
Application of a Cosserat Continuum
Model to Non-associated Plasticity

Sepideh Alizadeh Sabet

Department of Civil and Structural Engineering
University of Sheffield

A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy

January 2020



Application of a Cosserat Continuum Model
to Non-associated Plasticity

Sepideh Alizadeh Sabet

Department of Civil and Structural Engineering
University of Sheffield

A thesis submitted in partial fulfilment for the degree of Doctor of
Philosophy

January 2020



Declaration

I, Sepideh Alizadeh Sabet, ensure this PhD thesis is independently written and no sources
have been used other than the stated references.

Sepideh Alizadeh Sabet
January 2020





Abstract

A severe, spurious dependence of numerical simulations on the mesh size and orientation can
be observed in elasto-plastic models with a non-associated flow rule. Such mesh dependency
effects are quite well-known and vastly investigated in problems with the presence of strain
softening in the constitutive relation. However, other material instabilities, like non-associated
plastic flow, can also cause mesh sensitivity. Indeed, loss of well-posedness of the problem
in quasi-static analyses is the fundamental cause of the observed mesh dependence. It has
been known since long that non-associated plastic flow can cause loss of stability, but the
consequence for mesh sensitivity, and subsequently, for the difficulty of the equilibrium-
finding iterative procedure to converge, have remained largely unnoticed. The present thesis
deals with exploring the possibility of using non-standard continua, namely the Cosserat
continuum models, in non-associated plasticity problems to tackle the pathological mesh
dependencies not only on the size of the elements but also on the orientation of them. The
motivation in this thesis for using the Cosserat continuum models for this purpose, lies
in the additional parameters that are specified in such a model, i.e. the micro-rotations
and characteristic length scale. These features make the Cosserat continuum model a
suitable choice to simulate and capture the behavior of the granular and geomaterials. The
characteristic length scale helps regularise the strain localisation problems and prevent loss of
uniqueness of solution. The mesh size dependency of the results for classical non-associated
plasticity models is analysed in depth using an infinitely long shear layer. It is shown that
the mesh effect disappears when the standard continuum model is replaced by a Cosserat
continuum. Next, the dependence of the shear-band inclination in a biaxial test on the mesh
size as well as on the mesh orientation is investigated. The orientation of the developed shear
band is found to be dependent on the orientation of the mesh for classical models. Using a
Cosserat continuum model, numerical solutions result for shear-band formation which are
independent of the size and the orientation of the discretisation.1 , 2

1Partly based on: Sabet, S. A. and de Borst, R. (2019). Structural softening, mesh dependence, and
regularisation in non-associated plastic. International Journal for Numerical and Analytical Methods in
Geomechanics, 43(13):2170-2183

2Partly based on: Sabet, S. A. and de Borst, R. (2019). Mesh bias and shear band inclination in standard
and non-standard continua. Archive of Applied Mechanics, 89(12): 2577-2590.
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Chapter 1

Introduction 1 , 2

1.1 Motivation

The current thesis has come out of the research on a project in a wider context on implicit
finite element analysis of the fault rupture under shear in rocks including the off-fault energy
dissipation. Taking the inelastic energy dissipation in the bulk of materials adjacent to
the fault is relevant for capturing a more realistic rupture velocity of a fault during an
earthquake. The underlying reason is that a damage zone of finite thickness develops in the
material bordering the fault due to large concentrated stresses ahead of the rupture front. The
importance of taking the inelastic response of the bulk material in addition to the fault itself
has been pointed out in [3, 4, 73, 78, 81]. The intended numerical solver for this challenging
problem was the implicit time integration, as it is more suitable for earthquake loadings and
also ensures the satisfaction of balance of linear momentum.

There have been some attempts in the literature to address this problem. A similar work
has been done using finite difference method [4]. In [99], a Drucker-Prager plasticity model
for the off-fault bulk material has been assumed and an explicit commercial FEA solver
ABAQUS has been used. In an extension to this work, the effect of fluid in the material has
been included [110]. In [112], an isogeometric model has been developed for a fluid-saturated
porous medium which captures the fracture at the faults and the fluid pressure changes at the
cavities. However, the energy dissipation off the slip zone is not taken into account.

In the author’s initial investigations, a model was implemented and set up under 2D
plane strain condition as can be seen in Figure 1.1. The fault is modelled as a notch in

1Partly based on: Sabet, S. A. and de Borst, R. (2019). Structural softening, mesh dependence, and
regularisation in non-associated plastic. International Journal for Numerical and Analytical Methods in
Geomechanics, 43(13): 2170-2183

2Partly based on: Sabet, S. A. and de Borst, R. (2019). Mesh bias and shear band inclination in standard
and non-standard continua. Archive of Applied Mechanics, 89(12): 2577-2590.
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the middle and cohesive interface elements [92, 111] are inserted along the crack path to
allow for crack propagation along the fault. These zero thickness interface elements obey a
linear-exponential cohesive traction separation law and were developed and implemented in
the software Jive [85]. The off-fault material is modelled by elasto-plastic constitutive law
with non-associative flow rule suitable for rocks. The non-associative flow rule is needed for
realistic simulation of these materials as an associative flow rule usually overestimates the
amount of plastic strains in pressure sensitive materials.

The incremental-iterative solvers in implicit finite element analysis run into severe
convergence problems for the above described numerical model up to a point that they fail
and no convergence can be achieved. Further investigations were carried out to pin point the
source of the convergence problem. It turned out to be the use of non-associated flow rule in
the plasticity model which leads to the ill-posedness of the boundary value problem and can
cause both mesh-size and mesh-orientation dependency of the results as well as convergence
issues for the solvers. This will be explained in more detail in chapter 2. Therefore, in order
to continue with the original research problem, the author realised the need to first address the
convergence and mesh dependence problems for non-associated plasticity. Hence, following
this chapter, this thesis will focus on tackling non-associated plasticity problems.

Fig. 1.1 Model for numerical investigations of fault rupture in 2D plane strain conditions

1.2 Scope of the thesis

The main goal of this thesis is to develop an efficient numerical model to simulate the
behaviour of pressure sensitive elasto-plastic materials with non-associative flow rule, e.g.
rocks, when they go through localisation. The numerical results should be mesh-objective,
both in terms of size and orientation and the convergence behaviour of the incremental-
iterative solvers should be improved as well.
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Various approaches have been proposed to regularise the problem of strain localisation.
Non-local models [9, 10, 72] or gradient continua [29, 62, 71, 82, 101, 116] are regularisation
methods which can avoid local loss of well-posedness. Inclusion of viscosity and rate effects
have also been proven effective in regularising the boundary-value problem [31, 51, 66].
The approach adopted in the scope of this thesis, is to use Cosserat continuum models
[19]. The Cosserat continuum model is particularly applicable to granular materials as it
is capable of taking the microstructure of the material into account via micro-rotations,
representing the average spin of the particles, as an additional degree of freedom [97]. It
has subsequently been used to regularise constitutive models of granular materials and rocks
[25, 26, 30, 61, 63, 70]. Papanastasiou and Zervos have shown in [69], that both Cosserat and
Gradient elasto-plasticity could be used to regularise the ill-posed problem of strain softening.
Cosserat model has been applied successfully by Zervos to capture the grain rotations
which influence the initial localisation in sandstone material for the problem of stability
of underground openings [117]. Cosserat continuum models have been used previously to
tackle the mesh size dependence in localisation problems due to explicit softening in the
constitutive models. The novelty of the current thesis lies in the application of a Cosserat
elasto-plasticity model to regularise the plasticity problems with non-associated flow in the
absence of any explicit softening. To focus on non-associated flow as the sole destabilising
effect, strain softening and possible geometrical destabilising effects have been excluded
from the analyses in this thesis.

1.3 Objectives

In order to achieve the main goal of this thesis, the following objectives are fulfilled:

• Investigation of loss of uniqueness of solution leading to ill-posedness in non-associated
plasticity problems under quasi-static loading conditions.

• Implementation of reliable numerical algorithms for classical non-associated plasticity
models which also include special treatment of singularities of the yield surface.

• Development and numerical implementation of a Cosserat non-associated plasticity
model.

• Investigation of the performance of the classical non-associated plasticity models in
localisation problems.
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• Investigation of the performance of the Cosserat plasticity model in terms of mesh size
and orientation dependency and convergence behaviour of the numerical solver at hand
of a 1D shear layer and a 2D biaxial test.

1.4 Software used

All the numerical models and formulations in this thesis have been implemented in the
software Jem/Jive [39]. It is a research-oriented C++ software development kit developed by
the DynaFlow research Group and can be used for numerical simulations. Matlab [55] and
ParaView [1] have been used for post-processing purposes throughout this work.

1.5 Structural outline

Following this introductory chapter, the rest of thesis is organized as follows:

• Two classical non-associated plasticity models, namely the Mohr-Coulomb and Drucker-
Prager models, are reviewed in chapter 2. The governing equations are shown and
numerical implementation of these models is discussed. Special care is taken in these
algorithms to treat the singularities in the yield surfaces of these models. Next, a
background to pathological mesh dependency in numerical simulations is given at
hand of a simple example. The underlying mathematical condition which causes loss
of uniqueness of the solution is then discussed for a Mohr-Coulomb plasticity model
with a non-associated flow embedded in a standard continuum.

• In chapter 3, the concept and governing equations of a Cosserat continuum model are
reviewed. The numerical implementation for a 2D Cosserat continuum model is also
presented.

• In chapter 4, the application of Cosserat continuum models to remove mesh depen-
dency is investigated. For this purpose, a 1D infinite layer under shear and a 2D biaxial
compression test are considered to investigate the efficiency of Cosserat continuum
models to remove both the mesh size and orientation dependencies.

• Finally, major outcomes of this thesis are summarized and suggestions on possible
future work as the continuation of this thesis, are made in chapter 5.



Chapter 2

Classical cohesive-frictional plasticity
models

2.1 Introduction

Most of the geomaterials like soils and rock masses are porous and thus the pressure of the
fluid trapped in the pores of them can influence their strength. Moreover, materials like soils
and rock masses show a pressure dependent cohesive-frictional constitutive behaviour. Such
behaviour can be captured with the classical Mohr-Coulomb or Drucker-Prager plasticity
models [21, 35]. In both criteria, the failure is determined by the maximum shear stress
which depends on the normal stress. In case of zero friction, the Mohr-Coulomb and the
Drucker-Prager models become equivalent to Tresca and Von Mises models, respectively .
Hence they can be regarded as an extension of Tresca and Von Mises plasticity models for
pressure sensitive materials.

In this chapter, the governing equations for a general elasto-plastic constitutive model
are first briefly presented. The reader is referred to [45, 64, 74] for a detailed insight
into fundamental elements of plasticity, e.g. yield functions, plastic flow rule, etc. Then
the definition of non-associativity and the concept of dilatancy will follow. Next, the
Mohr-Coulomb and the Drucker-Prager plasticity models are discussed in details and two
verification examples are shown. Then an introductory background to localisation and mesh
dependency in numerical simulations is given. Finally, the loss of uniqueness of solution in
classical non-associated plasticity problems is discussed at the end of this chapter.
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2.2 Governing equations for a general rate-independent
elasto-plastic constitutive model

Under small strain theory, the strain tensor (εεε) can be additively decomposed into elastic (εεεe)
and plastic parts (εεε p)

εεε = εεε
e +εεε

p (2.1)

The corresponding rate form reads
ε̇εε = ε̇εε

e + ε̇εε
p (2.2)

Assuming linear isotropic elasticity and no hardening, the free energy storage in this model
Ψ(εεεe) takes the form

Ψ(εεεe) =
1
2

κ(trεεεe)2 +µ devεεε
e : devεεε

e (2.3)

where κ and µ are the bulk and shear moduli, respectively. Between the stress and elastic
strain rates, a bijective relationship hold:

σ̇σσ = De : (ε̇εε − ε̇εε
p) (2.4)

where De is the elastic stiffness tensor.
In plasticity, a condition defines the start of plastic deformation which is known as the

yield criterion. For perfect plasticity it is a function of stresses as f (σσσ).The elastic domain,E,
is defined by this yield function as:

E= {σσσ | f (σσσ)< 0} (2.5)

Once the stress state reaches the yield surface, the plastic deformations need to be computed.
The evolution of plastic strains is governed by the following formula known as the flow rule
[45, 57, 59]

ε̇εε
p = γ̇

∂g
∂σσσ

(2.6)

Here g is known as the plastic potential, γ is the plastic multiplier and γ̇ is the rate of it.
A constraint known as the consistency condition ensures that once the material yields,

the stress state remains on the yield surface for a short amount of time:

ḟ = 0 (2.7)
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The plastic multiplier can be determined from the consistency condition as follows:

γ̇ =
fσσσ : De : ε̇εε

fσσσ : De : gσσσ

(2.8)

In the above equation, fσσσ and gσσσ denote the derivatives of the yield and plastic potential
functions with respect to the stress, respectively.

