5 4 4 4 2442 0.005 
BSF 37 membrane protein 5 4 4 3 2820 8.058x10-6 
BSF 38 secreted protein 5 3 3 3 1353 0.0567 
BSF 42 secreted protein 15 9 6 8 1374 1 
BSF 44 secreted protein 13 9 6 7 1206 1 
BSF X membrane protein 44 14 33 27 1074 1 
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The average number of mapped reads for all isolates was 65.31x105 having Tv1392 

and TvLins isolates the highest number of reads with 131.60 x105 and 108.90 x105 

reads respectively (Table 2.6). On average, 48.12% of the reads mapped to the 

TvY486 reference genome (mean= 3,575,784). The Nigerian samples achieved a 

coverage between 33.11% - 84.39%, a higher range if compared with the Ugandan 

samples with a coverage between 7.66%-71.69%. TvLins was the isolate with the 

highest number of reads mapped to the reference genome with 10323735 reads 

(94.81%).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.6. List of T. vivax isolates from the five populations studied showing the 

summary of mapping statistics against the TvY486 reference T. vivax genome. 

 

 

 

Isolate ID Location 
No. of mapped 
reads (x 105) 

IL11 Nigeria 67.70 

IL1392 Nigeria 131.60 

IL306 Nigeria 79.90 

IL319 Nigeria 43.75 

IL338 Nigeria 46.03 

IL340 Nigeria 66.01 

IL462 Nigeria 57.28 

IL465 Nigeria 51.67 

IL493 Nigeria 35.18 

IL596 Nigeria 43.59 

IL684 Nigeria 51.88 

IL2005 Uganda 39.28 

IL2323 Uganda 83.79 

IL2714 Uganda 97.12 

ILV-21 Uganda 48.70 

IL3171 Gambia 43.89 

IL3638 Ivory Coast 49.64 

IL3651 Ivory Coast 65.03 

IL3658 Ivory Coast 95.21 

TvLins Brazil 108.90 

Average  65.31 
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2.3.6. Levels of nucleotide diversity and neutrality among TvCSP gene families 
 

Analysis of neutrality and nucleotide diversity among clinical isolates using the 

filtered SNPs showed that the frequency distribution of the nucleotide diversity (π) 

across TvCSP genes was very similar within populations (Figure 2.15). From the 244 

TvCSP studied, 112 of them showed a π=0 using the PopGenome software. In 

contrast, only 14 genes corresponding to Fam29-31, Fam34, Fam42-44 and FamX 

showed zero values based on the SNPgenie analysis. This low nucleotide diversity 

value suggests that the level of polymorphisms of these genes across all populations 

are null showing no divergence.  

 

According to the analysis, each gene displayed very low π values when compared to 

a threshold of the average nucleotide diversity of 20 VSG genes (Figure 2.15). Results 

showed that between gene members from the same family, no difference of diversity 

values was observed. In addition, π values for a specific family compared to the rest 

of TvCSP families showed no significant difference. The gene TvY486_0011750 from 

Fam29 showed the highest value for nucleotide diversity with π =0.0204 and π 

=0.0182 from PopGenome and SNPgenie respectively. In the same way, the gene with 

the lowest nucleotide diversity using PopGenome was TvY486_0001040 from Fam42 

with π =2.04248E-05 and π =0 for SNPgenie analysis. Using SNPgenie, there were 12 

genes with π=0, the lowest nucleotide diversity values. In addition, there were 2 

genes with π =0 using both software indicating that the degree of polymorphisms 

within the population is minimum.  

 

The levels of neutrality for each TvCSP according to each population was also 

analysed based on the frequency-based Tajima’s D statistic. This test was computed 

to identify if the allelic variation was caused by a recent positive or balancing 

selection. From the 244 genes analysed, 112 genes (45.9%) did not produce a value 

for D (Figure 2.15). If we only consider those genes that returned a value, 76 genes 

(31.15% D<0) showed negative values, while 56 genes returned a positive value 

(22.95% D>0).  
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No TvCSP family displayed only positives or negatives D values across all gene copies. 

Fam38 (n=5) did show positive values for three genes and no-value for two genes. 

Most families gave mixed results; FamX displayed the highest number of genes with 

negative D values (n=16) compared with D>0 (n=4).  

 

In general, positive Tajima’s D values suggest balancing selection of a recent 

bottleneck within the population, whereas negative values indicate a recent selective 

sweep with a high number of low frequency polymorphisms (Tajima, 1989). The fact 

that the majority of genes returned D values <0 suggests the presence of rare alleles 

with low frequencies in all the isolates analysed.  

 

 

 

Figure 2.15. Scatter plot of the pairwise nucleotide diversity values (π) using 

PopGenome and SNPgenie servers and Tajima’s D estimation according to the 

families based on the 244 TvCSP. The threshold of the nucleotide diversity graph 

correspond to the average π values of 20 VSG genes (brown line).
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2.3.7. In silico T-cell epitope prediction 1 
 2 

T-cell epitopes were predicted for all bloodstream-form TvCSP amino acid sequences 3 

to identify proteins with MHC binding properties. The results are presented in Figure 4 

2.16, and take into account the number of similar MHC-I and MHC-II epitopes with 5 

antigenic and non-antigenic properties. Epitopes from different members of the 6 

same TvCSP family were considered similar if they differed by three amino acids or 7 

fewer. Based on this criterion, the results show clear differences in the number of the 8 

predicted epitopes between families. Indeed, some families like Fam32 and Fam37 9 

did not display any predicted MHC-I or MHC-II epitopes that were similar across their 10 

members (Figure 2.16). Other families like Fam29 did not display any predictions for 11 

similar MHC-I epitopes, while Fam36 and Fam42 displayed no similar MHC-II 12 

epitopes. 13 

 14 

Overall, the number of MHC-I and MHC-II epitopes predicted for each family was <80 15 

and <50 respectively, except for FamX. Moreover, all the families presented a higher 16 

number of predicted MHC-I than MHC-II epitopes. The number of promiscuous MHC- 17 

I epitopes was on average of 3 epitopes per family. However, there were no predicted 18 

promiscuous MHC-II epitopes for any family except for Fam30 and Fam31 that 19 

displayed 7 and 1 promiscuous peptides respectively. 20 

 21 

The prediction of binding ligands for FamX members showed 308 and 103 unique 22 

MHC-I and MHC-II epitopes respectively. The results displayed 147 potentially 23 

antigenic MHC-I epitopes compared to 161 non-antigenic epitopes. FamX proteins 24 

were divided according to phylogenetic clades to examine variation in epitope 25 

number. Interestingly, the highest number of antigenic epitopes were present in 26 

clade 10 (37 epitopes) while clade 1 displayed the highest number of non-antigenic 27 

epitopes (45). Clade 11 was the only isoform with no potential antigenic epitopes 28 

predicted.  29 

 30 

 31 
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 32 

 33 

 34 

Figure 2.16. Number of similar T-cell epitopes for MHC-I (A) and MHC-II (B) after their 35 

evaluation of antigenicity.  36 

 37 

The identification of similar epitopes within FamX clades showed that 137/147 38 

antigenic epitopes were found in at least two proteins while 10/147 unique to one 39 

protein. In fact, 54/137 ‘similar’ epitopes displayed no sequence variation at all but 40 

were conserved across all FamX copies in which they were found. Most epitopes were 41 

found in the central region and near the C-terminal domain (Figure 2.17). In addition, 42 

the analysis showed 39 promiscuous peptides being 23 of them possibly antigenic 43 

while 16 possibly non-antigenic. The majority of the promiscuous epitopes were 44 

predicted to bind D18.4 allele in addition to one or four more alleles.  45 

 46 
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T-helper epitopes were also predicted using HLA instead of BoLA alleles since no 47 

online tools are available to perform these predictions. MHC-II consensus results 48 

showed 54 and 52 possibly antigenic and non-antigenic epitopes respectively 49 

predicted using TEPITOPEpan and IEDB online servers. The results showed that the 50 

number of MHC-I epitopes were greater than for MHC-II. In the identification of 51 

promiscuous epitopes also using HLA alleles, 31 peptides were predicted as 52 

promiscuous from which 17 were possibly antigenic while 14 were non-antigenic. The 53 

allele HLA DRB3*08:01 was able to bind almost all the promiscuous epitopes with few 54 

exceptions only. Moreover, most promiscuous epitopes were predicted to bind two 55 

different alleles presenting inclusively a small group that bind 5-7 alleles.  56 

 57 

 58 
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 59 

 60 

Figure 2.17. Similar predicted MHC-I epitopes for FamX proteins according to 61 

their position in the amino acid sequence. 62 

 63 
 64 
 65 
 66 
 67 
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2.3.8. In silico B-cell epitope prediction  68 
 69 

 70 
The amino acid sequences of all TvCSP family members were used to predict B-cell 71 

epitopes using three different online resources. Predicted epitopes are a consensus 72 

of identical predictions by at least two of the methods. Based on this criterion, 69 73 

linear 20-mer B-cell epitopes were predicted as shown in Table 2.7. The number of 74 

B-cell epitopes varies quite substantially among TvCSP families, and, within each 75 

family, epitopes were not predicted in every paralog. No epitopes were predicted for 76 

Fam32. Overall, FamX had the highest number of B-cell epitopes following by Fam30 77 

and Fam29 (Table 2.7). Based on their position in the protein sequence, the majority 78 

of epitopes were non-overlapping and unique epitopes, while a minor proportion 79 

were overlapping. There was only one predicted linear B-cell epitope for most 80 

proteins and, in only few cases, was there multiple epitopes predicted for a single 81 

protein, e.g. TvY486_0001150 from Fam28 and TvY486_0001730 from Fam30 (both 82 

with two predicted peptides respectively).  83 

 84 

FamX had the highest number of linear B-cell epitopes according to the consensus 85 

results. In some cases, the same epitope was predicted in different proteins, for 86 

example, 326PTSPSTLSAPAPPPAISQQS345 and 336QTADKPSSANNSKLTPTNLA355 were found in 87 

five proteins from clade 1 and in two proteins from clade 10 respectively. These 88 

results, in conjunction with the T-cell predictions, indicate that FamX proteins include 89 

binding sites for both MCH molecules and antibodies, and therefore, may have the 90 

greatest potential for mediating the immune response of all TvCSP families.  91 

 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
 100 
 101 
 102 
 103 
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No. Family TvY486_ID Peptide Start End 
No. 
Epitopes 

1 28 0001150 KAQKINTTSSQMSAVANETA 120 139 7 
2 28 0001150 MRDKAQKINTTSSQMSAVAN 117 136  
3 28 0001150 TFAASATRERPYGQQRAVYE 23 42  
4 28 0019710 MRDKAQKINTTSSQMSAVAN 117 136  
5 28 0019710 ELARLNSTESSVVDGGRNVS 91 110  
6 28 0040160 MRDKAQKINTTSSQMSAIAN 117 136  
7 28 0040160 VERNSSIAGKSRDAVVKAFE 72 91  

8 29 0036390 DKFCWRQRNVSDNITNQLLG 269 288 8 
9 29 0033210 IRNNTGELINYTNTIGSIDR 249 268  
10 29 0011750 GSIDKFDERQPGASGNITKK 266 285  
11 29 0013730 AAKRKNEEERRHSCTDLWSQ 314 333  
12 29 0030720 AAKRKNEEERRHSCTDLWSQ 284 303  
13 29 0030720 ERARLENDGTFNNTSDAREV 55 74  
14 29 0015070 GSIDRFDEGQRNASSNTTNK 148 167  
15 29 0015070 IGSIDRFDEGQRNASSNTTN 147 166  

16 30 0041770 DSLKKANAVSDSAEAAVKEA 714 733 14 
17 30 0020730 KGHLATAQGNIDSAAKAAKK 319 338  
18 30 0014860 MRESLKKTNGISDNAEAAVK 598 617  
19 30 0001730 SVTEWKEEMVSMVNKTYDTF 200 219  
20 30 0001730 SVKEATNATAAAKQSKESVI 120 139  
21 30 0003600 QGAEKNVANATNEVEAVNAT 269 288  
22 30 0007870 INVVSQELEITEESGAKTYD 617 636  
23 30 0005240 NLSGVIRQVQEAKSNAQNAS 483 502  
24 30 0005240 QTNESELKAKHAASEAEASE 119 138  
25 30 0011830 HKPKTCWPYDSPTKNQKCAA 21 40  
26 30 0011830 NEVELVAENAAKEASGSLYS 119 138  
27 30 0019670 CSSLNSAGNNRNEVENVDKA 29 48  
28 30 0032760 LQTIDEGVVGAADKFNEAVQ 240 259  
29 30 0031450 NESERNATEAANTSNITGSF 124 143  

30 31 0038020 NATNGVRAEMGTSDEKQKEV 1000 1019 4 
31 31 0035410 RAVAAEPHAAEATAQYQLTG 935 954  
32 31 0007400 AQRLGSDDVKRLQGDSDSPL 467 486  
33 31 0045910 ATVEKAKNSLSDALKRQRRE 684 703  

34 34 0039910 TDTRDTQRMAEQAEREARAA 293 312 6 
35 34 0900430 KAAAEAEEKNSAEGPGSRTV 468 487  
36 34 0019090 WSVSDYDSSCSSTWQTSER 136 154  
37 34 0021420 AAEANAGSSERGANRGDGNV 457 476  
38 34 0029720 VSQATSSHVAPHTAERNEAL 22 41  
39 34 0035970 VQVTSEERAPTEAGSSRAEY 578 597  
40 36 0039550 VATAIKKSRDAMEKMREKFP 457 476 1 

41 37 0037640 NETYEEAVQARSDTETLNNL 181 200 1 

42 38 0012580 RCDHEGQSAHFTGCSDADPK 73 92 4 
43 38 0018310 VARNISTESKTTNKSAREDP 125 144  
44 38 0018310 RCEHEGQSAHFTGCSDADPK 44 63  
45 38 0045330 WPSTGPQRDISCRNAEAPMT 64 83  

46 42 1109320 IKNVTGEKDQEISSDCSGHD 397 416 3 
47 42 0016870 VKSLSEKANENAQTTGQYTK 310 329  
48 42 0021320 ASKLAEEARSAAEKVKEGVQ 363 382  

49 44 0014250 GLSKGQSERLKGESDQMKAS 672 691 4 
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50 44 0036690 RSAEELDLVRKGGKRIREGA 659 678  
51 44 0012520 SAEKAQKPDSEEHRNAARKV 24 43  
52 44 0042450 SAEKAQKPDSEEHRNAARKV 24 43  

53 X 0022220 EENSQNLHSWRKEQEKKLEE 178 197 17 
54 X 0009420 DYKKYFYRDGDNGFKNMFDT 81 100  
55 X 0042870 VEASGQPSNMKSGGMTTTNL 339 358  
56 X 0042870 EASGQHSNMQSGSMTTTNLV 341 360  
57 X 0040740 PTSPSTLSAPAPPPAISQQS 326 345  
58 X 0025480 PTSPSTLSAPAPPPAISQQS 326 345  
59 X 0041260 PTSPSTLSAPAPPPAISQQS 326 345  
60 X 0014480 PTSPSTLSAPAPPPAISQQS 326 345  
61 X 0018640 PTSPSTLSAPAPPPAISQQS 326 345  
62 X 0007180 GLYPATEREITELVKTNRSS 144 163  
63 X 0015150 DAVAENPAGARSSGLAPGIL 254 273  
64 X 0028510 YDAESEVSSPGFATEKLRKD 89 108  
65 X 0024610 REKVYNAESEVSSPGFATEK 85 104  
66 X 0004490 REKIYDAESEVSSPELATKK 85 104  
67 X 0033680 QTADKPSSANNSKLTPTNLA 336 355  
68 X 0045500 QTADKPSAANNSKLSPTNLA 336 355  
69 X 0004480 FRRTDDSSNEKLTSWKQFTE 235 254  

 104 

Table 2.7. In silico prediction of B-cell linear epitopes in TvCSP sequences according 105 

to their family. Epitopes were considered in the results if they were predicted in at 106 

least two of the three servers used for the analysis. The amino acid sequence of each 107 

peptide and its start and end position is displayed. 108 

 109 
 110 
 111 
 112 
 113 
 114 
 115 
 116 
 117 
 118 
 119 
 120 
 121 
 122 
 123 
 124 
 125 
 126 
 127 
 128 
 129 



Chapter 2 

 81 

2.4. DISCUSSION 130 


 132 
This chapter has examined the predicted protein structure of, and structural 133 

variability among, TvCSP gene families. It has confirmed their putative cell-surface 134 

position and quantified their natural polymorphism. Bloodstream-form TvCSP 135 

families have been shown to be universal among clinical isolates from across Africa 136 

and South America. Finally, the antigenic properties of TvCSP were evaluated through 137 

in silico analysis of linear B-cell and T-cell epitopes, which demonstrates that FamX 138 

has the highest number of predicted epitopes, and suggests that FamX proteins could 139 

stimulate CD4 and CD8 T-cells as well as bind to specific IgG antibodies. As the second 140 

largest TvCSP family after Fam30 and among the most abundant transcripts in 141 

bloodstream-form cells (Jackson et al, 2015), FamX is an important addition to the 142 

TvCSP suite. 143 

 144 

The identification of proteins located at the cell surface that are easily accessible to 145 

the adaptive immune system are crucial for vaccine development. Of the 244 146 

bloodstream-forms TvCSP examined, 79% possess a putative signal peptide indicating 147 

that they participate in the secretory pathway, since signal peptides cause proteins 148 

to be translocated from the intracellular domain to the endoplasmic reticulum (ER) 149 

after they are recognized by the signal recognition peptide (SRP) (Ahmed et al, 1998). 150 

Meanwhile, 88 (32%) of TvCSP possess a TMD, indicating that only a minority of TvCSP 151 

proteins are inserted into the parasite membrane, while the majority are either GPI 152 

anchored or (presumably) secreted.  It was reported previously that TvCSP families 153 

were thought to be positioned on the cell surface (Jackson et al, 2013); however, this 154 

prediction was based on single representatives of each TvCSP family. This chapter has 155 

now analysed all members of each family and shown unequivocally that all TvCSP 156 

family members presented domains and motifs which are consistent with their 157 

localization on the surface of the parasite. We can infer then that these proteins are 158 

expressed and localized in the outer surface of T. vivax. 159 

 160 

No previous analysis was made of post-translational modifications of TvCSP families. 161 

Glycosylation plays a fundamental roll in cellular adhesion, creating residues that can 162 
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be recognized by the immune system (Wiederschain, 2009). N-linked glycosylation, 163 

O-linked glycosylation and C-mannosylation were predicted for all TvCSP families. 164 

Proteins attached to the parasite surface membrane with GPI anchors can play crucial 165 

roles in the immune response such as interaction with the antigen-presenting cells 166 

(Paulick and Bertozzi, 2008; Savage et al, 2012). As such, GPI-anchored proteins 167 

members from Fam27, Fam35 and Fam43 might probably have the capacity to 168 

activate T-cells (Brown and Waneck, 1992). It has been shown that trypanosome cell 169 

surfaces at all stages of their life cycle are mostly covered by GPI-anchored proteins 170 

and have the ability to stimulate the host immune system (Ferguson et al, 1988; 171 

Nosjean et al, 1997; Ferguson, 1999; Ferguson et al, 2009). The presence of GPI 172 

anchors in several TvCSP families, and abundant glycosylation sites in all families 173 

suggests that they might probably have an immune-modulatory role in T. vivax 174 

infections.   175 

 176 

The methodology used in this chapter has been widely used to perform in silico 177 

characterizations in related parasites as a way to determine functional 178 

characteristics. InterProScan was chosen as it employs a variety of online software 179 

tools developed using different approaches to find protein motifs based on amino 180 

acid sequences (Quevillon et al, 2005). The same bioinformatic tools used here have 181 

been applied in the identification of potential surface proteins like RNA polymerase 182 

subunit transcription factor (BRF1) in T. brucei (Yahya et al, 2012; Velez-Ramirez et 183 

al, 2015) and the recognition of protein domains and motifs in L. major and T. cruzi 184 

(Kramer et al, 2010). The prediction of secondary structures based on the topology 185 

of proteins have also been achieved for the screening of vaccine candidates in related 186 

species like other African trypanosomes (Coustou et al, 2012; Sharma et al, 2016), 187 

Plasmodium falciparum (Campbell et al, 2014; Kaushik et al, 2014; Gupta et al, 2015), 188 

Plasmodium vivax (Nanda Kumar et al, 2016), L. major (Opperdoes and Szikora, 2006) 189 

and T. cruzi (Bhatia et al, 2004; Lima et al, 2016). Despite the reliability of these 190 

methods, none of the TvCSP sequences identified any known protein motifs, 191 

indicating that these proteins are unique to T. vivax. 192 

 193 
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The tertiary protein structures produced by PHYRE based on homology modelling 194 

showed very low coverage and confidence values, unlike previous results concerning 195 

related parasites (Silva et al, 2010; Kaur et al, 2011; Khademvatan et al, 2013). This 196 

indicates that no authentic sequence homology exists between TvCSP and known 197 

proteins structure, reinforcing previous conclusions that these proteins evolved in 198 

the T. vivax lineage only (Jackson et al, 2013). Further experiments (i.e. 199 

crystallography) will be necessary to confirm its tertiary structure, which may still be 200 

homologous to known structures.  201 

 202 
The CDS, 3’ UTR and 5’ UTR phylogenies for each gene family revealed differences in 203 

topology that suggest recombination occurs among paralogs of specific gene families. 204 

This observation was extended by the results of using PHI to examine phylogenetic 205 

incompatibility, which confirmed that all metacyclic-form families displayed 206 

signatures of past recombination events. It has been shown that the sequence 207 

identity is proportional to recombination frequency (Bell and McCulloch, 2003) and 208 

this might explain why metacyclic-form families display such evidence for 209 

recombination. In the case of bloodstream-form families, there were minor 210 

topological differences between CDS and UTR trees for all families, but only three 211 

families (Fam32, Fam36 and Fam37) showed significant phylogenetic incompatibility 212 

with PHI. Even where incompatibility is significant, the number of genes implicated 213 

in recombination events only represents 18% of all TvCSP (n = 49), suggesting that 214 

within the families, recombination is not ubiquitous, as it is among closely related 215 

VSG paralogs (Pereira et al, 2018; Pereira et al, 2019). Indeed, these results have 216 

demonstrated that certain TvCSP genes are devoid of recombination and widespread 217 

polymorphism, showing definitively that they are not variant antigens in the VSG 218 

sense. 219 

 220 

Interestingly, the UTR phylogenies contain several robust clades suggesting that UTR 221 

subtypes exist within TvCSP families, which do not always correspond with, and might 222 

be decoupled from, CDS subtypes. UTRs are important since they maintain mRNA 223 

stability in trypanosomes (Mayr, 2016) and thereby mediate post-transcriptional 224 

regulation of gene expression (Mazumder et al, 2003; Resch et al, 2009), as well as 225 
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control interaction between proteins to regulate protein localization (Berkovits and 226 

Mayr, 2015). The cladistics structure among UTR sequences may reflect evolutionary 227 

pressure to conserve the specific regulation of TvCSP subtypes, perhaps according to 228 

subtle developmental changes during metacyclic and bloodstream stages. 229 

 230 
Understanding the genetic diversity of TvCSP is crucial to design a vaccine against T. 231 

vivax. The genetic diversity of highly conserved T. vivax genes not expressed in these 232 

families were also analysed in order to compare their behaviour. Two genes 233 

expressing gGAPDH (TvY486_0603710 and TvY486_1006840) and TviCatL-like 234 

(TvY486_060500 and TvY486_0600530) showed a nucleotide diversity of π =0 235 

corroborating previous studies (Rodrigues et al, 2017). Moreover, their comparison 236 

with other surface proteins like VSG showed that TvCSP have lower diversity 237 

suggesting that TvCSP behave in the same way as any other gene in the genome but 238 

less diverse than VSGs. 239 

 240 

Genes with low diversity are important in immunity since they can increase vaccine 241 

effectiveness due to epitopes present in conserved regions that could be targets for 242 

the immune system (Guy et al, 2018). Plausible vaccine antigens should have low 243 

polymorphism as they must confer the same vaccine efficacy in all populations 244 

(Takala et al, 2009) like for example the potential vaccine candidates using the  245 

malaria merozoite surface protein family (MSP) from P. falciparum (Pattaradilokrat 246 

et al, 2016; Patel et al, 2017). Previous studies have shown that MSP-1 42kDa 247 

fragment, a conserved fragment that can inhibit parasite invasion, possess low 248 

nucleotide diversity and positive natural selection (Pacheco et al, 2007), both 249 

characteristics showed for the majority of TvCSP. This chapter analysed the levels of 250 

diversity of TvCSP among T. vivax clinical isolates and shows that all TvCSP families 251 

display low nucleotide diversity and conservation of family sub-types across clinical 252 

isolates. This supports the idea that TvCSP may maintain their structural 253 

conformation, especially conserving their secondary structure thus allowing the 254 

protein to be recognized by the immune system (Chenet et al, 2012).  255 

 256 
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Calculation of Tajima’s D statistic revealed that the majority of the TvCSP seemed not 257 

to be under positive selection pressure. This is not unexpected given the high degree 258 

of sequence conservation between isolates. However, although genes with positive 259 

D values were relatively rare, they were present in almost all family genes. Of all 260 

TvCSP families, Fam29 has the highest number of genes with positive D values 261 

indicating significant evidence of balancing election. The gene TvY486_0027620 from 262 

FamX showed the highest D value (2.82). This might suggest that the 263 

TvY486_0027620 protein is a focus for immune selection, which should be taken into 264 

account as a possible candidate target of immunity (Ochola et al, 2010). However, is 265 

important to consider that grouping samples from highly divergent populations can 266 

artificially increase Tajima’s D value (Tajima, 1989).  267 

 268 

T-cell epitopes in the cell-surface are able to bind BoLA molecules with high affinity 269 

playing a crucial role in the immunogenicity. This allows then the recognition of 270 

epitopes with TCR (Weber et al, 2009). In humans, HLA molecules are expressed in 271 

the host cells and their main function is to present intracellular peptides to the CD8+ 272 

cytotoxic T cells (CTLs). In cattle, BoLA molecules can act in a similar way to HLA and 273 

to other MHC-I molecules present in other mammals (De Groot et al, 2003). The 274 

scarcity of databases for non-human MHC molecules when compared to the large 275 

number available for HLA (Soria-Guerra et al, 2015), which can be attributed to the 276 

lack of information on alleles and MHC haplotypes for animal vaccine development 277 

(De Groot et al, 2003), means that T-cell epitope predictions in this chapter were 278 

made using only one bioinformatic program. T-cells stimulated by peptides can 279 

usually bind to several BoLA alleles or promiscuous epitopes (Acton, 2013), which is 280 

of enormous interest for vaccine development. Most of the promiscuous epitopes 281 

identified here were predicted to potentially bind the D18.4 allele. This promiscuity 282 

along with a potential high binding affinity could make these epitopes able to induce 283 

an immune response in populations with different BoLA genotypes (Farrell et al, 284 

2016).  285 

 286 

Epitope production starts when potentially antigenic proteins are cleaved by 287 

proteolytic enzymes in the APC, producing different protein fragments. However, 288 
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approximately only 2% of them will later become an epitope, presented on the APC’s 289 

surface, since they must have the correct amino acid sequence to bind the MHC 290 

