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ABSTRACT 

Flucloxacillin is a β-lactam antibiotic associated with a high incidence of idiosyncratic drug-
induced liver reactions. Although expression of HLA-B*57:01 increases susceptibility, little is 
known of the pathological mechanisms involved in the induction of the clinical phenotype. 
Off-target protein modification is suspected to drive the reaction, either through non-
immune mediated pathways, through the modification of peptides that are presented to T 
cells by the risk allele, or both. In this thesis, the characterization of proteins haptenated by 
flucloxacillin was performed using proteomic techniques. As protein haptenation, followed 
by antigen processing and presentation of the drug-derived antigenic determinants may 
drive the adverse event, the immunopeptidome of HLA-B*57:01 in the presence and absence 
of flucloxacillin was determined.  
 
In order to detect flucloxacillin modified proteins, an antibody specific for flucloxacillin was 
generated. Characterization of the antibody to determine cross reactivity and selectivity was 
determined. Anti-flucloxacillin antibody was used to identify flucloxacillin modified proteins 
in a number of immortalised cell lines and primary human hepatocytes. Western blot, 
immunocytochemistry and mass spectrometry were used for the detection, localisation and 
characterization, respectively, of drug modified proteins. C1R-B*57:01, B-lymphoblast cells 
transfected with HLA-B*57:01, were incubated with flucloxacillin for 48h. HLA peptide 
complexes were subsequently eluted and processed for mass spectrometric analysis. Finally, 
bioinformatic pipelines were generated to assist in the characterization of flucloxacillin-
modified MHC peptides to allow a more high-throughput approach to immunopeptidomic 
data analysis.  
 
The generation of a high titre flucloxacillin specific antibody was successful, with no cross 
reactivity with proteins. Isoxazole ring containing β-lactams did cross react, indicating this 
was the site of recognition. Intracellular protein modification was identified in all the cell 
lines examined, including primary human hepatocytes. Using the liver cell line HepaRG, 
localization within the bile canaliculi was observed. The function of the major hepatocellular 
efflux transporters MRP2 and P-gp was increased in the presence of flucloxacillin in a time-
dependant manner. Modification of master regulators of MAP Kinase signalling molecules 
was detected. Flucloxacillin also modified HLA-B*57:01 protein directly, which could lead to 
neo-antigens being presented. In depth analysis of the global repertoire of peptides was 
interrogated. Flucloxacillin was found to alter the C-terminal amino acid on the majority of 
peptides, where an increase in phenylalanine and a decrease in tryptophan was observed. 
Peptides unique to flucloxacillin treatment were theoretically weaker binders to HLA-
B*57:01, indicating flucloxacillin may assist in their stabilization. Of the peptides eluted from 
flucloxacillin treated C1R-B*57:01 cells, 7 were fully annotated to show flucloxacillin-lysine 
covalent binding, with other partially annotated peptides indicating modifications. 
 
In this thesis a wide range of off-target protein modification has been determined, including 
proteins involved in regulatory signalling pathways. The localization of flucloxacillin was 
identified to occur in the site of clinical disease during flucloxacillin-induced liver injury. It 
was also demonstrated that drug-modified peptides are presented by HLA-B*57:01 and that 
global repertoires are altered by flucloxacillin. Further investigation into the immunogenicity 
of haptenated proteins in the onset of iDILI is required to determine the role of these 
peptides in drug hypersensitivity.
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Adverse or unwarranted responses to drugs are a major impediment to the drug 

development process and an economic burden to healthcare services across the globe. The 

financial impact of adverse drug reactions (ADRs) varies, however in the UK a study of 18,820 

patients revealed a cost of £450 million to the NHS, contributing to 6.5% of hospital 

admissions (Pirmohamed et al., 2004). While often resolved with cessation of the treatment, 

in rare cases, ADRs can lead to severe conditions including gastrointestinal bleeding, renal 

failure, liver damage, and in some cases, mortality. Of course, strict regulations imposed on 

pharmaceutical companies have significantly reduced the incidence of ADRs. However, when 

new pharmaceuticals reach the market, exposure to large populations results in the 

presentation of side effects not observed during initial screening. These more severe 

reactions to drugs more commonly involve immune activation. Delayed reactions to drugs, 

including after cessation of treatment, are indicative of an adaptive immune response. In 

these cases, the adverse event cannot be predicted due to the idiosyncratic nature of the 

onset of disease (Uetrecht and Naisbitt, 2013). Indeed, as technology and our understanding 

of genetics has evolved it has become more apparent that certain genes can be risk factors 

for the onset of disease (Alfirevic and Pirmohamed, 2010).  

Here, a thorough literature review was performed to provide a framework and overview of 

the areas that will feed into the experimental chapters, with a view to further our 

understanding of the immune triggers in idiosyncratic ADRs. The general introduction has 

therefore covered the following; 

 ADRs; including drug induced liver injury (DILI). 

 Cellular mediators of ADRs and mechanisms of immune activation. 

 Proteomic methods to detect drug protein adducts. 

 Β-lactam antibiotics and flucloxacillin induced DILI.  

 Thesis aims. 
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 ADVERSE DRUG REACTIONS 

ADRs are defined by the World Health Organization (WHO) as “a response to a medicine 

which is noxious and unintended, and which occurs at doses normally used in man for the 

prophylaxis, diagnosis or therapy of disease, or for modification of physiological function” 

(WHO, 1972). In more recent years this definition has been met with disagreement though 

the use of ‘noxious’. Typically, noxious relates to something that is ‘injurious, harmful or 

hurtful’ as defined by the Oxford English Dictionary, therefore, can minor reactions be 

defined as an ADR under the WHO’s 1972 definition? There needs to be some separation 

between mild and more severe ADRs otherwise the current surveillance system employed to 

monitor ADRs would not operate as intended. In response, Laurence’s definition aimed to 

reduce the categorization of minor ADRs; “a harmful or significantly unpleasant effect caused 

by a drug at doses intended for therapeutic effect (or prophylaxis or diagnosis) which 

warrants reduction of dose or withdrawal of the drug and/or foretells hazard from future 

administration” (Laurence and Carpenter, 1998). While this was generally accepted the 

exclusion of non-drug triggers such as contaminants, inactive compounds and error made it 

less favourable by many in the scientific community. It wasn’t until 2000, almost 30 years 

after the first definition, that Edwards and Aronson defined an ADR as “an appreciably 

harmful or unpleasant reaction, resulting from an intervention related to the use of a 

medicinal product, which predicts hazard from future administration and warrants 

prevention or specific treatment, or alteration of the dosage regimen, or withdrawal of the 

product” (Edwards and Aronson, 2000). This definition is more generally accepted as it more 

broadly describes ADRs while still allowing for a wider range of symptoms to be included.  

 DRUG HYPERSENSITIVITY REACTIONS 

1.1.1.1 DEFINITION 

Drug hypersensitivity reactions (DHRs) are a subset of ADR based on their immunological 

involvement. Typically, DHRs are idiosyncratic in nature, meaning that they cannot be 
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predicted by the pharmacology of the drug or their dose due to unknown off target toxicity. 

Individual susceptibility to a DHR is associated with a whole host of contributions including 

genetics, diet, immune status, multiple medications, treatment duration, age, gender and 

the chemical structure of the drug (Pichler, 2003). Patients with HIV and mononucleosis have 

a marked increase of an ADR to suflonamides and ampicillin respectively. Less specific factors 

such as undergoing open heart surgery or the influenza vaccine can generally increase the 

risk of an ADR (Ju and Reilly, 2012). 

1.1.1.2 CLASSIFICATIONS 

Immune mediated DHRs are categorized into four sub-groups depending on the onset of 

symptoms and the cellular components and mechanisms responsible for their action (Figure 

1.1). Although defined in 1963 by Gell and Coombs, it is still generally widely accepted and 

termed types I, II, III and IV hypersensitivity (Gell and Coombs, 1963). The definitions for 

these reactions are explored below.  

1.1.1.2.1 TYPE I  

Type I reactions are immediate reactions that occur within minutes to hours of contact with 

the drug. Several symptoms are observed including urticaria, asthma, conjunctivitis, rhinitis 

and in severe cases cardiorespiratory (anaphylactic) shock. With type I hypersensitivity 

respiratory symptoms are generally rare as few drugs are administered though inhalation. 

Activation occurs when IgE bind to high affinity receptors on mast cells and basophils and 

are cross linked by a drug allergen. Once bridged IgE molecules trigger the degranulation of 

basophils leading to the release of preformed mediators such as histamine. Subsequently 

newly synthesized mediators such a thromboxanes, prostaglandins and leukotrienes are 

released (Atkinson and Kaliner, 1992; DeJarnatt and Grant, 1992; Descotes and Choquet-

Kastylevsky, 2001).   
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1.1.1.2.2 TYPE II   

Type II reactions are mediated by cytotoxic IgG and IgM antibodies and can cause cell 

damage via two mechanisms. Immunoglobulin covered target cells can be recognized by 

immune cells through the conserved (Fc) region of the antibodies by macrophages, 

neutrophils and/or eosinophils. The second mechanism of action is through the activation of 

the classical complement cascade resulting in cell lysis. Typically type II reactions are semi-

delayed and will using manifest within a few days. Agranulocytosis, thrombocytopenia and 

immune-allergenic hemolytic anemia are all examples of type II hypersensitivity reactions 

(DeShazo, 1997; Descotes and Choquet-Kastylevsky, 2001). 

1.1.1.2.3 TYPE III 

Type III hypersensitivity is defined as semi-delayed immune-complex reactions mediated 

through IgG/IgM and soluble antigens. Soluble antigens react with immunoglobulins in the 

tissue space and form micro-precipitates in the endothelial lining of blood vessels leading to 

the activation of complement cascades thus tissue injury. The resulting inflammation recruits 

immune cells such as macrophages, neutrophils and platelets to the deposition site 

subsequently causing further damage. Typically deposits are found in the lungs, kidneys, the 

skin and joints (Descotes and Choquet-Kastylevsky, 2001).  

1.1.1.2.4 TYPE IV 

Type IV hypersensitivity is defined as delayed type with a clinical onset of disease up to 45 

days after drug administration and is primarily T cell mediated. Importantly Type IV drug 

hypersensitivity is not mediated by immunoglobulins, even if present in the patient sera. 

Drug antigens presented on major histocompatibility complexes (MHC) by antigen 

presenting cells activate T lymphocytes resulting in the release of cytokines and cytolytic 

molecules leading to tissue damage. Skin eruptions are typically observed for type IV 

reactions and can manifest as relatively mild urticaria to fatal Stevens-Johnson Syndrome 

(SJS) and toxic epidermal necrolysis (TEN).  
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Type IV hypersensitivity is mediated by several cell types which are associated with different 

lymphokine secretory molecules. The term delayed type (IV) hypersensitivity was originally 

coined to describe T cell reactions to tuberculin, however it has since been used as an 

umbrella term for different cellular involvement and cytokine releases which manifest as 

differential clinical disorders. With this in mind Pichler set out to further define type IV 

hypersensitivity using classifications based on the effector cells and lymphokine secretions 

involved (Table 1.1) (Pichler, 2003).  

Table 1.1. Type IV hypersensitivity reaction classifications. Recommendations set by Pichler (2003) 
have allowed for further categorization of type IV DHRs (a-d) based on the cellular components and 
the secretory molecules involved.  

 Effector Cells Lymphokine secretion 

Type IV a Monocytes IFNγ 

Type IV b Eosinophils IL-4, IL-5 

Type IV c Keratinocytes Perforin, Granzyme B, Fas Ligand 

Type IV d Neutrophils IL-8 

  



8 

 
 

Figure 1.1. Type B (immune mediated) ADRs are further categorized into types I-IV. Type I occurs 
immediately following sensitization and is primarily mediated by IgE. Cross linking of antigens on mast 
cells results in the release of histamine leading to tissue damage. Type II hypersensitivity are semi-
delayed cytotoxic reactions mediated through the activation of complement by IgG and IgM. Type III 
reactions are triggered through immune complex reactions formed by soluble antigens. Type IV, 
delayed type, hypersensitivity is mediated by lymphocytes. T cell receptors are activated by pMHC 
complexes resulting in the release of lymphokines. Effector T lymphocytes and recruited immune cells 
such as macrophages are responsible for the clinical response through the release of cytokines and 
cytolytic molecules.  
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1.1.1.3 CLINICAL MANIFESTATION OF DHRS 

DHRs can affect several organs in the body, however skin is the one that is more commonly 

and noticeably described. The skin is the largest organ of the human body and is comprised 

on tiny blood vessels throughout its structure. It is therefore unsurprising that T cell 

mediated reactions occur within the tissue. Cutaneous reactions can be wide ranging, from 

mild rashes to severe reactions such as SJS and TEN. In this section we will briefly cover the 

different manifestations of DHRs associated with the skin, including the potential 

mechanisms for clinically relevant examples. 

1.1.1.3.1 MACULOPAPULAR EXANTHEMA 

Maculopapular exanthema (MPE) is the most common delayed type reaction, attributed to 

95% of all cutaneous eruptions, characterized by the infiltration of CD4+ T cells.  The clinical 

symptoms of MPE begin with erythematous macular or papular eruptions on the trunk of the 

body spreading to the extremities in a symmetrical fashion. Symptoms generally occur within 

7-14 days post exposure to the drug with re-exposure resulting in a much faster response. In 

severe cases MPE can progress to more severe reactions like those seen in SJS and TEN 

(Fernandez et al., 2008). A high prevalence of the cutaneous lymphocyte antigen (CLA) and 

the HLA-DR allele is associated with CD4+ T cells in MPE, with the active secretion of cytolytic 

molecules identified. CLA is a chemokine responsible for the homing of T cells to the skin, 

upon arrival a Th1 phenotype (interferon (IFN)-γ release) has been observed (Fernandez et 

al., 2008). It is these cytolytic molecules that result in the observed clinical maculopapular 

rash. 

A number of drugs have been implicated in the progression of MPE, ranging from β-lactam 

antibiotics, quinolones and allopurinol (Romano et al., 1995). Amoxicillin induced exanthema 

is associated with the viral infection, mononucleosis, caused by the Epstein-Barr virus (EBV). 

Patients with EBV infection are at higher risk of developing MPE triggered by an immune 

response to the β-lactam antibiotic amoxicillin. The incidence of MPE with EBV when 
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administering phenoxymethylpenicillin or tetracycline is 14-23%, however with amoxicillin 

this rises to 28-69%, with the incidence rising to 100% in children. It is understood that viral 

infection increases the incidence of drug mediated T cell activation due to 

cytokine/regulatory environment within the host. Alternatively, it is possible that altered 

drug metabolism could be as a result of alteration of the drug metabolism enzymes through 

viral infection. Either way, it is well documented that the incidence of MPE is increased during 

viral infection. The generally low severity of MPE means it is often treated in a fairly 

standardized way with cessation of the drug. As re-challenge with delayed-type 

hypersensitivity results in a more severe reaction, re-attempts to offer the same drug is often 

avoided (Renn et al., 2002).  

1.1.1.3.2 DRUG REACTIONS WITH EOSINOPHILIA AND SYSTEMIC SYMPTOMS 

Drug reaction with eosinophilia and systemic symptoms (DRESS) is often referred to as 

hypersensitivity syndrome. Although it is mainly associated with damage of the liver, skin 

eruptions still occur with symptoms including rash, fever and eosinophilia (Cacoub et al., 

2011). DRESS is characterized by a long latency period despite discontinuation of the culprit 

drug, with periods of relapse (Niu et al., 2015). IL-5 is the main mediator in disease 

progression which leads to the active recruitment of eosinophils. As with MPE, viral 

involvement is implicated. In 76% of patients with DRESS, viral reactivation of latent herpes 

virus (EBV, human herpes virus (HHV) -6, HHV-7 and cytomegalovirus (CMV)) occurs. Cross 

reactivity of EBV-driven CD8+ T cells have been observed resulting in damage to multiple 

organs in DRESS. This is believed to assist in the development of the condition and the 

development of autoimmune sequelae (Picard et al., 2010; Niu et al., 2015).  DRESS is 

primarily mediated with CD8+ T cells. It is believed that the continuous priming of naïve CD8+ 

T cells to herpes virus is responsible for the prolonged pathogenesis of DRESS (Niu et al., 

2015). Multiple drugs have been associated with the onset of DRESS, including allopurinol, 

carbamazepine and SMX. Due to the overactivation of the immune system treatment often 
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includes the use of steroids. However, due to the severity of the disease 8% of patients do 

not survive (Peyrière et al., 2006).   

1.1.1.3.3 STEVENS-JOHNSON SYNDROME/TOXIC EPIDERMAL NECROLYSIS  

SJS is one of the more serious forms of drug hypersensitivity estimated to affect 1 in 6 million 

people annually (Saito et al., 2013). The clinical manifestation of SJS is a severe loss of skin 

attachment with a diagnosis made when detachment accounts for 10-30% of the total skin 

surface area. The mechanisms underlying SJS are not fully understood however natural killer 

(NK) lymphocytes and CD8+ cytotoxic lymphocytes are heavily implicated leading to the 

death of keratinocytes. The cytokine release includes granzyme B and perforin mediated 

pathways and include Fas/Fas-ligand involvement (Abe et al., 2003; Chung et al., 2008). Once 

skin detachment increases beyond the upper threshold of 30% in SJS, TEN is diagnosed. The 

incidence for TEN decreases from 1 in 6 to 1 in 2 million people affected (Schwartz, 

McDonough and Lee, 2013). Similar mechanisms are observed in TEN as SJS with a large-

scale destruction of keratinocytes. It is not surprising that in both SJS and TEN multi-organ 

failure can occur with a mortality rate between 10-50% in all cases (Gomes and Demoly, 

2005; Schneck et al., 2008). One of the challenges in understanding SJS/TEN is the lack of in 

vitro tests to identify the offending agents. Although drugs are implicated in 95% of SJS/TEN 

reactions it is not ethically possible to re-challenge the patients to confirm the causative drug 

(Tripathi et al., 2011).  

As is often the case with DHRs, co-morbidities are a factor in disease progression. For 

example, HIV is known to be a risk factor for the development of SJS/TEN due to the 

disruption of the immune system. In many cases the genetic predisposition of a patient can 

make them more susceptible to DHRs from certain drugs, discussed in subsequent sections. 
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 DRUG INDUCED LIVER INJURY  

So far the nature of DHRs have been focussed on reactions relating to injury to the skin. In 

several cases ADRs result in the development of liver damage, which can be fatal. In this 

section we will discuss the incidence of liver reactions to drugs, as well as the mechanistic 

involvement and key compounds that have been associated. 

DILI remains one of the leading causes of drug attrition, with around 33% of new therapeutic 

agents resulting in hepatotoxicity (Daly et al., 2009). The incidence rates of DILI are often 

unknown in many populations due to the qualitative nature of clinical reporting. While 

traditionally pharmaceutical products were thought to be the sole initiators in DILI, it’s now 

known that herbal remedies and dietary supplements can lead to adverse events (Navarro 

and Seeff, 2013).  A lack of relevant biomarkers, guidelines to reporting and the complex 

nature of clinical presentation contribute to inconsistencies between clinicians (Davern et 

al., 2011). The main inconsistencies lie with diagnoses made upon exclusion, i.e. after 

elimination of common causes of liver disease such as alcoholic hepatitis, and a high level of 

suspicion (Davern et al., 2011; Fernández-Murga et al., 2018). In addition case reporting in 

medical journals is often met with limited requirements for publishing adverse events, if any 

at all (Agarwal et al., 2010). A thorough review in 2002 into a French cohort found that 8 in 

100,000 patients presented with an ADR related to DILI over a 13 year period (Sgro et al., 

2002). While relatively rare, DILI accounts for 50% of all hospital admissions in the USA 

relating to acute liver failure, with 39% of these stemming from acetaminophen (APAP) 

overdose causing hepatotoxicity and 13% from idiosyncratic DILI (iDILI) triggered by other 

drugs (Holt and Ju, 2006). Strikingly, patients presenting with acute liver failure as a result of 

an ADR have a 25% chance of recovering their own liver function (Ostapowicz et al., 2002), 

with transplantation almost certainly being required. In the clinic DILI refers to a broad term 

that can symptomatically mimic many forms of acute and chronic liver aetiologies (Stephens, 

Andrade and Lucena, 2014). This further contributes to the challenges faced with accurately 
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reporting genuine adverse events. In this section we will discuss common forms of DILI, and 

the immune mechanisms by which they are modulated.   

1.1.2.1 LIVER PHYSIOLOGY 

The liver (Figure 1.2) is the largest solid organ in the body and is critical to metabolic 

processes and immune function. Anatomically the liver splits into two lobes which 

subsequently form 16 segments (8 in each lobe). In every segment an estimated 1,000 

lobules exist, each comprising of canaliculi flowing towards the common bile duct and small 

sinusoids or capillaries flowing from branches of the hepatic portal vein and hepatic artery 

to a ‘central’ vein, a branch of the hepatic vein. As the major organ in the body for 

metabolism, the liver is also a major site of biotransformation and for the detoxification and 

excretion of alcohol, drugs, other xenobiotics, and environmental toxins (Fernández-Murga 

et al., 2018). These compounds are delivered to the liver through the portal vein in the blood 

derived from the digestive organs, where they are filtered by hepatocytes. Hepatocytes are 

also responsible for determining the uptake and storage of nutrients as well as any 

compounds that should be returned to the blood or eliminated through the transport of bile 

into the duodenum. In addition to detoxifying small molecules the liver is capable of breaking 

down proteins into ammonia. As ammonia is toxic to the body in high concentrations this is 

further converted into urea which is released into the blood and filtered by the kidneys 

where it is excreted in urine.   
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Figure 1.2. Structure of the liver. A) the liver is a large organ supplied by multiple ateries and veins. 
Oxygenated blood is supplied to the liver via a branch of the aorta.  It exits via the hepatic vein to the 
inferior vena cava. The portal vein supplies blood from the digestive system for the liver to undertake 
its primary functions of metabolism, detoxification and others. B) Close up schematic of the lobules 
of the liver. Blood enters the lobules through branches of the portal vein and the hepatic artery where 
they are mixed in the sinusoids. Excretion products are transported into the bile canaliculi where they 
enter the bile duct and are subsequently extreted into the duodenum. Resident immune cells, such 
as Kupffer cells, are present in the sinusoids of the liver. 
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While generally perceived as an organ primarily for the metabolism and detoxification of 

molecules, it is known that the liver is deeply diverse in cells of the immune system. The 

constant bombardment of molecules within the liver makes it a site of continuously 

regulated inflammation in order to encourage tissue remodelling and repair. This makes for 

a complex balance of regulation as, although the resident immune cells must tolerate all of 

the commensal and dietary microorganisms it becomes exposed to, it must also be ready to 

respond to danger (Holt and Ju, 2006; Robinson, Harmon and O’Farrelly, 2016).  

The innate immune system is the first line of defence towards pathogens and other foreign 

invaders. The liver has local immune mechanisms to cope with a variety of potential 

antagonists including pathogens, toxins, tumour cells and harmless dietary antigens. Kupffer 

cells account for the largest population of tissue macrophages in the liver, with NK and NKT 

cells also contributing to resident innate immunity (Li and Diehl, 2003). Phagocytosis of 

pathogens entering the liver through the portal venous blood is mediated largely by Kupffer 

cells (Holt and Ju, 2006). In addition the release of cytokines, nitric acid, prostanoids and 

reactive oxygen intermediates help to regulate hepatic inflammation as well as modulate NK 

and NKT cell phenotype (Hashimoto et al., 1995; Tsutsui et al., 1997). Kupffer cells also play 

an essential role in the presentation of antigens to the adaptive immune system’s T 

lymphocytes. The liver is also home to a unique combination of resident lymphocytes. As 

well as the conventional CD4+ and CD8+ T lymphocytes the liver contains a high percentage 

of γδ (15-25% of hepatic T cells) and CD4- CD8- T cells (Exley and Koziel, 2004; Gao, Jeong 

and Tian, 2008). Functionally γδ T cells possess characteristics of both the innate and 

adaptive immune system acting as a bridge between the two. The high incidence of this 

subset of T cells in the liver is through their ability to have a protective as well as pathogenic 

responses, and often accumulate in inflamed liver tissue (Hammerich and Tacke, 2014).  

One characteristic of the liver is its preference for innate cells to favour tolerance rather than 

activated immunity. A number of studies show this, with the tolerance of dietary antigens a 
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leading example. More strikingly the liver has been shown to be accepted in cases of 

allogenic organ transplantation. It has also been shown that pre-exposure of both soluble 

antigens and donor cells through the portal vein increases in the occurrence of systemic and 

solid tissue immune tolerance, respectively. Active suppression, immune deviation and the 

apoptosis of activated T cells are all thought to play a part in this immune tolerance (Holt and 

Ju, 2006). To confirm these hypotheses several studies have been performed. Transgenic T 

cell receptor (TCR) models have shown T cells from the spleen and lymph nodes that have 

become activated accumulate in the liver before undergoing apoptosis (Huang et al., 1994; 

Bertolino et al., 1995). This may demonstrate a clearance pathway whereby T cells that are 

programmed to undergo apoptosis (through increased B220 expression and a loss of 

recognition receptors) are trapped in the liver, dubbing the liver as the “T cell graveyard” 

(Crispe et al., 2000). Another hypothesis for the induction of immune tolerance within the 

liver is through the priming of naïve T cells within the sinusoids where the blood flow is 

slowed down. Naïve T cell priming by liver sinusoidal endothelial (LSEC), hepatic dendritic, 

and Kupffer cells results in tolerance rather than activation, partly by the failure to 

differentiate into Th1 or cytotoxic cells. In addition, Kupffer and hepatic dendritic cells (DCs) 

have been shown to be less effective at antigen presentation when compared to immune 

cells in other systems (Rubinstein, Roska and Lipsky, 1986; Callery, Kamei and Flye, 1989; 

Knolle et al., 1999; Limmer et al., 2000). These unique immune responses allow the liver to 

efficiently remove pathogens, clear particles and soluble molecules from the circulation and 

delete activated T cells, all while maintaining a tolerance to food antigens (Holt and Ju, 2006). 

1.1.2.2 CLINICAL MANIFESTATIONS OF DILI 

The mechanisms by which DILI is triggered are still not fully understood, however they are 

widely accepted to follow two pathways; direct hepatotoxicity and adverse immune 

reactions. Intrinsic reactions based on the pharmacology of the drug are largely responsible 

for direct hepatotoxicity, with known thresholds needing to be reached before damage 
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occurs. APAP overdose is a well characterized example of this, with the intrinsic nature 

making it easier to develop animal models to aid in scientific understanding (McGill et al., 

2012). On the other hand, adverse immune reactions are idiosyncratic, making the 

pharmacology or dose correlate less well with predicting negative clinical outcomes. Of 

course, the latter makes it difficult for medical professionals to monitor the progression and 

susceptibility of disease. Due to this idiosyncratic nature reliable animal models are not 

available, limiting our understanding to pharmacogenetic studies and findings from intrinsic 

animal models (Stephens, Andrade and Lucena, 2014).  

1.1.2.2.1 HEPATITIS 

DILI is estimated to result in 10% of all hospital admissions through acute hepatitis, with 

hepatitis representing the most common presentation of DILI (Bleibel et al., 2007; 

Fernández-Murga et al., 2018). Severity can range from slight elevations in liver function 

tests (LFTs), transaminase elevation, hyperbilirubinemia, and diminished liver function (e.g. 

coagulation), to severe conditions ultimately resulting in death. Biochemical patterns can be 

used to predict the severity and type of DILI being observed. In the case of hepatitis an 

alanine aminotransaminase (ALT) result 2 times above the normal upper limit and alkaline 

phosphatase (ALP) within normal limits is a warning sign. Upon identifying elevated ALTs 

between 5 to 90 days after the initiation of the treatment clinical monitoring is performed in 

order to lead to a clinical diagnosis. If LFTs reduce >50% over a period of 8 days subsequent 

to cessation of the drug DILI is often reported. This is less likely should LFTs reduce to this 

value of a 30-day period. The challenge often faced is previous history of the offending drug. 

Drugs that cause DILI are quickly modified/improved/(withdrawn) and clinicians are often 

reluctant to report DILI for new compounds until clinical and/or scientific reports/papers 

have been published (Bleibel et al., 2007).  

Hepatitis can be the result of an intrinsic drug reaction, or through immune mediated 

(allergic) reactions. Mechanisms relating to both inductions of DILI will be described in the 
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next section. Patterns relating to hepatitis are from the onset of hepatocellular injury and 

have been associated with a wide range of pharmaceuticals through both immune mediated 

and non-immune mediated pathways. Although elevation in ALT is used to predict 

hepatocellular toxicity it is still difficult to determine the severity of the adverse event, with 

histology being one of the few robust methods available (Verma and Kaplowitz, 2009). The 

practise of diagnosing DILI reactions based on exclusion criteria can generate a bias towards 

only considering other common aetiologies. In the Western world the incidence of hepatitis 

E virus (HEV) infection is relatively low, so therefore is not usually considered as a differential 

diagnosis. This can ultimately result in the generation of incomplete statistics which further 

hampers the ability to carefully monitor DILI as a whole. In fact, of patient serum samples 

recruited from the DILI network (DILIN), a prospective study on patients with DILI, 16% tested 

positive for HEV IgG and 3% for HEV IgM. Of the 9 patients that tested positive for IgM, the 

most likely cause for their DILI diagnosis was HEV (Davern et al., 2011). Interestingly this is 

not the only reported case of HEV infection resulting in the diagnoses of DILI. A retrospective 

study in the UK found that up to 13% of patients diagnosed with DILI tested positive for HEV, 

recommending HEV screening as standard in cases of suspected DILI (Dalton et al., 2007). 

While these cases do only represent a small proportion of patients, and retrospective studies 

cannot prove the diagnoses for a past event, it is important to consider other differential 

diagnoses that may exist. This further highlights the need for robust biomarkers for genuine 

DILI along with tight guidelines for clinical reporting.  

1.1.2.2.2 CHOLESTASIS  

Presentation of choleostatic liver injury is variable with symptoms of jaundice, fever and 

pruritus often observed. Due to symptoms being common between other liver aetiologies 

clinical LFTs resulting in an elevation two times above the upper normal limit of ALP are often 

indicative of a choleostatic event. Intrahepatic build-up of bile acids is a characteristic 

phenomenon often only seen in cholestatic DILI and results from the ineffective transport of 
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bilirubin or bile salts and the ineffective flow of bile from the common bile duct into the 

duodenum (Sundaram and Björnsson, 2017; Fernández-Murga et al., 2018). The build-up of 

these compounds makes them a target for early diagnostic tests to detect the onset of 

choleostatic liver injury early on. Bilirubin is a degradation product of haemoglobin which is 

conjugated with glucuronic acid in the liver. Subsequently bilirubin is secreted in bile. Upon 

choleostatic liver injury the flow of bile is disrupted resulting in the elevation of conjugated 

bilirubin. Linking elevated bilirubin with increases in ALP is often found to be a good 

diagnostic marker for choleostatic liver injury (Fernández-Murga et al., 2018).   

As with hepatitis, cholestasis can present as a whole host of symptoms and has been linked 

to a range of anti-infectious, anti-diabetic, anti-inflammatory and psychotropic agents, to 

name a few (Fernández-Murga et al., 2018). Of these, anti-infectious drugs are thought to 

represent 32% of idiosyncratic liver injury with amoxicillin-clavulanate (AC) contributing to a 

large percentage of reported cases (Andrade et al., 2005). Several features may arise from 

cholestasis; idiosyncratic liver injury can be characterized by the injury of bile ducts and 

includes ‘vanishing bile duct syndrome’. Diagnosis of vanishing bile duct syndrome is rare 

(0.5% of patients with cholestasis) and is reported when only 50% of bile ducts are seen upon 

biopsy. Although our understanding is limited it is believe that it is a T cell mediated reaction 

where antigens from the biliary epithelial cells are targeted (Sundaram and Björnsson, 2017). 

The involvement of the immune system in DILI will be explored in detail in subsequent 

sections. Histologically, cholestasis leading to the dilation of bile canaliculi can be referred to 

as ‘bland’ presentation due to the lack of tissue necrosis or inflammation (Verma and 

Kaplowitz, 2009; Sundaram and Björnsson, 2017; Chatterjee and Annaert, 2018).  It is 

estimated that around 50% of DILI reactions result in cholestasis (Petrov et al., 2018). In 

recent years choleostatic liver injury has become increasingly important to understand; part 

to its frequent manifestation in DILI and poor prognosis. Recent figures have put the 

mortality rate of choleostatic DILI as high as 10% (Sundaram and Björnsson, 2017). While it 
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is estimated that over 1,000 drugs can lead to the onset of DILI only a few have been proven 

causal (Fernández-Murga et al., 2018). In a lot of cases LFT abnormalities will begin to reverse 

upon termination of taking the drug, however this is often likely to require a longer amount 

of time compared with hepatitis (Sundaram and Björnsson, 2017). Although it is not possible 

to categorise a particular drug to cause either hepatocellular damage or cholestasis, the 

chemical properties of certain drugs may make a patient more susceptible to one form of 

DILI. Drugs possessing a difluorinated side chain are relatively lipophilic, as in the case of the 

quinolones temafloxacin and trovafloxacin, making them more likely to lead to choleostatic 

injury (Sundaram and Björnsson, 2017). Although risk factors do exist, such as age, other co-

morbidities and genetic determinants, idiosyncratic liver injury leading to cholestasis can still 

not be predicted (Sundaram and Björnsson, 2017). 

1.1.2.2.3 MIXED PATTERN OF INJURY 

DILI can be categorized into a third diagnosis, with a mixed pattern of injury being reported 

in certain cases. The inability to correctly define hepatitis or cholestasis using the resources 

available to clinicians results in the ‘appearance’ of both conditions. When this is the case, 

and evidence for hepatocellular damage and choleostatic injury is present, a diagnosis of 

mixed pattern of injury is made. Generally, an increase in both ALT (above 2 time the upper 

normal limit) and ALP would lead to a diagnosis of mixed pattern of injury. Challenges with 

this type of DILI can lie with treatments plans due to what is essentially two distinct forms of 

liver disease presenting alongside each other (Bleibel et al., 2007; Sundaram and Björnsson, 

2017). Interestingly the incidence of mixed pattern appears to be more common with an 

older patient. This is thought to be linked to age being a risk factor for cholestasis, which is 

hypothesised to be due to a reduced expression of hepatocellular transporters resulting in 

disruption to the flow of bile (Sundaram and Björnsson, 2017). 
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 CELLULAR MEDIATORS OF ADRS  

The immune system is vital in maintaining a state of health in the body. External barriers to 

infection such as skin and through a complex network of cellular interactions, the immune 

system protects us from disease, pathogens and other potentially harmful bodies. One of the 

most important features of the immune system is to be able to tell self from non-self to 

prevent the catastrophic destruction of healthy tissue. In the context of this thesis, we are 

interested in the unwanted immune activation that occurs following drug administration. 

Broadly speaking the immune system can be categorised into two arms, innate and adaptive. 

The cellular components of the innate and adaptive immune response work together, with 

innate immunity responding immediately thus recruiting adaptive immunity (Figure 1.3). This 

section will review the major components of the immune system, including the interactions 

resulting in its activation, and key causes of drug hypersensitivity. It is first important to 

determine the difference between antigen, immunogen and hapten. For the purpose of this 

thesis an antigen is defined as ‘a molecule that binds with high affinity to an immunological 

receptor’, irrespective of any subsequent response. An immunogen can be an antigen and is 

a substance that ‘stimulates an immune response’. Finally a hapten is ‘a low molecular 

weight (MW) chemical which covalently modifies a protein/macromolecule’, for example a 

drug bound to protein (Uetrecht and Naisbitt, 2013).  
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Figure 1.3. Immune-mediated drug-induced tissue injury. Innate immune cells (NK cell, macrophages 
and DCs) can be activated by damage-associated molecular patterns molecules released by apoptotic 
and necrotic cells. The innate immune cells can promote either tolerance/regeneration by the 
production of cytokines and antigenic peptides. Adaptive immune cells can be activated by a drug and 
its metabolites, drug-modified proteins, or drug altered self –peptides. Drug specific T cells that are 
either expanded at the site of injury, or that have migrated from blood, can lead to further tissue 
damage. 

 

 THE INNATE IMMUNE SYSTEM 

The innate immune system acts as a first response to pathogens/foreign bodies. Physical 

barriers, cellular components and the humoral response can all work independently or in 

tandem to clear the pathogen. Physical barriers are those such as skin, the gastrointestinal 

system, nasal cavity and tears, all assist in the prevention of pathogens from entering 

circulation/tissue. Cellular components of the innate immune system are important for when 

pathogens overcome the physical barriers to infection. Conserved molecular structures 

required for the life cycle of pathogens are recognized by cells of the innate immune system 

activating a response. Pathogen associated molecular patterns (PAMPs) are recognized by 

pattern recognition receptors (PRRs) encoded for in the germ line and require no ‘learning’ 

prior to initial exposure. Once activated, an array of cells are involved in the induction of the 
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inflammatory response mediated by secreted cytokines and chemokines, culminating in the 

eradication of the pathogen. Toll like receptors (TLRs) are perhaps the most extensively 

studied PRR and are considered to be the primary sensors of the innate immune system. In 

total 10 TLR family members have been identified in humans and are situated both on the 

cell surface (TLR1, 2, 4, 5 and 6) and in intracellular endocytic compartments (TLR3, 7, 8 and 

9). More recently TLR10 has been shown to present in an inhibitory and regulatory role, with 

activation resulting in suppression of TLR2 responses. TLRs situated on the cell surface are 

responsible for the detection of PAMPs in the external environment including bacteria, fungi 

and protozoa whereas intracellular TLRs primarily recognize foreign nucleic acid PAMPs 

derived from bacteria and viruses (Kumar, Kawai and Akira, 2011; Oosting et al., 2014). Once 

activated, TLRs initiate a series of signalling pathways resulting in increased phagocytosis and 

the release of pro-inflammatory cytokines leading to further immune recruitment. In 

addition to PAMPs, damage associated molecular patterns (DAMPs) released during necrotic 

tissue death and trauma can initiate an innate immune response (Medzhitov, Preston-

Hurlburt and Janeway, 1997; Pétrilli et al., 2007; Kumar, Kawai and Akira, 2011).  

1.2.1.1 MONOCYTES 

Monocytes are large white blood cells derived in the bone marrow from precursor cells. 

Circulating monocytes make up an estimated 10% of peripheral leukocytes and can further 

differentiate into tissue macrophages, dendritic cells (DCs) and foam cells. Their function 

within the innate immune response is primarily against pathogen defence, tumour-specific 

immune responses and inflammatory diseases such as atherosclerosis. Monocytes are 

known to play a critical role in a number of innate responses including phagocytosis, antigen 

presentation and cytokine production. Depending on their PRR expression, specifically CD14 

and CD16, monocytes can be further categorised into various subsets. Classical monocytes 

expressing high levels of CD14 (CD14++) and low levels of CD16- (CD16-) are the most 

abundant monocyte and express CC-receptor 2 (CCR2). CCR2 is a chemokine receptor that 
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assists in the trafficking of monocytes. These classical DCs have high MHC II expression and 

characterisitcially long dendrite extensions. Intermediate (CD14++ CD16+) and non-classical 

monocytes (CD14+ CD16++) have a reduced expression of CCR2 and have a more functional 

role in migrating on the luminal surface of endothelial cells of small blood vessels, a process 

referred to as patrolling (Shi and Pamer, 2011). Recently it has been shown that intermediate 

monocytes express higher numbers of MHC class II molecules. These findings suggest that 

classical monocytes are recruited into an antigen presentation role during the inflammatory 

response (Shi and Pamer, 2011).  

The differentiation of monocytes was first identified in seminal studies performed by Ebert 

and Florey in 1939 (Ebert and Florey, 1939). Terminal differentiation occurs upon tissue 

infiltration as a result of chemotaxis. During the inflammatory response nucleated cells 

increase CC-chemokine ligand 2 (CCL2) expression through pro-inflammatory cytokine 

stimulation or innate immune receptor activation by PAMPs/DAMPs. Monocytes are one of 

very few cells to express CCR2 and so are recruited to the site of inflammation (Nahrendorf, 

Pittet and Swirski, 2010; Shi and Pamer, 2011). This tissue micro-environment determines 

the differentiation of monocytes. For example, the presence of granulocyte-macrophage 

colony-stimulating factor (GM-CSF) and IL-4 are both involved in the differentiation to 

macrophages. Classical monocytes are more susceptible to differentiation into macrophages 

based on their surface expression of CCR2 recruiting them to the site of inflammation and so 

exposure to relevant cytokines (Ohradanova-Repic et al., 2016). 

1.2.1.2 DENDRITIC CELLS 

DCs have a unique ability to stimulate primary immune responses through antigen 

presentation resulting in immunological memory. Their principal role is to capture antigens 

from the extracellular environment and present them on their cell surface, resulting in the 

activation of the adaptive immune response. DCs are also understood to be involved in 
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immunological tolerance, with a role in the thymus by deleting self-reactive T cells. 

Circulating DCs are relatively short-lived and are replaced with progenitor cells relatively 

quickly. Classical DCs differentiate from bone marrow myeloid progenitor cells, whereas 

monocyte derived DCs differentiate from monocytes, as previously described. Immature DCs 

have high phagocytic activity and actively engulf extracellular particles/proteins. 

Subsequently, immature DCs migrate to lymphoid tissue where maturation results in antigen 

presentation. Engulfed proteins are digested and peptides are displayed on MHC molecules 

for recognition by T lymphocytes. It is understood that classical DCs are more efficient in 

their presentation to T cells in comparison to other subtypes (Granot et al., 2017). 

Subsequently activated T cells migrate to the site of damage and activate B cells for antibody 

production. This leads to the generation of plasma cells and so immunological memory. It is 

believed that upon T cell activation, DCs undergo apoptosis and are replaced by new 

progenitor cells in the circulatory system (Banchereau et al., 2000; Steinman, Hawiger and 

Nussenzweig, 2003; Geissmann et al., 2010).  

The maturation of DCs occurs when they encounter PAMPs and DAMPs, resulting in 

phagocytosis and subsequent migration to lymphatic tissue. For this reason, immature DCs 

are often found residing in the extremities of the body where they encounter a higher 

number of antigens. In doing so immature DCs will detect danger signals resulting in the 

release of cytokines to stimulate other cells of the immune system, while making their way 

to the lymphatic organs to activate the adaptive immune response. Mature DC activation of 

T cells results in the clonal expansion of antigen specific T cells. When immature DCs activate 

T cells it is often antigen independent and so immune tolerance is promoted, resulting in the 

expansion of T regulatory cells (Steinman, 1991; Banchereau et al., 2000; Kapsenberg, 2003; 

Steinman, Hawiger and Nussenzweig, 2003).   
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1.2.1.3 MACROPHAGES 

Macrophages are fundamental in their role of identifying, ingesting and killing pathogens, as 

well as activating other cells of the immune system. Without them the modelling of organs, 

healing of wounds and clearance of pathogens would not be possible (Nathan, 1987). Upon 

tissue damage or infection, the differentiation of monocytes to macrophages occurs giving 

them their new primary role (Yang et al., 2014). Their activation was established by 

Mackaness et al in the 1960s through bacterial proteins increasing antimicrobial activity of 

macrophages in a dose dependent, but antigen independent manner (Mackaness, 1962). 

Since then we have furthered our understanding of the factors involved in the activation of 

macrophages.  IFN-γ, IL-12 and IL-18 are all known to activate macrophages. The secretion 

of cytokines during cell stress/inflammation results in recruiting macrophages to the site to 

assist with the clearing of cell debris. As with other cells of the innate immune system 

macrophages are involved in the presentation of peptides on the cell surface to T cells, 

resulting in the activation of the adaptive immune response (Gordon, 2003).  

Tissue specific macrophages are distributed throughout the body ready to identify and 

respond to physiological changes and pathogen infiltration. Importantly local macrophages 

underpin the response to infection, either through the clearance and secretion of pro-

inflammatory molecules, or through the secretion of signals to restore tissue homeostasis 

and repair (Gordon and Plüddemann, 2017). Kupffer cells are macrophages only found to 

reside within the sinusoids of the liver, and were named after C. von Kupffer, the pathologist 

to first identify this cell type (Decker, 1990). Accounting for 80-90% of the tissue 

macrophages found to reside within the body, Kupffer cells are the first macrophage 

population to come into contact with dietary microorganisms (Bilzer, Roggel and Gerbes, 

2006). While their function in tissue is specialised, it is similar to that of circulating 

macrophages. In the case of Kupffer cells, differentiating dietary microorganisms to 
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pathogenic microorganisms makes them more susceptible to tolerogenic responses 

compared to circulatory macrophages. 

1.2.1.4 GRANULOCYTES 

Granulocytes are another cell of the innate immune system responsible for phagocytosis of 

extracellular pathogens. There are 4 different sub-types of granulocytes including basophils, 

eosinophils, neutrophils and mast cells. A defining feature of granulocytes is the presence of 

granules in the cytoplasm and a multi-lobed nucleus. Granulocytes are known to influence 

the function of DCs contributing to both innate and adaptive immune function (Breedveld et 

al., 2017). The most abundant phagocytes in the blood are neutrophils, accounting for 65% 

of all white blood cells. They respond to activation by ingesting microorganisms followed by 

the release of soluble anti-microbials and the generation of neutrophil extracellular traps 

(NETs). NETs are made up of fibres composed of chromatin and serine proteases involved in 

the trapping of extracellular microbes, resulting in the neutralization of pathogens (Clark et 

al., 2007). Neutrophils contain a number of anti-microbial compounds including defensins to 

kill bacteria, proteolytic enzymes to digest proteins and lysozyme to break down the 

lipopolysaccharide of bacterial cell walls, making them professional bacterial killers 

(Linderkamp et al., 1998; Hickey and Kubes, 2009).   

Conversely, basophils are one of the least abundant cells in the blood (~2%) and are pre-

loaded with pro-inflammatory mediators. Like neutrophils, basophils are recruited to the site 

of infection where they will release histamine and leukocytes involved in the IgE response 

(Qi et al., 2010).  Eosinophils are responsible for the destruction of parasites such as 

helminths and are involved in allergic disease. Upon activation they can secrete a wide 

variety of cytokines including IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, IL-16, IL-18 and TGFα/β. All 

these molecules have pro inflammatory effects, including the upregulation of cellular 

trafficking and the activation of the regulation of vascular permeability. In addition, 
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eosinophils are involved in antigen presentation, acting as APCs, as well as the destruction 

of tissue through the release of toxic granule proteins and lipid mediators (Rothenberg and 

Hogan, 2006). 

1.2.1.5 NATURAL KILLER CELLS 

NK cells are cytotoxic lymphocytes critical for the function of the innate immune system. 

Their mechanism of action is like that of CD8+ T cells (discussed in the next section) without 

antigenic specificity. Generally, NK cells will response to virally infected cells and cells 

expressing tumour phenotypes (Vivier et al., 2011). NK cells are activated through the 

presence of ligands that appear in ‘distress’, such as the stress induced self-ligands 

recognized by NKG2D. TLRs are also involved in the activation of NK cells, inducing the 

production of IFN-γ. This been found to be more of an accessory activation, as the secretion 

of IFN-γ by NK cells increases when in the presence of other immune cells (Vivier et al., 2011). 

The secretion of IFN-γ acts to recruit other cells to the site of infection/inflammation in 

addition to increasing the effector function of macrophages. Out of the 2 billion NK cells 

circulating in the body at any one time, 100% of those residing in the secondary lymphoid 

tissue (~10% in the blood) express CD56 in high abundance. This surface marker for NK cells 

can be used to sub-categorise NK cells into CD56bright and CD56dim. CD56bright NK cells are those 

with a high surface marker abundance and can quickly produce immunoregulatory cytokines. 

In contrast CD56dim populations are terminally differentiated from the bright population with 

the primary function of cytolytic activity (Caligiuri, 2008; Chester, Fritsch and Kohrt, 2015). 

 THE ADAPTIVE IMMUNE SYSTEM 

The adaptive immune response, sometimes termed acquired, is responsible for the targeting 

and neutralization of pathogens/foreign bodies that enter the host. As one of the two 

branches of immunity, the adaptive response works in conjunction with the innate response 

to achieve its desired effect. In the innate immune section we have discussed the relevance 



29 

of the cellular components of innate immunity in triggering the adaptive immune response 

through antigen presentation to T lymphocytes. T lymphocytes, or simply T cells, are a major 

component of the adaptive immune response along with B lymphocytes. The precise role of 

these cell types will be discussed in detail in the following section. Briefly, T cells are 

responsible for recognising antigens presented to them by other cell types. Should an 

immunogen be presented, subsequent activation of the T cell results in clonal expansion and 

the triggering of further signalling cascades. B lymphocytes, once activated, can become a 

source of immunological memory and actively secrete antibodies to the antigen by which 

they are exposed to. This results in rapid activation of the adaptive immune system on re-

challenge from subsequent exposures.  

1.2.2.1 T LYMPHOCYTES 

T lymphocytes can be sub-categorised based on their activation and subsequent effector 

response into cytotoxic T cells, helper T cells and regulatory T cells. Both T cells and B cells 

(involved in antibody production and immunological memory; discussed in chapter 2) 

develop from the same pluripotent hemopoietic stem cells. Their main development stems 

from where they are matured into their respective cell type. Hemopoietic stem cells are 

generally located in the bone marrow and remains the site of B cell development. T cells are 

generated from the same precursor cell after migration to primary lymphoid organs, such as 

the thymus, through the blood. Autoreactive T cells are deleted in the thymus before they 

migrate further into tissue and secondary lymphoid organs (Alberts, Johnson and Lewis, 

2002).   

1.2.2.1.1 CYTOTOXIC T LYMPHOCYTES 

Cytotoxic T cells are characterized by the presence of the CD8 cell surface marker. Their 

primary role is to identify infected cells and tumours resulting in the destruction of the target 

cell. Almost all nucleated cells present MHC class I molecules, responsible for the 

presentation of antigens derived from intracellular proteins, to the TCR protein on the 
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surface of CD8+ T cells. In doing so, activation of the T cell results in the release of cytotoxic 

molecules such as granzyme B, perforin and fas ligand resulting in the death of the antigen 

presenting cell.  

Naïve T cells react to an enormous range of pathogens resulting in their expansion and 

differentiation into antigen specific killer cells, disseminating throughout the body to clear 

the infection. After initial priming in secondary lymphoid tissue and migration to the site of 

infection CD8+ T cells release their cytotoxic molecules neutralizing the target cell (Zhang 

and Bevan, 2011). Initial release of IFN-γ and tissue necrosis factor α (TNF-α) have anti-

tumour and anti-microbial effects through direct interference with viral attachment or the 

induction of apoptosis (Zhang and Bevan, 2011). On release of perforin and granzyme B, the 

same as those found in NK cells of the innate immune system, cytotoxic effects occur. 

Perforin forms a pore in the membrane of the target cell, allowing granzymes to enter the 

infected cell, resulting in the cessation of viral reproduction and apoptosis. Astonishingly 

there is limited bystander effect from the release of these cytolytic molecules as they are 

directed along an immunological synapse towards the target cell. It is also known for CD8+ T 

cells to kill one cell, before moving onto a second and third before exhaustion, termed ‘serial 

killing’. The production of Fas ligand upon activation of cytotoxic T cells allows for binding of 

the Fas receptor on the target cell. Activation of the Fas receptor results in a signalling 

cascade culminating in the apoptosis of the target cell. Towards the end of the infectious 

stage Fas ligand on activated CD8+ T cells can bind to Fas receptors on other CD8+ T cells 

resulting in the elimination of their immune effector response (Carter and Dutton, 1995; 

Zhang and Bevan, 2011). 

1.2.2.1.2 HELPER T LYMPHOCYTES 

Helper T cells (Th) express the CD4 surface marker and have a primary role in the activation 

of further immune cells such as macrophages and phagocytic cells. They have a varied role 

in immune responses and can trigger a multitude of effector functions depending on their 
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maturation. Th cells interact with antigen presenting cells which phagocytose extracellular 

proteins and display peptides on the cell surface through MHC class II mechanisms. Unlike 

CD8+ cytotoxic T cells, naïve Th cells (Th0) differentiate into a wide number of sub-sets upon 

antigen exposure and activation (Figure 1.4). The cytokines that are present during the time 

of activation is indicative of the differentiation that is undergone. Figure 1.4 is by no means 

an exhaustive list of the cytokines involved and the number of sub-sets that have been 

identified, however this well illustrates the components involved in Th differentiation and 

effector function (Akdis and Akdis, 2009; Uetrecht and Naisbitt, 2013). 

Initial studies of Th sub sets revealed the differentiation into Th1 and Th2 cells (Mosmann and 

Coffman, 1989), differentiated by IL-2, IL-4 and IL-12. It is also recorded that exposure of IFN-

γ can result in this differentiation showing the complex nature of these cytokine 

microenvironments. Th1 cells primarily secrete IFN-γ resulting in the recruitment of a 

cytotoxic response, whereas Th2 cells secrete cytokines known to be involved in class 

switching, recruiting B lymphocytes and mast cells associated with the development of 

antibody mediated responses and immunological memory. At the time of their discovery it 

was widely believed that the modulation of adaptive immunity and the recruitment of other 

immune cells and complexes was as a result of Th1 and Th2 subsets, however more recently 

many other sub-sets have been defined (Abul K. Abbas, Andrew H. Lichtman, 2012). The 

more recently identified sub-sets of Th cells (Th9, Th17, Th22 and Tfh) give greater details to 

the responses and definition of their specific roles in the adaptive immune response. 
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Figure 1.4. CD4+ Helper T cell differentiation. Upon activation the cytokine microenvironment 
determines the differentiation of Th0 cells. Once activated and matured, each different Th subset has 
a different effector function within the immune response. The main cytokines involved in the 
differentiation of Th0 cells, and their effector cytokine secretions are displayed.  
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The recent identification of Th9 cells is attributed to the secretion of IL-9, a cytokine 

associated with asthma, anaphylaxis and helminth immunity. IL-9 is also known to stimulate 

the survival of T cells, and assists in class switching to IgE production from B cells (Veldhoen 

et al., 2008; Licona-Limón et al., 2013). Their new discovery means that their primary role is 

still under scrutiny, however, they have been implicated in a number of conditions and are 

understood to recruit of a number of effector cells. It has also been discovered that Th9 cells 

can directly cause tissue damage through the release of TNFα and granzyme B (Schlapbach 

et al., 2014). Th17 and Th22 have too been implicated acute inflammation and tissue damage, 

in particular the skin. Th17 and Th22 are both differentiated in the presence of IL6, with Th22 

requiring the additional signal from TGF-β to fully differentiate. Both subsets have the 

capacity to secrete IL-22, involved in the inflammatory response, with Th17 cells also capable 

of secreting IL-17, associated with immune regulation (Pennino et al., 2010; Uetrecht and 

Naisbitt, 2013). 

