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ABSTRACT

Argumentation as a logical reasoning approach plays an important role in
improving communication, increasing agree-ability, and resolving conflicts in
multi-agent-systems (MAS). The present research aims to explore the effec-

tiveness of argumentation in reinforcement learning of intelligent agents in terms
of, outperforming baseline agents, learning transfer between argument graphs, and
improving relevance and coherence of dialogue quality.

This research developed ‘ARGUMENTO+’ to encourage a reinforcement learning
agent (RL agent) playing abstract argument game for improving performance against
different baseline agents by using a newly proposed state representation in order to
make each state unique. When attempting to generalise this approach to other argu-
mentation graphs, the RL agent was not able to effectively identify the argument
patterns that are transferable to other domains.

In order to improve the effectiveness of the RL agent to recognise argument patterns,
this research adopted a logic-based dialogue game approach with richer argument
representations. In the DE dialogue game, the RL agent played against hard-coded
heuristic agents and showed improved performance compared to the baseline agents
by using a reward function that encourages the RL agent to win the game with
minimum number of moves. This also allowed the RL agent to adopt its own strategy,
make moves, and learn to argue.

This thesis also presents a new reward function that makes the RL agent’s dia-
logue more coherent and relevant than its opponents. The RL agent was designed
to recognise argument patterns, i.e. argumentation schemes and evidence support
sources, which can be related to different domains. The RL agent used a transfer
learning method to generalise and transfer experiences and speed up learning.
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CHAPTER 1. INTRODUCTION

1 Background and motivations

A rtificial intelligence (AI) has seen a significant growth in recent times.

This growth can be attributed to the ever increasing interest in building

machines that mimic human behaviour. Towards this, AI has been broadly

defined as - systems that think like humans, think rationally, act like humans and

act rationally [9]. In a computational context, Poole and Mackworth have defined AI

as “the field that studies the synthesis and analysis of computational agents that act

intelligently” [10, p. 3].

At the core of an AI system are autonomous computational entities known as ‘in-

telligent agents’. Intelligent agents process inputs received from an environment

to perform tasks such that, there is an increased chance of achieving a successful

outcome. Therefore, an intelligent agent autonomously performs an action when

it interacts with an environment to achieve a goal. On these lines, an intelligent

agent is defined by Wooldridge [11] as - a computer system acting in an environ-

ment, which is capable of executing an autonomous action to meet its delegated

objective [11]. In the last 30 years, agents and AI are said to have become more

related [12]. Agents are said to act intelligently when they possess properties such

as, appropriateness, flexibility and ability to learn [10]. This implies that, the agents’

actions be appropriate to its goals; the agent is flexible and is capable of adapting

to the dynamic changes in its environment and goals; and, the agent is capable of

learning from experience to make appropriate choices under the existing perceptual

and computational limitations [10].

Achieving enhanced problem-solving and AI capabilities can become extremely

limited with individual intelligent agents. Therefore, these are typically achieved

using multiple interacting intelligent agents to form a Multi-Agent System (MAS)

[13]. Along these lines, an important feature of intelligent agents in MAS, is their

ability to interact and/or cooperate with other agents for fulfilling a task [14]. While,

a MAS is a group of agents interacting in the same environment to achieve their

individual goals [15], these individual goals and motivations are likely be varied for
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each agent. Therefore, for successful interaction in a MAS that will lead to achieving

the common collective aim, it is essential that agents are able to effectively com-

municate by cooperating, coordinating and negotiating as humans do. By allowing

to communicate with each other, these interactions are known to bring flexibility

to an agents’ behaviour which is important for achieving a successful outcome [16].

Therefore, communication between agents in MAS involves mutual sharing of infor-

mation and resolving conflict scenarios that is required for task performance [17, 18].

In recent times, ‘argumentation theory’ has motivated the development of effective

communication strategies in intelligent agents in AI [19]. According to Wooldridge

[11, p. 337], argumentation is defined as - “ providing principle techniques for han-

dling inconsistency, and in particular, for extracting rationally justifiable positions

from the inconsistent pool of arguments”. In a MAS, argumentation can be used by

intelligent agents to resolve conflicts and arrive at conclusions through logical rea-

soning. In general, argumentation is a process in which agents attempt to agree on

what to believe [11]. Argumentation is of special interest, since each agent provides

a rich set of defensive information in an attempt to convince other agents of its view

point [17]. In recent years, applying the principle of argumentation to MAS has

received increasing attention in the research community [11, 20–23]. This has led

to recent developments in the adoption of argumentation models and techniques

in the AI field in general and MAS in particular [24]. Rahwan [20] states that,

argumentation in MAS has two-fold benefits. On one hand, argumentation based

techniques in MAS can be used to specify an autonomous agents’ reasoning such as,

belief revision and decision making under uncertainty. These on the other hand can

also be used as a mechanism to promote multi-agent interaction. This comes from

the fact that, argumentation can provide a platform for analysing, designing and

implementing sophisticated interaction types between intelligent agents. These high

level insights into the advantages of argumentation have led to some of the solid

contributions to the multi-agent dialogue research [11, 13, 20–23, 25].

Given the importance of communication in intelligent agents for achieving their goals

[11, 25], argumentation theory has provided significant inspiration for exploring
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different abstract and dialogue game forms of dialogues in MAS [20]. This had been

classified by Prakken [26] as: argumentation-based inference and argumentation

based dialogue. These two approaches are also termed as abstract argumentation

and logic-based dialogue game respectively.

Towards this, Baroni and Giacomin [27] state that an abstract argumentation frame-

work (AF), as introduced in [28], is simply defined as a pair (A,R) where A is the

set of elements called arguments and R is the binary relation between A. The at-

tack relation defines which arguments attack each other. Dung’s framework [28]

states that assessing whether a set of arguments can be accepted as extensions of

these arguments can be evaluated through methods such as preferred and grounded

extension [28]. Agents can apply this framework to argue with each other, such

as playing an argument game, which is considered to be a dialectical context to

exchange arguments between agents as outlined in [6, 25, 29].

On the other hand, argumentation can also be applied as a form of dialogue where

agents are required to resolve conflicts of opinion by verbal means [26]. Walton and

Krabbe [30] present different forms of such dialogues as dialogues which are: seeking

information, inquisitive, persuasive, negotiative and deliberative. McBurney and

Parsons [31] suggest that the type of dialogue depends on the information available

to participants when starting the dialogue, as well as both their individual and

shared goals. This research will focus on persuasion dialogue, as in a MAS, persua-

sion dialogue aims to resolve differing opinions of agents by trying to persuade the

other party to change its opinion [32]. Prakken [33] also states that - persuasion dia-

logue systems regulate how such dialogues can be produced and what their outcome

is. Hence, when agents engage in a dialogue system in order to debate with other

agents, they are required to follow protocols and rules to maintain fairness while

still remaining flexible. McBurney and Parsons [31] support the idea that these

rules can make interactions between agents more flexible since each agent makes

one move before deferring to the other to argue. Following these rules, the winning

and losing agent can be identified based on the utility for each agent. Prakken [32]

outlines that a dialogue system must have certain elements: a dialogue goal, at least
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two agents, a topic language and communication language, a protocol (how to move),

effect rules (to specify the effect of utterances on the agents’ commitments), outcome

rules (identifying the dialogue outcome), turn-taking rules and termination rules.

Once these are established, the agents are ready to argue with each other.

The primary objective in this research is to investigate how an agent can learn

to argue. Towards this, it is known that, Machine learning (ML) facilitates learning

in intelligent agents [34, 35]. In ML, the data is automatically learnt by agents which

improves with experience [36]. This fundamental feature of ML plays an important

role in many modern day applications such as speech recognition [37].

Among the ML methods, reinforcement learning (RL) allows an agent to indepen-

dently interact with an environment and learn by experience. RL is a learning

paradigm about learning how to regulate within a system in order to achieve a

long-term goal [38]. Kapoor states that [39], the grand vision of AI has been to build

autonomous agents that can interact with the environment and each other [39]. The

formulation of learning in an agent using RL is closer to this vision. The aim of RL is

to explore a policy by selecting an action which will maximise the cumulative reward

through a trial and error method. Theoretically, since, RL is related to decision in the

form of sequence of decisions [40], RL will enhance an agents’ effectiveness to engage

in either an abstract argument game or dialogue game1. This is due to the fact that,

abstract argument and dialogue games are based on individual agents taking turns

to move until the terminating move, making it a sequential environment. One of the

dialogue game that will be considered in this research is the DE dialogue game [7].

The DE dialogue game is developed by Yuan [7]. The DE dialogue game is based on

the the DC dialogue which was originally developed by Mackenzie in 1979 [42] and

then developed by Moore in 1993 [43] as the underlying model for the debating sys-

tem. The main aim of the DE dialogue game is to pick out the fallacious arguments

and common errors occurring through debate [44]. The reason for adopting this

game is firstly, due to the property of the DE model, which allows sufficient room for

strategic formation that leads to increased flexibility in agents’ while making a move

1Dialogue game allows agents to have a dialogue in accordance with rules [41].
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[7, 44–46]. Secondly, this model has agents that were built with heuristic strategies

and it offers benefits over other models in terms of computational tractability and

simple dialogue rules [7, 44–46]2.

This research focuses on reinforcement learning where an agent learns indepen-

dently through its interactions with the environment. In comparison to supervised

learning, which needs to be explicitly told about the correct action that the agent

must perform in each situation; RL is based on a rewards paradigm, where an agent

learns from the positive and negative consequences of its actions by trial and error

[47]. Additionally, Levin et al. [48] suggest that supervised learning is not suitable

for optimising dialogue strategy and limits dialogue systems from being evaluated

against a fixed corpus. Williams and Young [49] support this view by suggesting

that, using supervised learning to generate dialogue policy could be problematic

since it makes it difficult to collect a suitable training corpus. On the other hand,

unsupervised learning deals with identifying the input pattern without the need to

be explicit about the output. However, in unsupervised learning, the agent does not

need to interact or know the environment. Unsupervised learning is therefore an

exploratory approach where patterns are identified by the learning agent. Whereas,

reinforcement learning concentrates on mapping an action for each state by inter-

acting with the environment, which therefore allows the agent to observe the state

change and learn [38]. Hence, Rieser and Lemon [40] argue that reinforcement

learning may be able to develop a dialogue strategy. Thus, an agent could learn

to argue, because a dialogue is learned by evaluating feedback so as to increase

the long-term reward and exploration which is ideal considering the temporal and

dynamic nature of dialogues [40].

In this research, the agents’ ability to learn to argue in different argument games

(abstract argument game and dialogue game) using reinforcement learning will be

studied. Towards this, the agent, as a dialogue participant, requires sophisticated

dialogue strategies to make a move in order to generate high quality dialogue contri-

butions. A deep examination of state-of-the-art literature in computerised dialogue

2More details will be in section 2 .3.1.1.
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systems, such as from Yuan et al. ([44, 45]), reveals that, dialogue strategies are

devised and hard-wired into the computational agent (i.e. strategic heuristics). How-

ever, a key issue with this is that, an agent may not be able to handle new dialogue

scenarios. Given the dynamic nature of the environment, this could pose challenging

for argumentation. It would be ideal to enable an agent to search for an optimal strat-

egy on its own, e.g. through trial and error, and thus beat the competition by being

the agent with the best strategy [50]. RL tends to meet these challenges by allowing

the agent to learn dialogue strategies through interactions. This could therefore offer

more flexibility for the agent to make arguments (moves) by exploration.

Further to this, the challenges in enabling a learning agent to generalise its approach

for adapting to new environments, motivates the choice of RL for this research. This

means that the agent may not be able to find patterns in an abstract argumentation

system which would allow it to transfer experience into different argumentation

graphs rather than learning from the start. Therefore, it may be reasonable to move

from abstract argumentation approach to proposition-based argumentation, where

the internal structure of an argument is considered in order to identify patterns that

would make an agent easily adapt to a new environment. In fact, with this approach,

the agent could not only learn to argue but also improve other attributes, such as

minimising the number of moves it takes to win and dialogue quality.

Towards this, it is necessary to consider answering the research questions outlined

in the following section.

2 Research questions and objectives

Based on the outlook mentioned in the previous sections, the overarching aim of the

research presented in this thesis is:

To build an intelligent agent based on reinforcement learning that is able to learn

to argue against baseline agents and demonstrate improved performance.

Towards achieving this aim, the present research seeks to answer the following
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questions:

RQ1 : Is it possible for an RL agent to learn to win an abstract argument game and

demonstrate improved performance?

RQ2 : Do the current features of abstract argumentation systems allow an RL agent

to generalise its learning approach to other abstract argumentation graphs?

RQ3 : Is a RL agent more likely to win a DE dialogue game with minimum number of

moves using a reward function to improve its performance than DE heuristic

agents?

RQ4 : Does reshaping the reward function, which takes into account attributes such

as the number of contradictions and switches of focus, improve the quality of

the RL agent’s dialogue contributions and makes the dialogue more coherent

and relevant?

RQ5 : Does using the argument’s internal structure, such as argumentation schemes

and evidence support sources encourage the RL agent to transfer learning to

different domains using a DE model?

Chapter 3 of this thesis aims to address RQ1 by building new argumentative software

ARGUMENTO+ that will allow the RL agent to play against different hard-wired

computerised agents. RQ2 will be reviewed in Chapter 4 with the aim of introduc-

ing some features of abstract argumentation, such as the number of attackers. In

Chapter 5, RQ3 will be tested by using the DE model to make the agent play against

DE baseline agents. RQ4 will be discussed in Chapter 6. Chapter 7 concerns RQ5

and addresses whether the RL agent could use a transfer learning method as a

generalisation approach.

In order to address these questions, the research seeks to fulfil the following objec-

tives:

Obj1 : To develop an RL agent that improves its performance over time by obtaining

greater rewards compared with baseline agents in an abstract argument game.

Obj2 : To analyse whether using current features in abstract argumentation allows a

RL agent to transfer experience from one abstract argument graph to another.
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Obj3a : To develop a RL agent that can improve its performance to the point of obtain-

ing more wins than the DE agents.

Obj3b : Reshape the reward function to enable a RL agent to outperform the DE agent

by winning with the minimum number of moves.

Obj4 : To reshape the reward function such that the RL agent can improve dialogue

quality in terms of increased relevance and coherence in the DE dialogue game.

Obj5 : To identify argument patterns, such as argument schemes and evidence

sources, that can enable a DE-style RL agent to transfer learning between

argument domains.

The research questions and objectives will also be reviewed and revisited in the

conclusion, in Chapter 8, to address how well they have been met.

3 Thesis structure

This section provides a brief overview of the subsequent chapters of this thesis:

Chapter 2 presents a critical review of the literature. It explores multi-agent

systems; argumentation theory, which includes abstract argumentation sys-

tems, abstract argument games and logic based dialogue games, reinforcement

learning and transfer learning. Additionally, related work in reinforcement

learning for argumentation is reviewed.

In Chapter 3 ARGUMENTO+ is introduced by building an argumentative

reinforcement learning agent which plays against different baseline agents.

The latter part of this chapter covers the experiments and analysis of this

work.

Chapter 4 includes methods to generalise the approach in ARGUMENTO+

and its evaluation through experiments. It also examines the limitations of

using an abstract argumentation system and the necessity to move to a logic-

based dialogue game.

9
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Chapter 5 discusses the design of a reinforcement learning agent that plays

against baseline agents in a logic-based dialogue game. The chapter also

describes the dialogue model that was used and the results.

Chapter 6 contains the design of a reinforcement learning agent that is able

to learn to improve the dialogue quality, such as coherence and relevance. The

chapter also documents experiments in evaluating whether systematic view of

the reward function by dropping one attribute in each can learn to improve the

quality of the dialogue.

Chapter 7 provides an approach for generalisation. Since the RL agent is able

to learn to argue and improve performance, it was thought beneficial to transfer

its experience into a different domain. This chapter discusses approaches to

use transfer learning for generalising this approach into a different domain, i.e.

BREXIT, and how the RL agent performs with and without transfer learning.