With the Karush-Kuhn-Tucker (KKT) loading/unloading conditions to ensure the con-
straint f ≥ 0 for the plastic deformation to occur, the formalities are complete.

γ̇ ≥ 0 , f ≤ 0 , γ̇ f = 0 (2.9)

The governing equations for a general perfect plasticity model are summarised in Figure 2.1.

Fig. 2.1 Governing equations for a general perfect plasticity model

2.3 Return mapping algorithm for rate-independent perfect-
plasticity

The numerical integration of rate equations summarised in the previous section, can be done
with a return mapping scheme. A strain-driven process is considered. The values of the
quantities at the previous and current time steps are denoted by (.)n and (.)n+1, respectively.
Given the state (εεεn,εεε

p
n) and the strain increment ∆εεε , the values for stress and state variables

are computed at the end of the load step.



8 Classical cohesive-frictional plasticity models

The return mapping used here consists of two steps, an elastic predictor step and a plastic
corrector step. At each time step tn+1, the step is assumed to be fully elastic and no plastic
deformation occurs. A trial stress state σσσ trial

n+1 is then computed as:

σσσ
trial
n+1 =σσσn+1 +De

∆ε (2.10)

This trial stress is plugged into the yield function equation which leads to a trial value for
the yield criterion f trial. Now if the value of f trial is negative, then the assumption of elastic
state was correct and all the variables have been computed correctly, otherwise a plastic
corrector step is needed to return the stress state on the yield surface. For this purpose, first
the incremental plastic multiplier should be computed. For the integration of rate of plastic
multiplier a backward Euler method is used. The choice of an implicit scheme over an
explicit scheme relates to stability and accuracy. The implicit integration methods are more
accuaret than the explicit methods as the solution might drift away from the yield surface
using the latter[36] . While with advanced explicit algorithms, the accuracy can be improved
[95], the stability requirement is often not met. This holds in particular when the yield
surface is locally strongly curved, where explicit algorithms can become poor, with implicit
algorithms in principle remaining unconditionally stable [67]. A corner, as in Mohr-Coulomb
is an extreme form, with a zero radius of curvature. Therefore, an implicit integration method
is a safer method to adopt. A backward Euler integration of the Eq. (2.8) leads to:

∆γ =
fσσσ |n+1 : De : ∆εεεn+1

fσσσ |n+1 : De : gσσσ |n+1
(2.11)

With the value of incremental plastic multiplier at hand, the incremental plastic strains can
be integrated in the same way by backward Euler integration from Eq. (2.6)

∆εεε
p = ∆γ

∂g
∂σσσ

∣∣∣
n+1

(2.12)

The plastic strains can now be updated as:

εεε
p
n+1 = εεε

p
n +∆εεε

p (2.13)

The incremental stresses can be integrated from Eq. (2.4)

∆σσσ = De : (∆εεεn+1 −∆εεε
p
n+1) (2.14)
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By definition the updated stress is:

σσσn+1 =σσσn +∆σσσ (2.15)

Substitution of Eq. (2.4) into Eq. (2.15) leads to the value for updated stresses:

σσσn+1 =σσσ
trial
n+1 −De

∆εεε
p
n+1 (2.16)

2.4 Definition of non-associativity of the plastic flow

In associated plasticity models, the plastic flow potential g, is the same as the yield function f :

g = f (2.17)

Otherwise, the model is said to be non-associated.

2.5 Dilatancy

In 1885, Reynolds reported about the dilatancy in granular materials [77] . It is referred
to the change in volume of an element in the material under shear. In 1985, the dilation
angle was introduced [42] and controls the plastic volumetric strain of the material over the
plastic shear strain and here is denoted by ψ . The concept of dilation and dilation angle can
be visualised in Figure 2.2, where the material is represented by a pack of incompressible
spheres. Dilation angle can be positive or negative. The former is the case for example for
dense sand as the total volume of the material increases by particles moving on each other
under shear. For loose sand the dilation angle is negative and the total volume of the material
decreases under shear.

The need for incorporating a non-associated flow rule arises from the overestimation
of the volumetric plastic strains computed with the associated models when compared to
experiments. Therefore, a non-associated flow rule results in more accurate displacements.

(a) Dilating materials (b) Compacting materials (c) Dilation angle

Fig. 2.2 Ball analogy: Concept of dilation
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σ1 = σ2 = σ3

−σ1

−σ2

−σ3

c cot φ

Fig. 2.3 Mohr-Coulomb Plasticity yield function in principal stress space

Fig. 2.4 Mohr-Coulomb Plasticity yield function on deviatoric or π plane

2.6 Mohr-Coulomb plasticity model

Mohr-Coulomb plasticity model defines the yield surface with a relationship between the
normal and shear stresses as in Eq. (2.18)

τ = c−σntanφ (2.18)

where σn is the normal stress which is assumed tensile positive. c is the cohesion constant.
When normal stress is zero, the strength is positive if c > 0 and zero if c = 0. φ is the angle
of internal friction indicating how pressure dependent the strength of the material is.



2.6 Mohr-Coulomb plasticity model 11

τ

σ

c

σ1σ2σ3
φ

c cot φ

Failure envelope

(σ ,τ)

τ = c−σ tan φ

φ

σ1 −σ3

Fig. 2.5 Mohr circle

Eq. (2.18) can be recast in terms of the principal stresses as follows:

σ1 −σ3

2
cosφ = c− (

σ1 +σ3

2
+

σ1 −σ3

2
sinφ) tanφ (2.19)

which can be rearranged as:

(σ1 −σ3)+(σ1 +σ3)sinφ = 2ccosφ (2.20)

The yield function thus reads as:

f (σσσ ,c) = (σ1 −σ3)+(σ1 +σ3)sinφ −2ccosφ (2.21)

The above yield surface is an irregular hexagon in the principal stress space along the
hydrostatic axis (where all the princiapal stresses are equal as σ1 = σ2 = σ3) and in π-plane,
as visualised in Figures 2.3 and 2.4. In Figure 2.5, the stress state at yield is shown by the
Mohr circles’ positions to the failure line defined by Eq. (2.18). The apex of the Mohr-
Coulomb yield surface is located at papex = ccotφ on the hydrostatic axis and controls the
maximum tensile strength of the material.

For a non-associated Mohr-Coulomb plasticity model, a plastic potential similar in form
to the yield function can be considered:

g(σσσ) = (σ1 −σ3)+(σ1 +σ3)sinψ (2.22)
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2.6.1 The influence of the out-of-plane stress σz in plane strain prob-
lems

In Mohr-Coulomb model, the intermediate principal stress does not play a role in defining
the yield of the material. This might wrongly lead to the assumption that in plane strain
problems, the out-of-plane stress is always the intermediate stress and can be excluded in
the analysis. However, it has been shown in the literature that the out-of-plane stress is not
necessarily always the intermediate principal stress.

In [16], a study has been done on the bearing capacity problem, see Figure 2.6a, for two
values of the Poisson’s ratio, ν = 0.05 and ν = 0.45. For each value of the Poisson’s ratio,
two cases have been considered: one including(in total 4 components of the stress tensor)
and the other one excluding the σz (in total 3 components of the stress tensor), keeping
all other parameters the same. This study shows that for low values of the Poisson’s ratio,
there is a slight difference, between the results of simulations with and without including
σz as is illustrated in Figure 2.6b. Although the slightly different results could have also
possibly emerged from numerical errors in the computations, a more conservative approach
would be to include the out-of-plane stress in the computations as well. Another example
is given in [18] considering the cases where the principal elastic in-plane strains are equal
which leads to the σz being equal to the maximum or minimum principal stress. It causes
the stress state fall on the singularities of the Mohr-Coulomb pyramid. In the same work,
a further example of a single element going through a sequence of loadings (Figure 2.7) is
given, such that σz becomes the maximum principal stress at some point during loading and
remains the intermediate principal stress in the beginning of loading and after yielding as is
illustrated in Figure 2.8. The loading sequence is as follows: At state 1, ∆σx =−200 KPa
is applied and the material reaches state 2. From state 1 to 2, σz = σ2. Then at state 2,
∆εy = −1× 10−3 is applied while keeping σx constant. In the transition between state 1
and 2, there are 3 stages: Stage 1 is when the σz is not the intermediate principal stress
anymore but is the major principal stress and σy is the intermediate principal stress, such that
σz ≥ σy ≥ σx. Then the material reaches stage 2, where the σz is still the major principal
stress but σx is the intermediate principal stress, such that σz ≥ σx ≥ σy. At stage 3, the σz

becomes the intermediate principal stress again and the material yields. After this point we
have σx ≥ σz ≥ σy. The material parameters used for this simulation are given in table 2.1.
The above examples show the importance of including the out-of-plane stress in the elasto-
plastic calculations using Mohr-Coulomb model and this is also taken into account in the
remainder of this thesis.
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(a) Model geometry and boundary conditions and the mesh

(b) Normalised pressure vs settlement

Fig. 2.6 Bearing problem for two cases with three and four component stress vector, taken
from [16]

2.6.2 Numerical implementation

Here the formulations and the algorithm developed in [32] are adopted for the implementation
of the non-associated Mohr-Coulomb model. The stress update procedure is carried out in
the principal stress space. The yield surface of the Mohr–Coulomb hexagon in the principal
stress space can also be cast into six yield functions on each face:

f1(σσσ ,c) = (σ1 −σ3)+(σ1 +σ3)sinφ −2ccosφ (2.23)

f2(σσσ ,c) = (σ2 −σ3)+(σ2 +σ3)sinφ −2ccosφ (2.24)

f3(σσσ ,c) = (σ2 −σ1)+(σ2 +σ1)sinφ −2ccosφ (2.25)

f4(σσσ ,c) = (σ3 −σ1)+(σ3 +σ1)sinφ −2ccosφ (2.26)

f5(σσσ ,c) = (σ3 −σ2)+(σ3 +σ2)sinφ −2ccosφ (2.27)

f6(σσσ ,c) = (σ1 −σ2)+(σ1 +σ2)sinφ −2ccosφ (2.28)
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Table 2.1 Parameters used for the Mohr-Coulomb model in Figure 2.7

Parameter Symbol Value
Young’s modulus E 100 MPa
Poisson’s ratio ν 0.3
Internal friction angle φ 20o

Dilation angle ψ 20o

Cohesion c 100 KPa

Fig. 2.7 Material point going through a set of loadings in x and y directions, taken from [18]

where each fi(σσσ ,c) = 0, defines one face of the Mohr–Coulomb pyramid.
The plastic potential functions (gi) are also considered in the same way:

g1(σσσ ,c) = (σ1 −σ3)+(σ1 +σ3)sinψ (2.29)

g2(σσσ ,c) = (σ2 −σ3)+(σ2 +σ3)sinψ (2.30)

g3(σσσ ,c) = (σ2 −σ1)+(σ2 +σ1)sinψ (2.31)

g4(σσσ ,c) = (σ3 −σ1)+(σ3 +σ1)sinψ (2.32)

g5(σσσ ,c) = (σ3 −σ2)+(σ3 +σ2)sinψ (2.33)

g6(σσσ ,c) = (σ1 −σ2)+(σ1 +σ2)sinψ (2.34)

The plastic flow vector (N) is then computed for each sextant of the Mohr-Coulomb pyramid
as:

Ni =
∂gi

∂σσσ
(2.35)
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Fig. 2.8 Principal stress-strain states, taken from [18]

Koiter’s Generalisation

Mohr-Coulomb yield surface is not continously differentiable and has singularities at the
apex and at the edges where two planes meet. At these singularities, there is a need for a
special numerical treatment when computing the flow vector. According to [47] the plastic
flow vector can be computed as a linear combination of all the flow vectors adjacent to that
singularity as

ε̇εε
p =

n

∑
i=1

γ̇iNi (2.36)

where:

γ̇i ≥ 0 i = 1, ...,n (2.37)

The Koiter’s generalisation is visualized in Figure 2.9.
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set of ∂σσσ g

ε̇εε p

N2N1

g1 g2

f1 f2

Subdifferential

Fig. 2.9 Plastic flow direction according to Koiter’s generalisation

Stress update procedure

The stress update algorithm uses a return mapping scheme which was explained in section
2.3. The trial elastic strains and stresses are computed as follows:

εεε
e,trial
n+1 := εεε

e
n +∆εεε (2.38)

σσσ
trial
n+1 := 2µdev(εεεe,trial

n+1 )+κtr(εεεe,trial
n+1 )I (2.39)

Then the trial stresses are decomposed into the principal components and ordered as
σ trial

1 ≥ σ trial
2 ≥ σ trial

3 . This has the advantage that simplifies the analysis to a single sextant
of the Mohr–Coulomb pyramid.
Next the trial value of the yield function is computed to determine if the step is plastic:

f trial = σ
trial
1 −σ

trial
3 +(σ trial

1 +σ
trial
3 )sinφ −2ccosφ (2.40)

If f trial < 0, then the step is elastic and there is no need to do the plastic correction step. All
variables take their trial values:

(.)n+1 := (.)trial
n+1 (2.41)

If f trial ≥ 0, then a general return mapping is done. Accounting for the flow rule by Koiter’s
generalisation in Eq. (2.16), the updated stresses are:

σσσn+1 =σσσ
trial
n+1 −De :

6

∑
i=1

∆γ
iNi

n+1 (2.42)
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Eq. (2.42) can be recast in principal stresses as

σ j = σ
trial
j −

6

∑
i=1

∆γ
i(2µ[Ni

d] j +κNi
v); j = 1,2,3 (2.43)

where:
Ni is the flow vector at the updated stress state
Ni

v := tr[Ni] is the volumetric part of Ni

[Ni
d] j is the j-th eigenvalue of the deviatoric part of Ni

The backward Euler return mapping takes four forms depending on the location of the trial
stresses:

1. Return to the main plane/smooth portion:
In this case only one multiplier is non-zero and the plastic flow vector reads as

Na := N1 = (1+ sinψ)e1 ⊗ e1 − (1− sinψ)e3 ⊗ e3 (2.44)

ε̇εε
p = γ̇Na (2.45)

Substituting the plastic flow formulation in Eq. (2.43) yields to:

σ1 = σ
trial
1 −∆γ(2µ(1+

1
3

sinψ)+2κ sinψ) (2.46)

σ2 = σ
trial
2 +∆γ(

4
3

µ −2κ)sinψ (2.47)

σ3 = σ
trial
3 +∆γ(2µ(1− 1

3
sinψ)−2κ sinψ) (2.48)

(2.49)

From the consistency condition we compute the incremental plastic multiplier ∆γ

f = σ
trial
1 −σ

trial
3 +(σ trial

1 +σ
trial
3 )sinφ −2ccosφ −a∆γ = 0 (2.50)

where

a = 4µ(1+
1
3

sinφ sinψ)+4κ sinφ sinψ (2.51)

2. Return to an edge:
Only two plastic multipliers are non-zero
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ε̇εε
p = γ̇aNa + γ̇bNb (2.52)

where
Na is the flow vector to the main plane
Nb is the flow vector to the edge
Whether the return should be made to the right or left edge, is based on geometrical
arguments. The corresponding deviatoric parts of the principal stresses at any edge of
the Mohr– Coulomb pyramid are equal

si = s j (2.53)

for si,s j with i ̸= j
which means at a point on the right edge s2 = s3 and at a point on the left edge s1 = s2.
The deviatoric decomposition of the stress given by Eq. (2.43) gives:

sn+1 = strial
n+1 −2µ(∆γ

aNa
d +∆γ

bNb
d) (2.54)

Here Na
d and Nb

d are the deviatoric parts of Na and Nb, respectively. Nb is the normal
of the same edge where sn+1 lies. In order to determine whether the strial

n+1 lies on the
left or right edge, a deviatoric tensor T is used. T is orthogonal to Na

d and has the
following eigenvalues :

(a) Return to the edge on the right (b) Return to the edge on the left

Fig. 2.10 Selection of the appropriate edge in Mohr-Coulomb model, taken from [32]

T1 = 1− sinψ,T2 =−2,T3 = 1+ sinψ (2.55)
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The projection of the σσσ trial
n+1 on T determines to which edge the return should be made.

This procedure is visualised in Figure 2.10.

S : = T : σσσ
trial
n+1 = T1σ

trial
1 +T2σ

trial
2 +T3σ

trial
3 (2.56)

S : = (1− sinψ)σ trial
1 −2σ

trial
2 +(1+ sinψ)σ trial

3 (2.57)

If S > 0, the return should be made to the right edge, otherwise to the left edge.

• Return to the right edge:
At the right edge, Nb is given as:

Nb := N6 = (1+ sinψ)e1 ⊗ e1 − (1− sinψ)e2 ⊗ e2 (2.58)

The principal stresses are then updated as follows:

σ1 = σ
trial
1 − (2µ(1+

1
3

sinψ)+2κ sinψ)(∆γ
a +∆γ

b) (2.59)

σ2 = σ
trial
2 +(

4
3

µ −2κ)sinψ∆γ
a +(2µ(1− 1

3
sinψ)−2κ sinψ)∆γ

b (2.60)

σ3 = σ
trial
3 +(2µ(1− 1

3
sinψ)−2κ sinψ)∆γ

a +(
4
3

µ −2κ)sinψ∆γ
b (2.61)

In order to compute ∆γa and ∆γb, we use two consistency conditions as follows:

f a = σ
trial
1 −σ

trial
3 +(σ trial

1 +σ
trial
3 )sinφ −2ccosφ −a∆γ

a −b∆γ
b = 0 (2.62)

f b = σ
trial
1 −σ

trial
2 +(σ trial

1 +σ
trial
2 )sinφ −2ccosφ −b∆γ

a −a∆γ
b = 0 (2.63)

where

b = 2µ(1+ sinφ + sinψ − 1
3

sinφ sinψ)+4κ sinφ sinψ (2.64)

• Return to the left edge:
The plastic flow vector on the left of the main plane reads as

Nb := N2 = (1+ sinψ)e2 ⊗ e2 − (1− sinψ)e3 ⊗ e3 (2.65)
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Using Eq. (2.65), the principal stresses should be updated as:

σ1 = σ
trial
1 − (2µ(1+

1
3

sinψ)+2κ sinψ)∆γ
a +(

4
3

µ −2κ)sinψ∆γ
b (2.66)

σ2 = σ
trial
2 +(

4
3

µ −2κ)sinψ∆γ
a − (2µ(1+

1
3

sinψ)+2κ sinψ)∆γ
b (2.67)

σ3 = σ
trial
3 +(2µ(1− 1

3
sinψ)−2κ sinψ)(∆γ

a +∆γ
b) (2.68)

(2.69)

In order to compute ∆γa and ∆γb, we use two consistency conditions as follows:

f a = σ
trial
1 −σ

trial
3 +(σ trial

1 +σ
trial
3 )sinφ −2ccosφ −a∆γ

a −b∆γ
b = 0 (2.70)

f b = σ
trial
2 −σ

trial
3 +(σ trial

2 +σ
trial
3 )sinφ −2ccosφ −b∆γ

a −a∆γ
b = 0 (2.71)

where

b = 2µ(1− sinφ − sinψ − 1
3

sinφ sinψ)+4κ sinφ sinψ (2.72)

3. Return to the apex:
The principal stresses at the apex of the Mohr-Coulomb model are equal to the hydro-
static stress and thus the updated values should be

σσσn+1 := pn+1I (2.73)

where:
pn+1 is the hydrostatic pressure and should be equal to the hydrostatic stress at the
apex papex = ccotφ .

pn+1 = papex = ccotφ (2.74)

which gives:

σ1 = σ2 = σ3 = ccotφ (2.75)

The elastic predictor-plastic corrector scheme is shown in Algorithm 1 and the approach to
selecting the appropriate return mapping, is summarised in a flowchart in Figure 2.11.
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Fig. 2.11 Flowchart of selecting the appropriate return mapping, taken from [32]
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Algorithm 1: Elastic predictor-plastic corrector algorithm according to [32]

1. Given the database and history variables εεεe
n at time tn.

Advance the strain to εεεn+1 at time tn+1
∆εεε = εεεn+1 −εεεn

2. Elastic predictor step
εεε

e,trial
n+1 := εεεe

n +∆εεε

σσσ trial
n+1 := 2µdev(εεεe,trial

n+1 )+κtr(εεεe,trial
n+1 )I

3. Spectral decomposition of the trial stresses
Compute (σ trial

1 ,σ trial
2 ,σ trial

3 ) such that
σ trial

1 ≥ σ trial
2 ≥ σ trial

3

4. Compute trial yield function and check for plastic loading
f trial = σ trial

1 −σ trial
3 +(σ trial

1 +σ trial
3 )sinφ −2ccosφ

IF ( f trial < 0) THEN

• This is an elastic step

• set (.)n+1 := (.)trial
n+1

• GOTO 8

ENDIF

5. Plastic corrector step with return mapping according to the flowchart in Figure 2.11

6. Map the updated stress tensor to the general stress space
σσσn+1 := ∑

3
i=1 σiei ⊗ ei

7. Update the history variable(elastic strain) εεεe
n+1 := 1

2µ
dev(σσσn+1)+

tr(σσσn+1)
κ

I

8. EXIT

Consistent tangent modulus

An algorithmically consistent tangent modulus is necessary to obtain quadratic convergence
for incremental-iterative solution of elasto-plasticity problems [93, 94]. An algorithmically
consistent tangent modulus means that it is consistent with the stress update algorithm which
is used. Therefore it can be written as

Dep :=
dσσσn+1

dεεεn+1
(2.76)

Since there are four mapping procedures for updating the stress, namely return to the
main plane, right/left edges and the apex, there would also be four corresponding sets of
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formulations for the consistent tangent modulus based on the derivatives of the updated
principal stresses.

• Return to the main plane
Differentiation of the corresponding updated principal stresses gives:

dσ1 = dσ
trial
1 − (2µ(1+

1
3

sinψ)+2κ sinψ)d∆γ (2.77)

dσ2 = dσ
trial
2 +(

4µ

3
−2κ)sinψd∆γ (2.78)

dσ3 = dσ
trial
3 +(2µ(1− 1

3
sinψ)−2κ sinψ)d∆γ (2.79)

d∆γ in the above equations is computed using the consistency condition

f̃ = dσ
trial
1 −dσ

trial
3 +(dσ

trial
1 +dσ

trial
3 )sinφ − ad∆γ = 0 (2.80)

Here a is defined in Eq. (2.51).

• Return to edges
The same way as in the case of main plane, the stress update formulae should be
differentiated. d∆γa and d∆γb could be computed using the consistency conditions and
the values should be substituted in the stress differentiation.

• Return to the apex

Since the apex remains fixed in the stress space in perfect plasticity, the derivatives of
the principal stresses vanish at the apex. Therefore:

∂σi

∂ε j
= 0 i, j = 1,2,3 (2.81)

which yields:

Dep = 0 (2.82)

reflecting the singularity at the apex.
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2.7 Drucker-Prager plasticity model

The Drucker-Prager yield surface is a cone in the principal stress space as can be seen from
Figure 2.12. It is defined as:

f = (3J2)
1/2 +α p− k (2.83)

For non-associated plasticity, a plastic potential function resembling the yield function is
taken

g = (3J2)
1/2 +β p (2.84)

α , k and β in the above equations are material parameters, known as the internal friction
coefficient, the cohesion and the dilatancy factor. J2 is the second invariant of deviatoric
stresses and p is the hydrostatic pressure

p :=
1
3

trσσσ (2.85)

J2 and p can be expressed in compact matrix notation as

J2 =
1
2

σσσ
TPσσσ (2.86)

and
p =σσσ

T
πππ (2.87)

using the projection matrix PPP and the projection vector π defined as

P =


2/3 −1/3 −1/3 0
−1/3 2/3 −1/3 0
−1/3 −1/3 2/3 0

0 0 0 2

 (2.88)

and
πππ
T = [1/3,1/3,1/3,0] (2.89)

The yield function, Eq. (3.34) can be rewritten as

f = [
3
2

σσσ
TPσσσ ]1/2 +ασσσ

T
πππ − k (2.90)

Similarly for the plastic potential, we have

g = [
3
2

σσσ
TPσσσ ]1/2 +βσσσ

T
πππ (2.91)
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Fig. 2.12 Drucker-Prager yield surface in principal stress state

The normals to the yield surface and plastic potential contour are:

M =

[
3Pσσσ

2
√

3/2σσσTPσσσ
+απππ

]
(2.92)

and

N =

[
3Pσσσ

2
√

3/2σσσTPσσσ
+βπππ

]
(2.93)

The material parameters can be chosen in such a way that the Mohr-Coulomb yield surface
is approximated at different locations [32]. For a match to the three outermost corners :

α =
6sinφ

3− sinφ
,β =

6sinψ

3− sinψ
,k =

6ccosφ

3− sinφ
(2.94)

For a match to the inner corners:

α =
6sinφ

3+ sinφ
,β =

6sinψ

3+ sinψ
,k =

6ccosφ

3− sinφ
(2.95)

And another set to match the plane strain conditions:

α =
3
√

3tanφ√
9+12tan2 φ

,β =
3
√

3tanψ√
9+12tan2 ψ

,k =
3
√

3c√
9+12tan2 φ

(2.96)
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2.7.1 Numerical implementation

Compared to the Mohr-Coulomb model, the integration of the rate equations in the Drucker-
Prager model is much easier. This is mainly due to the fact that the yield surface of the
Drucker-Prager model has only one point of singularity, namely the apex, which needs special
care.