Follicular helper T cells (Tfh) have a primary role in the priming of B lymphocytes to a specific 

antigen. This is a similar role to Th2 cells in promoting immunological memory and antibody 

production. Regulatory T cells, or Treg cells are anti-inflammatory and are differentiated by 

TGF-β and IL-10. TGF-β plays a predominant role in immune tolerance and is the primary 

cytokine secreted by Treg cells. Regulatory cells are an important component in the onset of 

disease and are becoming better understood. As they are heavily involved in antigenic 

tolerance their dysregulation can result in an unwanted immunological response. While Th9 

cells have also been implicated in the secretion of TGF-β it is becoming more apparent that 

they are more important in promoting inflammation rather than tolerance (Li and Flavell, 

2008; Kaplan, 2013; Uetrecht and Naisbitt, 2013; Vinuesa et al., 2016; Kobayashi et al., 2017).  
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1.2.2.2 T LYMPHOCYTE ACTIVATION  

The stimulation of T lymphocytes can be achieved through 3 signalling mechanisms; defined 

as signals 1, 2 and 3. Signal 1 is provided through the interaction of the peptide MHC complex 

(pMHC) and the TCR, whether that be a CD4+ or CD8+ T cell. This interaction alone is not 

enough for the full activation of the T cell and subsequent signalling cascades and will only 

usually result in toleration. For full activation of the T cell signal 2 must also be present. These 

relate to the interaction between signalling molecules that are non-specific to the antigen. 

Signalling molecules can be both co-stimulatory and co-inhibitory with the outcome 

dependant on the interplay between the two. Finally, signal 3 refers to the signalling 

molecules, such as cytokines, released from APCs following antigen uptake. In all, these 

signals are imperative in defining the nature of the full cellular immune response (Curtsinger 

et al., 1999). 

The interaction between the TCR and pMHC is crucial for T cell clonal expansion and the 

activation of the adaptive immune response. Several hypotheses exist for how the 

interaction occurs, however the basis of the interaction remains the same. The αβ TCR 

receptor recognizes the pMHC as a single unit, resulting in subsequent intracellular signalling 

and an effector response. Studies have been performed to look at the importance of co-

stimulatory signals in T cell activation. It is apparent that in many cases a single pMHC would 

be unable to stimulate a T cell on its own, with studies characterizing short half-lives for the 

interaction between the two molecules. The interaction between the pMHC and the TCR is 

likened more to that of an antibody-antigen, rather than the peptide-MHC interaction. This 

results in an often-rapid dissociation between the TCR and pMHC, likely to result in failed 

activation. It is therefore apparent that multiple interactions are involved leading to the 

activation of T cells (Corr et al., 1994). This interaction between the pMHC and the TCR has 

been eloquently referred to as the ‘immunological synapse’, consisting of a cluster of TCRs 

surrounded by a ring of integrin family adhesion molecules. The formation of this synapse is 
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likely to assist in the formation of sustained pMHC TCR engagement. There are a number of 

factors attributing to the often-short half-life of the pMHC TCR complex. Large glycoproteins 

on the cell surface of both the APC and the T cell, relative to the size of the TCR/MHC, may 

act as a physical barrier preventing the interaction. It is also important to think about the 

number of antigenic peptides that are being presented at any one time. If the abundance is 

low, it is less likely to activate the T cell above a required threshold. This is also in addition to 

the movement of cells reliant on the contact between a TCR and the pMHC complex. It may 

be the case that the antigenic peptide, although has high MHC binding affinity, may not have 

a high affinity to the TCR. Taking all of these factors into account it is clear that co-stimulatory 

molecules are important in sustained TCR engagement with the pMHC resulting in the 

initiation of the tyrosine phosphorylation cascades and further signalling mechanisms 

(Grakoui et al., 1999).  

Broadly, MHC I and II activate cytotoxic CD8+ and helper CD4+ T cells respectively, resulting 

in the cellular immune response. In TCR activation of CD8+ T cells the CD8 surface molecules 

act as a co-receptor assisting the TCR binding to pMHC I (Figure 1.5) (CD4 in CD4+ T cells). 

Once the TCR/CD8 and pMHC I association is formed Lck, a tyrosine kinase, interacts with 

the cytoplasmic region of the CD8 surface marker leading to the phosphorylation of the CD3 

immunoreceptor tyrosine-based activation motifs (ITAMs). The recruitment and subsequent 

activation of ZAP-70 follows as a result of CD3 phosphorylation, in turn activating LAT. LAT 

kinase links with the TCR and facilitates signalling during CD8 T cell activation.  
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Figure 1.5. CD8+ TCR activation by MHC I. Interaction between the pMHC complex of class I molecules 
and the αβ chain of the CD8+ TCR initiated the adaptive immune response (signal 1). The CD8 co-
receptor interacts with the α3 chain of the MHC I protein further amplifying the response through the 
activation of Lck. Subsequent phosphorylation of CDS results in the recruitment and activation of ZAP-
70. LAT activation through ZAP-7 results in the effector response, determined by the co-stimulatory 
molecules present. Co-receptor signalling between CD28 and CD80 results in further activation 
leading to T cell proliferation (signal 2).  
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While signal 1, the pMHC/TCR interaction, is central to the activation of T cells from specific 

antigens, signal 2 is required for their full activation. Several co-stimulatory (CD28, CD40 and 

CD54) and co-inhibitory (CTLA-4, PD-1, CD45, KIR, TNFR1) molecules on the surface of T cells 

are important in determining the balance between activation or tolerance (Wang and 

Reinherz, 2012; Rosenberg and Huang, 2018). Signal 2 has also been implicated in the 

modulation of T lymphocyte differentiation into Th1 and Th17. CD28 is a well characterized 

signal 2 pathway involving the cell surface expression of CD28 on the T cell and CD80/CD86 

on the APC (Figure 1.5). Through CD28-CD80/CD86 signalling, the activation of 

phosphokinase C triggers the release of IL-2 promoting T lymphocyte survival.  Inhibition of 

CD28 has been shown to prevent T cell activation, making it an important checkpoint for 

autoimmunity (Liu et al., 1998; Acuto and Michel, 2003; Sharpe and Abbas, 2006; Mizui et 

al., 2008). Other signal 2 pathways focus on a co-inhibitory effect and include programmed 

death-1 (PD-1), cytotoxic T lymphocyte-associated protein 4 (CTLA4) and T cell 

immunoglobulin and mucin-domain containing-3 (TIM-3). All these cell surface molecules are 

a regulator of T cell inhibition and have been shown to regulate autoimmunity on a wide 

number of cell types. T cell activation leads to the expression of PD-1 on the cell surface 

which in turn can be bound by is ligand, PD-L1. The ligand is only present when induced by 

other pro-inflammatory mediators such as IFN-γ. Activation of PD-1 leads to the 

dephosphorylation of ZAP-70 through SHP-1 and SHP-2, resulting in the deactivation of the 

T cell. Other co-inhibitory pathways work in tandem with PD-1 giving the overall desired 

effect (Nishimura et al., 1999; Sheppard et al., 2004; Keir, Freeman and Sharpe, 2007; Chen 

and Flies, 2013). 

T cell surface receptors also include those that respond to chemokines, cytokines and 

antibodies (Fc receptors). Activation of these receptors represents the signal 3 pathway of 

activation. It has been shown that the absence of signal 3 results in poor viability of naïve T 

cells with low effector function (Mescher et al., 2006). Signal 3 is important in the activation 
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of CD8+ T cells through IL-12 and/or IFNα/β cytokines to have both a productive response 

and to avoid the induction of death and/or tolerance to the antigen. It is understood that 

cytoskeleton remodelling can be controlled with signal 3 molecules through the regulation 

of >350 genes. CD4 cells are also believed to need a third signal to result in a productive 

response with IL-1 thought to provide this signal (Curtsinger and Mescher, 2010). Although 

T cells can respond to antigens presented by MHC molecules, signal 1 alone is unlikely to 

result in an active immune response. Signal 2 molecules act to regulate immune responses 

to prevent over activation of the immune system while signal 3 allows T cells to assess the 

cellular microenvironment. The absence of any of these signals will usually result in a limited 

response of T lymphocytes. 
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1.2.2.2.1 MECHANISMS INVOLVED IN DILI 

It is generally accepted that a number of individual patient susceptibility traits contribute to 

the onset of disease. Notably genes that encode for HLA and cytochrome (CYP) P450 

enzymes play a role in the small percentage of patients that will develop the adverse 

reaction. Using the ATL/ATP ratios is a relatively easy way to assess the potential for the 

onset of DILI, however, it is common for several drugs to elevate LFTs without causing 

significant injury. The liver is an unusual organ in that the immune system promotes 

tolerance and regeneration over activation, meaning drug exposure may initially result in LFT 

increases which subsequently return to normal levels. While the mechanisms underpinning 

the reduced LFT over time are still unknown, this adaptation to injury is seen in ~3% of 

patients taking statins (Rashid, Goldin and Wright, 2004; Bleibel et al., 2007).  

Chemically reactive drugs and/or reactive metabolites (RMs) are generally implicated in the 

induction of DILI through the altering of normal cellular processes. Binding of drugs (or 

reactive metabolites) to cellular macromolecules can result in a whole host of disruption 

including protein dysfunction, DNA damage, oxidative stress and lipid peroxidation. 

Additionally cellular energy production can be reduced through mitochondrial dysfunction 

owed to disruption of ionic gradients or changes to intracellular calcium stores (Holt and Ju, 

2006). Drug metabolism to RMs is in a many cases necessary in order to achieve the desired 

pharmacological effect, however, when not controlled it can lead to the disruption 

mentioned above (Stephens, Andrade and Lucena, 2014). Drug metabolism can be 

categorized into three stages; I, II and III. Phase I drug metabolism is mostly mediated by the 

family of CYP P450 enzymes usually through oxidation and reduction. The cells within the 

liver largely express CYPs making the liver a prime target for RMs as it is the central organ for 

drug metabolism. Working in coordination with phase I metabolism is phase II, or 

detoxification (Yuan and Kaplowitz, 2013). Often, it is the fine balance between phases I and 

II that is critical in determining the incidence of DILI. Small molecules and proteins are formed 
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with the purpose of quenching/inactivating RMs resulting in their detoxification. Phase II 

metabolism acts to change the physical properties of RMs in order to assist with their exit 

from the cell. Conjugation with glucuronate, acetyl and glutathione (GSH) all enhance the 

hydrophobicity of RMs resulting in their excretion into the bile or urine through phase III 

metabolism. Phase III is largely mediated by ATP-binding cassette (ABC) transporters, 

culminating in the cellular excretion of detoxified metabolism products. (Holt and Ju, 2006; 

Yuan and Kaplowitz, 2013; Stephens, Andrade and Lucena, 2014). Importantly, membrane 

transporters are thought to underlie some forms of DILI. The role of phase III metabolism will 

be discussed in further detail in chapter 3.   

Although mechanisms underpinning DILI, in particular cholestasis, have been investigated 

since the 1980’s, they are still somewhat debatable (Fernández-Murga et al., 2018). 

Understanding mechanistic pathways resulting in DILI is largely through the study of APAP 

metabolism, perhaps the most well characterized form of hepatotoxicity. APAP is largely 

metabolised through glucuronidation and sulphation, however, phase I metabolism by 

CYP2E1 to N-acetyl-p-benzo-quinone imine (NAPQI) contributes to hepatotoxicity. NAPQI 

binds the free thiols on intracellular GSH (phase II metabolism) resulting in depletion of 

cytosolic and mitochondrial stores. Once cell defences are depleted NAPQI can bind to free 

thiols on off-target proteins resulting in their dysfunction. Disruption in mitochondrial 

proteins results in the generation of mitochondrial reactive oxygen species, leading to 

necrosis of the cell (Yuan and Kaplowitz, 2013). APAP is a form of intrinsic DILI resulting from 

an increase in APAP concentration that is directly related to NAPQI production and so 

hepatotoxicity. There is still however some element of patient susceptibility through 

expression of CYP enzymes making them a target for genetic DILI studies. Variable expression 

and the catalytic activity of the CYP enzymes may result in an increased abundance of RMs 

which subsequently reduces intracellular levels of phase II quenching molecules. To date 
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however, compelling evidence is yet to be discovered (Holt and Ju, 2006; Bleibel et al., 2007; 

Stephens, Andrade and Lucena, 2014). 

 MHC AND ANTIGEN PROCESSING 

The immune system acts as a constant surveillance system identifying abnormalities in the 

proteins present and/or expressed within individual cells and tissues. The MHC is a protein 

encoded by human leukocyte antigen (HLA) genes in humans. The HLA coding site is often 

described as the most complex and polymorphic region of the genome, with in excess of 220 

genes encoding up to 10,000 different allelic forms (Robinson et al., 2015).  The HLA system 

is located within the 6p21.3 region of the short arm of chromosome six comprising of 21 

polymorphic genes. The immune responses to pathogens and tumours are reliant on the 

product of these gene clusters and can be further categorised into three regions (Caron et 

al., 2015; Robinson et al., 2015). HLA class I and HLA class II genes code for the MHC class I 

and MHC class II protein products respectively. These are located within the telomeric ends 

(class I) and the centromeric end (class II) of the MHC. MHC can be further classified into 

HLA-A, -B, -C, -E, -F & -G (MHC class I) and HLA-DP, -DM, -DOB, -DQ & -DR (MHC class II), 

based on their protein structure and function (Pritchard et al., 2015). The third region in the 

cluster encodes for a number of non-HLA genes that carry immune function (Robinson et al., 

2015). The complex nature of this system makes for a complex nomenclature. Briefly, HLA 

alleles are named based on their gene, allelic group and HLA protein, with subsequent coding 

for other polymorphisms (Figure 1.6).  
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Figure 1.6. HLA allele nomenclature. The diverse range of HLA alleles results in a complicated system 
in order to take into account all of the known polymorphisms. The HLA prefix is always followed by a 
hyphen separator and the gene name. An asterisk is followed by the allelic group, a further separator 
and the HLA protein. For genes that require further annotation DNA substitutions in the coding and 
non-coding regions may follow, and in some cases includes the expression level. 

 

MHC proteins are responsible for presenting peptides to circulating and tissue resident T 

cells. Normally, self-peptides derived from endogenous proteins are presented on the cell 

surface of nucleated cells. When neo-antigens appear, from pathogenic proteins or tumour 

cells, immune activation follows. This explains the need for a huge diversity of genes that 

encode for HLAs. Typically HLA polymorphisms occur in the genomic regions encoding the 

HLA binding cleft. This gives a large diversity in the different peptides that can be loaded and 

subsequently presented to the immune system. It is for this reason that certain populations 

have better immunity to local pathogens, due to positive selection for the genes that better 

present certain peptides over an evolutionary period. While the mechanisms regulating 

these interactions are tightly controlled, breakdown in molecular communication can lead 

to severe clinical conditions (Fortier et al., 2008; Caron et al., 2015). 

MHC class I molecules appear on all nucleated cells and are responsible for presenting short 

peptides to CD8+ T cells. Peptides of 8-12 amino acids can typically be loaded into the MHC 

binding cleft. Classical MHC I alleles include HLA-A, -B and -C, with each estimated to present 
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1,000 to 10,000 peptides. As investigations into the MHC peptide repertoire expands the 

number of known MHC ligands increases. If we consider 10,000 peptides can be presented 

by a single MHC class I allele, that number represents <0.1% of the number of potential 9-

mer ligands that could be derived from the human protein coding genes. This further 

highlights the specificity of individual HLA alleles, with the collection of peptides presented 

by a specific allele termed the immunopeptidome. There are several functions of the MHC I 

immunopeptidome, these include shaping the repertoire of developing thymocytes, immune 

surveillance and amplification of responses to intracellular pathogens and tumours. The 

peptides presented by MHC I are largely derived from proteasomal degradation of cytosolic 

proteins. The source protein can be from a pathogen (culminating in the initiation of T cell 

activation), functional endogenous proteins or defective ribosomal products that arise from 

defective protein synthesis. If a host cell becomes infected by a pathogen MHC class I present 

peptides to cytotoxic T cells resulting in neutralization of the cell (Caron et al., 2015; 

Robinson et al., 2015; Abelin et al., 2017; Reeves and James, 2017).   

Structurally, MHC class I molecules are formed of two heterodimers consisting of one 

membrane-anchored heavy chain with extracellular α1, α2 and α3 regions, and a soluble β2-

microglobulin. The peptide binding grove is located between the α1 and α2 sites of the MHC 

heavy chain (Figure 1.7) (Madden, 1995). The MHC I binding site consists of conserved polar 

tyrosine residues at each end, forming hydrogen bonds at the N- and C-terminal positions 

(P1 and PΩ) restricting the length of the peptides that can be accommodated. This has been 

confirmed using X-ray crystallography and is conserved both across all MHC class I alleles (in 

humans and mice) as well as peptides of different length, with long peptides accommodation 

a bulging phenotype in the middle. Exception to this rule does exist; peptides that are too 

short to accommodate the entire binding groove may still be presented with only one termini 

stabilized with a hydrogen bond. Additionally, more recent studies have identified N-

terminal extension of MHC class I peptides out of the HLA binding groove. These interactions 
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at the peptide termini are however separate to the anchoring residues and are sequence 

independent (Bouvier and Wiley, 1994; Madden, 1995; Rammensee, 1995; Pymm et al., 

2017; Wieczorek et al., 2017). The specific binding motif is different for each allele, making 

the peptides that can be presented by each allele different. Typically for MHC class I proteins, 

peptides are anchored at positions 2 (P2) or P5/P6 and the C-terminal position (PΩ) 

(Wieczorek et al., 2017).   

 
 

Figure 1.7. MHC class I structure from the front (left) side (middle) and top (right). MHC class I 
molecules are formed of two heterodimers consisting of one membrane bound heavy chain (α1, α2 
and α3) and one soluble β2-microglobulin. MHC class I peptides are recognized by CD8+ TCRs where 
interactions between the TCR and MHC protein, and TCR and peptide results in T cell activation. MHC 
class I peptides are anchored into the binding groove by anchor residues, often found at P2 and PΩ 
(C-terminal amino acid). The binding groove of MHC class I peptides is constrained to fit amino acids 
of (typically) 8-12mers.  

 

The digestion of intracellular proteins by the proteasome and subsequent presentation on 

MHC class I molecules is a complex mechanism mediated by a number of enzymatic events 

(Figure 1.8). The preparation of antigens and subsequent loading occurs in two main events. 

Firstly, proteins are digested in the cytosol by the proteasome. While the proteasome has a 

defined function in MHC peptide processing it is a complex multi-catalytic enzyme which is 
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also involved in cell homeostasis ensuring misfolded proteins are eliminated, preventing 

aggregation. Within the proteasome there are three catalytic sub-units latent membrane 

protein (LMP) 2, LMP7 and LMP10) which are responsible for the activity of the core 20S 

subunit. In a normal cellular state IFN-γ (and other inflammatory cytokines) promote the up-

regulation of these sub-units increasing the generation of antigenic peptides. Often the 

cleavage of proteins into smaller peptides will result in the final C-terminal amino acid being 

prepared. LMP2, LMP7 and LMP10 all favour hydrophobic C-terminal residues promoting 

binding to the PΩ anchor (Reeves and James, 2017; Wieczorek et al., 2017).  

Following digestion within the cytosol, peptides enter the endoplasmic reticulum (ER) where 

further processing follows. Transporter associated with antigen processing (TAP) (consisting 

of two ATP-hydrolysing subunits, TAP1 and TAP2) transports peptides from the cytosol into 

the lumen of the ER, and a major component in the second event in MHC class I presentation. 

TAP preferentially transports peptides of 11-14 amino acids long, longer than the preferred 

8 to 12-mer MHC class I associated ligands. In order for peptides to be loaded on to the MHC, 

the immature α-chain and the β-2-microglobulin (β2M) must be associated along with TAP, 

tapasin (Tpn) and ERp57 to form the mature peptide loading complex. During this 

mechanism Tpn is instrumental in the correct association of the peptide loading complex and 

acts as a bridge between the other molecules. This association occurs within the ER through 

the chaperone proteins calnexin (CNX), binding protein (BiP) and calreticulin (CRT).  
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Figure 1.8. TAP antigen processing mechanism. (1) Endogenous proteins are digested by the 
proteasome in the cytosol. (2) Peptides (mostly 8-16aa) are transported into the ER via the peptide 
binding pocket formed by TAP1 and TAP2. TAP1 and TAP2 has preference for hydrophobic C-terminal 
aa’s at this point. Tapasin acts as the mediator for the interaction between the MHC and TAP. (3) 
ERAAP, ERAP1 and ERAP2 trim peptides within the ER to allow them to be loaded onto MHC. (4) 
Peptides are transported towards (5) ERp57, a thiol oxidoreductase, which catalyses the formation 
and breakage of disulphide bonds and assists with the loading of the peptide into the MHC binding 
groove. (6) MHC peptide complexes are translocated out of the ER where they are (7) transported 
through the golgi and (8) are presented on the cell surface. 

 

The correct assembly of the peptide loading complex is crucial in the ability to bind MHC 

peptides. As peptides of 11-14 amino acids long would not preferentially bind to MHC class 

I binding groove in a stable manner, trimming of the N-terminal amino acid residue(s) is 

performed. Endoplasmic reticulum aminopeptidases (ERAP) 1 and 2 are both involved in N-

terminal trimming, generating a pool of antigens with high affinity to the MHC class I binding 

cleft. Following N-terminal trimming of the peptides ERp57, a thiol oxidoreductase, catalyses 
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the formation and breakage of disulphide bonds. This mechanisms contributes to the loading 

of peptides into the MHC binding groove (Reeves and James, 2017; Wieczorek et al., 2017). 

Once peptides are loaded into the HLA-binding groove the interaction between Tpn and the 

MHC peptide loading complex is dissociated. This results in the transport of the mature 

peptide MHC class I complex from the ER to the cell surface, passing through the golgi 

apparatus within the cytosol.  

Although the digestion and subsequent processing in the ER happen independently of one 

another, impairments in either mechanisms can result in the ineffective presentation of MHC 

class I peptides. Mechanisms to prevent the processes involved in antigen processing appear 

in a number of diseases and is extensively studied in cancer progression. Investigations have 

revealed that a number of cancers have developed to disrupt pathways in all aspects of 

antigen processing (Mehta et al., 2007). In malignant cells the three subunits contributing to 

the 20S core of the proteasome are replaced. LMP2, LMP7 and LMP10 reduction significantly 

reduces the number of peptides that are suitable for MHC binding. Instead the incorporation 

of β1, β2 and β5 proteins are responsible for the catalytic activity of the 20S core. Disruption 

in LMP2 and LMP7 have also been reported in the case of cervical carcinoma. Single 

nucleotide polymorphisms (SNPs) in the genes coding for these proteins results in a worse 

prognosis for survival rates, thought to be due to reduced protein function. As IFN-γ is known 

to promote the expression of LMP2, LMP7 and LMP10 in non-malignant cells, therapeutic 

uses in cancer therapy are being evaluated. Unsurprisingly other mechanisms have identified 

disruption in the processes occurring within the ER, for example a loss of ERAP1 results in a 

50% loss of peptide expression. (Mehta et al., 2007; Hasim et al., 2012; Wehenkel et al., 

2012; Reeves and James, 2017). This highlights the challenges faced when trying to 

understand the mechanisms that are underlying the progression of disease when it comes 

to MHC class I involvement.  
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MHC class II differ in terms of both structure and function. Structurally MHC class II alleles 

consist of two membrane bound heterodimers comprising of one α (α1 and α2) and one β 

(β1 and β2) chain. The α1 and β1 chains form the peptide binding cleft (Figure 1.9) (Madden, 

1995). MHC class II proteins are only presented on professional antigen presenting cells 

including DCs, macrophages and B lymphocytes. This is in comparison to MHC class I, which 

are presented on almost all nucleated cells. Conversely to MHC class I, class II molecules are 

not as restricted in their ability to present longer peptides of typically 10-25 amino acids. This 

is due to open ends of the binding cleft without the stabilizing of N- and C-terminal amino 

acids through hydrogen bonds. This results in ‘nested sets’ of peptides derived from the same 

protein being presented. Here a stretch of peptide is continually anchored in the binding 

groove but is flanked on either side by extended sequences protruding the ends of the 

binding cleft (Rammensee, 1995). Anchoring positions in MHC class II are more commonly 

associated with P1, P4, P6 and P9. As the N-terminal amino acid on the peptide chain may 

be protruding, the peptide binding cleft P1 refers to the first anchored amino acid, and is 

often regarded as the most important anchoring site (Wieczorek et al., 2017).  

The peptides presented on MHC class II alleles are the result of proteosomal degradation of 

endocytosed proteins of extracellular origin. As these peptides are not indicative of an 

intracellular infection/pathogen cytotoxic CD8+ T cell activation would often result in a 

detrimental neutralization of the presenting cell. Therefore, peptides presented on MHC 

class II proteins are detected by CD4+ T cells. The primary response of helper CD4+ T cells is 

to stimulate B cells for antibody generation or activation of macrophages to enhance their 

phagocytic functions (Caron et al., 2015).  
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Figure 1.9. MHC class II structure from the front (left) side (middle) and top (right). MHC class II 
molecules are formed of two heterodimers consisting of two membrane bound heavy chains, one α 
(α1 and α2) and β (β1 and β2). MHC class II peptides are recognized by CD4+ TCRs and are more 
frequently derived from extracellular proteins. The open edges of the MHC class II binding groove 
make it possible for longer peptides to be accommodated, typically 10-25 amino acids long. 

 

In recent years it has become apparent that MHC class II presentation can occur on non-

hematopoietic cells. Generally, MHC class II expression on professional APCs results in the 

migration to the lymphatic system, activating and maturing naïve CD4+ T cells. This atypical 

presentation of MHC class II on tissue resident cells may be involved in immune tolerance 

mechanisms, although this is currently not fully understood. We do however know that naïve 

CD4+ cells can be activated in the absence of DCs, meaning this atypical presentation may 

have some immunogenic effect (Kambayashi and Laufer, 2014). As with class I, the ability of 

MHC class II alleles to bind a large range of peptides is based on the diversity of the structure 

of the binding cleft. Humans present slightly more different allelic forms of class II alleles, 

with 8 in total, again one from each parent. The different alleles include HLA-DRA, DRB, DQ 

and DP (Caron et al., 2015).  
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The mechanisms for antigen processing of the MHC class II pathway are similar to that of 

MHC class I. Briefly, proteolytically processed peptides/degraded proteins are loaded onto 

MHC class II proteins though a series of enzymatic reactions comparable to that of MHC class 

I. While MHC class I antigen processing occurs in the ER, MHC class II antigen processing 

occurs within late endosomes. Once peptides with high affinity are loaded the MHC class II 

peptide complex is transported to the cell surface where it is displayed to CD4+ helper T cells 

(Wieczorek et al., 2017). 

 

 INTERACTIONS BETWEEN THE PMHC AND TCRS IN TYPE IV HYPERSENSITIVITY 

As previously described, autoreactive T cells are deleted in the thymus prior to release into 

the circulatory system (Alberts, Johnson and Lewis, 2002). For T cells to be involved in the 

onset of DHRs, the interaction between the MHC and TCR must either be disrupted or 

directly involve drug interactions. The mechanisms by which T cells are activated by drugs 

and/or RMs through antigen presentation follow three distinct hypotheses (Figure 1.10). 

These are commonly known as the pharmacological interaction (PI) (Figure 1.10A), hapten 

(Figure 1.10B) and altered peptide repertoire (Figure 1.10C) hypotheses. The details of these 

interactions are described in further detail in the next section. Briefly, the drug (and/or 

metabolite) can interact with the peptide MHC (pMHC) complex and the TCR in three 

different ways resulting in T cell activation and lymphokine secretion.  
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Figure 1.10. Type IV hypersensitivity T cell activation hypotheses. Interactions between the peptide, 
MHC, drug and T cell receptor (TCR) follow three different hypotheses. (A) The drug interacts non-
covalently with the peptide, MHC and the TCR. (B) The drug covalently binds to the peptide presenting 
a neo-antigen to the TCR. (C) The drug interacts with the MHC altering the conformation of the peptide 
binding groove so able to accommodate non-drug-modified neo-antigens. In all cases these lead to T 
cell activation and subsequent lymphokine release.  

 

1.2.4.1 PHARMACOLOGICAL INTERACTION 

The PI hypothesis is the result of an independent interaction between small molecules, the 

pMHC complex and the TCR through non-covalent interactions. The rapid activation of T-

lymphocytes from chemically non-reactive drugs is well documented through investigations 

with sulfamethoxazole (SMX), lamotrigine and carbamazepine.  T cell responses to SMX from 

hypersensitive patients found that clones were highly specific for SMX, and could be 

activated in the absence of metabolism and antigen processing (Schnyder et al., 1997; Zanni 

et al., 1998; Watkins W., 2013). As SMX is a chemically inactive compound, and antigen 

processing was blocked, the interaction between SMX, the TCR and pMHC complex must 

have occurred in a series of non-covalent interactions. The activation of T cells activated to 
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SMX has been confirmed to be rapid through the identification of calcium release in < 10 

minutes, too short for antigen processing to have occurred. It has also been shown that SMX 

is not restricted to HLA alleles, but instead stabilizes a number of pMHC complexes (von 

Greyerz et al., 2001). Cross reactivity is implicated in the activation of clones to compounds 

such as SMX. Usually the adaptive immune system first recruits T cells to the site of 

inflammation, resulting in an antigen driven response. It has been found that certain drugs 

are able to bypass the innate immune response by activating memory T cell responses that 

are similar to that of other compounds (Pichler, 2005). 

While SMX does not have a known HLA restriction, genome wide association studies (GWAS) 

have identified associations between carbamazepine and HLA-B*15:02. This allele is more 

commonly found in the Taiwanese population expressing a TCR vβ-11-ISGSY clonotype, 

making HLA-B*15:02 the only component in the clinical manifestation. In some patients with 

both the HLA allele and the TCR clonotype, hypersensitivity to carbamazepine was found, 

making the specific interaction between drug, the MHC and the TCR dependant on the 

presence of these genes (Chen et al., 2011; Ko et al., 2011; Wei et al., 2012). These specific 

patient factors make the discovery of DHRs a challenge during drug development as they 

often happen in a small number of patients that would only be detected when the drug is 

available to the market. 

1.2.4.2 HAPTEN  

The oldest model of drug hypersensitivity is the hapten hypothesis, first described in 1935 

by Landsteiner and Jacobs. In this study dinitrochlorobenzene (DNCB) was used to sensitize 

guinea pigs which were later re-challenged with much lower concentrations. Sensitized 

animals showed a strong response in comparison to the control group suggesting that an 

immune response to DNCB was responsible. Furthermore, these responses could be seen by 

administering low doses of DNCB directly onto the skin. Interestingly the authors noted that 
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immunization would only be likely if there was a combination of these ‘simple substances’ 

or drugs with proteins due to previous studies noting the sensitization of rabbits to 

formaldehyde through exposure to formalinized proteins. Perhaps more convincing in the 

case of DNCB previous attempts to use bacterial carbohydrates, which are known to have 

antigenic activity, to produce skin sensitization had failed. These findings resulted in the 

hypothesis that small molecules bind to proteins resulting in immunogenicity (Landsteiner 

and Jacobs, 1935).  

SMX-nitroso (SMX-NO), the RM of SMX, is known to irreversibly bind to protein and activate 

T cells in vitro. This compound has been used as a model antigen in DHR studies for its 

interaction both via the PI mechanism and the hapten. SMX-NO has been found to stimulate 

T cells from patients with drug hypersensitive reactions, indicating the formation of the RM 

in vivo. This interaction between SMX-NO and these activated T cell clones derived from 

patients could be blocked by inactivating the antigen uptake and presentation, indicating 

intracellular processing was required (Naisbitt et al., 1999; Lavergne et al., 2009; Castrejon 

et al., 2010).  

Since the initial report by Landsteiner and Jacobs, the binding of small molecules to proteins 

has been well defined. Jenkins et al characterized the irreversible binding of the β-lactam 

antibiotic flucloxacillin to human serum albumin (HSA) through nucleophilic attack of the β-

lactam ring by primary amines on lysine residues. Importantly it was observed that 

flucloxacillin bound to lysine residues on HSA from both in vitro incubations and in vivo 

patient serum samples (Jenkins et al., 2009). While drug-protein binding does not always 

lead to hypersensitivity it has to be noted that nucleophilic residues exist on proteins that 

are important in activating T lymphocytes. Using kinetic spectrophotometric measurements 

to develop a simple absorbance model Chipinda et al identified skin sensitization was mainly 

driven by electrophilic reactivity of small molecules, further confirming Landsteiner’s initial 

hypothesis (Chipinda et al., 2010).  
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The hapten hypothesis in drug hypersensitivity involves the irreversible binding of a small 

molecule, in this case drug, to the peptides presented by the MHC to the TCR. The hapten 

mechanism can occur through both processing dependant and independent pathways. Drug 

modification of endogenous proteins may undergo intracellular digestion leading to the 

presentation of drug modified peptides. Alternatively, the modification of already bound 

MHC peptides may occur through a processing independent mechanism. Typically, the latter 

occurs when reactive drugs, or inert compounds (pro-haptens) that undergo metabolism to 

become RMs, are involved (Naisbitt et al., 2001; Posadas and Pichler, 2007). Whichever 

mechanism is responsible the drug modified peptides act as neo-antigens to the TCR 

resulting in T cell activation. Studies using cloned T lymphocytes in vitro has confirmed these 

two mechanisms. Processing independent activation of T cells is observed when antigen 

presenting cells exposed to reactive drugs/metabolites for a short period of time are washed 

and presented to the T lymphocyte. Other studies have confirmed processing dependence 

when T cell activation is lost through blocking antigenic processing pathways (Whitaker et 

al., 2011; El-Ghaiesh et al., 2012; Jenkins et al., 2013).   

1.2.4.3 ALTERED PEPTIDE REPERTOIRE  

The most recent hypothesis to be identified is the altered peptide repertoire. In 2002 Mallal 

first reported the association between the nucleoside reverse transcriptase inhibitor (NRTI) 

abacavir, used in HIV-1 treatment, and HLA-B*57:01 (Mallal et al., 2002). This discovery lead 

groups to understand the interactions between this HLA polymorphism and why it was 

required for abacavir hypersensitivity reactions to occur. It was not until 2012 that multiple 

groups reported a novel MHC self-repertoire appearing in the presence of abacavir, with 

neo-self-antigens accounting for 20% of the HLA-B*57:01 immunopeptidome. As abacavir 

alters the tertiary structure of the MHC and the peptides that can be presented, normally 

inert/irrelevant MHC peptides are thought to trigger T-lymphocyte, in particular CD8+, 

activation (Chessman et al., 2008; Bharadwaj et al., 2012; Illing et al., 2012).  
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Figure 1.11. Abacavir binds to HLA-B*57:01 altering the PΩ anchor preference. Abacavir binds to the 
F-pocket of HLA-B*57:01 making C-terminal aromatic amino acids (tryptophan, tyrosine and 
phenylalanine) unable to bind. Subsequently peptides terminating in isoleucine and leucine 
accommodate the HLA binding groove giving way to the presentation of a subset of neo-antigens.  

 

Importantly this was only observed with HLA-B*57:01, and not in other closely related HLA 

alleles (Illing et al., 2012; Norcross et al., 2012). Specifically, abacavir interacts with the F-

pocket of the peptide binding cleft making it difficult for peptides terminating in a C-terminal 

phenylalanine, tryptophan or tyrosine to bind (the usual HLA-B*57:01 C-terminal anchor 

residues). Instead peptides terminating in leucine and isoleucine are favoured with the 

additional stabilization from abacavir (Figure 1.11) (Illing et al., 2012). These novel peptide 

antigens are derived from endogenous proteins and they themselves are not modified by the 

drug. Thus far only abacavir is known to interact with the MHC in this way. Although covalent 

interactions between the drug and MHC could result in similar changes to the global peptide 

repertoire examples are yet to be identified.  

1.2.4.4 GENETIC PREDISPOSITION  

Several drug-related hypersensitive reactions have been linked to genetic associations. 

GWAS are now commonly used to identify the genetic similarities between patients suffering 

HLA-B*57:01 HLA-B*57:01
& Abacavir

ABC

Key

ABC

ABACAVIR
PEPTIDE 

BACKBONE
HLA-B*57:01 

ANCHOR RESIDUE
NEO-ANCHOR 

RESIDUE



56 

from an ADR to the same drug. Table 1.2 represents drugs that have been associated with 

different clinical manifestations of DHRs along with their associated genetic predisposition. 

In most cases carrying the gene does not alone represent the only factor in disease 

progression. Often it is the culmination of several attributes that result in the onset of 

disease. 

As previously described, abacavir, a retroviral treatment used in HIV infection, is strongly 

associated with the carriage of HLA-B*57:01. In 2-5% of patients an adverse reaction 

resulting in fever, rash, nausea and vomiting occurs. While the cessation of abacavir generally 

results in recovery, re-challenge results in a must more serious disease with mortality 

reported in a few cases. A number of studies identified the genetic association between 

abacavir and HLA-B*57:01 giving a positive predictive value of 48% and a negative predictive 

value of 100%. These numbers represent the effect of HLA-B*57:01 on the likelihood of 

developing the disease. Carriage of HLA-B*57:01 results in a 48% chance of developing AHS, 

while 100% of cases are from patients carrying the allele (Mallal et al., 2002, 2008; Illing et 

al., 2012; Norcross et al., 2012; Martin and Kroetz, 2013).  

Table 1.2. Genetic associations between drugs and hypersensitivity reactions. The genetic 
associations, predominantly HLA alleles, between drugs are described. Associations are categorised 
into drug reactions with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson 
syndrome/toxic epidermal necrolysis (SJS/TEN), acute generalized exanthematous pustulosis (AGEP), 
drug induced liver injury (DILI) and abacavir hypersensitivity syndrome (AHS). 

Type of 
Reaction 

Drug Genetic 
association 

References 

DRESS Phenobarbital CYP2C19*2 (Manuyakorn et al., 2013; Polak et 
al., 2014) 

Dapsone HLA-B*13:01 (Zhang et al., 2013; Polak et al., 
2014) 

Carbamazepine HLA-A*31:01 
HLA-B*51:01 

(Beeler et al., 2006; Hsiao et al., 
2014; Polak et al., 2014) 

Allopurinol HLA-B*58:01 (Gonçalo et al., 2013; Polak et al., 
2014) 

SJS/TEN Lamotrigine HLA-B*15:02 (Pichler, 2003; Beeler et al., 2006; 
Phillips et al., 2011; Zeng et al., 
2015) 

Carbamazepine HLA-B*15:02 (Pichler, 2003; Phillips et al., 2011; 
Hsiao et al., 2014) 

Phenobarbital CYP2C19*2 
HLA-A*02:07 
HLA-B*51:01 

(Pichler, 2003; Phillips et al., 2011; 
Kaniwa et al., 2013; Manuyakorn et 
al., 2013) 
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Co-trimoxizole HLA-B*15:02 
HLA-C*06:02 
HLA-C*08:01 

(Pichler, 2003; Phillips et al., 2011; 
Kongpan et al., 2015) 

Allopurinol HLA-B*58:01 (Pichler, 2003; Tassaneeyakul et 
al., 2009; Phillips et al., 2011; 
Gonçalo et al., 2013) 

Nevirapine HLA-B*35:05 
HLA-DRB1*01:01 
HLA-B*14:02 

(Pichler, 2003; Phillips et al., 2011) 

Methazolamide HLA-B*59:01 (Pichler, 2003; Kim and Lee, 2010; 
Phillips et al., 2011) 

AGEP Sulfonamides 

HLA-DQ3 
HLA-DR11 
HLA-B*51 

(Beylot, Doutre and Beylot-Barry, 
1996; Pichler, 2003; Beeler et al., 
2006; Pavlos et al., 2014) 

Ampicillin (Saissi et al., no date; Beylot, 
Doutre and Beylot-Barry, 1996; 
Matsumoto et al., 2008; Nacaroglu 
et al., 2014; Pavlos et al., 2014) 

Amoxicillin (Saissi et al., no date; Beylot, 
Doutre and Beylot-Barry, 1996; 
Matsumoto et al., 2008; Pavlos et 
al., 2014) 

Terbinafine (Saissi et al., no date; Beylot, 
Doutre and Beylot-Barry, 1996; 
Rubegni et al., 2008; Pavlos et al., 
2014) 

Corticosteroids (Beylot, Doutre and Beylot-Barry, 
1996; Buettiker et al., 2006; Pavlos 
et al., 2014) 

NSAIDs (Beylot, Doutre and Beylot-Barry, 
1996; Byerly et al., 2005; Teixeira, 
Silva and Selores, 2006; Pavlos et 
al., 2014) 

Pristinamycin (Saissi et al., no date; Beylot, 
Doutre and Beylot-Barry, 1996; 
Pavlos et al., 2014) 

DILI Flucloxacillin HLA-B*57:01 (Kaplowitz, 2004; Daly et al., 2009; 
Daly, 2010) 

Amoxicillin-clavulanic acid HLA-A*02:01- 
HLA-DRB1*15:01- 
HLA-DQB1*06:02 
haplotype 
 
HLA-A*30:02 
HLA-B*18:01 

(Hautekeete et al., 1999; 
Kaplowitz, 2004; Daly et al., 2009; 
Daly, 2010) 

Lapatinib  HLA-DRB1*07:01 
HLA-DQA1*02:01 

(Kaplowitz, 2004; Spraggs et al., 
2011; Schaid et al., 2014) 

AHS Abacavir HLA-B*57:01 (Mallal et al., 2008; Illing et al., 
2012; Norcross et al., 2012) 

 

The strong association between abacavir and HLA-B*57:01 is rare in that the positive and 

negative predictive values are so high. Take this in comparison to flucloxacillin (discussed in 

detail at the end of this chapter) with the same HLA association, however only 8 in 100,000 

develop a hypersensitive response. While HLA-B*57:01 increases the incidence of 
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flucloxacillin mediated liver damage by 30-60 times, its predisposition is still not as strong 

(Daly et al., 2009).  

Both class I and class II MHC proteins present peptides to CD8+ and CD4+ T cells respectively, 

leading to their clonal expansion, activation and maturation (Soen et al., 2003). The 

investigation and the characterization of the peptides presented by HLA molecules to T 

lymphocyte and other immune cells can give an understanding to the mechanisms 

underpinning disease associated with HLA polymorphisms, thus leading to better 

treatments. To characterize these precise peptide signatures, mass spectrometric 

techniques are often utilized. The details of the mass spectrometric analysis of MHC peptides 

will be explored in detail in chapters 4 and 5.  

 IMMUNE MEDIATED DRUG INDUCED LIVER INJURY 

Stress or damage to hepatocytes results in the release of signals that stimulate the activation 

of both innate and adaptive immune responses. Kuppfer cells, NK cells and NKT cells are 

particularly active in cases of innate immune responses to DILI (Holt and Ju, 2006). Individual 

susceptibility to DILI is contributed to by the balance between cytokine release relating to 

DAMPs and hepatoprotective signals. The role of the immune system in DILI is mediated 

through the culmination of complex interactions between the innate and the adaptive 

response. A number of cells are involved in the progression of hepatotoxicity while at the 

same time have been shown to induce hepatoprotective mechanisms. These confounding 

results makes it difficult to accurately predict the precise onset of DILI.  

Innate immunity plays an important role in responding to drug induced stress. Limited animal 

models exist for DILI. However, APAP overdose has furthered our knowledge of the 

underpinning mechanisms. NAPQI induced hepatocyte damage leads to the activation of the 

innate immune system leading to the inflammatory response and the infiltration of 

circulating immune cells into the liver. Once cells are activated the release of cytokines, 



59 

chemokines and reactive oxygen/nitrogen species progress the manifestation of disease 

(Holt and Ju, 2006). IFN-γ, Fas and Fas-ligand are all known to directly cause liver damage 

through knock-out mice becoming resistant to APAP toxicity (Ishida et al., 2002; Liu, 

Govindarajan and Kaplowitz, 2004). Other studies have shown that the release of IL-10, IL-6 

and COX-2 cytokines can have a protective role, with increases in mRNA expression being 

observed during APAP toxicity. Mutant mouse models deficient in IL-10 and IL-6 were found 

to have an increased susceptibility to APAP DILI, leading to their hepatoprotective role being 

confirmed (Reilly et al., 2001; Bourdi et al., 2002; Masubuchi et al., 2003). Kupffer cells 

responding to hepatocellular damage have been shown to secrete TNF-α, resulting in direct 

tissue damage through Bim/Bmf caspase pathways leading to apoptosis (Bleibel et al., 2007). 

Additionally, IL-12 and IL-18 are secreted activating NK and NKT cells. On the other hand, as 

with many immune cells involved in DILI, Kupffer cells can also play a protective role secreting 

IL-10 and IL-6 thus counteracting inflammation and promoting regeneration (Ju et al., 2002; 

Holt and Ju, 2006). 

NK, NKT, circulating macrophages and neutrophils are all involved in the innate immune 

response during DILI.  Depletion of NK and NKT cells results in reduced interferon gamma 

(INF-γ) release leading to reduced direct hepatotoxicity. It has also been shown that aside 

from reducing other cytokine release the depletion of NK and NKT cells results in a decrease 

in neutrophil accumulation (Liu, Govindarajan and Kaplowitz, 2004; Holt and Ju, 2006), 

suggesting they have a role in the initial inflammatory response. The specific role of 

neutrophils in DILI remains to be fully elucidated, however, their accumulation has been 

characterized in a number of studies (Ishida et al., 2002; Liu, Govindarajan and Kaplowitz, 

2004; Holt and Ju, 2006). Studies in the rat have shown that anti-neutrophil antibodies can 

induce protective mechanisms, reducing ALT levels and histological improvements, however, 

whether their primary role is in the clearance of cellular debris or hepatotoxicity is still under 

investigation (Smith et al., 1998).  
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The adaptive immune response in DILI is more closely related to idiosyncratic reactions. 

There is a multitude of clinical features which implicate the adaptive immune system in the 

onset of disease from certain drugs. The occurrence of a rash, fever and eosinophilia often 

with delayed onset are indicative of a learnt response arising from exposure to a drug. Often 

in these cases re-challenge with the offending drug results in a much more serious reaction 

with fast onset, showing immunological memory exists. Further evidence for adaptive 

involvement is through the detection of antibodies isolated from DILI patients specific to 

drug-modified hepatic proteins. There are a number of drugs that contribute to these 

mechanisms, including diclofenac, carbamazepine and halothane (Kenna, 1997; Zimmerman, 

2000; Reilly et al., 2001).  

The adaptive response in the liver is unique in that it will usually promote tolerance rather 

than activation (Figure 1.3). This is in part why immune mediated liver toxicity is relatively 

rare, making patient susceptibility key. Unless these barriers for tolerance are crossed, an 

adaptive immune response is unlikely (Holt and Ju, 2006). In the case of halothane induced 

iDILI treatment of mice with polyI:C, a molecule of microbial mimicry, resulted in an increase 

level of toxicity (Reilly et al., 2001).  This has also been shown to be the case with a number 

of other drugs when administered with the addition of lipopolysaccharide (Ju and Reilly, 

2012). In using pathogen associated molecules (adjuvants) it appears to be possible to 

overcome the toloregenic barriers of the adaptive immune system, resulting in an increased 

response to drugs that otherwise would be tolerated. However, the lack of genuine iDILI 

animal models makes this difficult to interrogate for a number of drugs.  

Typically, the involvement of the adaptive immune system in DILI follows the DHR 

hypotheses; the hapten or PI hypothesis. Ultimately both are dependent on the interaction 

between the drug/RM, MHC and TCR (Holt and Ju, 2006). While generally regarded as dose 

independent it has become apparent in recent years that the onset of iDILI is often increased 

through pharmaceuticals taken at doses >50 mg/day. Whether this increased incidence of 
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iDILI among doses above 50 mg/day is due to a dose relationship or due to more frequent 

use of medications with doses above this threshold is yet to be fully understood (Stephens, 

Andrade and Lucena, 2014). That said, even if there is a dose dependent onset it is thought 

that this too varies among individuals based upon their specific exposures/circumstances 

(Han et al., 2013).  

1.2.5.1 DRUGS ASSOCIATED WITH DILI 

DILI is one of the main reasons for the failure of drugs making it to market, or subsequently 

being removed from the market. The rare incidence of DILI makes adverse reactions difficult 

to pick up until available to larger number of people (Zimmerman, 2000; Pessayre and Larrey, 

2008). The U.S. Food and Drug Administration (FDA) have removed several drugs due to liver 

toxicity including, but not limited to, bromfenac, troglitazone and ebrotidine. Other drugs 

suspected to cause DILI, such as nefazodone and trovafloxacin are available, however come 

with a black box warning (Holt and Ju, 2006; Stephens, Andrade and Lucena, 2014). 

1.2.5.1.1 AMOXICILLIN-CLAVULANATE 

One leading cause of DILI, after APAP, is the co-treatment of the β-lactam antibiotics 

amoxicillin and clavulanic acid. The presentation of amoxicillin-clavulanate (AC) DILI can be 

mixed, but is more commonly associated with cholestasis and has in rare cases resulted in 

vanishing bile duct syndrome. It has been reported that the incidence of AC-DILI can be as 

high as 43 in 100,000; representing a large number of potential patients when considering 

its widespread use. While most recover fully there are cases where liver transplant may be 

required otherwise there is a significant chance of mortality. AC-DILI is more common among 

men and those over the age of 55, as is commonly associated with the onset of cholestasis 

(deLemos et al., 2016). The incidence of AC-DILI is increased by the addition of clavulanic acid 

due to reporting of amoxicillin single treatment resulting in DILI being low. Genetic 

predisposition to AC-DILI has been associated with carriage of the HLA-DRB1*15:01, HLA-

DRB5*01:01, HLA-DQB1*06:02 haplotype. Interestingly the HLA-DRB1*15:01-DQB*06:02 
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HLA alleles have been linked to cholestatic injury whereas HLA-A*30:02 is linked to 

hepatocellular DILI (Kim et al., 2015).  

T lymphocytes are implicated in the onset of disease and have been the focus of several 

studies. It has been possible to generate both CD4+ and CD8+ T cell clones from amoxicillin 

and clavulanic acid independently. In the generation of CD4+ and CD8+ clones the panel of 

cytokines secreted were assessed. It was apparent that the clones responding to amoxicillin 

were able to secrete a panel of cytotoxic cytokines including IFN-γ and IL-22. The cytokine 

secretion from clavulanic acid clones however were more restricted. It was shown that the 

clones were likely activated by a hapten mechanism through several in vitro tests. Firstly, 

antigen presenting cells were required for optimal activation and responses were not 

abrogated when APCs were pulsed with amoxicillin, meaning internal modification of 

drug/drug modified proteins resulted in antigen processing and presentation. When antigen 

processing was knocked out, responses were not longer observed (Kim et al., 2015).  

1.2.5.1.2 NEVIRAPINE 

HLA-B*35, HLA-C*04 and HLA-DRB1*01:01 are all implicated in the onset of nevirapine DILI 

in a number of populations. However, to date the association is not strong enough to 

accurately describe predicative values (Cornejo Castro et al., 2015). Nevirapine DILI is 

associated with HIV patients, however, it is difficult to determine the attributing factors of 

HIV as nevirapine is a HIV treatment. Symptoms include rash, skin blistering and 

hepatotoxicity. In a recent study of 151 nevirapine-hypersensitive patients (and 182 tolerant 

controls) the incidence of HLA-C*04:01 resulted in an increased risk of developing SJS/TEN. 

While this does not explain the incidence resulting in hepatotoxicity it does further our 

understanding of immune involvement in nevirapine induced hypersensitivity. Other genes 

coding for the ERAP proteins involved in the loading of antigens into MHC have been 

identified to offer a protective phenotype in nevirapine DHRs, however the full mechanisms 

are yet to be understood (Carr et al., 2017).  
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 PROTEOMIC METHODS TO DETECT DRUG-PROTEIN ADDUCTS 

Multiple methods are used to detect drug-protein adducts. The most suitable method is 

dependent on type of sample, the required specificity and sensitivity, and the depth of 

analysis needed. While mass spectromety (MS) based techniques now dominate drug-

protein adduct analysis, traditional methods of protein purification are still essential. 

 SAMPLE ISOLATION 

Biological samples such as blood serum contain an extremely complex mixture of in excess 

of 10,000 proteins with abundances spanning 9 orders of magnitude (Adkins, 2002). This 

makes it a challenge to detect proteins that have or may be targeted by drugs. Highly 

abundant proteins such as HSA account for 80% of the total protein concentration in serum 

(Steel et al., 2003). HSA is often targeted by drugs (and/or their metabolites) both due to its 

high abundance and its ability to non-specifically and reversibly bind to many lipophilic 

organic compounds (Elsadek and Kratz, 2012; Zheng et al., 2014). Additionally, HSA is 

particularly susceptible to modification by β-lactam antibiotics, which bind covalently to 

available lysine residues (Levine and Ovary, 1961; Batchelor, Dewdney and Gazzard, 1965; 

Meng et al., 2011; Jenkins et al., 2013; Garzon et al., 2014). Isolating individual protein 

adducts for mass spectrometric analysis can be achieved using both high performance liquid 

chromatography (HPLC) methods (protein depletion and sample fractionation) and SDS-

PAGE. Affinity antibody/ligand modified resin is a good tool to deplete target proteins and is 

particular useful for these complex biological samples (Fang and Zhang, 2008; Jenkins et al., 

2009). Other HPLC methods include the use of resins with certain chemical properties that 

can fractionate samples based on their hydrophobicity, for example. Again, this pre-

fractionation is mainly required for complex samples.   