(Weber et al, 2009). All epitopes predicted here were linear T-cell peptides 291 

overlapping each other for a specific protein. The results showed that epitopes were 292 

predicted in all families but not in all their members. The number of antigenic and 293 

non-antigenic MHC-I peptides represented 55% and 45% respectively of all the 294 

epitopes predicted for all the families except FamX. Likewise, antigenic and non- 295 

antigenic MHC-II epitopes represented 65% and 35% of all predicted epitopes. 147 296 

MHC-I antigenic epitopes were identified in FamX proteins, representing 48% of the 297 

total. That these epitopes were confined to each particular FamX clades suggests that 298 

the ability to elicit a T-cell response may vary among FamX members and should be 299 

considered in antigen selection.  300 

 301 

The MHC-II epitope prediction was analysed using HLA alleles as previously stated 302 

(Farrell et al, 2016) since there is no software able to make predictions for other 303 

species besides human or mouse. The main challenge in making MHC-II epitope 304 

predictions is that the binding cleft opens at both ends in contrast to the MHC-I, 305 

complicating the prediction since the peptides that binds to the MHC-II molecule can 306 

protrude out of the core (Bordner, 2010; Jørgensen et al, 2010). All families presented 307 

possibly antigenic and promiscuous epitopes but they were not identified in all 308 

proteins. In a way similar to MHC-I predictions, FamX was the family with the greatest 309 

number of predicted and overlapping epitopes.  310 

 311 

While the number of predicted linear B-cell epitopes was lower than the total number 312 

of epitopes predicted for MHC-I and MHC-II, and most of the B-cell epitopes were 313 

overlapping and predicted by one method only, the results suggest that diverse 314 

TvCSP can be bound to IgG antibodies. In a recent study, Guedes, Rodrigues et al, 315 

(2018) characterized B-cell epitopes using different T. vivax isolates from Africa and 316 

South America  (Guedes et al, 2018). Linear B-cell epitopes described in this study 317 

were identified based on transcriptome data and tools similar to those used in this 318 

chapter resulting in four predicted epitopes, present in three FamX proteins; 319 
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TvY486_0019690 (2 epitopes), TvY486_0037990 and TvY486_0900440 (one peptide 320 

each).  321 

 322 

Linear B-cell epitopes found in proteins from the different families suggest that 323 

specific regions of the antigens have the ability to bind specific antibodies. It should 324 

be noted that these epitopes were only linear and did not consider non-linear or 325 

discontinuous epitopes, which can occur where the amino acid chain folds in such a 326 

way to bring non-contiguous residues together (Ponomarenko and Van Regenmortel, 327 

2009). Experimental validations of these epitopes would be necessary to confirm 328 

their possible antigenicity.  329 

 330 

2.5. CONCLUSION 331 

 332 

This chapter analysed the predicted protein structures of T. vivax cell- surface 333 

proteins from three metacyclic-form and 12 bloodstream-form protein families. It 334 

confirms that all families have a predicted cell-surface position based on 335 

bioinformatic analysis. Specific gene families have been shown not to recombine and 336 

to display low levels of amino acid polymorphism across a panel of diverse clinical 337 

isolates. This, combined with abundant, predicted immune epitopes across most 338 

families, suggests that TvCSP could include authentic vaccine antigens. In particular, 339 

a novel, family of T. vivax-specific transmembrane proteins (‘FamX’) is described 340 

consisting of 44 proteins divided in 14 different robust clades based on phylogenetic 341 

estimation. FamX has the highest number of T and B-cell predicted epitopes of all 342 

TvCSP families suggesting that most of the proteins presented immunogenic sites for 343 

MHC as well as antibody binding. This potential immunogenicity is explored further 344 

in Chapter 3. 345 

 346 
 347 
 348 
 349 
 350 
 351 
 352 
 353 
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CHAPTER 3 354 

Identification of linear B-cell epitopes in TvCSP families using 355 

immunogenicity assays on natural infections 356 

 357 

 358 

3.1. INTRODUCTION 359 

 360 

The identification of potential vaccine candidates among TvCSP genes that can 361 

plausibly stimulate the host immune response represents a novel approach T. vivax 362 

vaccine design. The accesibility and immunogenicity of these antigens, i.e. their 363 

ability to elicit an immune response in the host (Murphy, 2012), is determined by 364 

their recognition by specific antibodies. Antibodies recognize and interact with 365 

certain targets on the antigen known as epitopes, and the robustness of antibody 366 

binding depends on immunogenicity (Mahanty et al, 2015). Indeed, immunogenicity 367 

of the antigen is crucial to resolution of infection, as it is related to both immune 368 

memory and adaptive immunity. In the context of vaccine development and antigen 369 

discovery, there are three main advantages that an antigen with high 370 

immunogenicity presents: 1) there is a higher affinity with the interaction 371 

epitope/specific antibody, 2) a reduced amount of the antigen is necessary to 372 

stimulate the immune response and 3) the intensity of the response is more robust 373 

in peripheral cells (Mahanty et al, 2015).  374 

 375 

Immunogenic antigens should ideally elicit both humoral and cellular responses. That 376 

is, they should bear epitopes recognized by T-cells, as well as B-cells, two mediators 377 

of adaptive immunity that recognize specific epitopes with different properties 378 

(Abbas et al, 2014). B-cells can effectively recognize soluble and exposed antigens by 379 

B-cell receptors (BCR) that bind the membrane-bound antibodies, while T-cells 380 

recognize an antigen by their T-cell receptor (TCR) displayed on the APCs (Sanchez- 381 

Trincado et al, 2017).  382 

 383 



Chapter 3 

 89 

B-cell epitopes can be further divided into two groups. Linear or continuous epitopes 384 

are fragments of the antigen with linear stretches of residues in the protein 385 

sequence. The second type are known as discontinuous or conformational epitopes, 386 

and these refer to surface residues distant in the protein sequence that are brought 387 

together by folding of the chain (Van Regenmortel, 2009). The latter corresponds to 388 

almost the majority of the epitopes found in proteins, but are less identified due to 389 

the difficulty and limitations compared to continuous epitopes. Linear B-cell epitopes 390 

are usually 15-20 aa long, easily recognized by the specific antibodies. In the case of 391 

discontinuous epitopes, the length can vary between 20-400 aa (Potocnakova et al, 392 

2016).The antibody-antigen interaction has to be specific with accessible B-cell 393 

epitopes to be recognized by specific antibodies. In other words, the epitopes have 394 

to be exposed on the surface and abundantly expressed to generate a strong 395 

response. Since continuous epitopes are linear, their position relies on the protein 396 

primary sequence, folding and mobility of the region (Westwood and Hay, 2001). 397 

However, once the protein is fully folded, the biding sites of antibodies can change 398 

and discontinuous epitopes are easily recognized. 399 

 400 

Linear B-cell epitopes have been widely used in many applications such as 401 

diagnostics, immune monitoring and vaccine development. The identification of 402 

these epitopes within a protein sequence can be achieved by different methods such 403 

as functional assays, including site-specific mutation of the antigen, 3D-structural 404 

crystallography of antigen-antibody complexes, and peptide microarrays that screen 405 

antibody binding interactions. The latter method, peptide microarrays, are a means 406 

for B-cell epitope discovery based on the Pepscan approach first described by Frank 407 

(1992), in which the ability of an antibody of interest is tested to bind against a panel 408 

of different peptides from certain antigens. The major advantage of this approach is 409 

that the desired antibodies can bind to several peptides of an antigen covering the 410 

entire protein (Ahmad et al, 2016). Peptide microarrays are usually printed on a solid 411 

surface like glass or plastic chip and their principle is very similar to an ELISA protocol. 412 

In an assay, the chip that can contain thousands of peptides can be probed with 413 

serum from infected or non-infected individuals to then bound by a fluorescein- 414 

tagged secondary antibody and detected with a fluorescence scanner.  415 
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Protein microarrays have been used to identify epitopes in various pathogens 416 

including viruses, bacteria (Gaseitsiwe et al, 2008; Valentini et al, 2017; Weber et al, 417 

2017) and parasites. For example, peptides arrays were applied to determine 418 

allergens in the ectoparasites Dermatophagoides farinae (Cui et al, 2016). In the case 419 

of endoparasites, arrays have been used to analyse the antibody response after a 420 

malaria season to Plasmodium falciparum (Crompton et al, 2010) and for a malaria 421 

vaccine development (Loeffler et al, 2016). This approach has been also applied in 422 

trypanosome genomes for different purposes such as discovering new antigens for 423 

Trypanosoma cruzi (de Oliveira Mendes et al, 2013; Reis-Cunha et al, 2014; Carmona 424 

et al, 2015). Despite the fact that this approach has been carried out to analyse 425 

different immunological aspects including antigen discovery, it has not been used 426 

with any antigens of African trypanosomes. This chapter applies a peptide microarray 427 

approach to linear B-cell epitope discovery among the diverse TvCSP gene families 428 

characterised in Chapter 2. 429 

 430 

The T. vivax genome encodes a large number of proteins that can be either secreted 431 

or localized in the membrane with extracellular regions. The latter are of great 432 

importance to understanding parasite interactions with the host immune system. 433 

The use of recombinant proteins (proteins encoded by recombinant DNA cloned into 434 

an expression system) allows this interaction to be studied, raising the possibility of 435 

identifying candidates that can confer protective immunity (Nascimento and Leite, 436 

2012). However, the detection of extracellular protein interactions has been a great 437 

challenges due to their biochemical complexity (post-translational modifications) and 438 

weak interactions (Bushell et al, 2008; Sanderson, 2008). To overcome this issue, the 439 

high-throughput screening process called AVEXIS (Avidity-based Extracellular 440 

Interaction Screen) was developed allowing extracellular interactions with high 441 

confidence. AVEXIS assay uses mammalian cells as expression system ensuring the 442 

addition of all post-translational modifications and appropriate folding compared to 443 

other expression systems (Khan, 2013; Hunter et al, 2019). With AVEXIS, secreted or 444 

cell-surface proteins (type I, II and GPI-linked) are expressed recombinantly with their 445 

entire ectodomain regions allowing for authentic extracellular interactions in 446 

downstream experiments and assays (Kerr and Wright, 2012).  447 
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The expression of recombinant proteins and their application as vaccine candidates 448 

offers several advantages compared to live or DNA vaccines in terms of safety 449 

(Nascimento and Leite, 2012). The successful expression of TvCSP with a mammalian 450 

expression system based on the most immunogenic antigens from the peptide 451 

microarrays outcome can be later used to elucidate their role during infection and 452 

potential protective immunity. 453 

 454 

This chapter aims to: 455 

 456 

1. Screen serum samples from livestock naturally and experimentally infected 457 

with trypanosomes from across Africa and South America to identify samples 458 

positive for T. vivax. 459 

2. Design a peptide array layout of T. vivax-specific cell-surface proteins and 460 

assay seropositive samples to identify immunogenic proteins. 461 

3. Identify linear B-cell epitopes in significantly immunogenic proteins based on 462 

the peptide microarray assay. 463 

4. Express recombinant forms of significantly immunogenic proteins using a 464 

mammalian protein expression system. 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 
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3.2. MATERIALS AND METHODS 480 

 481 

3.2.1. Sera screening 482 

 483 

Sera from naturally and experimentally infected livestock potentially positive for T. 484 

vivax were screened with a novel rapid diagnostic test called ‘Very-Diag’ (Ceva- 485 

Africa). Very-Diag is a lateral flow immunoassay for bovine sera and whole blood that 486 

can simultaneously detect antibodies against T. congolense and T. vivax in a 487 

qualitative way, based on the TcoCB1 and TvGM6 antigens respectively (Boulangé et 488 

al, 2017). Sera from Cameroon (n=121) came from natural infections from Gudali, 489 

Djafun and Aku breeds (n=95) that were collected in the northern regions of 490 

Ngaoundere and Touboro over a period of 15 days in the year 2016. These samples 491 

were previously screened for trypanosomes by microscopy and the resultds are 492 

shown in Table 3.2A. In addition, 26 naturally infected cattle from markets across 493 

Adamawa Plateau were send to IRAD Regional Centre of Wakwa, Adamawa Region, 494 

Cameroon (7.264979, 13.547603) and received presumptive treatment with 495 

diaminazine aceturate for trypanosomes without diagnosis. Animals in this study 496 

were not screened for trypanosomes and were used for drug and vaccine trials for 497 

onchocerciasis. Sera from these animals were collected by Dr. Germanus, 2012. 498 

 499 

Serum from Kenya (n=24) was collected from naturally infected cows in Western 500 

province over four weeks in September 2016. Kenyan sera were previously diagnosed 501 

for T. vivax by microscopy and PCR from where 18 were showed positive results 502 

(Table 2A). Serum from Malawi (n=40) was collected in December 2017 from cows at 503 

slaughter that were raised in an endemic area (Chikhwawa state) but were not 504 

confirmed as infected/recovered (Table 3.2A). Serum from Brazil came from sheep 505 

and calves experimentally infected with a Brazilian clinical strain (Table 3.2B). 506 

Brazilian samples were donated by Prof. M.M.G. Teixeira, Federal University of Sao 507 

Paulo and have been previously diagnosed for T. vivax (See below).  508 

 509 

Brazilian samples were filter paper elutions (FTA, Micro Card, Whatman) on which 510 

sera were collected. Briefly, the elutions were obtained by cutting a piece of 511 
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1.0cmx1.0cm filter paper, which was washed with 500µl Phosphate Buffered Saline 512 

(PBS) and incubated for 48 hours at 4°C. The samples were centrifuged for 10min x 513 

1500g at room temperature (RT) and the supernatant was used in the test. The 514 

Brazilian samples were previously tested by parasitemia and PCR using species- 515 

specific TviCaTL primers (work done at the Federal University of Sao Paulo). The 516 

samples came from 1) naturally infected cattle at chronic phase diagnosed negative 517 

for parasitemia but positive by PCR (n=11); 2) a single pool of 13 samples from 518 

experimentally infected sheep with 1x105 trypomastigotes TviCa strain diagnosed 519 

positive for both previous tests (n=1). The last samples were from experimentally 520 

infected calves with 1x105 trypomastigotes TvLins strain being positive for 521 

parasitemia only. Two calf samples were used individually on the test while the other 522 

was a pool of 6 samples from 3 different calves collected at different inoculation 523 

times.   524 

 525 

The procedure was performed using cassettes sent by Ceva-Africa and according to 526 

the manufacturer’s instructions by adding a drop of sample into the specimen well 527 

(S) of the cassette followed by a drop of dilution buffer and incubated for 10 min. 528 

Results were read using the control line to validate the test. 529 

 530 

  531 
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A. 532 

 533 

B. 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

Origin N Date Host 
Gender Sample 

description 

Diagnosis 

M F Tb Tc Tv 

Cameroon a 121 06/2016 Cattle 2 94 Individual  10 2 0 

Kenya b 24 09/2016 Cattle   Individual  0 0 18 

Malawi c 40 

12/2017 Cattle 

- - Pool (n=30) 

Individual 

(n=10)  

0 

0 

0 

0 

0 

0 

Brazil 15 - 

04/2013d  

03/2013e 

Cattle (11) 

Sheep (1)  

Calf (3) 

 

1 

3 

 

0 

0 

Individual  

Pool 

Pool 

0 

0 

0 

0 

0 

0 

11 

1 

3 

Total 200      10 2 32 

Host N Days post infection (dpi) Phase Strain Geographic origin PCR 

Sheep 1 8 2, 7, 10, 11, 12, 13, 18,19 Acute TviCa Catolé do 

Rocha/PB 

+ 

Sheep 2 5 2, 7, 11, 13,18 Acute TviCa Catolé do 

Rocha/PB 

+ 

Calf 1 3 38, 44, 65 Chronic TvLins Sao Paulo - 

Calf 2 1 56 Chronic TvLins Sao Paulo - 

Calf 3 2 38, 47 Chronic TvLins Sao Paulo - 
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Table 3.1.  A. Relation of samples used for the peptide microarray immunoassay. 545 

aSamples donated by Dr B. Makepeace (University of Liverpool). bSamples collected 546 

by Dr S. Silva-Pereira (University of Liverpool). cSamples donated by Dr S. Nkhoma 547 

(MLW Clinical Programme). All infections were natural except for two experimental 548 

infections conducted in Brazil (a/b). Strain is unknown except for experimental 549 

infections: dTviCa, eTvLins. Tb: T. brucei, Tc: T. congolense, Tv: T vivax. B. Descriptive 550 

summary of samples from Brazilian experimentally infected animals applied to the 551 

peptide microarray. All samples collected from two sheep experimentally infected 552 

with TviCa strain and three calves experimentally infected with TvLins were used as 553 

pools to be applied as primary sample in the peptide immunoassay. PB: Paraíba state. 554 

Samples donated by Prof. M.M.G. Teixeira, Federal University of São Paulo. 555 

 556 

3.2.2. Design and production of TvCSP peptide microarray 557 

 558 

A selection of T. vivax peptides were chosen to be included in the peptide 559 

microarrays. The peptides were selected based on a previous, first generation 560 

peptide microarray, which contained 67 different TvCSP sequences. The criteria to 561 

select and include the proteins in the first generation peptide array was based on 562 

taking representatives for all TvCSP families in addition to single-copy antigens with 563 

predicted cell-surface location. Based on this, members from all TvCSP families were 564 

included except from Fam34 as they showed no significant peptide abundance data 565 

as previously described (Jackson et al, 2015).  566 

The production of the peptide microarrays was performed by the company 567 

PEPperPRINT (Heidelberg, Germany). The proteins sequences were divided into 15 568 

amino acid peptides with a peptide-peptide overlap of 14 amino acids. The resulting 569 

microarray contained 37,335 unique peptides printed in duplicate (74,670 peptide 570 

spots) in addition to Polio (KEVPALTAVETGAT, 26 spots) and HA (YPYDVPDYAG 40 571 

spots) control peptides. The first generation array was analysed using a pool of sera 572 

from Kenyan naturally infected cattle (n=18) previously diagnosed as positive by 573 

microscopy, and confirmed using the Very-Diag test as stated above. In addition, one 574 
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bovine seronegative serum for T. vivax was used as negative control. After the 575 

immunoprofiling, the chips were read using the microarray scanner LI‐COR Odyssey 576 

Imaging System; scanning offset 0.65 mm, resolution 21 µm, scanning intensities of 577 

7/7 (red = 700 nm/green = 800 nm). 578 

 579 

The output from the analysis of the first generation array gave a list of peptides 580 

sorted by decreasing differential intensities. From this analysis, the 600 peptides with 581 

the highest fluorescence intensity values were included in the design of the second 582 

generation microarray. In fact, all proteins from the first generation were 583 

represented in the second generation to some extent, except the FamX antigen 584 

TvY486_0003390. Overall, 66 proteins were displayed as follows: 20 single strain 585 

antigens, 1 neo epitope (new protein not previously identified by the immune 586 

system)  and 45 TvCSP antigens (Figure 3.1). 587 

 588 

Microarray glass slides (3'' x 1'', 75.4 mm x 25.0 mm x 1.0 mm) were coated with 589 

polyethylene glycol (Roeder et al)-based graft copolymer with a thickness of 13.5nm 590 

and an additional amino acid linker (ß-alanine, aspartic acid, ß-alanine). The 591 

microarray was generated with 600 overlapping peptides printed in duplicate (1200 592 

peptide spots in each array copy) of 15 amino acids long with a peptide-peptide 593 

overlap of 14 amino acids. Each slide contained five array copies and in each copy 594 

mouse monoclonal anti-FLAG(M2) (DYKDDDDKAS) Cy3 and mouse monoclonal anti- 595 

hemagglutinin (HA) from Influenza spp (YPYDVPDYAG) Cy5 peptides were used as 596 

controls (12 spots each control peptide) displayed on the top left and bottom right of 597 

each array. 598 

 599 

 600 
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 601 

Figure 3.1.  Map of a peptide microarray chip showing TvCSP families included in the 602 

design and production of the second generation based on their position. The number 603 

of peptides and proteins for each family are listed in the table below the map. The 604 

same map was used to print all chips in microarray glass slides. 605 

 606 

3.2.3.  Immunoprofiling 607 

 608 

The list of samples used for the immunoprofiling are shown in Table 3.2. Fifty-seven 609 

seropositive T. vivax samples were used for the assay, of which 15 were seropositive 610 

for T. vivax only and 42 were a mixed infection with T. congolense. In addition, 611 

seventeen samples divided in three groups of samples were used as negative 612 

controls: seronegative samples for T. vivax from United Kingdom and Malawi (n=4 613 

and n=6, respectively) and Kenyan seropositive samples for T. congolense only (single 614 

infection, n=7). The immunoassay was performed according to the PEPperCHIP 615 

Immunoassay Protocol (Heidelberg, Germany) divided in four main steps: (1) pre- 616 

staining with the conjugate, (2) incubation of sera, (3) staining with secondary 617 

antibody and (4) staining with labelled control antibodies. One slide was pre-stained 618 

with the secondary antibody to obtain local background values and to determine the 619 

possible interaction with the peptides. To achieve this, 250µl standard buffer (PBS, 620 

pH 7.4, 0.05% Tween20) was added to each array for 15 minutes and blocked with 621 
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250µl blocking buffer (standard buffer, 1% BSA) for 45 minutes. The conjugate goat- 622 

anti bovine IgG (H+L) Cy3 (Jackson ImmunoResearch Laboratories) diluted 1:4500 in 623 

staining buffer (standard buffer, 10% blocking buffer) was added to each array and 624 

incubated for 30 minutes at RT on an orbital shaker in the dark. Slides were analysed 625 

with an Agilent G2565CA Microarray Scanner (Agilent Technologies, USA) for red 626 

(670nm) and green (570nm) channels independently with 10um resolution and the 627 

images were saved with 16-bit grayscale. The remaining slides used were not were 628 

pre-stained and only the blocking step was performed to later incubate the serum 629 

samples. 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

 644 

Table 3.2. List of samples used for the detection of immunogenic B-cell epitopes with 645 

the peptide array immunoassay. For sources, see Table 3.1. 646 

 647 

The samples were incubated by diluting them 1:10 in staining buffer, added to each 648 

array and incubated at 4°C overnight on an orbital shaker. The interaction between 649 

T. vivax peptides and the primary sample antibodies were detected with the 650 

conjugate at the same dilution and conditions as the pre-staining step. The staining 651 

with labelled control antibodies was performed according to the PEPperCHIP 652 

Immunoassay Protocol and slides were analysed as previously described. The images 653 

Sample Country N Host 

Positive 

for T. vivax 

Cameroon 26 Cow 

Malawi 4 Cow 

Kenya 24 Cow 

Brazil 3 Calf 

  Total = 57  

Negative 

for T.vivax 

United Kingdom 4 Cow 

Malawi 6 Cow 

Cameroon (positive for 

T.congolense only) 

7 Cow 

  Total = 17  
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obtained from the scanner were used to quantify the data with a PEPSlide Analyzer 654 

software (Sicasys Software GmbH, Heidelberg, Germany) generating raw data with 655 

fluorescence intensity values. 656 

 657 

3.2.4. Data analysis 658 

 659 

The raw data quantified by the PEPSlide Analyzer software contains intensity values 660 

(AU) for each spot in the array. The software produced raw mean values for spots in 661 

duplicate and raw median values for the spot intensities for red and green channel 662 

independently. To achieve the background correction, local background values 663 

obtained from the pre-staining step were subtracted from the raw foreground 664 

median values for each spot. The mean for the foreground median values for spots 665 

in duplicate was calculated and three different approaches were selected to further 666 

analysed the data and compare their results in the identification of significantly 667 

immunogenic peptides (Table 3.4). 668 

 669 

3.2.4.1. First approach – Loeffler et al (2016) 670 

 671 

The identification of significant immunogenic peptides was analysed according to a 672 

previous approach specially designed for high-density peptide microarrays (Loeffler 673 

et al, 2016). This approach takes into account the fluorescence intensity from control 674 

antibodies to identify positive antigens within a group of arrays. The fluorescence 675 

intensity median of FLAG spots of each array was calculated to then estimate the 676 

mean of all the medians from all arrays. A normalization factor was calculated from 677 

the ratio of the median of a specific array to the mean of all FLAG medians and applied 678 

to all intensity values for each array. An inter-array normalization procedure was 679 

performed and analysed as previously described (Sundaresh et al, 2006; Loeffler et 680 

al, 2016). The data were transformed applying the Arsinh transformation previously 681 

described (Durbin et al, 2002; Huber et al, 2002) using the “vsn” package from 682 

Bioconductor (Bioconductor.org) in RStudio to stabilize the variance in the arrays and 683 

quantify differential expression between positives and negative samples. The 684 

samples were divided into two groups: positive (experimental) and negatives 685 
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(control). The standard deviation adjustment was performed using a Bayesian 686 

framework previously described (Baldi and Long, 2001). The identification of 687 

significant immunogenic peptides was analysed with a Bayes regularized unpaired 688 

two conditions t-test performed in Cyber-T (p-value <0.05) (Kayala and Baldi, 2012). 689 

An adjusted p-value < 0.05 was used to define significantly immunogenic epitopes.  690 

 691 

3.2.4.2. Second approach – Sundaresh et al (2006) 692 

 693 

Another protocol for analysing the expression profile of different antigens from 694 

peptide microarrays was previously described by Sundaresh et al, 2006. The data 695 

import, background correction and normalization procedures grouped the samples 696 

and standard deviation adjustment was performed in the same way as in the first 697 

approach. The main difference between these two methods is that there is no 698 

transformation factor step in this second method, and instead a comparison between 699 

each peptide signal and a true negative control signal was applied. The estimation of 700 

the true negative control signal was calculated based on the Rocke and Durbin 701 

technique in which negative control spots are absent in the array (Rocke and Durbin, 702 

2001). After the statistical analysis, the true negative control signal estimation was 703 

compared with the signal intensities, after removing peptides with lower intensity 704 

that the control.  705 

 706 

3.2.4.3. Third approach – limma package 707 

 708 

Raw intensity values from the microarrays were analysed finally using the limma R 709 

package from Bioconductor (Ritchie et al, 2015). The data were imported from the 710 

Genepix files (.gpr) produced by the PepSlide Analyzer, selecting the “genepix” as 711 

source option and green channel intensity analysis only. The “normexp” method was 712 

selected as background correction as this is the best method to assess differential 713 

expression in microarray data when using .gpr files or similar as an output (Silver et 714 

al, 2008). This method takes into account one variable with normal distribution for 715 

the background noise, and another variable with exponential distribution as the 716 

background signal to model the pixel intensities based on them. The normexp is 717 
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improved by a small offset which enables the data to be shifted far from 0 giving only 718 

positive adjusted intensity values. In this case, an offset=1 was selected to stabilize 719 

the variation of log-ratios for low intensity spots.  720 

The normalization between arrays and data transformation was achieved with the 721 

vsn method previously described. A filtering step was performed removing control 722 

peptides (HA and FLAG) from each array and the intensity values from spots in 723 

duplicate were averaged. In order to fit the lineal model, a design matrix was built to 724 

compare positive samples with the controls and the standard errors from the log-fold 725 

changes were balanced using the empirical Bayes method. Since multiple statistic 726 

tests for significant differential expression were carried out (accepted with p-value 727 

<0.05), the false discovery rate was estimated using the Benjamini and Hochberg’s 728 

method (BH) for the (log2fold-change FC >2) (Benjamini and Hochberg, 1995). The 729 

peptides were ranked based on their adjusted p-values as well as their FC generating 730 

a list with upregulated and downregulated peptides. 731 

  732 
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 733 

 734 

Table 3.3. Pipeline for the identification of significant immunogenic peptides from T. 735 

vivax protein microarrays using Loeffler et at methodology (first approach), 736 

Sundaresh et al methodology (second approach) and limma package from 737 

Bioconductor (third approach). 738 

 739 

 740 

 741 

 742 

Analysis step Aim 
First approach 
Loeffler et al 

(2016) 

Second approach 
Sundaresh et al 

(2006) 

Third approach 
Limma 

Data import 
 

- 

Mean of raw 
median values 
for spots in 
duplicate 

Mean of raw 
median values 
for spots in 
duplicate 

Mean raw data 
from genepix 
files 

Background 
correction 

Correct for non-specific 
signal generated by non-
specific biding 

Background 
subtraction 

Background 
subtraction 

Background 
correction with 
normexp 

Additional 
step 

First approach: account 
for serum variations 
 
Second approach: 
account for possible 
contamination between 
adjacent peptides 
 
Third approach: remove 
controls and average 
intensities for spots in 
duplicate 

Normalization 
factor with 
FLAG control 
spots 

True negative 
control signal 
estimation 

Remove 
controls and 
average of spots 
in duplicate 

Normalization 
between 
arrays 

Calibrates intensities of 
all chips and put them in 
the same scale so make 
them comparable 

 
Vsn 

 
Vsn Vsn 

Prediction of 
immunogenic 
peptides 

Group positive and 
negative samples 
together. 