Chapter 8 concludes the thesis by summarising the contributions and results

to assess how effectively the research questions have been answered and

whether the hypothesis stated in this research were or were not rejected. In

addition, some suggestions for further work are presented in this chapter.
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CHAPTER 2. LITERATURE REVIEW

The present research is primarily concerned with designing an agent that

can learn to argue using a reinforcement learning method. In this Chapter,

an overview of the current literature related to the questions and objectives

of this research are presented. This includes a study of multi-agent system argumen-

tation and discussion on inference and dialogue based argumentation [26].

This chapter consists of four sections covering the relevant literature to address the

research goal in a suitably wider context.

I Multi-agent systems and intelligent agents: This section introduces multi-

agent systems in general and intelligent agents in particular. It reviews au-

tonomous agents and outlines certain properties of agents’ behaviour. It then

discusses communication between agents and the main objective of such com-

munication.

II Argumentation: This section discusses the general concept of argumentation

and its applications in AI. The motivation behind applying argumentation in

intelligent agents is also covered here. Two approaches to argumentation are

outlined: an abstract argumentation system, and a logic based dialogue game.

A description of how agents argue using the argument game and dialogue

model and make moves (strategy) are provided. Knowledge representation is

also reviewed towards the latter part of this section.

III Reinforcement learning: In this section, reinforcement learning is introduced

with a discussion on the components of reinforcement learning and approaches

that are applied to solve reinforcement learning problems.

IV Reinforcement learning for argumentation: This section critically discusses

related work on the state-of-the-art process of reinforcement learning for

argumentation. It presents research that uses reinforcement learning in argu-

mentation, as well as its limitations.
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1 Multi-agent systems and intelligent agents

In the last few decades, theoretical and practical research on intelligent agents

and multi-agent systems (MAS) has seen a remarkable growth [11, 25, 51, 52].

Researchers in artificial intelligence (AI) are constantly exploring ways to make

computers more intelligent within MAS. Agents are the principal building blocks of

a MAS. In a MAS, multiple autonomously acting agents interact with one another

to successfully achieve their individual and shared common goal. The state-of-the-

art definition of an agent is given as - “a computer system that is situated in some

environment, and that is capable of autonomous action in this environment in order to

meet its delegated objectives” [11, p. 21]. In another place, an agent is defined as - “An

agent is anything that can be viewed as perceiving its environment through sensors

and acting upon that environment through actuators” [53, p. 34]. Leading researchers

in this area have suggested that using an intelligent agent is the main approach in

AI [9]. From the above definitions of the agent it can be summarised that, agents

act directly with the environment by doing actions and receiving feedback from the

environment. This process of interaction is pictorially presented in Figure 2.1.

Figure 2.1: Agent and environment
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Agents can exist in two forms: (i) physical, such as robots, and (ii) virtual, such as

software receiving input from an environment and producing some output [52, 54].

However, a key aspect of agents is their autonomy [11]. An autonomous agent is a

computer system that can work autonomously (i.e. independently) within an envi-

ronment. They are enhanced to make decisions towards achieving a given goal, i.e.

when an agent acts within an environment, it should act with the aim of achieving a

specific objective [11, 52].

Additionally, agents are expected to demonstrate rational behaviour in the environ-

ment. In this case, rationality refers to doing the "right thing", and behaviour refers

to the action that is performed over some sensory input or a sequence of sensory

inputs that are received by the agent [52]. Therefore, the behaviour of a rational

agent has been defined as:

For each possible precept sequence, a rational agent should select an

action that is expected to maximise its performance measure, given

the evidence provided by the precept sequence and whatever built in

knowledge the agent has [9, p. 37].

From the definition, it can be seen that, an agent’s behaviour is affected by it ability

to learn the changes in the environment and its decision on the appropriate actions

that need to be taken in the given context.

Wooldridge [11] has proposed that three types of behaviours can be conceptualised

in intelligent agents, namely: reactive, pro-active and social. In addition to these,

other properties of behaviour of intelligent agents are proposed as, learning/adaptive,

mobility and flexibility [9, 53, 55, 56]. The types of behaviour of agents are outlined

in Table 2.1 [11, 52, 57, 58].

Studying agents is important because they are the key elements in building large-

scale distributed systems that need to operate as a part of complex systems [59].

The building of large-scale, distributed and complex systems will therefore require a

MAS, i.e. multiple interacting intelligent agents [11]. Successful interaction between
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Property Definition

Reactive Response in time to changes in the environment.

Proactive Exploration of new possibilities and taking the initiative.

Social Communicating with other agents.

Learning/
adaptive

Changing behaviour depends on previous experience.

Mobility Capability to move throughout the network.

Flexibility
Actions not scripted, able to choose which actions to execute and in
what sequence to respond to the state of the environment.

Autonomous
Operating without direct intervention of other entities and control-
ling its own actions.

Table 2.1: Agent property

agents in a MAS is important to support abilities such as coordination and coop-

eration which play a critical role in enabling to achieve shared goals and decision-

making. MAS have been extensively used in AI for dealing with large, complex

systems, which is their main distinguishing feature compared to single agents. In

a MAS, each agent interacts with the environment and works with other agents to

achieve a shared goal. Towards achieving a goal, interaction could involve sharing

and exchanging of information, cooperating or coordinating with other agents. The

action performed by an agent during the process of achieving a goal could be a

reactive or proactive type of action [60]. As can be seen in the Table 2.1, the type of

action is dependent on the agents’ exploration of the environment and the changes

in the environment. Since changes in the environment are dependent on the agents’

own beliefs, Wells [60] states that actions allow agents to perform effective reasoning

with respect to their beliefs, their environment and the effect their actions have on

their environment.

To successfully achieve a goal in a MAS, the ability to communicate in the involved

agents is very important. While, it has been shown that agents are able to commu-
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nicate in some cases [58], several factors need to be taken into consideration for

establishing effective inter-agent communication. The considerations of inter-agent

communication include: (i) choice of a protocol, (ii) illustration of a domain based

on the agents’ response in other domains, and, (iii) efficiency of the communication

method. The use of protocol in inter-agent communication guarantees that all agents

agree on a rule-base that will be followed for sending or receiving a message.

There are a number of approaches to generating high level of interaction proto-

cols that give prominence to the types of messages that are sent during the dialogue.

Most interaction protocols are motivated from argumentation theory [30]. Argumen-

tation allows agents to reconcile conflicting information between different agents

through communication [11, 61]. The main goal of MAS communication dialogue is

for agents to arrive at a mutually acceptable agreement [22]. An agent could use

the argumentation method to perform individual reasoning for itself for resolving

conflicting evidence, or it can be used to resolve any conflicts in goals it might have

by choosing to pursue only one of them [23]. A MAS uses different approaches to

argumentation, such as deliberation, persuasion and conflict resolution [62] to clearly

visualise the important connections between argumentation and AI, and particularly

in a MAS.

2 Argumentation

Argumentation theory is a rich interdisciplinary area of research covering philosophy,

linguistics, computer science, communication studies and psychology [63]. According

to van Eemeren et al. [64, p. 5]:

argumentation is a verbal and social activity of reason aimed at increas-

ing (or decreasing) the acceptability of a controversial standpoint for

the listener or reader, by putting forward a constellation of propositions

intended to justify (or refute) the standpoint before a rational judge.

Rahwan [20] states that, argumentation can be seen as the rational exchange of

different arguments, which are potentially contradictory, in order to achieve a clear

conclusion. Therefore, the connection between arguments is perhaps the most crucial
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aspect of argumentation [20]. Walton expresses argumentation as a sequence of

arguments, where one inference’s assumption is a basis for the next [24]. Therefore,

he defines an argument - as a set of propositions which consists of three parts namely

conclusion, a set of premises and an inference from the premises to the conclusion

[24].

In recent times, formal argumentation models have become increasingly impor-

tant in artificial intelligence [19]. Formal argumentation models in argumentation

have found a wide range of applications specifying semantics for logic programs,

generating natural language text that supports legal reasoning, and facilitating

multi-agent dialogue and internet negotiation [21, 23, 61, 63, 65]. For instance,

argumentation is used in AI for handling inconsistency in knowledge bases [e.g.

66, 67] and decision making [e.g. 68–70]. Argumentation is seen as “a promising

model for reasoning with inconsistent knowledge, based on the construction and

the comparison of arguments” by Amgoud and Cayrol [71, p. 197]. Argumentation

involves identifying the relevant assumptions or premises to analyse a particular

problem [66]. According to Falappa et al. [72] argumentation is primarily concerned

with premise-based evaluation of claims for reaching a conclusion.

In MAS, argumentation allows agents to resolve inconsistent information both

within themselves and between agents through communication [20]. These core

features of argumentation have led to a significant amount of research exploring

its application in AI in general and MAS in particular [11, 19, 20, 73, 74]. Notable

work on the application of argumentation in MAS includes work by, McBurney and

Parsons [31] in dialogue games, Prakken in persuasion dialogue [33], Amgoud in de-

cision making [75] and Rahwan and Larson on argumentation with game theory [76].

Bench-Capon and Dunne [19] express that, increase in the presence of informa-

tion about uncertainties is the primary factor that has motivated the significant

trend of applying argumentation in AI. This suggests that, argumentation was

adapted to support the non-monotonic reasoning approach [19, 28]. In MAS, the

primary objective of using argumentation between agents is to resolve conflicts and
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to inform of an agent’s beliefs [11]. Towards this, autonomy [19] and rationality [77],

which are the core characteristics of argumentation, have encouraged its use as a

technology in developing multi-agent systems. Autonomy allows an agent to act as an

individual entity through attempts at cooperating and coordinating with other agents

[11] and persuading its opponents. Argumentation allows agents to act rationally.

McBurney [77] states that argumentation is a form of rationality where the agent

accepts statements which do not have contradictions, which means that an agent

can accept an argument based on reasoning. Rationality is therefore considered as a

contributing factor to the advantageous effects of communication between different

agents [21, 78]. Based on these characteristic features, argumentation is considered

as a useful approach for autonomous agents in not only making decisions but also

enhance decision making capabilities [11, 19, 79, 80]. One of the main advantages

is that an agent can act rationally. McBurney [77] argues that argumentation can

be defined as a form of rationality and the agent accepts statements which do not

have contradictions, which means that an agent can accept an argument based on

reasoning.

State-of-the-art research in this area shows two approaches of using argumen-

tation in AI as, inference based, and dialogue based [26]. Inference based approach

deals with inferring conclusions from incomplete or inconsistent information and

dialogue based approach to argumentation is aimed at encouraging interactions be-

tween agents with the objective of resolving conflicts in point-of-view. In terms of an

intermediate idea of argument building, argument attack and argument evaluation,

in both these approaches, it can be seen that, argumentation is a non-monotonic

notion of logical consequences, in which arguments are seen as constellations of

premises and conclusions [26].

In the forthcoming sections (Section 2 .1 and Section 2 .3), we elaborate on argument

building with specific focus on abstract and logic-based argumentation systems [28].

Abstract argumentation frameworks take ideas of argument and attack as primitives,

with nothing assumed about the internal structure of the argument or the attack

relation [26]. Whereas, logic-based argumentation can be seen as a dialogue between
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agents to resolve a conflict of opinion. Since, a dialogue game must have protocols

(dialogue rules that each agent needs to follow), and strategies (a definition of how

an agent will make a move) [26, 29, 45, 81], logic based argumentation forms the

basis of dialogue game argumentation which is an important aspect of this thesis.

Focusing on these two areas will lead our investigation into understanding whether

a reinforcement learning agent will be able to learn to argue using both abstract and

logic-based argumentation systems, and study their consequences. Before that can

be discussed, more analysis of abstract and logic-based argumentation systems is

required which is presented in Sections 2 .1 and 2 .3.

2 .1 Abstract argumentation system

One of the most widely accepted abstract argumentation framework available in

literature is Dung’s framework [28]. In this framework, arguments are evaluated

by defining a set of arguments with a binary relation between them (an attack

relation in a directed graph). Since its original formulation, Dung’s framework is not

only well accepted, but is also considered to be enormously influential in making

argumentation respectable in AI [26, 70].

In Dung’s framework, the abstract argumentation framework (AF) consists of a

pair (A,R). Where, A is defined as a set of arguments and R ⊆ A× A is a relation

that represents attacks or defeats. AF can be represented as a directed graph, such

that nodes are arguments and arcs represent attack relations [45], as shown in

Figure 2.21. AF is concerned with the high level abstraction of an argument and

does not consider its internal structure, e.g. the premises and conclusion. This can

be seen as AF denoting informal human reasoning in a way that allows a computer

to easily perform computation on a collection of arguments. For example, an AF can

decide whether an argument is acceptable and compute various semantics. Thus, an

AF to some extent is able to bridge the gap between human and machine reasoning

[82].

1This materials and definitions are taken from a lecture by Woltran and Brewka available at
http://www.informatik.uni-leipzig.de/ brewka/KRlecture/AF.pdf
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The AF directed graph, as illustrated in Figure 2.2, shows different arguments within

attack relations. The AF in the argumentation graph in Figure 2.2 has a set of argu-

ments: X = {a,b, c,d, e}, and a set of relations R ={(a,b), (c,b), (c,d), (d, c), (d, e), (e, e)},

where a attacks b and c attacks d. The conflict free set in a given AF, F=(A,R),

is a set S ⊆ A, if a,b ∈ S, (a,b) ∉ R. For instance in Figure 2.2 conflict free (F) =
{{a, c}, {a,d}, {b,d}, {a}, {b}, {c}, {d}, {;}}.

Mutual defence [28, 83] means one element in S is defended by another element in

S. For instance each a ∈ S is defended by S in F, a ∈ A is defended by S in F, if b ∈ A

with (b,a) ∈ R, and there exists a c ∈ S, such that (c,b) ∈ R.

S is admissible [28, 84], if it is both conflict free and mutually defensive. Given an AF

F=(A,R), a set S ⊆ A, is admissible in F, if S is conflict free in F and mutually defen-

sive as mentioned before. In Figure 2.2 admissible (F)= {{a, c}, {a,d}, {a}, {c}, {d}, {;}}.

Figure 2.2: Example of arguments and relations

Extensions were introduced, to evaluate whether an argument is acceptable or not

[28]. According to leading researchers in this area, S is preferred extension, where it

is a maximum admissible set [11, 28, 83–85]. A preferred extension is defined as :

given an AF, F = (A,R), a set S ⊆ A is preferred in F, if S is admissible in F, and for

each T ⊆ A admissible in T,S * T [86]. In Figure 2.2 pre f (F)= {{a, c}, {a,d}}.

A grounded extension is therefore a unique extension, because it has all the ar-

guments that are not attacked, as well as the arguments that are defended by

non-attacked arguments [1, 65]. The grounded extension of an AF, F = (A,R), is

given by the least fixed point of the operator ΓF :2A → 2A. ΓF (S) = {a ∈ A | a is

defended by S in F} [86]. For instance, in Figure 2.2, ground(F) = {{a}}, a is in a

grounded extension if a is guaranteed to be acceptable, which means there is no

reason to doubt a.
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On these terms, every acceptable argument is IN and every argument that is

attacked, but not defended by other arguments, will be OUT. Dunne et al. [87,

p. 459] identify an algorithm to compute the grounded extension, as shown in Fig-

ure 2.32 where X is a set of arguments and A is a relation between arguments. Other

Figure 2.3: Grounded Extension Algorithm

extensions, such as complete extensions and stable extensions, are also mentioned in

the literature [28, 83]. An admissible set S is a complete extension iff all arguments

defended by S are also in S [88]. In AF, F = (A,R) a set S ⊆ A is complete in F, if

S is admissible in F and each a ∈ A defended by S in F is contained in S a ∈ A is

defended by S in F, if for each b ∈ A with (b,a) ∈ R, there exists a c ∈ S, such that

(c,b) ∈ R e.g in Figure 2.2 complete(F)= {{a}, {a, c}, {a,d}} [89].

On the other hand, a conflict free set of arguments S is a stable extension iff

S attacks each argument that does not belong to S. In AF, F = (A,R), a set S ⊆ A is

stable in F, if S is conflict free in F and for each a ∈ A \ S, there exists a b ∈ S, such

that (b,a) ∈ R. In Figure 2.2, stable(F)= {{a,d}} [86].