Stress update procedure

Here, again a general return mapping is considered to update the stress state as in [28].

1. Return to the main plane

Elastic Predictor step
The trial stress state is computed as in Eq. (2.10). Inserting the value of trial stresses
in Eq. (2.90), gives the value for trial yield function as:

f trial = [
3
2

σσσ
trial
n+1

TPσσσ
trial
n+1]

1/2 +ασσσ
trial
n+1

T
πππ − k (2.97)

Now if the value of f trial is negative, then the assumption of elastic state was correct,
otherwise a plastic corrector step is needed to return the stress state on the yield surface.

Plastic Corrector step
In case the yield criterion is violated, the material has gone through plastic deformation.
The incremental plastic multiplier is integrated by backward Euler as in Eq. (2.11).
Since the vectors M and N are normals to the yield and plastic potential surfaces,
respectively, their trial values could be used instead of their updated values. So:

∆γ =
Mtrial

n+1 : De : ∆εεεn+1

Mtrial
n+1 : De : Ntrial

n+1
(2.98)

With Mtrial
n+1 and Ntrial

n+1 being computed as

Mtrial
n+1 =

[
3Pσσσ trial

n+1

2
√

3/2σσσ trial
n+1

TPσσσ trial
n+1

+απππ

]
(2.99)

and
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Ntrial
n+1 =

[
3Pσσσ trial

n+1

2
√

3/2σσσ trial
n+1

TPσσσ trial
n+1

+βπππ

]
(2.100)

The plastic strain increment is computed by Eq. (2.12) and using N:

∆εεε
p
n+1 = ∆γNtrial

n+1 (2.101)

The stresses are updated using Eq. (2.16). Finally the plastic strains are also updated.

2. Return to the apex
The Drucker-Prager yield surface is singular at the apex. The stress state at the apex is

∥devσσσ∥= 0 , papex =
k
α

(2.102)

In the return mapping algorithm adopted here, it is first assumed that the stress state
should be returned to the smooth part of the yield surface. If the updated stresses
violate the condition below, it means that the assumption was not correct and the stress
should be returned to the apex.

ασσσ
T
n+1πππ < k (2.103)

The updated stresses and plastic strain increments at the apex read as:

σσσn+1 =
3k
α

πππ
T (2.104)

∆εεε
p
n+1 = De−1 : (σσσ trial

n+1 −σσσn+1) (2.105)

Consistent tangent modulus

• Return to the main plane
From Eq. (2.16), the updated stresses read as:

σσσn+1 =σσσ
trial
n+1 −De

∆γNn+1 (2.106)

Differentiating Eq. (2.106) yields:

σ̇σσ = Hn+1

[
ε̇εε − γ̇Nn+1

]
(2.107)
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where

H−1
n+1 = [De]−1 +∆γ

√
3
2

σσσT
n+1Pσσσn+1P−Pσσσn+1σσσT

n+1P√
σσσT

n+1Pσσσn+1

(2.108)

Inserting Eq. (2.8) into Eq. 2.107 gives:

σ̇σσ =

[
Hn+1 −

Hn+1Nn+1(Mn+1)
THn+1

(Mn+1)THn+1Nn+1

]
ε̇εε (2.109)

which gives an explicit form for the consistent tangential modulus:

Dep =

[
Hn+1 −

Hn+1Nn+1(Mn+1)
THn+1

(Mn+1)THn+1Nn+1

]
(2.110)

The above equation can be used for the smooth portion of the yield cone.

• Return to the apex
The stress tensor at the apex consists only of principal stresses. Since the apex remains
fixed in the stress space in perfect plasticity, the derivatives of the principal stresses
vanish at the apex. Therefore:

Dep = 0 (2.111)

reflecting the singularity at the apex as in the Mohr-Coulomb model.

2.8 Verification examples

2.8.1 Single element in tension

An element of material with unit dimensions is considered in tension under plane strain
conditions. The geometry and the boundary conditions are depicted in Figure 2.13. This
element is simulated with the Mohr-Coulomb model and its corresponding Drucker-Prager
model with plane strain, inner cone and outer cone matches. The material parameters are
shown in tables 2.2 and 2.3. A cyclic displacement load as shown in Figure 2.14a is prescribed
on top of the element.

Analytical solution

The state of stress and strain for the element can be simply computed analytically in the
elastic regime and therefore it is possible to determine the analytical longitudinal stress and
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ū ū

Fig. 2.13 Geometry and boundary conditions of the single element test

Table 2.2 Parameters used for the Mohr-Coulomb model in Figure 2.13

Parameter M-C model
E 100 MPa
ν 0.3
φ 20o

ψ 20o

c 100 KPa

Table 2.3 Parameters used for the Drucker-Prager model in Figure 2.13

Parameter Plane strain match Inner corners match Outer corners match
E 100 MPa 100 MPa 100 MPa
ν 0.3 0.3 0.3
α 0.582 0.61 0.77
β 0.582 0.61 0.77
k 159.7 KPa 168.8 KPa 212.1 KPa
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(a) Cyclic prescribed displacement load (b) Stress vs strain

Fig. 2.14 Single element test in tension

strain at which plasticity first starts.
From the plane strain assumption, εz = 0, it follows:

σz = ν(σx +σy) (2.112)

With the imposed boundary conditions

σx = 0 (2.113)

Therefore we have
εx =− ν

(1−ν)
εy (2.114)

and
σz = νσy (2.115)

The longitudinal stress also reads

σy =
E

(1−ν2)
εy (2.116)

On the other hand

√
3J2 =

√
(σx −σy)2 +(σy −σz)2 +(σz −σx)2 +6σ2

xy

2
(2.117)
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which simplifies to √
3J2 =

E
√

(1−ν +ν2)

(1−ν2)
εy (2.118)

And we also have
p =

1
3
(σx +σy +σz) (2.119)

which reduces to
p =

E
3(1−ν)

εy (2.120)

Now we can write the yield function in terms of εy only as

f =
E
√
(1−ν +ν2)

(1−ν2)
εy +α

E
3(1−ν)

εy − k (2.121)

Plasticity begins when f ≥ 0, so the root to the above equation is the longitudinal strain at
which plasticity starts

εy = 0.001273 (2.122)

The corresponding longitudinal stress value for the Mohr-Coulomb and a plane strain matched
Drucker-Prager criteria is

σy = 1.398×105 Pa (2.123)

These values completely match with the FE simulation results shown in Figure 2.14b.

2.8.2 Smooth rigid strip footing in plane strain conditions

Computation of the bearing capacity of a rigid footing belongs to difficult problems in elasto-
plastic finite element analysis as there are large stress gradients and discontinuities at the
footing edge. Therefore it is a very good example to verify the formulations and algorithms
implemented.

In Figure 2.15a, the geometry and boundary conditions of the footing problem are shown.
The model is meshed with 975 second order quadrilateral elements as can be seen in Figure
2.15b. r is considered to be 0.5 m. Simulations are carried out with the Mohr-Coulomb and
its corresponding Drucker-Prager model with plane strain match. Two cases are simulated:
associated and non-associated, with ψ = 20◦ and ψ = 10◦, respectively. The strip is subject
to an increasing displacement load from 0 to 140 mm. The material parameters are sum-
marised in tables 2.4 and 2.5. The theoretical limit for this problem is given by Prandtl [75]
as:

p = c(tan2(π/4+φ/2)expπ tan(φ)−1)cot(φ) (2.124)
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(a) Geometry and boundary conditions (b) Mesh

Fig. 2.15 Model of the rigid strip footing

Table 2.4 Parameters used for the Mohr-Coulomb model in Figure 2.15

Parameter M-C model
E 100 MPa
ν 0.3
φ 20o

ψ 20o/10o

c 100 KPa

Table 2.5 Parameters used for the Drucker-Prager model in Figure 2.15

Parameter D-P model
E 100 MPa
ν 0.3
α 0.582
β 0.582/0.3
k 159.7 KPa
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Fig. 2.16 Normalised pressure vs settlement

For φ = 20◦, the normalized theoretical limit pressure is (p/c) = 14.84. In Figure 2.16, the
simulation results for both associated and non-associated cases are shown and they agree
rather well with the theoretical limit solution. The contours of equivalent plastic strains are
illustrated in Figure 2.17. as can be seen, there is high plastic deformation at the edge of the
footing and shear bands form as well.

2.9 Background to localisation and mesh dependency in
numerical simulations

In the 1970s it was observed that the introduction of strain softening in constitutive relations
caused a phenomenon now known as mesh dependence or mesh sensitivity. While it is
normal that, upon refinement of the discretisation, the numerical solution approaches the
correct solution of the initial value problem, the connotations mesh dependence or mesh
sensitivity are typically reserved for a phenomenon where the solution does not seem to
be able to ever converge to the correct solution where there is singularity or a solution is
found which does not seem physically realistic. This is most simply shown at hand of a
one-dimensional bar loaded in tension [28], as shown in Figure 2.18 and composed of a
material exhibiting strain softening behaviour as can be seen from Figure 2.19a. The bar is
meshed with m elements. A linear relationship exists between the axial stress σ and axial
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(a) Associated M-C (b) Associated D-P

(c) Non-associated M-C (d) Non-associated D-P

Fig. 2.17 Contours of equivalent plastic strains at ū = 0.12m

Fig. 2.18 1D bar with length L in tension, taken from [28]

strain ε up to reaching the tensile strength ft :

σ = Eε (2.125)

where E is the Young’s modulus. Upon reaching the peak strength, the material starts to
damage at the axial strain value of κi and becomes fully damaged at the value of κu, where it
loses its load-carrying capacity. The constitutive material law in the post-peak regime reads:

σ = ft +h(ε −κi) (2.126)
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(a) Elastic-linear damage material law

(b) Stress-average strain curve of the bar with imperfection

Fig. 2.19 Constitutive law and the response of the bar, taken from [28]

For damaging materials, h is called the softening modulus and is negative. For the linear
damaging law at hand, we have:

h =− ft
ku − ki

(2.127)

Now we assume that there is an imperfect element in the bar with a slightly lower tensile
strength compared to the rest of the m−1 elements. This element will reach the peak stress
and fail sooner than others. Therefore, m−1 elements will be elastically unloading while the
imperfect element is going through damage. The average strain in the bar is given as:

ε̄ =
1
m

[σ − ft +hκi

h
+(m−1)

σ

ε

]
(2.128)

Inserting Eq. (2.127) into Eq. (2.128) yields:

ε̄ =
σ

E
+

n( ft −σ)

mE
(2.129)

where n = κu/κi.
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The pathological mesh size dependency can now easily be observed from Eq. (2.129) and
is plotted in Figure 2.19b. Upon refinement of the discretisation, the post-peak descending
branch runs steeper and steeper, giving a more and more brittle structural response. Beyond
a certain number of elements a snap-back phenomenon is observed, and the overall displace-
ment decreases after passing the peak load. In the limit of an infinitely dense mesh (m → ∞),
the post-peak load-displacement curve doubles back on its original (elastic) loading branch,
resulting in the physically unrealistic case of failure without energy dissipation [28].

While this phenomenon has originally been ascribed to shortcomings of the finite element
formulation, the true reason appeared to be the loss of well-posedness of the initial or
boundary-value problem, and thus emerges for any discretisation method [76, 68]. Indeed,
quasi-static problems become ill-posed at a certain stage of the loading process and failure
takes place at a discrete, characteristic plane. The observed mesh dependence is then just a
manifestation of the inability of the discretisation method to exactly capture a discrete plane.
Hadamard was the first to conduct an analytical study into localisation for elastic solids and
has identified the loss of well-posedness as the underlying reason [41]. Extensions to plastic
deformations have been made in [44, 53, 100].