Group arrays 
according to 
pools. 

Group arrays 
according to 
pools. 

Build design 
matrix and fit 
lineal model. 

Smooth standard 
deviation within an 
array. 

Standard 
deviation 
adjustment. 

Standard 
deviation 
adjustment. 

Empirical Bayes 
smoothing 
process. 

T-test and other 
statistical tests 
comparing positives vs. 
negative samples. 

Bayes 
regularised t-
test 

Bayes regularised 
t-test 

Multiple 
statistics for 
differential 
expression. 
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3.2.5.  Expression of recombinant proteins 743 

 744 

3.2.5.1. Selection of T. vivax proteins and AVEXIS expression technique 745 

Six significantly immunogenic T. vivax proteins (‘AJ1-6’, Table 3.4) were selected to 746 

be expressed recombinantly based on the peptide microarray data analysis. The 747 

expression system called AVEXIS (Avidity-Extracellular Interaction Screen) (Kerr and 748 

Wright, 2012) was used to express all AJ proteins since it is specifically intended for 749 

extracellular protein-protein interactions being able to express the entire 750 

extracellular domain of the protein as soluble recombinant proteins using 751 

mammalian cells (Sun et al, 2012). Protein expression (3.2.5.2-6 below) was 752 

conducted by the Cell Surface Signalling laboratory at the Wellcome Trust Institute 753 

(WTI) (Cambridge, UK). 754 

 755 

Name Protein ID Family 

AJ1 TvY486_0020520 FamX (clade 5) 

AJ2 TvY486_0003690 FamX (clade 13) 

AJ3 TvY486_0037990 FamX (clade 11) 

AJ4 TvY486_0031450 Fam30 

AJ5 TvY486_0004900 Fam36 

AJ6 TvY486_0900440 FamX (clade 3) 

 756 

Table 3.4. List of selected proteins to be recombinantly expressed by the AVEXIS 757 

technique. Four FamX members each from a different clade and one protein from 758 

Fam30 and Fam36 respectively were selected on the basis on the peptide microarray 759 

analysis as the most immunogenic proteins. 760 

 761 

3.2.5.2. Design and construction of vector expressions 762 

 763 

The expression vectors were amplified in Escherichia coli using the MultiShot 764 

Stripwell TOP10 Chemically competent cells ampicillin resistant following the 765 

manufacturer’s instructions (Invitrogen, USA). To transform the competent cells, 2µl 766 

of circular plasmid was added and selective plates were used to seed 10µl cells and 767 
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culture them overnight at 37˚C. Transformed E. coli (single colony) were grown in 768 

50ml LB medium overnight at 37˚C. 769 

 770 

3.2.5.3. Plasmid purification 771 

In order to purify the plasmid DNA, the PureLink HiPure Plasmid DNA Purification kit 772 

(Invitrogen, USA) was used following the manufacturer’s instructions. In the final step 773 

of the maxiprep procedure, the pellet containing the purified DNA was air-dried for 774 

10 minutes and resuspended in 500µl nuclease free water instead of TE buffer. DNA 775 

concentration was quantified by Nanodrop (Thermo Scientific, USA). 776 

 777 

3.2.5.4. HEK293-6E cell culture and transfections 778 

 779 

Recombinant proteins were produced by transient transfection using a HEK293-6E 780 

mammalian cell as expression system. Cell culture was performed as previously 781 

described (Kerr and Wright, 2012; Sun et al, 2012). Briefly, 5x105 cells/ml were 782 

seeded the day before transfection in 500ml Erlenmeyer flasks containing 90ml 783 

Freestyle 293 media (Life Technologies, USA) supplemented with 0.05%v/v G418 784 

(ThermoFisher Scientific, USA) and 100µM of D-biotin (Sigma Aldrich, Germany). The 785 

cells were cultured on a shaking platform at 125rpm, 37˚C, 70% humidity and 5% CO2. 786 

All the proteins were expressed in two forms: one biotinylated and purified proteins 787 

no bio-tagged.  788 

 789 

The transfections were performed the next day by adding 100µl (1µg/ml) plasmid 790 

DNA for purified proteins or in the presence of 10µl (1mg/ml) biotin ligase plasmid 791 

BirA (Addgene) for biotinylated forms to 5ml of pre-warmed culture media (plasmid 792 

DNA and plasmid BirA at a 10:1 ratio). Pre-warmed culture media at a final volume of 793 

5ml containing 300µl (1mg/ml) transfection reagent polyethylenimine (Bezerra et al) 794 

(Longo et al, 2013) was combined with the first tube containing the plasmid DNA. The 795 

transfection mixture was incubated for 3 minutes at RT and added to the culture. The 796 

cells were cultured for 5 days to ensure a maximum recombinant protein yield using 797 

the same conditions as before. After this time, cultures were harvested by collecting 798 

the transfected culture and centrifuged at 3800g for 15min at 4°C. Non-bio-tagged 799 
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proteins were purified with HisTrap™ chromatography columns, a protocol 800 

previously described (Sun et al, 2012).  801 

 802 

3.2.5.5. Protein normalization 803 

 804 

A dialysis was performed using the supernatant from the previous step to remove 805 

the unconjugated D-biotin. This procedure enables AJ proteins to be used in ELISAs 806 

by eliminating the biotin that might compete with the protein for the streptavidin 807 

binding sites (Kerr and Wright, 2012). The supernatant was transferred into a 30cm 808 

snakeskin pleated dialysis tubing (MWCO=10,000, Thermo Scientific, USA) and 809 

dialyzed against PBS at 4°C overnight on a stirring plate changing the PBS every 2 810 

hours. Finally, the sample was filtered through a 0.22µM filter and stored at 4°C. The 811 

concentration of biotinylated proteins were determined by ELISA as previously stated 812 

(Bushell et al, 2008; Kerr and Wright, 2012). Using Nunc streptavidin-coated plates 813 

(Thermo Scientific, USA), two-fold serial dilutions were incubated for 1h at RT. The 814 

protein activity was measured with the conjugate mouse anti-His-HRP (C-term) 815 

(Miltenyi Biotec, Germany) diluted 1:1000. The 3,3',5,5'-tetramethylbenzidine (TMB) 816 

substrate solution (Merk Millipore, USA) was added to each well and the plate was 817 

read at 650nm after 5min using a spectrophotometer. 818 

 819 

3.2.5.6. Confirmation recombinant proteins  820 

 821 

The successful expression and detection of AJ proteins was performed by SDS-PAGE 822 

by mixing 1µg of each protein with 15µl of sample buffer (Laemmli 2X concentrate, 823 

Sigma-Aldrich, Germany) and incubated at 95°C for 5 minutes. The mixture was 824 

loaded and separated by electrophoresis on a 12% acrylamide gel. The separated 825 

proteins were transferred from the gel onto nitrocellulose membrane by wet 826 

electroblotting and blocked with PBS pH 7.4, 4% skimmed milk (Marvel) (blocking 827 

buffer) overnight at 4°C. The membrane was washed with PBS-Tween20 0.05% and 828 

the reaction was detected using the conjugate goat anti-biotin HRP (Sigma-Aldrich, 829 

Germany) 1:2000 in blocking buffer for 2h at RT with agitation. The protein was 830 
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visualized by adding 3,3’ diaminobenzidine (DAB SIGMAFAST, Sigma-Aldrich, 831 

Germany) substrate for 15min and then stopped the reaction with ddH2O. 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 

 861 

 862 
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3.3. RESULTS 863 

 864 

3.3.1. Serum screening 865 

 866 

Before serum samples could be used authentically to evaluate the natural 867 

immunogenicity of TvCSP proteins, it was first necessary to confirm definitively that 868 

samples originated from animals infected with T. vivax using the Very-Diag test. 869 

Serological screening was first performed to 24 Kenyan serum samples previously 870 

diagnosed positive for either T. vivax or T. congolense to evaluate the reliability of 871 

the serological test. From these, 18 samples were positive for T. vivax by microscopy 872 

and PCR; 4 samples were positive for T. congolense by microscopy; and 2 samples 873 

were negative for both parasites by microscopy. The results show that of the 18 874 

samples previously diagnosed as T. vivax-positive, six gave a positive result with the 875 

Very-Diag test (Figure 3.2A).  Likewise, of the four T. congolense-positive samples, 876 

only two were positive with the test (Table 3.5).  Three samples were diagnosed 877 

negative while 13 were diagnosed as mixed infections by the Very-Diag test, giving 878 

positive results for the two parasites.  The latter are false positives results for T. 879 

congolense indicating that the specificity with Very-Diag test was less than expected. 880 

 881 

From the naturally infected samples, 81/121 Cameroonian sera were positive for 882 

single or mixed infection while 40 were parasite-negative (Table 3.5). None of the 40 883 

Malawian sera were positive for T. vivax alone. However, nine were seropositive for 884 

T. congolense and another seven for mixed infection. All naturally infected Brazilian 885 

cattle were negative for T. vivax by Very-Diag test, however three were apparently 886 

positive for T. congolense (Figure 3.2B). These three Brazilian samples must be false 887 

positives given that T. congolense is not found outside of Africa. Serum from 888 

experimentally-infected sheep in Brazil tested positive for T. vivax, even though the 889 

test is designed for cattle (Figure 3.2B), suggesting that the Very-Diag test can be used 890 

with other hosts besides cattle. All calf samples tested positive for mixed infections, 891 

even though they came from a pool of six sera from three animals experimentally 892 

infected with T. vivax Lins strain (Figure 3.2B). Moreover, two individual samples from 893 

the pool were tested individually both giving mixed infection results (Table 3.5).  894 
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 895 

 896 

Place of 

origin 

No. 

samples 
Host Tv Tc 

Mixed 

infection 
Negative 

Cameroon 121 Cattle 7 55 19 40 

Malawi 40 Cattle 0 9 7 24 

Kenya-MP 24 Cattle 18 4 0 2 

Kenya-VD 24 Cattle 6 2 13 3 

Brazil 15 Cattle (n=11) 0 3 0 8 

Sheep (n=1) 1 0 0 0 

Calf (n=3) 0 0 3 0 

 897 

Table 3.5. Comparison of results obtained from samples from naturally and 898 

experimentally infected livestock using Very-Diag test. Tv: T. vivax, Tc: T. congolense, 899 

Kenya-MP: samples previously diagnosed by microscopy and PCR, Kenya-VD: samples 900 

diagnosed with Very-Diag test. 901 

  902 
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 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

 926 

Figure 3.2. Examples of serum screening using Very-Diag tests. A) Example of four 927 

Very-Diag tests using Kenyan sera from naturally infected cattle previously tested by 928 

microscopy and PCR to be positive for T. vivax. B) Results of Brazilian samples applied 929 

to the Very-Diag tests using naturally and experimentally infected sera.  (1) and (2) 930 

naturally infected cattle. (3) pooled sera from experimental infections in sheep and 931 

(4) pool sera from experimental infection in calves. 932 

    1                       2                3               4 A. 

B. 
    1                       2                3               4 
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3.3.2. Peptide microarray analysis 933 

 934 

3.3.2.1. Raw data  935 

 936 

Sera confirmed to be T. vivax-seropositive were applied to a custom peptide 937 

microarray containing 66 TvCSP proteins, representing 10 gene families. After the 938 

application of a fluorescent, anti-bovine secondary antibody, fluorescence from each 939 

peptide spot was measured and compared to negative controls provided by naïve UK 940 

cattle. The comparison between raw fluorescent images of microarrays from positive 941 

and negative samples revealed distinct patterns. Peptide spot intensities showed a 942 

very clear and strong response in almost all positive samples regardless the country 943 

compared to negative controls (Figures 3.3-3.9). Seronegative British and Malawian 944 

samples showed almost no fluorescence with sporadic and weak binding at random 945 

positions in the array (Figure 3.7 and 3.8). T. congolense seropositive samples showed 946 

a minimum binding with low signal intensities (Figure 3.9). T. vivax positive samples 947 

produced high fluorescence intensities to certain spots, mostly at the top of the array, 948 

which indicates high antibody titres recognising the first 60 peptides (Figures 3.3-3.6). 949 

In fact, the intensity of some of these spots were as high as the anti-FLAG peptide 950 

controls, displayed at the top left and bottom right of the array. 951 

 952 

The mean of raw median values for each country of origin was calculated and 953 

compared to examine variation by location. Although there are differences in the 954 

fluorescence intensity values (AU) between locations (Figure 3.10), it is clear that the 955 

mean signal intensity peaks showing the strongest antibody response corresponded, 956 

in all locations but not in the negative controls, to adjacent spots in the first row of 957 

the array. Peptides located in these positions derive almost entirely from FamX 958 

proteins (58 peptides), although one Fam44 peptide and another from a single-copy 959 

gene TvY486_0025790 were also among the highest mean signal intensity peaks. The 960 

Brazilian population showed the highest intensity values reaching peaks >19000 AU 961 

followed by the Cameroonian population peaks at 6000 AU. Kenyan and Malawian 962 

samples displayed intensities of 4000 AU, but with a different pattern apparently less 963 
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complex than the other positive populations. Overall, peptides located in positions 964 

other than the first and second rows on the array were very variable in intensity. The 965 

intensity pattern from the negative controls was slightly different displaying peaks at 966 

random positions with different fluorescence intensities. Moreover, some peptides 967 

presented a stronger response in the negative controls compared to seropositive 968 

samples like the peptide number 377 (264GIDTYVEGLGEIDTL278) from a single strain 969 

antigen and the peptide number 599 (179 TAVPDDCQVGNDTNS 193) from the Fam28 970 

protein TvY486_0040160. 971 

 972 

 973 

 974 

 975 

 976 

 977 

 978 

 979 

  980 
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CAMEROON 981 

 982 

 983 

 984 

 985 

 986 

 987 

 988 

 989 

 990 

 991 
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 999 
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 1003 

 1004 

 1005 

 1006 

Figure 3.3. Spot intensities obtained from PEPperPRINT peptide arrays using naturally 1007 

infected Cameroonian sera. Each microarray chip was incubated with an individual 1008 

sample. Three panels are showed on representative of all sera. The peptide array 1009 

control spots are located at the top left and bottom right of each array (highlighted 1010 

in white boxes). 1011 
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MALAWI 1012 
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 1034 

 1035 

 1036 

 1037 

Figure 3.4. Spot intensities obtained from PEPperPRINT peptide arrays using naturally 1038 

infected Malawian sera. Each microarray chip was incubated with an individual 1039 

sample. Three panels are showed on representative of all sera. The peptide array 1040 

control spots are located at the top left and bottom right of each array (highlighted 1041 

in white boxes).   1042 
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KENYA 1043 

Figure 3.5. Spot intensities obtained from PEPperPRINT peptide arrays using naturally 1044 

infected Kenyan sera. Each microarray chip was incubated with an individual sample. 1045 

Three panels are showed on representative of all sera. The peptide array control 1046 

spots are located at the top left and bottom right of each array (highlighted in white 1047 

boxes). 1048 
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BRAZIL 1049 

Figure 3.6. Spot intensities obtained from PEPperPRINT peptide arrays using 1050 

experimentally infected samples from Brazil. Each microarray chip was incubated 1051 

with an individual sample. Three panels are showed on representative of all sera. The 1052 

peptide array control spots are located at the top left and bottom right of each array 1053 

(highlighted in white boxes). 1054 
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UNITED KINGDOM 1055 

Figure 3.7. Spot intensities obtained from PEPperPRINT peptide arrays using 1056 

seronegative era from United Kingdom. Each microarray chip was incubated with an 1057 

individual sample. Three panels are showed on representative of all sera. The peptide 1058 

array control spots are located at the top left and bottom right of each array 1059 

(highlighted in white boxes).   1060 
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MALAWI NEGATIVE CONTROL 1061 
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 1086 

Figure 3.8. Spot intensities obtained from PEPperPRINT peptide arrays using 1087 

seronegative era from Malawi. Each microarray chip was incubated with an individual 1088 

sample. Three panels are showed on representative of all sera.  The peptide array 1089 

control spots are located at the top left and bottom right of each array (highlighted 1090 

in white boxes). 1091 
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SAMPLES SEROPOSITIVE FOR T. CONGOLENSE 1092 
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Figure 3.9. Spot intensities obtained from PEPperPRINT peptide arrays using 1118 

seropositive sera for T. congolense from Cameroon. Each microarray chip was 1119 

incubated with an individual sample. Three panels are showed on representative of 1120 

all sera.  The peptide array control spots are located at the top left and bottom right 1121 

of each array (highlighted in white boxes). 1122 
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 1130 

 1131 

Figure 3.10 (from previous page). Scatter plot displaying the raw signal intensity (AU) 1132 

of (A) all median values (first and second approach) and (B) raw mean values (third 1133 

approach) for each group of samples. The IgG responses against T. vivax peptides are 1134 

according to their position in the array. The pink area corresponds to the first 60 1135 

peptides. 1136 

B. 
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3.3.2.2. Between-array value normalization 1137 

 1138 

In order to calculate the significance of antibody recognition of each peptide, it is 1139 

necessary to correct raw values for variation in detection between arrays. Thus, inter- 1140 

array normalization of raw intensity values was performed to achieve a constant 1141 

signal to noise ratio and therefore make all the arrays comparable. No intra-array 1142 

normalization was applied since the between-array normalization is the main 1143 

procedure for a single-channel array analysis (Ritchie et al, 2015). In all approaches, 1144 

normalization was carried out using the vsn package. 1145 

 1146 

Raw versus normalized values for all array spots are shown in Figure 3.11, comparing 1147 

the second and third normalization approaches described in Section 3.2.4. 1148 

Normalized values from the first and second approaches were almost identical, since 1149 

these methods differ only in data pre-processing. In the second approach, the 1150 

normalized values were grouped according to locations and gene families. 1151 

Normalized values ranging from 7 to 13 in intensity were the highest peaks, belonging 1152 

to FamX in all positive samples. Other intensity peaks were observed in Fam32, 1153 

Fam42 and some peptides from single-copy proteins.  1154 

 1155 

The distribution of signal intensities normalized with limma showed a clear difference 1156 

when compared with the raw data (Figure 3.11B). Before normalization, signal 1157 

intensities from different array chips differed in scale and showed variation in peaks 1158 

(Figure 3.10B). After normalization, such variations potentially due to manipulation 1159 

and manufacture of the array chip was removed, harmonising the values between all 1160 

samples and superimposing all curves. The normalized signal intensity values ranged 1161 

from 4 to 13, and the highest values were again derived from FamX peptides. Indeed, 1162 

regardless of the approach to data normalization, the first 60 peptides based on their 1163 

position in the array (i.e. pink areas of Figure 3.11) unequivocally displayed the 1164 

highest signal intensity values among T. vivax-positive sera, but not in negative 1165 

controls. 1166 
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1170 

 1171 

 1172 

Figure 3.11 (from previous page). Scatter plot displaying normalized intensity 1173 

values for all samples by location, based on the second (Acton) and third 1174 

normalization approach (B.) as described in Table 3.3. The pink area corresponds 1175 

to the first 60 peptides in the array. 1176 

B. 
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3.3.2.3. Identification of significant immunogenic peptides 1177 

 1178 

Analysis of signal intensities obtained from the T. vivax-positive serum samples 1179 

identified 48, 31 and 36 peptide spots that had significant differences (p < 0.05) in 1180 

fluorescence relative to negative controls, when using the first, second and third 1181 

analysis method respectively. No negative controls from seronegative Malawian and 1182 

British cattle showed a significant response relative to a T. vivax-positive samples. 1183 

However, when p-values were adjusted for the false discovery rate, only the third 1184 

approach using the limma package gave significant peptides. No significant peptide 1185 

was identified with the first or second approach, under which all peptide spots 1186 

displayed a log2 fold-change in intensity (i.e. T. vivax-positive to negative) less than 1187 

two.  1188 

 1189 

Of the 600 different peptide spots displayed in the microarray, 39 (6.5%) produced a 1190 

significant response from T. vivax-positive serum relative to uninfected controls 1191 

before statistical correction; five of these remained significant (1%) using the 1192 

adjusted p-value and limma analysis. Of the 48 peptides found to be significant 1193 

before adjustment using the first approach, 23 belong to FamX proteins, specifically 1194 

TvY486_0020520 from clade 5, TvY486_0003690 from clade 7, TvY486_0039530 1195 

from clade 1, TvY486_0900440 from clade 3, TvY486_0037990 from clade 11 and 1196 

TvY486_0019690 from clade 10. Besides these, 10 significant peptides belong to 1197 

single-copy proteins, one each from Fam28, Fam36 and Fam44 respectively, six from 1198 

Fam30, four from Fam3 and two from Fam42. All 31 significant peptides using the 1199 

second approach corresponded to the same FamX proteins, with the omission of 1200 

TvY486_0019690. Likewise, the significant peptides identified using limma 1201 

corresponded to these same FamX proteins. The five epitopes identified by limma 1202 

that remained significant after statistical adjustment all belong to FamX (Figure 3.12).  1203 

 1204 

Table 3.7 shows the list of significant peptides identified by at least two different 1205 

approaches. Overall, 24 epitopes were detected in at least two methods, of which 19 1206 

were identified by all three approaches (according to unadjusted p-values). Based on 1207 
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these results, six proteins were identified that stimulated a robust antibody response 1208 

in naturally infected livestock compared to uninfected controls. These are called AJ1- 1209 

6 hereafter. These proteins are encoded by uncharacterised TvCSP genes: 1210 

TvY486_0020520 (AJ1), TvY486_0003690 (AJ2), TvY486_0037990 (AJ3), 1211 

TvY486_0031450 (AJ4), TvY486_0004900 (AJ5) and TvY486_0900440 (AJ6). The 1212 

position of the epitopes within each protein is shown in Figure 3.13A; epitopes are 1213 

located in the non-cytoplasmic domain near the TM domain in the C-terminal 1214 

position. Only TvY486_0020520 displays two adjacent epitopes. The position of these 1215 

epitopes was concordant with epitopes predicted in silico (Figure 3.13B). 1216 
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 1217 

Table 3.6.  List of significant peptides identified from the peptide microarray analysis 1218 

using at least two approaches. Significant peptides obtained from the first and second 1219 

approach are based on the unadjusted p-values while the third approach using limma 1220 

shows significant peptides based on the adjusted p-values. Peptides are assigned to 1221 

their corresponding amino acid sequence on the family and protein ID. FC; fold 1222 

change values. 1223 

Peptide sequence 
AA 

range 

T.vivax 

family 

TvY486 

ID 

First approach Second approach Third approach 

LogFC P-value LogFC P-value LogFC P-value 

KTGDGGDVVVSEESD 318-332 FamX 0020520 1.000 4.77E-02 1.083 2.15E-02 2.061 0.039 

VSEESDSELIDLAVE 327-341 FamX 0020520 1.000 1.44E-02 1.112 3.78E-03 - - 

AVLKTGDGGDVVVSE 315-329 FamX 0020520 1.000 3.60E-02 1.085 7.56E-03 - - 

DVVVSEESDSELIDL 324-338 FamX 0020520 1.000 2.57E-02 1.078 1.62E-02 - - 

RSSADAPLEPTARDS 293-307 FamX 0020520 1.000 4.56E-02 1.051 1.37E-02 - - 

SEESDSELIDLAVEA 328-342 FamX 0020520 1.000 4.12E-03 1.118 2.31E-03 3.303 0.039 

DSELIDLAVEASGQH 332-346 FamX 0020520 1.000 8.30E-03 1.070 8.89E-03 - - 

ITADDIDAELIEAVT 324-338 FamX 0003690 1.000 3.60E-02 1.113 4.94E-03 - - 

VVSEESDSELIDLAV 326-340 FamX 0020520 1.000 2.60E-02 1.100 5.50E-03 - - 

SDSELIDLAVEASGQ 331-345 FamX 0020520 1.000 2.78E-02 1.083 8.80E-03 - - 

VLKTGDGGDVVVSEE 316-330 FamX 0020520 1.000 1.20E-02 1.096 6.55E-03 2.091 0.040 

ADDIDAELIEAVTGP 326-340 FamX 0003690 1.000 3.55E-02 1.092 6.75E-03 - - 

DGSDLELIELALEES 353-367 FamX 0039530 1.000 3.28E-02 1.061 4.71E-02 - - 

DDIDAELIEAVTGPA 327-341 FamX 0003690 1.000 4.77E-02 1.072 2.28E-02 - - 

EESDSELIDLAVEAS 329-343 FamX 0020520 1.000 2.89E-03 1.120 1.67E-03 3.784 0.003 

VTVESEDLIDLATQV 315-329 FamX 0900440 1.000 4.47E-02 1.058 2.34E-02 - - 

TADDIDAELIEAVTG 325-339 FamX 0003690 1.000 8.78E-03 1.120 1.39E-03 - - 

SSADAPLEPTARDST 294-308 FamX 0020520 1.000 2.35E-02 1.067 5.71E-03 - - 

DLMDLVDAVGPLSDS 326-340 FamX 0037990 1.000 3.60E-02 1.047 3.71E-02 - - 

ADAPLEPTARDSTTA 296-310 FamX 0020520 1.000 4.90E-02 1.040 3.35E-02 - - 

TVESEDLIDLATQVS 316-330 FamX 0900440 - - 1.046 3.68E-02 - - 

IDAELIEAVTGPASS 329-343 FamX 0003690 - - 1.048 4.84E-02 2.524 0.039 

KYDALSTKIGEITIS 168-182 Fam30 0031450 1.000 0.048 1.085 4.90E-02 - - 

RLESEVLNTEKKVGD 428-442 Fam36 0004900 1.000 4.47E-02 1.034 0.044 - - 
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 1224 

 1225 

Figure 3.12. Volcano plot of limma results comparing positive samples versus 1226 

controls. The data for all the peptides analysed are plotted as log2 fold changes (X- 1227 

axis) versus -log10 of the adjusted p-value (Y-axis). The peptides with a significant 1228 

adjusted p-value and log2FC >2 are highlighted as red dots. The five significant 1229 

peptides correspond to FamX proteins labelled as their antigen names (AJ1 and AJ2). 1230 
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 1231 

 1232 

 1233 

 1234 

Figure 3.13. A) Location of the significant epitopes identified in the peptide 1235 

microarray analysis on the protein linear structure. In silico structural description of 1236 

the proteins with the different motifs expressing possibly cell-surface location is also 1237 

represented. B) Comparison of best peptides from the peptide microarray versus the 1238 

in silico predicted epitopes. Only in silico predicted epitopes located at the same 1239 

position of the experimental peptides are represented.  1240 

A. 