The in vitro incubation of drugs (metabolites) with model proteins such as HSA and 

glutathione S-transferase pi (GSTP) has given insight into the chemical mechanisms of drug-
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protein adduct formation. For example, the chemical nature, the level of modification and 

the stability of adducts can be investigated by altering incubation conditions such as buffer 

pH, drug concentrations and incubation conditions. Model compounds give the ability to 

generate sufficient quantities of drug-protein adducts to determine the structures of 

potential adducts and possible chemical pathways for the adducts which might be formed in 

vivo. Such in vitro studies are required for the development of methods with sufficient 

sensitivity for analysis of drug-protein adducts formed in low abundance from biological 

samples (Jenkins et al., 2009, 2013; El-Ghaiesh et al., 2012). While in vitro drug protein 

incubations enable us to identify binding sites it is important that any free drug is removed 

prior to further processing to prevent adduct formation on normally inaccessible protein 

locations.  

 DRUG-PROTEIN ADDUCT DETECTION USING ANTIBODIES 

Antibodies specific to particular molecular targets can be used to detect drug-protein 

adducts through a variety of techniques, including immunoblots and ELISAs. While these are 

very coarse methods of hapten detection they represent a simple way to quickly detect 

proteins of interest. In addition, methods used to separate complex mixtures, through 1D 

and 2D SDS-PAGE and HPLC, can be used in conjunction with antibodies to identify drug-

protein adducts. Immunoblots are highly qualitative and are best used to visually display a 

set of data. In contrast, absorbance readings from ELISA samples provide quantitative 

measurement that can be statistically analyzed and validated. 

Drug specific antibodies are used for the detection of drug modified proteins. While this 

practice is widely accepted in the field, there are limitations. As immunoblotting and ELISAs 

rely on antibodies that recognize a specific epitope, cross reactivity can be problematic. 

Figure 1.12 demonstrates how chemical moieties are conserved within drug families, such as 

the thiazolidine ring in β-lactam antibiotics (McVey et al., 2001; El-Ghaiesh et al., 2012) 
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Although the thiazolidine ring is conserved across the family of β-lactam antibiotics, penicillin 

antibodies are not cross reactive with all members. Commercially available antibodies raised 

to benzyl penicillin (BP) that recognizes the thiazolidine ring cross react with other β-lactams 

such as amoxicillin, piperacillin and penicillin V but not with flucloxacillin, oxacillin, cloxacillin 

and dicloxacillin. Although these all possess a thiazolidine ring, molecular stereochemistry 

prevents recognition by BP specific antibodies.   

 

 
 

 

Figure 1.12. Haptenic structures of β-lactam-protein complex. Nucleophilic addition to the β-lactam 
ring of 1) BP, 2) flucloxacillin, 3) piperacillin, 4) amoxicillin, 5) meropenem & 6) aztreonam by lysine 
residues on proteins results in ring opening and formation of a stable amide adduct 

 

1. Benzyl penicillin

3. Piperacillin

2. Flucloxacillin

4. Amoxicillin

5. Meropenem 6. Aztreonam
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 MASS SPECTROMETRY BASED PROTEOMICS FOR THE ANALYSIS OF DRUG-PROTEIN ADDUCTS 

While all the aforementioned techniques have the ability to detect drug-protein adducts, 

more sophisticated tools are required to characterize the precise chemical nature and for 

the identification of novel drug-protein adducts. MS is an exceptionally powerful tool used 

to elucidate structures of both known and unknown adducts (Domon and Aebersold, 2006). 

Through peptide sequencing with MS techniques it is possible to determine the precise 

amino acid modification in the protein structure. In the analysis of peptides using MS 

following ionization, mass-to-charge ratios (m/z) of peptides are calculated. Tandem MS 

utilizes a second fragmentation whereby nitrogen bombards the peptide inducing 

fragmentation. This process, termed collision induced dissociation, allows further 

characterization and is the tool of choice when sequencing peptides derived from proteins 

(Angel et al., 2012). Due to this second fragmentation step occurring within tandem MS it is 

usually referred to as MS/MS. MS platforms have also been developed to perform differently 

based on sample type and expected results. A ‘trade-off’ between sensitivity and mass 

accuracy can be observed between different MS platforms (Domon and Aebersold, 2006) 

where depending on the sample mixture one may be favored more than the other. This 

section will outline the main platforms of MS analysis used for the detection and 

quantification of drug-protein adducts and their limitations for particular sample types. 

1.3.3.1 TOP-DOWN MASS SPECTROMETRIC ANALYSIS 

As protein targets for many drugs (metabolites) in complex biological samples (e.g. blood 

plasma) remain unknown, less targeted MS approaches are required for adduct discovery. 

Top-down MS works by introducing whole proteins into the mass spectrometer where the 

MW of an intact protein is first identified (Figure 1.13) (Bogdanov and Smith, 2005). Further 

fragmentation by tandem MS (the “down” part) allows identification of proteins with full 

sequence coverage. Since top-down MS analyses intact proteins without proteolytic 
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digestion, this strategy is extremely useful for mapping of labile drug-protein adducts that 

may be lost during digestion (Zhang and Ge, 2011). 

Top-down MS is generally performed in high resolution instruments because of the need to 

resolve the high MW of intact proteins (Zhang and Ge, 2011). Historically, Fourier transform 

ion cyclotron resonance mass spectrometers have been mostly used for top-down MS 

analysis. More recently, new instruments with a high resolving power that facilitate tandem 

MS experiments have been developed (Siuti and Kelleher, 2007). In proteomics, thousands 

of highly accurate spectra can be produced relatively quickly. Consequently, data can be 

matched to protein databases in order to identify proteins present in the sample.  

 

 
 

 

Figure 1.13. Top-down MS method for the characterisation of drug protein adducts. Whole protein 
is directly analyzed by MS without digestion. Further MS/MS fragmentation enables the localisation 
of drug-binding amino acid residues. 

 

Top-down MS is used for the detection of drug modified adducts from complex sample 

mixtures (Figure 1.13). Initially, the protein of interest will be isolated from the sample. This 

can be achieved using HPLC, either through protein depletion, enrichment or fractionation. 

While protein enrichment using affinity capture is generally more preferred, this is limited 

by the availability of antibodies/ligands to proteins of interest. Where antibodies/ligands are 

unavailable, top-down mass spectrometric methods are not favoured due to the complexity 

of the data acquired. This is particularly important with the drug modification of proteins, as 
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they usually appear in lower abundance to the native protein. Where more abundant 

proteins exist, particularly in complex mixtures, repeated selection and fragmentation can 

result in a loss in dynamic range (Durbin et al., 2016). Where enrichment can be achieved, 

on analysis drug-protein adducts will gain a mass addition, depending on the level of 

modification, resulting in a mass-shift that would be identifiable on the mass spectra 

produced. The incorporation of novel MS fragmentation techniques such as electron capture 

dissociation, has also allowed for the identification of modification sites (Zubarev et al., 2000; 

Siuti and Kelleher, 2007). Although top-down MS has proven to be a powerful technique for 

the identification of the sites of protein modification and determination of the order of 

multiple modification, several technical challenges such as protein solubility and sensitivity 

are yet to be resolved (Zhang and Ge, 2011). An alternative bottom-up MS approach, 

involving proteolytic digestion of proteins into small peptides prior to MS analysis, has been 

widely used for identification and quantification of drug-protein adducts. 

1.3.3.2 BOTTOM-UP MASS SPECTROMETRIC ANALYSIS 

The digestion of proteins into polypeptides and analysis by MS is known as a ‘bottom-up’ 

approach. In this method samples undergo reduction and alkylation, using chemicals such as 

dithiothreitol (DTT) and iodoacetamide (IAA) respectively, to unfold the tertiary protein 

structure and prevent refolding. Samples are subsequently digested using proteolytic 

enzymes (Figure 1.14) (Kelleher et al., 1999; Helm et al., 2014). Ultra-high resolution 

instruments, such as the Thermo Orbitrap mass spectrometers, can offer a resolving power 

of 240,000 (Michalski et al., 2012). Alternatively, Sciex QTOF (quadrupole time-of-flight) 

MS/MS platforms can offer faster data acquisition, however, their resolving power is limited 

to 40,000. This makes it important to choose the correct platform depending on the sample 

being analysed (Yamada et al., 2002). Similar to top-down analysis, proteins must first be 

extracted from the sample mixture using the same methods. Alternatively, in bottom-up 

analysis proteins of interest can be isolated by SDS-PAGE followed by in-gel digestion of the 
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bands of interest. It is advantageous for samples to undergo various clean-up steps, such as 

desalting, concentration and purification in order to enhance the sensitivity of detection 

(Bagshaw, Callahan and Mahuran, 2000; Liang et al., 2000). Samples are then loaded into the 

mass spectrometer as a mixture of digested peptides.  

 

 
 

 

Figure 1.14. Bottom-up MS method for the characterisation of drug protein adducts. Proteins are 
enzymatically digested into peptides that can be analyzed by various MS techniques: Discovery 
MS/MS analysis allows for identification of unknown adducts; more targeted analyses (precursor ion 
scanning and multiple reaction monitoring scanning) enable the detection of known adducts with 
great sensitivity. 

 

In the discovery stage, non-targetted LC-MS/MS is a powerful platform used for the 

detection and analysis of unknown drug-protein adducts. LC-MS/MS ion scanning is a non-
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targeted approach where the initial ion (precursor ion) is detected in the first ionization 

stage, and then further fragmented to characterize the full peptide sequence. Although this 

is a non-specific scanning technique, modern QTOF platforms can achieve up to 100 MS/MS 

spectra per cycle, relaying masses of sample data for analysis. Similarly, precursor ion 

scanning can be used to identify suspected modifications in an unknown sample (Figure 

1.14). Here fragmentation is induced and the instrument is set to scan for a specific fragment 

ion. When the fragment ion is detected the mass spectrometer is triggered to acquire all 

MS/MS spectra. For example, a characteristic peak at m/z 160 corresponding to the cleavage 

of the thiazolidine ring can be used for identifying adducts formed by β-lactam antibiotics 

(Jenkins et al., 2009; Meng et al., 2011). This type of experiment is extremely useful for 

monitoring unknown protein targets for known adducts within a complex mixture. While this 

is a partially targeted approach to drug-protein adduct detection, it can give rise to false 

positives. Ions that are not derived as a result of drug cleavage may correspond to the same 

mass, therefore it is important to manually characterize the amino acid sequence on any 

spectra where drug modification is suspected. Putative drug modified peptide sequences can 

be matched against peptide databases with the hope of identifying protein origins. Although 

in theory this is a promising method to identify novel drug-protein adducts, in practice it is 

laborious and takes a trained eye to calculate peptide sequences.  

MRM is a more targeted MS tool enabling the user to scan for specific parent and fragment 

ions. MRM transitions specific for drug modified peptides are generally designed for this 

purpose. The parent ions can be calculated for all possible peptides derived from theoretical 

digests with a mass addition of proposed haptens. The parent ion masses are then paired 

with the proposed fragment masses derived from drug molecules. MRM-MS/MS actively 

searches for pre-defined m/z ratios for precursor and fragment ions and a full scan MS/MS 

is only triggered for the ions that match the search criteria (de Hoffmann, 1996). Ions which 
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do not correspond to pre-defined m/z will not be acquired, making analysis clearer and more 

specific (Figure 1.14) (Kitteringham et al., 2009; Gillette and Carr, 2013).  

MRM is particularly useful in the identification of proteins modified by β-lactam antibiotics. 

Protein digestion using known enzymes, such as trypsin, enables theoretical digests and 

expected m/z ratios of peptides to be calculated. β-lactam antibiotics covalently bind to 

exposed NH2 groups on the side chains of lysine residues (Mauri-Hellweg et al., 1996). When 

a drug is covalently bound, proteolytic digestion of trypsin cleaving the C-terminal side of 

lysine and arginine is interrupted (Olsen, Ong and Mann, 2004). This is due to the chemical 

morphology at a β-lactam antibiotic bound lysine residue blocking chemical interactions, 

thus incorporating missed cleavage sites (Thiede et al., 2000; Jenkins et al., 2009). Missed 

lysine cleavages are therefore included when performing theoretical digests. This enables 

the specific selection of peptides with the potential to be modified at a non-terminal lysine 

residue. To specifically search for drug modified peptides the m/z ratios are calculated with 

a mass addition corresponding to the MW of haptens. When analyzing the spectra, 

characteristic features of the drug molecule can be identified, for example, the cleavage of 

thiazolidine ring of penicillin leads to the fragment ion at m/z 160 (Jenkins et al., 2009; Meng 

et al., 2011). 

Sample preparation is important in being able to successfully identify drug-protein adducts, 

especially when they are present in low abundance. Therefore, a three-dimensional 

approach to sample preparation can be performed. Proteins of interest can be first isolated 

from complex biological samples using affinity capture and subjected to proteolytic 

digestion. After digestion HPLC platforms are used for ion exchange, separating samples into 

multiple fractions depending on their ionic interactions with the column used. Each fraction 

will then be purified to remove the salt using C18 reverse phase HPLC, before MS analysis. 

Sample preparation in this way spreads the peptide mixture across two gradients, enhancing 

the sensitivity of detection.  
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 BETA-LACTAMS ANTIBIOTICS 

β-Lactam antibiotics are widely prescribed for bacterial infections and are a frequent cause 

of allergic reactions. β-Lactams are intrinsically reactive and can form drug-protein adducts 

with lysine residues on protein through the nucleophilic opening of the β-lactam ring. Recent 

studies investigating blood from patients using advanced MS methods have identified 

albumin as the major target for β-lactams. The precise haptenic structures and the exact 

location of modification on albumin have been defined for a number of β-lactams including 

flucloxacillin, amoxicillin and piperacillin (Jenkins et al., 2009; Meng et al., 2011; Whitaker et 

al., 2011). At low concentrations, different β-lactams appeared to selectively target different 

lysine residues in HSA, with non-covalent interactions positioning the drugs in favorable 

orientations in the protein-binding pocket to facilitate covalent binding. Thus, the three-

dimensional shape of the drug, as well as its inherent chemical reactivity, determines the 

selectivity of covalent binding.  

Detecting drug-modified proteins in a complex biological sample is challenging, and often 

requires enrichment, HPLC separation and novel MS/MS techniques to be developed. A 

common enrichment method is immunoaffinity purification using either drug-specific or 

protein-specific antibodies. For example, isolation of HSA using anti-HSA antibodies has 

allowed identification of many drug-modified albumin present in patient plasma (Hammond 

et al., 2014; Meng et al., 2014, 2015, 2016; Yip et al., 2017) . In 2009 Jenkins et al performed 

a comprehensive investigation into the in vitro binding of flucloxacillin and its metabolite to 

HSA (Jenkins et al., 2009). Flucloxacillin modifies up to 10 lysine residues in HSA in vitro, with 

Lys190 and Lys212 being most readily observed. Analysis of HSA isolated from the serum of 

eight flucloxacillin-tolerant patients also showed that modification of Lys190 and Lys212 

occurred in all the patients, with up to nine other modified lysine residues being detected. 

In addition, the detection of HSA adducts derived from its metabolite, 5’-hydroxymethly 

flucloxacillin (5’OH-flucloxacillin), provides the evidence of local metabolism within 
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hepatocytes (Jenkins et al., 2009). Incubation of HSA with piperacillin results in the formation 

of two distinct haptens: a cyclized and a hydrolyzed form in which the dioxopiperazine ring 

had undergone hydrolysis (Whitaker et al., 2011). Piperacillin was able to modify up to 13 

out of 59 lysine residues at high concentrations, with Lys541 being the only modified residue 

detected at lower concentration. Four of these (Lys190, Lys195, Lys432 and Lys541) were 

also detected in plasma from 4 piperacillin treated, tolerant patients. Fourteen different 

modified lysine residues were identified on HSA isolated from patients’ serum (Meng et al., 

2011). Apart from albumin adducts, amoxicillin-modified transferrin and immunoglobulin 

were also detected when human serum was incubated with amoxicillin in vitro. The hapten 

was identified as amoxicilloyl on Lys190, Lys199 and Lys541 with higher concentrations 

eliciting more extensive modification (Ariza et al., 2012).  

Unlike the penicillin class of β-lactams, meropenem and aztreonam contain a β-lactam ring 

fused to another ring that is different from the thiazolidine rings present in penicillins. Thus, 

meropenem and aztreonam formed complex and structurally distinct haptenic structures 

with lysine residues on HSA. Each drug modified Lys190, with less common modifications at 

Lys12, Lys199 and Lys 351 for meropenem and Lys137, Lys432 and Lys541 for aztreonam 

(Jenkins et al., 2013). 

 FLUCLOXACILLIN DILI 

As previously described in this introduction, flucloxacillin is a β-lactam antibiotic implicated 

in the onset of immune mediated cholestatic DILI. Flucloxacillin is a broad range synthetic, 

penicillinase-resistant, isoxazolyl antibiotic primarily used to treat infections of the skin, 

predominantly those caused by Staphylococcus spp (Jenkins et al., 2009). Their clinical effect 

is attributed to the binding of drug to the penicillin binding protein, a key component in the 

synthesis of the bacterial cell wall. In binding to its target, flucloxacillin prevents cell wall 

synthesis and so Gram-positive bacteria are killed (Piddock and Wise, 1986). While in vitro 



74 

flucloxacillin has bacteriocidal activity against Gram-negative species, other classes of 

penicills are more frequently used due to higher efficacy and licencing (PubChem CID: 

21319). Generally, flucloxacillin is well tolerated at doses up to 4 gram per day, however in a 

small number of cases, estimated in the UK at 8.8 in 100,000, patients have developed 

symptoms such as nephritis, rashes, fever, eosinophilia and hepatic cholestasis. Symptoms 

occur more commonly in elderly patients, females, and in those who are undergoing 

prolonged periods of treatment. The onset of these reactions is usually delayed type, 

manifesting between 1 and 45 days after initial exposure, meaning the adaptive immune 

system is likely involved in the onset of disease. While discontinuation of flucloxacillin assists 

in the recovery of patients, symptoms can remain for a number of weeks post cessation of 

the drug. After APAP, flucloxacillin is in some populations considered the second leading 

cause of drug induced liver failure (Daly et al., 2009; Jenkins et al., 2009).  

Flucloxacillin is metabolised to 5’OH-flucloxacillin in the presence of CYP3A4 in the liver. 

While both flucloxacillin and its metabolite were not found to be toxic to hepatocytes, 5’-

hydroxymethylflucloxacillin did induce damage to biliary epithelial cells. Interestingly in cases 

of flucloxacillin DILI, hepatic cholestasis is involved where disruption in the excretion of bile 

is observed, with little hepatic necrosis. While this may indicate direct toxicity of flucloxacillin 

on the biliary cells, skin rash can also present in patients, more common in T cell mediated 

immunity (Daly et al., 2009; Jenkins et al., 2009). The identification of flucloxacillin specific T 

cells isolated from the blood of patients with flucloxacillin induced nephritis, as well as the 

detection of flucloxacillin-specific IgE from allergic patients, confirms immune involvement 

(Jenkins et al., 2009). As manifestation of flucloxacillin DILI is idiosyncratic in nature, the full 

mechanistic understanding behind its pathology is yet to be fully elucidated (Kim et al., 

2015). 

In 2009 a comprehensive GWAS study was performed after reports that amoxicillin 

clavulanate and ximelagatran, both implicated in DILI, may be related to the expression of 
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the MHC class II alleles HLA-DRB1*15:01 and HLA-DRB1*07:01, respectively. This large study 

used 866,399 markers in 51 cases of flucloxacillin DILI with 282 controls, matched for both 

gender and ancestry. Upon analysis, it revealed links with the genes encoding for the MHC 

region had the strongest association (P = 8.7 x 10-33) for rs2395029[G], a marker in linkage 

disequilibrium with HLA-B*57:01. This association was confirmed with MHC typing of 

tolerant controls, giving an odds ratio (OR) of 80.6 with a probability of 9 x 10-19. In addition 

to the association with HLA-B*57:01, the gene ST6GAL1 was also present in the flucloxacillin 

DILI patients who were carriers of the associated HLA allele. ST6GAL1 has been found to be 

increased during hepatic inflammation, meaning it could determine susceptibility to 

immunoinflammatory responses (Daly et al., 2009). Since the initial discovery, further GWAS 

studies have been performed by the same group to increase the numbers in the study cohort. 

In the second study 197 flucloxacillin patients were compared with 6,835 controls. The same 

association with HLA-B*57:01 was observed with an odds ratio of 36.62, P= 2.67 x 10-97. While 

the increased risk of flucloxacillin DILI from the drug reduced from 80.6 times to 36.62 times, 

the statistical significance was much higher. In addition to HLA-B*57:01, HLA-B*57:03 was 

also shown to have an association (OR = 79.21, P= 1.2 x 10-6). The effect of these HLA-B alleles 

on adverse flucloxacillin responses was shown to be down to the effect of val97 within the 

protein coding region (Nicoletti et al., 2019). While these genetic associations do not fully 

explain the onset of disease, predisposition to immune related alleles makes it possible to 

interrogate the effects of these alleles using both proteomic and in vitro techniques.  

In previous studies, CD8+ T lymphocytes have been isolated from patients with flucloxacillin 

DILI and have subsequently been activated by the drug in vitro. HLA-B*57:01+ healthy 

volunteers were recruited into the study, where it was possible to characterize CD4+ and 

CD8+ T cell clones. CD45RA+CD8+ T cells were activated when flucloxacillin was presented 

alongside DCs, suggesting antigen processing was required. Additionally CDR9+ T cell clones 

were found to secrete IFN-γ, Th2 cytokines, perforin, granzyme B and Fas Ligand; all 
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associated with the cytotoxic immune response. Interestingly flucloxacillin-induced 

activation was indeed processing dependent, with cross reactivity identified with T cell 

clones from patients with the closely related HLA-B*58:01 allele. Clones were cross reactive 

against drugs with a similar chemical structures, such as oxacillin, cloxacillin and dicloxacillin 

(Monshi et al., 2013). While cross reactivity in this study was observed, HLA-B*57:01 

associations with oxacillin, cloxacillin and dicloxacillin were not observed. However, this was 

only tested on a very small study cohort so the results are to be taken with caution (Nicoletti 

et al., 2019). 
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 AIMS 

The main aim of this thesis is to improve our understanding of the mechanisms that underpin 

flucloxacillin related DILI. Genetic susceptibility indicates that specific interactions between 

HLA-B*57:01 and TCRs lead to the activations of T-lymphocytes resulting in tissue damage. 

Both signal 1 and 2, the precise peptides invoking T-lymphocyte responses and the triggers 

recruiting the immune cells to the site of damage respectively, will be explored. In order to 

answer these questions specific aims, outlines below, were explored.  

1. Generate a sensitive flucloxacillin-specific antibody to enable the detection of 

flucloxacillin protein binding and cellular localization. 

2. Implement experimental and analytic workflows to enable the study of MHC 

derived peptides.  

3. Investigate the binding of flucloxacillin to HLA-B*57:01 restricted MHC peptides 

and interrogate their involvement in functional T cell assays.  

4. Characterize the global peptide repertoire of HLA-B*57:01 and identify any 

changes that occur as a result of flucloxacillin exposure. 

5. Improve analysis pipelines to enable the high throughput interpretation of 

flucloxacillin modified peptides; both tryptic and non-tryptic. 
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 INTRODUCTION 

B lymphocytes play a pivotal role in the adaptive immune response through the development 

of immunological memory and rapid responses upon re-challenge to a specific pathogen. 

Antibodies, also known as immunoglobulins, are circulating proteins that are produced in 

response to specific foreign structures. Recognition of antigens by antibodies is a similar 

concept to that of the TCR and MHC in its specificity, however antibodies have a much wider 

diversity with stronger binding to their target epitope. Produced exclusively by B 

lymphocytes, antibodies can exist as both membrane bound and secreted proteins. Cell 

membrane bound antibodies localised at the surface of naïve B cells act as antigen receptors 

where upon stimulation leads to terminal differentiation into plasma cells. Plasma cells are 

responsible for the secretion of antibodies specific to the antigen that triggered cell 

differentiation.  In addition to blood plasma, antibodies are present in mucosal secretions 

and interstitial fluid (Abbas, Lichtman and Shiv, 2018). 

The general function of antibodies is to neutralize microbial toxins, prevent microbial cell 

entry and trigger effector responses for the elimination of pathogens. In humans antibodies 

exist as 5 different isoforms; IgA, IgD, IgE, IgG and IgM. Each isoform has a different structure 

and function, determined by the heavy chain fragment crystallizable (Fc) region, with all 

playing an important role in the humoral immune response (Figure 2.1). IgA is most 

frequently observed as a dimer, but can also exist as a monomer and trimer. Acting primarily 

in mucosal immunity, IgA has a plasma concentration of 3.5 mg/mL with a half-life of 

approximately 6 days. IgG is the most abundant isoform in plasma at 13.5 mg/mL with a 

prolonged half-life of 23 days. This monomeric proteins’ key role is in opsonisation, 

complement activation, antibody dependent cell mediated toxicity, neonatal immunity and 

feedback inhibition of B cells. IgE and IgM are both relatively low in abundance with a plasma 

concentration of 0.05 and 1.5 mg/mL and a half-life of 2 and 5 days respectively. While IgM 

is an important component in naïve B cell antigen recognition, IgE is involved in defences 



 

80 

against parasites, particularly helminths, and immediate hypersensitivity reactions. Although 

IgD exists, this monomeric isomer appears at trace amounts and has the shortest half-life of 

2 days, acting only as a B cell antigen receptor (Abbas, Lichtman and Shiv, 2018).   

 

 
 

Figure 2.1. Structural differences between the different isoforms of human immunoglobulins. 
Human antibodies exist as 5 different isoforms, IgA, IgE, IgG, IgM and IgD (structure not shown). IgA 
primarily exist as dimers joined together by a J chain, however can exist as monomers and trimers. IgE 
and IgG both exist as monomers, with IgE having a longer Fc region (described in the next section). 
IgM are pentameric proteins, with 5 immunoglobulins joined with by a J chain.  

 

Among all the different isoforms the general structure of antibodies remains conserved 

(Figure 2.2). The core structure of the antibody contains one symmetric Fc region and two 

antigen binding fragments (Fab). Heavy and light chains are made up of both constant and 

variable regions, the latter allowing for the remarkable degree of antigens that can be 

recognized. The variable region, also known as the antigen binding site, is specific to the 

millions of different B lymphocytes circulating in the body. The hinge connecting the Fc to 

the Fab region is flexible thus allowing the antibody to bind two antigens simultaneously. 

While the Fab region is responsible for the recognition of a specific epitope, the Fc region 
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interacts with cell surface Fc receptors enabling activation of immune responses (Abbas, 

Lichtman and Shiv, 2018).  

 

 
 

Figure 2.2. The structure of the different isoforms of human antibodies can generally be defined by 
conserved structures. All antibodies consist of two symmetrical heavy chains, spanning the length of 
the protein, and two light chains. The Fc region is constant between all of the antibodies within an 
isoform of a species. The Fab region is responsible for antigen binding through vast differences in the 
structure of the variable region. The hinge connecting the Fab to the Fc region is flexible to allow 
binding on multiple epitopes at a time, with disulphide bonds throughout the protein to constrict the 
structure.   

 

Although antibodies are generally described in the context of pathogenic responses, a role 

in drug mediated hypersensitivity has often been identified. In addition to the detection of 

flucloxacillin specific CD8+ T cells from patients with flucloxacillin mediated DILI, the 

presence of IgE specific to flucloxacillin has been identified in the sera of allergic patients 

(Baldo, Pham and Weiner, 1995). In the general introduction to this thesis the use of 

proteomic techniques for the detection of drug modified proteins was briefly discussed. 

While antibodies are an exceptionally important component of the adaptive immune 

response, it is possible to utlize them for the discovery of drugs bound to proteins in vitro 

(Jenkins et al., 2009). This offers a biological tool for the detection of antigens in both 

research and clinical laboratory settings. In order to detect drug haptens using techniques 

such as immunoblots, immunofluorescence microscopy and enzyme linked 

Fab region

Fc region

Disulphide 
bonds

C
o

n
st

an
t 

re
gi

o
n

Key

LIGHT
CHAIN

HEAVY
CHAIN

HINGE



 

82 

immunoabsorbance assays, the availability of antibodies specific to drug epitopes are 

required.  The general concept behind these methods of detection rely on an immobilized 

antigen, e.g. drug bound to protein, to be detected by a specific antibody. A secondary 

antibody conjugated to a chemical signal specific for the Fc region of the primary antibody 

(Fc portions are generally conserved between species) binds to its target. Upon development 

of the chemical signal, a detector (e.g. immunofluorescent microscope) records the 

absorbance of the signal (Figure 2.3). The methods used for the detection of drug modified 

proteins using antibodies are described in detail in this thesis. 

 

 
 

Figure 2.3. General overview of the use of antibodies for laboratory based assays. Antigens bound 
by primary antibodies are subsequently bound by secondary antibodies. Secondary antibodies are 
conjugated to a chemical signal that can be developed and detected using a number of techniques.   

 

For several drugs commercially available anti-drug antibodies can be purchased, however it 

was not possible to find a specific antibody for flucloxacillin. Previous studies have 

successfully generated antibodies specific to flucloxacillin, and while flucloxacillin modified 

proteins could be detected there was a degree of cross reactivity between untreated controls 

(Carey and van Pelt, 2005). Drugs such as flucloxacillin are too small to elicit an immune 
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response that will result in the production of antibodies, therefore carrier proteins are used 

for the conjugation of the epitope of interest. A number of different carriers including 

gelatine, albumin and keyhole limpet hemocyanin (KLH) are commonly used to generate 

antigens. The choice of carrier protein is dependent on several factors and can vastly impact 

the quality of the antibody that is generated by the host. Physiochemical interactions 

between the hapten and carrier and the downstream application of the antibody have great 

implications on this decision (Fasciglione et al., 1996). For example, the use of flucloxacillin 

bound to HSA as a carrier protein in a rabbit would elicit an immune response and, 

potentially, a high titre antibody. However, the polyclonal antibody (contained within the 

serum of the rabbit) would not be suitable for the detection of flucloxacillin in any human 

cell/tissue samples due to the cross reactivity with HSA.   
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 AIMS 

In order to characterize the cellular binding of flucloxacillin using proteomic techniques, a 

high titre antibody was required. Previous studies have used mass spectrometry (MS) to 

identify the presence of flucloxacillin modified albumin in patients. Due to the complexity 

and low abundance of flucloxacillin-modified proteins it was not possible to identify the 

depth and degree of low abundant cellular proteins that are potentially modified. Therefore, 

in this chapter the following aims were addressed. 

1. Identify a suitable carrier protein and host for the generation of a flucloxacillin 

specific antibody. 

2. Optimise the conditions required to achieve maximum hapten density on the carrier 

protein. 

3. Upon receipt of the antibody, determine the specificity and cross reactivity of the 

flucloxacillin antibody. 

4. Optimise the conditions required for use of the antibody using proteomics 

techniques. 

5. Investigate the precise chemical epitope recognized by the antibody.  
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 METHODS 

 PROTEIN CONJUGATION 

HSA (>97% lyophilized powder, Sigma-Aldrich) and ovalbumin (OVA) (Imject™, Thermo 

Scientific) were used as protein carriers. Flucloxacillin (Wockharat) and amoxicillin (GSK) 

were gifted from collaborators. Penicillin V, BP, piperacillin, oxacillin, cloxacillin and 

dicloxacillin were purchased from Sigma-Aldrich. Drug-protein incubations were performed 

in phosphate (PO4) buffer (13.08 mM KH2PO4, 62.27 mM K2HPO4), pH 7.4 unless specified. 

Carrier proteins were made up to 1 mM solutions and were incubated at molar ratios to the 

respective antibiotic. Drug-protein incubations were performed at 37°C for at least 16 hours. 

Protein purification was performed using methanol precipitation (for subsequent proteomic 

analysis) or spin filters with a 3 kDa molecular weight cut off (Amicon Ultra, Merck) (for 

antibody conjugate preparation). Ovalbumin-flucloxacillin incubations used for the 

production of the antibody immunogen were performed in carbonate or phosphate-

carbonate buffer to determine the optimal conditions for drug-protein binding. Carbonate 

(CO3) buffer (0.1M Na2CO3, 0.1M NaHCO3), pH 11, and PO4:CO3 buffer (mixed at a 1:1 volume 

ratio) were used for drug protein incubations at 50:1, 100:1, 250:1 and 500:1 molar ratios. 

 PROTEIN QUANTIFICATION 

Proteins and drug-modified proteins were quantified using the Bradford assay. A standard 

curve was produced using 5 µL aliquots of known concentrations of reference proteins (HSA 

or OVA) and unknown concentrations of samples were mixed with 200 µL of Bradford 

reagent (Sigma-Aldrich). After 10 minutes the absorbance was read at 405 nm (Dynex 

Technologies MRXe) using Revelation 4.25 software. Protein concentration was calculated 

using the formula generated by the line of best fit (R2 value > 0.95) of the standard curve.  
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 SDS-PAGE 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed for both protein 

visualisation (coomassie blue staining) and epitope detection (Western/dot blotting). 

Samples were prepared by addition of 4 x Laemmli sample buffer (25% glycerol (VWR 

Chemicals), 100 mM Tris (pH 6.8) (National Diagnostics), 2.6% SDS (Sigma-Aldrich), 1.3% 

bromophenol blue (w/v) (BDH/VWR), 5% mercaptoethanol (Sigma-Aldrich)) to a final 

concentration of 1 µg/µL and boiled at 100°C for 10 minutes. A 10% polyacrylamide gel was 

made following manufacturers protocol (32.6% ProtoGel (National Diagnostics), 25.7% 

ProtoGel resolving buffer (National Diagnostics), 0.1% N,N,N′,N′-

Tetramethylethylenediamine (TEMED) (Sigma-Aldrich) and 0.1% ammonium persulfate (APS) 

(Sigma-Aldrich) in deionised water). Unless otherwise stated, 10 µg of protein was loaded 

onto the gel and was subsequently subjected to electrophoresis at 30 mA until the sample 

had run the length of the gel. Seeblue plus 2 (Invitrogen, Thermo Fisher) protein marker was 

used as a MW ladder.   

2.3.3.1 WESTERN BLOT ANALYSIS 

SDS-polyacrylamide gels were transferred onto 0.45 µM nitrocellulose membrane 

(Amersham) by electroblotting at 250 mA for 1 hour. Nitrocellulose membrane was washed 

with deionised water and blocked with Tris/saline/Tween (TST) buffer (150 mM NaCl, 10 mM 

Tris-HCL, 0.05% Tween 20, pH 8.0) containing 10% nonfat dry milk (Bio-rad). The membrane 

was incubated with primary antibody (varying concentrations) in 10% nonfat dry milk in TST 

for a minimum of 16h at 4°C. Four 4 minute washes in TST were performed and horseradish 

peroxidase anti-rabbit secondary antibody (Dako) was added in 10% non-fat dry milk TST 

buffer at a 1:1,000 dilution. After 1 hour a further 4 x 4 minute TST washes was followed by 

signal detection by enhanced chemiluminescence (Western Lighting, Perkin Elmer) on 

autoradiography film (Amersham). 
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2.3.3.2 COOMASSIE BLUE STAINING 

SDS-polyacrylamide gels were fixed for 1 hour in 40% methanol (Fisher Scientific) and 7 % 

acetic acid (Fisher Scientific). Coomassie stain was added for a minimum of 1 hour, consisting 

of 0.08% coomassie brilliant blue (VWR) in 1.6% phosphoric acid (Riedel-de Haen), 8% 

ammonium sulphate (Sigma-Aldrich) and 10% methanol. SDS-polyacrylamide gels were 

destained with 10% acetic acid in 25% methanol for 60 seconds before storage in 25% 

methanol. 

 MASS SPECTROMETRY 

Prior to mass spectrometric analysis samples were reduced with 10 mM DTT for 20 minutes 

and alkylated with 55 mM IAA for a further 20 minutes. Digestion of drug-protein conjugates 

was performed using sequencing grade modified trypsin (Promega) overnight at 37°C. 

Samples were purified using C18 ZipTips (Millipore) and dried in a centrifugal concentrator 

(Eppendorf speedvac). Samples were reconstituted in 2% acetonitrile (ACN) 0.1% formic acid 

(FA) (v/v). Identification of flucloxacillin modified OVA peptides was performed by delivering 

samples onto a QTrap 6500 hybrid quadrupole-linear ion trap mass spectrometer (Sciex) by 

an Ultimate 3000 HPLC (Dionex) and auto sampler. Samples were injected onto a 

nanoACQUITY UPLC Symmetry C18 Trap Column, 100Å, 5 µm internal diameter, 180 µm x 20 

mm (Waters) in 2% ACN/0.1% FA. Samples were subsequently fractionated by applying a 

mobile phase gradient (Table 2.1) in line with the trap column onto the analytical column 

(ACQUITY UPLC Peptide BEH C18 nanoACQUITY column, 130Å, 1.7 µm internal diameter, 75 

µm x 100 mm (Waters)) at 300 nL/min. The analytical column was maintained at 45°C 

throughout the duration of the mass spectrometric acquisition.  
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Table 2.1. HPLC gradient table. Mobile phase A (0.1% FA in LC-MS H2O) and mobile phase B (0.1% FA 
in ACN). 

Time Mobile phase A Mobile phase B 

00:30 95% 5% 

05:00 95% 5% 

45:00 50% 50% 

45:06 1% 99% 

65:00 1% 99% 

65:06 95% 5% 

80:00 95% 5% 

  

Samples were introduced into the mass spectrometer via a 10-μm inner diameter PicoTip 

(New Objective) using the following conditions. MS 1 ions ranged from a charge state of 2+ 

to 5+ and included unknown charge states. The intensity threshold was set to 300 with an 

exclusion time window of 20 seconds for ions previously detected. A mass tolerance of 1,000 

mDa was applied. MRM transitions specific for ovalbumin-flucloxacillin modified peptides 

(Table 2.2) were selected based on a number of criteria.  
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Table 2.2. MRM transitions of flucloxacillin modified OVA tryptic peptides.  

Q1 
(m/z) 

Q3 
(m/z) 

Peptide ID and charge 
DP 

(volts) 
EP 

(volts) 
CXP 

(volts) 
CE 

(volts) 
990.77 160.1 ADHPFLFCIKHIATNAVLFFGR 3+ 70 10 10 53.54 

743.33 160.1 ADHPFLFCIKHIATNAVLFFGR 4+ 70 10 10 37.94 

594.86 160.1 ADHPFLFCIKHIATNAVLFFGR 5+ 70 10 10 30.96 

670.24 160.1 AFKDEDTQAMPFR 3+ 70 10 10 37.51 

502.93 160.1 AFKDEDTQAMPFR 4+ 70 10 10 26.64 

402.54 160.1 AFKDEDTQAMPFR 5+ 70 10 10 21.92 

950.68 160.1 ELKVHHANENIFYCPIAIMS ALAMVYLGAK 4+ 70 10 10 47.68 

760.74 160.1 ELKVHHANENIFYCPIAIMS ALAMVYLGAK 5+ 70 10 10 38.75 

805.08 160.1 FDKLPGFGDSIEAQCGTSVN VHSSLR 4+ 70 10 10 40.84 

644.27 160.1 FDKLPGFGDSIEAQCGTSVN VHSSLR 5+ 70 10 10 33.28 

716.27 160.1 GLWEKAFK 2+ 70 10 10 45.11 

477.84 160.1 GLWEKAFK 3+ 70 10 10 27.89 

844.66 160.1 GSIGAASMEFCFDVFKELK 3+ 70 10 10 46.23 

633.75 160.1 GSIGAASMEFCFDVFKELK 4+ 70 10 10 32.79 

507.2 160.1 GSIGAASMEFCFDVFKELK 5+ 70 10 10 26.84 

671.28 160.1 IKVYLPR 2+ 70 10 10 42.59 

447.85 160.1 IKVYLPR 3+ 70 10 10 26.39 

853.57 160.1 MEEKYNLTSVLMAMGITDVF SSSANLSGISSAESLK 5+ 70 10 10 43.12 

624.68 160.1 MKMEEK 2+ 70 10 10 39.98 

416.79 160.1 MKMEEK 3+ 70 10 10 24.84 

882.41 160.1 NVLQPSSVDSQTAMVLVNAI VFKGLWEK 4+ 70 10 10 44.47 

706.13 160.1 NVLQPSSVDSQTAMVLVNAI VFKGLWEK 5+ 70 10 10 36.19 

705.79 160.1 TQINKVVR 2+ 70 10 10 44.52 

470.86 160.1 TQINKVVR 3+ 70 10 10 27.54 

767.77 160.1 VASMASEKMK 2+ 70 10 10 47.99 

512.18 160.1 VASMASEKMK 3+ 70 10 10 29.61 

972.92 160.1 VHHANENIFYCPIAIMSALA MVYLGAKDSTR 4+ 70 10 10 48.73 

778.54 160.1 VHHANENIFYCPIAIMSALA MVYLGAKDSTR 5+ 70 10 10 39.59 

827.35 160.1 YPILPEYLQCVKELYR 3+ 70 10 10 45.37 

620.76 160.1 YPILPEYLQCVKELYR 4+ 70 10 10 32.18 

496.81 160.1 YPILPEYLQCVKELYR 5+ 70 10 10 26.35 

913.05 160.1 VTEQESKPVQMMYQIGLFR 3+ 70 10 10 49.65 

685.04 160.1 VTEQESKPVQMMYQIGLFR 4+ 70 10 10 35.2 

548.23 160.1 VTEQESKPVQMMYQIGLFR 5+ 70 10 10 28.77 

912.06 160.1 DILNQITKPNDVYSFSLASR 3+ 70 10 10 49.6 

684.29 160.1 DILNQITKPNDVYSFSLASR 4+ 70 10 10 35.16 

547.64 160.1 DILNQITKPNDVYSFSLASR 5+ 70 10 10 28.74 

735.33 160.1 KIKVYLPR 2+ 70 10 10 46.18 

490.55 160.1 KIKVYLPR 3+ 70 10 10 28.53 

421.14 160.1 KIK 2+ 70 10 10 28.58 
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The mass to charge ratio (m/z) was first calculated for all possible peptides with a missed 

cleavage at lysine or arginine residues, taking into account the inability for trypsin to cleave 

at these residues where flucloxacillin modification is present. The mass addition of 

flucloxacillin (453 Da) was added to the theoretical mass of each potential drug modified 

peptide. The precursor ion (Q1) paired with the 160.1 Da fragmentation ion of flucloxacillin 

(Q3) were used for MRM transitions. MRM transitions were acquired at 1 unit resolution in 

Q1 and Q3 to maximise specificity in positive ion mode. Each experiment contained 1,983 

cycles with a cycle time of 3,906 ms. Collision energy was calculated using the following 

formula; slope ×  𝑚/𝑧 +  intercept (Table 2.3). 

Table 2.3. Information dependent acquisition (IDA) collision energy parameters 

Charge state Slope Intercept 

Unknown 0.044 5.000 

1 0.058 9.000 

2 0.044 5.000 

3 0.050 4.000 

4 0.050 3.000 

5 0.050 3.000 

 

Sample information was acquired using Analyst 1.6.2 software (Sciex) where ion intensity for 

each MRM transition was calculated. The area under the curve (AUC) for MRM transitions 

was normalised by the total ion count (TIC), allowing comparison between sample 

conditions. The MRM method developed identifies flucloxacillin modified tryptic OVA 

peptides based on the drug mass addition and flucloxacillin fragmentation ions. Manual 

interpretation of spectra was therefore performed to confirm flucloxacillin modification of 

these peptides. 

 ANTIBODY PRODUCTION 

Antibody production was performed externally by Kaneka Eurogentec S. A. (Belgium). The 

speedy 28-polyclonal package was used for the production of a high antibody titre with high 

antibody affinity. Injections (100 µg/injection) are administered to two rabbits at days 0, 7, 
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10 and 18. A pre-immune bleed is taken at day 0, a medium bleed at day 21 and a final bleed 

at day 28 (Box 1). The bleeds are supplied as serum containing polyclonal antibody. 

Subsequent ELISA is performed by Eurogentec and in house (in addition to Western blot 

analysis).  

 

 
 

Box 1. Kaneka Eurogentec S.A. Speedy 28-day program immunization and bleed schedule protocol. 
Taken from https://secure.eurogentec.com/speedy.html (date accessed 19/02/2019).  

 

 ELISA 

Enzyme linked immunosorbent assays (ELISA) were performed to enable quantification of 

drug-hapten antibody binding at different hapten densities and antibody concentrations. 

High protein binding 96 well plates (Immunlon 4 HBX, Thermo Fisher) were coated with 100 

ng of protein (positive & negative controls) or drug-protein conjugates overnight at 4°C. 

Wells were washed 5 times with phosphate buffer saline (PBS)/Tween (1 x PBS, 0.1% Tween-

20) and blocked with blocking buffer (1 mg/mL bovine serum albumin (Sigma) (BSA) in PBS). 

After a 2 hour incubation at room temperature the blocking buffer was removed and wells 

were incubated with primary anti-drug antibodies at varying concentrations in blocking 

buffer for 2 hours at room temperature. Subsequent washes (5 x PBS/Tween) were followed 

by incubation of horseradish peroxidase secondary anti-rabbit antibody (Dako) at a 1 in 2,000 

dilution in blocking buffer. After a further 2 hour incubation at room temperature 5 washes 

with PBS/Tween was followed by 2 washes with PBS. Signal was developed using 2,2'-azino-

bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) (Sigma Aldrich) and detected at 405 nm 

(Dynex Technologies MRXe) using Revelation 4.25 software.   

https://secure.eurogentec.com/speedy.html
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 DOT-BLOT 

In order to detect antibody responses to haptens, drug-protein was spotted onto 

nitrocellulose membrane and left to dry. After several spots were applied to the same site 

(small volumes were dotted at a time to prevent running) the nitrocellulose membrane was 

blocked and probed with antibody as described in section 2.3.3.1.  

 FLUCLOXACILLIN ANTIBODY INHIBITION 

Flucloxacillin N-acetyl lysine conjugate was synthesized by NewChem Technologies (Durham, 

UK).  A final concentration of 100 uM of the conjugate was used for hapten inhibition, and 

was incubated with the anti-flucloxacillin antibodies for 1 hour prior to use.   
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 RESULTS  

 ANTI-DRUG ANTIBODY CROSS REACTIVITY 

The aim of this chapter was to develop a high titre antibody for the detection of flucloxacillin 

conjugated to protein. BP is a beta lactam antibiotic with conserved structures with 

flucloxacillin. Commercially available anti-BP antibody was purchased (Serotec) to define 

cross reactivity with other structurally related compounds. Β-lactam antibiotics including BP, 

piperacillin, amoxicillin and penicillin V, all containing the conserved thiazolidine ring (Figure 

2.4, highlighted yellow), were conjugated to HSA at 1:1 and 100:1 molar ratios (drug:protein). 

The drug-protein conjugates were fully characterized using western blot and mass 

spectrometric analysis before being used for cross-reactivity assessment (Figure 2.4). Cross 

reactivity was observed between BP, piperacillin, amoxicillin and penicillin V, however, it was 

not possible to detect flucloxacillin haptenated HSA with anti-BP antibody. Although the 

thiazolidine ring is present on flucloxacillin (Figure 2.4, highlighted red) the epitope cannot 

be detected. This data confirmed the requirement for the custom generation of anti-

flucloxacillin antibodies to enable detection of flucloxacillin using proteomics techniques. 

 

  



 

94 

 

 
 

Figure 2.4. Anti-BP antibody cross reactivity. HSA was conjugated to flucloxacillin, piperacillin, 
amoxicillin, penicillin V and BP at 1:10 and 1:100 molar ratios. Western blot analysis was used to 
identify anti-BP cross reactivity amongst these β-lactam antibiotics. Cross reactivity was observed 
between piperacillin, amoxicillin, BP and penicillin V through recognition of the conserved thiazolidine 
ring (yellow). No signal was detected from flucloxacillin conjugated HSA, even though the thiazolidine 
ring is conserved (red).  

 

 HAPTEN CARRIER PROTEIN 

A suitable hapten carrier protein was chosen based upon amino acid sequence homology to 

HSA. Limited sequence homology was required to prevent cross reactivity of polyclonal 

antibodies. Antibodies reactive to HSA would limit the ability to detect flucloxacillin bound 

to cellular human proteins where HSA was present. HSA (P02768) and BSA (P02769) were 
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aligned using NCBI BLAST suite to compare amino acid sequences. Unsurprisingly sequence 

homology was found to be as high as 88%, making cross reactivity highly likely. OVA 

(P01012), the main protein in hen egg white, was another alternative due to its availability 

and accessible lysine residues for flucloxacillin modification. NCBI BLAST found limited 

sequence homology between the proteins.  

 

 
 

Figure 2.5. Protein sequence homology. BSA (top) and OVA (bottom) amino acid sequences were 
compared with HSA. 

  

To fully interrogate sequence homology between HSA, BSA and OVA the ExPASy Sim 

alignment tool (Swiss Institute of Systems Biology) was used. Amino acid alignment of HSA 

to BSA resulted in 76.6% sequence identity with an overlap in 607 residues (Figure 2.5, top). 

In contrast alignment of HSA with OVA results in 22.0% sequence homology with an overlap 

of only 41 residues (Figure 2.5, bottom). Due to its low sequence homology to HSA, 

flucloxacillin binding to OVA was explored for use as a hapten carrier protein.   

 FLUCLOXACILLIN MODIFICATION OF OVALBUMIN FOR ANTIBODY GENERATION 

The quantity of the antigens for immunization is vital for antibody production. Optimization 

of the flucloxacillin-OVA reaction conditions was therefore performed to generate antigens 

with a high epitope density. Preparation of the antigen required optimization of the 
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flucloxacillin-OVA reaction conditions. In this section the importance of buffer composition 

and molar drug protein ratios for maximal drug binding will be discussed.  

2.4.3.1 OPTIMAL CONDITIONS FOR MAXIMAL HAPTEN DENSITY 

Mass spectrometry was used to define the precise nature of flucloxacillin modified 

ovalbumin. Multiple reaction conditions were set up to include both buffer composition and 

drug protein molar ratio. Flucloxacillin OVA incubations that were performed in PO4 CO3 

buffer resulted in low levels of modification which were comparable across all molar ratios. 

Flucloxacillin was found to bind to OVA more readily in carbonate buffer due to the increased 

pH (Figure 2.6).  

 

 
 

Figure 2.6. Relative quantification of fucloxacillin binding to OVA under different experiemental 
conditions. The overall level of flucloxacillin binding was determined by the addition of the AUC of 
relevant MRM transitions, normalised across samples using the TIC for each data set. Conjugation 
buffers were either phosphate:carbonate (PO4 CO3) or carbonate (CO3 CO3). Different molar ratios of 
flucloxacillin to OVA were prepared in each buffer. PO4 CO3 buffer resulted in lower hapten density 
compared to CO3 CO3, with 100:1 resuling in maximal binding.  

 

Flucloxacillin modification of OVA was optimal in CO3 buffer at a 1:100 molar ratio. While 

extensive binding was observed at 250 and 500:1 molar ratios this was comparable to 100:1 

(Figure 2.6). Therefore, the additional drug did not increase the level of binding beyond 

100:1. Of the 20 lysine residues in OVA (385 amino acids), only 6 lysine residues were found 

to be readily modified by flucloxacillin (Figure 2.7).  
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Figure 2.7. OVA amino acid sequence. Of the 20 lysine residues present in the amino acid sequcne of 
ovalbumin, 6 (highlighted in red) were found to be modified by flucloxacillin. Modified peptide 
sequences are shown as underlined. Modifications on lysine 278 and 280 were observed as K*IK, 
K*IKVYLPR and KIK*VYLPR, with * indiciating flucloxacillin.  

 

Characterization of modified lysine residues revealed that under optimal conditions (CO3 

buffer at a 100:1 molar ratio) flucloxacillin binds to lysine 278 and lysine 280 most readily. 

Interestingly, this binding pattern appears irrespective of the buffer composition or the 

molar ratio of drug to protein (Figure 2.8). 

  

>sp|P01012|OVAL_CHICK Ovalbumin OS=Gallus gallus OX=9031 GN=SERPINB14 PE=1 SV=2 

10         20         30         40         50

MGSIGAASME FCFDVFKELK VHHANENIFY CPIAIMSALA MVYLGAKDST 

60         70         80         90        100

RTQINKVVRF DKLPGFGDSI EAQCGTSVNV HSSLRDILNQ ITKPNDVYSF 

110        120        130        140        150

SLASRLYAEE RYPILPEYLQ CVKELYRGGL EPINFQTAAD QARELINSWV 

160        170        180        190        200

ESQTNGIIRN VLQPSSVDSQ TAMVLVNAIV FKGLWEKAFK DEDTQAMPFR 

210        220        230        240        250

VTEQESKPVQ MMYQIGLFRV ASMASEKMKI LELPFASGTM SMLVLLPDEV 

260        270        280        290        300

SGLEQLESII NFEKLTEWTS SNVMEERKIK VYLPRMKMEE KYNLTSVLMA 

310        320        330        340        350

MGITDVFSSS ANLSGISSAE SLKISQAVHA AHAEINEAGR EVVGSAEAGV 

360        370        380 

DAASVSEEFR ADHPFLFCIK HIATNAVLFF GRCVSP 
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Figure 2.8. Optimal buffer composition and protein to drug molar ratio for maximal hapten density. 
Drug modified lyine residues were quantified when flucloxacillin was incubated with a 50 to 1 (top), 
100 to 1, 250 to 1 and a 500 to 1 (bottom) molar ratio of drug to protein. Phosphate carbonate buffer 
(left) or carbonate buffer (right) were used to assess the impact of pH on flucloxacillin binding. Two 
peptides were found to be modified containint Lys 280; KIK[Flucloxacillin]VYLPR and 
IK[Flucloxacillin]VYLPR, and are denoted as 280(1) and 280(2) respectively.  