Localisation occurs commonly in the form of narrow, highly deformed zones, known
as shear bands in a wide range of materials, e.g. in concrete [102], metals [15, 20, 22] and
geomaterials [83, 89, 103, 105, 114, 115]. Shear bands are considered to emerge from a
material instability, i.e. as a bifurcation from a homogeneous deformation into a deformation
mode that involves a discontinuity. Numerical simulations of localised deformation can run
into problems, in particular a pathological mesh dependence, and severe difficulties, or even
an impossibility, to obtain converged solutions as reported in [14, 17, 52, 54].

It has been recognised that strain softening is not the only material instability which can
lead to loss of well-posedness. Indeed, it has also been demonstrated for strain-rate softening
[113]. The non-associated plastic flow has also been shown to have a materially destabilising
effect and can cause the boundary-value problem to become ill-posed [53, 84, 80, 65, 79,
104, 108]. In principle, non-associated flow can therefore also induce structural softening
and mesh sensitivity, but with some exceptions [24, 50, 48], little attention has been given in
the literature to the possibility of this phenomenon to occur.

The pathological mesh dependence of numerical results is not limited to only mesh size
but also includes the mesh orientation which results from the application of a non-associated
flow rule. While the effect of mesh orientation has received less attention than the effect
which mesh densification can have in localisation problems, its relevance has been docu-
mented for strain softening [96], for strain-rate softening in the formation of Portevin-Le
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Chatelier bands [113] and for softening-rehardening as occurs in Lüders band formation [56].

2.10 Loss of uniqueness of the solution

A mathematical model of a physical problem is reliable only when the initial or boundary
value problem is well-posed. A problem is well-posed when it has a solution which is unique
and the solution continuously depends on the data. We now investigate conditions under
which a body which is modelled using non-associated elasto-plasticity, loses well-posedness,
therefore opening up the possibility of strain localisation to occur. We consider quasi-static
loading conditions and postulate the existence of a solution which is discontinuous across
a (possibly curved) plane Γd as shown in Figure 2.20. Assuming a linear comparison solid
[43], so that the tangential stiffness tensor D is identical at both sides of the discontinuity, the
jump in the stress rate is related to the jump in the strain rate as:

[[σ̇σσ ]] = D : [[ε̇εε]] (2.130)

The jump in the traction rate, [[ṫd]], across the plane is expressed as:

[[ṫd]] = nΓd · [[σ̇σσ ]] (2.131)

where nΓd is the normal vector to the discontinuity Γd . Using the expression for [[σ̇σσ ]] given
by Eq. (2.130), the jump in the traction rate reads:

[[ṫd]] = nΓd ·D : [[ε̇εε]] (2.132)

A velocity field u̇ which contains a discontinuity at Γd can generally be expressed as:

u̇ = ˙̄u+HΓd
˙̃u (2.133)

where HΓd is the Heaviside function, and ˙̄u and ˙̃u are continuous velocity fields on both
sides of the discontinuity. Differentiating Eq. (2.133) results in the strain rate field:

ε̇̇ε̇ε = ∇
sym ˙̄u+HΓd ∇

sym ˙̃u+δΓd( ˙̃u⊗nΓd)
sym (2.134)
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Fig. 2.20 Discontinuity plane Γd in a 2D continuum

where (.)sym refers to the symmetrised part of the operator and δΓd denotes the Dirac function
at Γd . The strain rate jump at Γd can be written as:

[[ε̇εε]] = ζ
(

˙̃u⊗nΓd

)sym (2.135)

with ζ a non-zero scalar representing the magnitude of the difference in the strain rate jump.
Substitution into Eq. (2.132) and exploiting the minor symmetry of D yields:

[[ṫd]] = ζ
(
nΓd ·D ·nΓd

)
· ˙̃u (2.136)

A non-trivial solution (ζ ̸= 0) to Eq. (2.136) exists if and only if nΓd ·D ·nΓd is singular:

det
(
nΓd ·D ·nΓd

)
= 0 (2.137)

Eq. (2.137) is the condition for the existence of discontinuous, localised solutions and also
determines the speed at which plane acceleration waves in solids vanish [44].

2.10.1 Application to non-associated plasticity

Here the Mohr-Coulomb plasticity model is considered for the analysis. The yield function
and plastic potential are given here once more for completeness:

f =
1
2
(σ1 −σ3)+

1
2
(σ1 +σ3)sinφ − ccosφ (2.138)

g =
1
2
(σ1 −σ3)+

1
2
(σ1 +σ3)sinψ (2.139)
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Herein, σ1 and σ3 are the largest and the smallest principal stresses, respectively, while φ , ψ

and c are the friction angle, the dilation angle and the cohesion, respectively.
For a Mohr-Coulomb plasticity model with a non-associated flow rule as above, the

hardening modulus h has been derived in [7, 8, 11–13, 23, 84, 107, 109]. They all result
in the same relationship which will be derived and discussed here. The continuum tangent
modulus is given by:

Dep =

[
De − DeN(M)TDe

h+(M)TDeN

]
(2.140)

Where De is the elastic stiffness matrix, h is the hardening modulus, M and N are the
derivatives of the yield and plastic potential functions. Substituting Eq. (2.140) into Eq.
(2.137) yields:

h
µ
= 4nΓd ·N ·M ·nΓd −2(nΓd ·N ·nΓd)(nΓd ·M ·nΓd)−2N : M

−2
ν

(1−ν)
(nΓd ·N ·nΓd − tr(N))(nΓd ·M ·nΓd − tr(M))

(2.141)

where µ and ν are the shear modulus and Poisson’s ratio, respectively.
Components of nΓd , M and N in the principal directions can be computed as follows:

(nΓd)1 = sinθ

(nΓd)2 = 0

(nΓd)3 = cosθ

(2.142)

θ is the angle between the most compressive principal stress and the localised shear band.

M1 = 1+ sinφ

M2 = 0

M3 =−(1− sinφ)

(2.143)

N1 = 1+ sinψ

N2 = 0

N3 =−(1− sinψ)

(2.144)

Eq. (2.141) can therefore be simplified as:

h
µ
=

(sinφ − sinψ)2 − (2cos2θ − sinψ − sinφ)2

8(1−ν)
(2.145)
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Eq. (2.145) is a relation between the hardening modulus and the orientation of a discontinuity
in the solution for a given set of material parameters µ , ν , φ , ψ . h is positive for hardening
and is a decreasing function of plastic strain for softening. Therefore, the earliest loading
level at which the softening occurs and shear bands might emerge is at peak. By setting the
derivative of h with respect to θ , equal to zero, the maximum value of hardening modulus,
hcrit , can be computed:

hcrit

µ
=

(sinφ − sinψ)2

8(1−ν)
(2.146)

With Eq. (2.146), we can examine the conditions which lead to a real solution for hcrit,
opening up the possibility of mesh sensitive solutions.
For the particular case of a non-associated Mohr-Coulomb elastic-perfectly plastic model,
we have h = 0 and since µ > 0 and ν ≤ 1/2, a range of angles θ can be found for which
h < hcrit for non-associated flow, i.e. when ψ < φ . These angles are usually bounded by
the classical Coulomb and Roscoe angles, introduced in [21, 83], which are the roots of the
hardening modulus. This is visualised in Figure 2.21 for a given set of material parameters
(ν = 0.25 and φ = 25o).

ϑ(o)
30 40 50 60 70 80

h µ

-0.02

-0.01

0
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ψ = 0o

ψ = 2o

ψ = 5o

ψ = 10o

ψ = 15o

ψ = 25o

Fig. 2.21 Hardening modulus vs the orientation angle of the shear band, ϑ = π/2−θ

2.10.2 The orientation of shear bands

There are three main approaches to compute the inclination angle of the shear bands. Coulomb
considered the orientation angle to be θ = 45o −φ/2 in [21] . Roscoe has derived another
solution, namely θ = 45o −ψ/2 in [83], which gives prominence to role of the dilatancy.
Another relation, θ = 45o − (ψ +φ)/4, was based on experimental data [5]. This relation
was also found in experiments on Karlsruhe sand and in an accompanying bifurcation analysis
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Fig. 2.22 Classical inclination angles of shear bands

[104]. These values also come out of the previous localisation analysis as the roots and
the abscissa for the maximum of Eq. (2.145) and are shown in Figure 2.22. For associated
plasticity (ψ = φ ), all these angles coincide with each other and therefore, the shear band
has a unique inclination angle. According to [6, 46], the shear band angle varies between the
Roscoe and the Coulomb solutions depending on the mean particle size based on analysis
of a wide range of experimental data. For coarse-grained sands the Roscoe solution is
approached, while for finer grains the Coulomb solution tends to be favoured. These findings
were corroborated theoretically [108], and experimentally for specimens with coarse-sized
particles [38] and for fine sands [33].





Chapter 3

Cosserat continuum mechanics

3.1 Introduction to the Cosserat theory

Cosserat theory belongs to continuum models, i.e. the microstructure is implicitly taken
into account in the equivalent continuum. The basis of the Cosserat continuum model was
first mentioned by the Cosserat brothers in [19]. A Cosserat continuum is a manifold of
rigid crosses (oriented rigid particles) where additional degrees of freedom to account for
micro-rotations are included. Another feature of the Cosserat continuum is the internal
length parameter which is determined by the length scale of a representative elementary
volume. Simulation of the localisation of shear bands in granular materials was among the
first numerical applications of the Cosserat theory [25, 26, 34, 63, 98]. In this chapter, the

A
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t0
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Au

x
x′

c
z

c
z

Fig. 3.1 A material point in a 2D Cosserat medium

governing equations for a 2D Cosserat continuum are discussed and useful measures for the
description of the motion of the continuum are introduced. For more details, the reader is
referred to [2, 27, 97, 106].
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Fig. 3.2 Stresses and couple stresses on an element of material in a 2D Cosserat medium

3.2 Numerical implementation of Cosserat continuum me-
chanics for 2D condition

In this section, an overview of the numerical implementation procedure of a 2D isotropic
Cosserat continuum plasticity model is discussed [25, 26, 90]. A 2-D plane strain continuum
is considered here in the x− y plane. A rotational degree of freedom ωc

z around the z axis is
also introduced as shown in Figure 3.1. The displacement vector is defined as:

uuu = [ux,uy,ω
c
z ]
T (3.1)

The components of the relative deformation can be defined as:

εxx =
∂ux

∂x
(3.2)

εyy =
∂uy

∂y
(3.3)

εxy =
∂uy

∂x
−ω

c
z (3.4)

εyx =
∂ux

∂y
+ω

c
z (3.5)

Micro-curvatures (κxz,κyz) enter the kinematics due to the addition of rotational degrees
of freedom. They are defined as the gradient of the Cosserat micro-rotations:

κxz =
∂ωc

z

∂x
(3.6)
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κyz =
∂ωc

z

∂y
(3.7)

Conjugates of micro-curvatures are the couple stresses (mxz,myz). They respresent the
summation of bending and twisting moments which are transmitted by elements of the
material in terms of torque per unit area [49]. The stress-strain relations for Cosserat
elasticity for this medium are given as follows [90]:

σxx = 2µc1εxx +2µc2εyy (3.8)

σyy = 2µc2εxx +2µc1εyy (3.9)

σ(xy) = σ(yx) = 2µεxy (3.10)

σ[xy] =−σ[yx] =−2µc(ω −ω
c
z ) (3.11)

mxz = M κxz (3.12)

myz = M κyz (3.13)

where c1 = (1−ν)/(1−2ν) and c2 = ν/(1−2ν). µ is the macroscopic shear modulus. σ(.)

and σ[.] denote the symmetrical and antisymmetrical parts of the shear stresses, respectively.
ω is the classical spin which can be computed as:

ω =
1
2
(
∂ux

∂y
−

∂uy

∂x
) (3.14)

µc in Eq. (3.11) is an additional material parameter known as Cosserat shear modulus
which relates the antisymmetric part of the stress to the relative rotation. M is a bending
modulus with the dimension of force which links the couple stresses to micro-curvatures. An
additional material constant therefore needs to be defined for Cosserat elasticity representing
an internal length parameter for bending [97]:

ℓ=
√

M /µ (3.15)