In the context of the present research, we consider using grounded extensions

as a reward for the learning agent (discussed in Section 3 ). The authority of a

grounded extension argument cannot be doubted compared to other arguments, as

it has not been attacked [11]. This means the extension argument will be a more

acceptable argument. In addition to this, there will exist a set of acceptable argu-

ments that have been put forward by the agent [1]. After winning the game in each

different episode in reinforcement learning, each agent is interested in maximising

the acceptability of its own arguments (discussed in detail below).

2initial means an argument is attacked by another argument.
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2 .2 Abstract argument game

An argument game is a dialectical context in which agents exchange arguments as

game play [6]. The idea of argument games were first introduced in an official study

into Argumentation by Vreeswijk in 1993 [26, 90]. Since then, argument games have

become a topic of considerable research in AI. This has led to the development of

several variants of argument games based on abstract argumentation framework

such as, Dung’s framework in 1995 [28]. Dung proposed argument games for two

logic-programming semantics and defined a framework consisting of argument and

attack relations as a pair (A,R) as discussed in previous section. Many formal

introductions to argumentation today begin with Dung’s abstract argumentation

framework [26, 28]. In these, the notions of argument and attack are taken as

primitive without assuming the internal structure of the argument or the nature of

attacks. However, evaluation is key for considering an argument to be acceptable.

Argument evaluation was first studied by Prakken and contributed significantly

towards defining argument evaluation [26].

Prakken and Sartor’s argument game for logic programming in 1997 [91] . They

suggested an argument game for their logic programming based on Dung’s grounded

semantics. In 1999 Prakken [92] presented the first formal publication on argu-

ment games for abstract argumentation semantics. They put forward the game for

grounded semantics as an abstraction of the game of Prakken and Sartor in [26, 91].

Wooldridge [25] proposed an argument game which was based on Dung’s framework

[28] in the area of computational dialectics. Yuan et al [6] argue that this game is

simple because it makes it easy for players to follow the game rules. Yuan et al

[6, 29] adopt this game and proposed a challenging and entertaining game known as

‘ARGUMENTO’ for educational purposes to enable human and agent playing of the

game.

Vreeswijk et al. in [85] developed simple and intuitive argument games for both cred-

ulous and sceptical reasoning in preferred semantics which was further developed

and studied by Dunne and Bench-Capon [93]. A significant contribution for game

that was developed by Dunne and Bench-Capon is its positioning of these dialogue
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games in the existing body of work based on the relative efficiency of propositional

proof methods through the definitions of complexity of disputes [19].

Prakken suggests that incorporating a backtracking strategy in an argument game

[94] could be make it more flexible and fair for players. This is because the partic-

ipants can provide an explicit answer structure on dialogue where each move can

constitute an attack or a surrender to an earlier move by the opponent. Our present

research adopts and develops on the ARGUMENTO game. ARGUMENTO game

previously adopted in Wooldridge game [6, 25, 29] did not allow backtracking for rea-

sons of simplicity [6, 29]. Moreover, Prakken [32] suggested rules for backtracking,

but it is argued that these rules were strict for the player and therefore could not

allow enough room for making moves. Therefore, allowing backtracking has been left

for future work which requires developing new game rules to handle backtracking.

In the present research, due to its simplicity, the game described by Wooldridge

(2002) [25] is adopted. This game does not allow backtracking [29, 44]. It is also close

to the way humans argue which can be summed up using the saying "try to have the

last word" [28]. However, to ensure that the game is fair for both player agents, the

game described by Wooldridge [25] adopts rules that each player has to follow. Each

argument game has a tuple of: G =< A,D,R,P > where: A is the argumentation

system; D is the dialogue history which contains a set of moves made by the players;

R is the set of rules that players need to follow to make a move; and P is the set of

players, normally 2 denoted as 0, 1.

In [25], Wooldridge identifies six rules (R) that each player (agent) needs to fol-

low in an argument game:

1. The first move in D is made by player0 e.g. P0 = 0.

2. Players take turns making moves (player 1 turn) Pi= Pi mod 2.

3. Players cannot repeat a move.

4. Each move has to attack (defeat) the previous move.

5. The game ends if no further moves are possible.
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6. The winner of the game is the player that makes the final move.

Argument games such as ARGUMENTO [29] are based on an abstract argumenta-

tion system [28]. In an argument game the abstract argumentation (arguments and

relations) are shown as a graph with a set of nodes (arguments) and edges (attack

relation) (see Figure 2.4) [29]. In the first part of this research, we consider this

model to investigate whether an agent is able to learn to argue at an abstract level

(discussed in more detail in Chapter 3).

Figure 2.4: Abstract argumentation graph in ARGUMENTO game

ARGUMENTO is an example of an implemented argument game, presented in

[29]. ARGUMENTO is a computer game developed for abstract argumentation [6].

The main purpose of ARGUMENTO is to allow agents to have an openly competitive

environment to argue with each other for teaching and developing planning skills in

students’ [6]. An abstract argument game should consider rules (protocols), strate-

gies (how to play), players and evaluation of the game (e.g. challenging, entertaining

etc).

In an abstract argument game, each agent tries to use strategies to win the game.

Therefore, in order to ensure that the game is played fairly, the agent that makes the

first move is allowed to choose an argument from a predetermined set of arguments,

rather than a randomly selected agent [29]. This also prevents an agent from choos-
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ing a position that does not have an attack, because this could result in the agent

winning the game from the first move, which is unfair. ARGUMENTO is challenging

and entertaining [6], and meets the objectives of an abstract argumentation system.

ARGUMENTO can be used by students as a tool for studying argument games

and abstract argumentation [95]. As the game has different levels based on the

complexity of the argumentation system, it can have a motivating effect on students

while encouraging them to play and win the game.

Figure 2.5: ARGUMENTO game

The agent plays the game based on probability, i.e., they play by selecting the move

with the highest probability of winning. This process has been shown in the dialogue

tree shown in Figure 2.6. In this game, the agent chooses the next move with the

highest utility value.3 For example, in the tree in Figure 2.6, if agent 1 chooses p then

the best move for agent 2 to win will be q. This abstract argumentation game was

improved in different versions, such as Arguing Agents Competition (AAC) [29, 96].

The over all goal was to develop distributed competition between agents, in which
3Utility value means a probability-utility which enables an agent to select the next legal move

with a high probability of winning the game [6]. Each node has a computed utility value (values are
after /) as shown in Figure 2.6 [6].
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they compete with each other using strategies to choose how to move. This is inter-

esting and encourages agents to argue with each other based on choosing strategies

to win the game. This aspect of making an agent to learn to argue and learn the

optimal moves when playing against an opponent has significantly motivated the

present research. This encouraged us to upgrade the ARGUMENTO game [29] to

ARGUMENTO+ as described in [1–3]. ARGUMENTO+ uses reinforcement learning

and is discussed in detail in Chapter 3.

Figure 2.6: Dialogue tree based on probability

2 .3 The logic based dialogue game

The above discussion on abstract argumentation systems, has led us to undertake

a closer examination of argumentation-based dialogues. The goal of an agent is to

resolve conflicts. However, effective communication, by means of exchange of infor-

mation between agents (dialogue) is essential for achieving this goal. Communication

languages could be based on Speech Act theory [97]. Communication protocol should

be fair in order to meet the primary objective of argumentation which is effective

resolution of conflicts for all agents [26]. Behaviour which features strategies or

tactics for the agent allows the agent to make moves or arguments [98]. In order

to engage agents in argumentation, a dialogue model is required to manage the

evolving argument. Literature in this area shows types of argumentation-based

dialogue, such as communication languages, protocols and agent behaviour. These
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broadly refer to strategies or rules for deciding how the agent makes moves [26].

Dialogue systems for argumentation have been applied in different fields in AI

[99] such as: AI and law [100–103], debating technologies [104–106], intelligent

tutoring [42, 43, 45] and multi-agent systems [107–111]. The popular paradigm

on formal dialogue in argumentation theory was proposed by Prakken [99] as, “in

argumentation theory, formal dialogue systems have been developed for so-called ‘per-

suasion’ or ‘critical discussion’”. Literature in this area shows that, this is the most

widely accepted view on formal dialogue in argumentation theory [7, 30, 42, 43, 94].

In persuasion, the agents that are initially in conflict aim to resolve the conflict by

stating the agent’s belief [11]. Establishing communication between agents and allow-

ing agents to work together to achieve this, is one of the goals of multi-agent systems.

Most communication cannot achieve a satisfactory goal with only one message being

sent [107]. Also, agents need to exchange a sequence of messages when arguing with

each other. This necessitates for a dialogue system similar to the example above.

Along these lines, an example on negotiation is also given in [112], and another one

on the type of dialogue requiring a sequence of messages to be sent is given in [30].

One of the goals of dialogue based communication in multi- agent systems is to

arrive at an agreement[22]. This requires building of a dialogue system to allow

interaction between agents with more flexibility and facilitate a constructive argu-

ment process. A dialogue game is one of the more flexible approaches to building

dialogue systems. For instance, [29, 45, 94, 113] have a useful approach to allowing

two computer systems to have a dialogue with each other.

According to the literature, dialogue model, dialogue strategy and domain knowledge

representation are identified as the three main elements that underlie a dialogue

system. These are important for allowing agents to communicate and debate with

each other. The elements of a dialogue model are shown in Figure 2.7.
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Figure 2.7: Main elements of dialogue system

2 .3.1 Dialogue game

According to McBurney and Parsons [114], a dialogue game is defined as - "interac-

tions between two or more players, where each player "moves by making utterances

according to a defined set of rules". Dialogue games are known to have a historic

significance and are considered to have been in existence since the middle ages [115].

Early research in this area points to two important publications by Hamblin which

mark the start of study of formal dialogue system for argumentation in the 1970s

[116, 117]. The topic was originally discussed within the framework of philosophical

logic and argumentation [30, 42, 118].

In recent times, constructing dialogue games has become a popular approach in AI

[46]. Dialogue games have been applied in a variety of ways. Mackenzie in 1979 [42]

provided the “DC” dialogue game which attracted a lot of interest in the AI research

community [46]. As shown by, Amgoud et al.[119], Moore and Hobbs [120], Maudet

and Moore [113], Yuanet al. [44, 45] and Reed and Wells [121], the “DC” game [42]

is interactive and provides a system that is solid for interactive computer systems

applications [46].

Bench-Capon and Dunne [19] state that dialog game approaches feature in many

significant contributions dating back to the mid-late 1990s. For instance Gordon’s
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Pleadings game [100] modelled legal reasoning as a dialogue game. The Pleadings

dialogue game was introduced into AI and Law [19], in which pre-trial pleading

method was modelled into a structure in which the elements of a case that were

agreed and disputed were defined. Bench-Capon and Dunne [19] argue that the main

aspect here was that, the dialogue was used to model the legal dispute process, ap-

pealing to the notion of procedural justice, whereby a decision derives its legitimacy

from the results of a properly conducted proceeding.

Another dialogue game is presented by Loui, who used dialectical approaches to

non-monotonic reasoning in which one of the first theoretical limit considerations

was introduced [122]. A currently active area in which these ideas have proven

to be highly relevant is the exploitation of argumentation in multi-agent systems

applications. Another dialogue game by Bench-Capon et al. [123] takes a different

approach by providing a formal framework for the syntactic description of a dialogue

game in terms of dialogical preconditions and post-conditions for each legal locution

[124]. This approach has contributed significantly for automated software design

and modelling of legal reasoning [125].

Amgoud et al. [107] studied dialogue games particularly in MAS where dialogue

games have been used to identify dialogue rules for persuasion. They believed that

it is, in fact, a more general model than the one proposed in [111] and has a specific

procedure for the exchange of arguments that the former lacks. As in [111], focuses

more on the relationship between beliefs and intentions in a specific type of dialogue

negotiation and deliberation.

Mcburney and Parsons [124] provided a logic-based formalism for modelling of

the dialogue between intelligent agents. Their approach helps to represent complex

dialogue as a sequence of moves within a combination of dialogue games. Addition-

ally, it enables the embedding of dialogues within each other. Parsons et al. [126]

studied the outcome of the dialogue game between different agents based on the

agent’s strategy. A dialogue game for three-party dispute, where the referee has the

power to assign the burden of proof to particular allegations against the opponents
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was suggested by Prakken [127]. Prakken et al. [128] argue that the burden of

proof in that game allocations could not be disputed. Prakken in [32] contributed a

dialogue game which explicitly concentrates on games for persuasion. Additionally,

Yuan et. al, [46] argues that Prakken’s dialogue game provided a very useful example

dialogue which was applied in other dialogue game models and proved to be more

relevant within MAS. Prakken’s [32] dialogue game for argumentation approach

is a game governed by dialogues in which two participants who disagree about the

validity of one or more statements or points attempt to persuade the other party to

accept their views.

Later progress in this area has led to a more concrete understanding of dialogue

games as - a set of rules that regulate how players make moves in the dialogue [46].

These rules govern permissible sequences of moves, as well as the effect of moves on

the commitment stores of participants, which are conceived as records of statements

that have been made or accepted.

Argumentation is a way of dialogue between agents that is used to resolve a con-

flict. When agents make an argument, due to their internal preferences and goals,

dialogue issues such as strategic issues could arise [26]. Therefore, research on

argumentation-based dialogue focuses on protocols or rules of the game and agent’s

tactics for making moves to make the game fair and effective for all players. McBur-

ney and Parsons [31] and Medellin-Gasque et al., towards this, [129] present the

elements of a dialogue game specification as:

1. Commencement rules: To determine how the dialogue might be initiated.

2. Locutions: Rules indicating which statements are permitted.

3. Rules for combination of locutions: Rules that define the dialogical context

under which specific locutions may or may not be permitted or are compulsory

or not.

4. Commitments: Rules that define the circumstances under which participants

by their utterances engage in dialogical commitments, and thus change the

contents of the engagement stores associated with the participants.
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5. Rules for combination of commitments: Rules defining the combination or ma-

nipulation of commitments in the making of statements which are conflicting

or additional commitments are made.

6. Rules for speaker order: Rules that determine the order in which speakers are

allowed to make statements.

7. Termination rules: Rules that define the end of the dialogue.

Agents use dialogue games in order to try to convince other agents of their viewpoint

[130]. A number of dialogue games have been proposed till date. In Prakken’s view

[131], a dialogue game is presented as persuasion with dispute. On these lines, a

dialogue game is described as a conflict between proponent and opponent, where

the proponent seeks to have the opponent concede the claim of the proponent, and

the opponent tries to persuade the proponent to withdraw their claim. Prakken [94]

expresses that in this mode, a game may not terminate logically leading to confusion

and inconsistency in the agent’s belief. In addition to this, the possibility of making

moves could become limited due to restrictions of protocols.

Toulmin Dialogue Game (TDG) was introduced by Bench-Capon [132], which is

based on Toulmin’s argumentation model [133]. The idea of Toulmin Dialogue Game

is based on recording a claim on the stack, then pushing and popping claims from

the stack by adding and resolving a claim respectively. Hence, participants seek a

claim on which they agree [134]. Additionally, this game also allows backtracking

[32]. However, Dunne and Bench-Capon [93] argue that, each player is assumed

to have only a partial view of the framework of argumentation, which is extended

by elements recognised by its opponent as the dialogue proceeds. Also, if disputes

between autonomous agents are considered, it is perhaps unrealistic to expect them

to begin with a shared understanding of the overall framework of argumentation [93].

CoLLeGE by Ravenscroft and Pilkington [135] is a dialogue game between a tutor

and a student. In this, the tutor, which is a computer, asks questions and the student

attempts to answer the questions, while the tutor monitors the answers by resolving

any contradictions [7]. Although, the results of CoLLeGE showed promise in improv-
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ing students’ understanding of physical motion [136, 137], it was found to have a

limited set of alternatives to answer the questions and restricted room for strategies

[7, 138].

Permissive persuasion dialogue (PPD) is a dialogue game by Walton and Krabbe [30].

This game is about one-sided argumentative dialogue with different roles for both

the participants involved such that, when one builds its position, the other attacks or

challenges. Some of the rules of this game are: locution rules, commitment rules and

win and lose rules [7, 30]. In PPD some questions can only be answered using Yes or

No, which is also restricted and it is not able to learn and explore with the purpose

of learning how to argue. Yuan [7] argues that PPD does not have the facility to ban

the fallacy of question begging, which prevents an agent from learning how to argue

by avoid fallacious argument and make some errors during the debate.