 

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

17 20 47 56 62 93

12
3

18
2

18
7

19
0

20
7

22
7

27
8

2
8

0
(1

)

2
8

0
(2

)

28
7

29
1

37
0

N
o

rm
al

is
e

d
 io

n
 c

o
u

n
t

17 20 47 56 62 93

12
3

18
2

18
7

19
0

20
7

22
7

27
8

2
8

0
(1

)

2
8

0
(2

)

28
7

29
1

37
0

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

17 20 47 56 62 93

12
3

18
2

18
7

19
0

20
7

22
7

27
8

28
0(

1
)

28
0(

2
)

28
7

29
1

37
0

N
o

rm
al

is
e

d
 io

n
 c

o
u

n
t

17 20 47 56 62 93

12
3

18
2

18
7

19
0

20
7

22
7

27
8

28
0(

1
)

28
0(

2
)

28
7

29
1

37
0

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

17 20 47 56 62 93

1
2

3

1
8

2

1
8

7

1
9

0

2
0

7

2
2

7

2
7

8

28
0(

1
)

28
0(

2
)

2
8

7

2
9

1

3
7

0

N
o

rm
a

lis
e

d
 io

n
 c

o
u

n
t

17 20 47 56 62 93

1
2

3

1
8

2

1
8

7

1
9

0

2
0

7

2
2

7

2
7

8

28
0(

1
)

28
0(

2
)

2
8

7

2
9

1

3
7

0

17 20 47 56 62 93

12
3

18
2

18
7

19
0

20
7

22
7

27
8

28
0(

1
)

28
0(

2
)

28
7

29
1

37
0

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

17 20 47 56 62 93

12
3

18
2

18
7

19
0

20
7

22
7

27
8

28
0(

1
)

28
0(

2
)

28
7

29
1

37
0

N
o

rm
al

is
e

d
 io

n
 c

o
u

n
t

Phosphate carbonate buffer Carbonate buffer

O
va

:F
lu

1
:5

0
O

va
:F

lu
1

:1
0

0
O

va
:F

lu
1

:2
5

0
O

va
:F

lu
1

:5
0

0

Lysine Number



 

99 

 

Fi
gu

re
 2

.9
. 

M
as

s 
sp

e
ct

ro
m

e
tr

ic
 a

n
al

ys
is

 o
f 

fl
u

cl
o

xa
ci

lli
n

 m
o

d
if

ie
d

 o
va

lb
u

m
in

. 
M

o
d

if
ic

at
io

n
 o

f 
ly

si
n

e 
2

7
8

 (
to

p
) 

an
d

 l
ys

in
e 

2
8

0
 (

b
o

tt
o

m
) 

w
er

e 
ch

ar
ac

te
ri

ze
d

 u
si

n
g 

m
as

s 

sp
ec

tr
o

m
et

ry
.  

 



 

100 

2.4.3.2 MASS SPECTROMETRIC CHARACTERIZATION OF FLUCLOXACILLIN MODIFIED OVALBUMIN 

MS/MS spectra corresponding to peptides containing lysine 278 and 280 were the most 

abundant across all incubation conditions. Modification of peptides was confirmed using 

several pieces of evidence; 1) flucloxacillin mass addition on the parent ion, 2) peptide 

sequences corresponding to b and y ions, 3) characteristic flucloxacillin fragment ions and 4) 

drug modified b and y ions. K(flucloxacillin)IK and KIK(flucloxacillin)VYLPR were both 

annotated to show both the presence and location of flucloxacillin (Figure 2.9). For both 

peptides all major peaks could be confidently assigned; leading to preparation of the 

flucloxacillin-OVA protein conjugate for immunization.  

 ANTI-FLUCLOXACILLIN ANTIBODY REACTIVITY 

As part of the antibody generation, Eurogentec performed an ELISA to confirm responses to 

the immunogen used (OVA-flucloxacillin); the results are displayed in box 2. 

 

 
 

Box 2.  Antibody response to OVA-flucloxacillin conjugate used as immunogen. SY7360 and SY7361 
correspond to the two different rabbits used to raise the antibody. PPI = preimmune serum, GP = large 
bleed. Straight line = antigen, dashed line = negative control.  

 

Two rabbits (SY7360 and SY7361) were used in the immunization protocol. From the results 

provided by Eurogentec, both SY7360 and SY7361 gave positive results to the immunogen, 

with SY7361 giving a higher absorbance reading at 492 nm. It is important to note that these 
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are polyclonal mixtures of antibody in antisera, however from herein will be referred to as 

antibodies.  

2.4.4.1 FLUCLOXACILLIN SPECIFICITY 

In order to fully interrogate the specificity of the antibody provided, further assessment was 

performed. In house ELISAs were used to determine both the specificity of the anti-

flucloxacillin anti-sera returned and the concentration required for optimal signal. In addition 

to the immunogen (OVA-flucloxacillin), responses to ovalbumin, HSA-flucloxacillin (1:100) 

and HSA were initially carried out (Figure 2.10). 

 

 
 

Figure 2.10. SY7360 and SY7361 (anti-flucloxacillin antibody/sera) specificity to flucloxacillin. An 
ELISA was performed to determine the specificity to flucloxacillin and optimal concentration of the 
sera provided from Eurogentec.  

 

In contrast to the ELISA performed by Eurogentec, both SY7360 and SY7361 performed 

comparably to all of the test epitopes. As expected, highest responses were observed to 

OVA-flucloxacillin and ovalbumin. Both antibodies recognized HSA-flucloxacillin in a 

concentration dependant manner, but no response to HSA itself is observed, indicating they 

are both highly specific to flucloxacillin. From this data it is apparent that a dilution of 1:5,000 
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is optimal for both antibodies. In addition to ELISAs, dot blotting was used to identify the 

optimal conditions and any cross reactivity for use in Western blot analysis. 

 

 
 

Figure 2.11. Dot immuno-blot to detect cross reactivity and optimal SY7360 antibody concentration 
for Western blot analysis. At all concentrations a detection of flucloxacillin modified proteins (OVA 
and HSA) were observed, in addition to the carrier protein (OVA). Limited cross reactivity was 
observed to HSA and BSA at high antibody concentrations (1:5,000).  

 

The results from the dot blot mirrored that of the ELISA in terms of specificity and cross 

reactivity (Figure 2.11). Strong recognition to OVA-flucloxacillin, OVA and HSA-flucloxacillin 

conjugates were observed. Both HSA and BSA showed a limited signal. High concentrations 

of the antibody (e.g. Figure 2.11, 1 in 5,000) resulted in a signal being detected from HSA and 

BSA, while the signal to flucloxacillin was unchanged. As high antibody concentrations may 

result in cross reactivity/non-specific binding of HSA in cells derived from human sources, 

optimal antibody concentrations for immunoblot assays were determined to be 1 in 20,000. 

2.4.4.2 HAPTEN DENSITY AND INHIBITION  

Up to this point detection of flucloxacillin bound to HSA was only performed at a 1:100 HSA 

to flucloxacillin molar ratio. Molar ratios of 100:1, 1:1 and 0.1:1 drug to protein were 

prepared to determine the limit of detection using ELISA. In addition, hapten inhibition is 

important to confidently determine that the antibody is recognising the specific hapten. 

Incubation of the anti-flucloxacillin antibodies with flucloxacillin conjugated to N-acetyl 

lysine prior to use in assays should reduce the signal in the ELISA. Using ELISA it was only 
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possible to detect HSA with bound flucloxacillin at a 1:100 molar ratio (Figure 2.12). Signal 

from 1:1 and 1:0.1 molar ratios could not be distinguished from the background, indicating 

either the antibody and/or assay were not sensitive enough. Importantly, prior incubation of 

both antibodies with N-acetyl lysine-flucloxacillin resulted in the complete abrogation of 

signal when probing for HSA-flucloxacillin at previously detected molar ratios (100:1), 

indicating both antibodies are highly hapten specific. 

 

 
 

Figure 2.12. Detection of low hapten density using anti-flucloxacillin antibody. ELISAs were used to 
identify the limit of flucloxacillin at varying hapten density. Both antibodies were able to detect 
flucloxaillin conjugated to HSA at 1:100 HSA to drug ratios. HSA to flucloxacillin ratios of 1:1 and 1:0.1 
could not be detected using ELISA. Full antibody inhibition was observed when pre incubated with N-
acetyl lysine.  

 

2.4.4.3 CROSS REACTIVITY WITH BETA LACTAM ANTIBIOTICS 

At the beginning of this chapter cross reactivity of the commercially available anti-BP 

antibody was demonstrated using Western blot. This experiment was repeated using ELISA 

using β-lactam-HSA conjugates (flucloxacillin, amoxicillin, piperacillin, BP and penicillin V) at 

molar ratios of 1:100 (Figure 2.13).  
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Figure 2.13. Cross reactivity of flucloxacillin and BP (commercially available) antibodies using ELISA. 
Fluxlocaxillin specific antibody was only able to detect HSA modified by flucloxacillin at both 1:5,000 
and 1:20,000 concentrations. BP specific antibody was able to detect BP, piperacillin and penicillin V 
conjugated to HSA. Amoxacillin HSA could not be detected by either antibody using ELISA at these 
concentrations.  

 

In addition to anti-BP, each anti-flucloxacillin antibody was used to detect the HSA drug 

conjugates at a 1 in 5,000 and 1 in 20,000 dilution. As shown before, cross reactivity of the 

anti-BP antibody with piperacillin and penicillin V were observed. Surprisingly, no cross 

reactivity with amoxicillin could be detected. Anti-flucloxacillin antibodies were only specific 

to HSA modified by flucloxacillin at both concentrations.  

It was shown that the ELISA was unable to detect cross reactivity of the anti-BP antibody with 

amoxicillin. Previously when using Western blotting the cross reactivity for amoxicillin HSA 

was lower than that of the other β-lactams (Figure 2.4). Therefore, we hypothesised that 

ELISAs had a reduced level of sensitivity compared with Western blotting. Subsequent 

Western blots were performed to further interrogate the cross reactivity of the anti-

flucloxacillin antibody with both lower molar ratios and β-lactam haptens as attempted by 

ELISA (Figure 2.14). 
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Figure 2.14. Detection of flucloxacillin HSA at different hapten densities and cross reactivity to other 
β-lactam antibiotics using Western blot analysis. Using Western blot, HSA flucloxacillin could be 
identified at 100:1, 1:1 and 0.1:1 molar ratios. No cross reactivity to piperacillin, amoxacillin, penicillin 
V and BP was obsereved.  

 

Using Western blot it was possible to detect HSA flucloxacillin conjugates at molar ratios of 

1:0.1 using both antibodies, with no cross reactivity to HSA or any other of the β-lactam 

haptens. This confirmed that both SY7360 and SY7361 were sensitive and specific to 

flucloxacillin. While flucloxacillin does contain a thiazolidine ring this was not believed to be 

the epitope recognized by the antibody due to this lack of cross reactivity. When compared 

to amoxicillin, piperacillin, BP and penicillin V, flucloxacillin is the only β-lactam to contain an 

isoxazole ring. To determine whether this was the epitope recognition site further HSA 

conjugates to β-lactam antibiotics, each containing the isoxazole ring, was performed.    

HSA was conjugated to oxacillin and cloxacillin at 1:100 molar ratios. It was not possible to 

determine the molar ratio of HSA to dicloxacillin due to remaining stocks being in solution at 

an unknown concentration, however as binding of flucloxacillin reached a maximal level we 

believed it would be modified enough for detection using Western blot. Indeed, cross 

reactivity of the anti-flucloxacillin antibody was observed between flucloxacillin, oxacillin, 

cloxacillin and dicloxacillin using Western blot (Figure 2.15). Importantly all signals could be 

diminished using hapten inhibition, showing that the epitope for antibody detection is 

conserved between these structurally related compounds.  
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Figure 2.15. Cross reactivity of the flucloxacillin specific antibody with structurally related β-lactam 
antibiotics. Both flucloxacillin antibodies were able to cross react with oxacillin, cloxacillin and 
dicloxacillin (left). Hapten inhibition was oberved with both antibodies when pre-incubated with N-
acetyl lysine flucloxacillin (right).  
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 DISCUSSION 

Anti-drug antibodies can be purchased commercially for use in hapten detection. BP 

antibody is cross reactive with certain β-lactam antibiotics that contain a thiazolidine ring 

(amoxicillin, piperacillin and penicillin V), but not flucloxacillin. Therefore, the aim of this 

chapter was to develop an antibody to detect flucloxacillin, with limited cross reactivity to 

human proteins, to enable use in the detection of flucloxacillin modified proteins in cellular 

systems. The decisions made for the choice of hapten carrier, incubation conditions, 

characterization and quality control were instrumental in the successful generation of the 

antibody.  

Low MW compounds do not generally trigger an immune response, and so they must be 

conjugated to a suitable carrier (Gefen et al., 2015). The secretion of antibodies by 

differentiated plasma cells is reliant on the activation of membrane bound immunoglobulins 

on the cell surface. The carrier protein/polypeptide that is used for antibody generation 

must, most importantly, be capable of eliciting an immune response in the host. Another 

important factor in the selection of a carrier protein depends on the applications of the 

antibody undergoing development. As described, the use of human proteins as a carrier 

would indeed most likely result in an immunogenic response to proteins when administered 

in a different species, however antibodies specific to the carrier would be secreted into the 

blood plasma. If HSA were to be used it is likely that any sample originating from human cells 

would contain HSA, resulting in an anti-HSA response. With this said, it is also important to 

select a protein that has poor sequence homology to, in this example, HSA. BSA was found 

to have a high sequence homology to HSA and for this reason was immediately rejected for 

use as a carrier protein.  

Several carrier proteins are often used for the development of antibodies, including both 

OVA and KLH. Although, OVA is weakly immunogenic in comparison to KLH (Fasciglione et 
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al., 1996). As we were interested in the hapten bound to the carrier protein, rather than the 

carrier itself, it was important to consider the availability of lysine residues for drug binding. 

OVA is 45 kDa in size, while KLH is a mega protein at 390 kDa. Although it is the most 

commonly used carrier protein to elicit an immune response of a hapten, the ability to 

characterize KLH adducts with mass spectrometry is quite challenging. While reactive lysine 

residues are present on KLH its size makes it difficult to analyze multiple proteins at one time 

using mass spectrometry. On the other hand, although less immunogenic, OVA contains free 

lysine residues that could potentially be modified by flucloxacillin. Sequence homology 

between OVA and HSA was found to be limited to 22% making it an ideal candidate as a 

carrier protein, therefore the modification of OVA by flucloxacillin was investigated.  

Previous experiments performed in our group have indicated that flucloxacillin modification 

on HSA increases at a higher pH. For this reason, flucloxacillin was incubated in phosphate 

buffer (pH 7.4) or carbonate buffer (pH 11). At high molar ratios large amounts of 

flucloxacillin, that contains a free carboxylic acid, reduced the pH in the phosphate buffer to 

more acidic conditions. Generally under acidic conditions covalent binding is not favourable. 

Indeed, we found that the level of binding to OVA was lower than in the carbonate buffer. 

Interestingly the binding of flucloxacillin to OVA plateaued at a ratio of 100:1 flucloxacillin to 

OVA, meaning there was no added benefit in increasing the molar ratio above this limit. Once 

the optimal conditions were defined, Imject OVA (Thermo Scientific), formulated specifically 

for use as a carrier protein, was used for immunogen preparation.  

Mass spectrometry is a powerful tool enabling the precise characterisation of flucloxacillin 

modified OVA peptides. MRM was used due to its increased specificity compared with QTOF 

MS/MS. QTOF MS/MS is reliant on the top n most abundant ions present at a point in 

chromatographic time, triggering fragmentation. Mass spectrometry revealed modification 

on 6 of the 20 available lysine residues, with lysine 278 and 280 consistently undergoing 

haptenation. The presence of flucloxacillin can be determined by characteristic 
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fragmentation ions derived from flucloxacillin. The presence of 160, 195, 295 and 454 Da 

ions in MS/MS spectra all related to the MS fragmentation of flucloxacillin, indicating 

covalent binding of flucloxacillin to peptides. The most abundant fragmentation ion is at 160 

Da, corresponding to the cleavage of the thiazolidine ring. In conjunction with other 

fragmentation ions, especially 454 Da (whole flucloxacillin mass), it is usually indicative of a 

flucloxacillin modified amino acid within the sequence. Of course, full peptide sequencing 

was performed to ensure that the B ions (starting from the N terminus) and the Y ions 

(starting from the C terminus) could be confidently annotated.  

ELISAs performed by Eurogentec showed that the antibodies present in the sera of the 

immunized rabbits bound to the immunogen. Importantly, the antibodies also bound to 

flucloxacillin conjugated to HSA while no signal was detected from HSA alone. This indicated 

the antibody was specific for the hapten (flucloxacillin), rather than the protein backbone. 

Indeed, the antibodies responded to flucloxacillin conjugated to HSA at a range of 

concentrations. It was found that a concentration of 1 in 5,000 gave the best signal using an 

ELISA while maintaining the same background absorbance. In addition to an ELISA a dot 

immuno blot was performed to ensure flucloxacillin could be detected using Western 

blotting protocols. However, at high concentrations cross reactivity to HSA and BSA were 

observed; this is understood to be due to experimental technique. Prior to dotting samples 

on the nitrocellulose, circles were drawn on the nitrocellulose membrane to allow multiple 

spots to be placed in the same area. This may have resulted in a slight depression of the 

membrane, making a physical ‘groove’ for the antibody to sit in. When washing, antibodies 

within this groove may not have been removed, resulting in apparent background. As the 

signal for flucloxacillin HSA did not diminish when the antibody concentration was reduced 

from 1 in 5,000 to 1 in 20,000, the latter was believed to be optimal for this technique. 

Indeed, this condition was primarily used due to the lack of cross reactivity with HSA/BSA.  
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Both ELISAs and Western blots were performed in order to determine the level of drug 

modification required to enable detection. Using ELISA only high levels of modification could 

be detected, whereas using Western blotting signals from both 1:1 and 0.1:1 flucloxacillin to 

HSA ratios were identified, making it clear that this was a far more sensitive technique. In 

both cases, hapten inhibition using flucloxacillin modified N-acetyl lysine resulted in the 

complete abrogation of the signal, indication the anti-flucloxacillin antibodies are highly 

specific. Prior incubation of the antibodies with N-acetyl lysine flucloxacillin results in binding 

to the antigen binding site of the Fab region, thus preventing interaction with flucloxacillin 

immobilized on the nitrocellulose membrane. While from this inhibition it is not possible to 

categorically define the epitope recognition, it is likely to be flucloxacillin itself rather than 

flucloxacillin bound to lysine. Previous studies investigating antibody epitope sizes range 

from ~20 to 400 amino acid contact residues, with the most frequently observed between 

50 and 79 amino acids (Stave and Lindpaintner, 2013). Other anti-β-lactam penicillin 

antibodies subsequently produced in the lab can be inhibited by the drug alone, without the 

need for conjugation to N-acetyl lysine, further supporting this hypothesis.  

Cross reactivity to other β-lactam antibiotics confirmed BP specific antibodies were able to 

detect piperacillin-, penicillin V- and indeed BP- modified proteins using ELISA. Neither 

flucloxacillin- nor amoxicillin- modified proteins could be detected, even when high molar 

ratios of drug to protein (100:1) were used. Similarly, the flucloxacillin antibody could only 

detect flucloxacillin- modified proteins. As Western blots were found to be a more sensitive, 

cross reactivity was assessed using this technique. Although flucloxacillin antibodies can 

detect very low levels of modification (drug to protein ratio 0.1:1) it cannot cross react to 

proteins modified to other β-lactam antibiotics, even when high levels of modification were 

formed (100:1). This study indicated that the anti-flucloxacillin antibodies are highly specific 

and may bind to the side chain rather than the thiazolidine ring.  
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Figure 2.16. Chemical structures of BP, piperacillin, amoxicillin and flucloxacillin adducts. The 
conserved thiazolidine ring protrudes from the core of the molecule in BP, piperacillin and amoxicllin, 
leading to antibody recognition and cross reactivity (green circle). Flucloxacillin, although contains a 
thiazolidine ring (red solid circle), it does not extrude from the main structure. Instead, the isoxazole 
ring (red dashed circle) is the most likely antibody epitope. 

 

In contrast, cloxacillin, dicloxacillin and oxacillin are all β-lactam antibiotics with further 

structural similarity to flucloxacillin. In addition to the thiazolidine ring, they all contain an 

isoxazole ring in their structure. For this reason, cross reactivity was assessed using Western 

blot analysis. Interestingly, flucloxacillin antibodies can detect HSA modified by all four 

compounds. These signals could all be diminished with the use of the antibody inhibition. 

This study further confirmed that the antibody is specific to the isoxazole ring. Upon 

investigating the 3D structure of BP, piperacillin and amoxicillin it was clear that the 

thiazolidine ring stuck out from the main core structure for antibody recognition (Figure 2.16, 

green circles). With flucloxacillin, the stereochemistry results in the inversion of the 

thiazolidine ring towards the core structure, thus preventing interactions with antibodies 

(Figure 2.16, red solid circle). Therefore, as the only side chain present with a conserved 

structure between flucloxacillin, cloxacillin, dicloxacillin and oxacillin, the isoxazole ring 

(Figure 2.16, red dashed circle) was identified as the most likely epitope for antigenic 

recognition and discrimination.  

Benzyl penicillin adduct Piperacillin adduct

Amoxicillin adduct Flucloxacillin adduct
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Previous studies have identified anti-drug-antibodies in the sera of patients with DHRs, 

however their role in delayed type hypersensitivity is not fully understood. In order for drugs 

to elicit an immune response they must first bind to macromolecules acting as carrier 

proteins. The aim of this chapter was to covalently bind flucloxacillin to a suitable carrier for 

immunization of rabbits for the generation of drug specific antibodies. Indeed, a high titre 

antibody specific to flucloxacillin was successfully generated. Cross reactivity was 

determined between other relevant proteins, with no cross reactivity to HSA observed, even 

at high antibody concentrations. Furthermore, cross reactivity to other β-lactams gave us an 

understanding of the highly specific nature of the flucloxacillin antibody. This specificity was 

further confirmed through inhibiting antibody detection of flucloxacillin-modified proteins 

through pre-incubation with flucloxacillin. In this chapter the specific nature of the 

flucloxacillin antibodies generated were interrogated. However, the detection of 

flucloxacillin was limited to in vitro drug incubations on model proteins. In order to 

understand the pathophysiology of flucloxacillin in DILI it is important to investigate 

flucloxacillin binding and localization in a more physiological context, including liver derived 

cell lines. Here we have shown the development of an important tool to further interrogate 

flucloxacillin in a more relevant context, performed in the next chapter using a range of 

different proteomic techniques.  
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 INTRODUCTION 

Previous findings show flucloxacillin binds to albumin in patients, however many cellular 

protein targets or localisation of covalent binding remains unknown. Previous studies tried 

to understand flucloxacillin binding in animal models, where rats had been treated with 

varying doses of flucloxacillin over specific time periods before being euthanized to harvest 

the liver (Carey and van Pelt, 2005). While in this study the generation of a flucloxacillin 

specific antibody was successful, using Western blot analysis on liver lysates resulted in a 

high degree of cross reactivity to proteins from untreated rats. Nevertheless, Carey et al were 

able to hypothesise that the localization in which flucloxacillin modified proteins existed by 

separating subcellular fractions using centrifugation. Nuclear/membrane, mitochondrial, 

microsomal and cytosolic preparations were individually probed using SDS-PAGE and 

Western blotting. In total 6 adducts were consistently identified in different subcellular 

fractions, however it was difficult to positively identify the protein sources. Interestingly 

within the microsomal fraction adduct formation was detected at the MW of CYP P450 

enzymes. This 52 kDa adduct was present at all doses administered to the rats; the only 

adduct detected in the low dose treatment. As CYP3A4 is involved in flucloxacillin 

metabolism, and is a part of the P450 enzyme family, it could indeed be a target for adduct 

formation upon activation (Carey and van Pelt, 2005).  

Membrane transporters are important for the influx and efflux of drugs and their metabolites 

between different cell types. The progression to disease from a range of drugs has been 

linked to the activity of transporter proteins resulting in cholestatic effects.  
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Figure 3.1. Common membrane transporters of the liver. OATPs contribute to a large proportion of 
the influx transporters on the apical membrane of hepatocytes. MDR proteins are largely responsible 
for the transport of products out of hepatocytes into adjoining cells, in particular the bile canaliculi. 

 

Influx transport from the apical membrane of the liver is largely reliant on the organic anion 

transporting polypeptide (OATP) proteins, however others do exist (Figure 3.1) (Sundaram 

and Björnsson, 2017). A number of different OATPs are present depending on the type of 

cell, for example OATP1B3 and -1B1 are specifically expressed in the liver (Smith, Figg and 

Sparreboom, 2005). In addition, the movement of drugs and their metabolites is often 

specific to certain transporters, for example, benzyl penicillin is most actively transported by 

OATP2B1 and -1B1 (Tamai et al., 2000). This may explain why certain drugs contribute to 

disease types in specific organs. Currently, little is known as to the transporters associated 

with flucloxacillin. Efflux transporters are responsible for the movement of drugs into the 

bile canaliculi from hepatocytes. These glycoproteins, collectively part of the multidrug 

resistance (MDR) protein (MRP) family include MDR1 (P-gp), MRP2 and the bile salt export 

pump (BSEP). A range of other transporter proteins are known to be present in different cell 

types (Figure 3.1). While all efflux transporter proteins may have involvement in drug 
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clearance, BSEP is largely implicated in the transport of drug metabolites out of hepatocytes 

(Sundaram and Björnsson, 2017). Flucloxacillin efflux transporters are largely unknown, 

however patients with mutations in the genes that encode MDR3 and BSEP have a 3-fold 

increase in the risk of developing DILI with certain other antibiotics (Lang et al., 2007). Protein 

detection based methods, such as immunofluorescence imaging, have been developed to 

interrogate the activity of transporters under certain conditions, i.e. the presence of drugs. 

For example, transporter activity of MRP2 and P-gp can be assessed using fluorescently 

labelled 5-chloromethylfluorescein diacetate (CMFDA). While CMFDA can passively enter the 

cell, it can only be effluxed out of the cell via active transport through MRP2 and P-gp. 

Accumulation within the cell cytoplasm represents an absence or inactivity of these 

membrane transporters (Gaskell et al., 2016).  

In order to detect flucloxacillin protein targets in relevant human material, the liver-like cell 

lines HepG2 and HepaRG are particularly useful tools. While neither can completely replicate 

the physiology and microenvironment of primary human hepatocytes, their availability and 

ability to survive in cell culture make them an ideal candidate for the study of liver toxicity. 

HepG2 cells, first reported in 1980 by Knowles et al, were derived from the liver biopsy of an 

adolescent child (Caucasian male, 15 years old) with primary hepatocellular carcinoma. One 

of the key features of HepG2 cells is their ability to synthesize and secrete 17 of the major 

human plasma proteins into the cell culture medium (Knowles, Howe and Aden, 1980). The 

HepaRG cell line was too isolated from a patient tumour, however in this case Hepatitis C 

virus (HCV) was present. HepaRG cells were the first cell line to be successfully infected by 

Hepatitis B virus (HBV), with infection only previously achieved in primary human 

hepatocytes. This was particularly important as HBV has a very narrow cell specificity and is 

restricted to infecting differentiated cells that can support its full replication cycle. This 

highlights one of the key features of HepaRG cells in their ability to maintain efficient 

proliferentiation and differentiation during cell culture. The addition of DMSO in the last 15 
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days of cell culture leads to this differentiated state, where increases in the metabolising 

enzymes CYP1A and CYP3A4 are observed (Gripon et al., 2002).  The HepaRG differentiation 

cell cycle begins after one-week post seeding where cells commit to either hepatocyte or 

biliary pathways. After 2 weeks hepatocyte-like colonies are surrounded by epithelial cells 

(primitive biliary cells). These colonies can be detected through the formation of numerous 

bile canaliculi, characteristic of polarized hepatocytes (Cerec et al., 2007).  

The choice of human hepatic tumour derived cell lines depends on the nature of the 

experiment conducted. Compared to primary human hepatocytes, HepG2 CYP 450 

expression is reduced by 90%, much lower than a 60% reduction in HepaRGs. That said, 

HepaRGs overexpress CYP3A4 compared to primary cells. Membrane transporter expression 

is another important factor when selecting the appropriate cell line to use for a specific 

purpose. For example, the efflux transporter MRP2 is expressed equivalently in HepaRG and 

primary hepatocytes, however, is not expressed in HepG2 monolayer cells. Another efflux 

transporter, P-gp (MDR1), was found to be expressed equivalently in HepG2s while over 

expressed in HepaRGs; again, compared to primary cells. In general terms however, it is 

accepted that HepaRG cells diverge less from primary human hepatocytes in terms of protein 

expression (Sison-Young et al., 2015).  

The C1R cell line (Storkus et al., 1987; Zemmour et al., 1992) is a B lymphoblastoid cell line 

deficient in MHC-class I. C1R-B*57:01 is transfected to express HLA-B*57:01. As flucloxacillin 

DILI is associated with the carriage of HLA-B*57:01, it is important to identify any protein 

binding that may occur within cells carrying the allele. The use of antigen presenting cells for 

this investigation will allow for the determination of the fate of modified proteins in 

subsequent chapters. Although in the context of this thesis the major aim is to elucidate the 

immune involvement in flucloxacillin induced DILI, non-immune mediated cholestatic liver 

injury is also believed to be triggered by flucloxacillin (Burban et al., 2017). Non-immune 

cholestatic effects were described by Burnan et al, and were found to be mediated by the 
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activity of P38α. P38α (MAPK14) is a MAPK (mitogen-activated protein kinase) responsible 

for the induction of a number of signalling pathways through phosphorylation activity. Heat 

shock protein (HSP) 27 has known function in the Rho/Myosin light chain kinase 

(ROCK/MLCK) regulation of actin polymerization. Disruption of ROCK/MLCK signalling 

pathways is heavily implicated in cholestatic insults through cytoskeleton rearrangement 

and bile canaliculi deformations (Sharanek et al., 2016). From the study performed by Burban 

et al, the activation of P38 is believed to result in the phosphorylation of HSP27. Once 

activated HSP27 acts as a chaperone, interacting with protein B kinase (AKT). Subsequent 

formation of a P38/HSP27/AKT protein kinase complex scaffold allows for the 

phosphorylation of AKT by phosphoinositide 3-kinase (PI3K), blocking apoptosis. Generally, 

this mechanism is characteristic of a protective phenotype allowing cells to survive periods 

of stress. However, in the case of flucloxacillin the blocking of apoptosis is related to the 

onset of cholestatic effects (Burban et al., 2017).   
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 AIMS 

The purpose of this chapter was to further characterize the cellular protein targets for 

flucloxacillin modification, and their potential role in the progression of flucloxacillin induced 

liver injury. A range of proteomic techniques, utilising the antibody generated in chapter one, 

were used in relevant cell lines to assess both the distribution and localization of haptenated 

proteins. In order to investigate this, the following aims were addressed; 

1. Using the anti-flucloxacillin antibody detect the level of flucloxacillin protein binding 

in C1R-B*57:01, HepG2, HepaRG cell lines and primary human hepatocytes using 

SDS-PAGE and Western blotting.  

2. Investigate the localization of flucloxacillin modified proteins in C1R-B*57:01, HepG2 

and HepaRG cells using immunofluorescence microscopy.  

3. Assess the impact of flucloxacillin treatment on membrane transporter proteins 

using fluorescent substrates in fully differentiated HepaRG cells.  

4. Using mass spectrometry, positively identify protein sources for modification from 

C1R-B*57:01 cells.  

5. Identify cellular signalling pathways that may be responsible for non-immune 

induced liver cholestasis.  

 

  



 

121 

 METHODS 

 PREVIOUSLY DESCRIBED METHODS 

 Protein conjugation - 2.3.1, p85 

 Protein quantification - 2.3.2, p85 

 SDS-PAGE - 2.3.3, p86 

 Western blot analysis - 2.3.3.1, p86 

 Coomassie blue staining - 2.3.3.2, p87 

 Mass spectrometry - 2.3.4, p87 

 TISSUE CELL CULTURE  

All cells were grown in pre-treated (proprietary Nunclon™ Delta surface treatment) sterile 

cell culture flasks and multi-well plates purchased from Thermo Fisher (Nunc). Cell viability 

and quantification was performed using trypan blue (Sigma Aldrich) staining and light 

microscopy.  

3.3.2.1 HEPG2 CELLS 

HepG2 cells were cultured and maintained in DMEM supplemented with 10% FBS (foetal 

bovine serum) (v/v), 4 mM L-glutamine, 25 mM glucose, 1 mM sodium pyruvate and 1 mM 

HEPES (37°C, 5% CO2). Cells were treated with flucloxacillin supplemented media. For growth 

on glass cover slips, rat tail collagen (Invitrogen) was used for pre-treatment. 

3.3.2.2 HEPARG CELLS 

HepaRG cells were cultured in growth media (Williams E (Sigma Aldrich) supplemented with 

10% FBS (Invitrogen, Paisley, UK), 2mM L-glutamine, 100 µg/mL penicillin, 100 U/mL 

streptomycin, 5 µg/mL insulin and 50 µM hydrocortisone)  (37°C, 5% CO2) for 1.5 weeks. Cells 

were differentiated in 50:50 growth:differentiation media (growth media supplemented 

with 1.7% DMSO) for 0.5 weeks, and differentiation media for a further 4 weeks. Cells were 
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treated with flucloxacillin supplemented into differentiation media. For growth on glass 

cover slips, rat tail collagen (Invitrogen) was used for pre-treatment.  

3.3.2.3 C1R-B*57:01 CELLS 

C1R-B*57:01 cells were maintained in F1 media (RPMI 1640 supplemented with 10% FBS 

(Invitrogen, Paisley, UK), 100 mM L-glutamine, 1mM HEPES, 100 µg/mL penicillin, 100 U/mL 

streptomycin) and 50 µg/mL geneticin (37°C, 5% CO2). Treatment with flucloxacillin was for 

48h unless otherwise stated. 

3.3.2.4 PRIMARY HUMAN HEPATOCYTES 

Liver biopsies were obtained from Aintree Hospital, Liverpool, Merseyside from donors 

undergoing resections for varying aetiologies. All donors provided written informed consent 

to partake in the study which has received approval from the appropriate research ethics 

committees. Liver resections were perfused using 1x Hepes buffer to remove residual blood. 

Collagenase type IV (Sigma Aldrich) was used to digest the tissue releasing hepatocytes. 

Hepatocytes were cultured in Williams E supplemented by 2 mM L-glutamine, 100 µg/mL 

penicillin, 100 U/ml streptomycin, 100x insulin-transferin-selenium, and 1 μM/ml 

dexamethasone. After 3 hours cells were washed to remove unattached cells. After a further 

24 hours (37°C, 5% CO2) media was removed and replaced with flucloxacillin supplemented 

media. Cells were harvested after 16-24 hours of drug incubation.  

 PROTEIN EXTRACTION FROM CELL CULTURE  

Cells were harvested and washed prior to being pelleted and snap frozen. Cell pellets were 

lysed (7.0M urea, 2.0M thiourea, 4% CHAPS, 40mM Tris base and 1% DTT) and cell 

supernatants were collected for protein quantification. 

 2D SDS-PAGE 

One hundred micrograms of protein from C1R-B*57:01 cell lysates were separated in two 

dimensions. The first dimension was performed by rehydrating IPG strips (ImmobilineTM 
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DryStrip, Amersham Pharmacia Biotech) with sample in rehydration solution and separating 

based on pH using the Multiphor Electrophoresis System (GE Healthcare, MA, USA). The 

second dimension and Western blot was performed as previously described in Chapter 2. 

 PATIENT SERUM  

Patients receiving flucloxacillin treatment (i.v. and/or oral) were recruited. Ethical approval 

was obtained from Liverpool local research ethics committee and each patient gave 

informed consent to participate in the study. 

3.3.5.1 ISOLATION 

Venepuncture samples were extracted into heparinised tubes at least 8 h post treatment. 

Samples were centrifuged at 2,000 x g at 4°C for 15 min and stored at -80°C.  

3.3.5.2 HSA DEPLETION 

Serum samples were depleted by HSA affinity chromatography (#5188-6562, Agilent 

Technologies) on the Agilent 1200 HPLC. PBS was flushed through the column to remove 

unbound serum proteins before elution in 12 mM HCl and neutralization using Tris (pH 9). 

Buffer exchange into PBS was performed using a 3 kDa MWCO filter (Merck Millipore) for 

subsequent SDS-PAGE analysis.  

 IMMUNOFLUORESCENCE MICROSCOPY  

Adherent cells were grown on glass cover slips for use with immunofluorescence microscopy. 

C1R-B*57:01 cells were cultured in the presence of flucloxacillin and adhered to glass cover 

slips using Cell-Tak (Corning). Cells were washed with PBS (pH 8.0) and fixed using 4% 

paraformaldehyde for 30 minutes at 4°C. Cells were permeabilized (0.004% Tween 20, 

0.025% Triton-X-100, PBS) for 30 minutes and blocked with BSA (Sigma Aldrich) (5% in 

permeablilizaton buffer) for 1 hour at room temperature. Subsequently blocking buffer 

containing polyclonal rabbit-anti-flucloxacillin antibody (1 in 2,000 dilution) was added 

overnight at 4°C. After washing with permeablilizaton buffer, goat anti-Rabbit IgG secondary 
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antibody (Alexa Fluor 488, ThermoScientific, 1 in 1,000 dilution) was applied for one hour in 

the dark. After further washes, the cells were incubated in hoescht (DAPI, ThermoScientific, 

1 in 5,000 dilution) and phalloidin (Alexa Fluor 568, ThermoScientific, 1 in 250 dilution) for 

nuclear and f-actin staining respectively. Cover slips were mounted onto glass microscope 

slides with Pro-Long Gold (ThermoScientific, MA, USA) and sealed. Images were taken using 

a Carl Zeiss Axio Observer microscope with Apoptome using a 5x and a 40x oil objective.  For 

detection of MRP2 and P-gp, 1 in 200 dilutions of primary antibody were used (ProteinTech, 

MRP2; 24893-1-AP, P-gp; 22336-1-AP). 

3.3.6.1 CMFDA TRANSPORTER FUNCTION ASSAY  

HepaRG cells were cultured to differentiation as described (3.3.2.2) in a Lumox (Sarstedt) 24 

well plate. Media was removed and replaced with uptake media (136 mM NaCl, 5.2 mM KCl, 

1.1 mM KH2PO4, 0.7 mM MgSO4, 2.3 mM CaCl2, 10 mM Hepes and 11 mM glucose) (pH 7.4) 

containing 3 µM CMFDA solution (Invitrogen). CMDFA was incubated for 30 minutes at 37°C 

before removal and washing with uptake media. Cells were imaged as previously described 

directly through the plate using a 5x objective. For images taken using the 40x objective, 

HepaRG cells were cultured on collagen coated glass cover slips and processed as previously 

described for transporter function and immunofluorescence microscopy.  

3.3.6.2 MRP2/P-GP MEMBRANE TRANSPORTER INHIBITION 

HepaRG cells were cultured to differentiation as described. Prior to the addition of 

flucloxacillin, wells were incubated with 30 µM MK571 and 12.5 µM valspodar for a minimum 

of 1 hour to block MRP2 and P-gp activity respectively. MK571 and valspodar were also 

added to media supplemented with flucloxacillin. Images were acquired as previously 

described. 
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 COOMASIE STAINED IN-GEL PROTEIN DIGESTION 

Gel bands were excised and placed into clean protein lo-bind Eppendorf tubes. To the gel 

pieces, 200 µL 25 mM NH4HCO3 in H2O/ACN (1:1, v/v) was added. Gel pieces were incubated 

at RT for 10 minutes while shaking. NH4HCO3 was removed and replaced with 200 µL ACN to 

dehydrate the gel pieces. After 5 minutes (RT, shaking) this step was repeated. After 

removing the ACN, 50 µL 0.1 M NH4HCO3 was added and gel pieces were incubated for 30 

minutes at 37°C. Gel pieces were resuspended in 50 µL 10 mM ammonium bicarbonate and 

incubated overnight with sequencing grade modified trypsin at 37°C (Promega). Supernatant 

was collected and transferred to a clean protein lo-bind Eppendorf tube. To the gel piece, 

200 µL of 3% acetic acid in H2O/ACN (1:1, v/v) was added and sonicated at 37°C in a water 

bath for 30 minutes. Supernatant was combined and samples concentrated by vacuum 

centrifugation at 37°C. Samples were resuspended in 0.1% trifluoroacetic acid (TFA) and 

purified using C18 ZipTips (Millipore) following manufacturer’s instructions. Samples were 

subsequently resuspended in 11 µL 0.1% FA and 5 µL was injected into the mass 

spectrometer (Sciex 6600 triple TOF) using previously described parameters (Chapter 2, 3.4). 
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 RESULTS  

 DIVERSITY OF FLUCLOXACILLIN PROTEIN BINDING  

3.4.1.1 HEPARG AND HEPG2 CELL LINES 

Investigation into the diversity of flucloxacillin protein binding was performed in the liver-

like cell lines HepG2 and HepaRG. Both cell lines were incubated in the presence of different 

concentrations of flucloxacillin at non-toxic doses. After cell lysis, protein isolation and 

quantification were performed and proteins were visualised using coomassie gel staining 

(Figure 3.2, left). Across all cell culture conditions, the protein quantity and diversity were 

comparable. Using the same cell lysates, Western blot was performed to detect the level of 

flucloxacillin protein binding (Figure 3.2, right). Proteins from both HepG2 and HepaRG cells 

underwent modification at 1 mM flucloxacillin concentrations. Proteins contained within 

HepaRG cells were more sensitive to modification by flucloxacillin, as binding was observed 

qualitatively in larger quantities and a wider diversity at lower drug concentrations.  

 

 
 

Figure 3.2. SDS-PAGE coomassie blue and Western blot of liver like cell lines HepG2 and HepaRG. 
Coomassie blue SDS-PAGE shows no alteration in protein abundance and equal loading across 
different flucloxacillin treatments in HepG2 and HepaRG cell lines. Western blot analysis using anti-
flucloxacillin antibody reveals flucloxacillin protein binding in both cell lines, in a dose dependant 
manner. Proteins extracted from HepaRG cells are modified by flucloxacillin at lower concentrations 
compared with HepG2 cells. 

HepG2 HepaRG

0 0.1 0.5 1.0 0 0.5 1.0

30 second exposure

HepG2 HepaRG
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3.4.1.2 PRIMARY HUMAN HEPATOCYTES 

In addition to liver like cell lines, primary human hepatocytes from a patient (pt) donor (pt 

196) was cultured in the presence of flucloxacillin for 16 hours. In-keeping with liver like cell 

lines, the protein abundance in primary human hepatocytes did not change in the presence 

of flucloxacillin, as determined by coomassie SDS-PAGE (Figure 3.3, top left). Western blot 

analysis of patient hepatocytes (Figure 3.3, top right) showed the modification of multiple 

proteins in a dose dependent manner.  

 

 
 

Figure 3.3. SDS-PAGE coomassie blue and Western blot of primary human hepatocytes. Primary 
human hepatocytes were incubated with different concentrations of flucloxacillin for 16 hours. 
Coomassie blue staining shows no change in protein abundances. A dose dependent increase in 
flucloxacillin protein binding was detected using anti-flucloxacillin antibody in primary human 
hepatocytes. Two-dimensional Western blot analysis reveals flucloxacillin modification of multiple 
proteins in a dose dependent manner. *cells were incubated with flucloxacillin for 1 hour prior to cell 
lysis.  
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Modification of proteins extracted from primary hepatocytes was observed after a 1-hour 

incubation with flucloxacillin in cells isolated from pt 196. This highlighted the speed at which 

modification occurs. No cross reactivity was observed between the anti-flucloxacillin 

antibody produced in house and non-modified cellular proteins. In addition to single 

dimension Western blot, 2D SDS-PAGE and Western blot was performed (Figure 3.3, bottom) 

to further highlight the range of proteins that can be modified by flucloxacillin.  

3.4.1.3 C1R-B*57:01 CELLS 

Two-dimensional SDS-PAGE was performed on C1R-B*57:01 cell lysates cultured in the 

presence of flucloxacillin. Coomassie blue staining (Figure 4.1, top) indicated no difference 

in the proteome after a 24-hour incubation with flucloxacillin at non-toxic concentrations. 

 

 
 

Figure 3.4. Two-dimensional SDS-PAGE coomassie blue and Western blot of C1R-B*57:01 cells. Two-
dimensional coomassie blue staining revels no change in the proteome of C1R-B*57:01 cells when 
incubated in the presence of flucloxacillin (i vs ii). Western blot analysis revels the modification of a 
wide range of proteins in the treated sample (iv), with no cross reactivity in the untreated control (iii). 
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Western blot analysis was performed to characterize the diversity of flucloxacillin protein 

binding in these antigen presenting cells. Modification was found on a wide range of proteins 

with the antibody maintaining a high specificity for flucloxacillin (Figure 3.4, bottom).   

3.4.1.4 PATIENT SERUM  

Serum isolated from patients undergoing treatment with flucloxacillin was prepared for SDS-

PAGE. An aliquot from each patient (pt 50, 51 and 64) along with control serum was taken 

and the HSA captured, removing all other serum proteins. Patients 50 and 51 had taken 2 g 

of flucloxacillin 3 and 4 times a day, respectively, intravenously for 10 days. Dosing 

information for patient 64 was not available.  

 

 
 

Figure 3.5. SDS-PAGE coomassie blue and Western blot of flucloxacillin patient serum and depleted 
HSA. Serum from patients taking flucloxacillin were HSA depleted. Coomassie blue was used to 
visualize the successful depletion of HSA from the serum protein. Western blot analysis reveals only 
HSA is modified in patient serum, with increased signal from the depleted HSA. Control patient serum 
shows no cross reactivity.  

 

Whole serum and depleted HSA from each sample was separated using SDS-PAGE and 

stained using coomassie blue (Figure 3.5, left). Western blot analysis using the anti-

flucloxacillin antibody (Figure 3.5, right) detected only HSA to be modified in all serum 

samples isolated from patients undergoing flucloxacillin treatment.  
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 CHARACTERIZATION OF FLUCLOXACILLIN PROTEIN BINDING 

A wide range of flucloxacillin modified proteins were detected using anti-flucloxacillin 

antibody from a range of cell types. Therefore, C1R-B*57:01 cells incubated with flucloxacillin 

were prepared for mass spectrometric analysis to allow the characterization of modified 

proteins. Due to the limitations with software in identifying flucloxacillin modified peptides 

(discussed in chapter 6) manual characterization was performed.  One protein, 14-3-3 

gamma, was found to be modified at lys-50 (NLLSVAYK[Flucloxacillin]NVVGAR) (in relatively 

high abundance (Figure 3.7A). The 14-3-3 family consists of a number of isoforms, including 

gamma, epsilon and theta, each involved in regulatory processes (Zerr et al., 1998). 

Compared with 14-3-3 gamma, epsilon contains a valine to isoleucine substitution 

(NLLSVAYKNVIGAR) while theta contains an arginine to glycine substitution 

(NLLSVAYKNVVGGR) (Figure 3.7B). Indeed, modification was also found on 14-3-3 epsilon 

(Figure 3.8A) and theta (Figure 3.8B). Interestingly, modification of the lysine residue 

contained within this peptide sequence was observed for all three isoforms, indicating 

preferential binding to a site of the protein (Figure 3.6).  

 

 
 

Figure 3.6. Flucloxacillin modification of 14-3-3 protein. The same region of 14-3-3 gamma, epsilon 
and theta (green) were modified at the lysine residue (pink). 
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 LOCALIZATION OF FLUCLOXACILLIN PROTEIN BINDING  

Immunocytochemistry was used to visualize flucloxacillin binding within cells. Importantly, 

images comparing different conditions were acquired using the same exposure times 

throughout this chapter. 

3.4.3.1 C1R-B*57:01 CELLS 

 
 

Figure 3.9. Immunocytochemistry of C1R-B*57:01 cells treated with flucloxacillin. Anti-flucloxacillin 
antibody was used to visualize flucloxacillin protein modification in C1R-B*57:01 cells in a dose 
dependent manner. Multiple images represent technical replicates from the same slide. Flucloxacillin 
(488 nm, green) is observed at all concentrations (0.1 - 3 mM) while untreated cells showed no signal. 
F-actin (568 nm, red) is consistent between all concentrations. Overlaid images show the localisation 
of flucloxacillin in relation to F-actin and the nucleus (DAPI, blue). A dose response can be observed 
up to 3 mM, where drug modified cell debris can be observed at a toxic concentration.  
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Modification of proteins by flucloxacillin was observed in a dose dependent manner in C1R-

B*57:01 cells treated at a range of non-toxic (0.1, 0.5 and 1.5 mM) and toxic (3 mM) 

concentrations (Figure 3.9, top, green). F-actin (red) and nuclear staining (blue) appear 

relatively consistent at all concentrations, while no modification was observed in untreated 

cells. At toxic concentrations (3 mM), what is thought to be flucloxacillin modified cell debris 

is also observed (Figure 3.9, bottom, right). Immuno-fluorescence was also used to identify 

the localisation of flucloxacillin binding. In C1R-B*57:01 cells the green signal is maintained 

throughout the entire cell indicating the modification of intracellular proteins (Figure 3.10). 

In a few cases a higher intensity of flucloxacillin is observed at the cell surface of C1R-B*57:01 

cells (Figure 3.10, white arrows). This is attributed to the modification of surface/membrane 

proteins or peptides presented by HLA-B*57:01. 

 

 
 

Figure 3.10. Localization of flucloxacillin in treated C1R-B*57:01 cells. Flucloxacillin appears to 
modify intracellular proteins. Cell membrane proteins are also believed to be modified due to 
increased signal on the cell surface at 488 nM (green, white arrows). 

 

3.4.3.2 HEPG2 AND HEPARG CELLS 

The diversity and localisation of flucloxacillin protein binding was also assessed in the liver 

like cell lines HepG2 and HepaRG. The modification of HepG2 cells is largely on the cell 
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surface (Figure 3.11) with limited flucloxacillin detected internally within the borders of the 

F-actin cytoskeleton. This surface modification is observed throughout all the Z planes of the 

image (Figure 3.11, 488 channel).  

 

 
 

Figure 3.11. Flucloxacillin binding and localization in HepG2 cells using immunocytochemistry. 
Flucloxacillin mainly modifies HepG2 membrane proteins as limited signal is observed within the cell 
cytosol. Extracellular modification is observed in all layers of the Z-stacks. No flucloxacillin signal (488 
nm, green) is observed in untreated cells.  

 

In HepaRG cells, flucloxacillin modification of intracellular proteins is observed in a dose 

dependant manner (Figure 3.12).  
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Figure 3.12. Flucloxacillin binding in HepaRG cells using immunocytochemistry. Flucloxacillin binding 
is observed at all concentrations in a dose dependant manner. Nuclear staining (DAPI, blue) and 
flucloxacillin (488 nm, green) are shown in the absence (left) and presence (right) of F-actin stain (568 
nm, red). 

Upon further examination, high intensities of flucloxacillin signal appear within tight actin 

bundles (Figure 3.13, white arrows); indicative of the bile canaliculi formed between multiple 

hepatocyte like cells. Localisation of flucloxacillin in the bile canaliculi provides some 
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evidence for the active transport of flucloxacillin out of the hepatocyte like cells by 

membrane transporters.  

 

 
 

Figure 3.13. Localization of flucloxacillin binding in HepaRG cells. Flucloxacillin appears to be 
localized within tight actin bundles (white arrows) between groups of hepatocyte-like cells.  

 

 CELL MEMBRANE TRANSPORTERS  

3.4.4.1 MRP2 AND P-GP EXPRESSION  

In order to confirm the presence of functional biliary canalicul, immunofluorescence was 

performed using anti-MRP2 and anti-P-gp antibody. MRP2 and P-gp were found to be 

present at comparable levels in untreated cells (Figure 3.14). As anticipated, MRP2 and P-gp 

both localised within the tight actin bundles, as observed with flucloxacillin (Figure 3.13).  
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Figure 3.14. Detection of P-gp and MRP2 membrane transporters in HepaRG cells using 
immunocytochemistry. Anti-P-gp and anti-MRP2 antibodies were used to detect the expression of P-
gp and MRP2 in HepaRG cells. P-gp and MRP2 expression (488 nm, green) was localised within the 
tight actin bundles (568nm, red).  

 

MRP2 expression was investigated when HepaRG cells were incubated with flucloxacillin for 

an increasing period of time, with fresh flucloxacillin supplemented media replaced each day 

(Figure 3.15). Untreated cells express MRP2 at the tight actin bundles as shown in the 

previous experiment. After 24h 1.5 mM treatment, bile canaliculi become dilated, with 

further dilation seen after 7 days treatment. Interestingly, after 24h treatment MRP2 
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appears to be present in the cell cytoplasm (Figure 3.15, white arrows), while at 7 days this 

intensity decreases. This may be indicative of MRP2 being expressed intracellularly prior to 

localisation to biliary epithelia. Alternatively, flucloxacillin may be causing relacalisation of 

MRP2, which may lead to cholestasis.    

 

 
 

Figure 3.15. Biliary canalicular dilation in response to flucloxacillin treatment. Anti-MRP2 antibody 
was used to detect the expression MRP2 in HepaRG cells to identify biliary cells. Bile canaliculi were 
shown to become dilated after prolonged flucloxacillin exposure. MRP2 appears to be within the 
cytoplasm of hepatocyte like cells (488 nm, green) after 24h flucloxacillin treatment, likely due to 
MRP2 transcription prior to localisation. 
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3.4.4.2 MRP2 AND PGP FUNCTIONAL ACTIVITY  

As the distribution of MRP2 changed across untreated and flucloxacillin treated HepaRG 

cells, the function of the MRP2 membrane transporter was assessed. CMFDA was applied to 

the cells for 30 minutes, where upon passive diffusion into the cell is transformed into an 

impermeable fluorescent product. MRP2 is responsible for organic anion secretion into the 

bile canaliculi, and can transport the impermeable fluorescent dye. Accumulation of CMFDA 

in the cell cytoplasm indicates little or no MRP2 expression. Fluorescence was retained within 

the epithelial cells of the HepaRG culture (Figure 3.16, top, left), confirming no activity of 

MRP2 in these cells.  