ℓ is known as the internal length parameter with the dimension of length. Its order of
magnitude represents an important length in the structure under consideration, e.g. grain size
in granualr materials. Therefore, two additional independent material constants are needed
for Cosserat elasticity, i.e. Cosserat shear modulus and the internal length parameter.
The stress and strain vectors from the classical continuum are extended to accommodate for
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micro-curvatures and couple stresses:

εεε = [εxx,εyy,εzz,εxy,εyx,κxzℓ,κyzℓ]
T (3.16)

σσσ = [σxx,σyy,σzz,σxy,σyx,mxz/ℓ,myz/ℓ]
T (3.17)

By introducing ℓ in the stress and strain vectors, we can make the terms containing micro-
curvatures and couple stresses of the same dimension as the rest of the components.
Figure 3.2 shows the stresses and the couple stresses in an element of a Cosserat medium in
2D. Therefore, the equilibrium equations can be written as:

LT
σσσ +bbb = ρg (3.18)

where ρ is the specific density, g and b represent gravity acceleration and body forces,
respectively. In absence of inertia effects and body forces, Eq. (3.18) could be cast as:

∂σxx

∂x
+

∂σxy

∂y
= 0 (3.19)

∂σyx

∂x
+

∂σyy

∂y
= 0 (3.20)

The moment equilibrium would be given as:

∂mxz

∂x
+

∂myz

∂y
− (σxy −σyx) = 0 (3.21)

The equilibrium equation shown in Eq. (3.21) results in a generally non-symmetric stress
tensor. L in Eq. (3.18) is given as:

L =



∂ ·
∂x 0 0
0 ∂ ·

∂y 0

0 0 0
0 ∂ ·

∂x −1
∂ ·
∂y 0 +1

0 0 ℓ ∂ ·
∂x

0 0 ℓ ∂ ·
∂y


(3.22)
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The plane strain elastic stiffness is defined as:

De =



2µc1 2µc2 2µc2 0 0 0 0
2µc2 2µc1 2µc2 0 0 0 0
2µc2 2µc2 2µc1 0 0 0 0

0 0 0 µ +µc µ −µc 0 0
0 0 0 µ −µc µ +µc 0 0
0 0 0 0 0 2µ 0
0 0 0 0 0 0 2µ


(3.23)

For elastic deformations, stress is given by Eq. (3.24):

σσσ = De
εεε

e (3.24)

where εεεe is the elastic strain vector.
A non-associated Drucker-Prager type perfect-plasticity model is considered which is appro-
priate for geo-materials showing friction. The yield criterion is given in Eq. (3.25):

f = (3J2)
1/2 +α p− k (3.25)

Where p is the first stress invariant, known as the hydrostatic pressure and given by Eq. (3.26)
and J2 is the second invariant of deviatoric stresses. α and k represent the friction factor
and cohesion constant, respectively. For the Cosserat continuum, a generalised form of J2 is
given in [58] and [60] as in Eq. (3.27):

p =
1
3
(σxx +σyy +σzz) (3.26)

J2 = a1si jsi j +a2si js ji +a3mi jmi j/ℓ
2 (3.27)

where si j are the component of deviatoric stress tensor. a1, a2 and a3 are additional material
parameters. In the absense of couple stresses, mi j = 0, we would have si j = s ji and therefore
Eq. (3.27) reduces to:

J2 = (a1 +a2)si jsi j (3.28)

Comparing the above with the classical expression for J2 leads to a constraint as follows:

a1 +a2 =
1
2

(3.29)
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In a compact matrix-vector notation, J2 can be written as:

J2 =
1
2

σσσ
TPσσσ (3.30)

Where P is the projection matrix and defined as:

P =



2/3 −1/3 −1/3 0 0 0 0
−1/3 2/3 −1/3 0 0 0 0
−1/3 −1/3 2/3 0 0 0 0

0 0 0 2a1 2a2 0 0
0 0 0 2a2 2a1 0 0
0 0 0 0 0 2a3 0
0 0 0 0 0 0 2a3


(3.31)

In this paper the values of a1 = 1
4 , a2 = 1

4 and a3 = 1
2 are adopted as this will lead to a

particularly simple numerical algorithm [25, 26]. The expression for J2 can then be expanded
as:

J2 =
1
2
[s2

xx + s2
yy + s2

zz]+a1σ
2
xy +2a2σxyσyx +a1σ

2
yx +a3[(mzx/ℓ)

2 +(mzy/ℓ)
2] (3.32)

and P simplified to:

P =



2/3 −1/3 −1/3 0 0 0 0
−1/3 2/3 −1/3 0 0 0 0
−1/3 −1/3 2/3 0 0 0 0

0 0 0 1
2

1
2 0 0

0 0 0 1
2

1
2 0 0

0 0 0 0 0 1 0
0 0 0 0 0 0 1


(3.33)

Eq. (3.25) can now be recast to Eq. (3.34):

f = [
3
2

σσσ
TPσσσ ]1/2 +ασσσ

T
πππ − k (3.34)

where:
πππ
T = [1/3,1/3,1/3,0,0,0,0] (3.35)



3.2 Numerical implementation of Cosserat continuum mechanics for 2D condition 49

The plastic potential takes a similar form as the yield surface but with a different dilatancy
factor, β , as:

g = [
3
2

σσσ
TPσσσ ]1/2 +βσσσ

T
πππ − k (3.36)

As in classical plasticity, the flow rule derived from the plastic potential, controls the evolution
of plastic strain:

ε̇εε
p = λ̇

∂ggg
∂σσσ

= λ̇MMM (3.37)

with the definition:

MMM :=
∂ggg
∂σσσ

=

[
3PPPσσσ

2
√

3/2σσσTPPPσσσ
+βπππ

]
(3.38)

ε̇εε
p = λ̇

[
3PPPσσσ

2
√

3/2σσσTPPPσσσ
+βπππ

]
(3.39)

In analogy with classical plasticity, the rate of the plastic multiplier, λ̇ is computed from the
consistency condition ḟ = 0. For a perfect plastic model, this can be determined in closed
form as:

λ̇ =
∂ f
∂σσσ

: De : ε̇εε

∂ f
∂σσσ

: De : ∂g
∂σσσ

=
NNN : De : ε̇εε

NNN : De : MMM
(3.40)

With:

NNN :=
∂ f
∂σσσ

=

[
3PPPσσσ

2
√

3/2σσσTPPPσσσ
+απππ

]
(3.41)

3.2.1 Return mapping algorithm

The stress update algorithm considered here is similar to that of classical plasticity. A strain-
driven process is considered and the values for stress and state variables are computed at the
end of the load step for a given increment in the total strain. The values of the quantities at the
previous and current time steps are denoted by (.)n and (.)n+1, respectively. The incremental
strain vector can be decomposed into elastic and plastic components under the assumption of
small strain theory:

∆εεεn+1 = ∆εεε
e
n+1 +∆εεε

p
n+1 (3.42)

Elastic Predictor step

In this stage it is assumed that the material deforms elastically during the load step and no
plastic deformation occurs. A trial elastic stress state is then computed as follows:

σσσ
trial
n+1 =σσσn +De

∆εεεn+1 (3.43)
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Inserting the value of trial stresses in the Eq. (3.25), gives the value for trial yield function as:

f trial
n+1 = [

3
2

σσσ
trial
n+1

TPσσσ
trial
n+1]

1/2 +ασσσ
trial
n+1

T
πππ − k (3.44)

Now if the value of f trial
n+1 is negative, then the assumption of elastic state was correct, otherwise

a plastic corrector step is needed to return the stress state on the yield surface.

Plastic Corrector step

In case the yield criterion is violated, the material has gone through plastic deformation. Eq.
(3.40) is integrated using a single point backward Euler method to compute the incremental
plastic multiplier and since the vectors NNN and MMM are normals to the yield and plastic potential
surfaces, respectively, their trial values could be used instead of their updated values. So:

∆λ =
NNNtrial

n+1 : De : ∆εεεn+1

NNNtrial
n+1 : De : MMMtrial

n+1
(3.45)

With NNNtrial
n+1 and MMMtrial

n+1 being computed as:

NNNtrial
n+1 =

[
3PPPσσσ trial

n+1

2
√

3/2σσσ trial
n+1

TPPPσσσ trial
n+1

+απππ

]
(3.46)

and

MMMtrial
n+1 =

[
3PPPσσσ trial

n+1

2
√

3/2σσσ trial
n+1

TPPPσσσ trial
n+1

+βπππ

]
(3.47)

The plastic strain rate given by Eq. (3.39) is integrated using a single point backward Euler
method resulting in:

∆εεε
p
n+1 = ∆λMMMn+1 (3.48)

Between the stress and strain increments, a bijective relationship holds:

∆σσσ = De
∆εεε

e
n+1 (3.49)

By definition the updated value for stress is:

σσσn+1 =σσσn +∆σσσ (3.50)
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Substitution of Eq. (3.49) into eq. 3.50 leads to:

σσσn+1 =σσσn +De
∆εεε

e
n+1 (3.51)

Now substituting Eq. (3.42) into eq. 3.51 gives:

σσσn+1 =σσσn +De(∆εεεn+1 −∆εεε
p
n+1) (3.52)

Substituting Eq. (3.52) into Eq. (3.43) gives the updated stresses:

σσσn+1 =σσσ
trial
n+1 −De

∆εεε
p
n+1 (3.53)

The algorithm for updating the stresses is shown in Algorithm 2. The consistent tangent
modulus can also be computed as follows:

σ̇σσ =

[
HHH − HHHMMMn+1(NNNn+1)

THHH
(NNNn+1)THHHMMMn+1

]
ε̇εε (3.54)

where:

HHH−1 = [De]−1 +∆λ

√
3
2

σσσT
n+1PPPσσσn+1PPP−PPPσσσn+1σσσT

n+1PPP√
σσσT

n+1PPPσσσn+1

(3.55)
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Algorithm 2: Stress update algorithm for the Drucker-Prager plasticity model

1. Given the database and history variables ε
p
n at time tn.

2. Advance the strain to εn+1 at time tn+1
∆εn+1 = εn+1 − εn

3. Elastic predictor step
σσσ trial

n+1 =σσσn +De∆εεεn+1

• Compute trial yield function according to Eq. (3.44)

• Check for plastic loading
IF ( f trial

n+1 < 0) THEN
The assumption for elastic step is valid
set (.)n+1 := (.)trial

n+1
GOTO 5

ENDIF

4. Plastic corrector step

• Compute incremental plastic multiplier according to Eq. (3.45)

• Compute incremental plastic strain according to Eq. (3.48)

• Update the stresses according to Eq. (3.53)

• Update history variables (plastic strains)
εεε

p
n+1 = εεε

p
n +∆εεε

p
n+1

5. EXIT



Chapter 4

Mesh-objective numerical simulation of
non-associated plasticity problems using
Cosserat continuum model

4.1 Introduction

In this chapter, two aspects of mesh dependency of the numerical analysis, namely the
dependency on the discretization size and orientation, in classical non-associated plasticity
are demonstrated using two localisation problems. First, a 1D shear layer problem in pure
shear is taken for an in-depth analysis of mesh size dependency. It will be examined in detail,
analytically and numerically, regarding the occurrence of mesh dependence and structural
softening caused by non-associated plastic flow. The shear layer is then re-analysed with the
enriched Cosserat continuum model, and the results are shown to be mesh objective, yet still
exhibiting structural softening.

Second, a numerical example of a biaxial test under compression is considered. Numerical
simulations show the dependence of the deformation on the spatial discretisation both in
terms of its density and of the direction of the mesh lines. The Cosserat continuum model
is then used, which results in objectivity with respect to the mesh size as well as the mesh
orientation.
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4.2 Analysis of a shear layer 1

To investigate the structural softening and mesh dependence encountered in the shear-band
simulation of the biaxial test in more detail, we consider the simpler case of a shear layer
under plane-strain conditions, which is infinitely long in the horizontal x-direction, as shown
in Figure 4.1. The discretised shear layer is amenable to an analytical solution, which we
will compare with a numerical simulation for different mesh densities.