Girle [139] introduced DL3 which is an extension of previous work in DL2 [140] and

DL [141]. It is based on a baseline agent exploring issues in joint activity systems

[60]. The goal of this game is to model belief revision in AI systems [142]. In DL3

agents share the knowledge together by telling each other what to do through com-

mand dialogue. This approach is based on the Mackenzie-Hamblin system of formal

dialogue [143].

Mackenzie [42] presented the formal argumentation system “DC” to investigate

the fallacy of question begging, which was also adopted and edited by Moore [43].

Agents are therefore engaged in the argumentation system, but each has access to

their own private knowledge base and commitment store. While, DC can be used

to help players maintain coherence in their beliefs [107], Walton [144] argues that

DC erroneously bans sequences of question begging. In addition, Maudet and Moore

[113] assert that there are rules in DC that can prevent players from answering

questions in their preferred way. Towards this, Yuan et al. [145] expresses that it

is not clear if there are other problems related to the rules, and whether DC can

prevent all fallacious arguments is questionable. This issue needs to be considered

since the main goal of the system is to improve the critical thinking of students and

teach them how to avoid errors when debating [146].
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As a result, the DE system was designed to avoid the drawbacks of the DC sys-

tem [145]. Yuan [7] further developed the system, providing a new version, “DE”

which was modified for both commitment rules and dialogue rules. Considering these

advantages, the present research adopts the DE game to implement an agent which

is able to learn to argue based on a dialogue game. The reasons for choosing DE

game for this research are therefore listed as follows:

1. This model allows enough room for strategy formation, which means the agent

can be more flexible when it makes a move.

2. The DE model agents were built with heuristic strategies and the model has

shown benefits over others because of computational tractability and simple

dialogue rules [44–46].

Further details of the DE game are presented in-depth in the following section.

2 .3.1.1 DE model

The rules of the DC model are flexible, which means that both dialogue participants

are able to make their own positions [147]. However, the DE system considers the

weaknesses of the DC system, as outlined below [145]:

1. Fallacious arguments may occur during the conversation.

2. Commitment to rules may cause unnecessary conflict.

3. The rules may prevent answering of questions in the preferred way, as well as

answering a challenge using an agreed statement.

4. The absence of a precondition for a challenge may lead to participants attacking

a statement, which is not advanced by the other party.

As a result, the DE model was developed to address the issues of the DC model.

The DE model is able to pick out fallacious arguments and common errors occur-

ring during a debate [44]. The main point or motivation behind the prototype is to

help students to improve their critical thinking skills. Students can debate with

the system in a competitive environment. In [145] the same move types as DC are
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considered, since there are no issues with this in the DC system. The dialogue rules

and commitment rules have been modified with a set of rules to prevent illegal moves

by participants. In line with [145], the set of DE rules is shown in Table 2.2.

Move types Details

Assertions
Statement, e.g. P, Q or compound statements e.g. P=>Q
“if P then Q”.

Questions
For instance, “Is it the case that P?” However, the ques-
tion raised by the agent is an effective attacking tech-
nique during dialogue.

Challenges

Such as, “Why P?” As a result, the agent challenges
the previous move by the opponent. This challenge tech-
nique can provide the agent with a chance to defeat the
opponent.

Withdrawals To withdrawal the statement P or “No commitment P”.

Resolution demands Resolution demand of statement P, “Resolve whether P”.

Table 2.2: Rules for DE move types

It can be assumed that the move types in Table 2.2 could handle most human

speech behaviour and enhance the agent’s ability to simulate human behaviour.

Yuan et al. [45] state that each party in the DE dialogue model has a commitment

store, which records what has been stated and accepted for each participant during

the dialogue. The commitment store contains two lists, an assertion list and a conces-

sion list. The assertion list is the proposition that the agent has stated, whereas the

concession list stores the statements that have been accepted. The rules for updating

the commitment store for each party are shown in Table 2.3 [45].
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Initial commitment
(CR0)

Nil value for each participant.

Withdrawals (CRW )
If statement P is withdrawn, it will not be included in
the move maker’s store.

Statements (CRS)
Assume that agent asserts statement P, which is in the
assertion list, ¬ P will be removed from the concession
list if it exists.

Defences (CRY S)

If the opponent asks “Why Q?” and the agent responds
with “P” and “P=> Q” is in the agent’s assertion list, then
“¬P” and “¬ (P=>Q)” have to be removed from the agent’s
concession list, if they exist.

Challenges (CRY )
If a statement “P” is followed by a challenge “P”, then “P”
has to be eliminated from the store of the move maker.

Table 2.3: Commitment rules

Likewise, Yuan et al. [45] identify dialogue rules for the DE model which each

participant has to adopt through use of the model:

1. RFROM : Each participant or agent can make one of the permitted types of

move in turn.

2. RREPST AT : Mutual commitment might not be asserted until they have an-

swered the question or challenge.

3. RQUEST : The possible answers for question P can be “P”, “¬P” or “No commit-

ment”.

4. RCHALL: “Why P?” can be answered by withdrawal of P, a statement to the

challenger or resolution demand for any commitments of the challenger which

imply P.

5. RRESOLV E: A resolution demand can happen only if the opponent has inconsis-

tent statements in the commitment store.

6. RRESOLUTION : A resolution demand has to be followed by withdrawal of one

of the offending conjuncts or an affirmation of the disputed consequent.
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7. RLEGALCHAL: The agent can challenge the opponent “Why P?” unless P is on

the assertion list of the opponent’s dialogue.

However, the most significant advantage of DE over the DC system is dealing

with fallacious arguments and common errors. During the experiment [145], other

fallacious issues were not found in the dialogue transcript, for instance, complex

questions and appeals to emotion. This is because the knowledge base (KB) for the

system was carefully constructed to avoid these kinds of issues [7].

2 .3.2 Strategy

This section discusses about the ways in which an agent can argue or make a move.

Some questions are likely to arise when an agent decides to argue with other agents,

such as, what argument does the agent put forward in order to persuade the other

agent [148]? Therefore it is suggested that an agent should consider collaboration

when arguing with other agents to solve problems. Hence, a dialogue system is based

on a protocol between agents that allow a set of possible moves for the agent to make

[149].

As the agent has different choices when arguing with another agent having a strat-

egy is essential to support decision making. The agent strategy outlined in [150] can

have a significant influence in two ways, namely the outcomes of the dialogue, such

as who will win, and the dialogue dynamics, such as, whether the agent will end the

dialogue in a small number of moves. As a result, strategies are important for an

agent to make a high quality argument contribution. Examples of strategies that

agents can use during argumentation include three level decisions [45, 151], game

theory [150], probability utility [88] and the hiding view strategy [150] which are

discussed below.

In [45, p. 10], the three level decisions strategy is used in the dialogue model the

levels are identified as:

1. “Retain or change the current focus”.

2. “Build one’s own view or demolish the user’s view”.
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3. “Select a method to fulfil the objective set at level 1 and 2”.

The level 1 decision refers to whether there should be a continuation of the attempt

to substantiate or undermine a particular proposition [45]. Moore states that the

current focus can be retained when answering the previous question [43], but it may

be possible to not directly address the user’s latest utterance while retaining the

focus [45].

The level 2 decision is used to build one’s own view or demolish the other view.

Building one’s own view means having a strategy for more support and evidence;

whereas, demolishing is having a strategy to find out how to remove the other’s evi-

dence. According to Yuan et al. [45, p. 11], demolishing and building can be explained

as follows:

1. “a goal directed plan of questions building the computer’s own view might

involve removing some unwanted responses from the user”.

2. “the computer is using a line of questions to build the case for P in order to

attack the user’s view ¬P”.

This brings to the question of whether the user should first build their own view or

demolish the other’s view? This is critical because it affects the way in which a move

is made to complete the dialogue for winning the game. Over all, there seems to be a

lack of clear evidence to suggest whether building or demolishing should occur first

[43]. However, in the system described in [45], priority is given to a building strategy

until the whole knowledge base has been explored. Also, the system should check

first whether level 3 is available and can be applied, in which case there is no need

for level 1 and level 2; whereas, if there is no level 3 then one can apply level 1 and

level 2.

Game theory is another strategy could potentially be used in a debating system. In

general, game theory can be defined as - a formal study of conflict and cooperation

[152]. The main idea behind this strategy is to undertake precise analysis of the

interaction, with the aim of predicting the outcome and mechanism design [150] (i.e.,

the design rules of the game). This will allow a self-interested agent to behave in the

37



CHAPTER 2. LITERATURE REVIEW

most suitable way. As a result, agents can use game theory to analyse an argument

position to choose how to move. A game strategy can be used in argumentation in

different ways:

1. The agent can use game theory to analyse the current argument situation to

choose the best strategy.

2. Designing the rules by using mechanism design, e.g. argumentation protocols

to achieve good argumentation behaviour.

Agents in argumentation play an argument game with each other, trying to win the

game by attacking. The winner is the one which maximises the more acceptable ar-

guments. Turning to another strategy, probability utility [6, 29] is used in argument

games like ARGUMENTO [29]. The main idea of this strategy is based on using

probabilistic analysis to select the next move, with a high probability of winning the

game.

Figure 2.8: Strategy based on probability

In Figure 2.8, the root node “p” is the first move of the argument made by an

opponent. Another agent calculates the branches of the sequences of nodes, some of

which will be a win (or defeat) by the opponent, and others will be a win (or defeat)

by the agent. The probability of each node will be calculated (0,1). If the agent moves

to the node that has the highest utility (1) up to the end of the sequence, it will win

38



2 . ARGUMENTATION

the game.

Last but not least is the hiding view strategy. In [150] it is claimed that hiding an

argument can be beneficial. To prove this let us consider three agents, A1 = a1,a4,a5

A2 = a2 and A3 = a3, as in Figure 2.9 of the argumentation graph.

Figure 2.9: Example of argumentation graph

If an agent A1 hides a1 then A1 will get two acceptable arguments, namely a4 and

a5. This kind of strategy allows an agent to maximise the number of acceptable

arguments, such as grounded extensions, which give the agent a greater opportunity

to win the game and win the argument. These hidden arguments come from the pri-

vate knowledge base of each agent, which is the third element of the dialogue system.

Strategy is important for agents to make high quality argument contributions.

Based on the state-of-art research in the area, most computerised dialogue systems,

such as Yuan et al.’s debating system [44, 45], adopt strategies by hard-wiring the

debating heuristics into the agent. The main problem with this is that an agent may

fail to deal with new dialogue situations that have not been coded and indeed it is

an impossible task given the dynamic nature of argumentation. It would therefore

be interesting to explore whether an agent could learn to adapt to a new dialogue

scenario, which would make the agent more flexible.

2 .3.3 Knowledge representation

The literature has examples of knowledge representation for dialogue systems.

Knowledge representation can be defined as expressing domain knowledge in a
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computer-tractable form so it can be used by an AI agent to perform well [153].

Knowledge representation is the way in which a computer expresses knowledge,

either using syntax or semantics. Syntax is the configuration of the components of

language constituting a valid sentence [153]; whereas, semantics concerns the facts

in the world that the sentence refers to. Toulmin’s model [132], as shown in Figure

2.10, is a model of argumentation that divides arguments into six component parts

which are claim, grounds, warrant, qualifier, rebuttal, and backing. Yuan [7] adopts

a modified version of Toulmin’s schema to provide a debating system such as the DE

dialogue model, as shown in Figure 2.11.

Figure 2.10: Argument schema of Toulmin (1958)

Gordon et al. [154] present Carneades, which is a formal, mathematical model of

argument structure and evaluation that considers the procedural and dialogical

aspects of argumentation. The main advantage of Carneades is that it is designed

to be an open integration framework for different kinds of argumentation, using

any kind of knowledge representation which is appropriate for the scheme. The

structure of Carneades is based on argument graphs which consist of nodes and

links representing propositions and inference relations between statements, res-

pectively. The graphs link a set of premises to a conclusion. These premises and

conclusions to arguments are statements about the world. Gordon et al. [154] argues

that the syntax of statements is not important, as they only require the ability to

determine if two statements are syntactically equal and in some way indicate the log-

ical complement of a statement. Figure 2.12 gives an example of an argument graph.

40



2 . ARGUMENTATION

Figure 2.11: DE dialogue model knowledge base architecture

Scheuer et al. [155] state that Carneades is aimed at legal argumentation and

uses a formal mathematical model to calculate and assign acceptability values to

propositions, supporting multiple proof standards. ArguMed has the same imple-

mentation for similar decision procedures, so that the argument system focuses on

the legal domain [155]. Hence, according to Verheij [156], ArguMed is a system

for computer-mediated defeasible argumentation with a template-based interface.

The main idea of ArguMed is that the user initialises the argument by filling in a

template. The system will keep track of the argument and the justification status of

the statement that has been made. Figure 2.13 shows the ArguMed interface.

ArguMed has three basic argument moves, making a statement, adding reason and

drawing a conclusion, as well as three main data structures, as follows:

1. Statements consisting of sentences.

2. Arguments consisting of a tree of statements, where the child node of each

statement node represents the reason.

3. Combining the reason with the conclusion.
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Figure 2.12: Argument graph

The system is flexible and easy to use [156], because it is based on a visual user

interface, which is more usable than a command-line interface.

It should be noted that in this thesis, the logic that is used is a propositional

logic, since it deals with a logic-based dialogue game. In argumentation theory, most

dialogue games adopt propositional logic [7, 42, 43, 46, 60, 66]. In the context of

argumentation, dealing with 1st order logic is more challenging than propositional

logic and this is therefore left for future work.

Before going deeper into the main topic of this research, which is agents learn-

ing how to argue, it would be fruitful to identify the methods of machine learning

which allow agents to learn.

3 Reinforcement learning

Machine learning is becoming increasingly significant as a key technology in a

number of engineering applications, as well as in studying scientific questions and
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Figure 2.13: ArguMed Interface

theoretical problems [157]. Machine learning occurs when a computer agent learns

from data. The main aim of machine learning is to improve the performance and

behaviour of the agent [35, 36, 158].

Machine learning is classified as supervised learning, unsupervised learning and

reinforcement learning. In supervised learning, the machine is given a set of example

labelled data points (x, y); it then aims to find a function f , in the allowed class of

functions, which maps to the examples [40, 159]. By contrast, unsupervised learning

gives the machine a set of unlabelled data x in order to find patterns [158, 160, 161].

The third type, reinforcement learning [38, 162] deals with sequential decision-

making problems, where the agent is able to interact with the environment to

compute a policy and maximise the cumulative reward [38, 40, 162–165]. There has

been an increasing interest in reinforcement learning, especially in the machine

learning and artificial intelligence communities [166].

There are a number of ways to allow an agent to learn, and reinforcement learn-

ing is a recent development in machine learning [167]. For the learning problem,
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reinforcement learning allows the agent to learn to control the system to maximise

the numerical values which have a long-term reward. Sutton and Barto [168, p. 1]

define reinforcement learning as “what to do – how to map situations to actions –

so as to maximise a numerical reward signal”. The agent is not told which actions

should be taken from the forms of machine learning, rather that it needs to explore

the policy “π” which yields the maximum cumulative reward by trying them out. In

reinforcement learning, agents have to interact with the environment by observing

states, taking actions and receiving rewards from the environment, as shown in

Figure 2.14.4

Figure 2.14: The agent-environment interaction in reinforcement learning

The agent in Figure 2.14 interacts with the environment by taking an action “at”

to change its current state from “st” to “st+1”. It receives a reward “r t” based on

whether it is a beneficial or non-beneficial action. The components of reinforcement

learning are the policy, the reward function, the value function and the model of the

environment, as shown in Table 2.4

The agent interacts with the environment to find the optimal action for each state,

with actions made by the agent affecting future states in the environment. Hence, an

agent is required to observe the environment while choosing an action for each state,

because the agent needs to react through experience [168]. Therefore, the agent’s

4Figure 2.14 is taken from David Silver’s lectures Lecture 1: Introduction to Reinforcement
Learning at http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
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Element Definition

Policy
Maps perceived states of the environment to actions to be
taken when in those states.