B. 
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3.3.3. Expression of recombinant proteins 1241 

 1242 

The AVEXIS platform was used to express six T. vivax cell-specific surface proteins 1243 

from FamX selected on the basis of the peptide microarray results. The entire 1244 

ectodomain successfully expressed in HEK293-6E mammalian cells as soluble 1245 

recombinant proteins by the Wright laboratory (WTSI). Each protein was expressed 1246 

in two batches: 1) as no bio-tagged antigens purified using HisTrap chromatography 1247 

columns on a ÄKTA protein purification system (GE Healthcare, USA) and 2) the 1248 

second batch are normalized non-purified bio-tagged proteins allowing their 1249 

interaction with streptavidin-coated ELISA plates.  1250 

 1251 

Bio-tagged proteins were dialyzed after the transfection of HEK293-6E cells 1252 

recovering a final volume of 50ml for AJ12, AJ3 and AJ6 respectively and 400ml for 1253 

AJ1. All recombinant antigens were evaluated on their capacity to induce a protective 1254 

immunity. A normalisation procedure part of AVEXIS assay was performed to identify 1255 

the expression levels of each recombinant protein (Kerr and Wright, 2012). Protein 1256 

concentrations were determined by indirect ELISA using streptavidin coated-plates. 1257 

In the case of AJ1 protein, the results illustrate a clear difference in concentration 1258 

between 1:2-8 and 1:2-12 dilutions. The highest OD value obtained before the protein 1259 

concentration decreases was 1.1093 for the 1:2-8 dilution therefore selecting it as 1260 

optimal dilution to be used in the subsequent experiments. AJ2, AJ3 and AJ6 proteins 1261 

were also normalized using eight dilutions. All these proteins showed similar 1262 

expression levels having the same dilution in which they saturate the biotin biding 1263 

sites. The dilution factor selected for AJ2, AJ3 and AJ6 was 1:50. Based on this results, 1264 

the expression level of AJ1 was greater than any other recombinant protein 1265 

expressed. Despite this difference, proteins were not concentrated to be used for 1266 

further experiments.  1267 

 1268 

The expression of all T. vivax recombinant non bio-tagged proteins were confirmed 1269 

and quantified by western blot analysis and extinction coefficient calculation 1270 

respectively. The blot performed under no denaturing conditions showed the 1271 
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presence of a prominent band with apparent molecular weight of 50kDa for each 1272 

recombinant protein (Figure 3.14). Based on the extinction coefficient calculation, 1273 

the purified proteins were also abundantly expressed providing a concentration of 1274 

4.3µg/ml for AJ1, 5.1µg/ml for AJ2, 9.8µg/ml for AJ3 and 2.5 µg/ml for AJ6. However, 1275 

higher molecular weight bands were also observed in all antigens possibly to non- 1276 

specific binding, as a result of post-translational modifications the proteins present 1277 

or protein aggregation. These results confirm the abundant expression of all 1278 

recombinant proteins in mammalian cells. Moreover, the western blot also indicates 1279 

all proteins were successfully purified. Taken together, these findings confirmed that 1280 

AJ1, AJ2, AJ3 and AJ6 were expressed as purified soluble recombinant proteins being 1281 

able to be used for mice vaccination. 1282 

 1283 

 1284 

Figure 3.14. A) Normalization of AJ1 protein using two-fold serial dilutions. B) 1285 

Normalization of AJ2, AJ3 and AJ6 proteins. C) Western blot analysis confirming 1286 

protein expression. One microgram of each antigen were separated on a 12% 1287 

acrylamide gel and transferred to a nitrocellulose membrane and detected using an 1288 

anti-biotin secondary antibody HRP (right). M: molecular weight marker. Data 1289 

prepared in the laboratory of Dr G. Wright (WTSI). 1290 

C. 
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3.4. DISCUSSION 1291 

 1292 

The purpose of this chapter was to evaluate the immunogenicity of a panel of TvCSP 1293 

proteins, thought to be plausible components of the T. vivax cell-surface coat based 1294 

on their in silico characterisation, in natural livestock infections, and so identify the 1295 

most plausible antigens for vaccine development. Peptides belonging to FamX 1296 

members displayed a greater response when assayed than any other TvCSP family. 1297 

Indeed, of all TvCSP families, only FamX appears to reliably elicit robust antibody 1298 

responses in livestock regardless of location. For this reason, FamX was analysed 1299 

further, and various immunogenic epitopes were discovered.  1300 

 1301 

Prior to microarray analysis, livestock sera were screened using the Very-Diag test to 1302 

identify those genuinely seropositive for T. vivax. The test has a specificity of 95.5% 1303 

and a sensitivity of 92.0% for T. congolense and 98.2% and 98% for T. vivax 1304 

respectively (Boulangé et al, 2017). This performance is apparently superior to other 1305 

diagnostic tests that can discriminate T. vivax infections from other African 1306 

trypanosomes and related species. To date, there are several PCR tests using a variety 1307 

of primers to detect T. vivax DNA (Masiga et al, 1992; Desquesnes, 1997; Desquesnes 1308 

et al, 2001; Cox et al, 2005; Njiru et al, 2005; Hamilton et al, 2008; Fikru et al, 2014; 1309 

Tran et al, 2014). However, in some cases these tests cannot detect very low levels 1310 

of parasitemia. ELISA diagnostic techniques can detect antibodies against the 1311 

parasite with a sensitivity and specificity of 97.6% and 96.9% respectively when 1312 

evaluated in naturally and experimentally infected cattle (Madruga et al, 2006). 1313 

However, despite several attempts for the identification of T. vivax in cattle sera with 1314 

this method (Eisler et al, 1998), there is no specific antigen has been described yet. 1315 

Furthermore, because of the low sensitivity and cross-reactivity some serological 1316 

diagnostic tests may have, it is preferable to detect circulating antigens rather than 1317 

antibodies since they are a real indicative of actual infection. The Very-Diag test is the 1318 

first such antibody-based test for T. vivax.  1319 

 1320 
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The Very-Diag test identified 118 seropositive samples for T. vivax and mixed 1321 

infections with T. congolense in Kenyan, Malawian and Cameroonian sera. In 1322 

addition, the test also gave three false positives in Brazilian calf sera; they were 1323 

positive for mixed infection even though the animals were experimentally infected 1324 

with T. vivax only. This error may be due to sequence similarity between the TvGM6 1325 

antigen upon which the test is based and its homolog in T. congolense; the antigens 1326 

contain expressed repeat units that are 49% identical at the amino acid level 1327 

(Boulangé et al, 2017).  1328 

 1329 

Since there are several published techniques with distinct procedures for microarray 1330 

analysis (Robinson et al, 2002; Gaseitsiwe et al, 2008; Cui et al, 2016; Scholma et al, 1331 

2016; Weber et al, 2017) and no widely agreed standard, three different approaches 1332 

were used to analyse the fluorescent responses of the peptide microarray to host 1333 

serum. The first approach (Loeffler et al, 2016) provides a complete protocol that has 1334 

been used successfully to identify epitopes for vaccine development. The second 1335 

approach (Sundaresh et al, 2006) was the first publication to apply microarray 1336 

techniques to analyse protein microarray data. There are only slight variations in 1337 

these two approaches. Between these two methods and the third (limma package), 1338 

there are three main differences: 1) the raw mean signal intensity was used instead 1339 

of raw median; 2) a normexp background correction was performed instead of the 1340 

normal background subtraction; and 3) the design of a matrix that allows arrays to 1341 

be compared based on positive or negative samples.  1342 

 1343 

Twenty-four significant responses from peptide spots were identified by at least two 1344 

approaches using the raw (unadjusted) p-value of 0.05 and a log10FC of >2 as 1345 

thresholds, representing 8% and 5.16% of all screened epitopes using the first and 1346 

second approach respectively. Of these, 13 epitopes belonged to the FamX protein 1347 

TvY486_0020520 (AJ1), which had the highest number of epitopes of any TvCSP. All 1348 

FamX epitopes were located near the C-terminal domain, between residues 293-367 1349 

in the protein sequence. The limma method was the only approach that gave 1350 

significant peptides with log2FC >2, representing 1% of all peptides in the array, the 1351 
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p-value was adjusted for false discovery. It has been demonstrated in previous 1352 

studies that genes or peptides displaying a high fold-change can have a non- 1353 

significant p-value nonetheless and vice versa (Jung et al, 2011). Peptides displaying 1354 

a statistical near- or non-significance may still be taken into consideration for further 1355 

analysis if they respond strongly in assays of infected serum, since they might have 1356 

biological relevance for vaccine development.  1357 

 1358 

Epitopes predicted by the peptide microarray were generally in agreement with in 1359 

silico predictions that genuine epitopes were located near to the C-terminal domain 1360 

of FamX protein sequences. The proportion of hydrophobic amino acids in these 1361 

epitopes were 20%-50%, the most common residues being Alanine (A), Glutamic acid 1362 

(E), Serine (S) and Threonine (T) and especially Valine (V), suggesting that these must 1363 

be important for IgG binding epitopes.  1364 

 1365 

The complexity of the response pattern and the relatively high number of single 1366 

peptide interactions in an array can lead to unspecific binding and cross-reactivity 1367 

with the peptides analysed (Katz et al, 2011). Comparison of seropositive versus 1368 

seronegative samples as a basis for understanding humoral immunity has been used 1369 

for related organisms for vaccine development, diagnosis and identification of 1370 

antigenic determinants (Freitas et al, 2011; de Oliveira Mendes et al, 2013; Balouz et 1371 

al, 2015; Loeffler et al, 2016). For example, microarrays were applied to T. cruzi 1372 

infections of humans and identified significant human B-cell epitopes in 1% of the 1373 

proteins analysed (Carmona et al, 2015). In Plasmodium falciparum, the antibody 1374 

response before and after a malaria season recognized 491 immunogenic proteins 1375 

from the 2320 used in the microarray (Crompton et al, 2010). The results in this 1376 

chapter showed significant immunogenic epitopes representing 4% (raw p-value) and 1377 

1% (adjusted p-value) of unique and specific T. vivax epitopes. In this context, the 1378 

results showed similar rates of global significant and non-overlapping epitopes with 1379 

the T. cruzi study despite major differences in data normalization and analysis. 1380 

 1381 

 1382 
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The properties of FamX proteins that make them particularly immunogenic are 1383 

unclear, but will perhaps include molecular composition, protein structure, 1384 

abundance and high epitope density in the case of AJ1 (Liu and Chen, 2005). The 1385 

molecular weight of the protein also contributes to their immunogenicity. Overall, it 1386 

is well stablished that small proteins (<10kDa) are poorly immunogenic and that 1387 

immunogenicity tends to increase as the protein increases its size (Crumpton, 1974). 1388 

The successful expression of AJ1-3 and AJ6 proteins demonstrated that all of them 1389 

have a molecular weight of ~50kDa giving them the characteristics to elicit an 1390 

antibody response. The determinants of an optimal immune response not only 1391 

depend on the immunogenicity and nature of the antigen but also on the genetic 1392 

capacity of the host to respond (Cruse and Lewis, 2010). Moreover, other factors like 1393 

cell environment and the production of molecules like cytokines are also necessary 1394 

for a successful activation and response. It will be vital to consider the mechanisms 1395 

that FamX can trigger during an efficient immune response in considering it as a 1396 

vaccine candidate. 1397 

 1398 

This chapter has also showed that four immunogenic T. vivax proteins can be 1399 

expressed in recombinant form. AJ1-3 and 6 were expressed using AVEXIS, an 1400 

expression system using mammalian cells, which enables the addition of 1401 

posttranslational modifications (Kerr and Wright, 2012). The latter is critical when 1402 

extracellular protein-protein interactions are implicated since membrane proteins 1403 

usually contains glycosylation sites as part of their structure. Moreover, the AVEXIS 1404 

method is sensitive  enough to detect weak membrane receptor-protein interactions, 1405 

decreasing the low false-positive rate (Bushell et al, 2008). This is of great importance 1406 

since other expression methods available are suitable for intracellular protein 1407 

interactions only (Sun et al, 2012). The expression of AJ1-3 and AJ6 as soluble proteins 1408 

occurred with high yields and reproduced their complete ectodomains. This indicates 1409 

that they can be appropriately folded and, therefore, any conformational epitopes 1410 

will be exposed and accessible for antibody binding (Hunter et al, 2019). Interestingly, 1411 

AJ4 and AJ5, the only two non-FamX protein members, could not be expressed 1412 

despite being predicted to be secreted proteins. Possible explanations for this 1413 
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unsuccessful result could that the proteins were expressed at very low yields that 1414 

cannot be detected on a gel or that hydrophobic regions in both proteins created 1415 

protein insolubility (Khan, 2013). Having expressed the extracellular regions of AJ1, 1416 

AJ2, AJ3 and AJ6 entirely, their role in host pathogen interactions can now be further 1417 

analysed.  1418 

 1419 

3.5. CONCLUSION 1420 

 1421 

Effective vaccine antigens should be recognized by specific host antibodies, elicit a 1422 

robust response and confer protective immunity. The experimental identification of 1423 

linear B-cell epitopes based on screening of serum from infected livestock for 1424 

antibodies against TvCSP peptides has demonstrated the immunogenicity of at least 1425 

six TvCSP proteins from where four were FamX members. This indicates that FamX 1426 

antigens are able to stimulate a robust antibody response in naturally infected cattle. 1427 

Subsequently, four FamX proteins have been successfully expressed as bio-tagged 1428 

and purified recombinant proteins, facilitating an examination of their ability to 1429 

protect against T. vivax infection, which will be analysed in the Chapter 4.  1430 

 1431 

 1432 

 1433 

 1434 

 1435 

 1436 

 1437 

 1438 

 1439 

 1440 

 1441 

 1442 

 1443 
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CHAPTER 4 

Evaluation of the immunogenicity and protective properties 

of FamX recombinant antigens in a murine model 

 

 

4.1. INTRODUCTION 

 

The epitope described in Chapter 3 revealed that multiple FamX proteins contain 

significant linear B-cell epitopes that were immunogenic in natural infections, and 

which can be expressed as recombinant proteins using a mammalian expression 

system. The purpose of this chapter is to determine the immune response these 

recombinant proteins can elicit in mice and if they can confer vaccine-induced 

immunity to T. vivax infection. 

 

The correlates of protection induced by vaccination are defined as the immune 

function that confers protection to a particular pathogen (Plotkin, 2010). This is 

important for vaccine design as is it crucial to understand the immunity induced by 

vaccination (Plotkin, 2001). It has been well established that antigen-specific 

antibodies play a key role in modulating the infection and that B-cell memory is 

important for prolonged protection. Nonetheless, parasitic infections are often more 

complex and, besides pathogen factors, host factors also are important (Plotkin, 

2013). Moreover, it is well known that, while antibodies reduce the amount of 

circulating parasites during infections by African trypanosomes, other mechanisms 

such as T-cell function also play a critical role (Stijlemans et al, 2017).  

 

The characterization of the immune response to a parasite infection is important to 

understand the biology and pathogenesis in the host. African trypanosomes are 

obligate extracellular parasites and once humoral responses begin they are 

constantly interacting with antibodies. As stated in the Chapter 1, during the innate 

immune response, macrophages and dendritic cells are the first line of defence 

against trypanosome infections (Namangala, 2012). At an early infection stage, caMφ 
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secrete pro-inflammatory cytokines like TNF- α, NO and IL-6 (Namangala et al, 2001; 

Baral, 2010) that contribute to the parasite control. Later, they activate the aaMφ 

that develop in a Th2 environment inhibiting the Th1 cytokines previously elicited 

(Namangala et al, 2001). This is an important hallmark of an infection with African 

trypanosomes and considered an important correlate of protection (Onyilagha and 

Uzonna, 2019). Indeed, the ability to change from a caMφ to an aaMφ enhances 

survival in trypanosome-infected mice (Namangala et al, 2000), perhaps because the 

pro-inflammatory cytokines produced by caMφ are later downregulated by anti-

inflammatory cytokines produced by aaMφ avoiding tissue damage and survival 

(Onyilagha and Uzonna, 2019). 

 

Both CD4+ and CD8+ cells help to provide protection against infection; CD4+ cells  

produce cytokines to regulate innate and adaptive immune cells contributing to 

resistance, whereas CD8+ cells have been shown to mediate protection in T. 

congolense infection in mice (Wei and Tabel, 2008). In addition, CD4+ cells also 

participate in class-switching and production of specific IgG antibodies against 

different antigens (Onyilagha and Uzonna, 2019). In fact, based on experimental mice 

infection in T. brucei and T. congolense, it has been suggested that a successful 

vaccine against African trypanosomes must generate Th1 cells to facilitate class-

switching from IgM to IgG2a (Tabel et al, 2008).  

 

Trypanosomes are able to change their morphology and structure to evade the 

humoral immune mechanisms, removing rapidly their VSG coat to avoiding antibody-

mediated destruction. After antigen presentation, parasite-specific B lymphocytes 

are activated and proliferate during the first days of infection (Stijlemans et al, 2017). 

Specific antibodies bind to the parasite VSG forming immune complexes, lyse the 

parasite and therefore decrease parasitemia. However, antigenic variation of VSG 

leads to immune-evasion and prevents control of the infection (Vincendeau and 

Bouteille, 2006). Experimental infections with T. brucei in mice have demonstrated 

that IgG antibodies can contribute to protection by reducing circulating parasites 

levels (Stijlemans et al, 2007). In addition, experimental infections in livestock with T. 

brucei showed a correlation between trypanotolerance and the production of specific 
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anti-IgGs (D‘Ieteren et al, 1998). Such observations suggest that B-cells and the 

differentiation of specific antibodies have a positive role to play in parasite control.  

 

Mouse models have been one of the most useful tools in order to understand the 

pathogenesis and immunology of African trypanosomes despite biological 

differences with natural hosts (Antoine-Moussiaux et al, 2008). The characterization 

of African trypanosome infections, specifically for T. brucei and to a lesser extent for 

T. congolense, has been studied using animal models. The immune response during 

experimental infections in mice can be seen to depend not only on the trypanosome 

species but also on the parasite strain (O'Gorman et al, 2017) and, despite the 

significant progress that has been made using T. brucei, in vivo studies of T. vivax 

infection are rare. In the case of vaccine development, there have been previous 

attempts to induce vaccine-mediated protection using membrane antigens, again 

typically from T. brucei. Vaccination in naturally infected cattle with T.brucei 

rhodesiense using a Fp antigen produced a significant partial protection against 

heterologous trypanosome infection (Mkunza et al, 1995).   

 

Previous chapters have identified putative cell-surface antigens specific to T. vivax. 

Given their potential surface expression, structural invariance, immunogenicity and 

potential rno accessibility to antibodies, they may be useful vaccine candidates, and 

therefore, it is important to evaluate the immune response to them. Moreover, the 

type of immune response against each recombinant protein can be altered in the 

presence of different Th1 or Th2 adjuvants, and their co-administration plays a key 

role in the T-cell response. This chapter evaluates the immune response to each 

recombinant protein in the presence of three adjuvants: I) alum which induces a high 

antibody and Th2 immune response (Grun and Maurer, 1989), II) Montanide inducing 

a mixed Th1/Th2 immune response (van Doorn et al, 2016) and III) Quil-A which 

induced also a mixed Th1/Th2 response in addition to CD8+ T cell response (Sjölander 

et al, 2001). Quil-A is an immunostimulatory adjuvant that induces a strong and long-

lasting humoral and cellular immune responses. As it is a saponin, it induces a 

response to T dependent and independent antigens (Singh and T O'Hagan, 2003) with 

a stimulation of a mixed Th1 and Th2 response (Sun et al, 2009). In addition to 



Chapter 4 

 139 

vaccination, correlates of vaccine-induced immunity are determined for all AJ 

antigens.  

 

Although, the immunobiology, host-parasite interactions and pathogenicity for 

African trypanosomes are based largely on T. brucei and T. congolense studies, due 

to well established murine models and field experiments in cattle (Morrison et al, 

2016), this chapter exploits an experimental murine model of T. vivax infection 

established in the Wright laboratory (Sanger Institute) to characterize the immune 

response and protective properties of recombinant AJ proteins. These are evaluated 

in vivo using bioluminescence imaging, in which D-luciferin is injected intravenously 

or intraperitoneally into the animal, which then interacts with a reporter construct 

luciferase enzime to produce light (Koo et al, 2006). This enzyme produces light 

emission from the animal and produces imaging contrast when the animal is placed 

in a dark chamber. A bioluminescent model has been successfully developed in other 

African trypanosomes like T. brucei to understand tropism (Claes et al, 2009), and has 

been established at the Sanger Institute T. vivax bloodstream-forms expressing 

Renilla luciferase using the transfections and cell culture methodology described in 

Section 3.2. The bioluminescent assays have several advantages compared to other 

approaches for challenge experiments: I) it has a higher signal-to-noise ratio (SNR) 

compared to other imaging methods (Tung et al, 2016), II) it has high sensitivity and 

specificity, III) it can track the number of parasites over a period of time (Sato et al, 

2004) and IV) it can determine tissue tropism by pathogens within the host.  

 

 This chapter aims to: 

 

1. Immunize BALB/c mice with each of four T. vivax recombinant FamX proteins 

(AJ1-3, 6) separately, in combination with three different adjuvants.  

2. Assess the antigen-specific humoral immune response to each recombinant 

antigen. 

3. Challenge immunized mice with T. vivax bloodstream-forms to evaluate the 

efficacy of vaccination with AJ antigens. 
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4. Characterise the cellular localization of the AJ proteins in bloodstream-form T. 

vivax using immuno-fluorescent microscopy. 
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4.2. MATERIALS AND METHODS 

 

4.2.1. Immunization  

 

4.2.1.1. Animals 

 

Immunization and challenge experiments were performed at the Cell Surface 

Signalling laboratory of the WSI (Cambridge, UK). All animal experiments were 

performed in accordance with welfare regulations and with the approval of the WSI 

ethical committee. Forty-eight male and forty female BALB/c mice 6-8 weeks’ old 

were maintained in a pathogen-free animal facility. Mice were housed in cages and 

provided with water and food ad libitum. The animals were acclimatized for one week 

and then males and females were distributed randomly in 16 and 8 groups, 

respectively.  

 

4.2.1.2. Vaccine preparation 

 

Vaccines were prepared using AJ1, AJ2, AJ3 and AJ6 proteins independently in 

combination with one of the three adjuvants tested to contrast different types of 

immune responses. The adjuvants tested were: 1) the Th2-related immune response 

inorganic alum (Pletinckx et al), 2) the Th1+Th2-related response Montanide 

W/O/W ISA 201 VG (Sappec, France) and 3) the partially purified saponin Quil-A® 

(Invivogen, USA) which induces Th1 as well as Th2 responses.  

 

The vaccine formulation was prepared by combining 20µg of purified antigen with 

either 100µg of alum or Montanide or 15µg Quil-A respectively (Table 4.1). In the 

case of control groups, animals were immunized with adjuvants only using the same 

concentration as the vaccinated groups.  

 

4.2.1.3. Murine immunization 
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The immunization schedule is represented in Figure 4.1. Male mice were randomly 

distributed in 16 groups (n=3). Four groups were immunized with Alum in 

combination with each antigen (groups AJ1-A, AJ2-A, AJ3-A, and AJ6-A) and four with 

each antigen co-administrated with Montanide (groups AJ1-M, AJ2-M, AJ3-M, and 

AJ6-M). There was a control group (n=3) for each alum or Montanide-vaccinated 

group. In the case of female mice, they were randomly distributed in five groups 

(n=8). Four of these groups were immunized with each antigen in combination with 

Quil-A® (groups AJ1-Q, AJ2-Q, AJ3-Q, and AJ6-Q) and one control group immunized 

with adjuvant only. Overall, there were 12 experimental groups (n=56) and 9 control 

groups (n=32).  

 

BALB/c mice from experimental and control groups were immunized subcutaneously 

with 200µl volume in two injection sites (100µl/injection) at day 0 and two booster 

injections at day 14 and 28 respectively (Figure 4.1). Alum and Montanide-vaccinated 

groups were euthanized at day 42 (n=63). 

 

4.2.2. Challenge and data acquisition 

 

4.2.2.1. Challenge 

 

Two weeks after the third immunization (day 42), five mice from each Quil-A 

vaccinated and control group were challenged intraperitoneally with 103 

bioluminescent bloodstream trypomastigotes T. vivax Y486 strain generated in the 

WSI (Figure 4.1B). The parasites were obtained at day 7 post infection (dpi) from 

previous serial passages in mice. Briefly, 10µl whole blood were collected from the 

tail vein and diluted 1:50 with PBS+ 5% D-glucose+10% heparin. The concentration of 

parasites was adjusted to 102 parasites/200µl per mouse. The mice were infected 

intraperitoneally and their survival monitored daily.  

 

4.2.2.2. In vivo imaging 

Mice were injected daily from 5-8 dpi with D-luciferin (Xenogen) diluted in sterile PBS 

for in vivo imaging and data acquisition. Mice were injected intraperitoneally with 
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200µl luciferin solution before being anesthetized using an oxygen-filled induction 

chamber with 2% isoflurane. The bioluminescence was measured after 10min prior 

luciferin injection using the in vivo imaging system IVIS (Caliper Corp, Alameda, CA, 

USA). Mice were whole-body imaged in dorsal position and the signal intensity was 

obtained from luciferase expressed in T. vivax. The photon emission was captured 

with the Living Image software version 4.5.2 (Caliper) and the data were expressed 

as total photon flux (photons/second). The software generated one grey-scale 

reference image that was overlaid by a pseudocolor scale image indicating the 

intensity of the signal. For all the images generated, scales were manually set at the 

same values allowing comparison between them. 

 

 

 

 

 

Table 4.1. Vaccine preparation according to the different experimental groups of 

mice. The vaccine formulation was prepared for each immunization dose per 

experimental group. Animals were immunized subcutaneously in two injection sites 

(100µl/injection) at day 0, 14 and 28 of the experiment.

Group Antigen Adjuvant 
Experimental 

group 

Quantity 
No. 

mice 
Antigen 

(µg) 

Adjuvant 

(µg) 

Vaccinated AJ1 

AJ2 

AJ3 

AJ6 

Alum AJ1,2,3,6-A 20   100 3 

Montanide AJ1,2,3,6-M 20   100 3 

Quil-A 

Quil-A 

AJ1,2,3,6-Q 

AJ1,2,3,6-Q 

20  

20 

15 

15 

8 

8 

Control PBS 

PBS 

PBS 

Alum  - - 100 3 

Montanide - - 100 3 

Quil-A - - 15 8 
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4.2.2.3. Sample collection 

 

Blood samples were taken from the tail vein of each animal and collected at day 0 

(pre-immune sera), day 42 (post immune sera for alum and montanide-vaccinated 

mice) and day 50 (post immune sera from Quil-A-vaccinated and challenged mice). 

Sera were isolated from blood by centrifuging the samples for 10min x 1,500g and 

the supernatant was stored at -20 ˚C until used. Spleens were aseptically removed 

from the alum and Montanide-immunized animals at day 42 and from challenged 

mice at 8 dpi (Figure 4.1). Spleen tissue was used for in vitro antigen stimulation in 

order to quantify cytokine expression. 