 

 
 

Figure 3.16. Assessment of membrane transporter function in HepaRG cells. CMFDA was used to 
identify active transport out of HepaRG cells. Epithelial cells (top, left) do not express MRP2, therefore 
CMFDA (488, green) is maintained within the cell cytosol. HepaRG cells actively transport CMFDA out 
of the cell cytoplasm into bile canaliculi (top, right). Flucloxacillin and piperacillin did not alter 
membrane MRP2 activity after 24 h treatment.  
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In the HepaRG hepatocellular-like cells CMFDA was transported out of the cell cytoplasm, 

localising in the bile canaliculi. HepaRG cells were treated with flucloxacillin and piperacillin 

for 24 hours prior to the addition of CMFDA. Piperacillin was used to assess the impact of a 

different β-lactam antibiotic. Between both drug treatments and the untreated control, 

hepatocellular-like cells did not display any changes in CMFDA transport (Figure 3.16). 

 

 
 

Figure 3.17. Assessment of membrane transporter function in HepaRG cells after prolonged 
flucloxacillin exposure. CMFDA localization in the bile canaliculi region of HepaRG cells increases after 
prolonged exposure to flucloxacillin (left, top to bottom). The intensity of CMFDA (488 nm, green) 
increases greatly when HepaRG cells are incubated with flucloxacillin for 1 week. Cells were observed 
using a 5x objective to look at overall CMFDA accumulation across a large number of cells.  
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The onset of flucloxacillin induced DILI is delayed, therefore the effect of continuous dosing 

was assessed. HepaRG cells were incubated in the presence of flucloxacillin after 24 hours, 

72 hours and 1 week of dosing with flucloxacillin. Media supplemented with flucloxacillin 

was made fresh for each dose to prevent quenching of the drug by serum proteins. The 

accumulation of CMFDA in the biliary epithelial of HepaRG cells increased as the duration of 

flucloxacillin incubation became longer (Figure 3.17, left). In addition to the increased 

accumulation of the fluorescent marker within the bile canaliculi, the morphology of the 

canaliculi appears to change with dilation occurring. This is particularly apparent after 1 week 

continual dosing (Figure 3.17, right). This accumulation in the biliary epithelia is indicative of 

active transport of CMFDA from the hepatocyte like cells via MRP2 and P-gp. 

In order to quantify the increase of CMFDA accumulation in the presence of flucloxacillin, 

the mean intensity of green fluorescence (488 nm) was normalised to the nuclear staining 

intensity (DAPI). This was performed to give an estimate of ‘green fluorescence per cell’.  

 

 
 

Figure 3.18. Quantification of membrane transporter function in HepaRG cells after prolonged 
flucloxacillin exposure. CMFDA (488, green) intensity was normalised to nuclear (blue, DAPI) intensity 
to calculate a ‘CMFDA signal per nucleus’ value. After prolonged flucloxacillin exposure the normalised 
CMFDA signal intensity significantly increases. All images were taken using the same exposure times. 
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Images were taken at 3 random points of each slide at a 5 x magnification in an attempt to 

remove technical error and bias towards particular clusters of cells. In keeping with the 

qualitative interpretation, it appears that the mean fluorescence of CMFDA does increase 

with the prolonged culture with flucloxacillin (Figure 3.17). Through performing a paired two-

tailed t-test between the different conditions it was revealed that at 1 week flucloxacillin 

exposure CMFDA intensity significantly increased from the untreated and 72 hour treated 

cells. While a significant increase from 24 hours to 1 week was not observed, the p-value was 

still relatively low (0.075). 

MK571 and valspodar were used to block the activity of MRP2 and P-gp respectively. Cells 

were cultured in the presence of 1.5 mM flucloxacillin overnight with the addition of one or 

both of the transporter blockers. Prior to incubation with flucloxacillin, cells were pre-treated 

with their respective blockers for 1 hour. In the control (no membrane transporter inhibitors) 

flucloxacillin can easily be seen localising within the bile canaliculi. This is observed as 

microtubule like structures on the maximum intensity projection image (MIP) (Figure 3.19, 

top left). The localisation of flucloxacillin within the F-actin bundles, representing bile 

canaliculi regions, are observed throughout the different Z-planes contributing to the final 

MIP (Figure 3.19, top right). Upon adding MRP2 block, covalent binding of flucloxacillin 

localisation within bile canaliculi reduced. Instead, covalent binding of flucloxacillin appears 

to be contained within the cell cytoplasm appeared to be increased (Figure 3.19, middle left). 

The same can be seen when adding P-gp block (Figure 3.19, middle right). Interestingly, when 

both MK571 and valspodar are added flucloxacillin modification can still be observed within 

bile canalicular regions (Figure 3.19, bottom left) as confirmed by Z-stack slices (Figure 3.19, 

bottom right). While this is the case, flucloxacillin does appear to be distributed within the 

cell cytoplasmic regions, however it is not conclusive whether this is significantly increased 

when compared to the control. 
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Figure 3.19. Assessment of the localization of flucloxacillin within bile canaliculi with the addition 
of transport inhibitors. MK571 and valspodar were used to block the activity of MRP2 and P-gp 
membrane transporters respectively. Flucloxacillin treatment at 1.5 mM overnight resulted in 
localization of drug within the bile canaliculi, as overserved in the MIP (top left) and Z-stack images 
(top right) (white arrows). MRP2 (middle left) and P-gp (middle right) inhibition resulted in less bile 
canalicular and more cytoplasmic modification (dotted line). When both blocks were added 
simultaneously (bottom) flucloxacillin could still be observed localizing within the bile canaliculi (white 
arrows, MIP (left) and Z-stacks (right)).  
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 P38/MAPK14 MODIFICATION BY FLUCLOXACILLIN 

P38α has been implicated in the activation of map kinase signalling pathways in the presence 

of flucloxacillin. Furthermore, previous studies have identified acetylation of key lysine 

residues augments p38α phosphorylation activity (K-53 & K-152) (Pillai et al., 2011) (Figure 

3.20A). Therefore, flucloxacillin binding to p38α was assessed. At high molar ratios of 

flucloxacillin to protein (50, 100, 150 and 200 to 1), flucloxacillin modification of p38α was 

observed using Western blot (Figure 3.20B). Although modification was observed, the sites 

of modification cannot be determined using this technique.  

 

 
 

Figure 3.20. Modification of P38α/MAPK14 by flucloxacillin. P38α/MAPK14 acetylation of lysine 53 
and 152 (A, left) augments phosphorylation activity. Modification of P38α/MAPK14 by flucloxacillin 
was detected using Western blot (B, right). Molar concentrations of 0, 50, 100, 150 and 200 to 1 (left 
to right) of flucloxacillin to protein were used.  

 

Coomassie staining of SDS-PAGE was used to excise bands corresponding to p38α protein to 

be characterized using mass spectrometry. At all conditions a single protein was consistently 

observed, with limited protein degradation occurring as drug concentration increases.   
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Figure 3.21. Coomassie stained SDS-PAGE of P38α/MAPK14 after flucloxacillin modification. 
P38α/MAPK14 flucloxacillin was separated using SDS-PAGE. Molar concentrations of 0, 50, 100, 150 
and 200 to 1 (left to right) of flucloxacillin to protein were used. The band corresponding to P38α 
incubated with flucloxacillin at a 1:200 molar ratio was excised for further analysis (dotted line).  

 

P38α incubated with flucloxacillin at a 1 to 200 molar ratio was excised from the coomassie 

stained SDS-PAGE gel (Figure 3.21, dotted line) and prepared for mass spectrometric 

analysis. Discovery proteomics was performed to enable characterization of all adducts 

formed, eliminating bias towards only K-53 and K-152. Indeed, the most common 

flucloxacillin adduct was formed on K-53 (Figure 5.4A), with modification apparent in a 

number of peptides.  Further characterization revealed simultaneous modification of K-53 

and K-54 (Figure 5.4B) along with adduct formation on K-45 (Figure 3.23A), K-76 (Figure 

3.23B) and K-139. Flucloxacillin binding to K-152 was not identified, although the native 

versions of the peptide were detected at relatively high intensity. 
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 DISCUSSION 

The aim of this chapter was to understand the diversity and localisation of flucloxacillin 

modified proteins using immuno-based assays. In order to meet these aims SDS-PAGE, 

Western blot and immunofluorescence microscopy were performed utilising the anti-

flucloxacillin antibody developed in chapter 1. For the characterization of flucloxacillin 

modified proteins relevant cell lines were investigated. The proteins extracted from liver like 

cell lines, HepG2 and HepaRG cells, in addition to primary human hepatocytes were 

characterized. As flucloxacillin is related to DILI it was important to investigate the cells 

considered to be most closely related to the human liver. Although the study of primary 

hepatocytes may be more physiologically relevant, limitations in cell culture techniques exist. 

For example, primary hepatocytes are already terminally differentiated and cannot be 

cultured for long durations; compared with cell lines.  In addition, flucloxacillin induced liver 

injury is linked with the incidence of HLA-B*57:01, therefore protein binding in C1R-B*57:01 

antigen presenting cells solely expressing HLA-B*57:01 was also investigated.  

HepaRG and HepG2 cells were used for the initial characterization of flucloxacillin modified 

proteins. Both cell lines were cultured as described in the presence and absence of 

flucloxacillin. Upon cell lysis and protein extraction, there was no observable difference in 

total protein diversity as defined using SDS-PAGE with Coomassie staining. Western blot 

analysis shows that proteins extracted from both cell lines are modified by flucloxacillin in a 

time and concentration dependent manner, which is consistent with previous publications 

(Jenkins et al., 2009; Meng et al., 2011). Protein diversity in C1R-B*57:01 cells was also found 

to be unchanged, with multiple proteins modified by flucloxacillin. In all these cell lines it is 

important to note that flucloxacillin antibody is highly specific and does not react with any 

proteins within untreated cell lysates. While previous studies have identified a handful of 

proteins (~6) undergoing modification in rat liver (Carey and van Pelt, 2005), here there is 

strong evidence for a much larger diversity. This is either since the high titre antibody 
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developed in this study was more sensitive than that used in previous studies, or that 

relatively high drug concentrations were used in cell monolayers cultures. To remove some 

of the limitations associated with liver like cell culture systems, primary human hepatocytes 

were also cultured in the presence of flucloxacillin. Again, a dose dependent increase in 

flucloxacillin modification of a wide range of proteins was detected, indicating flucloxacillin 

modification can occur in a more physiologically relevant system. Moving forward, we are 

investigating flucloxacillin covalent binding in more physiologically relevant hepatic models 

such as the 3D spheroids recently developed for drug safety screening (Gaskell et al., 2016).  

A previous study using mass spectrometric analysis identified flucloxacillin modified HSA 

from patient serum samples (Jenkins et al., 2009). In this chapter serum samples were 

probed with the anti-flucloxacillin antibody to determine if any other serum proteins were 

targets for flucloxacillin modification. HSA was the only protein found to be targeted by 

flucloxacillin. As HSA is by far the most abundant serum protein, along with its evolutionary 

function as a small molecule carrier protein, it is perhaps not surprising that it was exclusively 

modified by flucloxacillin within blood derived from patients receiving flucloxacillin therapy. 

Reversible drug binding to albumin is an important factor in drug dosage calculations. Usually 

the main consideration in the determination of drug dose is the ‘free’ unbound quantity for 

several factors. Protein binding can prevent drugs to be both metabolized into reactive 

compounds or to reach toxic levels. Furthermore, irreversibly bound fractions can be 

released slowly to maintain an equilibrium. This binding and release of drugs changes 

depending on both physiological and chemical conditions, making it a complex process to 

understand (Tatlidil, Ucuncu and Akdogan, 2015). While the function of albumin in reversible 

drug binding is widely understood, less is known of the fate of covalent interactions.  

Immunofluorescence imaging was used to detect the localisation of flucloxacillin binding in 

the previously mentioned cell culture systems. C1R-B*57:01 cells show both intracellular and 

extracellular modification. While flucloxacillin covalent binding is mainly located in the 
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cytoplasmic region of these C1R-B*57:01 cells it is important to note that the method 

associated with image acquisition could contribute to a false positive signal. Multiple images 

are taken through different planes of focus (Z-stacks) before being merged into one image 

(MIP). This could, in theory, make purely extracellular modification appear to localise within 

the cell (Figure 3.24). As intracellular modification was found on multiple planes of focus, 

and proteins extracted from C1R-B*57:01 cells were modified as detected by Western blot, 

this cytoplasmic protein modification appears genuine.  

 

 
 

Figure 3.24. Assessment of intracellular protein modification using fluorescence microscopy. As cells 
are spheroid (A) and not flat, Z-stack images are taken through different focus points/planes of the 
cell (B). Once combined, extracellular modification could be mistaken for intracellular modification 
(C). 

 

Interestingly, proteins extracted from HepaRG cells are more readily modified than those 

from HepG2 cells as detected using Western blot analysis. While the underlying mechanism 

for this is still largely unknown, protein modification on HepG2 cells is largely extracellular, 

with very limited flucloxacillin detected within the cell cytoplasm. This was identified in both 

SDS-PAGE Western blots and immunofluorescence microscopy, and can be attributed to a 

couple of different factors. Firstly, HepG2 cells may not have the required influx transporters 

to facilitate flucloxacillin entering the cell. While the proteins responsible for the active 

transport of flucloxacillin are largely unknown, it is interesting to note that HepG2 cells have 

low transporter abundance compared with primary cells (Sison-Young et al., 2015). Secondly, 

HepG2 cells are naturally high in the abundance of the nuclear pregnane X receptor (PXR), 

responsible for maintaining bile acid homeostasis. During cholestasis bile acid concentrations 

A B C
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accumulate to toxic concentrations resulting in the increase of efflux activity in a PXR 

mediated fashion. Flucloxacillin has been identified as a potential PXR ligand, resulting in the 

increase of PXR-related gene expression. This in turn is believed to result in the increased 

activity of efflux transporters within HepG2 cells when exposed to flucloxacillin (Andrews et 

al., 2010). In this case, limited intracellular flucloxacillin binding may be attributed to fast 

clearance upon entering the cell.  

In contrast to the extracellular binding to HepG2 cells, intracellular modification of proteins 

within HepaRG cells treated with flucloxacillin was observed. Perhaps more interestingly, 

flucloxacillin treatment resulted in the localization of drug within the condensed F-actin 

regions. This is indicative of the bile canaliculi, as confirmed by the presence of MRP2 and P-

gp in a similar positioning to flucloxacillin. Once metabolised to 5-hydroxymethly-

flucloxacillin (5’OH-flucloxacillin), as generated by CYP3A4, flucloxacillin becomes toxic to 

biliary epithelial cells while remaining non-toxic to hepatocytes (Lakehal et al., 2001; 

Andrews et al., 2010). Hepatic cholestasis is characterized by the obstruction of bile flow out 

of the liver, therefore covalent binding at this location within the bile canaliculi could be 

associated with the observed toxicity. It is important to note that 5’OH-flucloxacillin can also 

form protein adducts which could be detected by the flucloxacillin antibody. Therefore, as 

HepaRG cells do over express CYP3A4 (Sison-Young et al., 2015) is it likely that the metabolite 

is also residing within the bile canaliculi.  

CMFDA was used to detect the efflux activity of the membrane transporters MRP2 and P-gp 

in HepaRG cells. As cells were pre-incubated with flucloxacillin for longer time courses, the 

active transport of CMFDA from hepatocytes into biliary epithelia increased. It was also 

noticed that bile canaliculi dilated when cells were incubated with flucloxacillin for prolonged 

periods of time, as observed in previous publications (Burban et al., 2017). This is indicative 

of flucloxacillin mediating increased efflux activity over time, perhaps due to interactions 

with PXR. Studies characterizing the role of transporters in liver disease have shown that 
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polymorphisms in the bile salt efflux pump (BSEP) membrane transporter are associated with 

different forms of liver injury (Lang et al., 2007), making the role of transporter activity 

relevant to DILI. However, whether these transporters are involved in the induction of 

flucloxacillin induced cholestatic liver injury are still not fully understood. To investigate 

efflux transporters on flucloxacillin translocation, MK571 and valspodar were used to block 

the activity of MRP2 and P-gp, respectively. HepaRG cultures containing no transport 

inhibition resulted in flucloxacillin localizing within bile canaliculi. Localization of flucloxacillin 

within bile canaliculi was not as defined when MRP2 or P-gp were blocked independently. 

However, when both transporters were inhibited simultaneously, localization within the bile 

canaliculi was still observed. Secondly, MRP2 and P-gp may not directly be involved in 

flucloxacillin transport, and are generally upregulated during a prolonged presence of 

flucloxacillin through a cellular stress response. Other important efflux transporters such as 

BSEP were identified to be downregulated in the presence of 6 different cholestatic inducing 

compounds in one study (Burbank et al., 2015). Although contradictory to our results with 

MRP2 and P-gp, this highlights the complexity of the interplay between all of these 

membrane transporters during periods of cell stress. Further studies using a range of 

transport inhibitors must be performed in order confirm the conclusions for this section of 

the work. 

Although a wide range of proteins were found to be modified by flucloxacillin in different cell 

types, the identity of the vast majority remains unknown. Mass spectrometry was used to 

characterize modified proteins, however due to MS/MS fragmentation of flucloxacillin it is 

not possible to confidently identify the peptide sequence, and so protein source, using 

commercially available software. That said, manual interpretation of peptide spectra 

revealed modification of the of 14-3-3 protein. This family of proteins are a group of 

conserved regulatory molecules expressed in all eukaryotic cells. Their main function is 

involved in the regulation of protein phosphorylation in MAPK pathways. Multiple isoforms 
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exist, each with differential localisation and function. For example the gamma isoform, 

originally thought to be specific to nervous tissue, has been shown to be a potential marker 

in the diagnosis of Creutzfeldt-Jakob disease (Zerr et al., 1998). However, it has also been 

implicated in vascular smooth muscle cell activation and metabolism in responses to vessel 

damage (Autieri et al., 1996). Further studies have identified the role of 14-3-3 epsilon in 

gastric cancer (Leal et al., 2012) while 14-3-3 theta has a protective role in Parkinson’s 

disease (Slone, Lesort and Yacoubian, 2011). The modification of other peptides was 

identified through the presence of flucloxacillin fragmentation ions, however manual 

characterization was not possible. Characterization of proteins modified by flucloxacillin 

were attempted in HepaRG cells, however due to the low relative abundance of modified 

proteins, resulting in low quality MS/MS spectra containing characteristic drug fragment 

ions, peptide annotations could not be manually assigned. 

While this thesis is primarily focussed on the immune involvement in DILI, non-immune 

mediated cholestatic liver injury has been observed with flucloxacillin in vitro. P38α map 

kinase activity results in the observed cholestasis in the study performed by Burban et al. 

However, previous publications have observed P38α as the trigger for a number of pathways 

resulting in both immune activation and cell death (Arrighi et al., 2001; Aiba et al., 2003; 

Burban et al., 2017). One theory for the enhanced phosphorylation activity of P38 in the 

presence of flucloxacillin is direct binding to key amino acid residues involved in its activity. 

It is understood that acetylation of K-152, located in the substrate binding domain, and K-53, 

in the ATP-binding pocket, results in increased enzymatic activation (Pillai et al., 2011). 

Flucloxacillin was found to modify P38α by Western blot and mass spectrometric analysis at 

high molar ratios of drug to protein. However, the concentrations used unlikely reflect 

physiologically relevant conditions. While flucloxacillin modification of K-53 was found, this 

does not implicate a role in the augmentation of P38α phosphorylation activity. In fact, as K-

53 is involved with ATP-binding, it’s more likely that flucloxacillin would inhibit the activity of 
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P38. The relevance of the other amino acids modified by flucloxacillin is currently not 

understood. In order to test the effect of flucloxacillin modified P38α, kinase activity would 

need to be assessed. Challenges would appear in trying to purify flucloxacillin modified P38α 

while keeping the protein enzymatically active. For these reasons alone, it was not feasible 

in the scope of this project to perform such assays. Future studies would need to address 

both limitations in order to draw conclusions from the effect of flucloxacillin on P38α activity, 

and its relevance in non-immune mediated cholestatic liver injury.  

In summary, a diverse range of intracellular and extracellular proteins derived from both 

immune and hepatic cells were found to be targets of flucloxacillin. These flucloxacillin 

modified proteins in HepaRG cells mainly localized within bile canaliculi, potentially providing 

a pool of localised antigens involved in the induction of local immune reactions. 

Furthermore, covalent binding of flucloxacillin to proteins involved in cellular signalling 

pathways may alter the functions of kinase activity, leading to non-immune mediated 

cholestatic liver injury. Regardless of the protein targets and localisation, flucloxacillin 

modified proteins could be processed intracellularly and presented by antigen presenting 

cells, leading to the activation of immune responses. 
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 INTRODUCTION 

The ability for the immune system to detect foreign antigens leading to subsequent cell 

death of infected cells/tissue is an evolutionary response to infections. In addition to 

microbial infections, cancer accumulates in 1000s of genetic mutations resulting in the 

presentation of neoantigens, culminating in the destruction of malignant cells by T cells 

(Diken et al., 2017). Understanding this interaction between antigens and immune cells was 

crucial in understanding tissue rejection is cases of organ transplantation. Early studies found 

that skin graft rejection occurred within 10-14 days of surgery. In animal models, upon re-

challenge with skin from the same donor, the recipient rejected the tissue within a few days; 

indicating immunological memory (Abbas et al., 2014). This led to the discovery of the 

involvement of the adaptive immune system in transplant rejection, in particular MHC types. 

Interestingly, MHC was termed from ‘histo, tissue’ compatibility with the host immune 

system. While other mechanisms of transplant rejection exist, such as polymorphic antigens 

other than MHC molecules, these are termed minor histocompatibility antigens. MHC are 

responsible for the observed strong and rapid immune reactions mediated through T cell 

activation. This occurs through several molecular mechanisms. Firstly, recipient CD8+ T cells 

can recognize self MHC molecules presenting donor derived peptides. Secondly, CD8+ self T 

cells may interact with donor MHC resulting in allogenic activation, due to thymic deletion 

not accounting for foreign MHC proteins. This may or may not include an interaction with 

the MHC peptide itself, and all three are termed direct recognition. Indirect recognition 

states that allogenic donor peptide-MHC complexes are taken up by the recipient APCs, 

processed intracellularly, and the donor MHC peptide is presented on the recipient MHC. 

This results in the activation of CD4+ T cells, and immune recruitment (Abbas, Lichtman and 

Shiv, 2018).  
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The idiosyncratic nature of drug-induced type B hypersensitivity reactions makes the 

involvement of the adaptive immune system a major component in the development and 

progression of disease. At present, three models are proposed for the interaction between 

drugs and the immune system through MHC and TCRs. Non-covalent interactions between 

the drug, peptide-MHC complex and TCR, termed the PI hypothesis (Schnyder et al., 1997), 

is believed to result in the activation of T cells. Alternatively, the hapten/pro-hapten 

hypothesis states that reactive drugs or drug metabolites (haptens) bind covalently to 

proteins to initiate immune reactions (Landsteiner and Jacobs, 1935). Both hypotheses are 

reliant on intracellular processing of protein antigens to peptides followed by presentation 

of peptide-HLA complexes by antigen presenting cells. Although processing is required to 

generate the peptide antigen, the PI mechanism occurs independently of the processing 

event. However, there remains controversy as to whether drugs interact preferentially with 

HLA proteins or HLA binding peptides. Functional studies using parent drugs, metabolites 

and synthetic drug-modified proteins or designer HLA binding peptides, and T cell lines and 

clones from patients with hypersensitivity, support both hapten and pharmacological 

interactions hypotheses (Schnyder et al., 2000; Manchanda et al., 2002; Naisbitt et al., 2007; 

El-Ghaiesh et al., 2012; Ogese et al., 2014; Yaseen et al., 2015; Meng et al., 2016, 2017). 

However, knowledge of structures generated naturally and displayed by HLA proteins remain 

largely ill-defined.  

In recent years, mass spectrometric analysis of HLA-peptide complexes has identified 

thousands of peptides naturally presented on the cell surface by HLA molecules. The peptide 

sequence information derived from this method, in conjunction with X-ray crystallographic 

analysis of HLA peptide complexes, has provided new insights into the mechanisms of 

immune-mediated disease. Mass spectrometry was first utilised for the characterization of 

MHC peptides in 1992 (Hunt et al., 1992). These earlier studies characterizing the cell surface 

presentation of MHC peptides identified low sequence IDs in comparison to more recent 
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studies. Investigating the peptides presented by HLA-B*51:01 in a 2006 publication resulted 

in 64 peptides identified from an initial starting material of 4x109 cells (Gebreselassie, Spiegel 

and Vukmanovic, 2006). More recently studies focussing on MHC I peptide presentation on 

breast cancer cell lines identified 3,186 MHC peptides from a total of 2x109 cells (1x108 per 

experiment) (Rozanov et al., 2018). The improvement in peptide identification is largely due 

to the availability of technology with high sensitivity enabling deeper profiling of MHC 

peptides. Typically, MHC peptide identification using mass spectrometry is performed using 

data-dependant acquisition (DDA), meaning a certain ion intensity threshold, relative to 

other ions in the sample, needs to be reached in order to induce fragmentation. Therefore, 

extensive sample pre-fractionation must be performed to facilitate the capture of low 

abundant peptides. HPLC is often used in the preparation of complex samples. Here, 

fractionation is based on the chemical properties of the analytes, for example, C18 will 

separate samples based on peptide/protein hydrophobicity.  

The identification of antigenic MHC peptides has not only allowed for developing 

personalised immunotherapy for cancer and auto-immune diseases, but has also shed light 

on the mechanisms of diseases. In terms of drug hypersensitivity, research from three teams 

found that the antiretroviral drug abacavir interacts with the peptide binding cleft of HLA-

B*57:01 altering the shape and chemistry of the HLA molecule and the peptides that bind 

(Illing et al., 2012; Norcross et al., 2012; Ostrov et al., 2012). This gave rise to the third 

hypothesis of MHC TCR interactions. Abacavir, a NRTI used in the treatment of HIV infection, 

causes abacavir hypersensitivity syndrome (AHS) in 55% of patients taking the drug who are 

HLA-B*57:01 positive (Mallal et al., 2002; Lucas et al., 2015). While the genetic association, 

and subsequent genetic screening prior to treatment, between AHS and HLA-B*57:01 was 

identified in the early 2000’s it was not until 2012 when the molecular mechanisms of disease 

were defined (Illing et al., 2012; Norcross et al., 2012; Ostrov et al., 2012). Due to the genetic 

predisposition of AHS and HLA-B*57:01 the overall repertoire of MHC peptides presented by 
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the allele in the presence of abacavir was investigated using mass spectrometry. Illing et al 

were among the first to discover that in the presence of abacavir the peptides that are 

presented by HLA-B*57:01 are altered with up to 25% of the eluted peptides being novel 

self-peptides. MHC I peptides are generally 9-11 amino acids long and have specific residues 

(position 2 and Ω; the C-terminal amino acid residue) where they anchor to the HLA 

molecule. While the overall length distribution of peptides was found to remain the same, 

the abundance of leucine and isoleucine at the PΩ residue was increased, while tyrosine, 

tryptophan and phenylalanine all decreased (Illing et al., 2012). Further structural elucidation 

of the drug peptide-HLA complex revealed that abacavir bound non-covalently in the vicinity 

of the F-pocket of the HLA binding groove. Up to a thousand abacavir unique HLA binding 

peptides were identified, however, their contribution to the CD8+ T cell response seen in 

abacavir hypersensitive patients is still to be defined. Importantly, the interaction between 

abacavir and HLA-B*57:01 with peptide repertoire change has not been observed with other 

drugs. 

The immune involvement in flucloxacillin DILI, in particular the genetic predisposition to HLA-

B*57:01, makes the investigation of the immunopeptidome key to this study. In the previous 

chapter flucloxacillin was found to bind extensively to intracellular and extracellular proteins 

in a range of cell types, including C1R-B*57:01 B lymphoblastoids. As the mechanisms for 

immune activation in drug hypersensitivity are dependent on antigen processing, the 

immunopeptidome of C1R-B*57:01 cells cultured in the presence of flucloxacillin was 

investigated. Although typically flucloxacillin is believed to activate T cells through the 

hapten hypothesis, the shared genetic predisposition between abacavir and flucloxacillin 

meant it was important to first identify any changes in the peptide repertoire in the presence 

of drug treatment.  
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 AIMS 

Direct binding of flucloxacillin or its degradation products to HLA-B*57:01 through non-

covalent bonds may alter the peptide binding repertoire similar to abacavir. Thus, the 

objective of this chapter was to profile the flucloxacillin HLA-B*57:01 antigenic repertoire, 

with the intention of discovering whether altered self-peptides can be displayed on the 

surface of antigen presenting cells for presentation to CD8+ T cells. In order to achieve this, 

the following aims were set; 

1. Development of workflows to enable immunoaffinity capture of MHC I peptide 

complexes. 

2. Implementation of HPLC fractionation and mass spectrometric methods to study the 

MHC I repertoire of low abundant analytes. 

3. Characterize the antigenic profile of MHC I peptides eluted from control, abacavir 

and flucloxacillin treated C1R-B*57:01 cells. 
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 METHODS 

 CELL CULTURE 

The lymphoblastoid C1R cell line  (Storkus et al., 1987; Zemmour et al., 1992) deficient in 

MHC-class I, transfected to express HLA-B*57:01, were used as a source of antigen 

presenting cells. C1R-B*57:01 cells were maintained in F1 media (RPMI 1640 supplemented 

with 10% FBS (Invitrogen, Paisley, UK), 100 mM L-glutamine, 100 µg/mL penicillin, 100 U/mL 

streptomycin), 1mM HEPES and 50 µg/mL geneticin (37°C, 5% CO2). C1R-B*57:01 cells were 

grown in multiple T175 culture flasks (Nunc) until a cell number of 1x109 cells was achieved. 

Treatment with 35 µM abacavir or 1.5 mM flucloxacillin sodium salt was for 10 days or 48 

hours, respectively, unless otherwise stated. Cells were subsequently harvested by 

centrifugation (RT, 453 x g), snap frozen in liquid nitrogen and stored at -80°C until required. 

W6/32 (Sigma Aldrich, Dorset, UK) mouse hybridoma cells lines, used for the production of 

anti-HLA-A,B,C IgG2a, were maintained in F1 media (37°C, 5% CO2). W6/32 hybridomas were 

grown to confluence before the supernatant was recovered after centrifugation and stored 

at 4°C until required. 

 ASSESSMENT OF FLUCLOXACILLIN TOXICITY ON C1R-B*57:01 CELLS 

Flucloxacillin toxicity was assessed by culturing C1R-B*57:01 cells in the presence of drug at 

varying concentrations. Cell proliferation was measured by the addition of [3H]thymidine (0.5 

µCi/well, 5 Ci/mmol, Morovek Biochemicals Ltd, Brea, CA, USA) for 16h of culture followed 

by scintillation counting. 

 PAN-MHC-CLASS I ANTIBODY PURIFICATION AND VALIDATION  

W6/32 anti-HLA-A,B,C IgG2a antibody was purified through affinity capture through a 10 mL 

bed volume of protein A sepharose (PAS) (fast flow, Sigma Aldrich, Dorset, UK). Supernatant 

was pooled, pH adjusted to 8.0, and filtered through 0.45 µM pore size nitrocellulose 

(Sarstedt, Leicester, UK) prior to affinity capture. After washing with PBS W6/32 antibody 
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was eluted in 0.1M citric acid and pH adjusted with 1M Tris. W6/32 antibody was quantified 

using the Nanodrop 1200 spectrophotometer (ThermoScientific, MA, USA) at A280. Flow 

cytometry was used to identify W6/32 binding to MHC I on multiple B cell lines through 

adding 10 µg (unless otherwise described) W6/32 antibody to 1x106 cells for 1 hour, followed 

by PE-A conjugated anti mouse secondary antibody (Sigma-Aldrich). The FACS Canto II flow 

cytometer was used to acquire data that was subsequently analyzed using associated FACS 

DIVA software. 

 PURIFICATION OF MHC-B-57:01 PEPTIDE COMPLEXES 

Cell pellets at a cell density of 1x109 were lysed in 0.5% IGEPAL, 50 mM Tris pH 8.0, 150 mM 

NaCl and protease inhibitors (complete protease inhibitor cocktail, Roche). Pellets were 

manually disrupted with pipetting until a single pellet was no longer visible. Lyzed cells were 

incubated while rocking at 4°C for 1h. Lysates were cleared by ultracentrifugation (180,000 

x g) and passed through unconjugated PAS (Repligen, USA).  MHC class I complexes were 

captured through anti-MHC 1 (W6/32) antibody conjugated to PAS, prepared as previously 

described (Dudek et al., 2016). For every 109 cells used, 10 mg of W6/32 conjugated to 1 mL 

of PAS, termed column volume (CV) was used. Proteins and peptides captured by the 

unconjugated PAS pre-column and W6/32 affinity column were washed with 10 CV of cold 

wash buffer 1 (0.005% (w/v) IGEPAL, 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5 mM EDTA, L 

pepstatin A), followed by 10 CV of cold wash buffer 2 (50 mM Tris-HCl pH 8.0, 150 mM NaCl), 

then 10 CV of cold wash buffer 3 (50 mM Tris-HCl pH 8.0, 450 mM NaCl) and finally 10 CV of 

cold wash buffer 4 (50 mM Tris-HCl pH 8.0).  

MHC-bound complexes were eluted in 5 CV 10% acetic acid and manually loaded onto a 

monolithic C18 column (100 x 4.6 mm Onyx, Phenomonex) in 0.1% trifluoroacetic at 2 

mL/min connected to an Agilent 1260 HPLC. Sample loading was performed for 6 minutes 

with a wavelength absorbance set to 254 nm. The mixture of MHC-bound peptides, MHC 
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heavy chain and β2-microglobulin were subsequently fractionated using mobile phases 

containing 0.1% TFA(A) and 80% ACN/0.1% TFA (B) with a wavelength detection of 215 nm 

(Table 4.1).  

Table 4.1. MHC-bound peptide HPLC method parameters. MHC peptides and protein components of 
eluted peptide-MHC complexes were separated using mobile phases containing 0.1% TFA (A) and 80% 
ACN/0.1% TFA (B). Fractions were taken across the gradient at 0.25 min and 1 minute intervals for 
hydrophilic and hydrophobic constituents, respectively.  

Time %A %B Flow (ml/min) Wavelength Fractionation Trigger 

0:00 98 02 2 215 Off 

0:15 85 15 2 215 

Time-based with 15 second 
timeslices 

4:15 70 30 2 215 

12:15 60 40 2 215 

22:15 55 45 2 215 

23.00  
Time-based with 1 min 
timeslices 

24:15 01 99 2 215 

26:15 00 100 2 215 

31.00  

Off 32:15 98 02 2 215 

35.00 98 02 2 215 

 

 MASS SPECTROMETRIC ANALYSIS OF HLA-B*57:01 PEPTIDE-MHC 

Peptide containing HPLC fractions were pooled (as described later in this chapter) and 

concentrated to 10 µL in a vacuum centrifuge (Speedvac, Eppendorf) at 30°C. Peptide pools 

were analyzed using a Triple TOF 5600 mass spectrometer (Sciex) and were delivered into 

the instrument using a Eksigent NanoLC Ultra HPLC system. Samples were injected onto a 

nanoACQUITY UPLC Symmetry C18 Trap Column (P/N 186007496, Waters, MA, USA) and 

washed for 10 min at 2 µL/min with 0.1% FA. A gradient from 1.7% ACN/0.1% FA to 64% 

ACN/0.1% FA was applied over 79 min at a flow rate of 300 nL/min through a Peptide BEH 

C18 nanoACQUITY Column (P/N 186003815, Waters, MA, USA). MS was operated in positive 

ion mode with survey scans of 200 ms, with an MS/MS accumulation time of 150 ms for the 

20 most intense ions (total cycle time 3.2 seconds). A threshold for triggering MS/MS of 40 

counts per second was used with an exclusion of former target ions for 30 seconds. Rolling 

collision energy was applied. Data dependant acquisition of ions in the mass range of 200-
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1,800 amu (MS) and 60-1,800 amu (MS/MS) was collected using Analyst TF 1.6. The 

instrument was automatically calibrated using a β-galactosidase digest every 3rd sample. 

MHC heavy chain data was acquired in the same way with the following adjustments. A 

gradient of 5% ACN/0.1% FA to 50% ACN/0.1% FA was applied at 300 nL/min over 90 mins.  

MS survey scans of 250 ms with MS/MS accumulation times of 100 ms were applied to ions 

over 100 counts per second for the 25 most abundant ions (total cycle time 2.8 s). Former 

target ions were excluded for 12 seconds. Ions in the region of 300-1,650 amu were acquired 

for MS and 100-1,400 amu for MS/MS. 

 HLA PEPTIDE REPERTOIRE ANALYSIS 

ProteinPilot (Sciex, version 5.0, revision 4,769, Paragon algorithm 5.0.0.0.0. 4767) was used 

to search the peak lists against the UniProt-Sprot database (all species 557,986 entries, July 

2018) with Homo sapiens species restriction (20,386 entries) and decoy reverse database 

(total 40,772 entries searched against). Biological modifications were set as variable 

modifications and enzymatic restriction was removed. All MS/MS peptide pool datasets were 

processed in one batch using a false discovery rate (FDR) cut-off of 5%. Further validation of 

peptides within the 5% false discovery threshold were processed through the optimisation 

of previously described methods (Illing et al., 2012) (section 4.4.5).  

 HLA-B* 57:01 MODELLING  

The crystal structure of HLA-B*57:01 (PDB 3VRJ) (Illing et al., 2012) was used to generate 

models by removal of abacavir and the peptide using Pymol (2.0, Schrodinger). GOLD 5.2 

(CCDC software) (Jones et al., 1997) was used to dock flucloxacillin and penicilloic acid within 

the binding groove, with the binding site defined as 15 Å around the binding point. A generic 

algorithm with ChemPLP as the fitness function was used to generate 10 binding modes per 

ligand. Default settings were retained for the “ligand flexibility”, “fitness and search options”, 

and “GA settings”.  
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 RESULTS 

 MHC CLASS I SURFACE EXPRESSION ON RELEVANT CELL LINES 

The assessment of MHC class I surface expression was important to determine the suitability 

of C1R-B*57:01 cells peptide elution studies. While C1R-B*57:01 cells were used in the 2012 

abacavir paper (Illing et al., 2012), the determination of their physiological relevance with 

regards to MHC I expression was compared to other cell types using flow cytometry (Figure 

4.1). 

 

 
 

Figure 4.1.  Quantification of MHC class I cell surface expression on B cells. C1R-B*57:01 cells fresh 
from liquid nitrogen stocks (vi) and C1R-B*57:01 cells in culture for >12 months (v) shows no reduction 
in MHC I expression. Parental C1R cells (iii) and T2-B*57:01 cells (iv) lacking in antigenic processing 
machinery express low MHC I as expected. B cells derived from patients with hypersensitivity 
reactions show the highest MHC I surface expression (vii & viii). Unstained cells are shown (i) with the 
exception of unstained T2-B*57:01 (ii) which reported a higher background autofluorescence. 

 

As C1R-B*57:01 cells were kept in culture for a considerable period of time, it was important 

to confirm that expression of MHC I did not decline over time. C1R-B*57:01 cells cultured 

fresh from liquid nitrogen stocks (Figure 4.1, vi) showed no increase in HLA class I expression 

from C1R-B*57:01 cells kept in culture for >12 months (Figure 4.1, v). Parental C1R cells are 

known to have low HLA class I expression which was confirmed (Figure 4.1, iii). T2-B*57:01 

cells carry the HLA-B*57:01 gene however do not possess TAP antigen processing machinery. 

Therefore, due to the lack of the ability to load antigens onto MHC through TAP processing 

pathways HLA class I surface expression is lower than C1R-B*57:01 cells (Figure 4.1, iv). T2-
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B*57:01 MHC I expression remained higher than parental C1Rs as other processing pathways 

exist. Expression of MHC I was also similar to that of many immortalised cell lines derived 

from patients (Figure 4.1, vii & viii). Further analysis of MHC I expression was performed on 

patient derived B cells, from both healthy controls (HC) (Figure 4.2) and hypersensitivity 

patients (H-Pt) (Figure 4.2). This comparison also performed to understand HLA class I 

expression on C1R-B*57:01 cells compared with more physiologically relevant sources. Here 

we can conclude that C1R-B*57:01 cells and immortalised patient derived antigen presenting 

cells expressed comparable levels of MHC class I molecules.  

 

 

Figure 4.2. Further analysis of MHC I surface expression from patient derived B cells in comparison 
to C1R-B*57:01 and parental C1R cells. Proteins on the surface of C1R-B*57:01 cells and B cells from 
healthy volunteers (HC) and hypersensitive patients (H-Pt) shows that similar levels of MHC class I 
proteins are expressed. 

 

 FLUCLOXACILLIN TOXICITY ON C1R-B*57:01 CELLS 

In order to detect any changes to the HLA-B*57:01 immunopeptidome it was important to 

use a concentration of flucloxacillin that would maximise the likelihood of any alterations to 

be observed, while maintaining cell viability. Therefore, the toxicity of flucloxacillin on C1R-

B*57:01 cells was assessed. Cells incubated at a range of flucloxacillin concentrations found 

that up to 2 mM did not reduce cell viability (Figure 4.3). Beyond 2 mM, toxicity was quickly 

observed. Based on these results, a concentration of 1.5 mM flucloxacillin was used for 

subsequent MHC peptide elution studies.  
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Figure 4.3. Flucloxacillin toxicity on C1R-B*57:01 cells. C1R-B*57:01 cells were incubated at different 
concentrations of flucloxacillin for 24 hours. Subsequent incubation with the incorporation of tritiated 
thymidine for 16 hours shows toxicity is limited up to 2 mM (n = 3). 

 

 OPTIMISATION OF C1R-B*57:01 CELL CULTURE CONDITIONS 

To observe any changes in the immunopeptidome of C1R-B*57:01 cells, comparisons 

between treated and untreated (control) cells were required. It was therefore important to 

understand whether the cell culture condition could alter the levels of MHC I presentation. 

Firstly, C1R-B*57:01 cell culture medium was supplemented with FBS and grown in cell 

culture flasks (Figure 4.4A) or roller bottles (Figure 4.4B). After identifying no difference in 

MHC I abundance between the growth vessels used, the effect of media and flucloxacillin 

treatment was assessed. C1R-B*57:01 cells were cultured in media supplemented with 

human (AB) serum (Figure 4.4C), again no change in MHC I abundance was identified. Finally, 

the addition of flucloxacillin also resulted in no changes (Figure 4.4D). This enabled the 

conclusion to be drawn that MHC I abundance remains consistent irrespective of the cell 

culture conditions used.   
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Figure 4.4. Effect of cell culture conditions on MHC I expression. (A) C1R-B*57:01 cells cultured in 
the presence of FBS and grown in T75 flasks. (B) C1R-B*57:01 cells cultured in the presence of FBS in 
roller bottles. (C) C1R-B*57:01 cells grown in the presence of human AB serum in roller bottles. (D) 
C1R-B*57:01 cells cultured in human AB serum, with 1.5 mM flucloxacillin in roller bottles. MHC I 
expression was comparable across all conditions.  

 

 MHC I IMMUNOAFFINITY CAPTURE METHOD OPTIMISATION 

For the investigation of drug-related immunopeptidomics immunoaffinity capture of MHC I 

along with extensive peptide pre-fractionation prior to mass spectrometric analysis is 

required. One of the initial steps in the peptide elution protocol is to lyse antigen presenting 

cells to release MHC I into cell lysate. Cryogenic milling of frozen cell pellets is usually 

performed at sub - 150°C temperatures prior to cell lysis. Here a 10 mm stainless steel ball is 

used to manually smash the cell pellet in a RETCH mixer mill prior to the addition of lysis 

buffer. As this is not possible in Liverpool, manual lysis using a pipette tip was compared to 

cryogenic milling. This optimisation was performed within the Purcell laboratory, Monash 

University, Melbourne Australia. For this, the quantity of β2M extracted from 2 identical cell 

pellets was assessed. As β2M is a small sub-unit of MHC I, the retention time when 

fractionated using HPLC is separate from MHC heavy chain and protein contaminants; a peak 

at around 30 mins is indicative of β2M. It was observed that the quantity of β2M extracted 

A B C D

E C1R parental

A - C1R-B*57:01 cultured with FBS in flasks

B - C1R-B*57:01 cultured with FBS, with 1.5 mM 
flucloxacillin in roller bottles

C - C1R-B*57:01 cultured with AB serum in roller bottles

D - C1R-B*57:01 cultured with AB serum, with 1.5 mM 
flucloxacillin in roller bottles

E - C1R-B*57:01 cell culture conditions compared to C1R parental cells
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from both cell pellets was comparable (Figure 4.5). This removed the requirement of 

cryogenic milling for C1R-B*57:01 MHC I extraction, allowing for implementation using 

equipment available within Liverpool.  

 

 
 

Figure 4.5. Assessment of the cell lysis method for the extraction of MHC I. C1R-B*57:01 (5 x 108) 
cells were lysed using cryogenic milling (A) or manual lysis by pipetting (B) prior to MHC I 
immunoaffinity capture. Comparable MHC I levels were isolated, as determined by β2M intensity.  

 

Further assessment of MHC I expression on C1R parental and C1R-B*57:01 cells was 

performed to compare those in Liverpool to those routinely used in the Purcell Lab.  

 

 
 

Figure 4.6. HLA-B*57:01 encoded MHC class I surface expression on C1R parental cells and C1R-
B*57:01 cells from cultures in Liverpool and Monash University. Parental C1Rs (B & C) equally 
expressed HLA-B*57:01 encoded surface MHC I. C1R-B*57:01 cells cultured at Monash University (E) 
showed higher expression of MHC I compared with Liverpool (D), however both showed increased 
expression when compared to both parental C1Rs and the unstained cells (A). 
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C1R parental cells expressed similar levels of MHC I in both those cultured in Liverpool and 

those at Monash (Figure 4.6B & C). C1R-B*57:01 cells in Liverpool (Figure 4.6D) showed lower 

MHC I expression compared with those cultured in Monash (Figure 4.6E). That said, MHC I 

expression of C1R-B*57:01 cells from Liverpool were higher compared to parental cells.  

To capture MHC class I from cell lysates, anti-HLA-A, B, C antibody (W6/32) was required. For 

each elution 10 mg of W6/32 antibody was used, therefore in house production was essential 

due to the costs associated with purchasing such large quantities of antibody. Cell culture of 

W6/32 lymphoblastoid hybridoma cells that secrete W6/32 antibody was scaled up in order 

to generate large volumes of cell supernatant. W6/32 antibody was subsequently captured 

by passing the supernatant through a PAS column. After washing with PBS, antibody was 

eluted from PAS using mild acid extraction (0.1 M citrate, pH 3.0) and buffer exchanged into 

PBS to allow for accurate quantification. Supernatant flow through was retained and 

antibody re-captured for a total of 4 purifications. Flow cytometry was used to assess the 

level of MHC I staining on C1R-B*57:01 cells by purified antibody and subsequent 

supernatant flow-through. From this analysis, W6/32 supernatant was found to be present 

in the supernatant after the first purification (Figure 4.6). Therefore, in order to maximise 

purification efficiency, supernatant was passed through equilibrated PAS twice prior to being 

discarded. 
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Figure 4.7. W6/32 anti-pan MHC class I antibody production at the University of Liverpool. W6/32 
hybridoma cells were cultured to secrete anti-MHC class I antibody for use in the peptide elution 
protocol. Protein A sepharoase was used to capture W6/32. Flow cytometry was used to validate MHC 
class I binding on C1R-B*57:01 cells with 10 µG purified W6/32 antibody. Flow cytometry using W6/32 
supernatant flow-through reveals antibody is still present after the first purification. After the 2nd 
purification antibody levels in the supernatant was found to be minimal and PE-A signal was 
comparable to the unstained. C1R-B*57:01 cells. 

 

Next, peptide elutions were performed. HPLC absorbance traces indicative of MHC I 

fractionation were used to confirm successful implementation of the methods (Figure 4.8, 

A). As 10% acetic acid is used to elute peptide-MHC complexes from anti-MHC I antibody, 

both peptides and the β2M subunit dissociate from the MHC heavy chain protein.  Therefore, 

HPLC fractionation can be divided into 4 main sections. Firstly, hydrophilic peptides are 

fractionated, followed by the β2M subunit. Hydrophobic peptides elute off the HPLC column 

next, followed by MHC I heavy chain and any other protein contaminants (Figure 4.8A).  
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Figure 4.8. Peptide-MHC complex elution and fractionation performed at the University of 
Liverpool. (A) Fractionation trace with the presence of the β2M peak and MHC heavy chain protein 
indicating successful MHC I isolation. (B) Peptide pools are generated by combining fractions across 
regions, i.e. hydrophilic peptides (blue), β2M (brown), hydrophobic peptides (green) and heavy chain 
(yellow). 

 

Sample pre-fractionation is important to enhance the sensitivity when peptides are detected 

using mass spectrometry. To do this, peptide pools are generated from 99 fractions collected 

across the HPLC gradient (Figure 4.8B). As a C18 gradient is used for both HPLC fractionation 

and mass spectrometry, hydrophilic peptide fractions that are collected 2:15 minutes apart 

are combined to generate a single pool (P1-9). As hydrophobic peptides are not as abundant, 
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fractions collected 45 seconds apart are pooled (P10-12). β2M subunits and heavy chain 

protein were collected separately; fractionation of single protein was not required. 

Three independent peptide elutions were performed from untreated C1R-B*57:01 cells 

(Figure 4.9). Samples were loaded onto the C18 HPLC column using 0.1% TFA in order to wash 

away the acetic acid they were eluted in. The absorbance of acetic acid at 254 nm allowed 

for correct sample loading to be determined (Figure 4.9, left). Once washed for 7 minutes at 

2 mL/min, the peptide elution gradient was applied resulting in sample fractionation. For 

optimal peptide absorbance, a wavelength of 215 nm was used (Figure 4.9, right). 

Experiments were named by the prefix “PE” (peptide elution) followed by the experiment 

number to allow tracking of different assays within the group. PE_006, PE_008 and PE_027 

are all representative of elutions from untreated controls. Through overlaying the HPLC 

traces (Figure 4.9, bottom) it subsequently observed that the retention time for the β2M was 

later for PE_027 (Figure 4.9, bottom, blue box). This is likely due to a temperature variation 

during fractionation. Importantly, fraction pooling was altered to accommodate this shift. In 

addition to the retention time shift it was observed that PE_027 has a higher MHC I 

absorbance reading (Figure 4.9, bottom, orange box). The reason for this remains unclear. 
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Figure 4.9. HPLC traces of successful untreated control C1R-B*57:01 MHC-peptide elution 
fractionations. Sample injection was performed separately to fractionation to ensure successful 
loading prior to the application of solvent gradient (left). An absorbance of 254 nm was used to detect 
the loading buffer (acetic acid). Subsequent fractionation was performed at 215 nm (right) to improve 
peptide/protein absorbance. Overlaying traces (bottom) reveals a retention time shift of PE_027 as 
determined by β2M (blue box). PE_027 MHC abundance was also presumed higher through increases 
in both β2M and heavy chain peaks (blue and orange box, respectively).  

 

In order to confirm the successful implementation of the peptide elution method, C1R-

B*57:01 cells were incubated with abacavir. This allowed for the reproduction of the data 
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observed in 2012 (Illing et al., 2012). Peptide elutions from abacavir treated cells (PE_001, 

003 and 004) were all similar in β2M retention times and MHC quantity (Figure 4.10). 

 

 

Figure 4.10. HPLC traces of successful abacavir treated C1R-B*57:01 MHC-peptide elution 
fractionations. Sample injection was performed separately to fractionation to ensure successful 
loading prior to the application of solvent gradient (left). An absorbance of 254 nm was used to detect 
the loading buffer (acetic acid). Subsequent fractionation was performed at 215 nm (right) to improve 
peptide/protein absorbance. Overlaying traces (bottom) reveals a comparable retention times and 
intensities. *absorbance reading increases due to suspected air bubble after injection.  
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As mentioned previously, the addition of abacavir to C1R-B*57:01 cells results in a shift in 

the C-terminal (PΩ) anchor residue. Native HLA-B*57:01 peptide ligands preferentially 

terminate in phenylalanine (F), tryptophan (W) or tyrosine (Y). Abacavir was found to occupy 

the F-pocket of the MHC binding grove, meaning these bulky aromatic amino acids can no 

longer accommodate this region. Therefore, an increase in the smaller aliphatic amino acids 

leucine (L), isoleucine (I) and valine (V) are reported at the PΩ position when abacavir is 

present (shown in 4.4.6.1). Post mass spectrometric acquisition of peptide pools, 

bioinformatic tools are required to translate MS/MS spectra into peptide sequences. 

 BIOINFORMATIC ANALYSIS OF MHC PEPTIDES  

The process of getting from mass spectrometric output files to a list of peptides unique to a 

particular treatment required the development of a robust workflow (Figure 4.11). While 

there are a number of other search algorithms available (discussed in later sections), they all 

work on a similar principle. MS/MS spectra are matched against a protein (or peptide) 

database with the aim of identifying several fragmentation ions that correspond to a peptide 

sequence. Once a peptide sequence is assigned, statistical analysis internal to the algorithm 

will allocate a confidence score to the hit. While this is a good measure of accuracy, it is not 

particularly useful to compare different data sets. For example, a 95% confidence score in 

one output may not translate to 95% in different data set. This is due to the percentage 

ranking being based on the rest of the data in that set. Therefore, FDRs are calculated for 

each dataset. Here, a decoy database containing reversed peptide sequences (that do not 

exist in the proteome) are searched against. If a match is found with high confidence it is 

almost certain to be incorrect. Therefore, based on the number of incorrectly assigned 

matches an FDR can be calculated. For immunopeptidomic data the level of complexity is 

very high, hence a 5% FDR is often used. While this is not perfect, having a strict FDR 

requirement will significantly reduce the number of peptides that can be used for further 

analysis. The challenges surrounding bioinformatic tools for the assessment of MHC peptides 
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will be discussed in detail in chapter 6. Briefly, having an unknown protein source and the 

protease used, along with any biological modifications possible makes it a very large search 

space within the algorithm. This inherently reduces the number of confidently assigned 

peptide sequences. 