Reward function

Mapping each perceived state (state, action pair) of the envi-
ronment to a single numerical value, which is a reward that
denotes how good or bad a state is for the agent. The main
goal of reinforcement learning is to maximise the sum of the
reward received in the long-term.

Value function

The value of a state is the total amount of reward an agent can
expect to accumulate over time starting from that state and
following a given policy. It will specify what a good action is for
the agent in the long-term. The agent seeks actions that will
bring about states of the highest value, not the highest reward,
since what is required is actions that will obtain the highest
amount of cumulative reward in the long-term. There is a
difference between reward and value. A reward comes directly
from the environment, whereas values must be estimated and
re-estimated again from the sequence of observations an agent
makes over its entire lifetime.

Model of the envi-
ronment

Simulates the behaviour of the environment.

Table 2.4: Reinforcement learning elements

performance in achieving the goal will improve over time. A Markov Decision Process

(MDP) [162, 169] is used to represent the environment [162]. An MDP is an intu-

itive and essential formalism for decision-theoretic planning (DTP) [162, 170, 171],

reinforcement learning [162, 168, 172] and other learning problems in stochastic

domains.

An MDP is an environment model which has a set of states and actions which

control the system’s state [162]. Otterlo and Wiering [162] argue that controlling the

system’s state leads to improved performance, which is one of the goals of reinforce-

ment learning. Indeed, an MDP is standard for learning sequential decision making.

An MDP is used to represent a reinforcement learning problem and show the prob-
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lem in a tuple <S, A, T, R> [173], as shown in Table 2.5:

S States Can be whatever information is available to the agent.

A Actions Transfer the environment from one state to another.

T
Transition
function

Represents the probability [0,1] to move from s to s′ by
taking an action a which can be identified as T(s,a,s′)

R
Reward
function

R(s,a,s′) is a numerical reward value when action a is
taken, in state s and resulting in the next state s′.

Table 2.5: <S, A, T, R> tuple

The main goal of reinforcement learning is to work out the optimal policy (π∗)

through mapping states with optimal actions. For each state there has to be an

estimation with a value function (Vπ(S)), which captures how beneficial it will be for

the agent to apply an action in the current state [25]. The value function equation is

represented as [168]:

(2.1) Vπ(s)= Eπ[G t|St = s]= Eπ[
∞∑

k=0
γkRt+k+1|St = s]

Where Eπ denotes the expected value given the agent follows policy π; t is any time

step; and, γ is a discount factor (to determine the present value of future rewards),

γ ∈ [0,1]. Therefore, the main target of an MDP is to find the optimal policy (π∗)

which will lead to receiving the maximum reward.

There are two approaches to learning an optimal policy, model-based and model-

free [38]. These models help to identify the optimal policy, which is the main goal

of reinforcement learning. This research focuses on a model-free approach, as no

specific model or opponent for the reinforcement learning algorithm agent to play

against is assumed. Hence, reinforcement learning, with a free model method, pro-

vides different algorithms to solve reinforcement learning problems [168].

In this thesis a very wide and robust range of domains will be used, in the form of

the Q-learning algorithm [40, 174, 175]. A tabular approach, rather than a function
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approximation as more common in SARSA, is used [38]. The advantage of a tabular

representation of the Q function is that there are theoretical guarantees for conver-

gence to the optimum policy. With function approximation, this is normally not the

case. This algorithm allows the agent to learn by updating the expected Q-values.

The value is a state action pair to tell the agent which action it should take [40, 168].

It is an implicit method which can update the value after each iteration. The optimal

policy can then be determined. A Q-learning method can estimate state and action

value functions, as seen in the following equation:

(2.2) Q(St, At)←Q(St, At)+α[Rt+1 +γmax
a

Q(St+1,a)−Q(St, At)]

Agents use this equation in different iterations in order to achieve an optimal policy.

However, the exploration-exploitation trade-off, which is balanced to obtain the

optimal policy [162], should also be mentioned. This is one of the challenges in

reinforcement learning [168]; should an agent explore more policies to work out the

best action or should it reuse experiences to find which belief is the optimal policy

(exploit)? One of the approximate solutions is epsilon greedy (1-ε) [38]; actions are

chosen based on the epsilon greedy method, otherwise the agent chooses a random

action.

Since this research considers the generalisation approach after the reinforcement

learning agent is able to learn to argue, transfer learning should be discussed. This

is done in the following section.

3 .1 Transfer learning

Human learners have inherent methods of transferring knowledge between tasks [176].

Relevant knowledge from previous learning experiences is recognised and applied

when new tasks are encountered. Therefore, when a new task is related to the

preceding task, it can be handled more easily. Transfer learning can be defined as

taking knowledge from past learning assignments (source task) to enhance learning

in a new task (target task) [177].

In machine learning, transfer learning methods are often dependent on the ma-
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chine learning method of the original and target task(s), to the extent that they can

usually be considered extensions of those machine learning algorithms [176]. This

means transfer learning has recently become a common approach, as it can be used

in different tasks in machine learning, instead of addressing tasks independently as

previously. Transfer learning is currently developing methods to transfer experience

learned in a source task to improve learning in another fresh task [176].

Since reinforcement learning is one of the machine learning paradigms and is

used in this research to allow an agent to learn to argue, transfer learning could

be used to improve the speed of learning [178]. The main insight behind transfer

learning is generalisation between different tasks. Therefore, it would be beneficial

to use it to generalise for how an agent learns, so that it can argue in different tasks.

Transfer learning has significant advantages when used in reinforcement learn-

ing [178]. These are summarised as follows:

1. It brings significant achievements to challenging assignments which other

machine learning methods cannot deal with, for instance TD-Gammon [179],

helicopter control [180] and robot soccer keepaway [181].

2. It can be sustained by standard machine learning methods like rule induction

and classification.

3. Transfer techniques are powerful tools in accelerating learning [182, 183].

The main challenge in transfer learning concerns the evaluation of the transfer

method [178]. This is due to the availability of multiple measurement options and

algorithms that can assess the quality of the transferred knowledge. Measure-

ments suggested in the literature to evaluate transfer learning include: Jump-

start, Asymptotic Performance, Total Reward, Transfer Ratio and Time to Threshold

[178, 184, 185]. These measures are defined in more detail below (taken from [178])

(see Figure 2.15):

1. Jumpstart: The initial performance of an agent in a target task may be im-

proved by transfer from a source task.

48



3 . REINFORCEMENT LEARNING

2. Asymptotic Performance: The final learned performance of an agent in the

target task may be improved via transfer.

3. Total Reward: The total reward accumulated by an agent (i.e., the area under

the learning curve) may be improved if it uses transfer, compared to learning

without transfer.

4. Transfer Ratio: The ratio of the total reward accumulated by the transfer

learner and the total reward accumulated by the non-transfer learner.

5. Time to Threshold: The learning time needed by the agent to achieve a pre-

specified performance level may be reduced via knowledge transfer.

Figure 2.15: Transfer learning

[184, 186]

These metrics are used to evaluate the agent’s performance and can be used to

compare between with-transfer and without-transfer. Taylor and Stone [187] argue

that transfer learning is successful when the above metrics are considered in the

following manner:

1. Jumpstart is greater than zero.
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2. Asymptotic Performance and Total Reward are increased with transfer.

3. Transfer Ratio is greater than one.

4. Time to Threshold is reduced through transfer.

However, Taylor and Stone [178] argue that some of these metrics, such as transfer

ratio, are related to the reward structure of the target task. Due to this, transfer ratio

will not be used in the current work but considered for future work. Other metrics,

however, such as Jumpstart, Asymptotic Performance and Time to Thresholdthat

are used for evaluation of transfer learning are suitable for this research and will

therefore be considered. These offer simplicity and easy assessment using a graph to

compare the reinforcement learning agents‘ performance with transfer learning and

without.

Tylor and Stone [178] outline features that would enable an agent to experience

successful transfer learning between tasks as follows:

1. Allowed task differences: Transfer learning can occur between tasks that have

different states, actions, goal states and reward functions.

2. Source task selection: The transfer learning algorithm should allow the agent

to learn from a source task then transfer it to target task. The easiest way to

select a source task for a specified target assignment is to suppose that only

one source task has been learned by the agent and ensure that it is used by

the agent for transfer. Nevertheless, when the source task is selected, it cannot

be guaranteed that it will be useful for transfer.

3. Transferred knowledge: Knowledge can be transferred as different types such

as low level knowledge i.e state and action or high level knowledge e.g impor-

tant features for learning. Such information might help the agent learn in the

target task.

4. Task mappings: Source and target tasks should have the same states and

actions with the same semantic meaning in both tasks. An agent should then

be able to learn one task. Agents can learn a task then significantly decrease

the time it takes to learn in another semantically similar task [188].
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5. Allowed learners: The agent should use the same learning method in both

tasks such as temporal difference, a common method in the literature, similarly

to Q-learning.

These methods explain how to apply transfer learning between the source task and

target task which will be discussed and implemented in Chapter 7.

4 Reinforcement learning for argumentation

For an agent to learn how to argue by using reinforcement learning, the first thing

that needs to be identified is the dialogue model which will be used for learning. It

would be interesting to engage an agent in an argument game based on an abstract

argumentation system such as Dung semantics [11, 28], followed by dialogue game

based argumentation [7, 44–46]. Reinforcement learning could lead to a promising

paradigm for learning policies in the argumentation domain [189]. This section

considers some of the related literature that combines reinforcement learning with

argumentation. Exploring how to make an agent learn to argue using reinforcement

learning is the main purpose of this research. To achieve this, knowledge of the

states, actions and rewards which allow the agent to make decisions is necessary.

We will begin this by examining some of the key literature covering research on this

subject.

In recent years, there has been an increasing interest to apply reinforcement learn-

ing to argumentation. Argumentation and negotiation are different types of dialogue

that are used for agent communication [30]. Negotiation between agents is an inter-

action with conflicting interests that aims to strike a deal; whereas, argumentation

is about persuading the opponents’ of a point of view in a conflict of opinions scenario.

Most research focuses on negotiation [190]. At this juncture, Dung [28] clarifica-

tion provides a clear distinction between negotiation and argumentation. According

to this, negotiation is the operational process used to seek a solution, while argu-

mentation is used to resolve a conflict. As a result, there is no negotiation without

argumentation. In other words, argumentation is an integral part of negotiation [28].
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Georgila and Traum [189] apply reinforcement learning in the agent to learn negoti-

ation and discover the policy in different situations. The main idea of their system is

to find agreement between the agent and the user in regards to a farm, aiming to

agree on the most suitable temperature for the farm. Georgila and Traum [189] used

a simulated user to train on a spoken dialogue corpus in the negotiation domain and

then tweaked across specific cultural norms using manual rules, because the corpus

does not contain culturally specific information. After evaluation, the results were

consistent and the policy had been learned.

Likewise, models of negotiation based on a Partially Observable Markov Decision

Process (POMDP) between a seller and a buyer are presented in [191]. Here, the

main advantages and disadvantages of applying reinforcement learning in a negotia-

tion between the seller’s agent and the buyer’s agent are discussed and presented

as:

1. The approach is decentralised, each agent solves their own POMDP model

while maintaining a belief about another agent.

2. POMDPs provide a natural method to capture the sequential nature of the

process, while incorporating the new observed data, e.g. another agent’s action.

In addition, POMDPs allow methods to improve an agent’s belief about other

agents.

3. POMDPs can incorporate the effect of cultural factors in a natural way.

By contrast, another challenge [191] is how to identify the tuple {S, A,T,Ω,O,R}

where S is the state, A is the action, T is the transition function, Ω is a finite set

of observations, O is the observational function and R is the reward function. In

[192] non-cooperative sides in a trading dialogue are studied, whereas in [193] it

is related to reinforcement learning for learning negotiation policy in multi-agent

systems, compared to other research which applies only two agents. Georgila et al.

[193] express that to build a dialogue policy could be a challenging task, particu-

larly for complex applications. This has motivated them to use machine learning

approaches to dialogue management and specifically focus on reinforcement learning

paradigm of dialogue policy. They used single-agent and multi-agent reinforcement
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learning for dialogue policy learning, with two agents interacting with each other

and learning at the same time. The main strength in this method was that it did

not require simulated users to train against or a corpora to learn from. However,

Georgila et al. [193] used a Q-learning algorithm against a stationary environment

and converged only for small state sizes. In addition, it was only tested with another

agent. However, testing with a human user may provide a fruitful results. It has

been previously shown in [194] that it is possible to learn a full dialogue policy by

interaction with a human user.

Reinforcement learning in relation to argumentation has been studied previously.

Jia [167] discusses on how the agent can learn argumentation rules in the dialogue

model. However, although Jia’s [167] study explored the agent learning dialogue

rules, they conducted this with regard to only a few rules and not all of them. More-

over, further work is still needed to understand how to make the agent learn a

strategy to argue and discover rewards when learning the strategy. Towards this,

understanding how an agent learns how to move is essential for making a signifi-

cant contribution to a high quality of argumentation. Rieser and Lemon [40] claim

that reinforcement learning handles the dialogue strategy moves as a sequential

optimisation problem. Along these lines, Chakrabarti and Luger [195] suggest that,

reinforcement learning is a successful approach to allow agents to learn and adopt

the optimal strategy in making a dialogue move [196].

Although most previous work has focused on two participants, agent-agent or agent-

user, dialogue games involving more than two participants are studied in [190][64].

This is an example of a multi-agent system. This approach is based on the premise

that, negotiations in the real world more commonly involve multiple parties. How-

ever, applying reinforcement learning to more than two agents can be complicated.

Evidence for this is presented in [197], in which the issues of applying reinforcement

learning in a multi-agent system in the same environment are identified. One of the

issues expressed here is coordination. Since all agents have the same objective for

maximising the reward, this can present challenges to maximising the same reward

signals. In addition, an agent could lack knowledge about other agents that could
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affect collaboration. Further, if agents have opposing goals, an optimal solution may

no longer exist that could also affect coordination. A dynamic environment which

requires multi-sequential decisions that are complex to apply accurately adds to

the challenges. Also, communication efficiency is impacted by agents that may have

limited information about other agents and may not observe the actions and rewards

of other agents. This could lead to an agent not being aware of the presence of other

agents. In view of these challenges involving multiple agents, the present research

will focus on interaction between two agents to study the learning of argumentation.

The study of multi-agents is left for future work.

Ontanon and Plaz [198] presented an argumentation-based framework for delibera-

tion between multi-agents in case base reasoning. This framework allows agents to

argue about the solution to a specific problem using which agents learn capabilities

that can be used to generate arguments and counterarguments. However, in this

case, the agent typically learns from an example and does not learn from scratch.

The example is fed by the framework which the learning agent then shares the

experience by building a committee to make decisions. Wardeh et al. [199] assert

that the framework in [198] is articulated, but it is similar to that proposed in

[199]. Plaza et al. [200] also state that even though the agent learned only very few

examples the accuracy was improved through argumentation.

To sum up, reinforcement learning helps to find an optimal action for each state to

solve a problem [40, 196]. By means of learning with reinforcement approach, the

agents will be able to become more flexible to adapt to new environments. This can

play a significant role in learning agents to argue. Also, by allowing agents to learn

the dialogue rules and how to move through the dialogue, the agent becomes more

efficient in making arguments through exploration. With respect to other researchers

who have studied this field, there are some areas in the literature which still require

further work. Such as, Jia’s work [167] focuses on learning some of the dialogue

rules, but not all of them. Issues in this include how to identify an appropriate state

and becoming aware of the type of move and the contents when the agent learns the

strategy of the dialogue. Since rewards define the way an agent will win the game,
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defining the reward function in a strategy is another important issue that needs

careful consideration. 5 In addition, motivating the agent to win the dialogue game

in the minimum number of moves should also be considered. Oren et al. [201] regard

confidentiality as a strategic concern. Devereux and Reed [202] support this strategy

as relevant in some persuasive dialogues, since sometimes an agent reveals more of

its KB than is necessary and such superfluity could be unacceptable in some contexts.

Other models for a dialogue system based on reinforcement learning for negoti-

ation between agents only have been built such as, sellers and buyers [193, 203–205].