 

 

 

 

 

Figure 4.1. Scheme of mouse immunization protocol. BALB/c mice were immunized 

every two weeks with each recombinant protein in conjunction with alum, 

Montanide or Quil-A adjuvants while the control groups with adjuvants only. Animals 

were euthanized at day 42 (n=63), except 5 mice from each vaccinated and control 

Quil-A-based groups (n=25) which were challenged for 8 days. 
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4.2.3. In vitro antigen stimulation and cytokine measurement 

 

4.2.3.1. Culture of splenocytes 

 

Splenocytes were isolated by collecting spleens individually in tubes containing 3ml 

sterile PBS. The lymphocytes were separated by pouring the PBS and spleen into a 

70µm cell strainer attached to a 50ml tube and pressed using a syringe plunger end. 

The samples were centrifuged at 800g for 3min at RT. Erythrocytes were lysed by 

adding 2ml ACK lysis buffer (0.15M NH4Cl, 10mM KHCO3, 0.1mM EDTA, pH 7.5) to the 

pellet and incubated for 5min. Lysis buffer was neutralized by adding 30ml of 

complete media (RPMI 1640 (Sigma Aldrich, Germany) supplemented with 10% heat 

inactivated foetal calf serum (FCS; Sigma Aldrich, Germany), 100 U/ml penicillin and 

100U/ml streptomycin) and centrifuged as before. Cell viability and density was 

determined using a haemocytometer, diluting 10µl of the suspension with 10µl 

trypan blue and adjusting the concentration to 5x106 cells/ml per spleen in complete 

media. 

 

The cells were cultured in 48-well flat-bottom tissue culture plates (Starlab, UK) by 

seeding 200µl/well of each cell suspension in triplicate. Splenocytes were stimulated 

with 10µg/ml of each antigen diluted in complete medium for 72h at 37˚C with 70% 

humidity and 5% CO2. Likewise, cells were also incubated with 10µg/ml Concanavalin 

A (Brewer et al) or complete medium only as positive and negative controls, 

respectively. Culture supernatants were harvested after 72h of incubation and 

centrifuged at 2000g for 5min at RT to remove remaining cells. The supernatant was 

collected and stored at -20 ˚C until used for cytokine quantification. 

 

4.2.3.2. Cytokine measurement 

 

Interferon gamma (IFN- γ), tumour necrosis factor (TNF- α), interleukin-10 (IL-10) and 

interleukin-4 (IL-4) levels produced by spleen cells were measured by sandwich ELISA 

kits (ThermoFisher Scientific kit numbers 88-7314, 88-7324, 88-7105 and 88-7044 for 

each cytokine respectively). The measurement from unstimulated splenocytes 
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(incubated with medium only) was subtracted from the antigen stimulated cultures 

with each adjuvant treatment. The cytokine concentration was expressed as pg/ml. 

 

4.2.4. IgG-specific antibody response in mice 

 

To identify the presence of specific antibodies in mice sera against the recombinant 

proteins, a titration of IgG1 and IgG2a isotypes was performed by ELISA. This 

procedure was similar to the normalization step with slight modifications (Section 

3.2.2.5.). 96-well streptavidin-coated plates were incubated with antigen for 1h at RT 

with 100µl/well of 1:250 AJ1 and 1:50 AJ2, AJ3 and AJ6 proteins respectively diluted 

in reagent diluent (PBS pH 7.4, 0.5% BSA). The plates were washed three times with 

PBS-Tween20 0.05% by immersing the plate in the buffer to fill the wells. Two-fold 

serial dilutions of each serum in reagent diluent were performed starting at 1:800 

and 100µl/well was added to each well.  The plates were incubated for 1h at RT and 

then washed as before. Rabbit anti-mouse IgG1 or IgG2a antibodies conjugated to 

HRP (Sigma-Aldrich, Germany) diluted to 1: 50,000 and 1: 25,000, respectively, were 

added at 100µl/well. The plates were incubated as before and after washing, 

100µl/well of 3,3’,5,5’-tetramethylbenzidine (TMB, Sigma-Aldrich, Germany) as 

substrate was incubated for 5 minutes at RT in the dark. The reaction was terminated 

by adding 50µl/well 0.5M HCl and the absorbance was read at 450nm using a 

Magellan Infinite F50 microplate reader (Tecan, Switzerland). 

 

4.2.5. IgG-specific antibody response in cattle 

 

The isotype profile was also analysed in samples from naturally and experimentally 

infected cattle (for samples, see Section 3.2.1). The ELISA was optimized using a pool 

of six calf samples previously evaluated in the peptide microarray assay as a positive 

control and a pool of UK cattle sera as negative control. For each sample displayed in 

Table 4.2, 100µl of two-fold serial dilutions starting from 1:25 and 1:1600 for 

experimental and natural infections respectively in reagent diluent were applied to 

the wells. The difference in dilutions was due to a normalization in protein 

concentration previously measured by Bradford method, intended to make sera and 
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paper filter elutions comparable. Bound IgG1 and IgG2 antibodies were detected by 

adding 100µl/well sheep anti-bovine IgG1 or IgG2 HRP (Bio-Rad, USA) at 1:5000 and 

1:2500 respectively.  

 

 

Sample DPI Infection Geographic origin 

Calf 1 – 21/03/13 44 dpi Experimental Sao Paulo, Brazil 

Calf 1 – 11/04/13 65 dpi Experimental Sao Paulo, Brazil 

Calf 2 – 15/03/13 56 dpi Experimental Sao Paulo, Brazil 

Calf 2 - 02/04/13 38 dpi Experimental Sao Paulo, Brazil 

Calf 3 – 15/03/13 38 dpi Experimental Sao Paulo, Brazil 

Calf 3 – 24/03/13 47 dpi Experimental Sao Paulo, Brazil 

K1, K2, K3, K4 - Natural Kenya 

C1, C2, C3, C4  - Natural Cameroon 

Pool NC  - No infection UK 

 

Table 4.2. List of 15 samples used for the identification of IgG1 and IgG2 levels by 

ELISA against AJ’s recombinant proteins. NC: negative control. 

 

 

4.2.6. Cellular localization of AJ antigens in BSF parasites 

 

The protocol for indirect immunofluorescence assay (IFA) was optimized to 

determine the cellular localization of the different antigens in bloodstream-form 

parasites. Different parasite fixation, blocking buffers, temperatures and conjugates 

were used as stated in Figure 4.2. T. vivax bloodstream-forms were isolated from 1ml 

whole blood from infected mice, by resuspending in 20ml PBS+20mM glucose (PBSG) 

and centrifuging at 1,500g for 10min at RT. The supernatant was collected into a new 

tube and centrifuged as before. The pellet containing the trypanosomes was 

resuspended in 50µl PBSG and centrifuged at 13,500g for 20min. The parasites were 

diluted in PBSG adjusting the concentration to 2.5x106 cells/ml and the suspension 

was transferred to poly-L-lysine slides for 10min to settle down. The cells were fixed 
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by adding 4% paraformaldehyde (PFA) in PBS directly to the suspension and 

incubated for 30min at RT. The slides were washed with sterile PBS, air-dried and 

stored at -20°C until used or blocked with blocking buffer (PBS+1%BSA) for 1h at RT. 

A pool of post-immune sera from mice vaccinated using Quil-A with each antigen was 

used as primary antibody diluted 1: 1,000 in blocking buffer and incubated overnight 

at 4°C. The slides were washed three times with sterile PBS 2-3min each wash and 

the conjugate Alexa Fluor goat anti-mouse 555 (Abcam, UK) diluted 1:500 in blocking 

buffer was incubated for 1h at RT. Non-bound antibodies were washed as before and 

mounted with one drop of Slow Fade gold antifade containing 4′,6-diamidino-2- 

phenylindole (DAPI) (Invitrogen, USA). Images were acquired using a confocal 

microscope Leica TCS SP5 and fluorescence images were deconvolved with Leica 

Application Suite X software (Leica – Miceosystems). 

 

 

 

 

 

Figure 4.2. List of different fixation methods, blocking solutions, temperatures and 

conjugates tested for the optimization of the IFA protocol with T. vivax BSF. The 

features adopted in the optimized protocol are highlighted in bold. 

IFA optimization protocol

Fixation method

Acetone

Methanol

2% PFA

4% PFA

Blocking buffer

50%, 25%, 
10%, 5% FCS

4%, 2%, 1%, 
0.5% BSA

50%, 20% goat 
serum

0.2% gelatin

No blocking

Temperatures

Room
temperature

4˚C

Conjugates

Alexa fluor goat 
anti-mouse IgG 594

Alexa fluor goat 
anti-mouse IgG 555
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To confirm the cellular localization of AJ6 antigen, a polyclonal antibody was raised 

in rabbits against recombinant AJ6 protein (BioServUK, Sheffield, UK). Briefly, two 

rabbits were vaccinated with AJ6 in combination with Freund’s complete adjuvant 

for the first immunization and with Freund’s incomplete adjuvant for two additional 

boosts. Animals were vaccinated every two weeks and polyclonal antibodies against 

AJ6 were purified from the sera obtained two weeks from the last immunization. 

Anti-AJ6 IgG antibodies were purified by affinity chromatography with a protein A 

column. The IFA protocol previously optimized was used to stain bloodstream-form 

cells using the purified IgG antibody and pooled pre- and post-immune sera as 

negative and positive controls, respectively.  

 

4.2.7. Statistical analysis 

 

All the mouse experiments were performed in triplicate using three or five mice per 

experimental group and the animals were analyzed individually. The comparison 

between humoral and cellular response using different adjuvants used to immunize 

mice was analyzed using one-way and two-way analysis of variation (ANOVA). 

Comparisons between pre and post challenge response was achieved with student’s 

paired t-test. A p-value < 0.05 was considered statistically significant. Statistical 

analysis was performed using R 3.4.3 software. 
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4.3. RESULTS 

 

4.3.1. Humoral immune response against recombinant proteins in cattle 

 

In order to determine the precise humoral immune response against AJ proteins, 

IgG1 and IgG2 antigen-specific antibody titres were measured by ELISA in samples 

from naturally and experimentally infected cattle. Cameroonian and Kenyan 

seropositive samples were from naturally infected cattle while Brazilian samples 

were from an experimental infection with T. vivax (see Section 3.2.1). Brazilian 

samples were obtained from elutions of filter paper on which serum from the animals 

was collected. The results were expressed as individual curves, except where 

Cameroonian and Kenyan samples were expressed as mean values of the antibody 

titre in pooled serum.  

 

Antigen-specific IgG1 antibodies were not detected in the negative control. Naturally 

infected cattle showed high specific IgG1 levels against each recombinant protein 

with OD values between 2.0 and 3.5 at the lowest dilution (IgG1, Figure 4.3). Kenyan 

and Cameroonian samples had levels of antigen-specific IgG1 significantly higher 

when compared to the British negative control (p <0.05 in all cases). The antibody 

response against each recombinant protein varied by location, showing higher IgG1 

levels against AJ2 and AJ3 in the Cameroonian population, versus AJ1 and AJ6 

antigens in the Kenyan population. However, these differences in OD values were not 

significant (p >0.05). For all the antigens analysed, natural infections showed a half-

maximal titre (Log50%) of 2.0-2.5 corresponding to dilutions 1: 12,800 and 1: 25,600 

respectively (4.1 and 4.4 Log10 dilution). In addition, they showed an endpoint 

dilution of 1: 409,600 (5.6 Log10 dilution) for AJ2 and 1: 3,276,800 (Log10 dilution) for 

the other antigens. 

 

Experimentally infected calves behaved differently to natural infections (Figure 4.4) 

exhibiting mean OD values of 0.645±0.13 for AJ1, 2.14±0.22 for AJ2, 2.02±0.33 for 

AJ3 and 2.18±0.22 for AJ6 (mean ± SEM). Significant differences were found between 

mean values from experimental infections and the negative control in the case of AJ2, 
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AJ3 and AJ6 (p<0.05), but not for AJ1 (p=0.18). The titration curve for the last time 

point of each animal (A1-44 DPI, A2 56DPI and A3 47DPI) showed a significant 

increase of IgG1 levels compared with the first time point analysed against AJ2, AJ3 

and AJ6 antigens (p <0.05 in all cases). However, no differences were found between 

the two time points for each animal against AJ1 (p=0.06, p=0.06 and p=0.09 for A1, 

A2 and A3 respectively). Curves from experimental infections showed a Log50% of 

1.25 corresponding to a 1: 100 dilution (2 Log10 dilution) for all antigens and an 

endpoint dilution of 1: 200 for AJ1, 1: 3,200 for AJ2 and AJ6 and 1: 600 for AJ3 (Table 

2). 

 

The measurement of IgG2-specific antibodies showed lower levels in both naturally 

and experimentally infected animals compared to the IgG1 response. Each 

recombinant protein showed a mean OD between 0.2 and 0.5 at the lowest dilution 

in naturally infected cattle (IgG2, Figure 4.3). Kenyan and Cameroonian samples 

showed a slight rise in IgG2 antibody levels compared with the negative control but 

this was not statistically different (p> 0.05), except when the Kenyan samples were 

applied to AJ6 (p=0.02). Likewise, the comparison between antigens showed no 

significant differences (p> 0.05). Natural infections showed a Log50% titre of 1:3,200 

for AJ1, AJ3 and AJ6 and 1: 51,200 for AJ2 with an end-point dilution of 1: 3,276,800 

(Table 4.3). The titration curves for different time points of experimentally infected 

calf showed no difference with the amount of specific anti-IgG2 (p> 0.05). Indeed, all 

samples showed responses that are comparable with the negative control. IgG2 

levels were higher in naturally infected animals compared with the experimentally 

infected calves but less than IgG1 levels.  

 

These data show that both IgG1 and IgG2-specific antibodies were produced against 

AJ1 antigen. However, there was a higher level of IgG1-specific antibodies compared 

to IgG2 levels in all samples, regardless of the type of infection. These results indicate 

that recombinant AJ1, AJ2, AJ3 and AJ6 induce a predominantly Th2-type humoral 

immune response. 
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Antigen 
IgG1- Naturally infected IgG1-Experimentally infected 

50% titre End point 50% titre Endpoint 

AJ1 1:3,200 1: 3,276,800 1: 100 1: 200 

AJ2 1: 51,200 1: 409,600 1: 100 1: 3,200 

AJ3 1:3,200 1: 3,276,800 1: 100 1: 600 

AJ6 1:3,200 1: 3,276,800 1: 100 1: 3,200 

 

Table 4.3. 50% titre and endpoint titres of bovine IgG1 against each recombinant 

antigen in naturally and experimentally infected cattle. 

 

 

 

 

 

Figure 4.3. Indirect ELISA for the detection of specific antibodies against each 

recombinant protein in naturally infected cattle.  The isotypes IgG1 and IgG2 were 

measured in order to determine the humoral immune response of AJ1, AJ2, AJ3 and 

AJ6 antigens.  Each curve represents the mean± standard error (n=4). 
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Figure 4.4. Indirect ELISA for the detection of specific antibodies against each 

recombinant protein in experimentally infected calves (n = 3; A1-3).  The isotypes 

IgG1 and IgG2 were measured in order to determine the humoral immune response 

of AJ1, AJ2, AJ3 and AJ6 antigens. Each curve represents an individual sample.  

 

 

4.3.2. Comparative humoral immune response against AJ antigens in mice  

 

BALB/c mice were immunized with each individual AJ antigen in combination with 

alum, Montanide or Quil-A adjuvants to analyse the humoral and cellular immune 

response. Independently of the adjuvant or antigen, the post-immune sera showed 

that the proteins were able to stimulate antigen-specific antibodies leading to 

seroconversion. The recognition of AJ1, AJ2, AJ3 and AJ6 recombinant proteins by the 

immune sera indicated that antigens are immunogenic in BALB/c mice. 

 

Comparative analysis of humoral immune responses showed similar scenarios for all 

antigens. Regardless of the adjuvant used, a robust IgG1-specific antibody response 

against each antigen was detected (Figure 4.5A-D) which was significantly greater 

than the respective pre-immune sera (p <0.001). The comparison between adjuvants 

revealed that Montanide-immunized mice showed significant higher levels of IgG1 

than alum and Quil-A against AJ1 (p =0.038 and p =0.001 respectively) and AJ2 (p 
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=0.038 and p <0.0001 respectively). AJ1-A and AJ1-Q showed no difference in 

antibody levels but there was a difference between AJ2-A and AJ2-Q (p =0.014). AJ3-

A and AJ3-M showed higher IgG1 levels than AJ3-Q (p =0.01 and p=0.001 

respectively), while no differences between adjuvants were observed against AJ6 (p 

>0.05). Overall, montanide-based immunization developed the highest IgG1 antibody 

titres against each antigen. 

 

The antigens were also able to stimulate IgG2a-specific antibodies after the third 

protein boost (Figure 4.5A-D). As with IgG1, the antibody levels were significantly 

greater in post-immune sera relative to pre-immune sera regardless the adjuvant 

analysed (p <0.001). Again, pre-immune sera were completely unresponsive to all 

antigens. For all antigens, the highest IgG2a titres were produced with Quil-A, 

followed by montanide and lastly alum. Antibody titres for were consistent across 

antigens, maintaining the disparities among adjuvants except for AJ2-A, the antibody 

titre of which was an order of magnitude lower than other applications with alum.  

 

Mice vaccinated with alum and montanide elicited predominantly IgG1 rather than 

IgG2a antibodies against all the antigens, suggesting a Th2-type humoral response. 

In both cases, IgG1 levels were greater with two-fold better titres than IgG2a. 

Comparative analysis also indicated that vaccination with Quil-A did not elicit a 

predominant T-helper response because both IgG1 and IgG2a titres were similar for 

AJ1, AJ2 and AJ3. though not for AJ6, which showed higher levels of IgG1 (p=0.024). 

These results indicate that Quil-A stimulates a mixed Th1/Th2 immune response for 

AJ1-3 antigens and a predominantly Th2 response against AJ6. Mice immunized with 

AJ6 produced IgG1-specific antibodies regardless of the different adjuvant 

formulations used. 

 

The recognition of AJ1, AJ2, AJ3 and AJ6 recombinant proteins in sera from 

vaccinated mice was demonstrated by their interaction with antigen-specific 

antibodies. The seroconversion of both IgG1 and IgG2a isotype antibodies against all 

recombinant proteins increased upon booster immunization. The isotype profile of 

both antibodies in sera from vaccinated mice demonstrates that the immune 
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response can be biased towards a predominantly Th2 -type response in the case of 

alum and montanide, and a mixed Th1/Th2-type response in the case of Quil-A.  

 

Figure 4.5 (overleaf). Titration of T. vivax antigens-specific IgG1 and IgG2a antibody 

response in BALB/c mice before and after immunization (n=3 for each group except 

n=8 for Quil-A pre and post vaccination). IgG1 and IgG2a specific antibody titres were 

measured by ELISA using two-fold serially diluted sera. Data is represented as the 

average of triplicates.
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4.3.3. Antigen specific cellular immune response 

 

In order to understand the type of cell-mediated immune response against AJ1, AJ2, 

AJ3 and AJ6 antigens, the cytokine profile of in vitro stimulated splenocytes was 

determined. In all experiments, positive and negative controls were provided by 

stimulation with 10 𝜇g/mL ConA or no stimulation (RPMI complete media only) 

respectively. Levels of IL-4 and IL-10 (corresponding to a Th2-type immune response) 

and TNF- α and IFN- γ (corresponding to a Th1 response) were measured by ELISA.  

 

As shown in Figure 4.6, antigen-immunized mice displayed higher antigen-induced 

TNF-α and IFN-γ levels compared to IL-10 and IL-4. Animals immunized with AJ2, AJ3 

and AJ6 proteins expressed IL-10 and IL-4 regardless of the adjuvant used (Figure 

4.6A). However, immunization with AJ1 did not produce detectable values of either 

cytokine. All cytokine levels increased significantly after stimulation with AJ-A and AJ-

M when compared to control groups stimulated with media only; the latter displayed 

non-detectable values (p <0.0001). This indicates a specific cell-mediated immune 

response to each antigen. Splenocytes stimulated with 10 𝜇g/mL ConA mitogen 

(positive control) produced high levels of all cytokines, regardless of the adjuvant 

administrated. 

 

The results show TNF-α concentrations in the same range of 200-500pg/ml when cell 

stimulated with alum, Montanide or Quil-A and any recombinant protein are 

compared, although stimulations with montanide showed the greatest TNF-α levels, 

followed by alum and then Quil-A. The comparison showed no significant differences 

of TNF-α concentrations between antigens, independent of the adjuvant used (p 

>0.05).  

 

With regard to IFN-γ expression, this was at least 2.5 times greater in cells stimulated 

with Quil-A compared with alum and montanide in all cases (Figure 4.6B). There were 

significant increases when AJ1-Q and AJ1-A (p=0.015), AJ3-Q and AJ3-A (p<0.0001), 

AJ6-Q and AJ6-A (p=0.016) and AJ6-Q with AJ6-M (p=0.002) were compared. No 

significant differences were found between adjuvants in the levels of IFN-γ in 
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supernatants of cells stimulated with AJ2. Similar to TNF-α expression, AJ-A and AJ-

M presented similar amounts of IFN-γ between 500-1000pg/ml. Stimulated 

splenocytes from mice immunized with each antigen showed IFN-γ concentrations 

similar to the positive control group stimulated with ConA.  

 

The concentration of IL-10 in culture supernatants were highly variable, dependent 

on the adjuvant used (Figure 4.6C). IL-4 levels were significantly greater when 

antigens were co-administered with Quil-A in comparison with alum and montanide 

(p <0.001 and p <0.0001 for all cases). In fact, IL-10 expression by splenocytes from 

in the Quil-A vaccinated group showed the highest concentration of all cytokines 

analysed with an average of 5000pg/ml, while for the other adjuvants the 

concentrations were 2.5-5 times less. A similar scenario was observed for IL-4 

expression. There was an increase in IL-4 concentration when cells were stimulated 

with AJ-Q compared with AJ-A, but this was non-significant. AJ3-Q stimulation 

produced a significant increase in IL-4 concentration compared with AJ1-Q, AJ2-Q and 

AJ6-Q (p <0.0001 for all cases). However, besides this, IL-4 displayed the lowest 

expression levels of all measured cytokines and no appreciable differences were seen 

between adjuvants in combination with any particular antigen (p >0.05).   
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Figure 4.6. Cytokine responses in in vitro stimulated splenocytes from BALB/c mice 

vaccinated with the different panel of antigens. ND: non detectable. P-value < 0.05. 

 

 

4.3.4. Protection of vaccinated mice from T. vivax infection 

 

Quil-A-vaccinated mice were challenged intraperitoneally with 103 Y486 

bioluminescent T.  vivax bloodstream-forms to evaluate the efficacy of vaccination 

with AJ proteins. All mice survived to the end of the experiment (100% survival). 

A. B. 

C. D. 



Chapter 4 

 160 

Parasitemia was measured daily from 5-8 dpi by bioluminescent assay (IVIS). Before 

the 5 dpi, the animals did not show any clinical signs and had very low levels of 

parasitemia. The cellular and humoral immune response induced by each antigen 

after challenge was also analysed as before.  

 

Parasite bioluminescence detected in the whole body of the animals is displayed in 

Figure 4.7. All antigen-vaccinated and adjuvant-only mice (negative control group) 

had similar luciferase intensities of 1-5x107 p/s at 5 dpi (Figure 4.8A). One mouse from 

the AJ6-vaccinated group showed the lowest bioluminescence detected with almost 

no intensity. In comparison, bioluminescent intensities for AJ6 were significantly 

lower than for AJ2 and AJ3 (p =0.005 and p <0.0001 respectively) (Figure 4.8A). 

However, in all cases, bioluminescence, and therefore parasitemia, increased over 

the course of infection (Figure 4.8) and, by 6 dpi, the animals displayed an average 

luminescence of 2.8x108 p/s (Figure 4.8B). Comparison between antigens at this time 

of infection showed a significant difference in parasite luminescence between AJ1 

and AJ3 (p =0.028) and between AJ3 with AJ6 (p =0.011). The AJ6-vaccinated group 

had the lowest value at 6dpi with a mean of 2.45x108 p/s. 

 

At 7 dpi (Figure 4.8C), parasite luminescence was detectable not only at the site of 

injection but into other areas also, showing that the trypanosomes were 

disseminating via the bloodstream. AJ3-vaccinated -mice displayed significantly 

higher luminescence than AJ1 (p =0.018) and AJ6 (p =0.001). Although non-

significant, the intensity of AJ3 group (2.95x108 p/s) was higher even than the 

adjuvant-only control group (2.87x108 p/s) (Figure 4.8C). In all mice, the peak parasite 

luminescence occurred on the last day of the experiment (8 dpi). At this stage, AJ3-

vaccinated mice again showed the highest parasite luminescence all the groups, still 

greater than unvaccinated controls, and, significantly greater than those mice 

vaccinated with AJ1 (p =0.008) and AJ6 (p =0.002). 

 

At the end of the experiment (8 dpi, Figure 4.8D), parasite luminescence in control 

animals displayed no statistical difference with that of mice from any antigen-

vaccinated group (p >0.05). However, it is clear from Figure 4.8 and 4.9 that AJ6-
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vaccinated animals displayed a clear delay in parasite proliferation, leading to a lower 

parasitaemia by the end of the experiment. This reduction relative to the control and 

other antigens approached significance (p =0.063) when all five replicate animals are 

considered. Closer inspection shows that there were large variations among AJ6-

vaccinated animals in luminescence; 2/5 animals in particular displayed only modest 

reductions in parasitaemia (an average of 7.17x108 p/s on 8 dpi). If considering the 

other three animals only (an average of 3.38x108 p/s on 8 dpi), the reduction in 

parasitaemia is a significant difference compared to the control group (p =0.045). At 

most then, we can say that vaccination with AJ6 co-administered with Quil-A was able 

to delay the acute parasite infection, and significantly reduce parasitaemia, in some 

animals. 

 

The change in the total luminescent flux was calculated by subtracting the antigen-

vaccinated luminescence values of each animal from the control group to 

approximate the parasite load at each day post infection (Figure 4.9 A-D). Parasite 

number is clearly reduced in the AJ6 group at 8 dpi (Figure 4.9D) for 3/5 mice with a 

total flux reading 55.9%, 74% and 58.4% lower than the control animals, respectively. 

As this measurement is the same as the percentage protection, it indicates a mean 

protection of 62.7% for these three animals when compared with the control group 

at the end of the experiment.  
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Figure 4.7. In vivo imaging of BALB/c mice immunized with each antigen co-

administrated with Quil-A prior challenge with T. vivax (n=5/group). Daily 

bioluminescent images were collected from 5-8dpi. The images were standardized 

adjusting the scale manually. The signal intensity is represented as a pseudocolor 

image.  
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Figure 4.8. Luminescent values during the course of infection of luciferase-expressing 

T. vivax in challenged mice. The total flux (photons per second) was measured from 

5-8dpi. Total flux was analysed according to each dpi (panels A, B, C, D).  

 

 

A. B. 

C. D. 
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Figure 4.9. Change (∆ Total flux) in luminescence between the control group and each 

antigen-vaccinated group. The change in bio-luminescence was calculated as a 

measure of the reduction of parasite load against each antigen. 