For this study the uniprot/swissprot proteome (downloaded in July 2018), containing 

557,896 proteins, was used. With the decoy database included, this results in a search space 

consisting of 1,115,972 possible proteins, before post translational modifications (PTMs) are 

considered. By limiting the species to Homo sapiens, the search space was reduced to 20,386 

proteins, doubling to 40,772 with the addition of the decoy database. The reduction in 

possibilities saw an increase of identified peptides with >95% confidence from 1,310 to 2,223 

in one experiment. Using a protein database solely comprising of human proteins did not 

result in any additional positive hits. The parameters used in the search were relatively 

relaxed. Cysteine alkylation was not performed, digestion enzymes were not known and any 

biological modification could exist. As there were a large number of possibilities, a thorough 

search effort was applied. For each experiment, 12 different pools were searched 

simultaneously resulting in a single output file.  

The distinct peptide summary, listing all peptides identified, were extracted from each raw 

output file. For each spectra multiple hypotheses can be formed, with confidence scores in 

rank order. Therefore, the number one hypothesis was selected based on the first peptide 

locus. Next, any peptides that were assigned to keratins were removed as these are likely 

contaminants from the lab environment. Reverse hits, from the decoy database, were also 

removed. Peptides were sorted based on their confidence score. Only those meeting the 5% 

FDR for the dataset were retained. As C1R-B*57:01 cells contain low levels of HLA-C*04:01 

expression, peptides matching the P2 binding motif (F, Y & W) were removed. The PΩ binding 

motif (L, I, G, A, V, P, F, M & W) was not used due to the wide range of amino acids and the 

overlap with HLA-B*57:01 anchors. Other known contaminants identified from previous 
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experiments within the Purcell group (total number of contaminants in library = 20,845) were 

also removed. These contained a mixture of peptides from parental C1Rs, class II ligands and 

other known contaminants. Finally, duplicated peptides were removed. While peptides of 

the same sequence should elute together, those with PTMs may be acquired at different 

times. For repertoire analysis, PTMs were not considered.  

Next, data from three different experiments were combined to generate a list of peptides 

with a 5% FDR for each treatment group. At this point peptide length analysis and anchor 

residue abundance can be performed. For comparisons between treatment groups, unique 

peptides to each condition were identified. Peptides that were identified across two 

different sets of confident peptides were removed, leaving only peptides that appeared 

when the condition was present. These unique peptide lists were taken forward for further 

analysis. As the unique peptide lists were generated through the combination of replicates, 

statistical analysis was not possible. Therefore, where statistical calculations were 

performed, the databases of peptides unique to treatment conditions were used to identify 

the unique ligands from each replicate. Using this robust workflow (Figure 4.11), we were 

confident that the peptides we were analysing were genuine HLA-B*57:01 ligands presented 

under each different treatment condition.  
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Figure 4.11. Post-acquisition bioinformatic analysis workflow of eluted MHC peptides. Raw mass 
spectrometry from each experiment are combined and searched against the Homo sapien proteome 
to identify peptides and assign statistical analysis. Relaxed parameters are used due to the complexity 
of immunopeptidomic analysis. Subsequent analysis is used to removes all suspected contaminants 
resulting in a list of confident MHC peptides from HLA-B*57:01. Further interpretation is performed 
to identify peptides unique to treatment groups, before anchor residue and peptide length analysis 
are investigated. 
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 THE C1R-B*57:01 IMMUNOPEPTIDOME  

4.4.6.1 ABACAVIR  

Peptides at 5% FDR eluted from untreated C1R-B*57:01 cells (n= 2,189) were compared to 

those identified from abacavir treated cells (n= 1,013). Unique peptides were determined by 

comparing both sets of peptides at a 5% FDR. Of the peptides eluted, 1,753 were unique to 

the control, 437 were shared between treatment groups and 576 were unique to abacavir 

treatment (Figure 4.12A). The length of peptides eluted from each treatment group were 

first compared (Figure 4.12B). Although abacavir treatment resulted in slightly fewer 9-mers 

and slightly more 10-mers, overall the length of the peptides eluted was maintained. Next, 

comparisons between the P2 anchor residues were interrogated. In line with the previous 

publication, alanine, serine and threonine were found to be most abundant, with no 

significant changes observed between treatments (Figure 4.12C, P2). The PΩ anchor residue 

was the most important comparison to be made due to the repertoire shift previously 

identified. As anticipated, abacavir resulted in an increased abundance of isoleucine (2% to 

28%) and leucine (4% to 16%), in addition to reductions in the abundance of phenylalanine 

(29% to 10%), tryptophan (45% to 21%) and tyrosine (12% to 6%) (Figure 4.12C, PΩ). In 

identifying this shift in the HLA-B*57:01 peptide repertoire in the presence of abacavir, the 

methods to extract, capture and acquire MHC peptide data were confirmed to be well 

implemented. Furthermore, it was important to see that the criteria used for post-acquisition 

analysis was robust enough to compare abacavir treated cells to the control. 

  



 

182 

 

 
 

Figure 4.12. In depth analysis of abacavir-associated HLA-B*57:01 ligandome. (A) Total number of 
peptides identified with a 5% FDR (n= 2,766) from untreated and abacavir-treated cells. From the 
control cells 1,346 peptides were unique, while 576 peptides were uniquely presented in the presence 
of abacavir. The remaining 437 peptides were presented in both sets. (B) Length distributions of HLA-
B*57:01 ligands across 7-15mers with abacavir treatment (red) and without (grey). (C) The abundance 
of specific amino acid residues at the P2 anchor residue showed no differences between the two data 
sets (left). At the PΩ anchor residue binders of HLA-B*57:01 with (red bars) or without abacavir (grey 
bars) a decrease in phenylalanine, tryptophan and tyrosine, and a significant increase in isoleucine 
and leucine was observed (right). Two-tailed paired T-test p-value within 0.05 (*), 0.01 (**) and <0.01 
(***). 

 

4.4.6.2 FLUCLOXACILLIN 

After validation of the implementation of peptide elution at Liverpool, attention was turned 

to flucloxacillin. As flucloxacillin and abacavir hypersensitivity share a genetic predisposition 
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an important question to address. Therefore, peptide elution of C1R-B*57:01 cells cultured 

in the presence of flucloxacillin was performed (Figure 4.13). 

 

 

Figure 4.13. HPLC traces of successful flucloxacillin treated C1R-B*57:01 MHC-peptide elution 
fractionations Sample injection was performed separately to fractionation to ensure successful 
loading prior to the application of solvent gradient (left). An absorbance of 254 nm was used to detect 
the loading buffer (acetic acid). Subsequent fractionation was performed at 215 nm (right) to improve 
peptide/protein absorbance. Overlaying traces (bottom) reveals comparable retention times, with 
PE_005 showing higher absorbances for both β2M and MHC heavy chain.  
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As with previous elutions, samples were injected onto the HPLC on a separate method to the 

fractionation gradient (Figure 4.13). All β2M peaks eluted at the same retention time for 

flucloxacillin treated C1R-B*57:01 cells (Figure 4.13, bottom), with a similar MHC abundance 

recorded. While the β2M and heavy chain appears to be slightly higher with the first 

flucloxacillin elution (Figure 4.13, PE_005), the number of confident peptides identified was 

not enhanced (PE_005 n= 803, PE_007 n= 755 and PE_009 n= 1,080). Comparative analysis 

was performed between combined peptides presented by flucloxacillin (n= 1,693) and 

untreated (n= 2,189) cells. Using a 5% FDR for the identification of unique peptides to each 

treatment, 1,346 were found exclusively in the control and 850 only identified in the 

flucloxacillin treated group. This results in 843 (43.5%) peptides being shared between sets 

(Figure 4.14A). Peptide length distribution revealed no change in the presence of 

flucloxacillin (Figure 4.14B), in correlation with abacavir. The amino acid abundance at 

positions across each peptide were examined further to identify any alterations in the 

presence of flucloxacillin. With flucloxacillin treatment there was no apparent change in the 

P2 anchor residue (Figure 4.14C, P2), with alanine, serine and threonine remaining abundant. 

Interestingly, changes were observed in the PΩ anchor residue. The abundance of 

phenylalanine rose from 21% to 43% in the presence of flucloxacillin, while tryptophan was 

reduced from 54% to 17%. A small increase in tyrosine was also observed, from 10% to 17% 

(Figure 4.14C, PΩ). 
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Figure 4.14. In depth analysis of flucloxacillin-associated HLA-B* 57:01 ligandome. (A) Total number 
of peptides identified with a 5% FDR (n= 3,887) from untreated and flucloxacillin-treated cells. From 
the control cells 1,346 peptides were unique, while 855 peptides were uniquely presented in the 
presence of flucloxacillin. The remaining 843 peptides were presented in both sets. (B) Length 
distributions of HLA-B*57:01 ligands across 7-15mers with flucloxacillin treatment (green) and 
without (grey). (C) The abundance of specific amino acid residues at the P2 anchor residue showed no 
differences between the two data sets (left). At the PΩ anchor residue binders of HLA-B*57:01 with 
(green bars) or without flucloxacillin (grey bars) a decrease in phenylalanine and an increase in 
tryptophan was observed (right). 
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RVWDIVRHY was deemed to be unique to flucloxacillin treatment, when in reality it is likely 

not. In light of this, further analysis using additional criteria was performed to identify unique 

MHC peptides. Peptides at a 5% FDR from each treatment group were analyzed against 

peptides with a confidence score above 20% from the comparative data set. If the peptide 

at a 5% FDR in the test group appeared in the comparative set with a confidence above 20% 

it was no longer deemed unique. To make this analysis as robust as possible the retention 

time, mass difference and any PTMs were also taken into consideration. With the example 

of RVWDIVRHY, the mass difference between peptide identified from the flucloxacillin 

treatment was -0.005 Da when compared to that identified in the control set. In addition, 

the retention time was 0.28 minutes apart. Therefore, RVWDIVRHY was no longer accepted 

as a unique peptide to flucloxacillin. While in this example the confidence score was still 

relatively high (87.52%), SAAPLFFSW, previously assumed unique to flucloxacillin treatment, 

was identified in the control set with a 24.44% confidence. Using the same interrogation 

method, a mass difference of 0.038 Da and a retention time shift of 0.86 minutes makes it 

likely that it is not unique to flucloxacillin treatment. The assessment of unique peptides was 

therefore re-performed using both a 20% confidence in the comparative set; crucially all test 

peptides were still within the 5% FDR. This new peptide list of unique peptides to the control 

and flucloxacillin was then used to identify the unique ligands to each replicate, to enable 

statistical analysis to be performed (Figure 4.15A). By performing the additional analysis, it 

enabled more confidence to be had in the repertoire change at the PΩ position, with the 

previous findings being statistically significant, when C1R-B*57:01 cells were cultured in the 

presence of flucloxacillin.  
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Figure 4.15. Further interrogation of the flucloxacillin-associated HLA-B* 57:01 ligandome. The 
criteria for defining unique peptides was enhanced to prevent peptides being falsely identified as 
unique. Test peptides at 5% FDR were compared to peptides from comparative data sets with 20% 
confidence scores. Retention times, mass differences and PTMs were also taken into consideration. 
Unique peptides from each replicate were identified. Further analysis revealed statistical separation 
between PΩ amino acid abundance when C1R-B*57:01 cells were cultured in the presence of 
flucloxacillin. Two-tailed paired T-test p-value within 0.05 (*), 0.01 (**) and <0.01 (***). 
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Figure 4.16. Sequence motif analysis of HLA-B*57:01 peptides presented in the presence of 
flucloxacillin. Peptides eluted from untreated (left) and flucloxacillin-treated (middle) cells further 
highlights the differences observed at PΩ (right). Peptide repertoire data is shown for 8-mer to 12-
mers (A-E, respectively). 
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4.4.6.2.2 NON-COVALENT INTERACTIONS BETWEEN FLUCLOXACILLIN AND HLA-B*57:01  

While the repertoire change appears genuine, the precise mechanism for this remains largely 

unknown. However, modelling of penicilloic acid and flucloxacillin with HLA-B*57:01 

revealed that it is possible for both compounds to occupy the C-F binding pockets in HLA-

B*57:01 (Figure 4.17). Flucloxacillin penicilloic acid is the result of the hydrolysis of the β-

lactam ring. Close interactions between flucloxacillin penicilloic acid with the key amino acid 

residues at the binding groove, for example, Asn77, Asp114, Ser116, and Tyr123 may have 

altered the presentation of peptides through stabilising phenylalanine at the PΩ position, 

leading to an increased presentation of peptides terminating in phenylalanine. 

 

 
 

Figure 4.17. Interaction of flucloxacillin and the HLA-B*57:01 binding groove. Modelling studies 
show that flucloxacillin penicilloic acid can occupy C-F binding pockets in HLA-B*57:01, interacting 
closely with Tyr123 and Trp147. 

 

If an interaction between penicilloic acid and/or flucloxacillin and HLA-B*57:01 is occurring 

in a non-covalent manner (as modelled), it would be anticipated that free drug would be 

detected during HPLC fractionation. Flucloxacillin was not previously identified as eluting 

from peptide-MHC complexes during fractionation (Figure 4.18), however this could be 

simply due to limits of detection.   
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Figure 4.18. Determination of non-covalently bound flucloxacillin to MHC I in C1R-B*57:01 cells 
cultured in the presence of drug. (A) Peptide-MHC complexes were eluted from C1R-B*57:01 cells 
cultured in the presence of 1.5 mM flucloxacillin for 48h and fractionated using HPLC. (B) Flucloxacillin 
retention time was determined by loading 10 µG using the same parameters. (C) Unbound 
flucloxacillin was not detected in the peptide-MHC complex fractionation when C1R-B*57:01 were 
cultured in the presence of flucloxacillin. 

 

The presence of free drug was subsequently investigated in the mass spectrometric data 

acquired from flucloxacillin treated cells. Indeed, both flucloxacillin (m/z 454.0696) (Figure 

4.19A) and penicilloic acid (Figure 4.19B) could be identified. Reassuringly, penicilloic acid 

was found to be present in relatively large quantity, as demonstrated by the AUC of the 

parent ion (m/z 472.2989) (Figure 4.19C). 
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Figure 4.19. Flucloxacillin and degradation products identified in the peptide-MHC complex. (A) 
Flucloxacillin (m/z 454.0696) and (B) its degradation product, flucloxacillin penicilloic acid (m/z 
472.2989) were detected in the peptide-MHC-Complex eluted from C1R-B*57:01 cells, indicating both 
compounds are involved in MHC peptide presentation. (C) The extracted ion count of the penicilloic 
acid shows it to be in relatively high abundance. 

 

4.4.6.2.3 PEPTIDE BINDING AFFINITY TO HLA-B*57:01 

To further assess the impact of flucloxacillin on the self-peptide presentation, the binding 

affinity of eluted peptides to HLA-B*57:01 was predicted using NetMHC 4.0. Analysing 

binding affinities of unique peptides presented from each treatment group at a 5% FDR 

(control 1,346 vs flucloxacillin-treated 850), we observed fewer peptides bound to HLA-

B*57:01 with high affinity in the flucloxacillin dataset (control 42.3% vs flucloxacillin-treated 

22.2%) (Figure 4.20A, i). The binding affinity of the eluted peptides to other HLA alleles was 

also predicted using the same peptide lists. As expected, the number of peptides that bind 

to the closely related HLA alleles, such as HLA-B*58:01 (Figure 4.20A, ii) stay relatively the 

same. As anticipated peptide binding affinity to the distantly related HLA-B*15:01 decreased 

in both sets of data (Figure 4.20A, iii). Interestingly, both the control and flucloxacillin unique 

peptides appear to have very similar affinity to HLA-B*15:17 (Figure 4.20A, iv).  
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Figure 4.20. Prediction of binding affinity of eluted peptides to HLA-B alleles. (A) Predicted binding 
affinity of unique peptides eluted from untreated (grey bars, 1,346 peptides) and flucloxacillin-treated 
cells (green bars, 850 peptides) was performed using NetMHC 4.0. A decrease in the number of 
peptides with high binding affinity to HLA-B*57:01 was observed with flucloxacillin treated cells 
compared to untreated cells (i). Binding affinity was similar in the closely related allele HLA-B*58:01 
(ii), however was lost in both treatment groups when binding affinity was assessed to the unrelated 
allele HLA-B*15:01 (iii). Peptides unique to flucloxacillin treatment appear to bind more favourably to 
the unrelated HLA-B*15:17 allele (iv). (B) The number of peptides with high (<500 nm) and very high 
(<100 nm) affinity for each treatment group. The number of peptides unique to flucloxacillin 
treatment with a very high binding affinity increases from 22.2% with HLA-B*57:01 (i) to 33.5% with 
HLA-B*15:17. SB-strong binder, WB-weak binder, NB-non binder 

 

Analysis of the binding affinity of individual peptides from each treatment group to HLA-

B*57:01 and HLA-B*15:17 was performed (Figure 4.20B). The percentage of strong binders 

(SB) (<100 nm) and weak binders (WB) (<500 nm) to HLA-B*57:01 is greater in the control 

group than in the flucloxacillin treated group (Figure 4.20B, i). Surprisingly, an increase in the 

number of SB to HLA-B*15:17 in the flucloxacillin treated group (33.5%) when compared to 

those to HLA-B*57:01 (22.2%) were observed (Figure 4.20B, ii). This may indicate that the 

peptides being presented by HLA-B*57:01 in the presence of flucloxacillin are more similar 
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to those being presented by HLA-B*15:17. It is possible that the presence of flucloxacillin 

(penicilloic acid) may stabilize the presentation of peptides which otherwise have low 

predicted binding affinities. 

 

 
 

Figure 4.21. Comparison of available algorithms for the assessment of peptide binding affinity. Four 
different algorithms, Pick Pocket, NetMHCPan, NetMHC and NetMHCcons, were used to predict the 
binding affinity of unique peptides to HLA-B*57:01. (A) While small differences were observed with 
Pick Pocket compared to the other 3 algorithms, separation between flucloxacillin and untreated 
unique peptides remained. (B) Total MHC binding for each algorithm reveals that similar conclusions 
can be drawn from all 4. SB-strong binder, WB-weak binder, NB-non binder  

 

When assessing peptide binding affinity using predictive tools the choice of modelling 

algorithm used will determine the conclusions that can be drawn. For the analysis already 

discussed NetMHC 4.0 was used, however a number of other algorithms including Pick 

pocket, NetMHCPan and NetMHCcons are available for predicting MHC peptide binding 

affinity to specific HLAs. NetMHC and NetMHCPan are both artificial neural network (ANN) 

based allele-specific methods trained on 94 class I alleles and 115,000 quantitative binding 

data covering 120 different MHC molecules, respectively. Pick Pocket produces results on a 

matrix-based method reliant on receptor-pocket similarities between MHC molecules, 
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having been trained on 94 different MHC alleles. NetMHCcons is a consensus method 

integrating results from all three of the other algorithms. By predicting the binding affinity 

of both individual peptides (Figure 4.21A) and the immunopeptidome as a whole (Figure 

4.21B) to HLA-B*57:01 for unique peptides from each treatment, data separation was 

observed irrespective of the algorithm used. Pick Pocket did predict fewer high binders, likely 

due to the difference in the matrix-based method rather than ANN, however a similar 

separation of individual peptides can be observed. In all instances, peptides unique to 

flucloxacillin treatment interact less favourably with the HLA-B*57:01 binding pocket. 

4.4.6.2.4 PROTEIN SOURCES OF UNIQUE PEPTIDES 

So far, changes to the HLA-B*57:01 immunopeptidome in the presence of flucloxacillin has 

been entirely focussed at the peptide level. Up to this point it was unclear as to whether 

flucloxacillin changed the abundance of specific proteins in the cell cytoplasm. If this were 

the case, it is possible that changes in the proteome could result in altered peptide 

presentation. Therefore the protein sources of unique peptides from each treatment group 

were compared using the Panther 14.1 classification system (Mi, Muruganujan, Ebert, et al., 

2019; Mi, Muruganujan, Huang, et al., 2019). Different parameters were used to interrogate 

any changes between treatment groups, including molecular function, biological process, 

cellular component, protein class and pathway involvement. Interestingly it was not possible 

to identify any change between treatment groups across all the parameters that were used 

(Figure 4.22).  
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Figure 4.22. Protein sources of unique peptide identified from each treatment group. The molecular 
function, biological process, cellular component, protein class, and pathway involvement of the 
protein sources of unique peptides were compared between treatment groups using Panther 14.1. 
No changes between treatments were observed across all parameters.  
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 DISCUSSION 

Previous studies demonstrated alterations in the immunopeptidome of HLA-B*57:01 when 

C1R-B*57:01 cells were cultured in the presence of abacavir (Illing et al., 2012; Norcross et 

al., 2012; Ostrov et al., 2012). To date, this is the only known example of the altered 

repertoire hypothesis in DHRs. In this chapter, the main aim was to develop the methods 

necessary to perform MHC class I elution studies in order to interrogate the 

immunopeptidome of C1R-B*57:01 cells in relation to flucloxacillin. Through a collaborative 

exchange, methods employed by Dr Illing under the supervision of Prof Purcell were 

optimised for transfer to the CDSS at the University of Liverpool. In this optimisation, the 

relative MHC class I expression of C1R-B*57:01 cells were comparable to patient derived 

APCs and was not affected by both drug treatment and culture conditions. A concentration 

of 1.5 mM flucloxacillin was used to identify changes to the immunopeptidome without 

toxicity towards C1R-B*57:01 occurring. The clinical relevance of this concentration is 

debatable; the maximal flucloxacillin concentration in patient plasma has previously been 

identified as 41.4 µM (Jenkins et al., 2009), 36x lower than the concentration used in this 

study. That said, in vitro patient T cell responses to flucloxacillin are activated at 1.5 mM. 

Furthermore, when 2 mM piperacillin was used for T cell activation in another study, the 

levels of piperacillin adduct formation identified from the incubation media was comparable 

to the level of binding in patient plasma (Meng et al., 2017). In the previous chapter 

localization of flucloxacillin was identified in the bile canaliculi of HepaRG cells, indicating at 

the site of injury the physiological concentration could be much higher. In fact, a recent study 

identified a plasma concentration of 209 mg/L (0.46 mM) upon repeated exposure of the 

drug, however it is well noted that patient variability exists (Maier-Salamon et al., 2017). 

While this figure is still > 3x lower than the concentration used, free flucloxacillin will likely 

have been quenched by serum proteins resulting in a lower concentration ultimately 

interacting will the C1R-B*57:01 cells.  
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After successful implementation of the peptide elution methods was achieved, the analysis 

of the immunopeptidome of abacavir treated C1R-B*57:01 cells was performed to act as a 

positive control. Our data demonstrated that an increased abundance of leucine and 

isoleucine occurs at the C-terminal anchor residue, which are consistent with previous results 

(Illing et al., 2012). Similar approaches were therefore used to investigate flucloxacillin 

associated HLA-B*57:01 immunopeptidomics. Flucloxacillin treatment was associated with 

an increase in phenylalanine and a decrease in tryptophan at the C terminus of the peptides 

presented by HLA-B*57:01, irrespective of the peptide length. Further evaluation of the 

bioinformatic workflow reveals the same overall change in repertoire, therefore hypotheses 

for this shift were postulated. Modelling of flucloxacillin penicilloic acid to HLA-B*57:01 

revealed that it may reside within the C-F pockets of the antigen-binding cleft, with the 

thiazolidine ring and carboxylic acid positioned into the D and E pockets. The aromatic ring 

and isoxazole side chain pointed towards the F pocket, which would disfavour the presence 

of bulky aromatic side chain of tryptophan at the PΩ position but favour phenylalanine due 

to the close contacts between aromatic rings. Indeed, using mass spectrometry, relatively 

high quantities of flucloxacillin penicilloic acid were detected. The interaction of flucloxacillin 

penicilloic acid with HLA-B*57:01 provided a basis for understanding the observed 

preferences of phenylalanine at PΩ. Furthermore, the presence of flucloxacillin and 

penicilloic acid at the binding cleft could change the chemistry of peptides binding to HLA-

B*57:01. 

Using HLA peptide binding affinity prediction tools, peptides unique to flucloxacillin 

treatment were found to bind with lower affinity to HLA-B*57:01. While different prediction 

tools exist, four different algorithms presented the same separation in the two unique 

peptide data sets. As anticipated, the binding affinity to closely related alleles such as HLA-

B*58:01 were much the same, while distant related alleles such as HLA-B*15:01 showed 

weak binding affinity. Interestingly, peptides unique to flucloxacillin treatment had 
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comparable binding affinity with control peptides to HLA-B*15:17. This indicates that the 

peptides presented in the presence of flucloxacillin are similar to peptides that are usually 

accommodated by other HLA alleles. As such, the co-presentation of drugs and peptides that 

would not usually accommodate the native HLA binding repertoire could create a novel T cell 

epitope that may be implicated in the development of autoimmune-like reactions. The 

concept of transplant rejections is important when considering the impact of drugs on the 

MHC peptide repertoire. Direct recognition of allogenic MHC complexes can occur in the 

absence of peptides, however foreign peptides are still implicated in the subsequent T cell 

response. 

Adoptive T cell therapy is a powerful technique whereby patient T cells primed ex vivo to 

targets are used to neutralize cells expressing a particular antigen. Its success has been well 

documented in disease treatment (Magalhaes et al., 2019) however in a small number of 

studies catastrophic consequences have occurred. In 2013, Cameron et al investigated the 

mechanisms responsible for off target toxicity resulting in the mortality of patients 

undergoing adoptive T cell therapy. Affinity enhanced T cells were directed to HLA restricted 

MAGE A3 antigens (EVDPIGHLY), a common antigen expressed across several tumours with 

limited expression in healthy tissue. Pre-clinical screening showed no cross reactivity or cross 

target antigen recognition. Unexpectedly, these engineered T cells cross reacted with a 

peptide derived from the muscle protein Titin (ESDPIVAQY), the most likely cause of the 

observed toxicity (Cameron et al., 2013). While adoptive T cell therapy is not necessarily 

linked to this study, it does show the power of the immune system when it comes to antigen 

recognition. Here, patient derived T cells were responding to antigens presented by their 

own MHC molecules, highlighting the importance of the peptide itself. In the current study, 

novel peptides were present when C1R-B*57:01 cells were incubated in the presence of 

flucloxacillin. Therefore, it is feasible that alterations in the peptides alone, as a result of 

interactions with flucloxacillin, could result in drastic downstream effects.  
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Unique peptides were identified from each treatment group, with changes in the amino acid 

abundance at the C terminal anchor residue observed. Flucloxacillin was identified to bind to 

a range of proteins within multiple cellular systems (Chapter 3). Crucially, MRP2/P-gp 

transporter function was increased when HepaRG cells were treated with flucloxacillin for a 

prolonged period. Therefore, it is possible that flucloxacillin could alter the overall proteome 

present in the cell cytoplasm. While this could not be detected with immunoblot assays, the 

protein source of unique peptides to each treatment could be compared. Strikingly, based 

on protein molecular function, biological process, cellular component, protein class and 

pathway involvement, there were not observable differences in the proteome. This further 

highlights the observed change in the C terminal anchor residue abundance antigen is likely 

processing dependant. Two hypotheses for this are apparent, either protein haptenation is 

resulting in missed cleavages (Jenkins et al., 2009) in the proteasome, or flucloxacillin 

(penicilloic acid) is assisting with the binding of peptides which not otherwise have high 

affinity to HLA-B*57:01. 

Previous studies, into the HLA-B*57:01 repertoire in response to abacavir were successfully 

reproduced. Furthermore, similar repertoire changes with flucloxacillin in relation to HLA-

B*57:01 were identified. While crystallographic data is not available to prove interactions 

between flucloxacillin and the binding cleft, it is thought that flucloxacillin penicilloic acid can 

interact with C-F pockets, resulting in the anchoring of otherwise low affinity peptides. 

However, protein haptenation is known to readily occur though the nucleophilic attack of 

the β lactam ring (Jenkins et al., 2009). Therefore, further analysis into covalent binding of 

flucloxacillin to proteins, resulting in the potential presentation on HLA-B*57:01, is 

necessary.  
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 INTRODUCTION 

Previous analysis found covalent, irreversible, binding of flucloxacillin to proteins. This was 

observed in both in vitro protein and cell incubations, as well as serum proteins derived from 

patients. In the previous chapter the changes in the HLA-B*57:01 immunopeptidome of C1R-

B*57:01 cells were investigated when cultured in the presence of flucloxacillin. While 

repertoire shifts were identified, the bioinformatic workflow did not consider covalent 

modification of peptides by flucloxacillin. Therefore, covalent binding to intracellular 

proteins, peptide-HLA complexes, and the HLA molecule itself are all possible. A wide 

diversity of proteins from C1R-B*57:01 cells were previously shown to be modified, raising 

the question, what is their fate? 

To date, a limited number of studies have been performed to define the molecular initiating 

events in hapten mediated DHRs. Pulsing of drugs and/or their metabolites with antigen 

presenting cells prior to exposure to, and subsequent activation, of T cells gives strong 

evidence for the hapten hypothesis. With this method, cells are incubated with drug for a 

short period of time before being washed. In this way, T cells are never directly exposed to 

free drug, yet are still activated. For example, incubation of piperacillin with patient derived 

APCs showed a T cell proliferative response after a 4 hour pulse (El-Ghaiesh et al., 2012). 

While there is general understanding of these mechanisms at the protein level, experiments 

performed at the peptide level are sparse. This is a particularly challenging method, due in 

part to variations with genetic susceptibility. As HLA proteins are highly polymorphic, 

patients with different alleles will present different peptides. Therefore, defining a single 

peptide responsible for immune activation is nigh-on impossible. For the study of 

flucloxacillin the genetic predisposition to HLA-B*57:01 makes this a ‘simpler’ task, but 

piperacillin, for example, does not have any known genetic association; although the 

chemistry of covalent binding is very similar to that of other penicillins.  
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Early studies by the Weltzien group utilised nitrophenol compounds, namely trinitrophenol 

(TNP) and dinitrophenol (DNP), for the investigation of protein haptens in T cell activation. 

Tryptic digests of TNP modified BSA activated T cells, with glutaraldehyde fixation of antigen 

presenting cells revealing intracellular processing of peptides was not required. 

Chromatographic separation of tryptic peptides revealed TNP modification of BSA at position 

227 was the antigenic determinant. Modification of a similar peptide from mouse serum 

albumin (MSA) resulted in cross reactivity, leading to the conclusion that the peptide 

sequence was only partially involved in T cell recognition. Furthermore, tryptic digests of 

both OVA and KLH modified by TNP resulted in some cross reactivity. It was concluded that 

the peptide sequence is important in the anchoring of peptide within the MHC binding 

groove while a hapten is required for subsequent T cell activation (Ortmann et al., 1992). 

Another study by Martin et al used synthetic hapten-peptide conjugates to investigate their 

impact on T cell specificity in a haplotype-specific way. In this study, the presence of amino 

acids at specific positions complementing the MHC binding repertoire under investigation 

enhanced the antigenicity of TNP synthetic peptides. While this was focussed on the mouse 

H-2Kb
 repertoire, it was one of the first models to investigate hapten-T cell models in a MHC 

restricted fashion (Martin et al., 1992). Indeed, further studies were required for the 

translation of the results into a model more relevant to human disease. 

From the knowledge generated in their previous studies, Padovan et al used designer 

synthetic peptides for the characterization of T cell responses to drug modified peptides. As 

penicillins are a major contributor to hapten mediated drug allergy, BP was selected as the 

model compound in this study. BP specific T cell clones were successfully generated from BP 

haptented peptides fitting the MHC class II allele, HLA-DRB1*04:01. These three peptides 

(EAYAAAASKAAA, EAYAAAKSAAAA and EAYAKAASAAAA) all contained a lysine at different 

positions to alter the site of BP modification. In the T cell clones generated, optimal activation 

was achieved through the positioning of BP across the peptide backbone. For the first time, 
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this study not only provided evidence into the role of drug-modified peptides in T cell 

activation, but that the structural positioning of the modification is important in specific T 

cell recognition. Strikingly, this study also provided evidence for T cell activation by BP 

modified HLA-DRB1*04:01 self-peptides, showing the hapten is a major determinant in T cell 

activation through otherwise tolerated peptide sequences (Padovan et al., 1997). At the time 

of this study, links between HLA associations and drug hypersensitivity predisposition were 

largely unknown, making these findings even more relevant in the present day.  

A running theme throughout these studies is the carrier independence of peptides resulting 

in the stimulation of T cells. Padovan et al designed peptides with physical properties to 

enable binding to the HLA binding groove under investigation. HLA-DRB*01:04 has specificity 

for tyrosine in position 1 and 6, with position 1 being defined by the first anchor binding site. 

Along with glutamic acid for peptide solubility and lysine for hapten binding, the remaining 

amino acids were occupied by the relatively inert alanine. It seems that by having these basic 

properties T cell activation can occur in a very specific manner, even though in vivo these 

peptides would not exist (Padovan et al., 1997). While this is an exciting step forward in the 

field of drug hypersensitivity, there is no indication as to the precise proteins and peptides 

naturally presented by MHC resulting in the clinical manifestation of disease. Since this study, 

further investigations into benzyl-penicillin (BP) modified peptides have been performed 

with more physiologically relevant peptide sources. Azoury et al recently described the 

priming of naïve T cells from healthy donors to BP peptides derived from HSA. In total 3 

peptides, with BP bound at lysine 159, 212 and 525, were found to be recognized by naïve T 

cells. Interestingly, BP bound at lysine 159 and 525 were found to induce PBMC proliferation 

in patients with penicillin allergy (Azoury et al., 2018). Here, the results showed that BP 

haptenation of HSA proteins could lead to the presentation of BP-HSA peptides, with the 

potential to prime naïve T cells. 
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HSA is a major target for modification by β lactam penicillins as described in a number of 

studies (Jenkins et al., 2009; Meng et al., 2011, 2016, 2017; Whitaker et al., 2011). In previous 

chapters of this thesis, HSA was found to be the only protein modified by flucloxacillin that 

could be detected in patient serum samples. That said, the diversity of intracellular proteins 

modified by flucloxacillin was found to be extensive in multiple relevant cell lines. The fate 

of these proteins is not currently known; however, it is likely that they are digested by the 

proteasome and subsequently presented on the cell surface by MHC molecules. In the 

previous chapter repertoire changes were observed in unmodified peptides, presented when 

C1R-B*57:01 cells were cultured with flucloxacillin. Nevertheless, it is not yet clear whether 

drug-protein haptenation results in dysregulation of proteasomal processing. Therefore, in 

this chapter the methods developed for the investigation of the immunopeptidome of C1R-

B*57:01 cells were utilised further in the identification of naturally presented flucloxacillin 

modified peptides.  
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 AIMS 

Previously flucloxacillin DILI has been defined by the hapten mechanism of drug 

hypersensitivity. Here the methods developed in the previous chapter were used to 

characterize the role of flucloxacillin modified proteins in antigen presentation. Therefore, 

flucloxacillin modification of MHC heavy chain and MHC binding peptides presented by HLA-

B*57:01 was investigated. In order to perform this study, the following aims were defined; 

1. Identify and characterize flucloxacillin binding to MHC heavy chain proteins 

2. Identify flucloxacillin HLA-B*57:01 binding peptides using characteristic drug 

fragmentation ions 

3. Annotate flucloxacillin modified peptide sequences using de novo techniques 

4. Identify protein sources of flucloxacillin modified peptides and their contribution to 

the identified immunopeptidome 

5. Synthetically generate flucloxacillin modified HLA-B*57:01 binding peptides for use 

in T cell culture assays  

 

 

  



 

206 

 METHODS 

 PREVIOUSLY DESCRIBED METHODS 

 Dot Blot - 2.3.7, p92 

 Immunoaffinity MHC purification - 4.3.4, p163 

 Mass spectrometry - 4.3.5164 

 Post-acquisition analysis - 4.3.6, p165 

 Theoretical docking analysis - 4.3.7, p165 

 SYNTHETIC PEPTIDE PRODUCTION 

5.3.2.1 DRUG CONJUGATION 

Fmoc-HSATQKEHGW (95% purity, Syn Peptide Co, China) was incubated with flucloxacillin at 

a 1:10 molar ratio (0.5 to 5 mM respectively) in 70% ACN/30% H2O for 48 hours at 37°C. 

Reactions were performed in glass to reduce the loss of material. After 48 hours the reaction 

was stopped by freezing at -20°C.  

5.3.2.2 HPLC FRACTIONATION 

Fmoc-HSATQKEHGW flucloxacillin conjugate was thawed and diluted 1 in 50 into 70% 

ACN/30% H2O prior to injection onto a monolithic C18 column (100 x 4.6 mm Onyx, 

Phenomonex) at 1 mL per minute using an Agilent 1260 HPLC system. Method optimisation 

for loading is discussed in section 5.4.7 of this chapter. For the separation and fractionation 

of the reaction mixture, unmodified peptide and flucloxacillin degradation products, a 30 

minute gradient was applied with a wavelength detection of 215 nm (Table 5.1). Fractions 

were calculated based on the retention time of peaks of interest, as described in section 

5.4.5. All fractions were collected into protein LoBind (Eppendorf) tubes and dried using 

vacuum centrifugation at 30°C until dry. Fractions were stored at -20°C prior to mass 

spectrometric analysis  
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Table 5.1. Synthetic flucloxacillin modified Fmoc-HSATQKEHGW HPLC method parameters. Modified 
peptide was separated from flucloxacillin degradation products and unmodified peptide using mobile 
phases containing 0.1% TFA (A) and 100% ACN/0.1% TFA (B).  

Time %A %B Flow (ml/min) Wavelength 

0:00 98 02 1 215 

0:15 98 02 1 215 

20:00 25 75 1 215 

20:01 00 100 1 215 

21:00 00 100 1 215 

22:30 98 02 1 215 

30:00 98 02 1 215 

 

5.3.2.3 DEPROTECTION AND PURIFICATION 

Piperidine was incubated with Fmoc-HSATQK*EHGW at a 10:1 ratio (90 µL 1 mM peptide, 10 

µL 100 mM piperidine in 70% ACN/30% H2O) for 2 hours at 37°C. For each run, 20 µL of the 

reaction mixture was loaded onto a Phenomenex C18 Kinetex 5µm column at 1 mL per minute 

using an Agilent 1200 HPLC system. A 30 minute gradient was applied with absorbance 

measured at a wavelength of 215 nm (Table 5.2). Fractions were collected and processed as 

described in section 5.3.2.2 prior to mass spectrometric analysis.  

Table 5.2. Synthetic flucloxacillin modified deprotected HSATQKEHGW HPLC method parameters. 
Deprotected modified peptide was purified by fractionation using mobile phases containing 0.1% TFA 
(A) and 100% ACN/0.1% TFA (B). 

Time %A %B Flow (ml/min) Wavelength 

0:00 98 02 1 215 

0:06 98 02 1 215 

20:00 25 75 1 215 

20:06 00 98 1 215 

25:00 00 98 1 215 

22:06 98 02 1 215 

30:00 98 02 1 215 

 

5.3.2.4 MASS SPECTROMETRIC ANALYSIS 

Deprotected flucloxacillin modified HSATQK*EHGW was resuspended in 20% ACN/10% TFA 

and purified using strong cation exchange (SCX) ZipTips (Merck Millipore). ZipTips were 

equilibrated with 3 x 10 µL 0.1 TFA before samples were loaded onto the ZipTip by pipetting 

15 - 20 x. After washing with 5 x 10 µL 0.1% TFA, peptides were eluted in 10 µL 5% ammonium  
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hydroxide/30% methanol/0.1% TFA. Samples were dried using nitrogen and resuspended in 

30µl 0.1% FA/2% ACN prior to analysis using a Triple TOF 5600 mass spectrometer (Sciex) 

delivered into the instrument using a Eksigent NanoLC Ultra HPLC system. Samples (5 µL) 

were injected onto a nanoACQUITY UPLC Symmetry C18 Trap Column (P/N Waters, MA, USA) 

and washed for 10 min at 2 µL/min with 0.1% FA. A gradient from 1.6% ACN/0.1% FA to 95% 

ACN/0.1% FA was applied over 95 minutes (Table 5.3) at a flow rate of 300 nL/min through 

a Peptide BEH C18 nanoACQUITY Column (Waters, MA, USA). MS was operated in positive 

ion mode with survey scans of 200 ms, with an MS/MS accumulation time of 150 ms for the 

20 most intense ions (total cycle time 3.2 s). A threshold for triggering MS/MS of 40 counts 

per second was used with an exclusion of former target ions for 30 seconds. Rolling collision 

energy was applied. Data dependent acquisition of ions in the mass range of 200-1,800 amu 

(MS) and 60-1,800 amu (MS/MS) was performed using Analyst TF 1.6.  

Table 5.3. Synthetic flucloxacillin modified deprotected HSATQKEHGW MS HPLC method 
parameters. Deprotected modified peptide was analyzed using mass spectrometry through in line 
HPLC separation using mobile phases containing 0.1% TFA (A) and 100% ACN/0.1% TFA (B). 

Time %A %B Flow (nl/min) 

00.00 98.4 1.6 300 

75.00 72.0 28.0 300 

79.00 36.0 64.0 300 

80.00 5.0 95.0 300 

85.00 5.0 95.0 300 

86.00 98.4 1.6 300 

95.00 98.4 1.6 300 

 

5.3.2.5 STATISTICAL VALIDATION 

Hypothetical calculations of b and y ions for flucloxacillin modified HSATQK*EHGW were 

generated using UCSF ProteinProspector MS-Product (v 5.22.1). Ions were calculated for the 

unmodified peptide, in addition to a mass addition of 294 Da and 453 Da on the lysine. Peak 

picking was performed on the eluted and synthetic fragment ions using Protein Pilot (v 

5.000). Observed fragmentation ions were compared to hypothetical fragmentation ions, 

and those within a mass tolerance of 0.1 Da were accepted. A Pearson two-tailed correlation 

test was used to compare the two sets of accepted ions using SPSS Statistics (v 24).    
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 RESULTS  

 COVALENT FLUCLOXACILLIN MODIFICATION OF MHC HEAVY CHAIN  

5.4.1.1 IMMUNO-ABSORBANCE DETECTION 

In the previous chapter, a novel set of HLA-B*57:01 restricted peptides presented in the 

presence of flucloxacillin were identified. Modelling experiments revealed flucloxacillin may 

interact with the peptide binding groove in a non-covalent manner to stabilise peptides 

which otherwise have low binding affinity to HLA-B*57:01. Previous experiments have 

focussed on flucloxacillin adduct formation with respect to irreversible binding. Therefore, 

covalent binding of flucloxacillin to HLA-B*57:01 was investigated. After HPLC fractionation 

of eluted peptide-MHC complexes from C1R-B*57:01 cells cultured in the presence of 

flucloxacillin, individual fractions were dotted onto nitrocellulose membrane in a grid format. 

Subsequent detection using anti-flucloxacillin antibody identified flucloxacillin present in the 

last three fractions (Figure 5.1A), indicative of the MHC heavy chain (Figure 5.1B).  

 

 
 

Figure 5.1. Immnodetection of flucloxacillin bound to MHC heavy chain. (A) Peptide-MHC complexes 
from flucloxacillin treated C1R-B*57:01 cells were fractionated using HPLC and dotted onto 
nitrocellulose membrane. Immunodetection using anti-flucloxacillin antobody revels modification in 
the last three fractions (B) indicative of MHC heavy chain protein. Positive controls (OVA) used for 
alignment of grid on nitrocellulose membrane with the developed film (red circles). 
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5.4.1.2 MASS SPECTROMETRIC CHARACTERIZATION 

Mass spectrometry was used to characterize the site of MHC heavy chain adduct formation. 

MHC heavy chain was therefore pooled, reduced and alkylated, and digested using trypsin. 

Subsequent mass spectrometry revealed the presence of flucloxacillin bound to peptides. 

Commercially available software is unable to detect flucloxacillin modified peptides due to 

the partial loss of the flucloxacillin structure during MS/MS fragmentation. Characteristic 

flucloxacillin fragmentation ions of m/z 160, 295 and m/z 454 (full flucloxacillin mass) (Figure 

5.2) indicate modifications are present on peptides. Loss of the thiazolidine ring when 

flucloxacillin is bound to peptides results in a mass residue of 294 Da on the target lysine. 

 

 
 

Figure 5.2. Flucloxacillin partial loss ions after MS/MS fragmentation. Flucloxacillin (m/z 454.0835) 
undergoes partial loss during MS/MS fragmentation resulting in loss of the thiazolidine ring (m/z 
160.0503). The resultant part of flucloxacillin can also be identified (m/z 295.0399). 

 

Analysis of the HLA alpha chain fractions from eluted complexes revealed flucloxacillin bound 

to the protein at the N-terminal glycine ([Flucloxacillin]-GSHSMR) (Figure 5.3). NH2-GSHSMR 

is part of the extracellular region of the HLA-B*57 alpha chain, making it one of the most 

susceptible regions of the protein to undergo direct modification from the external 

environment. As signal peptides are typically involved in the translocation of newly 

synthesised proteins to the cell surface, it is unlikely that intracellular modification occurred 

prior to transport. With this is mind, it is perhaps less likely that this modification is involved 

in the loading of novel peptides into the binding cleft.  
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Importantly, the GSHSMR peptide sequence is conserved across many HLA proteins including 

HLA-C*04:01 (P30504). HLA-C*04:01 is expressed on C1R-B*57:01 cells, therefore, it is 

unlikely that the observed modification contributes to only the HLA-B*57:01 genetic 

susceptibility to flucloxacillin liver injury. While N-terminal modification of GSHSMR was the 

only one to be found in this study, it is possible that other sites of adduct formation could 

contribute to the loading of neo-epitopes in an HLA restricted manner.   

 CHARACTERIZATION OF FLUCLOXACILLIN MODIFIED MHC BINDING PEPTIDES 

Peptides eluted from C1R-B*57:01 cells cultured in the presence of flucloxacillin were 

assessed for flucloxacillin modification. Manual interpretation of the spectra containing 

characteristic flucloxacillin fragmentation ions was performed. Of all the peptides eluted 

from flucloxacillin-treated C1R-B*57:01 cells, over 30 peptides were identified with an 

indicative modification, with 7 having been fully annotated (Table 5.4).  

Table 5.4. Flucloxacillin-haptenated peptides eluted from C1R cells expressing HLA-B* 57:01 

Figure m/z 
Charge 
state 

Peptide 
mass (Da) 

1Sequence Protein source 
2Predicted affinity 

(IC50, nM) 

Figure 5.4A 533.8612 3 1145.5836 HTAHIAC(O3)K*FA 

human elongation 
factor 1-alpha 1 

(EF1A1_HUMAN, 
P68104) 

1210.6 (WB) 

Figure 5.4B 630.2267 3 1434.624 VSDHEATLR*C(O3)WA 
HLA class I 

histocompatibility 
antigen, 

(1C04_HUMAN, 
P30504) 

(1C15_HUMAN, 
Q07000), 

(1B82_HUMAN, 
Q29718 

2658.7 (NB) 

Figure 5.5A 634.8969 3 1448.64 ISDHEATLR*C(O3)WA 1017.23 (WB) 

Figure 5.5B 634.8969 3 1448.64 ISDHEATLR*C(O3)WA 1017.23 (WB) 

Figure 5.6A 545.1719 3 1179.5157 HSATQK*EHGW Not known 23.4 (SB) 

Figure 5.6B 567.326 3 1245.5406 LFDPTNC(SO2SH)K*MN Not known 30810.6 (NB) 

Figure 5.7A 561.8524 3 1229.503 LFDPTNC(O3)K*MN Not known 30810.6 (NB) 
1 Peptide sequences were determined manually by de novo sequencing, *indicates the flucloxacillin 
binding sites; 2 Predicted affinity of unmodified peptides to HLA-B*57:01 was determined using 
NetMHC4.0. SB-strong binder, WB-weak binder, NB-non binder. 

 

 

 



 

213 

 

Fi
gu

re
 5

.4
.  

N
at

u
ra

lly
 p

re
se

n
te

d
 f

lu
cl

o
xa

ci
lli

n
-m

o
d

if
ie

d
 M

H
C

 c
la

ss
 I 

p
e

p
ti

d
e

s.
 M

S/
M

S 
sp

e
ct

ra
 s

h
o

w
in

g 
fl

u
cl

o
xa

ci
lli

n
 m

o
d

if
ic

at
io

n
 o

f 
p

ep
ti

d
es

 e
lu

te
d

 

fr
o

m
 C

1
R

-B
*5

7
:0

1
 c

el
ls

 c
u

lt
u

re
d

 in
 t

h
e 

p
re

se
n

ce
 o

f 
d

ru
g 

fo
r 

4
8

h
. C

h
ar

ac
te

ri
st

ic
 f

ra
gm

en
ta

ti
o

n
 io

n
s 

in
d

ic
at

e 
fl

u
cl

o
xa

ci
lli

n
 m

o
d

if
ic

at
io

n
 (

m
/z

 1
6

0
, 1

9
5

, 

2
5

9
 &

 4
5

4
).

 M
an

u
al

 in
te

rp
re

ta
ti

o
n

 r
ev

ea
ls

 a
m

in
o

 a
ci

d
 s

eq
u

en
ce

; (
A

) 
H

TA
H

IA
C

K
[F

lu
cl

o
xa

ci
lli

n
]F

A
  &

 (
B

) 
V

SD
H

EA
TL

R
[F

lu
cl

o
xa

ci
lli

n
]C

[O
3]

W
A

. 

 

 

 

 



 

214 

 

Fi
gu

re
 5

.5
. 

 N
at

u
ra

lly
 p

re
se

n
te

d
 f

lu
cl

o
xa

ci
lli

n
-m

o
d

if
ie

d
 M

H
C

 c
la

ss
 I

 p
e

p
ti

d
e

s.
 M

S/
M

S 
sp

e
ct

ra
 s

h
o

w
in

g 
fl

u
cl

o
xa

ci
lli

n
 m

o
d

if
ic

at
io

n
 o

f 
p

ep
ti

d
es

 e
lu

te
d

 

fr
o

m
 C

1
R

-B
*5

7
:0

1
 c

el
ls

 c
u

lt
u

re
d

 in
 t

h
e 

p
re

se
n

ce
 o

f 
d

ru
g 

fo
r 

4
8

h
. C

h
ar

ac
te

ri
st

ic
 f

ra
gm

en
ta

ti
o

n
 io

n
s 

in
d

ic
at

e 
fl

u
cl

o
xa

ci
lli

n
 m

o
d

if
ic

at
io

n
 (

m
/z

 1
6

0
, 1

9
5

, 

2
5

9
 &

 4
5

4
).

 M
an

u
al

 in
te

rp
re

ta
ti

o
n

 r
e

ve
al

s 
am

in
o

 a
ci

d
 s

eq
u

en
ce

; (
A

) 
IS

D
H

EA
TL

R
[F

lu
cl

o
xa

ci
lli

n
]C

[O
3
]W

A
 &

 T
A

A
Q

IT
Q

R
K

[F
lu

cl
o

xa
ci

lli
n

]W
. 

 

 

 

 



 

215 

 

Fi
gu

re
 5

.6
.  

N
at

u
ra

lly
 p

re
se

n
te

d
 f

lu
cl

o
xa

ci
lli

n
-m

o
d

if
ie

d
 M

H
C

 c
la

ss
 I 

p
e

p
ti

d
e

s.
 M

S/
M

S 
sp

e
ct

ra
 s

h
o

w
in

g 
fl

u
cl

o
xa

ci
lli

n
 m

o
d

if
ic

at
io

n
 o

f 
p

ep
ti

d
e

s 
el

u
te

d
 

fr
o

m
 C

1
R

-B
*5

7
:0

1
 c

el
ls

 c
u

lt
u

re
d

 in
 t

h
e 

p
re

se
n

ce
 o

f 
d

ru
g 

fo
r 

4
8

h
. C

h
ar

ac
te

ri
st

ic
 f

ra
gm

en
ta

ti
o

n
 io

n
s 

in
d

ic
at

e 
fl

u
cl

o
xa

ci
lli

n
 m

o
d

if
ic

at
io

n
 (

m
/z

 1
6

0
, 1

9
5

, 

2
5

9
 &

 4
5

4
).

 M
an

u
al

 in
te

rp
re

ta
ti

o
n

 r
e

ve
al

s 
am

in
o

 a
ci

d
 s

eq
u

en
ce

; (
A

) 
H

SA
TQ

K
[F

lu
cl

o
xa

ci
lli

n
]E

H
G

W
S 

&
 (

B
) 

LF
D

P
TN

C
[S

O
2
H

-S
H

]K
[F

lu
cl

o
xa

ci
lli

n
]M

N
. 

 

 

 

 



 

216 

 

Fi
gu

re
 5

.7
.  

N
at

u
ra

lly
 p

re
se

n
te

d
 f

lu
cl

o
xa

ci
lli

n
-m

o
d

if
ie

d
 M

H
C

 c
la

ss
 I 

p
e

p
ti

d
e

s.
 M

S/
M

S 
sp

e
ct

ra
 s

h
o

w
in

g 
fl

u
cl

o
xa

ci
lli

n
 m

o
d

if
ic

at
io

n
 o

f p
ep

ti
d

es
 e

lu
te

d
 fr

o
m

 

C
1

R
-B

*
5

7
:0

1
 c

el
ls

 c
u

lt
u

re
d

 i
n

 t
h

e 
p

re
se

n
ce

 o
f 

d
ru

g 
fo

r 
(A

) 
4

8
h

 &
 (

B
) 

1
0

 m
in

u
te

s.
 C

h
ar

ac
te

ri
st

ic
 f

ra
gm

en
ta

ti
o

n
 i

o
n

s 
in

d
ic

at
e 

fl
u

cl
o

xa
ci

lli
n

 m
o

d
if

iic
at

io
n

 

(m
/z

 1
6

0
, 

1
9

5
, 

2
5

9
 &

 4
5

4
).