Most focus on negotiation behaviour. For example, learning negotiation behaviours

are studied for a non-cooperative trading game [192] and [193] uses multi-agent

reinforcement learning to learn negotiation rules. In [203], dialogue policies were

learned from four negotiation scenarios for an agent aiming for negotiation with hu-

mans. However, it needs to work on better estimations for the opponent’s persuasion

strategy and to employ multi-agent reinforcement learning methods.

It is therefore of interest to study further on how an agent can learn argumentation

and explore strategies to argue with other agents. This will contribute towards the

development of argumentative learning agents.

5 Summary

This chapter reviews state-of-the art research in argumentation and reinforcement

learning. It shows that there is research in the area of argumentation that needs to

be developed by further work.

Dialogue systems should be sufficiently flexible to allow smooth interactions be-

tween agents when arguing with each other [81]. However, Yuan et al. state that

lack of model flexibility is one of the biggest limitations to agents making arguments

[95]. For instance, most dialogue systems have restrictive bipolar question types (i.e.

Yes and No) [132]. This may hinder fruitful arguments between agents in making a

5Winning here depends on the game rules, i.e an agent persuades its opponent to accept its point
of view.
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decision [206].

One issue with argumentation is how to argue effectively, which is related to arguing

strategies. A strategy is important for an agent to make a high quality argument

contribution. Based on state-of-art research in the area, most computerised dialogue

systems e.g. Yuan et al.’s debating system [44, 45] adopt strategies by hard-coding

the debating heuristics into the agent. The main problem with this is, an agent may

fail to deal with new dialogue situations that have not been coded, and indeed it is

an impossible task given the dynamic nature of argumentation.

Machine learning has an important role to play in meeting these challenges. One of

the popular machine learning approaches which involves agents is reinforcement

learning. This is the approach used in this research to allow agents to learn how

to argue and make moves. It allows them more flexibility in making an argument

through exploration trial and error, which is the core of the reinforcement learning

paradigm.

It is believed that learning can make agents more flexible in adapting to new

environments and new dialogue situations. However, in this research, we start

by using abstract argumentation and studying the consequences, followed by an

argumentation-based dialogue game.
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This chapter introduces ARGUMENTO+, which is a software based ab-

stract argumentation system that has been built using Q-learning approach

[1, 2, 28].

The primary reason behind the development of ARGUMENTO+ was to enable

RL agents to argue with other baseline agents. ARGUMENTO+ facilitates this and

increases the chance of winning more games. However, to improve their performance

and gain efficient strategies for winning arguments, RL agents have to engage in]p

arguments with other agents in a suitable environment. A study of literature re-

veals that, this is achieved through agents that are hard-wired to make moves and

heuristic strategies are built into them [44, 45]. The main issue with this approach

is that, an agent may not be able to deal with new dialogue situations that have not

been coded. Therefore, it is of interest in this research to make an agent learn how

to argue and to explore the optimal dialogue strategy on its own.

1 ARGUMENTO+

The ARGUMENTO+ system is a test-bed that was developed to test reinforcement

learning (RL) agents. ARGUMENTO+ is named after its predecessor ARGUMENTO

[6]. ARGUMENTO designs and implements an Arguing Agents Competition (AAC),

which is an open competitive environment in which heterogeneous agents are pitched

against each other. The aim of ARGUMENTO was to promote research into the

design and implementation of arguing software agents that could be extended to the

public domain such as, educational, legal and social interactions [6]. ARGUMENTO

adopts the argument game which was presented in Wooldridge [25, p. 153-154]

for reasons of simplicity in enabling players to easily follow the game rules [29].

ARGUMENTO adopts two levels of strategies - random strategy and probability

utility strategy [29]. When developing strategies for computational agents to play

with human users, there is a genuine concern that the superior memory of a machine

compared to human players may compromise the fairness of the game [144] and lead

to users becoming frustrated by being defeated.
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In the literature, agents adopt different strategies in computational dialectic systems.

For instance, Yuan [7] uses Moore’s three level decision making [43] for allowing an

agent to be involved in academic debate. Amgoud and Maudet [207] build on Moore’s

theory, and present a strategy model based on the prudence of an agent. This strategy

is particularly applied when it comes to disclosing the arguments and the accept-

ability rates that are provided to those arguments. For other dialogue types, other

strategies are used in the agents [6]. For example, Grasso et al. [104] adopt a schema

derived from Perelman and Olbrechts-Tyteca [208] in a nutritional advice giving

system. They presented an agent ‘Daphne’ capable of providing advice on a contro-

versial subject using dialectical argumentative techniques [104]. Ravenscroft and

Pilkington [135, p. 283] use "a repertoire of legitimate tactics available for addressing

common conceptual difficulties". Picking the smallest argument, is another strategy

that is adopted by Amgoud and Maudet in choosing how to move [207]. Freeman and

Farley [209] define the ordering of heuristics as guidelines for choosing moves in an

argument. Whereas Oren et al. [201] suggest a heuristic for argumentation, based

on reducing the cost of information revealed to other participants in the dialogue.

Whereas, Oren et al. in [210] address strategic possibilities when the information

received by an agent varies in confidentiality. Yuan et al. [29] argue that noting the

details could be so highly confidential that the cost of disclosing it in the course of an

argumentation dialogue would outweigh the value of winning the dialogue. To which,

Oren et al. [210] provided a heuristic strategy in argumentation to enhance an agent

by taking into account these costs associated with confidentiality. In ARGUMENTO

Yuan et al. [6, 29] proposed two levels of strategies for a computational agent to

make a decision which are a random strategy and probability utility based strategy.

In ARGUMENTO+ an RL agent with three different opponent baseline agents

was designed. These baseline agents are adopted from agents in ARGUMENTO

that were already built by Yuan et al. [6, 29]. These three agents use three differ-

ent strategies for making dialogue moves. The names of these agents are Random,

Maximum-probability utility and Minimum-probability utility. The RL agent plays

against these three baseline agents for evaluation purposes. The RL agent aims to

maximise the cumulative reward by winning more games. Hence, if the RL agent
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wins the game, it receives rewards based on the number of acceptable arguments,

namely grounded extensions. The reasons for adopting grounded extensions are

discussed in Section 2 .1.

The key things that an RL agent needs to identify are, states, actions, environ-

ment and the reward. The classic state representation used in [211] and [11] is

adopted, where states are defined by nodes in the argumentation graph and actions

are the attack relations. To discuss ARGUMENTO+ the definition of other agents

(opponents) needs to be clear, and these are discussed below.

1 .1 Random agent

The Random Agent is one among the three baseline agents. The Random Agent

makes moves based on random choice and uses a pseudo-random number to select an

argument from the set of legally available argument moves following the algorithm

below.

chooseRandomAction ( argument , gameMoves ) :

availablemoves = getAvailableMove ( )

return randomly newArg∈ availablemoves and newArg ∉ gameMoves

A legal argument can be defined as an argument α such that: α ∈ A∧α→ top[D]∧α ∉
D. Where α is an element in the set; A is the argumentation system; D represents

the stack of dialogue history; top[D] is the last move in the dialogue history [6]. The

relationship above means that an argument α is said to be a valid argument if it

attacks the last move contained in the game dialogue history. While also ensuring

that the argument itself has not been used in the game and that the game rules

have not been broken.

For the Random Agent, the algorithm has to first traverse A to collect all argu-

ments attacking top[D] and then traverse the game dialogue history to ensure that

this argument (α) has not been used in the game.
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1 .2 Max-probability utility agent

Max-probability utility agent is the other baseline agent in ARGUMENTO+ that

uses the probability-utility strategy. The probability-utility based strategy has been

previously used in ARGUMENTO [6]. This enables an agent to choose a legal move

based on the highest probability of winning an abstract argumentation game. First a

dialogue tree T is generated at a0 using the algorithm in Figure 3.1 taken from [6]:

Figure 3.1: A dialogue tree algorithm [6]

Where a0 is the first argument made by the opponent; A is the argumentation

system; π[a] refers to the parent of a; Q is the queue data structure; ENQUEUE

and DEQUEUE are queue operations; D[v] refers to the dialogue history up to the

point of v; and, ⇐ refers to assignment. A dialogue tree is generated (Figure 3.2)

after running the algorithm in Figure 3.1 DialogueT reeG enerator(A, p), where A

is the argumentation system and p is the first move made by the opponent.

Each path from the root to the leaf is a possible sequence of dialogues [6], where

some sequences lead to a win when the utility value=1 and others lead to a loss when

the utility value=0.1 The agent is designed to choose a move based on the highest

probability of winning. The utility in dialogue tree T for each node is then computed

using an algorithm taken from Yuan et al. [6] (shown in Figure 3.3).

Yuan et al. [6] clarify that, Pa is a probability utility of node a; children[a] is the

set of children of node a; and, depth[a] is the depth of node a. The utility value for
1The sequence of paths leading to a win is still probability, since it is not guaranteed to win based

on the strategy of the opponent.
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Figure 3.2: A dialogue tree [6]

Figure 3.3: Computing probability utility algorithm [6]

a leaf is computed against its depth (see lines 2 and 3 in Figure 3.3). An internal

node’s utility value is the sum of its children’s utility values. As shown in Figure 3.3,

lines 4 and 5 are divided by the number of their children in line 6. The probabilities

of its children occurring are equal. The utility values for each node are computed

using the probability utility algorithm (Figure 3.3), as shown in Figure 3.4.

Figure 3.4 shows an example of the resulting dialogue tree with utility values for

each node. The two branches on the left are winning branches for the agent and the

probability utility value is therefore 1. The branch on the right is a losing branch

and its value is 0 [6].
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Figure 3.4: A dialogue tree with utility values [6]

1 .3 Min-probability utility agent

This agent aims to choose the minimum probability of the parent of the argument. It

uses the same strategy as the max-probability utility agent, but instead of choosing

the maximum probability it chooses the minimum probability. This agent was added

for evaluation purposes to ensure that the RL agent could learn and outperform in

different agent strategies.

2 Reinforcement learning agent

The reinforcement learning agent adopts the widely used reinforcement learning

approach and is based on the Q-learning algorithm (Equation 2.2) [38] that has

been discussed in Section 3 . The aim of this agent is to learn from experience and

map each state with an optimal action by selecting the maximum value from the

Q-table, which is updated after each episode. The state, action and reward have to

be identified to make an agent learn to argue. In the state representation, state

is defined as nodes in the argumentation graph, and action as the attack relation

between arguments [11, 211].

The immediate reward in Equation 2.2 r t+1 is equal to zero, since a delayed re-

ward is used. As the grounded extensions contain acceptable arguments that can

be put forward by the agent, the delayed reward decides the number of acceptable

arguments in the grounded extensions. After identifying state, action and reward; ex-

perimental validation of whether the RL agent was able to learn to argue with other
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baseline agents is required. The initial state, as mentioned above, is the current

argument [11, 211] and the action will be the possible attacking arguments.

3 Experiments and results

To examine the performance and efficiency of the RL agent, it is necessary to conduct

experiments. The baseline agents discussed above can be paired up with an RL agent

to facilitate the evaluation. ARGUMENTO+ has to first generate a text file which

contains an argumentation graph with nodes and edges to upload the argumentation

graph for simplicity. The argumentation graph in Figure 3.8 is adopted, since it is

a common argumentation graph example [11, 25, 85, 212] with a set of arguments

defined as, Arg = {a,b, c,d, e, f , g,h, i, j,k, l,m,n, p, q} and relations R ={ (c,d), (c,a),

(d,a), (d,e), (d,b), (e,b), (g,d), (g,p), (h,a), (h,e), (h,p), (i,j), (i,n), (i,e), (j,i), (j,n), (k,l),

(l,m), (m,k), (m,c), (n,p), (n,f), (p,l), (p,c),(p,q) } 2. ARGUMENTO+ reads the graph

from the text file and asks to play the argument game between the RL agent and one

of the baseline agents. The discounted factor is required to be configured between 0

and 1, which is believed to have a direct impact on agent behaviour. It then needs

to choose which opponent should play against the RL agent and set the simulation

running.

The data is saved in two files, a .csv file which contains the final rewards for each

agent and a text file in which the reinforcement learning agent stores the final

Q-table data. The main objective of the experiment is to evaluate how the RL agent

behaves and how effective the learning is. The data is collected from three different

game settings:

1. RL agent against Random agent.

2. RL agent against Max-probability utility agent.

3. RL agent against Min-probability utility agent.

The simulation configuration is:

2For instance (c,d) means c attacks d
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1. For episode 0, epsilon3 ε= 0. Run the game 10 times then take the average of

the final rewards. At this stage, all values in the Q-table are zeros.

2. The agent starts the exploration and updates the Q-table accordingly.

3. For every 10th episode of exploration, epsilon is set to 0 to evaluate the agent’s

policy, and an evaluation is made by running the game 10 times then taking

an average of the final rewards for each episode.

30,000 game episodes were run against each of the game settings. To allow the

rewards to be displayed in a graph, the average final rewards for every 500 episodes

was taken. The performance for both agents in each setting are plotted in Figures

3.5, 3.6 and 3.7 respectively.

The Figure 3.5 shows that the RL agent learns quickly from the beginning to the

1,500th episode. After that, the rate of learning is found to decrease. It outperforms

the Max-probability agent at some points as also seen in Figure 3.5. Ultimately, the

performance of the Max-probability agent was found to drop, which can also be seen

in the the learning curve. However, the mean reward of RL agent was 0.68 and the

standard deviation was 0.062 while the mean reward of MaxProb agent was 0.82

and standard deviation was 0.053 indicating that the MaxPRob agent outperformed

the RL agent.

Likewise, the learning curve is also recognised when playing against the Min-

probability agent, as shown in Figure 3.6. The reward stabilises at around 1.3 for

the rest of the episodes. After the learning phase, the performance of the opponent

agent rapidly decreases to 0.6 indicating that the performance of learning agent was

better. The mean reward of RL agent was 1.18 and standard deviation was 0.062

while the mean of MinProb agent was 0.56 and standard deviation was 0.093.

However, when the RL agent played against a Random agent, the rewards of the

learning agent dropped from episode 0 (rewards = 1.15) to 1,000 (rewards = 0.8). It

then found it hard to learn and the performance was found to consistently reduce

3Epsilon ε is one of the approximate solutions which calls epsilon greedy (1-ε) [38], where an
action is chosen based on the epsilon greedy method, otherwise the agent chooses a random action.
When ε=0 the agent is exploited not exploring.
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Figure 3.5: RL agent against Max probability agent (1500 episodes in the lower side)
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Figure 3.6: RL agent against Min probability agent (1500 episodes in the lower side)
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Figure 3.7: RL agent VS Random agent

(see Figure 3.7). The final mean reward of the RL agent was 0.85 with a standard

deviation was 0.064, while, the mean reward of Random agent was 1.15 and standard

deviation was 0.079.

To investigate this the starting argument and the agent that is meant to start

the game was prefixed. Argument “b” was then put in the argumentation graph as

the initial argument (as shown in Figure 3.8), while the RL agent always started the

game.

Unfortunately, the performance of the RL agent against the Random Agent con-

tinued to be unsatisfactory, as shown in Figure 3.7. The negative results from the

experiment encouraged more analysis of the game scenario. The analysis showed

that the problem was related to state representation in the current RL agent’s design.

For example, Figure 3.9 shows all possible argumentation paths that are rooted at

argument “b”, when the Random agent chooses argument “e”, the RL agent should

choose the argument with the maximum Q-value from “d”, “i” and “h” in the Q-table

in Figure 3.10. In this case, the Q-values for “d”, “i” and “h” are 12.17, 19.38 and
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Figure 3.8: Example of abstract argumentation system

2.03 respectively, so argument “i” will be chosen because it contains the highest

value. However, argument “i” will cause the RL agent to lose the game because the

last move is the Random agent’s. Instead, if argument “h”, with the lowest Q-value

is chosen, it will lead to a win.

Therefore, the question is, why a bad move like picking argument “i” in this case

has a high Q-value. The reason for that is that there are some other occurrences of

state “i” in the tree which give a much better payoff, and on aggregation, they lift the

Q-value for state “i”. Fundamentally, the classical approach to state representation

[211], which is adopted here by the RL agent, falls short for the argumentation

domain.