 

 

Vaccination induced antigen-specific antibodies in mice pre-challenge, but these 

were dominated by IgG1. Surprisingly, antigen-specific antibody levels decreased 

after challenge but statistically significant changes were only observed for IgG1 

against AJ1 and AJ3 and IgG2a levels against AJ3 and AJ6 (Figure 4.10). The IgG1 

antibody titres were significantly lower when compared pre- and post-challenge in 

vaccinated mice with AJ1 (p =0.01) and AJ3 (p =0.001). AJ2 and AJ6-vaccinated mice 

also displayed a decrease in IgG1 levels but these were non-significant. Immunization 

A. B. 

C. D. 

AJ1 AJ2 

AJ3 
AJ6 
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also elicited high levels of IgG2a antibodies against all the antigens prior to challenge. 

However, after challenge a significant reduction was observed in anti-AJ3 IgG2a (p 

<0.0001) and anti-AJ6 IgG2a (p =0.0004).  

 

Control animals immunized with Quil-A only showed no specific antibody titres 

against the antigens either pre-or post-challenge. The comparison of the cellular 

response post infection demonstrated a significant and distinguished increment of 

anti-AJ3 IgG1 compared to anti-AJ3 IgG2a (p <0.0001) (Figure 4.10E). Likewise, anti-

AJ6 IgG1 were greater than anti-AJ6 IgG2a (p=0.002) (Figure 4.10E). Overall, 

vaccination with AJ1 and AJ2 displayed a decrease in both isotypes IgG1 and IgG2a 

levels but were non-significant suggesting a mixed Th1/Th2 response. Vaccination 

with AJ3 and AJ6 antigens developed higher levels of specific IgG1 than IgG2a 

suggesting a predominantly Th2 response.  

 

Cytokines levels after challenge were measured from five mice at random before 

vaccination with each antigen in conjunction with Quil-A. The response 

demonstrated that TNF-α and IFN-γ concentrations against each antigen were 

reduced significantly (p <0.0001 in all cases) before and after challenge (Figure 4.10A, 

B). Indeed, the average TNF-α concentration for vaccinated animals pre-challenge 

was 300pg/ml, while this decreased by 95% post-challenge to 15pg/ml IFN-γ levels 

also reduced by 92.8% dropping from an average of 2500pg/ml to 180pg/ml.  

 

The most pronounced changes in cytokine levels after challenge were observed for 

IL-10 expression after 8 dpi; IL-10 concentration became non-detectable with respect 

to all antigens when compared with post-vaccination levels (p<0.001). This could be 

because unstimulated cells from the adjuvant-vaccinated control group (stimulated 

with media only) displayed IL-10 levels as high as the challenged ones. None of the 

cytokines analysed were measurable in the medium-only controls, indicating that 

Quil-A adjuvant alone can naturally stimulate the production of certain cytokines.   

 

IL-4 concentrations were markedly decreased after challenge, irrespective of which 

antigen was applied (p <0.0001 for all cases). After challenge, mice displayed IL-4 
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levels at an average of 5pg/ml, which is comparable with ConA stimulation. For all 

cytokines measured, ConA in the control group were higher before challenge than 

after challenge (Figure 4.10E). The comparison between antigens demonstrated all 

AJ proteins were able to elicit similar levels for a specific cytokine. Levels of pro-

inflammatory cytokines (TNF-α and IFN-γ) were higher than anti-inflammatory 

cytokines (IL-10 and IL-4) after 8 dpi but not statistically different (p >0.05). 

Therefore, the results suggest that all antigens with Quil-A adjuvant were able to 

stimulate the cytokines analysed except IL-10, and towards a predominantly Th1-type 

immune response.  

 

 

Figure 4.10 (overleaf). Cellular and humoral response before and after challenge with 

T. vivax in Quil-A vaccinated mice (n=8). Cytokine production by splenocytes 

stimulated in vitro (A, B, C, D) and isotype IgG profiling (E) were analyzed to determine 

the type of immune response elicited by each antigen. P<0.05. 
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The immunization and challenge experiment using AJ6 co-administrated with Quil-A 2 

described in the preceding paragraphs identified a near-significant but clear 3 

reduction in parasitemia. For this reason, the experiment with AJ6 was repeated 4 

using a larger cohort of BALB/c mice (n=15/group) to confirm the protective effect. 5 

In this second experiment, mice were vaccinated and challenged using the same 6 

protocol and schedule as before but this time using 50µg instead of 20µg of antigen. 7 

The humoral immune response was also analysed in the second trial using the same 8 

protocol as before. 9 

 10 

Parasite bioluminescence detected in the whole body of the animals is displayed in 11 

Figure 4.11. One mouse from the AJ6-vaccinated group was culled before 6dpi due 12 

to rectal prolapse and therefore excluded from the analysis. Luciferase intensity from 13 

AJ6-vaccinated animals was significantly lower when compared to the control group 14 

at 6 dpi (p =0.016) (Figure 4.12A) with means of 1.32x108 and 1.71x108 p/s, 15 

respectively and 100% survival (Figure 4.12C). In both groups, and as in the first 16 

experiment, the luciferase intensity increased over the time of infection. At 7 dpi, 17 

both groups showed similar bioluminescence values and 100% survival. However, at 18 

8 dpi, five animals from each group were culled due to high parasitemia (Figure 19 

4.12B-C). Luminescence values from the surviving animals showed similar values 20 

between groups. At 9 dpi, mice from both groups displayed similar values with a 21 

mean of 1.45x109 and 1.60x109 p/s, respectively. Clearly, the parasitemia in this 22 

second experiment was higher than the first and, overall, parasitemia in AJ6- 23 

vaccinated mice was significantly reduced relative to the control group only at 6 dpi.  24 

 25 

Cytokine levels in challenged animals culled at 8 and 9 dpi were analysed as before. 26 

There were no significant changes in TNF-α, IFN-γ and IL-10 concentrations between 27 

8 dpi and 9 dpi (Figure 4.13A-C). There was a significant rise in IL-4 concentration 28 

(Figure 4.13D) between these days, with undetectable values at 8 dpi and an average 29 

concentration of 7.83pg/ml at 9 dpi (p =0.028). The comparison between 8 dpi and 9 30 

dpi also showed pronounced changes in IL-10 and IL-4 levels in the control group 31 

stimulated with ConA (p =3.40E-04 and p =1.78E-04 for IL-10 and IL-4, respectively). 32 

In all cases, cytokine concentration from splenocytes stimulated with AJ6 was lower 33 
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than the control group stimulated with ConA, except for IL-4 levels at 9 dpi (Figure 34 

4.13D).  35 

 36 

Cytokine concentrations at 8 dpi from the first (n=5/group) and second experiments 37 

(n=15/group) were also compared. The results showed a higher TNF-α concentration, 38 

while IFN-γ and IL-4 concentrations were lower (Figure 4.13A, C and D) in mice 39 

vaccinated with 50µg AJ6, although the differences were non-significant (p >0.05). 40 

However, mice from the second experiment elicited higher IL-10 levels with an 41 

average of 693pg/ml compared to the undetectable values from the first experiment. 42 

Overall, the comparison of the humoral response between both challenges using AJ6 43 

co-administrated with Quil-A showed similar cytokine expression profiles except for 44 

IL-10 concentrations which were higher in the second experiment (n=15/group). 45 

 46 

 47 

  48 
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 50 
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 54 
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 72 

 73 

 74 

 75 

Figure 4.11. In vivo imaging of BALB/c mice immunized with AJ6+ Quil-A prior 76 

challenge with T. vivax (n=15/group). Daily bioluminescent images were collected 77 

from 6-9dpi. The images were standardized adjusting the scale manually. The signal 78 

intensity is represented as a pseudocolor image.  79 

  80 
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 107 

Figure 4.12. Luminescent values and survival rate during the course of infection of 108 

luciferase-expressing T. vivax in challenged mice vaccinated with AJ6 (n= 15/group). 109 

A. The total flux (p/s) was measured from 6-9dpi and analysed according to each dpi. 110 

B. Total flux (p/s) over time. Each curve represents the arithmetic mean of each 111 

B
. 

C
. 

A
. 
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group. C. Kaplan-Meir survival curve (%) of both groups during the course of 112 

infection.   113 



Chapter 4 

 174 

 114 

 115 

Figure 4.13. Cytokine responses in in vitro stimulated splenocytes after challenge 116 

with T. vivax in AJ6+Quil-A vaccinated mice and control group (n=15/group). A. TNF- 117 

α, B. IFN-γ, C. IL-10 and D. IL-4 cytokines were measured at 8 and 9dpi. Cytokine levels 118 

from 8dpi using 20µg (n=5) and 50µg (n=15) AJ6 were compared. ND: non detectable. 119 

P-value < 0.05. 120 
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4.3.5. Cellular localization of recombinant proteins 121 

 122 

The subcellular localization of all AJ proteins was examined by indirect 123 

immunofluorescence analysis and confocal microscopy. The protocol was first 124 

optimized to limit background signal produced by the fixation method. After testing 125 

different fixation methods, blocking solutions, temperatures and conjugates, parasite 126 

fixation with 4%PFA gave the least background signal when incubated with blocking 127 

solution as primary antibody (blank control). In addition, using a blocking solution of 128 

1% BSA overnight at 4°C contributed to limiting background signal intensity. 129 

 130 

As shown in Figure 4.14, the antigens displayed differences in fluorescent intensities 131 

and cellular location. Staining with anti-AJ1 serum produced only low intensity signal 132 

from one small and unspecific location of the parasite.  Staining with anti-AJ2 and 133 

anti-AJ3 sera produced similarly low intensities but in multiple locations within the 134 

cell near to the nucleus. In all three cases, the weak intensity of the staining is 135 

comparable to that of the control group, although staining is diffuse and unspecific 136 

in the control, while appears to relate to discrete cytoplasmic features otherwise. 137 

Images for anti-AJ1, AJ2 and AJ3 assays showed no fluorescence on the flagellum or 138 

in the flagellar pocket, indicating that this staining was intracellular. 139 

 140 

The localization of AJ6 in bloodstream-form cells displayed a unique pattern 141 

compared both to the other antigens and controls. AJ6 was localized to the plasma 142 

membrane widely, both at the posterior end of the parasite near to the kinetoplast 143 

and in the flagellar pocket, and at the anterior end of the flagellum. Both locations 144 

produced approximately the same fluorescent intensity. There was no co-localisation 145 

of anti-AJ6 specific antibodies (red) and DAPI (blue) indicating that the antigen is not 146 

located in the nucleus nor in the kinetoplast. Although these patterns are typical of 147 

plasma membrane staining, the signal intensity of AJ6 fluorescence was obviously 148 

higher when compared to the control group.  149 

 150 

Although AJ6 appears to be associated with the flagellar and cell body surfaces based 151 

on staining bloodstream-form parasites with serum from AJ6-vaccinated animals, it 152 
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remains the case that the negative control parasites, stained with pre-immune serum 153 

displayed some diffuse fluorescence. This may be due to high background noise or 154 

non-specific binding by unrelated serum factors. To confirm this, and to reproduce 155 

cell-surface localized of AJ6, a polyclonal antibody was raised in rabbits against 156 

recombinant AJ6 protein (BioServUK, Sheffield, UK).  157 

 158 

Immunofluorescence staining of bloodstream-forms using sera from immunized 159 

rabbits demonstrated the recognition the parasite cell surface in the same way as the 160 

mouse post-immune serum (Figure 4.15). Polyclonal anti-AJ6 antibodies localized to 161 

the surface membrane with the same intensity as with the post-immune sera but 162 

with a lower background signal intensity. The stain was clearly localized to the whole 163 

parasite plasma membrane. No fluorescence was observed for the negative control 164 

using pre-immune sera, showing that purified anti-AJ6 antibodies confirm the 165 

localization of AJ6 to the whole cell-surface in T. vivax bloodstream forms. 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 
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 179 

Figure 4.14. Cellular localization of AJ antigens in T. vivax bloodstream-forms. The 180 

immunofluorescence protocol was first optimized and images were visualized with a 181 

confocal microscope. A pool of post-immune sera was used as specific primary 182 

antibodies against each particular antigen and coupled with Alexa fluor 555 (red). 183 

Phase contrast shows T. vivax bloodstream-forms cells, Alexa fluor 555 shows the 184 

localization of the target proteins (indicated by arrows) and 4 ,6-diamidino-2- 185 

phenylindole (DAPI) staining shows DNA contents (nucleus and kinetoplast). Bars: 186 

5µm. 187 

 188 
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 193 
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Figure 4.15 (previous page). Cellular localization of AJ6 in T. vivax bloodstream-forms 194 

using purified polyclonal antibodies. Purified polyclonal IgGs raised in rabbits were 195 

used as specific primary antibody to localize AJ6 and coupled with Alexa fluor 594 196 

(red). A pool of pre- and post-immune rabbit sera were used as negative and positive 197 

controls, respectively. Phase contrast shows T. vivax bloodstream-forms, Alexa fluor 198 

594 shows the localization of AJ6 and 4 ,6-diamidino-2-phenylindole (DAPI) staining 199 

shows DNA contents (nucleus and kinetoplast). Bars: 5µm.  200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 



Chapter 4 

 180 

4.4. DISCUSSION 226 

 227 

This chapter has evaluated the humoral and cellular immune responses to four 228 

proteins (AJ1, AJ2, AJ3 and AJ6) in infected cattle and also when administered in a 229 

variety of adjuvants to BALB/c mice. The protective efficacy of these antigens was 230 

also tested in a mouse challenge model and mice were examined for potential 231 

correlates of protection. In addition, the subcellular localization of the four antigens 232 

was evaluated to verify if the antigens were exposed on the surface of T. vivax 233 

bloodstream-forms. 234 

 235 

AJ1-3 and AJ6 bio-tagged proteins were used to determine the type of humoral 236 

response in naturally and experimentally infected cattle. The results demonstrated 237 

that all the antigens were recognized by naturally infected sera with higher titres of 238 

IgG1 than IgG2. Likewise, samples from experimentally infected animals displayed 239 

similar results but with lower titres. This may be because the samples from 240 

experimentally infected calves were eluted from filtered paper on which the sera or 241 

plasma were collected. The eluates showed high specificity against each isotype but 242 

lower titres when compared with serum samples. The same methodology of antibody 243 

elution has been used for similar purposes in other zoonotic diseases (Curry et al, 244 

2011; de Oliveira et al, 2011), and in these there was a clear difference compared 245 

with serum results. Nonetheless, samples from naturally infected cattle showed a 246 

specific antibody response against all AJ proteins. All animals showed a strong IgG1 247 

antibody response against the recombinant proteins indicating a Th2-type response 248 

over the course of infection in naturally and experimentally infected cattle (Spellberg 249 

and Edwards Jr, 2001; Bretscher, 2014).  250 

 251 

Using a BALB/c mouse model, differences in the vaccine-induced humoral and 252 

cellular responses to the antigen panel when using three different adjuvants were 253 

determined. Three AJ-M mice developed mild injection site reactions, however it has 254 

been reported as a general adverse event when vaccinated with this adjuvant (van 255 

Doorn et al, 2016). Despite the reaction, the animals were included in the analysis. 256 
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Immunization of BALB/c mice with each antigen in any adjuvant combination resulted 257 

in seroconversion at 6 weeks after the first immunization.  258 

 259 

Overall, AJ1, AJ2, AJ3 and AJ6 serostatus resulted in higher IgG1 than IgG2a titres in 260 

AJ-A and AJ-M vaccinated mice. Despite higher IgG2a than IgG1 levels in AJ-Q mice, 261 

only immunization with AJ6 produced a significant difference between the IgG1 and 262 

IgG2a titres. Pro- and anti-inflammatory cytokine levels were consistent with a mixed 263 

Th1-Th2 cellular response for all the antigens, including AJ6. These findings are 264 

interesting since alum stimulates a principally Th2 response, Montanide stimulates 265 

both Th1 and Th2, and Quil-A stimulates a mixed response in addition to CD8+ T cells 266 

(Coffman et al, 2010). Immunization with alum usually generates a Th2 response, 267 

promotes IL-10 production (Oleszycka et al, 2018) and is independent of IL-4 268 

inhibiting a Th-1 related phenotype (Brewer et al, 1999). In this regard, the results 269 

suggest that the high IL-10 concentration might be inhibiting a specific Th1 response. 270 

Interestingly, the AJ1-A vaccinated group showed an absence of IL-10 but an IgG1 271 

titre that was statistically greater than IgG2a. Likewise, the other antigens also 272 

induced greater IgG1 titres than IgG2a. In fact, this is unsurprising as susceptible mice 273 

strains like BALB/c are prone to high IgG1 antibody levels and a Th2-type response 274 

(Mosmann and Coffman, 1989). Hence, a stronger IgG1 response can be expected 275 

irrespective of the adjuvant used. 276 

 277 

The antigen-specific cellular response indicated that each protein stimulated in vitro 278 

gave a strong cell-mediated immunity in splenocytes from immunized mice. 279 

Administration of alum, Montanide or Quil-A adjuvants in conjunction with a 280 

particular antigen showed differences in cytokines concentration, although the 281 

choice of antigen made no difference There was a higher production of TNF-α and 282 

IFN-γ indicating a mixed Th1/Th2 response in all groups. It has been demonstrated 283 

that a Th1 response is important for intracellular parasites while a mixed Th1/Th2 284 

response for extracellular pathogens (Romagnani, 1997). In fact, the latter is the most 285 

common response against most pathogens, progressing from a Th1 to a mixed 286 

Th1/Th2 mode (Bretscher, 2014). Specific antibodies reduce circulating 287 

trypanosomes during infection and Th1-type cytokines help in parasite control 288 
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(Stijlemans et al, 2007). In addition, polarization of naïve T-cells depends on innate 289 

immune cells, e.g. DCs, through differential production of cytokines to stimulate a 290 

Th1 or Th2 response (Spellberg and Edwards Jr, 2001). The control of parasite burden 291 

by the immune system strongly depends on the Th1-type cytokine IFN-γ production 292 

during early stages of infection in a murine model (Magez et al, 2006; Namangala et 293 

al, 2009) and in natural infections in cattle (Taylor et al, 1996). 294 

 295 

IFN-γ-mediated responses occur when caMφ produce TNF-α. In this sense, the high 296 

levels of TNF-α in response to the antigens analysed here suggest that T. vivax- 297 

specific Th1 cells may be circulating. These findings are consistent with other studies 298 

of IFN-γ production in mice infected with T. congolense and T. brucei (Magez et al, 299 

2004; Magez et al, 2006; Magez et al, 2007). TNF-α has a trypanolytic effect by 300 

binding in the FP and destroying trypanosomal lysosome-like organelles during peaks 301 

of parasitaemia (Magez et al, 1997; Stijlemans et al, 2007). Previous studies have also 302 

demonstrated high levels of TNF-α provoking a pro-inflammatory response in mice 303 

(La Greca et al, 2014) and cattle (Camejo et al, 2014) experimentally infected with T. 304 

vivax as well as during natural infections of cattle in Africa (Bakari et al, 2017).  305 

 306 

Il-4 and Il-10 are important in downregulating the production of pro-inflammatory 307 

cytokines. Both are produced mainly during late stages of infection and are necessary 308 

to limit pathology. These results indicate that higher levels of IL-10 and IL-4 in AJ-Q 309 

group compared with AJ-A and AJ-M are both adjuvant and antigen-related. These 310 

findings are consistent with previous observations of Quil-A vaccination in murine 311 

models, in which several cytokines including IL-4, IL-10 and IFN-γ were upregulated, 312 

leading to production of cytotoxic T lymphocytes (CTL) (Sjölander et al, 2001). It is 313 

well established that the interaction between the antigen and the adjuvant is of high 314 

importance to an optimal response.  315 

 316 

Given its advantages compared with the other adjuvants analysed Quil-A was 317 

selected for the experimental vaccine. First, Quil-A being an immunostimulatory 318 

complex (ISCOM) adjuvant, it provides a stronger signal stimulating DCs and Mφ and 319 

interactions with APC (Sun et al, 2009). Second, ISCOMs promote a greater and more 320 
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prolonged antibody response. And finally, Quil-A strongly enhances CD4+ and CD8+ T- 321 

cell responses. As mentioned above, however, its overall effect is a balanced Th1 or 322 

Th2 response (Coffman et al, 2010). These findings are consistent with comparative 323 

adjuvant experiments in T. cruzi (Scott et al, 1984) and T. brucei (Lubega et al, 2002) 324 

demonstrating the effectiveness of Quil-A. 325 

 326 

Using in vivo bioluminescent imaging during the last four days of the challenge, this 327 

chapter has shown that AJ1-3 failed to produce correlates of protection as the total 328 

flux increased over time correlating also an elevated parasite load. Conversely, three 329 

AJ6-Q mice displayed a significant 2.8-fold reduction in parasite bioluminescence 330 

(36%) at 8 dpi compared to the control group resulting in 60% partial protection of 331 

vaccine efficacy.  332 

 333 

The antigen specific response presented in this chapter against the panel of antigens 334 

is comparable with previous experiments in other African trypanosomes. The 335 

comparison between the antibody levels before and after challenge demonstrated a 336 

slight decrease for both IgG1 and IgG2a, respectively. This results are in concordance 337 

with experimental infections with T. congolense in cattle (Authié et al, 2001), T. vivax 338 

in cattle (Rurangirwa et al, 1983) and T. brucei in mice (Lança et al, 2011) when 339 

different antigens were used to assess the potential protection against infection. A 340 

possible explanation for this event could the reduction in number of splenic B-cells 341 

which is associated with a defect in B-cell development (Blom-Potar et al, 2010). 342 

Another possible explanation could be the formation of immune complex of specific 343 

antibodies with the parasite antigens making this unable to measure IgGs solely in 344 

circulation (Lindsley et al, 1981; Ferrante and Allison, 1983). 345 

 346 

The cytokine profile analysed between pre- and post- challenge showed significant 347 

changes. The reduction but not absence of antigen-stimulated IFN-γ levels observed 348 

after 8 dpi could play an essential role in parasite control during early stages of 349 

infection. It is known that IFN-γ is related to resistance to African trypanosomes 350 

(Hertz et al, 1998) demonstrated in T. congolense (Guilliams et al, 2007) and T. brucei 351 

(Namangala et al, 2009). In addition, the antigen-stimulated TNF-α elicited by caMφ 352 
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due to an antigen-specific IFN-γ response might possibly be trypanolytic since these 353 

findings in agreement with their protective role during acute AAT (Namangala et al, 354 

2001). It has been shown that during a trypanosome infection, there is a switch from 355 

Th1 to Th2 response as the infection progresses (Stijlemans et al, 2007). This could 356 

explain the low levels of both Th2-type cytokines (IL-10 and IL-4) after stimulation 357 

with all the antigens. Similar results were obtained when antigens from related 358 

parasites such as L. donovani (Ghosh et al, 2001; Daifalla et al, 2015) and T. brucei 359 

(Ramey et al, 2009; Pletinckx et al, 2011) were used to assess the immune response 360 

in murine models using different adjuvants. Moreover, the same cytokine profile is 361 

observed in naturally infected cattle (Bakari et al, 2017). Taken together, the results 362 

demonstrated a Th1/Th2 response stimulated by all AJ antigens indicating that both 363 

responses coexist which would be beneficial for parasite control.  364 

 365 

The partially protective immunity elicited by AJ6 probably implicates immunological 366 

factors other than those analysed here, since no differences in cytokine profile were 367 

observed between the partially-protected and -unprotected AJ6-Q mice. The 368 

question now arises as to whether AJ6 protection is real. A possible explanation for 369 

partial protection by AJ6 might be that the antigen can stimulate the production of 370 

nitric oxide (NO) via TNF-α, a trypanolitic factor that plays an essential role in parasite 371 

control. Indeed, it has been shown that during a T. congolense infection in mice, the 372 

pro-inflammatory effectors IFN-γ, TNF-α and NO are required for the control of 373 

parasitaemia and host immunity (Magez et al, 2007). In a T. vivax infection, TNF-α 374 

mediates survival in a murine model (La Greca et al, 2014) and NO synthesis by caMφ 375 

which requires TNF-α has been demonstrated to mediate the parasites clearance in 376 

T. congolense (Taylor, 1998) and T. brucei infections (Beschin et al, 1998). 377 

Consequently, subsequent experiment must be carried out to answer this, possibly 378 

including other immunological parameters such as the quantification of other 379 

cytokines and molecules by flow cytometry and histology assays using the spleen in 380 

order to observe phenotypic profiles like inflammatory responses. Similar levels of 381 

partial protection were obtained using recombinant cytoskeletal proteins from T. 382 

evansi (LI et al, 2007; Li et al, 2009).  383 

 384 



Chapter 4 

 185 

The IFA analysis demonstrated the cell-surface expression of AJ6 in bloodstream- 385 

forms with widespread and robust staining of the whole parasite surface, consistent 386 

with the in silico prediction that FamX encodes type-1 transmembrane proteins. This 387 

localization implies that AJ6 epitopes are naturally exposed on the T. vivax 388 

bloodstream-form surface, where they may be recognized by specific anti-AJ6 IgGs. 389 

Therefore, this, combined with its partial protective effects, means that AJ6 is a good 390 

target for vaccine development. AJ1-3, however, lacked any specific cell-surface 391 

localization, which might have two explanations: 1) AJ1-3 antigens are located inside 392 

the parasite and cell permeabilization is required to expose the proteins to cognate 393 

antibodies (White, 2013). Or 2) these antigens are surface-located but expressed in 394 

the flagellar pocket only, where they are accessible to antibodies only under certain 395 

conditions (Engstler et al, 2007).  396 

 397 

Previous attempts to vaccination against T. vivax has been performed using whole 398 

parasites, other pathogens and surface glycoproteins without success. Invariant 399 

surface glycoproteins from T. brucei have been shown to confer partial protection to 400 

heterologous challenge in BALB/c mice (Lança et al, 2011), showing that surface 401 

proteins that do not undergo antigenic variation could have a role in conferring 402 

protective immunity as they are, in principle, exposed to the host antibodies, so long 403 

as they are present in sufficient quantities (Black and Seed, 2001). AJ6 antigen is a T. 404 

vivax-specific and antigenically invariant cell surface glycoprotein of bloodstream 405 

forms that is now a promising vaccine candidate.  406 

 407 

4.5. CONCLUSION 408 

 409 

Vaccination of BALB/c mice with all AJ antigens proved to be antigen and adjuvant- 410 

dependent. All animals seroconverted with IgG1 and IgG2a antibodies 6 weeks after 411 

the first immunization. Animals immunized with Quil-A in combination with each 412 

antigen showed higher IgG2a levels compared with alum and montanide-based 413 

immunization. The cellular response after vaccination showed higher levels of pro- 414 

inflammatory cytokines IFN-γ and TNF-α, indicating that AJ antigens elicited a mixed 415 

Th1/Th2-type response. Quil-A vaccinated mice showed significantly higher levels of 416 
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IFN-γ and IL-10 compared to the other two adjuvants. Immunization with AJ1, AJ2 417 

and AJ3 in combination with Quil-A failed to protect mice against challenge with T. 418 

vivax. Immunization with AJ6 and Quil-A elicited a partially protective response with 419 

a significant decrease in the parasite burden in 3 vaccinated mice at 8dpi, indicating 420 

60% efficacy. The AJ6 protein was localized to the entire cell surface in 421 

immunofluorescent analysis of fixed bloodstream-form cells using both post-immune 422 

serum and purified antibodies, displayed substantially greater expression than any 423 

other antigen.  424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 
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CHAPTER 5 

Evaluation of a FamX experimental vaccine in a caprine 

model 

 

 

5.1. INTRODUCTION 

 

The immune response of mice to the four AJ antigens in Chapter 4 showed that one 

antigen, AJ6, was able to reduce parasite burden in some animals. This result 

encourages us that specific FamX proteins, as the most abundant and immunogenic 

bloodstream-stage antigens besides VSG, might provide a means of vaccination 

against T. vivax. This chapter tests this idea directly with a vaccination and challenge 

study in goats using a FamX-based vaccine. 