H

xy

Fig. 4.1 An infinitely long shear layer

4.2.1 Analytical solution

We assume that the shear layer is sub-divided into m elements (constant strain). One element
has a marginally lower shear strength than the other m− 1 elements and will therefore
plasticise, while the remaining elements unload. For this element, the shear strain can be
decomposed as:

γ = γ
e + γ

p (4.1)

With τ the shear stress and µ the shear modulus, so that γe = τ/µ , we can rewrite Eq. (4.1)
as:

γ =
τ

µ
+ γ

p (4.2)

We adopt a Drucker-Prager yield function,

f =
√

3J2 +α
∗p− k∗ (4.3)

1Based on: Sabet, S. A. and de Borst, R. (2019). Structural softening, mesh dependence, and regularisation
in non-associated plastic. International Journal for Numerical and Analytical Methods in Geomechanics,
43(13):2170-2183
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with the material parameters α∗ and k∗ related to the cohesion c and the angle of internal
friction, φ . Considering plane-strain conditions, Eq. (4.3) reduces to:

f = τ +α p− k (4.4)

under pure shear loading, where

α =
2
√

3sinφ

3− sinφ
, k =

2
√

3ccosφ

3− sinφ
(4.5)

In a standard manner, a plastic potential function is introduced:

g = τ +β p (4.6)

where β is related to the dilatancy angle ψ similar to the relation between α and φ in Eq.
(4.5). The plastic shear and volumetric strain rates then directly follow as:γ̇ p = λ̇

∂g
∂τ

= λ̇

ε̇
p
v = λ̇

∂g
∂ p = λ̇β

(4.7)

which results in the dilatancy relation:

γ̇
p =

ε̇
p
v

β
(4.8)

and for proportional loading:

γ
p =

ε
p
v

β
(4.9)

With the additive decomposition for the volumetric strain:

εv = ε
e
v + ε

p
v (4.10)

Eq. (4.8) becomes:

γ
p =

εv − εe
v

β
(4.11)

Since εe
v = p/κ , with κ the bulk modulus, we can rewrite Eq. (4.11) as:

γ
p =

εv

β
− p

βκ
(4.12)
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and Eq. (4.2) becomes:
γ =

τ

µ
− p

βκ
+

εv

β
(4.13)

Since the yield condition must hold during progressive yielding, i.e. f = 0, we have from Eq.
(4.4):

p =
k− τ

α
(4.14)

and Eq. (4.13) becomes:

γ =
τ

µ
+

τ − k
αβκ

+
εv

β
(4.15)

We assume that all m elements have an equal length, L . For the total height of the layer we
thus have H = mL . There are two possibilities for εv.

Case I: We assume that εv = 0 on a pointwise basis, in this case for each (constant strain)
element. Numerically, this can be realised by preventing each element from displacing
vertically. Eq. (4.15) then reduces to:

γ =
τ

µ
+

τ − k
αβκ

(4.16)

Noting that only in the weakened element we have elasto-plastic deformations, and the
remaining m−1 elements feature only elastic strains, the horizontal displacement at the top
of the layer reads:

u = γL +(m−1)L
τ

µ
(4.17)

or using Eq. (4.16):

u = mL
τ

µ
+L

τ − k
αβκ

(4.18)

Hence, the average shear strain over the layer becomes:

γ̄ =
u
H

=
τ

µ
+

τ − k
mαβκ

(4.19)

Eq. (4.19) shows that there is a clear mesh dependence since, when increasing m, the
response becomes more brittle. When τ ↓ 0, we have an inverse dependence on the numbers
of elements:

lim
τ→0

γ̄ =− k
mαβκ

(4.20)

We note that α ≥ 0 and κ > 0, but that for plastic contraction β < 0. For τ ↓ 0, we therefore
have γ̄ > 0.
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Case II: The condition of incompressibility εv = 0 is not imposed pointwise, but over the
entire shear layer. This implies that part of the plastic expansion/contraction in the failing
element can be compensated by elastic volumetric strains in the other elements. Numerically,
this condition can be simulated by only prescribing roller boundary conditions at the top of
the layer together with linear dependence (master-slave) relations to ensure that nodes on the
same horizontal line displace the same amount. It is noted that when imposing this condition,
the other (m−1) elements may satisfy the yield condition at some point.

Let the incremental shear strain be denoted by ∆γ . Then, the additional horizontal
displacements at the top of the layer is

∆u = ∆γ
wL +(m−1)∆γ

lL (4.21)

where the superscripts w and l denote the weak element and the remainder of the layer,
respectively. Substitution of Eq. (4.2) then gives:

∆u
L

=
∆τ

µ
+(∆γ

p)w +(m−1)
(

∆τ

µ
+(∆γ

p)l
)

(4.22)

Use of the dilatancy relation, Eq. (4.9), subsequently gives:

∆u
L

= m
∆τ

µ
+

1
β

(
(∆ε

p
v )

w +(m−1)(∆ε
p
v )

l
)

(4.23)

Exploiting the additive decomposition of the strain into an elastic and a plastic component,
and considering that the shear layer deforms isochorically, we obtain:

∆u
L

= m
∆τ

µ
− 1

β

(
(∆ε

e
v )

w +(m−1)(∆ε
e
v )

l
)

(4.24)

Since the stresses are on the yield surface, the consistency condition holds for a finite
increment:

∆p =−∆τ

α
(4.25)

so that:
(∆ε

e
v )

w = (∆ε
e
v )

l =
∆p
κ

=− ∆τ

ακ
(4.26)

Substitution into Eq. (4.24) then yields:

∆γ̄ =
∆u
H

=
∆τ

µ
+

∆τ

αβκ
(4.27)
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giving a slope:
dγ̄

dτ
=

1
µ
+

1
αβκ

(4.28)

Physically, α , µ and κ must be positive. However, β < 0 for plastic contraction, and,
depending on the precise values of α , β , µ and κ , we have dγ̄

dτ
< 0, leading to structural

softening. However, since m has dropped out of the expression, there is no mesh dependence
under the current assumption.
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Fig. 4.2 Load-displacement curves for Case I of the infinitely long shear layer

Fig. 4.3 Deformed model for Case I, at τ = 20 MPa, using a standard Drucker-Prager model
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4.2.2 Numerical classical plasticity solution

We first consider Case I, and analyse a layer with a height H = 100 mm. The material
parameters have been taken as Young’s modulus E = 10000 MPa and Poisson’s ratio ν =

0.25, while for the plasticity the following values have been used: α = 0.2, β =−0.2 and
k = 100 MPa, with the latter parameter reduced by 20% for the weaker element. Three mesh
densities have been used, with 20, 30 and 40 linear quadrilateral elements, respectively. A
standard Gauss integration scheme is used. The load-displacement curves have been plotted
in Figure 4.2 along with the corresponding analytical solutions, cf. Eq. (4.19). The numerical
results fully coincide with the analytical solution.

For all discretisations a clear structural softening is observed just after reaching the peak
load. Moreover, a mesh dependence is observed, i.e. for finer meshes the descending branch
of the post-peak load-displacement curve becomes steeper, which is also corroborated by
the analytical results. It is also apparent that localisation is confined to a single element
(layer), see Figure 4.3, which shows the deformed contours of the shear layer beyond peak
load at τ = 20 MPa. We next consider case II, with again three different discretisations, but
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Fig. 4.4 Load vs displacement for Case II of the infinitely long shear layer

now with 20, 40 and 80 elements, respectively. As with Case I, there is a clear structural
softening, see Figure 4.4. However, the numerical and analytical solutions only match after
progressive deformations, and then indeed do not exhibit any mesh dependence, as predicted
by the analytical solution of Eq. (4.28). The discrepancy between the analytical solution
and the numerical results is due to the fact that the assumption is violated that there are no
plastic strains outside the weaker element. Because of the occurrence of plastic straining
outside the weak element right after the peak load the numerical results there also become
slightly mesh dependent, as shown in the zoom. At progressive overall displacements the
plastic zone again becomes confined to the weaker element and the assumption underlying
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Fig. 4.5 Deformed contours for Case II, at τ = 43 MPa using a standard Drucker-Prager
model

the analytical solution is satisfied. Figure 4.5 shows the deformed contours at a residual
shear stress level τ = 43 MPa. As with the previous case, localisation is confined to a single
element, irrespective of the number of elements used to model the shear layer.

4.2.3 Numerical Cosserat plasticity solution

The shear layer is re-analysed here using the Cosserat Drucker-Prager plasticity model,
as described in chapter 3. The material parameters used for the Cosserat Drucker-Prager
plasticity model have been kept the same as those used in the classical Drucker-Prager model.
Regarding the two additional parameters needed for planar deformations, we have assumed
that µc = 2000 MPa, while two values have been adopted for the characteristic length, namely
ℓ= 2 mm and ℓ= 5 mm. The results of an analysis of the shear layer for Case I, but now
using the Cosserat continuum, are discussed below.

The load-displacement curves in Figures 4.6a and 4.6b show that the results are now mesh
independent, in the sense that they converge to a unique, physically realistic solution upon
mesh refinement, which is different from the computations for the standard Drucker-Prager
non-associated plasticity model. Figure 4.7 also shows the convergence of stress at top of
the shear layer with respect to the element size in logarithmic scale. We emphasise that the
introduction of the internal length scale ℓ, however, does not remove structural softening.
Indeed, the internal length scale not only controls the width of the localisation zone, cf.
Figures 4.8 and 4.9, but also the slope of the load-deformation curve. For a lower value of ℓ
a more brittle post-peak behaviour occurs.
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Case II was also re-analysed using the Cosserat continuum, and showed similar results
as the computations for Case I. While the analysis of mesh dependence is not relevant now,
the results continue to exhibit structural softening for the chosen set of material parameters.
And like for Case I, but different from the results for the classical continuum, a width of the
localisation zone appears which is independent of the discretisation for sufficiently dense
meshes.

(a) l = 5 mm (b) l = 2 mm

Fig. 4.6 Load-displacement curves for Case I, using a Cosserat Drucker-Prager model

4.3 Analysis of a biaxial test 2

4.3.1 Model set-up

A compression biaxial test is considered in order to investigate the influence of the mesh
density and the mesh orientation during shear banding. The geometry and the boundary
conditions are shown in Figure 4.10. The dimensions of the specimen are L = 20 cm and
W = 10 cm, respectively. A compressive stress field results from a smooth, rigid platen being
moved downwards uniformly at the top of the specimen. A non-associated elastic-ideally
plastic Drucker-Prager type material model is considered for this problem. The parameters
used are summarised in table 4.1. Eq. (2.94) have been used to compute α and β .

2Based on: Sabet, S. A. and de Borst, R. (2019). Mesh bias and shear band inclination in standard and
non-standard continua. Archive of Applied Mechanics, 89(12): 2577-2590.
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(a) l = 5 mm (b) l = 2 mm

Fig. 4.7 Convergence of stress at top of the shear layer vs element size for Case I, using a
Cosserat plasticity, a) at ū/H = 0.104 and b) at ū/H = 0.045

Table 4.1 Parameters used for the Drucker-Prager model in Figure 4.10

Parameter Symbol Value
Young’s modulus E 100 KPa
Poisson’s ratio ν 0.25
Internal friction angle φ 25o

Dilation angle ψ 5o

Cohesion c 0.06 KPa
Internal friction coefficient α 0.984
Dilatancy factor β 0.18

4.3.2 Mesh arrangements

In the numerical analyses two different mesh arrangements, model A and model B, have
been used, each composed of quadratic triangular elements in a crossed lay-out. Use of these
elements avoids the problem of volumetric locking and makes it more convenient to study
directional mesh bias. A standard Gauss integration scheme is used. Model A has been
analysed for three different mesh sizes, 4×6, 8×12 and 16×24 elements. In model A, the
elements have been arranged such that the angle of the element boundaries is at 53.1o, which
is close to the expected direction of shear banding according to the Arthur solution, i.e. 52.5o

for the chosen parameter set, see Section 4.3.1. In model B, the diagonals of the mesh are
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(a) 20 (b) 40 (c) 80 (d) 160 (e) 240

Fig. 4.8 Deformed contours for Case I, with ℓ = 2 mm, at u = 3.1 mm, using Cosserat
Drucker-Prager model

(a) 20 (b) 30 (c) 40 (d) 80

Fig. 4.9 Deformed contours for Case I, with ℓ = 5 mm, at u = 3.1 mm, using a Cosserat
Drucker-Prager model

very different at a value of 69.4o, see Figure 4.11. Three different discretisation levels have
also been considered now, 8×6, 16×12 and 32×24.

To induce a non-homogeneous stress field and hence to trigger localisation, an imperfect
element with a 16.7% reduction in the cohesive strength has been inserted at the left boundary,
just above the centre line in both models.