To address this issue, a more sophisticated dialogue state representation is required

that ensures that a state is not repeated. After the previous experiments, it was

found that combining the level of the tree with the current and previous arguments

was more useful in helping the RL agent to recognise the correct action in different

states. In addition, each agent has a unique ID which could also help to identify state

representation. Therefore, new state representations were proposed, (levelO f Tree,

69



CHAPTER 3. REINFORCEMENT LEARNING FOR ABSTRACT
ARGUMENTATION BUILDING ON ARGUMENTO+

Figure 3.9: Arguments tree rooted at argument "b"

Figure 3.10: The Q-table

agentID, currentArgument, previousArgument). It was found that these state

representations helped the RL agent to improve performance. Hence, the results

were promising and it can clearly be seen that the RL agents perform better against

different baseline agents. This is demonstrated in Figures 3.11, 3.12 and 3.13 where

the performance of the RL agent is shown in blue and the baseline agent shown in

orange.

The RL agent performs better and learns better with this new dialogue state repre-

sentation. In addition, it should be pointed out that we discovered that the learning
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Figure 3.11: RL agent against Max-Probability agent

rate and the discounted factor had a positive relationship. This means that when

the learning rate is close to 1, the same as the discounted factor, the RL agent will

perform better. This be seen in Figure 3.14. The reason for the positive relationship

is due to the agent being interested in the delayed reward to accumulate more

acceptable arguments in the longer term.

Based on the results from the RL agent playing the argument game against different

baseline agents, there are factors which may impact the RL agent’s performance.

Initially, the discounted factor was considered to be close to one, as the delayed

reward was used. We were interested in using the delayed reward to help the RL

agent learn to win more games and consequently learn to argue by maximising the

cumulative reward. Another impact on performance is strategy. The RL agent adopts

the Q-learning algorithm, as shown in Equation 2.2, choosing an action based on

the maximum Q-value in the Q-table. State representation has a significant impact

on the RL agent’s performance is due to the Q-value. Comparing the classical state

representation [11, 211] and the proposed state representation introduced in this

chapter, the latter has a significant impact on the RL agent’s performance. This is
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Figure 3.12: RL agent against Min-Probability agent

because the RL agent can distinguish between different states, unlike the classical

one.

The Augmented Dickey-Fuller (ADF) test was used to assess whether the find-

ings of the performance of the RL agent with other baseline agents were statistically

significant and not due to chance. The ADF test is appropriate since it assesses where

the time series is a stationary. The time series is considered stationary if it oscillates

around a constant mean. Whereas the time series is considered non-stationary if it

has a downward or upward trend. However, for doing further statistical analysis it

is necessary to ensure that the time series is stationary.

After doing the stationary test and if the data is found to be stationary, a non-

parametric test will be used to test the significance of the findings. In our case, the

Mann-Whitney U test is used, which is a non-parametric test and it assumes that the

data is not normally distributed. Hence, The Mann-Whitney U test is appropriate if

the normality assumption is not valid.
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Figure 3.13: RL agent against Random agent

In the following subsections will perform the stationary and non-parametric tests to

assess the significance of findings for the RL agent against baseline agents.

3 .1 MaxProb Agent Results

The results from the game between the MaxProb and RL agents from episode 1,000

to 29,900 are presented in Figure 3.11. These results were tested for statistical

significance. In Figure 3.11 it can be observed that the rewards of the RL agent

increase after a few hundred episodes and then stabilise. Whereas, the rewards

of the MaxProb agent decrease after a few hundred episodes then stabilise. The

ADF unit root test was used to test whether the reward obtained after episode 1000

was stationary and constant, with the null hypothesis that there exists a unit root

against the alternative hypothesis of stationarity which can be described as:

H0: That there exists a unit root (non-stationarity).

H1: There is stationarity.

An ADF test on the RL agent’s rewards showed that the null hypothesis of a unit

root existing could be rejected (p−value = 0 (less than the significance level 0.05)),
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Table 3.1: Summary statistics for ADF test

Agent Mean
Standard
devia-
tion

ADF
Statistic P-value

Critical
value
1%

Critical
value
5%

Critical
value
10%

RL agent 1.066 0.087 -51.920 0 -3.433 -2.863 -2.567
MaxProb
agent

0.736 0.061 -51.785 0 -3.433 -2.863 -2.567

ADF statistics (−51.920)< critical value (−2.863) so the H0 is rejected, which means

the time series is stationary (see Table 3.1). Therefore, the rewards of the RL agent

were stationary.

An ADF test on the MaxProb agent rewards showed the null hypothesis of the

existence of a unit root could be rejected (p−value = 0 < (less than the significance

level 0.05)), ADF statistics (−51.785)< critical value (−2.863). So the H0 is rejected,

which means the time series is stationary (Table 3.1). Therefore, the rewards of

MaxProb agent were also stationary.

Table 3.2: Rewards of RL agent and MaxProb agent at the last episode

Trials for the last episode
Agent 1 2 3 4 5 6 7 8 9 10
RL agent 1.09 1.08 1.15 1.03 0.96 1.15 1.17 0.93 1.11 1.01
MaxProb
agent

0.75 0.64 0.67 0.77 0.76 0.71 0.69 0.84 0.8 0.73

Table 3.3: Basic statistics RL agent and MaxProb agent at the last episode

Agent Mean Standard deviation Median
RL agent 1.068 0.083 1.085

MaxProb agent 0.736 0.061 0.74

In Table 3.3 the higher mean and median suggest the RL agent had higher rewards

than the MaxProb agent. A Mann-Whitney U was used to test the null hypothesis

that the two groups are homogeneous against the alternative hypothesis that the

RL agent had higher rewards than MaxProb agent.

H0: The two groups are homogeneous.

H1: The RL agent had higher rewards than MaxProb agent.
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The Mann-Whitney U (two-tailed) test showed that the null hypothesis suggesting

the two groups are homogeneous could be rejected with (p− value = 0 (less than

the significance level 0.05)). Therefore, the RL agent had higher rewards than the

MaxProb agent.

3 .2 MinProb Agent Results

The results from the game between the MinProb and RL agents from episode 1,000

to 29,900 are presented in Figure 3.12. These results were tested for statistical

significance. In Figure 3.12 it can be observed that the rewards of the RL agent

increase after a few hundred episodes then stabilise. Whereas, the rewards of the

MinProb agent decrease after a few hundred episodes and then stabilise. The ADF

unit root test was used to test whether the reward obtained after episode 1,000

was stationary and constant, with the null hypothesis that there exists a unit root

against the alternative hypothesis of stationary.

H0: That there exists a unit root (non-stationarity).

H1: There is stationarity.

Table 3.4: Summary statistics for ADF test

Agent Mean
Standard
devia-
tion

ADF
Statistic P-value

Critical
value
1%

Critical
value
5%

Critical
value
10%

RL agent 1.824 0.129 -53.757 0 -3.433 -2.863 -2.567
MinProb
agent

0.663 0.104 -54.179 0 -3.433 -2.863 -2.567

An ADF test on the RL agent rewards showed that the null hypothesis of a unit

root existing could be rejected with (p− value = 0 < p significant at 0.05), ADF

statistics (−53.757)< critical value (−2.863). The H0 is rejected, which means the

time series is stationary (Table 3.4). Therefore, the RL agent rewards were stationary.

An ADF test on the rewards of the MinProb agent show that the null hypothe-

sis (the existence of a unit root) could be rejected with (p−value = 0 (less than the

significance level 0.05)), ADF statistics (−54.179)< critical value (−2.863). The H0
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is rejected, which means that the time series is stationary (Table 3.4). Therefore, the

rewards of the MinProb agent were stationary.

Table 3.5: Rewards of RL agent and MinProb agent at the last episode

Trials for the last episode
Agent 1 2 3 4 5 6 7 8 9 10
RL agent 1.94 2.05 1.7 1.99 1.77 1.78 1.91 1.78 1.68 1.76
MinProb
agent

0.64 0.52 0.71 0.54 0.78 0.56 0.67 0.63 0.81 0.77

Table 3.6: Basic statistics RL agent and MinProb agent at the last episode

Agent Mean Standard deviation Median
RL agent 1.836 0.127 1.78

MinProb agent 0.663 0.104 0.655

In Table 3.6 the higher mean and median of the RL agent suggest the RL agent had

higher rewards. A Mann-Whitney U was used to test the null hypothesis the two

groups are homogeneous against the alternative hypothesis that the RL agent had

higher rewards than the MinProb agent.

H0: The two groups are homogeneous.

H1: The RL agent had higher rewards than the MinProb agent.

A Mann-Whitney U test showed the null hypothesis that the two groups are homoge-

neous could be rejected with (p− value = 0 (less than the significance level 0.05)).

Therefore, the RL agent had higher rewards than the MinProb agent.
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3 .3 Random Agent Results

The results from the game between the Random and RL agents from episode 1,000

to 29,900 are presented in Figure 3.13. These results were tested for statistical

significance. In Figure 3.12 it can be observed that the rewards of the RL agent

increase after a few hundred episodes then stabilise. Whereas, the rewards of the

MinProb agent decrease after a few hundred episodes then stabilise. The ADF

unit root test was used to test whether the reward obtained after episode 1,000

was stationary and constant, with the null hypothesis that there exists a unit root

against the alternative hypothesis of stationary.

H0: That there exists a unit root (non-stationarity).

H1: There is stationarity.

Table 3.7: Summary statistics for ADF test

Agent Mean
Standard
devia-
tion

ADF
Statistic P-value

Critical
value
1%

Critical
value
5%

Critical
value
10%

RL agent 1.408 0.121 -53.322 0 -3.433 -2.863 -2.567
Random
agent

0.812 0.086 -52.245 0 -3.433 -2.863 -2.567

An ADF test on the rewards of the RL agent showed the null hypothesis (existence

of a unit root) could be rejected with (p−value = 0 (less than the significance level

0.05)), ADF statistics (−53.322)< critical value (−2.863). The H0 is rejected, which

means the time series is stationary (Table 3.7). Therefore, the rewards of the RL

agent were stationary.

An ADF test on the rewards of the Random agent showed the null hypothesis

of existence of a unit root could be rejected with (p−value = 0 (less than the signifi-

cance level 0.05)). Therefore, the rewards of the Random agent were stationary, ADF

statistics (−52.245) < critical value (−2.863). Therefore, the H0 is rejected, which

means the time series is stationary (Table 3.7). Therefore, the rewards of the Random

agent were stationary.
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Table 3.8: Rewards of RL agent and Random agent at the last episode

Trials for the last episode
Agent 1 2 3 4 5 6 7 8 9 10
RL agent 1.45 1.47 1.4 1.4 1.36 1.28 1.71 1.33 1.32 1.36
Random
agent

0.87 0.88 0.83 0.77 0.87 0.87 0.62 0.87 0.85 0.75

Table 3.9: Basic statistics RL agent and Random agent at the last episode

Agent Mean Standard deviation Median
RL agent 1.408 0.121 1.38

Random agent 0.818 0.083 0.86

In Table 3.9 the higher mean and median suggest the RL agent had higher rewards.

A Mann-Whitney U test was used to test the null hypothesis the two groups are

homogeneous against the alternative hypothesis the RL agent had higher rewards

than Random agent.

H0: The two groups are homogeneous.

H1: The RL agent had higher rewards than the Random agent.

A Mann-Whitney U test showed the null hypothesis the two groups are homogeneous

could be rejected with (p−value = 0 (less than the significance level 0.05)). Therefore,

the RL agent had higher rewards than the Random agent.

So far, the RL agent has learnt and performed in the same argumentation graph.

When the RL agent faces a new argument graph, it has to learn from start. It would

be ideal if the RL agent could transfer the experience that it has gained to a different

argument graph, which would lead to generalising the policy. Transferring experi-

ence will speed up learning and improve performance [178]. This will be discussed

in the next chapter.
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Figure 3.14: Learning rate and discounted factor correlation
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4 Summary

In this chapter the design of ARGUMENTO+ and how the RL agent was able to

learn to argue using the Q-learning approach is discussed. Initially, classical state

representation was adopted, based on state-of-the-art processes and the number

of arguments in the grounded extension used as the long-term reward. A number

of experiments were conducted by engaging the RL agent with different baseline

agents. Overall, the results have been encouraging and indicate that the RL agent

learns well.

The experiments also reveal some challenges in state representation in the ar-

gumentation domain. A new state representation was demonstrated, which showed

promising results in making each state unique. In addition, it was found that the

new state representation helps the RL agent to improve its performance.

Finally, this approach learns and performs in the same argumentation graph. There-

fore, if the RL agent plays in a new argumentation graph then it has to learn from

the start. Hoever, it would be worthwhile if the RL agent could transfer its experi-

ence from one domain to another. This could lead to an insight into generalisation

approaches for generalising the policy of Q-value estimates between states and apply

them to different argumentation graphs.
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In the previous chapter, the the ability to learn to argue for an RL agent with

two abstract argumentation systems was successfully demonstrated [1, 2].

However, in this case, the agent learnt to argue in a specific argumentation

graph. As a step towards generalising the policy [3], we extend on this work to

investigate whether the RL agent will be able to transfer knowledge1 from one

domain to another. By not having to learn from scratch each time, this will enable

the RL agent to reuse the knowledge and policies learnt in one argumentation graph

to apply them to another. Towards this, the current chapter (Chapter 4)) describes

our work on policy generalisation and knowledge transfer.

1 Policy generalisation

According to Mitchell [36], a system is known to exhibit learning when its perfor-

mance tends to improve with experience. Our results described in the previous

chapter (Chapter 3) are consistent with this statement where the RL agent demon-

strated an ability to learn from experience and showed improvement performance.

While this is promising, Watson and Szathmáry [213] suggest that this quality of

learning from past experience will have added benefits if it can be generalised and

applied to scenarios that are different from where the learning occurred. Along

these lines, we extend our current work of learning argumentation in RL agents to

generalisation of policy approach.

Policy generalisation refers to generalisation of the state action map which has

been previously learnt by the RL agent. This allows the RL agent to adapt the policy

learnt in one domain to a different domain. In order to do that, the RL agent needs

to identify the argument patterns such as state-action pairs which could be applied

within different argumentation graphs and help the agent to transfer experience to

different domains.

Since the RL agent is dealing with an abstract argumentation system that only

contains arguments and binary relations for attacking, it is important to look into

1Transferring knowledge is used to improve a learner in a new domain by transferring information
from a related domain [182] (discussed in more detail in Section 3 .1)
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the attack relation between arguments to find any useful features that will help to

generalise learning from one argumentation graph to another. These features could

be useful for argument representation and enable the RL agent to know some of the

patterns from a specific domain which could be adapted in other domains.

Along these lines, our work considered the following features: the number of at-

tackers and the number of immediately winning attackers, to represent an argument

action [3]. In order to work on these features, the state features and ways to represent

the state needed to be identified.

2 State features

Since attack relations have been considered as a useful pattern that allows the RL

agent to transfer experience between different argumentation graphs, it is suggested

that the following state representation be applied for achieving generalisation:

(levelOfTree, agentID, numberOfAttackers, numberOfUndefeatedAttackers)

instead of

(levelOfTree, agentID, currentArgument, previousArgument)

In this case, the Q-table will not only deal with arguments, such as “a” or “b”, but also

consider variables which are the number of attackers and the number of undefeated

attackers in different nodes or arguments.

In the example shown in Figure 4.1, arguments C and D have zero attackers, argu-

ment B has one immediately winning attacker, and argument A has two attackers

and one immediately winning attacker.

3 Generalisation method

The number of attackers provides the number of possibilities by which an argu-

ment can be attacked. The number of immediately winning attackers provides the

number of immediately successful attackers. A further feature (currently named

category) can be derived by using the formula: (number of immediately winning

attackers)/(number of attackers). This number provides a short term view on the
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Figure 4.1: Argumentation graph

proportion of winning attackers. The value for category ranges from 0 to 1. It can

therefore be further classified into different intervals: {0, (0,0.25], (0.25,0.5), 0.5,

(0.5,0.75], (0.75,1), 1}. These intervals are easy for the RL agent to classify, which

will lead to wins when transferring experience between different argumentation

graphs. The smaller the number is, the more the agent is likely to win in the short-

term. Therefore, from a short-term perspective, the categories might be classified as:

definite win, highly likely win, likely win, possible win, unlikely win, highly unlikely

win, definitely lose.