 

The best outcome for immunization prior to challenge is to confer sterile immunity 

and long-term protection (Black and Seed, 2001). Besides the encouraging outcome 

in AJ6-vaccinated mice, the antigen did not confer sterile immunity and only partial 

protection was observed in some mice. However, Dr Gavin Wright and colleagues at 

the WSI have observed complete, protective immunity in mice using a FamX protein 

closely related to AJ6, which has been called the Invariant Flagellum Antigen (IFX). 

IFX was discovered using a high-throughput antigen discovery approach and been 

successfully expressed as a recombinant protein with the AVEXIS method (Kerr and 

Wright, 2012).  It has been previously demonstrated to induce high antibody titres 

with IFX+ alum administrated intraperitoneally and protective immunity in BALB/c 

mice experimentally infected with T. vivax Y486 by intravenous route (Figure 5.1A). 

In addition, mice with IFX and alum adjuvant were fully protected for over 100 days 

(Figure 5.1B). These mice were entirely free of parasites and pathology. Immunogold 

electron microscopy analysis has localized IFX to the parasite cell-surface of parasite 

but, unlike AJ6, specifically to junctions between the plasma and flagellar 

membranes. Given its proven protective ability, IFX was selected as the antigen for a 

vaccination and challenge experiment in a goat model.  
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IFX (TvY486_0807240) is a member of FamX and therefore homologous to AJ1-3 and 

6. Slightly longer than the AJ proteins, at 607 amino acids, IFX otherwise displays the 

same structural features typical of FamX: a signal peptide at the N-terminus, a single 

TMD towards the C-terminus, and a majority extracellular domain predicted to be 

highly glycosylated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. A. Antibody titration of IgG isotypes against IFX in vaccinated mice (n=15) 

co-administrated with alum (intraperitoneally). B. Long-lasting immunity against T. 

vivax infection (parasite injected intravenously) in IFX+ alum mice (n=15) compared 

to the control group. The protection was observed for more than 100 days after the 

last immunization. Data courtesy of Dr G. Wright (WSI). 

A. 

B. 
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This chapter evaluated the protective efficacy of IFX in Saanen goats (Capra aegagrus 

hircus) in Sāo Paulo, Brazil, using a Brazilian T. vivax strain ‘Miranda’ (TvMi). In South 

America, T. vivax occurs in cattle, sheep, goats and wild animals. In Brazil, T. vivax 

was first reported in 1972 and animal trypanosomiasis has become an economic 

problem in semiarid regions in Brazil with sporadic outbreaks observed in cattle  

(Jones and Dávila, 2001; Cuglovici et al, 2010; Cadioli et al, 2012). In small ruminants 

like goats and sheep, there is a high prevalence of natural infections by T. vivax with 

29.7% and 25.4%, respectively (Batista et al, 2009). In the semiarid region of Brazil, 

these animals are the most important livestock and can present variable signs and 

pathogenic features related with the parasite strain. The Miranda strain used for this 

challenge comes from the Miranda county in Mato Grosso do Sul, Brazil. This area is 

located in the Amazon state of the Pantanal, between the Brazilian, Bolivian and 

Paraguayan border. The strain was first studied by Paiva et al in Pantanal (1997) 

(Paiva et al, 2000).  

 

The pathology and clinical signs the animals have with TvMi is unique compared to 

other T. vivax strains. TvMi strain is characterized for the lack of usual clinical signs 

and pathology normally described for an infection with African trypanosomes (Paiva 

et al, 2000). Animals naturally infected with TvMi are apparently healthy and 

mortality of these animals may be due to co-infections with other pathogens. Indeed, 

field studies have demonstrated that cattle infected with the strain are able to 

control the infection, although there is still a high frequency of outbreaks nonetheless 

(Martins et al, 2008).  

 

The contribution of murine models to understand animal African trypanosomiasis is 

a valuable tool to understand pathogenesis and immunology during the infection. 

However, only vaccine trials in a natural host are definitive as vaccine trials in 

laboratory rodents might not provide an authentic host immune environment 

(Magez and Radwanska, 2014). There have been previous vaccine attempts against 

African trypanosomes using a goat model without success. For example, in 1984, 

Rovis et al demonstrated that vaccination with a purified protein of 83kDa failed to 

protect against T. vivax or T. brucei infection in goats and rabbits (Rovis et al, 1984). 
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As IFX confers sterile immunity in BALB/c mice, the next step is to test whether the 

antigen can elicit a protective response in a natural host. Hence, the potential 

effective immunity of IFX was analysed in a goat model after being challenged with 

TvMi strain.  

 

 

 

This chapter aims to: 

 

1. Immunize two groups of four Saanen goats with recombinant IFX protein in 

combination with Freund’s and Quil-A adjuvants respectively. 

2. Challenge vaccinated goats with T. vivax Miranda strain and evaluate their clinical 

and physical manifestations during the course of infection. 

3. Determine the humoral immune response in vaccinated goats before and after 

the last immunisation. 

4. Evaluate the immune protection against T. vivax challenge afforded by IFX 

immunization. 
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5.2. MATERIALS AND METHODS 

 

5.2.1. Study ethics 

 

The study was conducted at the Facultade de Ciencias Agrarias e Veterinarias of 

Universidade Estadual Paulista (UNESP) in Jaboticabal, Sāo Paulo, Brazil. All 

experiments were performed under the approval of the ethical committee of UNESP 

and University of Liverpool AWERB. The trial was conducted under continuous 

veterinary supervision ensuring high standards of animal welfare. 

 

5.2.2. Animals 

 

Eighteen male Saanen goats (Capra aegagrus hircus) 8-10 months old were obtained 

from a non-endemic T. vivax area in São Paulo, Brazil. Prior to the experiment, all the 

animals were screened for Eimeria sp. and helminths by faecal egg counts per gram 

of faeces (OPG) and confirmed negative. They were also screened for antibodies 

against T. vivax with serology (IFI and ELISA) and Loop-Mediated Isothermal 

Amplification (LAMP) PCR, all tests gave negative results.  

 

All goats were randomly distributed into two groups of vaccinated animals with IFX 

in combination with Freund’s and Quil-A adjuvant respectively (n=4/group) and two 

groups of vaccinated animals with each adjuvant only (n=4/group), and additionally 

two goats as donor animals infected with TvMi strain from a frozen stabilate 

containing 3.84x105 parasites (the latter two animals were not used in the 

experiment). The animals were allocated to separate cages during the whole 

experiment in a fly-proof area to prevent natural infections. 

 

5.2.3. IFX vaccination against T. vivax 

 

Two weeks after acclimatization, four goats from the antigen-vaccinated group were 

injected subcutaneously with IFX antigen in combination with Freund’s adjuvant (IFX-

F group). The vaccine preparation consisted of diluting 0.12ml of 100g IFX 
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recombinant protein in 2.88ml sterile PBS in conjunction with 2ml complete and 

incomplete Freund’s adjuvant for the first and two subsequent booster injections 

respectively (Table 5.1). The other four goats from the antigen-vaccinated group 

were injected with 0.116ml of 100g IFX protein diluted in 5.88ml sterile PBS with 

6ml Quil-A (IFX-Q group).  

 

 Control groups comprised four goats each of which received 2ml PBS combined with 

2ml Freund’s adjuvant (control-F), while the four remaining goats received 6ml PBS 

combined with 6ml Quil-A (control-Q). For both experimental groups, the final 

volumes of the experimental vaccines were 4ml and 12ml for Freund’s and Quil-A 

based, respectively.  

 

Each vaccinated and control animal was inoculated subcutaneously with 1ml and 2ml 

of IFX-F and IFX-Q vaccine, respectively. Both groups were vaccinated on day 0, 14 

and 28 prior challenge (Figure 5.2). All goats were monitored 4h, 24, and 48h after 

each immunisation performing clinical and physical examinations. Body temperature 

and any local adverse clinical reaction observed at injection sites were recorded. 

 

 

 

 

Table 5.1. Vaccine formulation for antigen-vaccinated and control goats. Freund’s or 

Quil-A adjuvant was combined with IFX antigen (IFX-F and IFX-Q) or alone (control-F 

and control-Q) to vaccinate goats prior challenge with T. vivax BSF. Volumes 

represent vaccine reconstitution for 4 animals per dose. 

 

Group IFX (ml) PBS (ml) Adjuvant 
Volume 

adjuvant (ml) 

Final 

volume (ml) 

IFX-F 0.08 1.92 Freund 2 4 

Control-F - 2 Freund 2 4 

IFX-Q 0.116 5.88 Quil A 6 12 

Control-Q - 6 Quil A 6 12 
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Figure 5.2. Experimental design for the immunization and challenge in goats. Goats 

were immunized subcutaneously with IFX antigen in conjunction with Freund’s 

adjuvant and Quil-A (n=4/group) or with the adjuvant only (n=4/group) at day 0, week 

2 and week 4. Animals rested for 3 weeks and at week 7 were infected with T. vivax 

BSF for 40 days (week 8 to week 13). Sera was collected at the beginning and week 6 

post immunization. Parasitaemia was recorded daily during the time of infection and 

sera was collected when animals showed peaks of parasitemia. 

 

 

5.2.4. Collection of serum 

 

All animals were bled to calculate their total IgG antibody titre. Sera were prepared 

by collecting 5ml whole blood by jugular venepuncture in an EDTA-coated tube (BD 

vacutainer) before the first vaccination (pre-immune serum) and 10 days after the 

final boost (post-immune serum). The blood was centrifuged at 13,000g for 15min 

collecting the serum and stored at - 20°C until use. In addition, 200l of each sample 

in duplicate were transferred onto FTA Classic cards (Whatman, Cat No: 

WHAWB120205) and stored at RT. 
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5.2.5. Parasites 1 

 2 

T. vivax Miranda strain was obtained from a frozen stock stabilate derived from sheep 3 

blood containing 64,000 parasites/ml. The strain was donated by Dr. Marta Maria 4 

Teixeira from the Department of Parasitology, São Paulo University, Brazil. 5 

 6 

5.2.6. Challenge 7 

 8 

The challenge of donor animals with TvMi strain was carried out one-week prior to 9 

challenge of IFX-vaccinated and control groups (36 days post-immunization).  One 10 

donor animal was infected with 3.84x105 parasites contained in 6ml whole blood 11 

derived from the TvMi stabilate by intravenous route. The donor animal was 12 

subsequently bled every day during a week to determine the parasitaemia load by 13 

the Brenner method (Brener, 1962). 14 

 15 

IFX-F and control-F were challenged 43 days after the first immunisation with 104 16 

trypanosomes of TvMi by intravenous route. IFX-Q and control-Q were challenged at 17 

the same time with a total of 103 trypanosomes of TvMi by the same administration 18 

route. The following parameters were monitored in all the animals daily: body weight 19 

(kg), temperature (C°), packed cell volume (PCV), parasitaemia and signs of any 20 

clinical manifestations.  21 

 22 

5.2.7. Antibody titration  23 

 24 

Total IgG antibody titres in pre- and post-immune sera were determined by ELISA as 25 

previously described (Section 4.2.4) with slight modifications. IFX-biotinylated 26 

antigen was diluted 1:2000 in PBS+0.5%BSA and incubated for 1h at RT. Nine two- 27 

fold sera dilutions were prepared starting from 1:1,000 and adding 100l/well of 28 

each sample in triplicate. Rabbit anti-goat IgG conjugated with alkaline phosphatase 29 

(AP) (Abcam Cat No: ab6742) diluted 1:5,000 was incubated for 1h at RT. The alkaline 30 

phosphatase substrate (Sigma Aldrich, Cat No: P4744-5G) at a concentration 31 
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0.1mg/ml was diluted in ELISA buffer (10% diethanolamine, 0.5mM MgCl2, pH 9.2 32 

miliQ water) and added 100l/well for 45min at RT. The plate was read at 405nm.  33 

 34 

5.2.8. Statistical analysis 35 

 36 

The antibody titration was performed in triplicate. All animals were analysed 37 

individually and the arithmetic mean of each group was calculated. The data are 38 

expressed as the mean ± standard error of the mean (Ramey et al). The statistical 39 

significance of differences between antigen-vaccinated and control groups was 40 

calculated by Student’s t-test.  41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 
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5.3. RESULTS 64 

 65 

5.3.1. Vaccine safety 66 

 67 

Clinical and physical examinations were recorded daily during the immunization 68 

period and rectal temperature were recorded every 4, 24 and 48 hours after each 69 

vaccination. There were no severe adverse reactions observed after each vaccination 70 

with either Freund or Quil-A adjuvants, and all animals displayed normal ranges of 71 

vital parameters such as heart rate (Hr), respiratory frequency (Rf) and ruminal 72 

motility. In the case of IFX-F and control-F, all the goats displayed hyperaemia and 73 

hyperthermia and swelling of the injection site after 4 hours of each vaccination 74 

(Figure 5.3A) but without a significant increment of rectal temperature (Figure 5.3C). 75 

These local skin reactions decreased over time (at 24h and 48h respectively) after 76 

each immunization. In the case of the groups immunized with Quil-A, no systemic or 77 

local reaction was observed following vaccination (Figure 5.3B).  78 

 79 

There was no significant difference in rectal temperature after 4, 24 and 48 hours 80 

after each vaccination with either vaccine (Figure 5.3C). However, some animals 81 

showed a slight increase of rectal temperature 24h after each vaccination. One 82 

animal from the IFX-F group (IFX-1 Freund) exhibited fever with 41.2 °C on the second 83 

vaccination. After a week following the first IFX-F immunization, mild to moderate 84 

localized pain and swelling was observed in 2/8 goats with abscess in the inoculation 85 

site. The abscess was confirmed by puncture and treatment was given daily. No 86 

abscess was observed in the control group immunized with Freund’s adjuvant only.  87 

 88 

Animals from both IFX-Q and control-Q vaccinated groups showed no significant 89 

changes in rectal temperature with absence of pain and swelling (Figure 5.3D). 90 

Physical examinations confirmed normal lymph nodes, faeces and posture without 91 

loss of body condition in all animals. Moreover, no reduction of appetite was 92 

observed during vaccination with either vaccine and the abscesses disappeared after 93 

14 days from the first immunization. No severe systemic reactions were observed 94 
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after the second and third immunization respectively. Overall, a stronger local 95 

reaction was observed in animals immunized with IFX-F compared with IFX-Q.  96 

 97 

 98 

 99 

 100 

Figure 5.3. Local skin reactions at injection sites following immunization with IFX 101 

antigen in combination with Freund’s (A) or Quil-A adjuvants (B). Dermal hyperaemia 102 

and increase of injection site volume was seen in some animals vaccinated with 103 

Freund+ IFX whereas no local reactions were observed on any Quil-A based 104 

vaccinated goat. Changes in body temperature at 4, 24 and 48 hours after each 105 

immunization using Freund’s (C) or Quil-A (D). Each curve represents the average 106 

±SEM of each group (n=4). 107 

 108 

 109 

 110 

 111 
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5.3.2. Humoral immune response to an IFX + Freund’s vaccine 112 

 113 

The specific antibody response to IFX antigen was determined by measuring goat 114 

total IgG in sera from pre- and post-immunization. Absorbance values are displayed 115 

as the mean of triplicates for each goat serum in Figure 5.4. The analysis of the 116 

humoral immune response showed that the sera from IFX-F immunized goats 117 

displayed antigen-specific antibodies indicating seroconversion. All IFX-F animals 118 

showed a significantly higher specific total IgG anti-IFX antibodies at week-8 post- 119 

immunization compared to their respective samples pre immunizations (p <0.0001) 120 

and control-F pre- and post-immunization (p <0.0001). Moreover, goats vaccinated 121 

with Freund’s adjuvant only (control group) did not produce any IFX-specific 122 

antibodies. Indeed, all pre-immunization sera showed no response, comparable with 123 

control adjuvant-only animals pre- and post-vaccination. The mean OD value for the 124 

vaccinated group post-immunization was 0.922± 0.04 (mean ± SEM), for the pre- 125 

immune vaccinated group 0.044 ± 0.001, for the control group post-immunization 126 

0.042 and for the control group pre-immunization 0.054.  127 

 128 

After the third boost vaccination, the IFX-specific antibody titre increased, with IFX-1 129 

and IFX-3 goats displaying 2-fold higher titres than IFX-2 and IFX-4 animals. The 130 

difference in OD values between these two subgroups was statistically significantly 131 

(p <0.05). Despite this, all vaccinated animals showed a half-maximal titre of 1: 80,000 132 

(4.90 Log10 dilution) and endpoint dilution of 1: 2,560,000 (6.4 Log10 dilution). The 133 

seroconversion of IFX-antibodies in vaccinated goats was detected at 10 days after 134 

the last immunization (week 8). However, it may be that seroconversion is achieved 135 

in a shorter period than this.  136 

 137 

The humoral immune response indicated that immunization of goats with IFX 138 

recombinant protein in the presence of Freund’s adjuvant strongly induced specific 139 

antibodies. IFX seroconversion increased upon immunization and was detectable 140 

after 6 weeks from the first immunization. 141 

 142 

 143 
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 144 

 145 

Figure 5.4. Antibody titration of T. vivax IFX antigen-specific antibodies produced in 146 

goats before challenge. The level of total IgG was measured by ELISA on each animal 147 

individually using two-fold serially diluted sera. The absorbance (405nm) is shown as 148 

the mean ±SEM of triplicates for each goat serum. 149 

 150 

 151 

5.3.3. Evaluation against homologous challenge with T. vivax 152 

 153 

Vaccinated and control groups were experimentally infected with T. vivax 154 

bloodstream-forms to evaluate the protection properties of the IFX antigen. Ten days 155 

after the last IFX vaccination boost, all animals were infected with TvMi strain (104 156 

and 103 bloodstream trypomastigotes for Freund and Quil-A vaccinated groups, 157 

respectively) and parasitaemia was recorded daily. T. vivax challenge led to acute 158 

infection in all IFX-vaccinated and control animals.  159 

 160 

The prepatent period observed in all goats from both IFX-F and control-F groups was 161 

6 days compared to 8 days for IFX-Q and control-Q. The first peak of parasitaemia 162 

was observed in all animals for vaccinated and control groups at 8 dpi with a mean 163 

of 4.66x106 and 4.83x106 parasites/ml for IFX-F and control-F groups respectively 164 

(Figure 5.5). Likewise, the first peak of parasitaemia observed in both groups 165 
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vaccinated with Quil-A adjuvant was at 8 dpi showing 3.33x106 and 2.04 x106 166 

parasites/ml for IFX-Q and control-Q, respectively. There were no significant 167 

differences in mean parasitaemia levels between IFX-F and control-F groups (p =0.89) 168 

and between IFX-Q and control-Q groups (p =0.36) during the first peak. 169 

 170 

Goats remained infected during the course of infection and number of parasites 171 

fluctuated. Parasitaemia levels (Figure 5.5) showed no significant differences when 172 

IFX-vaccinated groups were compared with their respective controls for either 173 

vaccine (p =0.317 and p =0.861 for Freund and Quil-A based vaccine, respectively). 174 

Overall, goats from the antigen-vaccinated and the control groups presented similar 175 

parasitaemia patterns with peaks characteristic of an infection with African 176 

trypanosomes. Animals from the Freund-based vaccine presented approximately 6 177 

peaks of parasitaemia (min=5, max=7 peaks respectively) throughout the 178 

experimental period. Likewise, animals from the Quil-A-based vaccine showed 7 179 

parasitaemia peaks (min=3, max=7 peaks respectively). Regardless the adjuvant used 180 

for the vaccine, the parasitaemia peaks were observed between 8-40 dpi appearing 181 

every 3-4 days (Figure 5.5). Interestingly, one IFX-F goat showed the greatest number 182 

of peaks and also the highest number of parasites detected during the time of 183 

infection (7 parasitaemia peaks and 1.2x107 parasites/ml at 14 dpi-peak 3). 184 

 185 

There was a reduction in the number of parasites after 20-22 dpi in animals 186 

immunized with either vaccine. During these non-parasitemic periods trypanosomes 187 

were undetectable in the blood and this was observed in all animals and lasted 7 days 188 

for Freund-based and 8 days for Quil-A-based vaccines before the next peak.  189 

 190 

Besides the parasitaemia levels monitored daily, other parameters like rectal 191 

temperature, weight and PCV were observed during challenge (Figure 5.6A, B). An 192 

increase of the rectal temperature was observed at 8 dpi in all goats from IFX-F and 193 

control-F groups (40.23±0.05°C and 40.33±0.05°C respectively) without significant 194 

differences between both groups (p =0.25). At this same time, animals from IFX-Q 195 

and control-Q also showed a rise in rectal temperature with 40.25±0.25°C and 196 

40.03±0.09°C, respectively with no significant differences between them (p =0.42).  197 
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At 8dpi, the PCV values were 27.5% for the IFX-F and 24.5% for the control-F 199 

displaying significant differences between groups (p =0.03). However, both PCV 200 

values were within normal parameters (18-38% in goats). The comparison of PCV 201 

values between IFX-Q and control-Q showed no significant difference at 8dpi (p 202 

=0.55) with a mean of 27.75% and 25.25% for each group, respectively.  203 

 204 

The slight rise of the body temperature coincided with the first peak of parasitaemia 205 

for all animals vaccinated with Freund’s. Goats showed fluctuations but no significant 206 

differences in PCV values during the course of infection displaying a mean of 22.7%, 207 

21.8%, 23.55% and 21.7% for IFX-F, control-F, IFX-Q and control-Q, respectively (p 208 

>0.05). The IFX-F group displayed fluctuations in rectal temperature (mean 209 

39.49±0.11°C) with a rise in the last day of the experiment except for one animal 210 

(goat IFX-3). The latter animal showed no significant changes in rectal temperature 211 

or PCV despite displaying the highest number of parasites detected in blood. A similar 212 

scenario was observed in the control-F with fluctuations in temperature but under 213 

normal parameters (mean 39.59±0.10°C) with few exceptions at specific days after 214 

infection only. The IFX-Q group also showed a rise in temperature at day 30 (mean 215 

40.25±0.33°C) and at day 40 post-challenge (mean 40.22 ±0.18°C). 216 

 217 

There was a rise in rectal temperature observed in the control-F group at 40 dpi that 218 

coincided with the last peak of parasitaemia but not for the other groups. Overall, 219 

there was no significant change in the rectal temperature in T. vivax- infected goats 220 

with either vaccine when compared antigen-vaccinated and adjuvant-vaccinated 221 

animals (Freund: p =0.38 and Quil-A: p =0.47). The rise of this parameter was not 222 

directly correlated with the increase of parasites in blood except for the first peak of 223 

parasitaemia only for either vaccine.  224 

 225 

The weight of vaccinated goats was also monitored (Figure 5.6C, D) but this showed 226 

no significant changes in the mean weight between IFX-F (30.77kg), control-F 227 

(30.25kg), IFX-Q (29.91kg) and control-Q (28.7kg) during the course of infection (p 228 

>0.05). Moreover, fluctuations were observed on each animal with no significant 229 
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differences observed during the challenge (p >0.05). Nonetheless, there was a 230 

significant change observed between the mean weight monitored at pre-challenge 231 

and 4 dpi for IFX-F (25.25±1.52kg vs 30.5±0.53kg respectively, p =0.02) and control-F 232 

(24.1±0.74kg vs 29.98±0.88kg, p <0.001). Despite this difference, weight of all animals 233 

was within normal parameters regardless the experimental group. There were no 234 

significant differences in weight when IFX-Q and control-Q groups were compared 235 

(p>0.05).  236 

 237 

Physical examinations of the goats from all experimental groups indicated that the 238 

animals did not showed any symptomatic signs despite obvious parasitemia. All goats 239 

showed absence of diarrhoea and enlargement of lymph nodes and presented 240 

normal feed intake, rose mucus membrane with small amount of mucus secretion, 241 

Hr and Rf remain within normal parameters and the goats remained alert and 242 

apparently healthy.  243 

 244 

All the goats immunized with either vaccine and challenged with TvMi developed 245 

acute parasitemia without any clinical manifestations and with 100% survival. The 246 

animals from all experimental groups showed high parasitemia demonstrating that 247 

subcutaneous vaccination with IFX recombinant protein in combination with 248 

Freund’s or Quil-A adjuvant did not induce a protective immune response against 249 

homologous challenge.  250 

 251 

 252 
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 254 

Figure 5.5. Parasitaemia levels of infected goats previously immunized with A) 255 

Freund’s or B) Quil-A adjuvant during the course of infection (40 days). All animals 256 

showed peaks of parasitaemia in antigen-vaccinated and adjuvant-only groups 257 

(n=4/group). Daily parasitaemia is shown as the mean number of parasites/ml in 258 

blood for each group.  259 

 260 

 261 

 262 



Chapter 5  
 

 204 

 263 

 264 

Figure 5.6. Rectal temperature and PCV values during the course of infection of goats 265 

vaccinated with IFX +Freund (A), Freund only (B), IFX +Quil-A (C) and Quil-A only (D). 266 

Weight values during the course of infection of goats immunized with IFX in 267 

combination with Freund (E) and Quil-A (F). The values are represented as mean 268 

±SEM of each group (n=4/group). 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 
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5.4. DISCUSSION 278 

 279 

The aim of this chapter was to examine whether a FamX protein that protected mice 280 

from T. vivax infection (IFX) could also protect a natural host against T. vivax using a 281 

goat model. The animals were immunized with IFX co-administrated with one of two 282 

adjuvants prior to challenge. Control groups were immunized with the adjuvant only. 283 

Ultimately, goats immunized with either vaccine showed no reduction in 284 

parasitaemia during the course of infection.  285 

 286 

The design of an effective vaccine depends on two critical parameters; the antigen 287 

that can elicit immune effectors and the selection of an adjuvant that can enhance 288 

its efficacy. The safety of the vaccine formulation is also of important concern in 289 

developing a therapeutic vaccine. In this trial, the goats were vaccinated 290 

subcutaneously with IFX antigen in the presence of Freund or Quil-A adjuvant. The 291 

comparison based on clinical and physical examinations showed a stronger local 292 

association of IFX-F vaccinated animals with hyperaemia and hyperthermia 293 

compared to the control. In contrast, no local reactions were observed in animals 294 

vaccinated with Quil-A. These findings corroborate previous animal trials that 295 

associated Freund’s adjuvant formulations with lesions (Broderson, 1989) increased 296 

inflammation and toxicity are also typically observed (Broderson, 1989; Aguilar and 297 

Rodriguez, 2007). Despite these side effects, it has been demonstrated that FCA is a 298 

potent adjuvant and, due to its mycobacterial component, it enhances the 299 

stimulation of cell-mediated immunity via the activation of TLR. FIA is the alternative 300 

of FCA but lacks killed mycobacteria. FIA has been widely used in veterinary vaccines 301 

formulations against viruses and parasitic infections (Singh and T O'Hagan, 2003).  302 

 303 

Quil-A, a saponin classified as an ISCOM, has been showed to produce less toxicity in 304 

terms of vaccine safety (Sun et al, 2009). Although the immunological mechanism of 305 

action is still unknown, Quil-A certainly stimulates B-cell proliferation and antibody 306 

production, potentiates the immunogenicity of the antigen and stimulates a strong 307 