64 Simulations with Cosserat non-associated plasticity model

v

W

L

Fig. 4.10 Geometry with boundary conditions and imperfection

53.1°

(a) Model A

69.4°

(b) Model B

Fig. 4.11 Two discretisations with different mesh directions

4.3.3 Shear banding in a standard elasto-plastic continuum

Sensitivity to mesh size

Localisation zones develop starting from the imperfection and continue to grow until a
peak in the load-displacement curve, Figure 4.12, has been reached. At this point loss of
uniqueness of the solution occurs and the boundary-value problem becomes ill-posed. A
post-peak structural softening is observed for all discretisations of model A. The slope of
the softening becomes steeper upon mesh refinement. It is emphasised that the structural
softening is here purely a consequence of the use of a non-associated flow rule, and has been
observed before in computations [24] and has been analysed in depth [50, 88].

Since the boundary-value problem becomes ill-posed at this point obtaining a converged
solution becomes difficult. Indeed, for the fine mesh of model A divergence occurs shortly
after the peak load even for extremely small load steps. A possible reason is that snap-back
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behaviour may occur which cannot be resolved under displacement control. From Figure
4.13 it can be seen that in model A a highly localised shear band is formed and that the size
of the shear band is dominated by the mesh size. The shear band is confined to a single band
of elements. If the element size approaches zero, the shear band width would also becomes
zero and the load-displacement curve would double back on the loading branch, resulting in
a physically meaningless solution with zero energy dissipation [28].

The results for model B also show post-peak structural softening, but only for the finer
discretisations (16×12 and 32×24). A poor convergence behaviour with severe oscillations
is observed upon mesh refinement. Indeed, for the finest mesh the solution procedure breaks
down after reaching a plateau. The residual load level, i.e. the load level which is reached
after structural softening, is slightly higher in model B than in model A. A shear band also
forms in model B, but is considerably more diffuse than in model A, see Figure 4.14.

(a) Full curve (b) Zoom post-peak

Fig. 4.12 Load-displacement curves for model A and B using a standard Drucker-Prager
model

Sensitivity to mesh alignment

Figure 4.15 shows the bias of the initial element arrangement on the shear band. In model A
shear band formation occurs along the edges of the elements, and therefore, the orientation
is dominated by the mesh diagonals, i.e. at ϑ = 53o, which is close to the Arthur solution,
ϑ = 45o +(φ +ψ)/4 = 52.5o [5]. It is emphasised that this correct inclination has been
helped by the initial mesh lay-out, with diagionals at ϑ = 53.1o, cf. Section 4.3.1. For model
B the angle at which the shear band forms is also influenced by the mesh orientation, and
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(a) 4×6 elements (b) 8×12 elements (c) 16×24 elements

Fig. 4.13 Equivalent plastic strain for model A, a) and b) at v = 0.2 cm, c) shortly before the
iterative solution fails, at v = 0.06 cm

shear bands form at ϑ = 60o degrees. This difference shows how the mesh orientation can
bias the solution for ill-posed boundary value problems.

4.3.4 Computations with Cosserat elasto-plasticity model

The biaxial test considered in Section 4.3.1 has bee re-analysed using Cosserat elasto-
plasticity. The set-up and material parameters are as before. Two additional material
parameters, µc = 20 kPa and a characteristic length ℓ = 1 mm have been adopted for the
Cosserat model. The parameter values have been chosen such that they properly bring out the
regularising effect without requiring an overly dense discretisation. A procedure to determine
the additional material parameters in a Cosserat continuum has been described in [40].
Model A has been analysed with four different levels of mesh refinement, 4× 6, 8× 12,
16×24, 32×48 elements and model B has been analysed for the same discretisations as
before.

Objectivity with respect to the mesh density

The load-displacement curves for models A and B are shown in Figures 4.16a and 4.16b,
respectively. They show that in both models the results converge to a unique solution upon
refinement of the discretisation, which is in contrast to the results for standard non-associated
Drucker-Prager plasticity. For a sufficient refinement level, the width of the shear bands is not
affected by the mesh size, neither in model A, nor in model B. Figure 4.17 also shows that
the solutions of models A and B then agree well. For the assumed characteristic length scale,
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(a) 8×6 elements (b) 16×12 elements (c) 32×24 elements

Fig. 4.14 Equivalent plastic strain for model B, at v= 0.2 cm, using a standard Drucker-Prager
model

a mild structural softening occurs, but this is no longer mesh-dependent after a converged
solution has been obtained. The equivalent plastic strain contours, see Figures 4.18 and 4.19,
also show that strains are not localised over a single layer of elements, but over a shear band
with a finite width of approximately 16 mm, which makes that the ratio of the shear band
width over the internal length scale is in the range of established theoretical values [63] and
experimental observations [104].
As it has been mentioned here and in Section 4.2.3, using Cosserat continuum model does
not eliminate structural softening. This has been demonstrated in Figure 4.20 where a more
pronounced structural softening is seen for the finest descritisation of model B. The same
parameters have been used for this simulation except the friction coefficient and dilation
factor which are considered as α = 1.2 and β = 0.

Objectivity with respect to the orientation of the mesh lines

Comparing Figures 4.18 and 4.19 reveals a very similar shear band pattern and orientation
angle for both models after sufficient refinement. Upon mesh refinement each model con-
verges to a unique solution, and there is a very good agreement in terms of the inclination
angle of the shear band. The observed shear band patterning is characteristic for the use of a
Cosserat continuum model.



68 Simulations with Cosserat non-associated plasticity model

~53°

(a) Model A

~60°

(b) Model B

Fig. 4.15 Shear band orientation in model A vs model B
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Fig. 4.16 Load-displacement curves for biaxial test using Cosserat plasticity

Shear-band orientation

The shear bands form at approximately ϑ = 48o both in model A and in model B when using
Cosserat Drucker-Prager plasticity, as shown in Figure 4.21. This is different from the shear
band inclination angles from classical bifurcation theory, which rather suggest ϑ = 52.5o. In
fact, they closer match the Roscoe solution (ϑ = 45o +ψ/2 = 47.5o). This suggests that the
introduction of an internal length scale to represent the grain size can result in a reproduction
of the experimental observation that the inclination angle depends on the grain size [33, 38].
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(a) Full curve (b) Zoom post-peak

Fig. 4.17 Comparison of load-displacement curves using Cosserat plasticity

(a) 4×6 elements (b) 8×12 elements

(c) 16×24 elements (d) 32×48 elements

Fig. 4.18 Equivalent plastic strain for model A, at v = 0.2 cm, using Cosserat Drucker-Prager
plasticity
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(a) 8×6 elements (b) 16×12 elements (c) 32×24 elements

Fig. 4.19 Equivalent plastic strain for model B, at v = 0.2 cm, using Cosserat Drucker-Prager
plasticity

4.4 Concluding remarks

The structural softening and mesh dependence which have been encountered in the preceding
examples are due to a loss of uniqueness of the solution of the governing set of partial
differential equations. In this chapter, it has been demonstrated how a standard continuum
suffers from a loss of uniqueness of the solution at the onset of localisation, which leads to
mesh dependence both in terms of the size and the orientation. As has been stated in chapter
1, this can be prevented by using a non-Boltzmann continuum model or by introducing
rate dependence. Herein, we have examined whether a Cosserat continuum model is also
effective in preventing loss of uniqueness of the solution and ensuing mesh size and alignment
dependency for non-associated plasticity. The results confirm that mesh-objective results can
be obtained in the numerical simulations using a Cosserat continuum model and that it can
be an effective localisation limiter for non-associated flow as well [86–88].
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Fig. 4.20 Pronounced structural softening for model B using Cosserat plasticity for finest
mesh(32×24) with α = 1.2 and β = 0

~52°

~58°
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~48°

(a) Model A

~48°

~48°

(b) Model B

Fig. 4.21 Shear band angles for both models (A and B) using Cosserat plasticity





Chapter 5

Conclusions and outlook

5.1 Conclusions 1 , 2

Numerical simulations using plasticity models with a non-associated flow rule embedded in a
classical (Boltzmann) continuum show that structural softening can occur in spite of the fact
that no explicit strain softening is applied to the cohesion or to the angle of internal friction
[24, 50]. Moreover, a dependence of the solution on the discretisation emerges. This mesh
dependence not only relates to the mesh density, but also to the orientation of the mesh lines,
as shear bands tend to follow the mesh lines. However, the extent depends on the precise
boundary value problem. In most cases the mesh dependence only manifests itself for a
limited deformation range beyond the peak load, and mesh effects level out on progressive
deformation, and a unique residual load is usually attained, independent of the discretisation.

The underlying reason of the mesh sensitivity is the loss of well-posedness, which occurs
at a certain stage of the loading process when using a non-associated flow rule, and occurs
even though strain softening is not included explicitly in the constitutive model, with the
displacement gradients remaining infinitesimal [53, 84, 65, 108].

The Cosserat continuum can be exploited to remedy this deficiency [63, 91, 2], as it
introduces an internal length scale. Indeed, numerical simulations show that the localisation
zone then remains finite, and that load-displacements curves converge to a unique solution
upon mesh refinement. The slope of the post-peak load-displacement curve and the width of
the localisation zone are then set by the internal length scale. It is emphasised though, that
structural softening is not removed by the regularisation, as has been demonstrated numeri-

1Partly based on: Sabet, S. A. and de Borst, R. (2019). Structural softening, mesh dependence, and
regularisation in non-associated plastic. International Journal for Numerical and Analytical Methods in
Geomechanics, 43(13):2170-2183

2Partly based on:Sabet, S. A. and de Borst, R. (2019). Mesh bias and shear band inclination in standard
and non-standard continua. Archive of Applied Mechanics, 89(12): 2577-2590.
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cally. Furthermore, computations become independent of the orientation of discretisation,
and shear bands are no longer biased by the orientation of the mesh lines.

The use of an enhanced continuum to prevent loss of well-posedness of quasi-static
calculations not only has implications for mesh sensitivity. It also has consequences for
computability as the global convergence behaviour of the non-linear solver can be improved
dramatically. Computations with non-associated flow rules are known to exhibit poor conver-
gence, especially when the difference between the angle of internal friction and the dilatancy
angle becomes bigger. This has often been attributed to the non-symmetry of the tangential
stiffness matrix and the ensuing possible ill-conditioning. However, the computations herein
suggest, and this has come out strongly in recent large-scale computations where viscoplastic-
ity was used as regularisation method in non-associated plasticity [37], that it is actually the
loss of well-posedness of the initial value problem which causes the convergence issues in
the iterative solver for the non-linear problem, rather than the non-symmetry of the tangential
stiffness matrix. The use of a regularisation method in non-associated plasticity therefore not
only improves the mesh sensitivity, but is also hugely beneficial for computability.

Evidently, the two issues are related. Indeed, strains are now no longer localised in a
single element, but are distributed over a finite width. Increasing the resolution therefore
does not lead to an increase of the strains locally, which can cause serious numerical
issues. Examples are local snap-backs in the elasto-plastic return mapping procedure and the
occurrence of multiple, non-physical equilibrium states, which can cause divergence of the
global equilibrium-finding iterative procedure.

5.2 Future work

There still exist some areas for future exploration as continuation of this work. The results of
this thesis can be directly used in a wider context for the simulation of the crack propagation
in pressure sensitive geomaterials while taking the off-fault plastic energy dissipation into
account. It is expected that at the crack tips, there will be plastic strain localisation and
therefore the developed Cosserat plasticity model will be beneficial in terms of removing any
mesh size and orientation dependencies and will also improve the convergence behavior of
the non-linear incremental-iterative solver.

It will also be interesting to conduct some research into the possibility of capturing the
grain size effect on the orientation of shear bands using the Cosserat plasticity model in
numerical simulations. Iwashita and Oda have shown in [46] that the angle of the shear band
in biaxial tests varies from the Mohr-Coulomb angle to Roscoe angle as the grain size gets
coarser. Investigations have already been done in the literature showing that the width of the
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shear band can be determined by the characteristic length scale in the Cosserat continuum
model. However, it still remains an open question whether the observed experimental
dependency of the shear band angle on the grain size in granular materials can be also be
captured by the characteristic length scale.

Another area where the developed Cosserat plasticity model for non-associated flow
could be advantageous, is the probabilistic simulation of geotechnical problems. In order
to investigate how the spatial variability of the friction and dilation angles influences the
behaviour of geomaterials in localisation problems, they can be taken as random variables.
Using classical plasticity models, it will not be feasible to carry out a comprehensive study
with different values for friction and dilation angles due to the problems with convergence
and the mesh dependencies. With the developed Cosserat plasticity model in this thesis
which can be used to solve the problems caused by the non-associated plastic flow, the
framework to treat these angles as independent random fields is now available. It is expected
that the simulations can be done with an improved convergence behaviour showing no mesh
dependency. Therefore, such a probabilistic study will become feasible and its results will be
reliable.
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