 M
an

u
al

 i
n

te
rp

re
ta

ti
o

n
 r

ev
ea

ls
 a

m
in

o
 a

ci
d

 s
eq

u
en

ce
; 

(A
) 

 L
FD

P
TN

[C
O

3
]K

[F
lu

cl
o

xa
ci

lli
n

]M
N

. 
(B

) 
A

n
ti

ge
n

 p
ro

ce
ss

in
g 

 r
eq

u
ir

es
 

>1
0

 m
in

u
te

s,
 t

h
er

e
fo

re
 d

ir
ec

t 
m

o
d

if
ic

at
io

n
 o

f 
p

re
se

n
te

d
 M

H
C

 I 
p

ep
ti

d
es

 is
 e

xp
e

ct
ed

. S
eq

u
en

ce
 a

n
n

o
ta

ti
o

n
 h

as
 n

o
t 

ye
t 

b
ee

n
 p

o
ss

ib
le

.  

 

 

 

 



 

217 

Although only 7 MHC peptide sequences haptenated by flucloxacillin could be manually 

interpreted, it was possible to identify a range of protein sources. Peptide HTAHIACK*FA 

(Figure 5.4A) was derived from human elongation factor 1-alpha 1 (EF1A1_HUMAN, P68104), 

an abundant and multifunctional protein. Of these 7 peptides, 3 appear to come from the 

MHC alpha chain (VSDHEATLR*CWA (Figure 5.4B), ISDHEATLR*CWA (Figure 5.5A), and 

TAAQITQRK*W (Figure 5.5B). These were likely modified, processed by the proteasome and 

presented by a second HLA molecule. Interestingly, the protein sources for the other two 

peptides, HSATQK*EHGW (Figure 5.6A) and LFDPTNCK*MN (Figure 5.6B & Figure 5.7A) could 

not be determined using NCBI Blast searches, indicating they were potentially spliced 

peptides or originated from proteins not present in the human proteome database. Although 

these did not have a known protein source, spliced peptides are believed to account for a 

large proportion of the immunopeptidome (Faridi et al., 2018). Using NetMHC 4.0 binding 

prediction tools LFDPTNCKMN is considered a non-binder to HLA-B*57:01 (30,810.6 nM), 

however it may be that flucloxacillin assists with the binding to HLA-B*57:01. While it is 

possible that the peptide was derived from HLA-C*04:01, the binding affinity prediction 

score is even lower (31,074.7 nM).   

The determination of whether MHC peptides are directly modified, or if haptenated proteins 

are subsequently digested in the proteasome, was challenging. Therefore, flucloxacillin was 

incubated with C1R-B*57:01 cells for only 10 minutes. This would not give enough time for 

flucloxacillin to pass through proteasomal digestion and subsequent MHC presentation 

pathways. Strikingly, flucloxacillin-haptenated peptides were still detected (Figure 5.7B). 

While it was not possible to positively interpret the peptide sequence, the presence of 

characteristic fragment ions (m/z 160, 195 and 295) suggests flucloxacillin can bind to 

peptides already accommodated in the peptide binding groove.  
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 ANTIGEN PROCESSING DISRUPTION 

In vitro studies have shown that the binding of flucloxacillin to lysine results in missed 

cleavages when proteins are digested using trypsin (Jenkins et al., 2009). It is therefore likely 

that modification may result in missed cleavages within the proteasome. To determine 

whether covalent binding of flucloxacillin interferes with natural protein processing, 

hotspots of peptide presentation across proteins were determined. Eluted peptides from 

human elongation factor 1-alpha 1 (EF1A1_HUMAN, P68104), where flucloxacillin was found 

bound to Lys371 (HTAHIACK*FA), were separately aligned to the source protein sequences 

(Figure 5.8A). Indeed, the presence of flucloxacillin generated a unique set of peptides. 

Specifically, covalent binding of flucloxacillin to Lys371 in EF1A1 resulted in a hotspot for 

ligand presentation (Figure 5.8A). Distinct hotspots associated with flucloxacillin treatment 

were also detected with other proteins (Figure 5.8C). 

 

 
 

Figure 5.8. Flucloxacillin affects overall proteasomal cleavage sites. (A) The presence of flucloxacillin 
may affect the proteasome cleavage sites, leading to the generation of unique set of peptide pool. 
Peptides generated from the same protein (P68104, human elongation factor 1-alpha 1) presented by 
flucloxacillin-treated (green) and untreated cells (black) display a distinct digestion pattern. (B) 
Covalent binding of flucloxacillin to Lys371 (A, yellow box) results in hotspots of presentation. (C) 
Similar hotspots were observed in the human heat shock cognate 71K Da protein (P11142). 
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As evidence for disruption of antigen processing was observed, enzyme activity within the 

proteasome was investigated. In the previous chapter, changes to the MHC peptide PΩ 

amino acid abundance was observed in the presence of flucloxacillin. This suggests antigen 

processing may too be altered in the presence of flucloxacillin. Therefore, the amino acids 

flanking the termini of unique peptides from their source protein were identified for each 

treatment (Figure 5.9). The results of the comparison showed that at either end of the unique 

peptides, the relative abundance of the subsequent amino acid remained the same. This 

indicated that, although the two data sets were previously distinct based on PΩ amino acid 

abundance and binding affinity, the activity of specific enzymes was not altered by the 

presence of flucloxacillin.  

 

 
 

Figure 5.9. Amino acid abundance flanking N and C terminal ends of unique peptides to each 
treatment group. The abundance of amino acids present at (A) P1 minus 1 and (B) PΩ plus 1 was 
assessed. In all cases, the abundance of amino acids flanking each peptide termini did not change 
between treatment groups.  
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 THEORETICAL DOCKING OF FLUCLOXACILLIN MODIFIED PEPTIDES TO HLA-B*57:01 

To further assess the binding of haptenated peptides to HLA-B*57:01, theoretical modelling 

and docking analysis was performed (HLA-B*57:01 crystal structure PDB 3VRJ) with the 

assistance of Dr Xiaoli Meng. One peptide of particular interest was HSATQK*EHGW (Figure 

5.6A) due to its unknown protein source and high binding affinity. In addition, no PTMs were 

observed; cysteine containing peptides are often oxidised, however it is challenging to 

determine whether oxidation took place in vivo or ex vivo during sample processing. 

Therefore, both the unmodified and modified HSATQK*EHGW peptide were docked into the 

HLA-B*57:01 binding cleft using Gold Suite v.5.2.1 (Figure 5.10). 

 

 
 

Figure 5.10. Theoretical docking of HSATQKEHGW into the HLA-B*57:01 binding cleft. Gold suite 
v.5.2.1 was used to dock (A) unmodified and (B) flucloxacillin modified HSATQKEHGW into the binding 
cleft of HLA-B*57:01. Both peptides bind with high affinity (Gold fitness scores of (A) 95.78 and (B) 
79.31), with the flucloxacillin modification protruding outwards in its best orientation hypothesis.  

 

Unmodified HSATQKEHGW (Figure 5.10A) was found to bind into the HLA-B*57:01 binding 

cleft with the C-terminal tryptophan residing within the F-pocket as anticipated. In a similar 

A

B
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style, HSATQK*EHGW (modified by flucloxacillin) also accommodated the binding groove in 

a canonical fashion (Figure 5.10B). Interestingly, the best hypothesis for binding of modified 

HSATQK*EHGW results in flucloxacillin protruding from the binding groove. While modelling 

is purely based on theoretical simulations, in this orientation flucloxacillin would most likely 

interact with the TCR. In turn, the presence of a neo-antigen is believed to be the most likely 

mechanism resulting in T cell activation, leading to an immune response. Of course, the 

anticipation that flucloxacillin modified HSATQK*EHGW would result in T cell activation is 

based on a several factors. In order to address this, synthetic purification of flucloxacillin 

modified HSATQK*EHGW was performed for in vitro T cell priming studies.  

 ISOLATION OF FLUCLOXACILLIN MODIFIED HSATQKEGHW 

The N-terminus of HSATQKEHGW was protected with an Fmoc group during synthesis by 

Synpeptide Co., Ltd (China). As flucloxacillin is attacked by nucleophilic residues, it was 

important to protect the free amine on the N-terminal histidine. Fmoc-HSATQKEHGW, 

flucloxacillin and Fmoc-HSATQKEHGW/flucloxacillin incubations were all incubated for 48 

hours in 70% ACN/30% H2O. All three samples were subsequently loaded onto the HPLC in 

equal quantities (22.4 µg peptide & 74.4 µg flucloxacillin) (Figure 5.11A). HPLC analysis 

revealed separation of the three samples as hoped. In order to identify the peak representing 

modified peptide, all three analytes were run on the mass spectrometer. Unfortunately, 

although analyte differences were observed, these did not perfectly align with the 

purification HPLC traces (Figure 5.11B). Both the unmodified peptide, and the degradation 

products of flucloxacillin after a 48h incubation, were used to identify peaks which where 

exclusively present when Fmoc-HSATQKEHGW and flucloxacillin were co-incubated for 48 

hours. In order to determine which peak was indicative of Fmoc-HSATQK*EHGW, manual 

fractionation was performed.   
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Figure 5.11. Fractionation of Fmoc-HSATQKEHGW, flucloxacilln and the product of the Fmoc-
HSATQKEHGW flucloxacillin reaction. (A) HPLC and (B) mass spectrometry were used to identify 
analytes relating to the modification of Fmoc-HSATQKEHGW. Although separation was achieved using 
both HPLC and mass spectrometry, they were not comparable. 

 

Unmodified Fmoc-HSATQKEHGW was fractionated (Figure 5.12A, i) and collected (13.6 to 

13.9 min) for mass spectrometric analysis. MS/MS revealed singly, doubly and triply charged 

m/z ions corresponding to the unmodified peptide (Figure 5.12B). It was also observed that 

the absorbance reading for the unmodified peak was reduced in the incubation with 

flucloxacillin, indicating modification and retention time shift. Immediately after the 

unmodified peptide peak on the HPLC, an analyte only present in the incubation of 

flucloxacillin with Fmoc-HSATQKEHGW appears (15.5 to 15.85 min) (Figure 5.12A, ii). After 

collection of the fraction, mass spectrometry was performed, revealing both doubly and 

triply charged ions relating to the mass of Fmoc-HSATQK*EHGW (Figure 5.12B). All other 

peaks present exclusively in the incubation of drug alone and unmodified peptide (Figure 

5.12A, iii) could not be determined, however were not indicative of modified peptide.  
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Piperidine was used for removal of the Fmoc from the N-terminal histidine of modified 

HSATQK*EHGW. HPLC was used to assess the retention time and purity of the deprotected 

modified peptide. As anticipated, the modified peptide with the Fmoc removed appeared as 

a single peak (Figure 5.13A, iii). As the modified peptide was generated for use in functional 

T cell culture assays, the purity of the collected fraction was investigated further using mass 

spectrometry. Modified HSATQK*EHGW fractions were prepared for mass spectrometric 

analysis using SCX prior to loading. Samples were deemed to be pure through the instance 

of 2 distinct peaks on the MS trace (Figure 5.13B). Both peaks corresponded to the modified 

peptide, with the separation due to different isomers of the modified peptide interacting 

with the analytical column differently.  

 

 
 

Figure 5.13. Deptotection of Fmoc-HSATQK*EHGW using piperidine. (A) HPLC separation of the (i) 
Fmoc-HSATQKEHGW flucloxacillin reaction mixture (ii) piperidine and (iii) the product of Fmoc-
HSATQK*EHGW (red box) after incubation with piperidine at a 1:10 molar ratio. (B) Mass 
spectrometric analysis of the purity of HSATQK*EHGW after SCX preparation.  
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 COMPARISON OF ELUTED VS SYNTHETIC MODIFIED HSATQK*EHGW 

Synthetic HSATQK*EHGW was generated to confirm the sequence annotation of the eluted 

peptide; for which 3 different MS/MS spectra were acquired.  

 

 
 

Figure 5.14. Alignment of eluted and synthetically modified HSATQK*EHGW. MS/MS spectra of 
eluted HSATQKEHGW were combined and compared with the fragment ion seried of the synthetic 
peptide  A number of matches with similar ion intensities were identified between both peptides.  

 

Eluted
m/z 545.2 Da 
RT 66.606 min

Eluted
m/z 545.2 Da 
RT 66.544 min

Eluted 
m/z 545.2 Da 
RT 66.653 min

Combined Eluted

Synthetic
m/z 545.3 Da

RT 68.352
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As the eluted peptides were in low abundance, combination of multiple spectra was 

performed to confirm true positive fragment ions from background noise. Upon alignment, 

it was apparent that many of the same fragment ions were found in both the synthetic and 

the eluted HSATQK*EHGW peptide (Figure 5.14). Relative intensities of fragment ions were 

normalised to the TIC from both the synthetic and combined eluted peptide. Fragment ions 

from both spectra were subsequently compared to theoretically expected ions for 

HSATQK*EHGW. Using a mass tolerance of 0.5 Da, to incorporate average isotopic masses, 

accepted fragmentation ions from each peptide were compared using Pearson correlation. 

Correlation was found to be signification at the 0.01 level using a 2-tailed test, with a 

correlation value of 0.76 (Figure 5.15). 

 

 
 

Figure 5.15. Comparative analysis of fragment ions from the eluted and synthetically modified 
peptide HSATQK*EHGW. The Log2 fragment ion intensities of theoretically correct ions shared 
between synthetic and eluted were compared and analyzed using Pearsons correlation.  
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 SYNTHETIC PEPTIDE YIELD OPTIMISATION 

In order to perform functional T cell studies with the modified peptide, peptide stability 

during purification as well as a high yield were necessary. This was both to minimise batch 

to batch variation in addition to practicality. HPLC fractionation of the Fmoc peptide 

incubated with flucloxacillin was performed immediately after 48 hours, 7 days storage at -

20°C and overnight at room temperature in the HPLC autosampler (Figure 5.16A). All three 

absorbance traces appeared identical, with crucially, the modified fraction remaining. To 

maximise the yield of the modified fraction, increasing volumes of the incubation mixture 

(0.5 mM peptide, 5 mM flucloxacillin) were loaded onto the HPLC (Figure 5.16B). Separation 

of the modified peptide from the rest of the reaction mixture, i.e. unmodified peptide and 

flucloxacillin degradation products, was only possible up to a 40 µL injection volume (44.8 µg 

peptide, 148.8 µg flucloxacillin).  
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Figure 5.16. Assessment of the stability of the Fmoc-HSATQKEHGW flucloxacillin reaction mixture 
and maximum loading calculation. (A) The reaction mixture was loaded onto the HPLC after (i) 48 
hours, (ii) overnight in the autosampler and (iii) for 1 week at -20°C. All traces were comparable, 
indicating the reaction mixture was stable. (B) Maximum loading of the reaction mixture while 
maintaining separation of the modified peptide fraction was assessed. A 40 µL injection of the reaction 
mixture (iii) was identified as optimal, to prevent contamination from other analytes.  
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 DISCUSSION 

Although advanced proteomics technologies have allowed global, systems-wide 

investigations of peptides presented to the immune system, less is known about the antigen 

processing and presentation in the presence of drugs, in particular reactive drugs that can 

covalently bind to proteins/peptides. It has been postulated that peptides derived from 

haptenated protein are likely to trigger drug-specific immune responses, in some cases, 

leading to tissue injury. Indeed, the screening of new drugs for bioactivation to chemically 

reactive intermediates is based on the theoretical concerns that such metabolites may 

induce an immune response in patients and cause serious idiosyncratic reactions that are 

only detected late in drug development (Park et al., 2011). Much progress has been made to 

characterize the phenotype and function of the drug-specific immune cells that are involved 

in ADRs, but the chemistry of haptenated peptides naturally presented by specific HLA alleles 

that can initiate an immune response remain to be defined. In this chapter, a streamlined 

workflow was developed that has enabled the detection of natural HLA class I peptides 

presented on the surface of antigen presenting cells treated with flucloxacillin. For the first 

time, it has been demonstrated that flucloxacillin-haptenated peptides can be naturally 

presented by HLA-B*57:01.  

Previous studies have demonstrated a strong association between HLA-B*57:01 and 

susceptibility to flucloxacillin-induced liver injury. Furthermore, activation of T cells from 

patients with liver injury by flucloxacillin has been detected and shown to be HLA-B*57:01-

restricted. Thus, the primary objective of this chapter was to identify the flucloxacillin-

associated structures displayed by HLA-B*57:01 on the surface of antigen presenting cells 

using an immortalized HLA-B*57:01 expressing B cell line. Close to 3,000 HLA-B*57:01 

binding peptides were identified from flucloxacillin treated cells, among which more than 30 

flucloxacillin-haptenated peptides were detected.  Because of the complex partial loss of 

flucloxacillin in the mass spectrometer, identification of peptide sequences is not possible 
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using commercial software. During initial MS detection, flucloxacillin modified peptides were 

detected with the whole drug intact, giving a mass addition of 453 Da. Upon MS/MS, 

flucloxacillin is itself fragmented, resulting in mass additions of 453 Da, 294 Da (loss of the 

thiazolidine ring) and unmodified product ions. In addition to the unknown protein source, 

unknown protease involved in proteosomal digestion and any unknown biological 

modifications, fragmentation of flucloxacillin makes the database search space too large to 

confidently assign any peptide sequences. In addition to the complexity described, the 

presence of spliced peptides in the immunopeptidome adds another layer of complexity in 

the use of bioinformatics for the annotation of MHC peptides (discussed in detail in the next 

chapter). Therefore, manual de novo sequencing allowed us to annotate 7 of the 

flucloxacillin-haptenated peptides.   

Flucloxacillin-haptenated peptides were anticipated to be presented through processing-

dependent and -independent pathways. Through the processing-dependent pathway, 

flucloxacillin-haptenated proteins likely undergo intracellular processing and HLA peptide 

loading processes prior to presentation on the cell surface. Although a huge diversity of 

flucloxacillin-haptenated intracellular proteins were detected, only a few modified peptides 

were found to be naturally processed and presented by HLA-B*5701 for T cell recognition. 

Many of the flucloxacillin-modified proteins may have an impact on other biological 

functions such as cellular signalling. For example, flucloxacillin-haptenated eEF1A protein is 

the second most abundant protein (1-3% of total protein content) expressed in many cells 

including immune cells and liver cells (Abbas, Kumar and Herbein, 2015). The site of 

flucloxacillin covalent binding, K371 (HTAHIACK*FA), is not one of the sites for epigenetic 

modification that is involved in its canonical role of translation elongation (Andersen, Nissen 

and Nyborg, 2003; Hamey and Wilkins, 2018); however, this modification may play a role in 

non-canonical functions including cell regulation of the cytoskeleton through AKT and PI3K 

signalling pathways (Amiri et al., 2007; Abbas, Kumar and Herbein, 2015). 
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Flucloxacillin was found to directly bind to peptides already presented on the cell surface 

within HLA peptide binding cleft. In this respect, a flucloxacillin-haptenated peptide 

(TAAQITQRK*W) and an unmodified counterpart, derived from HLA alpha chain, were 

detected, indicating direct peptide modification is possible. Furthermore, flucloxacillin-

modified peptides were detected after C1R-B*57:01 cells were treated with flucloxacillin for 

only 10 minutes, providing firm evidence of direct haptenation. This direct haptenation could 

lead to immediate activation of T cells upon flucloxacillin treatment without the need for 

antigen processing. Indeed, Wuillemin et al demonstrated that stimulation of flucloxacillin-

specific T cells could occur independent of proteasomal processing (Wuillemin et al., 2013). 

Why flucloxacillin selectively modified HLA-B*57:01 binding peptides is not clear. One 

possible explanation is that flucloxacillin binds directly to peptide-HLA-B57:01 complexes 

with high affinity, and this selective non-covalent interaction could position the drug in 

favourable orientations to facilitate covalent binding. Our preliminary data with piperacillin, 

another drug with a similar core structure to flucloxacillin, indicates that the display of 

haptenated HLA-B*57:01 peptides is not a common feature of all β-lactam antibiotics.  

Apart from altering antigen presentation, reactive drugs may interfere with antigen 

processing through multiple pathways. It is feasible that covalent binding, if it is close to the 

proteasomal cleavage sites, may alter enzymatic cleavage leading to the generation of de 

novo peptides. There already exists evidence that proteins with post-translational 

modifications are more resistant to proteolysis and the cleavage patterns are influenced by 

the sites of modification (Ninkovic and Hanisch, 2007; Purcell, van Driel and Gleeson, 2008).  

Indeed, covalent binding of flucloxacillin to proteins led to the presentation of peptides with 

a C-terminal alanine; VSDHEATLR*CWA, ISDHEATLR*CWA, HTAHIACK*FA. All three of these 

flucloxacillin-haptenated peptides were derived from intracellular proteins that were 

subsequently displayed by HLA-B*57:01. Importantly, a C-terminal alanine is strongly 

disfavoured by proteasomal cleavage and TAP transport (Tenzer et al., 2005), providing 
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strong evidence of altered antigen processing. While this appears to be true of modified 

peptides terminating with a C-terminal alanine, global analysis of proteasomal activity 

showed potential disruption to be inconclusive. That said, the bioinformatic tools used to 

generate unique peptide lists cannot consider flucloxacillin modified peptides. Therefore, the 

results of the analysis must be taken with caution. The molecular features of flucloxacillin 

may assist the binding of proteins to proteasome catalytic sites, which strongly favour 

hydrophobic residues, leading to the generation of peptides from unique parts of proteins. 

Indeed, ligands derived from control- and flucloxacillin-treated cells were found to display 

strikingly distinct pools of peptides derived from the same protein.  

In addition to haptenation, drugs such as flucloxacillin could change the shape and chemistry 

of the antigen-binding cleft through direct covalent binding to HLA molecules, leading to an 

alteration in the repertoire of endogenous HLA peptides. Immuno-detection and mass 

spectrometric analysis of the alpha chain of HLA-B*57:01 revealed that flucloxacillin can 

indeed irreversibly bind to the N-terminal glycine. Through analysis of the alpha chain protein 

sequence the glycine modification appears at the first amino acid upon cleavage of the signal 

peptide. This is of interest, as the signal peptide is responsible for transport of the MHC 

complex to the cell surface (Rapoport, 2007). Therefore, it is likely that flucloxacillin 

modification occurred extracellularly and did not result in the presentation of neo-antigens. 

That said, it is still possible that other binding sites within the HLA-B*57:01 protein are 

targeted by flucloxacillin. 

Whether the novel flucloxacillin-associated peptides (haptenated and altered self-peptides, 

chapter 4) identified in this study play a role in the onset of flucloxacillin-induced liver injury 

remains to be determined. Evaluation of the immunogenicity of these peptides with T cells 

from patients with flucloxacillin-induced liver injury is extremely challenging due to the 

difficulty of generating synthetic flucloxacillin-haptenated peptides. We have therefore 

attempted to predict the immunogenicity of haptenated peptides to reduce the numbers of 
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candidate peptides to be evaluated in future studies. Since there is no algorithm available 

for haptenated peptides, HLA binding algorithms for predicting the binding affinity of the 

corresponding-unmodified peptides were used. Several of these peptides were predicted to 

be weak HLA-B*57:01 binders. This is not surprising as a flucloxacillin modification will alter 

the 3D molecular arrangements within the peptide structure and hence its ability to ligate 

HLA proteins. The flucloxacillin molecule will likely orientate towards the solvent surface and 

thus has the potential to be displayed to the T cell receptor on specific T cells. Upon 

theoretical docking, the conformation of the flucloxacillin haptenated HSATQK*EHGW 

peptide is indeed different from the native peptide when it bound to HLA-B*57:01, with the 

flucloxacillin side chain reaching towards the solvent surface for T cell recognition.  

Collectively, this data shows how the β-lactam antibiotic flucloxacillin interacts covalently 

with HLA-B*57:01. For the first time, drug-haptenated MHC peptides have been 

characterized though binding to a specific HLA, B*57:01, resulting in cell surface 

presentation. These peptides originate from either direct haptenation of peptides already 

displayed in the HLA peptide binding groove or following processing of drug-modified 

intracellular proteins. These data indicate that diverse drug-associated antigens have the 

potential to trigger drug-specific T cell responses and the diversity may drive the complex 

clinical picture of drug-induced liver injury. 
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 INTRODUCTION 

The complexity of the data generated when investigating MHC peptides using mass 

spectrometry poses a real challenge to the analysis pipelines developed, and make manual 

interpretation of entire data files impossible (Codrea and Nahnsen, 2016). Two main 

challenges exist; firstly, the accurate identification of MHC peptides and secondly, the 

characterization of drug modified MHC peptides. Typically, the database used for peptide-

to-spectrum matches (PSMs) can be reduced in size by adding assay specific details into the 

search parameters. This could be proteins/organisms of interest, known digestive enzymes 

or other known modifications, for example. In reducing the number of theoretical sequences 

contained within the database, confidence scores for PSMs are subsequently boosted. The 

challenge with MHC peptides comes from the inability to positively hypothesise the protein 

source, the presence of biological modifications or the proteolytic enzyme involved in 

protein digestion prior to loading into the MHC. Consequently this results in a very large 

database, and as a result, weaker confidence in correctly determining the peptide sequences 

of the spectra acquired. Therefore, bioinformatics pipelines are used to assign peptide 

identifications with the additional of confidence scores and statistical validation. 

The volume of data that is now generated from state-of-the-art mass spectrometers can be 

in excess of 1TB (Kirkwood et al., 2013; Kim et al., 2014) and therefore analysis is becoming 

a challenge for the computational methods that were previously designed (Shteynberg et al., 

2011). It is generally accepted that three types of search engines exist; those that match with 

theoretical spectra, spectral library search engines and de novo search engines which 

attempt to derive sequence information from MS/MS fragmentation ion patterns alone 

(Shteynberg et al., 2013). Perhaps the most common approach to assigning MS/MS spectra 

to peptide sequences comes from the in silico digestion of proteins contained within a 

database. By reducing this search space the confidence of PSMs can be boosted. In order to 

assign confidence scores to PSMs, decoy databases containing non-existent peptide 
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sequences are used. If a spectrum is assigned with high confidence to a decoy entry, FDRs 

can be calculated. While this can improve the reliability of peptide annotations used for 

subsequent analyses, the technique in which different search engines make their 

assignments vary, producing different outputs.  

There are many pieces of software available for the bioinformatic analysis of mass 

spectrometric data; both open source and commercially available. Advantages and 

disadvantages to using a particular piece of software depends on the type of data being 

interrogated and the question that is being probed. Several search engines exist, each with 

different advantages and disadvantages. For example, MS Amanda is particularly suitable for 

high mass accuracy data, assigning more PSMs than commercially available search engines 

such as Mascot. Mascot, however, is particularly useful at identifying complex amino acid 

modifications, but is limited to peptides generated from a known protease and is not free to 

use (Dorfer et al., 2014). While the statistical validation methods of open source algorithms 

can be interrogated, commercially available platforms do not usually disclose how PSM 

scoring is assigned. The combining of results from different search platforms has been used 

to improve accurate PSMs. For this approach the Institute for Systems Biology have been 

instrumental in their contributions to the development of novel proteomic tools through the 

Trans-Proteomics Pipeline (TPP) (Codrea and Nahnsen, 2016). More recently the TPP has 

introduced iProphet (Shteynberg et al., 2011) which incorporates multi-level integrative 

analysis of data dependant acquisition (DDA) data. The purpose of iProphet is to compare 

the results from a number of shot-gun DDA searches and statistically validate the results into 

a single output, thus improving the overall confidence of a PSM and improve source protein 

identification (Shteynberg et al., 2011).  

A comprehensive review into the improvement in PSM assignment with iProphet resulted in 

an increase of ~40% when combining six different search engines (InSpecT, MyriMatch, 

OMSSA, Mascot, SEQUEST and X!Tandem). This could be improved by a further ~26% when 
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a seventh search engine, SpectraST (Lam et al., 2007), was incorporated into the analysis 

(Shteynberg et al., 2013). SpectraST is different in its PSM assignment due to fragment ions 

being searched against a spectral library rather than protein sequence databases, making it 

a more precise and efficient method (Lam et al., 2007). While SpectraST offers increased 

precision and efficiency only spectra that have previously been annotated will give a positive 

match, making it impossible for searching novel peptides. A few studies have now utilised 

the power of combination searches using iProphet in identifying MHC peptides. The murine 

MHC class I immunopeptidome was interrogated using the search engines Comet (Eng, Jahan 

and Hoopmann, 2013), MSGF (Kim and Pevzner, 2014) and X!Tandem (Craig, Cortens and 

Beavis, 2004) through the TPP PeptideProphet pipeline, combining the results in iProphet 

yielding 28,448 high confidence peptides (Schuster et al., 2018). While the number of 

positive PSMs from each individual search are not available, the addition of analysis using 

combination searches undoubtedly improved the number of confident PSMs. 

The use of open source software is useful for experienced data scientists as users can 

understand PSM scoring and edit scripts to suit their own needs. That said, these algorithms 

are all developed based on bottom-up proteomic techniques where peptides are generated 

from known proteases. Indeed, this incorporates a level of bias as PSMs are assigned based 

on a database-driven approach of possible theoretical peptides. While the PSM assignment 

algorithms are unknown, commercially available software such as Protein Pilot v.5 (used in 

this study) and PEAKS (v.8.5) incorporate de novo sequencing steps in combination with a 

database-driven approach. While limitations exist with relation to the modification of 

internal algorithms for personalised approaches, the possibility to identify novel MHC 

peptides not included in a pre-compiled database is far greater (Purcell, Ramarathinam and 

Ternette, 2019). Spliced MHC peptides were first identified by Hanada et al where two FGF-

5 peptide sequences that originated from different regions of the protein were recognized 

by cytotoxic T lymphocyte clones (Hanada, Yewdell and Yang, 2004). This phenomenon was 
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later described by Vigneron et al where spliced gp100 resulted in two non-continuous 

fragments of the protein being presented. The presentation of this peptide was restricted 

when protease inhibitors were introduced indicating that protein digestion and MHC 

presentation pathways were resulting in the splicing of peptides on the cell surface (Vigneron 

et al., 2004). Since these early studies many other groups have reported the incidence of 

spliced peptides originating from two or more protein sources (Hanada, Yewdell and Yang, 

2004; Vigneron et al., 2004; Ebstein et al., 2016; Liepe et al., 2016; Mishto and Liepe, 2017; 

Platteel et al., 2017; Mannering et al., 2018). A comprehensive study into novel analysis 

workflows to positively identify spliced peptides was recently published by Faridi et al. It’s 

thought that cis-spliced-peptides, where peptide segment are derived from the same 

protein, may account to up to 30% of the immunopeptidome (Liepe et al., 2016).  While 

trans-spliced-peptides consisting of peptide sequences derived from different proteins do 

too exist, the function of all spliced peptides is not yet fully understood (Faridi et al., 2018). 

In the present study Faridi et al presents well described bioinformatic workflows that can 

positively discriminate between linear and spliced peptides using de novo sequencing 

methods (Faridi et al., 2018). Therefore, in the case of spliced peptides matching fragment 

ions to in silico digests would not result in positive PSMs. The de novo feature of ProteinPilot 

and PEAKS is instrumental in positively identifying genuine spliced ligands; however due to 

the commercial nature of these products they are extremely costly and do not integrate with 

other pieces of software well.  

It goes without saying that the bioinformatic analysis of MHC peptides is inherently 

challenging. An additional complication arises when drug involvement is added the search 

parameters. In the case of abacavir, a global change in MHC peptides was identified, 

therefore Protein Pilot was applicable for this study (Illing et al., 2012). In the case of 

flucloxacillin, a global change was too identified in the C-terminal amino acid abundance with 

the use of Protein Pilot v.5 (Chapter 4), validating its use for immunopeptidomic analysis.  
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Figure 6.1. Flucloxacillin modification of HSA tryptic peptide NLGKVGSK. Mass spectrometric analysis 
of tryptic peptides derrived from flucloxacillin modified HSA. (A) Flucloxacillin modified NLGKVGSK 
was identified through the theoretical mass addition of flucloxacillin (453 Da), with characteristic 
fragmentation ions annotated. (B) Fragmentation ions relating to flucloxacillin. (C) Doubly charged 
fragmentation ions correspoinding to unmodified NLGKVGSK and partially modified peptide (+294 
Da). (D) Singly charged fragmentation ions (y6 - GKVGSK) with and without modification. 
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allows target amino acids, the probability of a modification arising and the chemical formula 

of drug to be considered when PSMs are performed. The challenge with flucloxacillin, 

however, is that the drug breaks apart during MS/MS fragmentation. Take the representative 

example NLGKVGSK, a tryptic peptide derived from HSA. Flucloxacillin modified NLGKVGSK 

can be manually identified through the theoretical addition of the flucloxacillin MW (453 Da) 

to that of the peptide (801.47 Da). Through searching the peptide spectra acquired, 

flucloxacillin modified NLGKVGSK can be identified as a triply charged ion ((1254.6078+3)/3 

= 419.2026 Da) (Figure 5.1A). Fragmentation ions corresponding to flucloxacillin (160, 195 & 

454 Da) confirm the presence of drug on the peptide (Figure 5.1A & B). In addition to the 

triply charged parent ion with a full flucloxacillin mass addition of 453 Da, a doubly charged 

unmodified fragment ion (401.75 Da) and a doubly charged fragment ion with a partial 

flucloxacillin modification (548.76 Da), are present (Figure 5.1C). This partial modification is 

indicative of the loss of the thiazolidine ring (159 Da) (Figure 5.1B). Additional fragment ions 

are also observed, both with the presence and absence of the flucloxacillin modification 

(Figure 5.1D). This contributes to a diverse array of possible fragment ions, with multiple ions 

corresponding to the same peptide sequence (+/- partial or full modification) (Figure 6.2). 

 

 
 

Figure 6.2. Theoretical b and and y fragment ions from NLGKVGSK. Fragment ions from unmodified 
NLGKVGSK result in two ion series. Due to drug fragmentation, an increased in up to 6 theoretical 
fragment ions series is observed when peprides are modified with by flucloxacillin. 
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Although not necessarily related to the drug, other PTMs will further amplify the number of 

potential fragment ions. In the case of flucloxacillin, fragmentation results in additional ions 

(relatively) unique to the drug. These will too be used as peptide derived ions by the 

algorithm while attempting to make PSMs. With these complexities, in addition to those 

previously described, the bioinformatics analysis of flucloxacillin-modified MHC peptides is 

limited using established search methods.  

Once confident PSMs have been assigned, further bioinformatics analysis is often required 

for the interrogation of the MHC peptide repertoire. Upon analysis of the 

immunopeptidomics data in Chapter 5, several different Excel spreadsheets were generated 

to produce the final peptide lists unique to each treatment. While for this thesis the total 

number of elutions was 9 (3 x untreated, 3 x abacavir treated and 3 x flucloxacillin treated) 

this manual approach would not be appropriate for a high throughput data analysis. 

Programming languages are becoming more and more popular for researchers to overcome 

the issue of ‘big data’. One particularly useful language and environment is ‘R’ (www.r-

project.org) and R studio, respectively. R is primarily used for statistical computing and the 

generation, manipulation and display of data for publication quality graphics. Another 

attractive feature with R is that it is free to use and therefore has developed a large 

community base where users share script packages and offer peer support. Ultimately, ‘R’ 

can speed up the analysis of MHC peptide data which makes it instrumental in the 

development of high-throughput analysis platforms.    

http://www.r-project.org/
http://www.r-project.org/
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 AIMS 

The ‘black-box’ nature of Protein Pilot’s scoring and PSM assignment makes the 

incorporation of novel bioinformatics tools into its search impossible. In order to overcome 

these challenges, software engineers in the Computational Biology Facility at the University 

of Liverpool were involved in generating novel bioinformatic tools that could be used for the 

analysis of MHC peptide data acquired for this thesis. Using their expertise, the primary aim 

of this project was to develop a pipeline for the automatic identification and characterization 

of flucloxacillin modified MHC peptides. A second aim of this chapter was to use ‘R’ within R-

Studio to write scripts that would speed up data analysis. Using these novel pipelines will 

enable a more streamlined approach to the study of immunopeptidomic data.  

 

 

 

 

 

 

 

 

 

N.B. A project report, prepared by data scientists at the Computational Biology Facility, can 

be found at the end of this chapter (Appendix 1).  
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 METHODS & RESULTS 

Due to the nature of this chapter, the methods and results will be combined into one section. 

The complexity of the MHC peptide mass spectrometric data makes it challenging to develop 

a single method which fits all the requirements; therefore, the progression of this chapter 

will be presented in a chronological format. 

 BIOINFORMATIC ANALYSIS OF DRUG MODIFIED TRYPTIC PEPTIDES 

Protein Pilot was used for the analysis of MHC peptide data due to its availability (commercial 

licence required) and de novo sequencing capabilities. However, it was not possible to 

positively identify any flucloxacillin modified MHC peptides. While a lot of the difficulties can 

be attributed to the nature and complexity of MHC peptides themselves, Protein Pilot was 

still unable to confidently assign flucloxacillin modification to tryptic peptides. In this 

example the tryptic HSA peptide (ASSAKQR) can be manually annotated, with almost all the 

fragmentation ions accounted for (Figure 6.3A). When a search was set up using Protein Pilot, 

with the algorithm set to identify a highly probable mass addition of 453 Da on lysine 

residues, an incorrect annotation (GSYMEVEDN[Deamidated]R) was assigned (Figure 6.3B). 

As the sequence assignment confidence was low (<1%) it would not be considered in further 

analysis. In this case, it is understandable due to the user specific parameters stating a mass 

addition of 453 Da on lysine would occur. While this is true of the parent ion, product ions 

have a mass addition of 294, due to the cleavage of the thiazolidine ring. Subsequent 

parameters were input into the search algorithm, accounting for a partial loss of 160 Da, 

however the results were limited to multiple hypotheses with a confidence score <1%. This 

simple experiment highlights the incapability of Protein Pilot to correctly assign drug 

modification to tryptic peptides where a partial flucloxacillin loss occurs, therefore it would 

be impossible to use this method for the detection of flucloxacillin modified MHC peptides.     
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Figure 6.3. Identification of flucloxacillin modified tryptic HSA peptides using Protein Pilot. (A) A 
representivive example of a manually annotated tryptic HSA spectrum (ASSAK[Flucloxacillin]QR). 
Characteristic fragmentation ions (160, 195, 295 and 454 Da) confirm the presence of flucloxacillin. 
(B) The same specrtrum is annotated incorrectly when Protein Pilot investigates the fragment ion 
series, with fucloxacillin modification incorportated into the search algorith.  

 

A pipeline was therefore initially generated for the identification of tryptic HSA peptides 

likely modified by flucloxacillin. For this, the search engine MASCOT (Matrix Science) was 

used due to its availability to our collaborators (licenced software) and previous successes 

with correctly annotating complex mass additions. To search through Protein Pilot, the 

original mass spectrometry output files (.wiff) can be used, as both data acquisition software 

(Analyst) and Protein Pilot are developed by Sciex. For MASCOT, .mgf (mascot generic 

format) files are required. Therefore, initial .wiff file searches were performed using Protein 

Pilot, and the peaks generated were subsequently exported as .mgf files.  

Due to the complexities with flucloxacillin partial losses, initial searches were set up in 

MASCOT with a mass addition of 294, accounting for the loss of the thiazolidine ring. The 
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partial loss of the thiazolidine ring of flucloxacillin occurs during MS/MS fragmentation, even 

when relatively low collision energy (CE) is applied.  Through diffusing flucloxacillin directly 

into the mass spectrometer (Sciex QTOF 5600, used for MHC peptide elution experiments), 

the loss of the thiazolidine ring was observed when CE was set to 10 (Figure 6.4A). Naturally, 

fragmentation of flucloxacillin is amplified when the CE is increased (Figure 6.4B).  

 

 
 

Figure 6.4. Flucloxacillin fragmentation ions. Flucloxacillin was manually injected into a TripleTof 
5600 mass spectrometer (Sciex) with a collision energy of (A) 10 and (B) 40.  

 

As the thiazolidine ring is particularly labile, a flucloxacillin mass addition of 294 Da can be 

observed on some parent ions, prior to MS/MS. MASCOT searches were set up to identify 

tryptic peptides (mass tolerance 15 ppm (MS1) and 0.05 Da (MS2)) with fixed 

carbamidomethyl (iodoacetic acid) modification of cysteine and a variable modification of 

294 Da on lysine and arginine. The UniProt Homo Sapiens data base from February 2015 was 

set as the search database, with a decoy database incorporated. Indeed, when MASCOT 

(v.2.3.02) searches were performed on the .mgf files exported from Protein Pilot, some 

confident PSM were assigned (Table 6.1). Upon manual curation of the results, the sequence 

annotations presented were correct.   

  

A BCE = 10 CE = 40
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Table 6.1. Flucloxacillin modified HSA peptides using MASCOT search engine. MASCOT search 
parameters were adapted to accommodate a +294 Da mass addition at lysine and arginine residues. 

Protein   m/z Mass (Da) Charge Score Sequence  
sp|ALBU_HUMAN| 438.5377 1312.5913 3 63.27 AFKAWAVAR 

sp|ALBU_HUMAN| 645.3244 1932.9514 3 56.75 KVPQVSTPTLVEVSR 

sp|ALBU_HUMAN| 712.3169 2133.9289 3 55.76 EQLKAVMDDFAAFVEK 

sp|ALBU_HUMAN| 679.6448 2035.9126 3 50.91 HPYFYAPELLFFAK 

sp|ALBU_HUMAN| 588.0372 2348.1199 4 50.36 RHPYFYAPELLFFAKR 

sp|ALBU_HUMAN| 474.9124 1421.7154 3 50.32 KQTALVELVK 

sp|ALBU_HUMAN| 604.9386 1811.794 3 44.92 LDELRDEGKASSAK 

sp|ALBU_HUMAN| 795.8611 1589.7076 2 42.5 LAKTYETTLEK 

sp|ALBU_HUMAN| 450.5402 1348.5988 3 40.52 KYLYEIAR 

sp|ALBU_HUMAN| 652.9246 1955.752 3 39.82 YKAAFTECCQAADK 

sp|ALBU_HUMAN| 731.6786 2192.014 3 33.7 HPYFYAPELLFFAKR 

sp|ALBU_HUMAN| 780.3782 2338.1128 3 27.44 VFDEFKPLVEEPQNLIK 

 
 

While these initial results were promising, MASCOT is not a powerful tool for the analysis of 

non-tryptic peptides due to its lack of ability to perform de novo sequencing. Therefore, 

method optimisation was turned to PEAKS studio. While Protein Pilot has a de novo 

sequencing aspect (Purcell, Ramarathinam and Ternette, 2019), PEAKS was chosen due to its 

availability to the data scientists collaborating on this project. Peaks was set up to identify 

the full mass addition of 453 Da, with an expected partial loss of 294 Da. The remaining 

search parameters were comparable to those used in MASCOT. Positive results from the 

search were obtained (Table 6.2) with the localisation of the modification annotated in the 

peptide sequence. From the results (Table 6.2) those highlighted contain the same sequence 

information as MASCOT. In total, every single peptide identified in MASCOT was identified 

using Peaks. Peaks, however, was able to provide additional peptide sequences with 

relatively high scores (a Peaks score (-10logP) of 20 is generally regarded as highly confident). 

Therefore, the decision to utilise Peaks appeared to be justified.  
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Table 6.2. Flucloxacillin modified HSA peptides detected using Peaks studio. Peaks search engine 
was used to identifiy a mass addition of +453 Da at lysine and arginine residues, with a partial loss of 
159 Da applied to accommodate for the cleavade of the thiazolidine ring. Highlighted entries were 
previsouly identified using MASCOT (Table 6.1). 

Accession m/z Mass Score Peptide 
P02768|ALBU_HUMAN 588.7678 2351.044 80.62 HPYFYAPELLFFAK(+453.06)R 

P02768|ALBU_HUMAN 765.3287 2292.964 78.12 EQLK(+453.06)AVMDDFAAFVEK 

P02768|ALBU_HUMAN 613.2571 2448.978 73.94 NEC(+57.02)FLQHK(+453.06)DDNPNLPR 

P02768|ALBU_HUMAN 527.9226 1580.748 68.3 K(+453.06)QTALVELVK 

P02768|ALBU_HUMAN 833.39 2497.144 67.98 VFDEFK(+453.06)PLVEEPQNLIK 

P02768|ALBU_HUMAN 698.336 2091.987 66.97 K(+453.06)VPQVSTPTLVEVSR 

P02768|ALBU_HUMAN 784.6937 2351.044 64.82 R(+453.06)HPYFYAPELLFFAK 

P02768|ALBU_HUMAN 732.6566 2194.943 63.72 HPYFYAPELLFFAK(+453.06) 

P02768|ALBU_HUMAN 627.7961 2507.145 59.54 RHPYFYAPELLFFAK(+453.06)R 

P02768|ALBU_HUMAN 795.7043 2384.086 58.66 SLHTLFGDK(+453.06)LC(+57.02)TVATLR 

P02768|ALBU_HUMAN 652.2982 1953.869 54.56 FYAPELLFFAK(+453.06)R 

P02768|ALBU_HUMAN 583.9282 1748.753 53.68 LAK(+453.06)TYETTLEK 

P02768|ALBU_HUMAN 657.9504 1970.825 48.67 LDELRDEGKASSAK(+453.06) 

P02768|ALBU_HUMAN 840.3361 1678.654 48.46 FK(+453.06)DLGEENFK 

P02768|ALBU_HUMAN 493.7144 1970.825 48.4 LDELRDEGK(+453.06)ASSAK 

P02768|ALBU_HUMAN 503.552 1507.637 48.34 K(+453.06)YLYEIAR 

P02768|ALBU_HUMAN 491.5496 1471.627 48.22 AFK(+453.06)AWAVAR 

P02768|ALBU_HUMAN 918.3912 2752.154 45.7 NYAEAK(+453.06)DVFLGMFLYEYAR 

P02768|ALBU_HUMAN 701.9899 2102.944 43.62 AEFAEVSK(+453.06)LVTDLTK 

P02768|ALBU_HUMAN 546.2316 1635.669 41.85 AK(+453.06)TYETTLEK 

P02768|ALBU_HUMAN 705.9364 2114.774 39.51 YK(+453.06)AAFTEC(+57.02)C(+57.02)QAADK 

P02768|ALBU_HUMAN 467.537 1399.583 39.42 LK(+453.06)C(+57.02)ASLQK 

P02768|ALBU_HUMAN 493.7156 1970.825 37.84 LDELR(+453.06)DEGKASSAK 

P02768|ALBU_HUMAN 628.2706 1254.527 37.07 NLGK(+453.06)VGSK 

P02768|ALBU_HUMAN 698.3344 2091.987 36.76 KVPQVSTPTLVEVSR(+453.06) 

P02768|ALBU_HUMAN 449.1718 1344.486 36.58 DEGK(+453.06)ASSAK 

P02768|ALBU_HUMAN 467.8701 1400.59 33.25 FK(+453.06)AWAVAR 

P02768|ALBU_HUMAN 678.0175 2708.041 32.37 LDELRDEGKASSAK(+453.06)QR(+453.06) 

P02768|ALBU_HUMAN 424.1848 1269.527 31.27 ATK(+453.06)EQLK 

P02768|ALBU_HUMAN 706.6526 2116.932 31.24 YFYAPELLFFAKR(+453.06) 

P02768|ALBU_HUMAN 678.0175 2708.041 28.43 LDELRDEGK(+453.06)ASSAK(+453.06)QR 

P02768|ALBU_HUMAN 727.3338 1452.653 28.25 K(+453.06)QTALVELV 

P02768|ALBU_HUMAN 784.694 2351.044 26.75 HPYFYAPELLFFAKR(+453.06) 

P02768|ALBU_HUMAN 797.8787 1593.743 26.75 K(+453.06)LVAASQAALGL 

P02768|ALBU_HUMAN 678.0163 2708.041 26.03 LDELR(+453.06)DEGK(+453.06)ASSAKQR 

P02768|ALBU_HUMAN 537.5734 1609.703 24.22 AWAVAR(+453.06)LSQR 
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 BIOINFORMATIC ANALYSIS OF DRUG MODIFIED MHC PEPTIDES 

6.3.2.1 PRELIMINARY ANALYSIS 

The success of Peaks in correctly annotating flucloxacillin modified tryptic HSA peptides 

made it an excellent approach for the analysis of MHC peptides. As described throughout 

this thesis, MHC peptides are inherently difficult to characterize without the further 

complication of drug modification. For the analysis of MHC peptides, .mgf files were 

generated using Protein Pilot from individual peptide pools that contained the manually 

annotated spectra in the previous chapter (Chapter 5). Peaks was able to assign 226 PSMs 

containing a flucloxacillin modification from a total of 9,154 annotations across the data set. 

Unfortunately, of the 226 PSMs with flucloxacillin, 91 were assigned the decoy database, 

making the confidence of these annotations low. The -10logP value for these PSMs ranged 

from 16.39 to 5.07, with a mean value of 7.11, well below the accepted score of 20. The 

highest confidence scoring peptide was annotated as ISR(+453.06)VTF and was derived from 

a protein database (Q9UIQ6|LCAP_HUMAN).  

 

 
 

Figure 6.5. Peaks annotation of flucloxacillin modified MHC peptides. (A) ISR(Flucloxacillin)VTF and 
(B) STFELQGK(Flucloxacillin)RRRRDA were both annotated as potential drug modified MHC peptides.  

ISR(+453.06)VTF derived from protein Q9UIQ6|LCAP_HUMAN

STFELQGKR(+453.06)RRRDA derived from protein #DECOY#Q86US8|EST1A_HUMAN

A

B
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Interestingly, both the P2 (S) and PΩ (F) amino acids matched those of the HLA-B*57:01 

binding motif. Therefore, the original spectrum was identified for manual confirmation of 

the peptide sequence (Figure 6.5A). Immediately it was possible to tell that the spectrum 

quality was bad, with a limited number of low intensity fragmentation ions. Perhaps more 

importantly, there was a complete absence of diagnostic flucloxacillin fragmentation ions. 

An annotation from the decoy database was also examined further (Figure 6.5B). As 

expected, the PSM was highly inaccurate. From this data, it was clear that a more robust 

approach was required for the correct sequence annotation of flucloxacillin modified MHC 

peptides.  

6.3.2.2 PROFILING FLUCLOXACILLIN PARTIAL LOSS & MANIPULATING MS/MS FRAGMENTATION IONS 

It was first important to confirm that the dataset used for the flucloxacillin MHC peptide 

search did in fact contain drug modified peptides. Although in a qualitative sense drug 

fragment ions could be observed, a more quantitative approach was required. Therefore, 

Python scripts were developed to identify partial losses between parent ions and dominant 

fragment ions across all spectra (both MHC and tryptic HSA peptides) containing a 160 Da 

fragment ion (Table 6.3).  

Table 6.3. Partial loss values identified from flucloxacillin modified peptide spectra. Spectra 
containing the characteristic ion peaks were investigated to identifiy partial loss values from the 
precursor ion and the base peak (most intense peak in the spectrum). The most common partial losses 
identified were within 0.1 Da to 453 and 159 Da as anticipated. Other frequent losses require further 
characterization  

Loss Window Intensity % of Base Peak 
% of Precursor 

(Naked) 
Count 

453.0_453.1 317055.06 88.45782212 239.5267395 290 

159.0_159.1 412247.48 93.05516632 296.7914107 222 

177.0_177.1 81417.30 8.889597465 35.21976414 102 

396.0_396.1 22485.20 4.129842479 20.82850262 98 

230.0_230.1 50348.71 6.459489601 29.08917993 78 

305.1_305.2 10573.54 3.094847451 11.95872658 75 

377.1_377.2 119386.09 13.82230818 166.5079222 67 

404.1_404.2 15183.07 1.80774128 7.603212835 52 

272.1_272.2 23284.49 4.581997833 29.98729171 51 
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Loss windows were produced from to 0.1 to 454 Da in increments of 0.1 Da. The intensity 

column is the summed intensity of all the fragment ions that appeared within a specific mass 

range. To assist with visualisation of the remaining values, the NLGK(flucloxacillin)VGSK 

tryptic HSA peptide has been used (Figure 6.6). For any given spectra, the base peak 

corresponds to the highest ion in the spectra (ignoring flucloxacillin fragmentation ions). The 

loss peak refers to an ion which is a specific mass lower than the BP. For example, in 

NLGKVGSK the base peak is 869.39 Da. All loss windows are assessed, and an intense 

fragment ion is present with a mass of 575.36 Da. This mass shift is equal to 294 Da; this loss 

peak ion intensity is used to record a loss window of 159 Da (453 minus the mass difference) 

(Figure 6.6, blue). The percantage of BP column refers to the average intensity of the loss 

peak compared to the BP; 575 Da is roughly 90% of the intensity of the BP.  The naked 

precursor corresponds to the mass of the parent ion, minus 453 Da (flucloxacillin). Here, this 

equates to 801.47 Da (Figure 6.6, red). The same approach is applied, where the intensity of 

ions corresponding to loss windows are recorded. A mass addition of 294 Da, 548.76 Da, is 

recorded with lower intensity. This matches the overall percentage of precursor (naked), as 

the naked precursor ion is roughly 3x more intense than the modified precursor.  

 

 
 

Figure 6.6. Diagramatic explanation of the method employed for the identification of spectral 
partial losses. The naked precursor is the parent ion MW with the full flucloxacillin mass addition 
removed (-453 Da). The base peak is the most intense ion in the fragmentation series, with the loss 
peak corresponding to the ion within the partial loss window being interrogated.  
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From this data we were confident that the partial loss of 159 Da and the whole drug loss (453 

Da) were a true representation of flucloxacillin modification. While other losses were also 

highlighted in this experiment, they were not as abundant. For example, the loss window of 

177.0-177.1 Da was identified, with a mass difference of 276 Da compared with 453 Da. The 

likely explanation for this is the loss of water from the ion with a 294 Da mass addition. This 

only further highlights the complexities involved in the identification of flucloxacillin 

modified MHC peptides. As previously shown, the number of possible fragment ions 

increased drastically when flucloxacillin is present (Figure 6.2). Considering each of these ions 

could too have further losses, such as H2O and NH3, the number of unknowns and different 

possible combinations made it unlikely to produce high quality PSMs from a typical database 

search. 