T-cell response. While Quil-A is not accepted for human vaccine applications, it is the 308 

most widely adjuvant used for veterinary vaccine formulations (Sun et al, 2009). 309 
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Comparisons of  adjuvants in vaccine experiments against T. brucei and T. cruzi 310 

demonstrated that Quil-A was the most effective (Scott et al, 1984; Lubega et al, 311 

2002).  312 

 313 

Goat sera were analysed for the presence of IFX-specific antibodies after 314 

immunization with the antigen co-administrated with Freund’s. The results showed 315 

that IFX seroconversion was detected at week 6 from the first immunization with high 316 

IFX-specific IgG antibody titres. This is consistent with previous studies demonstrating 317 

a specific antibody production after immunization with FCA in experimental 318 

infections with T. brucei (Lubega et al, 2002). Due to the ability of Quil-A to induce 319 

strong antibody production (Sjölander et al, 2001), after immunizations against other 320 

parasites like against F. hepatica (Haçarız et al, 2009) and T. congolense (Authié et al, 321 

2001), the post-immune sera of IFX-Q animals was also expected to contain specific 322 

anti-IFX IgG antibodies. It is worth noting that, due to a lack of commercially available 323 

specific conjugates targeted for goats and a poor cross-reactivity with conjugates 324 

from other species (i.e. anti-bovine antibodies), specific IgG isotypes were not 325 

measured and, instead, only total IgG was determined. Nonetheless, it would be 326 

interesting to measure IgG isotypes in order to understand the type of humoral 327 

response IFX antigen can induce. Based on the adjuvants chosen for the formulation, 328 

it might be surmised that a IFX+ Quil-A vaccine stimulates a mixed Th1/Th2 response 329 

with higher titres of both IgG1 and IgG2a antibodies (Sun et al, 2009), while a IFX+F 330 

vaccine produces a Th1 and Th2 immune response with a greater stimulation of IgG1 331 

antibodies. Nonetheless, this chapter confirmed the immunogenicity of the IFX+F 332 

vaccine in goats.  333 

 334 

Despite the promising results in a murine model, this chapter indicates that IFX 335 

antigen in combination with either Freund or Quil-A adjuvants does not provide 336 

protective immunity in challenged goats. During the challenge, weight and PCV from 337 

antigen-vaccinated and control groups remained normal with no significant 338 

differences. Moreover, no pyrexia or differences in food intake were observed even 339 

during peaks of parasitaemia. These outcomes are unlike previous studies in which 340 

African Dwarf goats were infected with T. vivax Y486 strain (Zwart et al, 1991) and 341 
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other T. vivax infections in different breeds of goats (van den Inch et al, 1976; Saror, 342 

1980). Other reports indicate a significant decrease in body weight and PCV when 343 

goats were experimentally infected with T. congolense (Faye et al, 2005). In this 344 

chapter, the mean prepatent period was 7 dpi and the first peak of parasitaemia 345 

appeared 8 dpi for both experiments. These findings are consistent with other T. 346 

vivax experimental infections in natural hosts like bulls (Camejo et al, 2014), goats 347 

(Adeiza et al, 2008; Bezerra et al, 2018), cows (Schenk et al, 2001), zebu (Dagnachew 348 

et al, 2015) and donkeys (Rodrigues et al, 2015). However, there are some reports 349 

reporting a pre-patent period for experimentally infected goats of 5.3 days (Adeiza 350 

et al, 2008) and 4.22 days (Osman et al, 2008).  351 

 352 

The fact that during the course of infection animals in both vaccinated and control 353 

groups parasitaemia was the only sign of infection, and the goats did not present any 354 

pathological features typical of trypanosomiasis suggests that this strain of T. vivax 355 

(TvMi) is less virulent than others used previously in similar experiments. Animals 356 

with good physical and nutritional conditions can present a favourable prognosis 357 

during T. vivax infection in sheep and cows (Katunguka-Rwakishaya et al, 1999; Paiva 358 

et al, 2000). Certainly, previous studies in livestock naturally infected with TvMi strain 359 

(Dávila et al, 2003; Martins et al, 2008; Cuglovici et al, 2010) indicate that TvMi differs 360 

from other South American strains by the absence of clinical signs, but nevertheless 361 

causes acute infection with high parasite burden.  362 

 363 

There are several explanations for the failure to confirm IFX as a vaccine candidate 364 

against natural T. vivax infection. The parasite clearance in a murine model suggested 365 

that its immunogenicity is a crucial factor to elicit a robust immune response. This is 366 

of high importance since the immunogenicity refers to the ability of the antigen to 367 

provoke an immune response (Mahanty et al, 2015). However, the vaccine 368 

immunogenicity relies on several factors. One extrinsic factor that can contribute to 369 

the immunogenicity is the antigen dose (De Groot and Scott, 2007). In previous 370 

studies identifying vaccine candidates against T. vivax and T. brucei in a goat model, 371 

doses of 10µg, 20µg and 40µg (Rovis et al, 1984) showed no seroconversion of IgG 372 

antibodies and failure of immunoprotection. Nonetheless, other vaccine attempt in 373 
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cattle against T. brucei infection demonstrated that a single inoculum of 200µg of a 374 

variant-specific surface antigen (VSSA) co-administrated with an optimal adjuvant 375 

gave protection after challenge with 104 parasites (Wells et al, 1982). VSSA antigen 376 

was previously tested in mice showing protective immunity after vaccination with 377 

weekly doses of 100µg with FCA (Cross, 1975). This examples showed that the dose 378 

and antigen concentration are important for the immunogenicity. Indeed, an antigen 379 

is more immunogenic when a low concentration is needed to induce a robust 380 

response (Mahanty et al, 2015). Vaccination of mice with IFX gave sterile immunity 381 

using high doses of 50µg but a lack of a protective response in goats vaccinated with 382 

100µg/dose. This suggests that dose to vaccinate goats was insufficient or that IFX is 383 

not too immunogenic as high doses are needed to observed a protective effect in 384 

mice. The latter explanation is preferred since it has been demonstrated that IFX is 385 

not immunogenic in naturally infected cattle (unpublished data). 386 

 387 

Another important extrinsic factor that contributes the immunogenicity of the 388 

antigen is the administration route. (De Groot and Scott, 2007). IFX elicited a long- 389 

lasting immunity against T. vivax infection in BALB/c mice over almost 150 days after 390 

the last immunization. To achieved this, animals were immunized using alum 391 

intraperitoneally and protection was observed when challenged using intravenous 392 

and subcutaneous route. In the case of the experiments in goats, both vaccines (using 393 

Quil-A and FCA) were administrated subcutaneously and parasites administrated 394 

intravenously. This clear difference in the vaccine administration route can play an 395 

essential role in the development of a protective response. It is well known that 396 

different routes of vaccine administration can elicit a different response as in the 397 

inoculation site distinct types of antigen presenting cells (APC) can be present like 398 

specific DC subsets (Coffman et al, 2010; Bretscher, 2014). This means that APCs are 399 

important for the type of immune response generated and for the polarization of T 400 

naïve cells into mature Th1 or Th2 cells (Spellberg and Edwards Jr, 2001).  401 

 402 

When testing vaccine candidates, the infection rate is important to evaluate its 403 

effectiveness. An infected tsetse fly can carry 104 metacyclic parasites in a single bite. 404 

In this regard, challenge trials with fewer than 104 parasites might bias the results 405 
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(Magez et al, 2010). Sterile immunity in IFX-vaccinated mice was achieved when 406 

animals were challenged with 102 and 103 parasites, while the goats were challenged 407 

with 104 and 103 parasites from a blood stabilate. Hence, the positive outcome from 408 

the murine infection might not reflect what normally happens in a natural infection 409 

with African trypanosomes due to the low infection rate used. 410 

 411 

This chapter has demonstrated that immunized goats seroconverted for IFX antigen, 412 

with high antibody titres indicating effective polyclonal B-cell activation. These 413 

specific antibodies are a key part of an optimal immune response but clearly they are 414 

insufficient to produce a protective effect. It might be that even though high levels of 415 

total IgG anti-IFX were found after the last boost in goats, there is a weak neutralizing 416 

antibody response against IFX-specific epitopes, or that the humoral immune 417 

response is not strong enough for a long term response. In this regard, it is necessary 418 

to measure the antibody levels before and after challenge to confirm a long lasting 419 

humoral response. In other words, the level of the specific antibodies must be 420 

maintained during the infection even in the absence of circulating trypanosome 421 

antigens (Magez et al, 2010). The splenic B-cell depletion and as a consequence, the 422 

concentration of specific IgG antibodies after challenge might probably play a key 423 

role in why IFX failed to produce protective immunity in experimentally infected 424 

goats (Blom-Potar et al, 2010). 425 

 426 

Experimental bovine trypanosomiasis with T. vivax demonstrated that there are 427 

differences in the serum levels of antibodies. Indeed, during the first days of an 428 

infection with T. vivax, there is an increase in the serum levels of IgM but it drops 429 

approximately 6 dpi. In the case of IgG isotypes, serum IgG2 was significantly lower 430 

compared to the levels in the control group (non-infected animals) but IgG1 showed 431 

no differences between both groups (Tabel et al, 1981). This could suggest that IgG1 432 

antibodies could be more important than IgG2 during the infection, favouring a Th2- 433 

type response. However, it has known that a Th1 response is necessary to control 434 

parasitemia in a murine model and that the antibody response is TNF-dependant (La 435 

Greca et al, 2014). This has been demonstrated comparing the immune response 436 

between wild type and TNF-/- mice and a possible explanation could be that TNF 437 
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affects the parasite fitness that could facilitate the parasite opsonization. The 438 

important role for parasite control and host survival has also been demonstrated in 439 

T. brucei and T. congolense infections (Magez et al, 1993; Magez et al, 1997; Iraqi et 440 

al, 2001; Magez et al, 2006). In mice, IFX produced high levels of IgG2a compared to 441 

IgG1 and, contrary to all the AJ proteins analysed in Chapter 3 and 4, were not 442 

detected by serum from naturally infected animals. However, all goats were 443 

seroconverted with total IgGs detected after the last boost. Among T. vivax cell- 444 

surface proteins, invariant proteins can be of variable immunogenicity only those that 445 

elicit the strongest response are considered to be immunodominant antigens. This 446 

phenomenon called a dominance hierarchy (Frank, 2002) and has a fundamental 447 

effect since the nature of the epitopes can be crucial to induce protection (Mahanty 448 

et al, 2015). Here, it is suggested that the goat immune system detected IFX epitopes 449 

and produced specific antibodies but other, more immunodominant proteins such as 450 

AJ6 might elicited a stronger response still. 451 

 452 

The differences in the immune response between a mice and goats should also be 453 

taken into consideration. As stated in the Chapter 4, IFX can confer sterile immunity 454 

against T. vivax infection in BALB/c mice, which are prone to Th2-type responses. This 455 

means that they are likely to produce higher titres of IgG1 than of IgG2a, irrespective 456 

of the adjuvant used (Mosmann and Coffman, 1989). Moreover, as Th2 clones, they 457 

synthetize cytokines like IL-6, IL-4 and IL-5, while TNF-α levels are not detectable. 458 

However, vaccination with IFX in combination with alum and Quil-A independently 459 

showed protective responses with an increase IgG2 titres suggesting towards a Th1 460 

immune response and probably producing high TNF-α levels. This last cytokine might 461 

be induced by IFX in mice but not necessarily in goats. In other words, a possible 462 

explanation for the negative outcome here is that the IFX vaccine did not stimulate 463 

caprine TNF-α. This explanation relies on the fact that TNF-α levels are increased 464 

during experimental infections in bulls with T. vivax (Camejo et al, 2014) and has been 465 

shown to be necessary for parasite control in C57BL/6 TNF-/- mice (La Greca et al, 466 

2014). As no analysis of the cytokine levels or T-cell response in response to IFX 467 

immunization was possible, it remains important compare the type of cellular 468 

response in murine and natural models.  469 
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5.5. CONCLUSION 470 

 471 

This vaccination and challenge experiment in a goat model confirmed the 472 

seroconversion of total IgG antibodies detected 6 weeks from the first immunization 473 

when animals were vaccinated with IFX co-administrated with FCA. However, after 474 

challenge with TvMi strain all vaccinated animals, regardless of the adjuvant applied, 475 

were and developed acute infection with peaks of parasitaemia typical of T. vivax 476 

infection. Therefore, vaccination with IFX did not confer protective immunity in the 477 

goat contrary to the protection in acute and chronic infection in a murine model. This 478 

shows that IFX antigenicity is not sufficient to confer immunity and other 479 

immunological factors not identified must be involved in the process.  480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 
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CHAPTER 6 499 

General Discussion 500 

 501 

African trypanosomes are obligate extracellular parasites that have developed a 502 

complex mechanism to evade the host immune respose by antigenic variation. The 503 

latter provides a robust response that leads to chronic infection and has been 504 

considered the major impediment for vaccine development (Tabel et al, 2013). Since 505 

these proteins are exposed at the cell surface and highly immunogenic, VSGs proteins 506 

were seen as the key to producing a vaccine. However, because VSGs switch and are 507 

constantly replaced in the parasite infrapopulation, it has been well established that 508 

vaccination against these proteins will never confer sterile immunity or protection 509 

(Magez et al, 2010). To date, there is no vaccine for any African trypanosome and 510 

chemotherapy remains the only disease therapy. These drugs to treat 511 

trypanosomiasis, however, are toxic in treated animals and produce resistance in 512 

parasite populations. 513 

 514 

There have been several attempts to discover antigens among non-VSG proteins, 515 

despite the common belief that the barrier produced by the highly immunogenic 516 

VSGs shield invariant proteins also located at the cell-surface. Invariant surface 517 

proteins uniformly expressed were identified to be immunogenic but conferred only 518 

partial protection (Mkunza et al, 1995; Lança et al, 2011). This may be because the 519 

mechanisms used by African trypanosomes to avoid the immune system also 520 

encompasses other strategies apart from VSGs. In fact, it seems that the parasites 521 

have developed two main protective methods to escape from the antibody-mediated 522 

process. The first is antigenic variation and the second is immunosuppression, B-cell 523 

apoptosis, inhibition of the innate immune system by adenylate cyclases and other 524 

trypanosome-derived factors (La Greca and Magez, 2011). The decrease of B-cell 525 

population in peripheral organs also needs to be taken into consideration as is one of 526 

the characteristics during an infection with T. vivax. This B-cell exhaustion, not 527 

compensated by new B-cells migrating from the bone marrow, decrease the 528 

population of lymphocytes during the infection. This event affects the maturation of 529 
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pro-B into pre-B precursors and not the migration of lymphocytes from the bone 530 

marrow to the periphery. Despite the origin is still unclear, B-cell depletion is another 531 

mechanism of immune evasion that lead to an inefficient parasite clearance (Blom- 532 

Potar et al, 2010). 533 

 534 

In this sense, the development of an effective and protective vaccine against this 535 

disease should be focused on conserved, invariant antigens located at the cell-surface 536 

that could induce a robust protective antibody response and are constitutively 537 

expressed (Black and Seed, 2001). In addition to hteir cell-surface location, such 538 

antigens must be accesible to specific antibodies in order to develop a succesful 539 

immune response. Thus, one of the steps in vaccine design is the discovery of species- 540 

specific antigens as potential targets. Using the reverse vaccinology approach, the 541 

methodology and analysis presented in this thesis has approached this challenge and 542 

contributed to the pursuit of an African trypanosomiasis vaccine. 543 

 544 

In Chapter 2, bioinformatic analysis identified potential cell-surface antigens within 545 

the T. vivax genome from a large panel of species-specific proteins divided into 546 

families. Population genetics confirmed that some antigens were universal and 547 

displayed stable polymorphism across diverse clinical isolates. In Chapter 3, the 548 

immunogenicity of selected cell-surface antigens was assayed based on epitope 549 

mapping, revealing that one family, FamX, has the highest number of immunogenic 550 

proteins in natural T. vivax infections across Africa and South America. These results 551 

were concordant with in silico B-cell epitope predictions. In Chapter 4, recombinant 552 

forms of four FamX proteins used to vaccinate mice prior to parasite challenge to 553 

evaluate their potential protective role. This demonstrated seroconversion against 554 

all four ‘AJ’ proteins. The parasite challenge led to partial protection only when 555 

animals were vaccinated with AJ6 coadministrated with Quil-A adjuvant. Moreover, 556 

AJ6 was the only antigen to be robustly located at the T. vivax cell-surface indicating 557 

that it was accesible host IgG antibodies. Lastly, in Chapter 5, IFX, another FamX 558 

protein, not identified in the immunogenicity assay but proven to protect mice 559 

completely, was used to  coadministrated to goats with Freund’s adjuvant and Quil- 560 

A before challenge with a Brazilian T. vivax strain. While the animals showed 561 
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seroconversion to IFX with high IgG antibody titres, there was no protective immune 562 

response. 563 

 564 

The work presented in this thesis can be extended in three ways: I) the discovery of 565 

new antigens based on B-cell epitope identification by other experimental methods 566 

or by taking into consideration proteins below the threshold from the peptide array 567 

results (described in Chapter 3), II) evaluating in more detail the immune response to 568 

the already discovered antigens (described in Chapter 4) or new antigens by 569 

immunological and molecular methods and III) applying potential vaccine candidates 570 

in a DNA vaccine rather than protein subunit vaccine. 571 

 572 

The antigen discovery analyzed in this thesis in principle based on the linear B-cell 573 

epitope mapping can be also identified using other approaches. The peptide 574 

microarray is classified as an functional approach since it recognizes linear B-cell 575 

epitopes based on the antibody-antigen interaction. The identification of new 576 

epitopes can also be achieved using other functional experiments like nuclear 577 

magnetic resonance (NMR) spectroscopy or surface display methods (Ponomarenko 578 

and Van Regenmortel, 2009). The major advantage of NMR spectroscopy is that it 579 

can detect weak and strong interactions between the complex (Van Regenmortel, 580 

2009) while the surface display assays based on the binding capacity between 581 

peptides displayed in a bacteriophage-surface and monoclonal antibodies although 582 

other surfaces can also be used due to the nature of the different antigens (Ahmad 583 

et al, 2016). 584 

 585 

In addition to functional methods, structural approaches including X-ray 586 

crystallography recognize conformational epitopes by the structure of the antibody- 587 

antigen complex. This approach resolves the atomic interaction between antigen and 588 

antibody, and is the best technique for antigenic determinants, although it requires 589 

sophisticated machinery and crystals can be difficult to produce (Van Regenmortel, 590 

2009). The identification of conformational rather than linear epitopes could benefit 591 

the discovery of proteins since they are the greatest percentage of epitopes found in 592 

proteins. Despite this, linear epitopes are usually identified due to their easy 593 
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recognition that can also be corroborated by in silico predictions. In this sense, the 594 

linear epitopes that did not pass the significance threshold in the peptide array 595 

analysis (Chapter 3) might also be taken into account for further experiments. Indeed, 596 

the discovery of AJ6 antigen was based on the raw p-value rather than the adjusted 597 

p-value from the analysis, meaning that there might be other antigens that can 598 

potentially have a protective role during a T. vivax infection. 599 

 600 

The evaluation of the murine immune response presented in this thesis focused on 601 

recombinant AJ antigens and a possible polarization towards a Th1 or Th2 response 602 

when different adjuvants were coadministrated. Animals vaccinated with Quil-A 603 

were then challenged to determine their potential protective effect. Moreover, the 604 

protective role of the IFX antigen was assessed in a natural host also describing the 605 

humoral immune response. Further experiments can be assess the antigens analyzed 606 

for a better understanding of the immunological processes and their role in a 607 

potential protective immunity. It has been established that both CD4+ and CD8+ T- 608 

cells are fundamental for controlling African trypanosomiasis (Onyilagha and Uzonna, 609 

2019) and, in fact, it is suggested that future vaccines against African trypanosomes 610 

should generate T-helper cells towards a Th1 response (Tabel et al, 2008). However, 611 

experimental bovine infections demonstrated that during a T. vivax infection, there 612 

is a reduction of IgG2 antibodies suggesting that the previous assumption may work 613 

for T. brucei or T. congolense vaccines, but not necessarily for T. vivax (Tabel et al, 614 

1981). In this regard, the T-cell response to novel antigens should also be 615 

investigated. In a murine model, T-cell proliferation assays can compare stimulated 616 

and unstimulated cells from vaccinated mice after an in vitro stimulation to measure 617 

cellular immunity. In addition, the T-cell response against AJ antigens and IFX could 618 

be assesed by quantifying different types of T-cell populations like regulatory T-cells 619 

(Tregs) by fluorescence-activated cell sorting (FACS). Analysing the cytokine profile 620 

against IFX using the same panel of cytokines and including others not evaluated in 621 

Chapter 3, e.g. IL-2 and nitric oxide, which are known to play a fundamental role 622 

during an infection with African trypanosomes (Stijlemans et al, 2017) should also be 623 

considered for future work. 624 

 625 
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Another approach for vaccine design is the development of a DNA vaccine rather than 626 

a protein vaccine. Typically, DNA vaccines are composed of bacterial plasmids that 627 

encode the protective antigen and are taken up by mammalian cells where proteins 628 

are expressed (Ivory and Chadee, 2004). DNA vaccines have different advantages 629 

especially in parasitic diseases such as inducing a strong long-lasting immune 630 

response, utility in the use of multivalent vaccines, use of genetic adjuvants and 631 

others. In fact, DNA vaccines has been applied against several parasitic infections like 632 

L. amazonensis (Campbell et al, 2003), L. major (Campos-Neto et al, 2002), 633 

Plasmodium spp (Parker et al, 2001; Kumar et al, 2002) and Schistosoma mansoni 634 

(Dupré et al, 2001). Thus, DNA vaccines might also be designed to express AJ proteins, 635 

perhaps co-administrated with a genetic adjuvant to enhance co-stimulatory 636 

molecules like cytokines and a stronger T-cell response. 637 

 638 

This thesis has focused on species-specific antigens expressed mainly in bloodstream- 639 

forms. Yet, when a tsetse fly bites the mammalian host, it inoculates metacyclic-form 640 

parasites rather than bloodstream-forms. Therefore, antigen discovery directed 641 

towards metacyclic-stage proteins might also be a useful approach to AAT vaccine 642 

design (Magez et al, 2010). Specific gene families expressed mainly in T. vivax 643 

metacyclic-forms such as Fam27, Fam35 and Fam43 could be targeted for vaccine 644 

development if their cell-surface location is confirmed. 645 

 646 

The design of an effective vaccine against T. vivax relies on a sophisticated 647 

understanding of host-parasite immune interaction. The immune evasion strategies, 648 

pathogenicity and the role of specific immunological factors involved in 649 

trypanosomiasis have been characterized largely for T. brucei and, to a lesser extent, 650 

T. congolense only (Stijlemans et al, 2016). This is mainly because murine and bovine 651 

models are available for both species (Morrison et al, 2016). Although such models 652 

bring huge advantages in terms of immunological research, it may not be sensible to 653 

extrapolate this information to T. vivax, assuming that it has the same mechanisms. 654 

While a murine model for T. vivax has been developed to overcome this problem 655 

(Blom-Potar et al, 2010) there is still no natural host infection model. This will be 656 
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crucial to understanding the host-parasite interactions and immuno-manipulation 657 

during a T. vivax infection. 658 

 659 

Natural hosts are also crucial in validating potential vaccine candidates that have 660 

proven efficacious in laboratory rodents. In general, after the identification of 661 

potential antigens against a particular pathogen, the protective role and immune 662 

protection should be tested in small and large animals. Nonetheless, it is more 663 

convenient to do vaccine trials in rodents due to their easy handling, low cost and 664 

large sample size (Hein and Griebel, 2003). Ultimately, however, in the case of AAT, 665 

trials on its natural host like cattle, goats and sheep are essential and ensure that we 666 

understand any protective immunity properly. Moreover, vaccine trials in livestock 667 

permit a proper evaluation of vaccine safety and potential risks during vaccination, 668 

hazard of contamination, influence of chemotherapy with vaccination and potential 669 

revaccination (Pipano, 1995). 670 

 671 

Vaccines against protozoal infections can bring enormous benefit to livestock 672 

production and also benefit humans exposed to zoonotic diseases in endemic areas 673 

(Meeusen et al, 2007). Veterinary protozoal vaccines have been succesfully produced 674 

based on live or attenuated pathogen strains (Meeusen et al, 2007). However, since 675 

vaccines often require constant reapplication, commercial vaccines can be 676 

uneconomical to use and mutations in vaccine strains can lead to reversion to 677 

virulence. Recombinant vaccines are beneficial since they do not require a cold-chain 678 

for transportation as live vaccines do (Jenkins, 2001) and, although subunit vaccines 679 

are yet to produce better results against protozoal pathogens than live or attenuated 680 

vaccines, (although perhaps mitigating disease pathology), they remain the objective. 681 

Many vaccine candidates for AAT have been tested in murine and bovine models 682 

mainly but, to date, no effective vaccine exists (Stijlemans et al, 2017), leading some 683 

to suggest that immunosuppression may make the development of an effective 684 

vaccine impossible (Black and Mansfield, 2016).  685 

 686 

Assuming that this is ultimately proven too pessimistic, it will be difficult to deploy a 687 

vaccine against AAT since pharmaceutical companies are unwilling to invest in 688 
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diseases that affect poorest people and cannot generate profit, depsite the huge 689 

impact AAT has on agricultural production in a great part of Africa (Ilemobade, 2009). 690 

Moreover, the massive wild animal reservoir of African trypanosomes ensures 691 

constant sylvatic transmission and thus prevent controls of the disease and a 692 

successful vaccination route (Stijlemans et al, 2016). Drug resistance by the 693 

inappropiate use of trypanocides (Baker et al, 2013) contribute to treatment failure 694 

for AAT, increasing the cost burden to countries trying to combat poverty (Shaw, 695 

2009). Overall, vaccine development for T. vivax may be made more plausible by the 696 

discovery of conserved, immunogenic antigens on a cell-surface that departs 697 

substantially from that understood for T. brucei. Nonetheless, the path to a vaccine 698 

against AAT is a long-term process, of which antigen discovery is the first step. The 699 

eradication of AAT by vaccination might be possible in the future but many challenges 700 

remain. 701 

 702 

 703 

6.1. FINAL CONCLUSION 704 

 705 

Using a reverse vaccinology approach, this thesis identified specific antigens of T. 706 

vivax as potential vaccine candidates. The in silico analysis of 15 TvCSP gene families 707 

resolved those that encode surface proteins with minimal polymorphism but a 708 

universal presence in parasite clinical isolates. Epitope mapping subsequented 709 

narrowed the field further by showing which TvCSP were naturally immunigenic, 710 

focusing on one protein family, FamX, which showed the greatest number of immune 711 

cell epitopes. Four FamX proteins were expressed in recombinant form and one of 712 

these (‘AJ6’) was then observed to induce higher levels of pro-inflammatory cytokines 713 

(IFN-γ and TNF-α) in an adjuvant-dependent manner, leading to a mixed Th1/Th2- 714 

type immune response and reduced parasite burden when used to vaccine mice. AJ6 715 

was also localised across the cell surface of bloodstream-form T. vivax. Despite 716 

protecting mice and producing robust seroconversion in immunized goats, another 717 

FamX protein (IFX) failed to provide any protection against T. vivax infection. In 718 

conclusion, the cell-surface of T. vivax bloodstream forms contain novel, non-VSG 719 

proteins with no equivalent in T. brucei and T. congolense, which present favourable 720 
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properties as surface antigens. FamX proteins, and particularly AJ6, are a promising 721 

basis for further research towards a vaccine against animal African trypanosomiasis. 722 

 723 
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