Due to the complexity of the fragment ion series, the next strategy was to simplify the 

fragment ions though data manipulation. Again, the example NLGK(flucloxacillin)VGSK 

tryptic HSA peptide has been used to assist with the visualisation of this methodology (Figure 

6.7). Contained within the fragment ion series the diagnostic ions 160, 196 and 454 Da can 

be observed (Figure 6.7A). The first step was to remove these from the spectra as the drug 

fragment ions should not be used for PSMs (Figure 6.7B). Next, ions pairs that are 294 and 

453 Da apart were identified (Figure 6.7B, dotted lines), and the ‘heavier’ fragment ion 

intensity combined to the ‘lighter’ fragment ion intensity (Figure 6.7C). Finally, the precursor 

mass was reduced by 453 Da. Essentially, the idea was to remove the modification from the 

fragment ion series, so that it could be run through Peaks as an ‘unmodified’ MHC peptide. 

Any positive PSMs would then be annotated to the original spectra with the modification 

present. Unfortunately, this again did not yield any positive results that could be trusted after 

manual interpretation was performed.  
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Figure 6.7. Diagramatic representation of spectral maniupluation to remove the flucloxacillin 
modification from the ion series using HSA tryptic peptide NLGK[Flucloxacillin]VGSK. (A) Manual 
annotation of drug modified NLGKVGSK. (B) Characteristic flucloxacillin fragment ions have been 
removed, and ion pairs with a partial loss of 294 Da are identified. (C) Ion pairs are combined to the 
value of the lower m/z (i.e. unmodified ion). 

 

6.3.2.3 CUSTOM PEPTIDE DATABASE 

It was clear that the combination of complex fragmentation ion series and a database of 

almost infinite possible theoretical peptides was not conducive to gaining positive sequence 

annotation. Therefore, attention was turned to the database used for PSM assignments. In 

this study the anchor residues of HLA-B*57:01 were used to assist with spectral matching. 

Instead of using a protein database for PSMs, the use of a pre-compiled peptide database 

was used to limit the search space. Indeed, this could be easily generated from a list of HLA-

y7+294

a2

b2

y2
y4

MH+2 y6

y6 +294

y5 +294MH+294+2

+3, 419.2026, M*=1254.6078
M=801.4708,  Δm=453.137

NLGK[Flucloxacillin]VGSK

A

B

C

294 Da mass difference

294 Da mass difference

y6 +294

y7 +294

y6

y7

y6

y7



 

253 

B*57:01 peptides eluted from untreated samples. However, this would not enable any 

peptides not previously seen to be incorporated into the database.  

As shown in previous chapters, the binding motif of HLA-B*57:01 is relatively conserved. 

However, changes are observed at the PΩ anchor when flucloxacillin is applied. Luckily, this 

alteration does not introduce novel amino acid anchor residues on unmodified peptides, 

therefore the amino acids contributing to the binding motif remain the same. Secondly, 

flucloxacillin undergoes nucleophilic attack, leading to the opening of the β-lactam ring and 

subsequent covalent binding. Therefore, for a peptide to be modified it must contain either 

a lysine or arginine residue. Finally, from previous elution data it is well documented that 

MHC I peptides derived from HLA-B*57:01 are by majority 9-11 amino acids in length. 

Using these parameters, a new database was generated from the UniProt Homo sapiens 

proteome.  Peptides were generated that were 9-11 amino acids in length, had relevant 

amino acids at the P2 (S, T & A) and PΩ (F, W & Y) anchor and contained a lysine or arginine 

in P3 to PΩ(-1). While PSMs would not be made to peptides that did not meet these criteria, 

it would assist with generating a smaller search space to examine covalent binding of 

flucloxacillin to HLA-B*57:01 peptides. As the algorithm behind scoring in Peaks could not be 

determined, MS Amanda was used as the search engine. One of the main benefits of using 

MS Amanda is due to all possible fragment ion matches being reported for each spectrum, 

regardless of PSM scoring. During the search, only spectra which contained the diagnostic 

fragmentation ions of flucloxacillin were included.  

Multiple PSMs were made to the peptide database, with some peptides seeming plausible 

upon manual assessment. Unfortunately, in the current release, MS Amanda does not 

indicate which fragmentation ions were used for PSM annotation. One such example is 

YTK(flucloxacillin)VSATLNW (Figure 6.8A, i). The majority of the high intensity ions do 

correspond to the annotated peptide sequence, however during acquisition this was a low 
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abundant peptide (Figure 6.8A, ii) with a questionable charge state (Figure 6.8A, iii). One of 

the highest scoring PSMs related to TSNSGDPHK(flucloxacillin)GF (Figure 6.8B).  

 

 
 

Figure 6.8. MS Amanda annotation of flucloxacillin modified MHC peptides using a peptide database 
library. (Ai) MS Amanda scored relatively high for the annotation of the fragment ion series as (i) 
YTK[Flucloxacillin]VSAYLNW, however, (ii) the precursor ion abundance was low and (iii) the charge 
state questionable. (B) A second peptide annotation with the higest score from the search, however 
many ions are not accounted for. (C) The same spectrum as B was previously manually annotated as 
a completely different peptide sequence, however HTAHIACKFA would not have been in the peptide 
library generated.  
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The spectrum used in the PSM assignment is of much higher quality, with a large proportion 

of the ions annotated. However, this is the same spectrum manually annotated as 

HTAHIACK(flucloxacillin)FA (Figure 6.8C) (Chapter 5). From comparing the two annotations, 

it’s clear that the manual interpretation accounts for a much larger proportion of the 

fragment ions. Due to the peptide database, HTAHIACKFA would not exist as the PΩ amino 

acid is outside of the specified criteria. This is important when considering a repertoire 

change was observed with flucloxacillin and abacavir, as peptides with novel anchor residues 

would not be contained in the search database.    

 USING R-SCRIPT TO CALCULATE CONFIDENTLY ASSIGNED HLA-B*57:01 PEPTIDES  

 

Processing of immunopeptidomic data post acquisition is challenging due to the volume of 

information generated. In this thesis, 12 different mass spectrometry (.wiff) files were 

simultaneously run in Protein Pilot in order to identify PSMs. As described in this chapter, 

the ability to detect flucloxacillin modified peptides was severely limited. However, 

unmodified peptides can still be confidently annotated using this method. Within each 

Protein Pilot output file, a FDR is generated. Subsequently, this was used to apply a cut-off 

for peptide confidence scores. As described in chapter 4, a series of further steps are taken 

to ensure the authenticity of the data. This results in the generation of multiple spreadsheets 

in Microsoft Excel, where data is copied, pasted and further interrogated. This can 

unintentionally lead to errors due to the sheer volume of data being analyzed at any one 

time. In order to increase both the efficiency and robustness of this method, scripting using 

R language can be advantageous. Here a Protein Pilot output file was loaded into the script, 

leading to automatic data analysis being performed through a series of steps (Figure 6.9). 

One of the many benefits of using R language is the community support 

(https://community.rstudio.com/). As is it an open source language, R is based largely on 

peer to peer assistance, with several forums available for the more novice users to seek 

https://community.rstudio.com/
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support. Experienced users can develop packages that can be installed on other users’ 

machines. This ability to share code packages is particularly useful in scientific research, as 

they act as a grounding basis for many forms of analysis.  

Understandably, the time taken to generate the script is dependent on the user, however in 

all cases once written can be saved and reused. The steps in the script (Figure 6.9) are the 

same as those outlined in chapter 4. The first part of the code is to load all the relevant 

packages already written by other users. Once loaded, the data file generated from Protein 

Pilot is loaded (highlighted black). Next, the FDR value is extracted from the Protein Pilot data 

file, to enable the correct cut off to be used for different outputs. As with the previous 

analysis using Excel, known contaminants are removed through loading a pre-compiled list 

(highlighted blue) as well as the binding motif for HLA-C*04:01 (highlighted green). The 

remaining lines of code perform the analysis leaving a list of confidently assigned PSMs, 

which is exported as an Excel compatible file (.csv). 
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# LOAD PACKAGES --------------------------------------------------------------------------------- 

library(plyr) 

library(tidyverse) 

library(gplots) 

library(ggseqlogo) 

library(dplyr) 

library(stringr) 

library(tidyr) 

library(stringi) 

library(readxl) 

# IMPORT DATA ----------------------------------------------------------------------------------- 

# import data using readr package using txt file from proteinpilot delimited tab separated data 

fdrfile <- "PE_027_JCW_C1RB5701_Control_HomoSapien__FDR" 

elution_dat <- 

  readxl::read_xlsx(paste(fdrfile, "xlsx", sep = "."), sheet = "Distinct Peptide Summary") 

fdr_report <- 

  readxl::read_xlsx(paste(fdrfile, "xlsx", sep = "."), sheet = "Single Column Summary", range = 

"D28:E46") 

fdr_report$confidence <- (fdr_report[,2]*100) 

FDR5 <- as.character(fdr_report[8,3]) 

contaminants_dat <- 

  readr::read_csv("C1RB5701_contaminants.csv") 

cw4anchor_dat <- 

  readr::read_csv("HLAC0401_motif.csv") 

# Look at the data to ensure it has loaded correctly 

glimpse(elution_dat) 

# MUTATE DATA & ADD RELEVANT VARIABLES ----------------------------------------------------------                

# Mutate the data to make a new column of the lengths of each peptide 

elution_dat <- elution_dat %>% 

  mutate(Lengths = str_count(Sequence)) 

# Merge sequence and modifications variables                          

elution_dat$Unique <- paste(elution_dat$Sequence, elution_dat$Modifications) 

# Create new column of sequences which are reversed for easy analysis 

elution_dat$seqreversed <- stri_reverse(elution_dat$Sequence) 

# Create new column to assess contaminants in the sample and compare using the match function 

(in%in) to the contaminants list 

elution_dat["Contaminants"]<-NA 

elution_dat$Contaminants <- elution_dat$Sequence %in% contaminants_dat$Sequence 

# Create new column for p2 and p-omega anchors and columns for their match to Cw4 binding motif 

elution_dat["P2"]<-NA 

elution_dat["PO"]<-NA 

elution_dat["Cw4P2Match"]<-NA 

elution_dat["Cw4POMatch"]<-NA 

# Uses the substring function to select the P2 and Pomega positions of each peptide 

elution_dat$P2<-substr(elution_dat$Sequence, 2, 2) 

elution_dat$PO<-substr(elution_dat$seqreversed, 1, 1) 

# Uses the substring function to select just the first locus for each peptide 

elution_dat["Locus"]<-NA 

elution_dat["Locreversed"]<-NA 

as.character(elution_dat$`Peptide Locus`) 

elution_dat$Locreversed <- stri_reverse(elution_dat$`Peptide Locus`) 

elution_dat$Locus<- substr(elution_dat$Locreversed, 1, 1) 

# Uses the match function to asess matches to the Cw4 anchors 

elution_dat$Cw4P2Match <- elution_dat$P2 %in% cw4anchor_dat$P2 

elution_dat$Cw4POMatch <- elution_dat$PO %in% cw4anchor_dat$PO 

# FILTERING THE DATA ---------------------------------------------------------------------------- 

# Begin by filtering for peptides of FDR confidence interval 

elution_dat_processed <-  

  elution_dat %>% filter(`Best Hypoth Conf`>=FDR5) 

# Remove decoy database results using stringr_detect function ! means not  

# https://cran.r-project.org/web/packages/stringr/vignettes/stringr.html 

elution_dat_processed <- 

  elution_dat_processed %>% filter(!str_detect(Names,'REVERSED')) 

elution_dat_processed <- 

  elution_dat_processed %>% filter(!str_detect(Names,'Keratin')) 

# Remove any duplicate peptides using distinct function and keep all other variables using 

.keep_all = TRUE 

# https://www.rdocumentation.org/packages/dplyr/versions/0.7.7/topics/distinct 

elution_dat_processed <- 

  elution_dat_processed %>% distinct(Sequence, .keep_all = TRUE) 

# Remove other loci 

elution_dat_processed <- 

  elution_dat_processed %>% filter(str_detect(Locus,"1")) 

# Remove contaminants 

elution_dat_processed <- 

  elution_dat_processed %>% filter(!str_detect(Contaminants,'TRUE')) 

# Remove matches to the Cw4 binding motif 

elution_dat_processed <- 

  elution_dat_processed %>% filter(!str_detect(Cw4P2Match, 'TRUE')) 

# Create a file from the processed data 

write.csv(elution_dat_processed, paste(fdrfile, "csv", sep = ".")) 

Figure 6.9. R-Script used for the automatic assessment of HLA-B*57:01 peptides within a 5% FDR. 
Protein Pilot v.5 FDR output files are loaded into R-Studio. Known contaminants and the HLA-C*04:01 
binding motif are loaded as a separate file. Script annotatations are denoted by ‘#‘. 
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 DISCUSSION 

For this chapter, the aims were to use bioinformatic tools to enable the analysis of MHC 

peptide data to be managed in a more robust and higher throughput capacity. While manual 

interpretation of fragmentation ion series has enabled the characterization of drug modified 

peptides, this is time consuming and requires a high level of skill (and patience!). The 

challenges associated with MHC peptide annotations using software are further exasperated 

when complex drug binding is added into the mix. Flucloxacillin fragmentation leads to a 

different mass addition on the parent peptide compared with the fragmentation ion series. 

While this is helpful for the identification of flucloxacillin modification on a peptide, it 

severely hampers the ability to sequence spectra with any confidence. While there are a 

whole host of software packages available for the annotation of spectra, it was that none of 

those tested were capable in producing the required outputs. When selecting the algorithm 

to use, it’s important to consider the pros and cons to each, and the questions you are asking. 

For example, it was found that MASCOT and Peaks are excellent at identifying flucloxacillin 

modification using tryptic peptide searches. Ultimately, applying trypsin significantly reduces 

the number of theoretical peptides that could be present in a particular set of proteins, 

therefore confidence in PSM assignment is much higher.  

The bioinformatics analysis methods generated tried to approach this challenge from both 

directions. Firstly, the spectra were manipulated in order to ‘remove’ the modification. Due 

to the complex nature of the drug fragmentation, it was not always possible to identify which 

ions were paired in terms of ‘modified’ and ‘unmodified’ siblings. Through assessing the 

difference in mass between fragment ions, sibling pairs were combined to give a single 

‘unmodified’ version of the fragmentation ions. While in principle this approach seemed 

sensible, in practice very few results were yielded with low confidence scores. Furthermore, 

upon manual interpretation, the results were found to be meaningless. Several factors may 

have impeded its success. Firstly, Peaks software is very intelligent and is based largely upon 
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machine learning of real spectral information. Manipulation of real spectra could have been 

identified as ‘strange looking’ to the algorithm, and so PSMs would not be scored with high 

confidence. As the algorithm behind Peaks is unknown (proprietary information) this is 

purely based on assumption. A more likely explanation is the mass differences (294 and 453 

Da) between ion pairs were not specific to flucloxacillin fragmentation. In fact, 294 Da can 

also correspond to M(+16)M(+16), LT(+80), MY, FM(+16) and FF. Indeed, the combinations 

that add up to 453 will be higher. If this is the case, unrelated fragment ions may be selected 

as pairs and subsequently merged together. 

The second approach was focussed on refining the database used for the PSM annotations, 

in order to reduce the search space. By having fewer possible options, confidence scores 

increase. A peptide database was generated using a set of rules, which meant the peptides 

must fit the HLA-B*57:01 binding motif (anchor residues and length) while containing a lysine 

or arginine. While this approach does seem to give some more reliable PSMs than previous 

methods, it is still limited by the number of peptides in the database. As we believe 

flucloxacillin may interrupt antigen processing, this approach too has its flaws. Interestingly, 

the peptide spectra manually annotated as HSATQKEHGW in chapter 5 did not return any 

possible hits. While it is hard to definitively hypothesise why, the manual annotation cannot 

be derived from any protein in the human database, therefore it was determined to be a 

spliced peptide. As this database is reliant on peptides derived from human proteins, any 

spliced variants would too be missed.  

Finally, R studio was used for the generation of scripts to automatically analyze MHC peptide 

data for unmodified peptides. While the analysis method underpinning the script did the 

same as described in chapter 4, there were clear advantages. Using this method results in a 

reduction of time spent analysing the data from hours to seconds, with confidence that the 

analysis is performed correctly. While this script only generates a list of confidently assigned 

MHC peptide sequence, others performing peptide length and anchor residue abundance 
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are further incorporated into the analysis pipeline. While for this thesis the data 

interpretation using Excel was manageable, considerations in using languages such are R are 

essential for a higher throughput approach. 

Overall, the collaboration with data scientists from the Centre for Computational Biology 

further confirmed the challenges associated with the detection of drug modified MHC 

peptides. Although progress was made, further work needs to be done in order to truly 

believe any of the results obtained from the searches. The script using R studio was beneficial 

to all members involved in MHC peptide research within the group and is now being routinely 

used for the initial analysis of MHC mass spectrometric data. Further scripts are now being 

developed to further the data interrogation using R studio.  
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 CONTEXT 

The project involved identifying peptide sequences that are covalently bound to the 
antibiotic drug Flucloxacillin. 

The short peptide sequences are as a result of larger proteins that are non-selectively cleaved 
by the immune system apparatus. It is believed that Flucloxacillin ‘interacts’ with host 
proteins, which causes an errant recognition and immune reaction. Identifying sequences 
that this drug, and other drugs, may bind to is of potential significance for future research 
studies and clinical decision making. 

Using a mass spectrometry (MS) approach, peptides can be identified that may have a drug 
(or any modification) bound to them. This is made easier if the drug behaves predictably 
under peptide ionisation and fragmentation, however this is not always the case. 
Additionally identifying a small subset of peptides modified with a drug is easier if the traits 
of potential peptide sequences is known beforehand. 

 

6.5.1.1 THE DRUG 

In the case of Flucloxacillin, intact peptides with the drug bound are thought to frequently 
undergo neutral losses under experimental conditions. A neutral loss involves the partial or 
complete fragmentation of the chemical groups attached to the peptide, meaning that 
peptide fragments identified which would be expected to include the mass of the 
modification (drug in this case), have an altered mass. Preliminary analysis of spectra 
generated from Flucloxacillin- modified peptides showed that the drug can undergo several 
different types of neutral loss (different mass losses), in a somewhat unpredictable manner. 
This means that it is very difficult to identify peptides with the drug bound as the full mass 
of the drug addition is very infrequently seen. There are some ‘known’ losses which are 
thought to occur but their detection is difficult, so identifying peptides based on an MS1 m/z 
value is difficult, as is identifying fragment ions which may be linked to a neutral loss. 

If a peptide can be identified with the drug bound, then localisation is canonically the next 
relevant issue, and it is very important to understand the behaviour of the drug under 
fragmentation conditions. If this is not fully understood, then it can be very difficult to 
localise a modification to an amino acid residue – this also applies to identifying a peptide 
from the MS2 fragments. 

 

6.5.1.2 THE PEPTIDE 

The pattern of sequences of peptides believed to bind to Flucloxacillin is not concretely 
known. With a typical proteomics shotgun/bottom up approach, intact proteins are digested 
under the protease enzyme trypsin, which is known to cut protein sequence after lysine (K) 
or arginine (R). Thus the subsequent matching of spectra to peptides will only consider 
peptide sequences that could possibly be generated with such an enzyme specificity. This 
peptide universe is much smaller than the universe of all potential peptides in the human 
proteome. 

The peptide sequences that are generated as part of the immune system apparatus may not 
have such a recognised pattern, as tryptic peptide sequences do, so usually when analysing 
MHC presented peptides, search engines are asked to consider all possible human peptides 
of the appropriate mass. This is a very large population of peptide sequences, and suffers 
from an enormous loss of statistical power, particularly when using traditional database 



 

263 

search engines such as Mascot. “Hybrid” search engines, such as PeaksDB, which perform a 
de novo sequencing step before sequence database search can partially avoid the enormous 
loss in statistical power. However, the additional problem of the varied and complex neutral 
losses observed for Flucloxacillin makes for a second challenge, yet further increasing the 
search space. As noted below, while PeaksDB claims to offer support for customising neutral 
losses for a given modification, in practice this appears not to work well for reasons that 
cannot easily be further investigated. We thus finally decided on a method that controls the 
search space for database size by an alternative approach (selecting plausible MHC peptides 
based on known motifs for a given MHC molecule), and using an easily customizable free 
search engine, called MS Amanda. 

 

 METHODS & RESULTS 

6.5.2.1 FLUCLOXACILLIN NEUTRAL LOSSES 

The Flucloxacillin drug molecule is thought to be frequently broken in two separate places in 
its structure under ionisation and fragmentation conditions. 

The first break results in a loss of 159.0354, known as a thiazolidine ring loss. This is thought 
to be the most common neutral loss observed, and we have observed the drug and drug 
bound to peptide with this mass lost from them. We also frequently see the non-neutral 
(charged) version of this lost molecule, i.e. charged with a single proton, with a mass of 
roughly ~160 Da. 

The second potential break results in a loss of 194.9887, known as a two ring loss. This seems 
less common than the thiazolidine ring loss – this may be anecdotal though as the charged 
~160 Da ion is the prime piece of evidence for the thiazolidine loss. A loss that is always lost 
neutrally will never be visible in spectra. 

 

6.5.2.2 PRELIMINARY ANALYSIS 

Data was initially provided that contained peptides derived from a trypsin digest of 
Flucloxacillin bound to proteins. 

This tryptic peptide data was searched in the Mascot search engine with the Flucloxacillin 
modification (complete with the two standard neutral losses as described above). Specifying 
‘Trypsin’ as the enzyme constrains the universe of potential peptides. This initial test was a 
success as a handful of Flucloxacillin modified peptides were visible in the search results. 

However, when attempting to identify spectra that were not a result of a tryptic digest, but 
were instead a result of immune system mechanisms and MHC interaction, we had difficulty. 
No Flucloxacillin modified peptides were identified with acceptable scores, and there were 
many false positive peptide identifications. 

This meant that we needed to re-evaluate our search strategy and possibly our 
understanding of the Flucloxacillin modification. 

 

6.5.2.3 PROFILING NEUTRAL LOSSES 

To help understand and clarify the potential losses of/from Flucloxacillin, we used a python 
script to look at the gaps between peptide precursor mass and every peak in each spectra of 
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our data thought to contain real peptide-drug combinations. We placed the absolute 
difference between peaks into ‘bins’, each 0.1 Da wide, to account for slight differences in 
mass. We would then inspect the bins with the highest frequency in our datasets as 
candidates for being Flucloxacillin-derived losses. 

The ~159 Da loss always seemed to be placed as the most frequent loss observed, and the 
~453 Da loss was similarly highly placed, however there were a number of very frequent 
losses for which we have no explanation. Further work would be necessary to identify the 
composition of these, if they are relevant. A python script is included as a deliverable to help 
automate this step. 

 

6.5.2.4 PEAKS DB 

We explored an alternative approach, using the benefits of PeaksDB (hybrid search 
methodology) to identify Flucloxacillin-modified peptides. First, we demonstrated on tryptic 
digests for HSA-modified samples that by switching on and off the requirement for peptides 
to be tryptic, there is almost no loss of statistical power (unlike in Mascot, where there is a 
very large loss of sensitivity). We next tried searching datasets in which a small proportion of 
genuine MHC presented peptides had been modified with Flucloxacillin, by specifying the 
Flucloxacillin modification in Peaks with neutral loss settings as discussed above. Results 
from this process were poor, with no plausible high scoring Flucloxacillin peptides identified. 
Further investigation (with manually created spectra of various types) revealed that Peaks 
appears to have a wider problem with custom modifications and neutral losses, in that 
peptide scores seem to be strongly down-weighted versus peptides with no modifications. 
This unusual behaviour was reported back to the Peaks customer support team, but they 
could not offer a solution.  

A further approach was attempted in Peaks. Given that we had observed Peaks performance 
for general MHC peptide identification (unmodified) is very good, we attempted to apply a 
transform to candidate modified spectra to make them appear to Peaks as if they were 
unmodified spectra. In this pipeline, we first identified candidate Flucloxacillin-modified 
spectra via presence of a characteristic ion at 454 Daltons. These spectra were then “mass 
shifted”, so that measured precursor mass ion mass (prior to fragmentation) was altered by 
-454 Daltons (the mass of Flucloxacillin). Additional fragment ion peaks were also inserted 
into the spectrum, based on deducting likely neutral losses from potentially modified 
fragment ion peaks. On test data, this approach appeared promising, and produced high-
scoring peptide-spectrum matches (PSMs) from Peaks DB. However, performance on real 
data was again poor for reasons not well understood, so this approach was also discarded. 

 

6.5.2.5 CUSTOM PEPTIDE DATABASE 

Since it was believed that the universe of all human peptides would be too large a search 
space for the search engines to handle, we decided to create our own peptide sequence 
databases, based on some of the rules related to MHC peptide presentation. It is thought 
that peptides that bind to the MHC molecule presenting peptides in this sample (B*57:01) 
must contain a lysine (K), terminate in phenylalanine (F), tryptophan (W) or leucine (L), and 
should have serine (S), threonine (T) or alanine (A) at position 2 in the peptide sequence. The 
length of matching peptides should also be constrained between 9 and 11 amino acid 
residues. An example of a peptide matching such criteria would be ‘LTHGKDEPL’. We 
generated a sequence database of potential MHC and Flucloxacillin binding peptides, using 
Uniprot human sequences as a starting point. 
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We also created equivalent databases where potential peptides could additionally terminate 
with tyrosine (Y), methionine (M) or isoleucine (I), and also where the peptide sequence 
could be required to contain an arginine (R) instead of being required to contain a lysine (K) 
residue. 

 

6.5.2.5.1 MASCOT 

We initially used the Mascot search engine to search our spectra against our custom peptide 
databases. However, Mascot does not offer complete and flexible control on what results it 
will report, including low scoring peptides. As such, we followed some alternative 
approaches. 

 

6.5.2.5.2 CUSTOM SEARCH ENGINE 

To validate our custom peptide database approach and allow us to see all peptide-spectrum 
hits (PSMs), we constructed a very simple MS1-only search engine in Python. This was done 
to be able to find all peptide hits within a specific tolerance, and then be able to inspect these 
results and understand how we could improve our process. 

 

6.5.2.5.3 MS AMANDA 

The MS Amanda1 approach builds on our custom search engine, however it also performs 
MS2 matching, which is crucial for Flucloxacillin localisation on the peptide. The MS2 
matching also gives us a probability or score for each peptide spectrum match (PSM) which 
we can use for thresholding and false discovery rate estimation. Like our custom search 
engine, MS Amanda will give us a full set of matching results within the criteria that we set. 
It supersedes the custom search engine we made, and should be the preferred way of 
searching for Flucloxacillin modified peptides. 

The Flucloxacillin modification needs to be specified in the unimod XML file that accompanies 
MS Amanda (and describes modifications). The specification also includes both of the 
common neutral losses for Flucloxacillin. 

While MS Amanda supports MS2 ion matching, it does not give detailed information of MS2 
ions that match for a PSM. This information is included when MS Amanda is run via Proteome 
Discoverer, however the standalone version of MS Amanda used here did not support 
detailed MS2 ion matching information at the time of analysis. 

We think this MS Amanda approach is the best here. When we apply a 5% FDR threshold (as 
described below) we are able to see a handful of plausible Flucloxacillin-modified peptide 
spectrum hits. We see fewer hits with a 1% FDR threshold, as expected. Choosing a lower 
FDR threshold would be optimal in theory, however we know that finding flucloxicilin-
modified peptides remain challenging, due to neutral losses, and they may score more 
weakly than regular peptides, thus a 5% FDR threshold seems acceptable here, so long as it 
is understood that some of the hits may be false positives. 

MS Amanda is available as part of ProtomeDiscoverer and SearchGUI software packages, 
however the need to specify the custom Flucloxacillin modification in the unimod XML file 
may preclude the use of MS Amanda through these avenues. 

 



 

266 

6.5.2.6 FALSE DISCOVERY RATE (AND Q-VALUE) CALCULATION 

The output from MS Amanda searches is a tabular format which can be read by Microsoft 
Excel and similar packages. For the purpose of quality control, MS Amanda does not give any 
information about false discovery rate. FDR can be calculated from the MS Amanda scores if 
decoy (known false peptides) are included in the search. We created a python script to 
generate FDR values (and Q values) for every peptide-spectrum match, add these extra 
columns to the tabular output, and generate a new file. 

 

6.5.2.7 SHINY WEB APPLICATION 

For browsing of the MS Amanda result data we developed an R/Shiny web application2. This 
mainly allows the user to filter results to only show Flucloxacillin-modified peptides, and to 
apply an FDR threshold to exclude low quality hits. 

 

6.5.2.8 DATA FILES 

Included with this report are MS Amanda result files (including FDR and Q-values) with the 
following permutations: 

 Control (not expected to be modified), manually curated (annotated as being 
modified) or (potentially) Flucloxacillin modified. 

 0.1 or 0.04 Da MS2 matching tolerance. 

 Searches including neutral loss searching or not. 
 

 DELIVERABLES 

This report is one of the deliverables for this project. 

 

6.5.3.1 PYTHON SCRIPTS 

6.5.3.1.1 GENERATE MHC PEPTIDES. 

This script allows the user to generate candidate peptides for drug binding, given a protein 
sequence database, and a pattern for peptide sequence to match. 

 

6.5.3.1.2 FIND NEUTRAL LOSSES IN SPECTRA. 

This script allows the user to profile any potential neutral losses occurring in spectra. It does 
this by calculating the size of the ‘gaps’ between peptide precursor and other peaks and 
reporting those gaps which are the most frequent. 

 

6.5.3.1.3 FDR CALCULATOR FOR MS AMANDA. 

This script allows the user to calculate the false discovery rate and q-value for a particular 
MS Amanda hit. This required that a ‘decoy’ search has been performed, i.e. there are known 
false positive hits interleaved with the true positive hits. 
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 GLOSSARY 

6.5.4.1 NEUTRAL LOSS 

A ‘loss’ is a drop in recorded m/z or Da of a peptide ion or peptide fragment ion, when 
compared to an expected mass, due to the partial or complete fragmentation of particular 
chemical group. 

 MS AMANDA USAGE 

MS Amanda may be used either as part of ProteomeDiscoverer, as part of SearchGUI, or as 
a standalone console version. If custom modifications may be defined as part of PD or SG, 
then non-neutral loss searching will be possible through these softwares, with an 
appropriate protein/peptide database. The Flucloxacillin modification would be defined with 
its full mass. 

If neutral loss searching is desired, it is anticipated that the standalone console version of MS 
Amanda will have to be used. This is because the neutral loss values have to be configured 
as part of the modifications in the Unimod XML file for MS Amanda. The Unimod XML file us 
included with this report. It can be used for Flucloxacillin searching with MS Amanda (or 
potentially other search engines that support the unimod format), could be modified to 
include further information about Flucloxacillin fragmentation, and can form the basis of a 
specification for another drug modification, different to Flucloxacillin. The specification of 
Flucloxacillin begins at line 49 and ends at line 99 of the XML file. 

Additionally included is the template for specifying the search settings for MS Amanda – the 
‘settings_prototype.xml’ file. This was used for automating searched with Python code. The 
parameters values with capital letters were substituted automatically with appropriate 
values programmatically. This is included for completeness – the MS Amanda user guide and 
support should be used for further information. MS Amanda standalone versions may be 
downloaded from their website3. 

 

 REFERENCES 

1. Dorfer, Viktoria et al. “MS Amanda, a universal identification algorithm optimized for 
high accuracy tandem mass spectra.” Journal of proteome research vol. 13,8 (2014): 
3679-84. doi:10.1021/pr500202e 

2. http://pgb.liv.ac.uk/shiny/simon/drug-peptide/ 
3. http://ms.imp.ac.at/?goto=msamanda 

  



 

268 

 FINAL DISCUSSION 

Early studies attempting to elucidate the mechanisms attributing to the development of 

idiosyncratic drug hypersensitivity reactions believed the ‘combination of compounds with 

protein’ leads to sensitization in animal models (Landsteiner and Jacobs, 1935). In a separate 

study, formalinized proteins were capable of sensitizing rabbits to formaldehyde 

(Horsfall  Frank L., 1934), further confirming this hypothesis. Indeed, in more recent years 

accumulative evidence has shown that covalent drug binding plays an important role in ADRs 

(Ju and Uetrecht, 2002; Pichler, 2003; Singh et al., 2011). In the case of immune mediated 

ADRs, T cell activation through covalent binding is observed (El-Ghaiesh et al., 2012; Monshi 

et al., 2013; Yaseen et al., 2015; Meng et al., 2017). Attempts to calculate the critical binding 

threshold for the activation of T lymphocytes has been made using piperacillin, a β-lactam 

antibiotic. The level of modification on Lys-541 in HSA was found to be between 2.6-4.8% in 

tolerant and hypersensitive patients. When HSA from the incubation media of activated T 

cell was characterized, 2.6% modification of Lys-541 was observed. Importantly, this 

indicated that the threshold level of drug antigen required for T cell activation is formed in 

all patients (Meng et al., 2017). While this drug-protein adduct may provide signal 1 to T cells, 

current theory suggests that tolerance will develop without further co-stimulatory activity or 

disruption of immune regulation  (Yun et al., 2016). In immediate hypersensitivity reactions, 

IgE and IgG antibodies reactive to the side chain of β-lactam antibodies have been detected 

in allergic patients (Harle and Baldo, 1990; Torres et al., 1997). However, despite decades of 

intensive research, the precise antigens required for T cell mediated immune activation have 

not yet been defined. 

The association of covalent drug-protein binding and ADRs has a significant input into drug 

development, both with respect to pharmacology and toxicology. While covalent drug 

binding is involved in toxicological effects, the high potency and prolonged effects that can 
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be achieved by covalent binding can also be used to enhance drug efficacy (Wilson et al., 

2013). In turn, this can reduce the frequency of dosing and increases therapeutic margins; 

offering benefit to the patients (Bauer, 2015). In the discovery of some novel therapeutic 

compounds, reactive functional groups are designed to form a covalent bond with their 

target, chemically inhibiting protein activity. Currently, it is estimated that up to 30% of all 

marketed drugs targeting enzymes contain reactive war-heads, making them an important 

tool in the treatment of disease (Wen et al., 2019). The requirement for pharmaceutical 

companies to screen millions of compounds for covalent activity comes at significant cost to 

perform high throughput experimental analysis. To improve drug efficacy a current approach 

in narrowing down the number of lead compounds comes from virtual screening. Molecular 

docking is particularly useful when the 3D crystal structure of the target protein is available 

(Wang and Zhu, 2016). While this is valuable in envisaging covalent binding with the protein 

target, off target toxicity presently cannot be predicted.  

At the start of this thesis, a number of aims were set out to investigate the role of 

flucloxacillin protein binding, and the implications in the onset of ADRs. A high titre 

flucloxacillin specific antibody was successfully generated, with minimal cross reactivity with 

other β-lactam antibiotics (piperacillin, amoxicillin, benzyl penicillin and penicillin V). Cross 

reactivity to oxacillin, cloxacillin and dicloxacillin was identified, indicating that the epitope 

for recognition is the isoxazole ring. Importantly, antibody could be selectively inhibited 

through pre incubation with flucloxacillin modified N-acetyl lysine. A number of techniques 

were used to determine flucloxacillin binding in cellular systems. Relevant cell lines such as 

antigen presenting C1R-B*57:01 cells, and liver like HepG2 and HepaRG cells, were 

investigated in addition to primary human hepatocytes. In all instances, SDS-PAGE revealed 

no observable change to protein abundance when cells were incubated with flucloxacillin. 

However, through the use of the flucloxacillin-specific antibody, Western blot was utilised to 

reveal a number of proteins irreversibly modified.  
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The pharmacological target for flucloxacillin, along with other β-lactam antibiotics, is the 

penicillin binding protein (PBP). As analogues of the D-alanyl-D-alanine peptide subunits 

involved in the synthesis of the bacterial peptidoglycan layer, β-lactams bind to the Ser403 

residue of the PBP active site. Through this covalent acyl-enzyme complex with the 

nucleophilic serine, β-lactam antibiotics inhibit PBP activity, halting bacterial cell wall 

synthesis (Kelly et al., 1989; Lovering et al., 2012). Mass spectrometric analysis of C1R-

B*57:01 cells incubated with flucloxacillin identified the master regulator of MAPK signalling, 

14-3-3, to be selectively modified across different isoforms. Furthermore, flucloxacillin was 

identified to preferentially bind to Lys-53 in P38α, another master regulator of MAPK 

pathways. While the function of this binding is not known, off target protein binding can 

undoubtedly impair physiological processes and signalling pathways.  

Immunofluorescence microscopy was used to localise flucloxacillin binding in HepG2, 

HepaRG and C1R-B*57:01 cells. Extracellular modification was largely seen on HepG2 cells, 

and is believed to be due to reduced expression of influx membrane transporters. Secondly 

PXR expression, responsible for maintaining bile acid homeostasis, is high in HepG2 cells. As 

flucloxacillin has been identified as a potential PXR ligand, this may explain rapid clearance 

of flucloxacillin upon entering the cell (Andrews et al., 2010). Localisation within biliary 

canaliculi of HepaRG cells was identified, and was weakly dependant on MRP2 and P-gp 

activity. Interestingly, MRP2/P-gp activity was found to increase with prolonged exposure to 

flucloxacillin treatment. However, CMFDA accumulation, used as a marker for MRP2/P-gp 

activity, may have increased due to the observed dilation of the bile canaliculi. Both 

intracellular and extracellular protein modification was observed in the antigen presenting 

C1R-B*57:01 cells, generating a potential source for the generation of drug modified 

antigenic MHC peptides. 

Another major aim outlined at the start of this thesis was to identify the precise molecular 

signatures involved in flucloxacillin related hypersensitivity. Flucloxacillin-modified proteins 
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involved in subsequent proteolytic digestion and presentation through TAP processing were 

believed to result in the presentation of drug-modified MHC peptides. The pMHC complex 

presented to T lymphocytes is crucial for providing signal 1, resulting in activation. T cells are 

heavily regulated to prevent alloreactive populations causing damage to healthy tissue. 

Therefore, a major aim of this thesis was to identify the precise molecular signatures involved 

in flucloxacillin related hypersensitivity. Due to the strong association of flucloxacillin DILI 

with HLA-B*57:01 (Daly et al., 2009), antigen presenting cells expressing HLA-B*57:01 (C1R-

B*57:01 cells) were used for immunoaffinity capture of MHC peptides. The implementation 

of the required methods for this section of work were successful.  

Flucloxacillin modification of MHC peptides presented by C1R-B*57:01 cells incubated with 

drug for 10 minutes were identified (chapter 5). Due to the complexity involved with antigen 

processing pathways, this points towards direct modification of MHC peptides already 

presented (Figure 7.1, i). When antigen presenting cells were incubated with flucloxacillin for 

48 hours, the modification of MHC peptides was too observed. Interestingly, upon manual 

characterization of peptide sequences, it was found that flucloxacillin modified peptides 

were not found in untreated controls. This could indicate differential protesomal processing, 

perhaps due to the introduction of missed cleavages (Figure 7.1, ii). Furthermore, ligands 

uniquely presented in the presence of flucloxacillin showed an overall weaker binding affinity 

to HLA-B*57:01. Interestingly, both the parent drug and degradation product (penicilloic 

acid) were found to interact non-covalently with HLA-B*57:01. This could provide an 

additional anchor in the C-F pockets of the peptide binding groove, with a preference for 

aromatic ring terminating peptides. Indeed, a significant increase in phenylalanine and 

decrease in tryptophan at the C-terminal amino acid position of flucloxacillin unique HLA-

B*57:01 peptides was identified, leading to the generation of novel self-peptides (Figure 7.1, 

iii). While amino acid preferences and HLA binding affinity was altered in the presence of 

flucloxacillin treatment, the overall proteome appears the same. 
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Figure 7.1. Schematic visualzation of the hypotheses for presentation of flucloxacillin-haptented 
peptides. Flucloxacillin covalently binds to peptides that are presented by MHC molecules on the cell 
surface (i, direct binding); or intracellular proteasomal processing of flucloxacillin-haptenated proteins 
generates haptenated peptides of an appropriate size, which are loaded on to MHC molecules, 
transported, and presented on the cell surface (ii); or flucloxacillin and its penicilloic acid binds to MHC 
molecules through either covalent or non-covalent interaction, leading to the presentation of neo-
peptides (iii). 
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Analysis of MHC peptide data acquired using mass spectrometry is challenging due to the 

inability to hypothesise the protein source of the protease used for digestion. Further 

complications arise from biological PTMs and peptides of no single protein source, i.e. spliced 

peptides. Software is used for the automatic characterization of MHC peptides, as manual 

interpretation all spectra would not be feasible. Statistical validation can also be drawn from 

the peptide spectral matches made by search engines, making the data analysis more robust. 

Drug modification of peptides can, in theory, be searched as a potential ‘PTM’. While 

different software packages allow for the addition of user specific search parameters, none 

are particularly good at identifying drug modified peptides, where the drug fragments in the 

mass spectrometer. While flucloxacillin fragmentation is helpful to determine the presence 

of drug on a peptide, it hinders automatic characterization of peptide sequences. A number 

of different approaches were used to automatically detect flucloxacillin modified peptides 

with limited success. While some annotations were made using a custom built peptide 

library, manual interpretation of flucloxacillin modified spectra were more convincing. 

Further investigation into bioinformatic workflows for the characterization of flucloxacillin 

modified MHC peptides is required. However, the information generated from this section 

of the thesis highlighted the complexity associated with drug-MHC peptide analysis.  

Good progress was made in characterizing the peptide antigens that may have involvement 

in the activation of T cells. However, experimental limitations do still exist. HepaRG cells were 

primarily used to investigate the localisation of flucloxacillin in liver-like cells. Though the use 

of primary hepatocytes may indeed be preferred, the cost associated, and the availability of 

fresh/cryopreserved stocks make this impractical in most situations. Furthermore, the freeze 

thaw process is believed to disrupt their ability to perform metabolic processes of primary 

hepatocytes, and batch to batch variation hinders experimental replication. In addition to 

the above, immortalized cell lines are attractive for both the ability to perform genetic 

manipulation and culture expandable cell populations. That said, an advantage of using 
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primary hepatocytes is the ability to used genotype matched donors. While not primary 

tissue, the capability of HepaRG cells to differentiate into functional biliary epithelial cells 

makes them one of the most physiologically relevant liver like cell lines (Sison-Young et al., 

2015). 

The challenge remains to develop predictive models for DILI. Organs, such as the liver, 

contain complex mixtures of different cell types each responding to a diverse range of 

environmental stresses. Even within single cell populations, there are very different 

physiological mechanisms taking place depending on external events. All of these processes 

are somewhat disregarded in immortalized cell culture systems. Work has begun to generate 

co-cultures of different cell types; however, these are still often limited to 2D monolayers of 

cells. More recently, spheroid-based models are being developed to improve physiological 

relevance, with some success. For example, monolayers of HepG2 cells lack the ability to 

form bile canaliculi with localised active transporters such as P-gp and MRP2. When grown 

in 3D cell culture, HepG2 cells can successfully form biliary structures, expressing both of 

these transporters (Gaskell et al., 2016). While this is reassuring, the limited cell numbers 

often make this approach impractical for the study of immunopeptidomes. Another 

important factor to consider in the interpretation of immunopeptidomic results from cell 

lines is protein turnover. In cell culture conditions, cells are maintained in nutrient rich 

growth conditions while undergoing rapid expansion. This generates a bias towards proteins 

required for cell growth, and therefore may not reflect the physiological balance of protein 

degradation and synthesis (Claydon and Beynon, 2012). This is noteworthy when MHC 

peptide presentation is heavily dependent on the proteosomal digestion of proteins marked 

for degradation. Of course, while primary tissue isolated from patients undergoing 

flucloxacillin treatment would have been the ideal source for MHC peptide characterization, 

this is not possible.  
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A further challenge with immunoaffinity purification of HLA molecules is the vast number of 

polymorphisms in the human genome. The W6/32 antibody utilised in this thesis captured 

all class I MHC molecules. In a cell line, such as C1R-B*57:01 cells, this approach is possible 

due to single HLA allele expression. While in the C1R-B*57:01 cells a small amount of HLA-

C*04:01 is present, the stark difference in anchor residues allows these to be removed from 

the analysis workflows. In the case of primary tissue, up to 6 different MHC class I alleles will 

be present, making it challenging to decipher the original source of MHC peptide 

presentation. Although the same approach of discriminating between anchor residues can 

be employed, it is often that the preference for amino acids at certain positions overlaps 

between unrelated alleles. Indeed, it may be possible to develop antibodies specific to HLA 

types, however this requires a level of skill and is potentially costly, making its feasibility 

limited.  

One component that was not addressed in this thesis is the metabolism of flucloxacillin to its 

5’-hydroxymethy metabolite (5’OH-flucloxacillin) which is mediated by CYP3A4 (Lakehal et 

al., 2001). In a study examining flucloxacillin metabolism in patients with renal failure, it was 

determined that 5’OH-flucloxacillin has a plasma half-life double that of the parent 

compound. Plasma protein binding was determined, with 91.6% and 82.6% of flucloxacillin 

and 5’OH-flucloxacillin, respectively, covalently bound. This indicated that the unbound 

fraction of the 5’OH-flucloxacillin metabolite was double that of flucloxacillin. Furthermore, 

it was discovered that in patients with renal failure the plasma concentration of 5’OH-

flucloxacillin was consistently higher than in healthy controls (Thijssen and Wolters, 1982). 

More recently the bioactivation of flucloxacillin by human CYPs has been investigated in 

detail. A panel of CYP enzymes were used to identify those responsible for flucloxacillin 

metabolism, with CYP3A4 being confirmed as a major component in the formation of 5’OH-

flucloxacillin. In human liver, meta-analysis has revealed that CYP3A4 levels range between 

0 and 601-pmol.mg-1; indicating a huge range for interindividual variability of flucloxacillin 
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metabolism capability. CYP3A7 was also identified as a player in flucloxacillin metabolism, 

however, until recently it has only been believed to be expressed in foetal tissue. In fact, in 

approximately 10% of adult livers, CYP3A7 is expressed at up to 90-pmol.mg-1 protein; the 

mean level of CYP3A4. This increased expression of CYP3A4 is strongly associated with the 

CYP3A7*1C allele (Dekker et al., 2019). Previous studies have identified 5’OH-flucloxacillin as 

a biliary epithelial cell toxin (Lakehal et al., 2001). The tolerogenic environment promoted by 

the liver makes the threshold for immune activation high. Therefore, for T cell activation to 

occur immune stimulation must also be high. The low incidence of flucloxacillin induced DILI 

is exacerbated by the carriage of HLA-B*57:01, however this alone is not enough for the 

development of ADRs. Further patient susceptibility factors are likely involved in the 

breakdown of tolerance; for example CYP expression resulting in higher levels of 5’OH-

flucloxacillin, infection providing PAMP signals in addition to DAMPs, and the disruption of 

immune regulation (Thijssen and Wolters, 1982; Holt and Ju, 2006; Dekker et al., 2019).  

Flucloxacillin can stimulate T cells without the requirement for drug metabolism (Monshi et 

al., 2013). A number of flucloxacillin modified MHC peptides presented by HLA-B*57:01 were 

characterized in this study, providing a pool of antigens required for signal 1. A critical 

question still not answered is “why does flucloxacillin result in a high incidence of liver 

reactions when compared with other β-lactam antibiotics?”. Flucloxacillin was found to 

localise within the bile canaliculi regions of HepaRG cells. This was an important discovery as 

flucloxacillin induced DILI often results in cholestasis (Lakehal et al., 2001; Kaplowitz, 2004). 

Cell damage results in the release of DAMPs, recruiting circulatory T cells through signalling 

of the innate immune system. It is well characterized that HepaRG cells express high levels 

of CYP3A4 (Sison-Young et al., 2015), therefore it is anticipated that flucloxacillin is 

metabolised by hepatocytes resulting in the localisation of 5’OH-flucloxacillin in the bile 

canaliculi in addition to the parent drug. 
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Figure 7.2. T lymphocyte responses to flucloxacillin-associated MHC peptides resulting in biliary 
canalicular cell death. Flucloxacillin enters hepatocytes through the circulatory system whereby it 
may be metabolised to 5-hydroxymethly flucloxacillin by CYP3A4. Flucloxacillin (and metabolite) 
localise within biliary canalicular regions through membrane transporter activity. Biliary toxicity 
results in the release of DAMPs, activiating the innate immune system providing signal 2 and 3 to 
circulatory T cells. Drug-specific effector T cells migrate to the bile canalicli, where they are exposed 
to signal 1 in the form of drug-modified/drug-associated MHC peptides.  

 

Due to toxicity to biliary epithelial cells, this could in theory provide the required DAMPs to 

aid in the recruitment of immune cells to the site (Figure 7.2).  These endogenous danger 

signals are believed to provide both signal 2 and signal 3 to the antigen presenting cells, 

upregulating the expression of co-stimulatory molecules on the cell surface and providing 
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polarizing cytokines needed for T cell priming. On arrival of circulating T cells, signal 1 is 

presented in the form of flucloxacillin-modified/flucloxacillin-associated MHC peptides, 

resulting in T cell mediated cytotoxicity (Park et al., 2001; Pirmohamed et al., 2002). 

 

 
 
 

Figure 7.3. Anti-flucloxacillin antibody cross reactivity with isoxazole containing β-lactam 
antibiotics. As described in Chapter 2, the anti-flucloxacillin antibody (antisera) developed cross reacts 
with the isoxazole ring of oxacillin, cloxacillin and dicloxacillin. Due to the conservation of the isozaxole 
ring in the 5’OH-flucloxacillin metabolite, cross reactivity is too anticipated.  

 

Due to the limited availability of the 5’OH-flucloxacillin metabolite, it was not possible to 

assess its role in the HLA-B*57:01 immunopeptidome. However, it is anticipated that 5‘OH-

flucloxacillin would too be capable of modifying MHC peptides. Binding of 5’OH-flucloxacillin 

occurs through the same mechanism as the parent drug; nucleophilic attack of the β-lactam 

ring by a free amine. In chapter 2, cross reactivity of the anti-flucloxacillin antisera to 

oxacillin, cloxacillin and dicloxacillin was identified (Figure 7.3). Due to the conservation of 

the isoxazole ring, it is therefore anticipated that the anti-flucloxacillin antisera would also 
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cross react with 5’OH-flucloxacillin. This makes it impossible to definitively discriminate 

between the two when localisation was observed in the bile canaliculi.  

The primary aim of this research is to assist in the development of immunogenic antigens 

that can be used as a diagnostic marker for naïve patients prior to drug exposure. Therefore, 

the production of a synthetic, drug modified peptide was achieved for subsequent functional 

analysis with patient derived T cells. However, using HSATQK*EHGW T cell activation has so 

far been unsuccessful. This is attributed to several factors. Firstly, the availability of T cells 

derived from patients presenting with flucloxacillin DILI is limited due to the rarity of the 

disease. Priming to healthy volunteers can be optimised through the availability of 

genotyped donors, therefore HLA-B*57:01 positive cells can be used, however the relatively 

low yield of modified peptide makes it challenging to effectively prime T cells. Future work is 

focussing on improving the production of drug modified synthetic peptides to provide the 

tools to thoroughly investigate their ability to initiate immune responses. Indeed, colleagues 

within the group (unpublished data) have characterized T cell activation by amoxicillin bound 

to synthetic designer peptides, similar to that of other studies (Padovan et al., 1997). 

Peptides were designed to fit within the HLA-DRB*15:01 binding cleft, a risk allele for 

amoxicillin induced DILI, with drug modification at various positions across the peptide 

backbone. T cells responded to amoxicillin modified designer peptides, while remaining 

inactivated by the unmodified counterpart. Encouragingly, T cell activation was specific to 

the location of the modification on the peptide. Although multiple T cell clones were 

generated to modifications in different positions, none were cross reactive. As amoxicillin 

was found to activate T cells when bound to designer peptides, the argument that 

flucloxacillin triggers T cell responses through similar mechanisms is strengthened.   

Within the field there is a great need for the characterization of antigens involved in immune 

mediated ADRs. In future work, drug-modified peptides shown to be functional T cell 

antigens will be used for the generation of tetramers. MHC peptide tetramer constructs, 



 

280 

containing a core PE-conjugated streptavidin bound to 4 biotinylated recombinant class I 

heavy chain proteins, have been developed to enable direct visualisation, quantification and 

phenotypic characterization of antigen-specific T cells (Sims, Willberg and Klenerman, 2010). 

A similar technique would enable tetramers to be utilized for quantification and phenotypic 

assessment of T cells derived from hypersensitive patient PBMCs. The ability to counterstain 

T cells using antibodies for specific surface/intracellular protein markers would enable 

further characterization of responsive cells. This approach can be further applied to tolerant 

patients and healthy donors to more accurately determine precursor frequency and HLA 

binding epitopes on drug susceptibility. Of course, a major goal in this research is to 

successfully crystallise pMHC complexes containing drug-modified peptides with responsive 

T cells receptors, providing unequivocal evidence for the interaction between these 

molecules. 

In this thesis binding and localisation of flucloxacillin in cell culture systems, including both 

primary and immortalized cell sources, has been defined. Indeed, this intracellular 

modification of proteins has always been believed to result in proteosomal digestion and 

presentation of drug- associated antigens on the cell surface. Due to the HLA predisposition 

of flucloxacillin-related DILI, the HLA-B*57:01 immunopeptidome was characterized in the 

presence of flucloxacillin. For the first time, we have demonstrated that drug-modified 

peptides are presented on the cell surface of antigen presenting cells, providing a potential 

antigen for the activation of T cells in idiosyncratic drug hypersensitivity reactions. More 

work is needed to ascertain the precise immunogenicity of these peptides, leading to the 

development of diagnostic tools with the aim to further improve patient outcomes.  
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