The number of attackers and the category were applied to represent argument

actions and implemented in ARGUMENTO+. The following state representation

was used to ensure that the state representation is less frequently repeated in a

game: (depthOfTree, Argument, Category, NumOfAttackers). Two Q-tables were

maintained, one for the current argument game and another general one for use

other argumentation graphs. After finishing each argument game, the values in

the general Q-table, which contained only (Category, NumOfAttackers), were trans-

ferred. If two arguments in the current game had the same category and number

of attackers, it would take an average of these two values then transfer that to the

general Q-table.
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4 Experiment and evaluation

In order to evaluate whether the generalisation method works, a data set needs

to be identified that can be used to test the agent’s performance. Initially, three

different graphs were tested (as a preliminary study) and it was found that the

policy converged in episode 50 in all three. However, the performance curve was not

able to stailise after convergence. This indicated that more datasets were needed

for achieving stability. Therefore, 50 different graphs were randomly generated. The

graphs were all connected graphs with the number of nodes ranging from 5 to 10.

Leave One Out Cross Validation was chosen in 50 graphs and an average was taken

at the end. The experiment was run over 50 games, with each game having 50 graphs.

The agent was trained on 49 graphs and then tested with the 50th graph. We decided

to encourage the RL agent to take two different approaches based on the number of

arguments in the grounded extension.

The RL agent was examined to see whether its interest laid in winning the game with

the minimum or maximum number of arguments. Based on the reward formula in

the flowchart in Figure 4.2 to establish we aimed to establish whether the RL agent

was interested in minimising or maximising the number of acceptable arguments in

the grounded extensions. The experiment also had one agent with knowledge and

one without. After 50 games, an average of the rewards after every 5 episodes was

taken. The results are shown in Figures 4.3 and 4.4.
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Figure 4.2: Reward shaping

The simulation configuration used here is as follows:

1. Randomly generate 50 unique argumentation graphs.

2. Perform leave one out cross validation (i.e. in the first iteration, out of the 50

graphs that are generated, graphs 1-49 are used for training the RL agent,

and 50th graph for testing; in the second iteration, graphs 1-48 and graph 50

are used for training, and 49th graph for testing; and so on. These steps are

repeated until 50 graphs have been used once as testing graphs.

3. Every 5th episode of each testing graph (exploiting not exploring and ε= 0) is

repeated 10 times.

4. An average of every fifth point of all the 50 testing graphs is taken for showing

the results.

In both cases, the learning agent (the orange line in Figures 4.3 and 4.4) demon-

strates an advantage for the first few cases. This can be attributed to the previously

learnt knowledge. But most of the time that advantage is quickly overtaken by the

agent that is learning from scratch (the blue line). This is an unexpected result,
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Figure 4.3: Cross validation for RL agent with and without knowledge with minimum
numbers of arguments

because the RL agent already has experience from different argumentation graphs

and therefore, it should have prior knowledge. However, the usefulness of the learned

knowledge is only demonstrated at the start. By comparing both cases in Figures 4.3

and 4.4, the learning agent performs better when trying to win with minimum

number of arguments. From the inspection of Q-tables, the only consistent finding

that emerged is that, the arguments with no (zero) attackers attract the highest

value in winning in the least number of argument scenarios.

Reflecting on the experimental results, the argumentation graph in Figure 4.5

is used as an example to facilitate the analysis. A uniform distribution is assumed,

where the winning possibility of an argument is 50/50. For example, the current state

of the learning agent is argument A and the agent needs to decide which argument

to choose from “B”, “C” or “X ”. In our proposal, the agent can see the next level of the

tree arguments “D”, ”E” and “F”. Therefore, the chance of winning for arguments

“B”, “C” and “X ” is 0.25, 0.5 and 1 respectively.
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Figure 4.4: Cross validation for RL agent with and without knowledge with maximum
numbers of arguments

Figure 4.5: Argumentation graph with possibility of winning

Normally, the argument with the least number of attackers would be expected

to perform better. This is the case for argument “X” (with value 1) in a ‘win in the

minimum number of arguments’ scenario. However, when the learning agent is at-

tempting to maximise the number of grounded extensions, “C” (with value 0.5) is the

best choice. A further example can be seen from the argumentation graph in Figure
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4.6. Although argument “Q” (with 0.5) has a higher possibility of winning than “R”

(with 0.125), the learning agent will choose “R” (with a lower value) because it is a

higher long-term reward. We believe that this is a potential reason that limits the

learning agent from identifying useful patterns which would lead to generalisation

of policy for different graphs.

Figure 4.6: Different scenario of argumentation graph

5 Summary

Earlier in this work, an RL agent for abstract argumentation was designed and

the agent performed well in a single argument graph. However, some issues in

generalising the learning to different argument graphs were encountered. It was

concluded that using current features in abstract argumentation face challenges

in capturing useful argument patterns that could be reused in different argument

graphs.

For identifying patterns, number of immediately winning attackers and number of

attackers were used. Experiments were done by generating different argumentation

89



CHAPTER 4. POLICY GENERALISATION IN REINFORCEMENT LEARNING
FOR ABSTRACT ARGUMENTATION

graphs and leaving one out for cross validation and to test the knowledge for the RL

agent. However, the results revealed difficulties for the RL agent to transfer knowl-

edge within different argumentation graphs. Our analysis showed that, based on

the pattern identified and the higher long term reward, the RL agent was confused

about identifying the next action it needs to take.

Therefore, we propose to move from the abstract argumentation to proposition-

based argumentation. In this, the internal structure of an argument is taken into

account which could enable the agent to find patterns for generalising the policy.

In general, for a persuasive dialogue, the dialogue goal can be specified as con-

verting opponents’ viewpoint. Dialogue history, commitment stores and the agent’s

knowledge base contribute to the formulation of the dialogue state. For example,

the commitment store can tell the agent’s position. These should be able to provide

sufficient information for an agent to take decisions about an action.

Along these lines, this research was moved into dialogue-game-based argumen-

tation, which has a richer argument representation that will potentially help the RL

agent to recognise the patterns of the argument. This will be discussed in the next

chapter.
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In the previous chapters (Chapters 3 and 4), the implementation of reinforce-

ment learning in the abstract argumentation framework was described. From

the implementation it was observed that , the patterns in the arguments could

not be identified by the agent as they dealt with the abstract level of arguments. A

method to allow the RL agent to adapt to a new argument graph was attempted.

However, as discussed in Chapter 4, the results of this were not very encouraging. It

was therefore thought ideal to progress this investigation to dialogue-game-based ar-

gumentation that is based on propositional logic. This approach looks at the internal

structure of arguments, such as premises and conclusions. These could possibly help

the RL agent to find patterns of argument that could not only facilitate the agent to

learn how to argue, but also generalise the policy to different domains. The details

on the implementation of propositional logic based dialogue game argumentation

and its implications on the learning for an RL agent are presented in this chapter

(Chapter 5)

1 Introduction

During generalisation of the RL agent policy for the abstract argumentation ap-

proach in different graphs, it was observed that the RL agent was not able to transfer

experience to different graphs. As can be seen from the results presented in the

previous chapter (Chapter 4), the main issue was that the arguments in the abstract

level could not identify patterns to enable the learning agent to transfer learning

from one graph to another. This suggests that, state action pairs are difficult to learn

without reference to the internal argument structure. Since, propositional logic takes

into consideration the internal structure of arguments, it is therefore logical to move

from the abstract argument game to a propositional-logic based dialogue game for

improving learning transfer in an agent [3, 4].

Since an abstract argumentation system deals with pure abstract arguments [11,

25, 28, 85] that are made up of only nodes and attacks, this research has been

motivated to move into a logic based dialogue game. Logic based dialogue games take

into consideration the internal structure of the arguments such as, argumentation
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schemes and evidence support sources that could help the RL agent to identify useful

patterns that could be mapped between different context domains and facilitate

learning transfer1. Along these lines, a logic based dialogue game (as discussed in

detail in Section 2 .3) is another approach in the argumentation system which would

be worthwhile to explore as it allows an RL agent to learn to argue. In this approach,

two or more agents have an aim to resolve a conflict of opinion by verbal means [26].

A logic-based dialogue game will allow to study different aspects of this exchange,

such as the communication language, protocol and agent behaviour. An essential

aspect of protocol for resolving conflicts is to ensure that the communication is fair

and effective [26]. Agent behaviour, on the other hand, is concerned with how agents

can make moves by strategy. Strategy is part of a logic based dialogue game (as

discussed in Section 2 .3) which consists of a dialogue model. The dialogue model

allows agents to have a dialogue between themselves for resolving conflicts. A review

of literature reveals a number of dialogue games that have been developed in the

past [7, 44, 45, 145]. The DE model is one among them that has been adopted in this

research. The DE model is discussed in detail in Section 2 .3.1.1. Adopting DE model

in this research is motivated by a number of advantages it has to offer such as:

• The DE model deals with fallacious arguments and common errors to avoid

[7, 145] when compared with other models such as the DC [43]. According

to Yuan [7] this issue concerns the philosophical soundness of the dialogue

model (i.e. how best it can avoid fallacious argument) [206]. Therefore, the

DE model teaches students to improve critical thinking and debating skills

by playing the dialogue game with an intelligent agent that prevents any

fallacious arguments for improving debating skills.

• The DE model allows sufficient room for strategy formation [7]. This is consid-

ered desirable in a good dialogue model [122]. It is suggested that, a dialogue

model provides more freedom for the participants to prepare their debating

strategies [7] (such as, distance strategy [206], build and demolish strategy

1DE model is dealing with propositional logic, which should lead to the identification of some
patterns, which will help and support the RL agent in adapting to different domains for instance in
the DE model if the agent assert ’P’ opponent may make challenge move ’Why P?’ then agent may
assert ’R, R→ P’ and other heuristic strategy that built in DE dialogue model. This is left for future
work.
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[43]) to avoid unsuccessful debate. Therefore, an agent’s strategy is significant

for the agent to make a high quality contribution to the dialogue [4, 98].

• A hard-coded agent adopting the DE model was built with hard-coded heuristic

strategies and the model performed to an advantage over others due to its

computational tractability and simple dialogue rules [4, 7, 44–46].

• The DE model is built using propositional logic [7]. In comparison to the

abstract argument game (described in Chapters 3 and 4), the DE model is

richer and has an innovative design in which the dialogue state is represented

by means of commitment stores and different types of movement such as

questions, statements and challenges [4]. Whereas, in the abstract argument

game, state representation is strictly restricted to nodes (arguments) and arcs

(attack relations). It was expected that the DE dialogue game would be a useful

learning experience for the RL agent.

Our initial implementation using abstract argumentation presented challenges for

generalisation. In this, the RL agent encountered difficulty in learning patterns

in an abstract argumentation system for transferring experience into different

graphs. These limitations could potentially be overcome with the logic-based dialogue

game approach as this provides patterns for the RL agent to learn to argue and

share experiences in different environments. The present work will adopt the DE

model. The knowledge base for this has already been previously built [7] with

the architecture shown in Figure 2.11. To this, some features were added and

identified as patterns for supporting the RL agent to learn to transfer the knowledge

into different contexts. The patterns of arguments are identified here as argument

schemes 2 including sources of support for the claim that could be learned by the

agent. In the knowledge base, the environment contains the main claim with the

rebuttal and each claim is supported by arguments which will be discussed in the

coming sections.

2it is a way of argument reflecting structure of common types of arguments used in daily discourse,
as well as in special contexts such as legal arguments and scientific arguments [63]. This will be
refereed in section 2 .3.
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2 Agent and environment design

For engaging the RL agent in an argument with different baseline agents, all players

and agents that play in the DE game need to be defined. This section presents details

of all the agents that take part in the game and discusses their strategies for making

moves. The environment and domain in which all participants play is also discussed.

2 .1 RL agent

As discussed in Chapter 2 Section 3 , the RL agent interacts with an environment

by observing its state, taking an action, and receiving a reward. The agent uses a

Q-learning algorithm that is given in Equation (2.2). To allow the RL agent to learn

to argue with opponents, the state, action, and rewards need to be identified. In

the RL agent, this occurs by observing the environment and deciding the kind of

action that needs to be taken. In the DE dialogue model, the commitment store is a

significant state variable which can record what an agent has asserted or implicitly

accepted during the dialogue. Therefore, the commitment store updates according to

the commitment rules while the agent takes actions.

In addition to the commitment store, dialogue history could also be considered

as a state variable. It contains the dialogue situation of an agent, such as it’s previ-

ous move. Since each agent has its own commitment store, the previous move could

be used as a state variable due to it’s simplicity. Therefore, the dialogue state can

be defined as: (previousmove∪CS1∪CS2), where CS1 is the commitment store

for one dialogue participant, and CS2 belongs to the dialogue partner. The state

representation will maximise the possibility of a state unreported in any given case.

An action is the decision that the RL agent is able to make from the available

move types (such as, assert, question, challenge, withdraw or resolution demand)

in the DE model. Defining these move types allows the agent to choose to reply to

the previous move. Additionally, move content, which is a proposition or conjunct of

propositions, is stored together with the move type. The RL agent aims to map it’s

state with an action called policy (π).
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If the RL agent wins the game, it receives a reward and it is punished when it

loses. Likewise, the minimum number of moves will also be considered as the RL

agent has a target of winning the game with the minimum number of moves. This

strategy could be relevant in some persuasive dialogues because, sometimes an agent

is likely to reveal more of it’s KB than is necessary and such superfluity could be

unacceptable in some contexts [202] (discussed in detail in Chapter 2). The positive

reward function for the RL agent is given in the following equation:

(5.1) R =


100+ W

L If RL agent wins

−100 Otherwise

Where W is the number of moves in the first winning episode, which becomes the

benchmark, and L is the number of moves in the current episode. Hence, when L is

at a minimum, the reward will be increased. To apply reinforcement learning, the

Q-learning algorithm is used, as discussed in Section 3 of Chapter 2, shown in the

following algorithm:

Q(st,at)←Q(st,at)+α[r t+1 +γmax
a

Q(st,at+1)−Q(st,at)]

while r t+1 is the immediate reward, it is set to −0.01 as a little punishment to

motivate the RL agent to choose the minimum number of moves to win the game

quickly.

2 .2 Baseline agent

A number of dialogue games that are built with computational agents are reported in

the literature. An agent typically adopts a strategy for making moves in a dialogue

game . For instance, an agent can adopt information hiding strategies which are

discussed in a number of different papers concerning MAS [214, 215]. An agent can

be utility based in not only the possible payoff outcomes but also in the information

properties of the strategy that the agent uses [214]. For example, Otterloo designs

an agent to make the optimal response based on computing the Nash equlibria.

Paruchiri et al. [215] develop an agent based on maximising policy randomisation to
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thwart the opponent’s prediction of agent-based behaviour and minimise the oppo-

nent’s ability to inflict harm. They focused on MAS security where deliberate threats

are caused by unseen opponents whose actions and capabilities are unknown, but the

opponents may exploit any predictability in the policies of their agent. Amgoud and

Maudet [107] presented an idea for an agent which can adopt "meta-preferences"

such that, the agent focuses to restrict access to defeaters as a way of pushing the

choice of arguments in the context of dialogue by choosing the smallest argument.

Rahwan et al. [216] allow agents to interact based on negotiation strategy and

identify factors which help an agent to select strategy for negotiating with other

autonomous agent.

Wardeh et al. [217] in the PADUA protocol, allow every agent (proponent and oppo-

nent which are defined as a dialogical agent) to have its own collection of examples

that it can mine to find reasons for and against a classification of a new instance

based on association rules. Amgoud and Parsons [218] used standard-based argu-

ments with if then rules, and outlined five classes of agent profiles as follows: (i)

agreeable agent (an agent accepts an argument whenever possible) (ii) disagree-

able agent ( agents which approve only when there is no excuse not to do so) (iii)

open-minded agent (agent which can only challenge if necessary) (iv) argumentative

agent (agents which make challenge whenever possible) (v) elephant child agent

(asks questions whenever possible). Wardeh et al. [217] considered agreeable and

disagreeable agents since the agents’ behaviour in their context was most appropri-

ate with their approach (PADUA protocol).

The DC system [42, 43] consists of two agents which are used to conduct a de-

bate with each other using DC dialogue game [43]. The DC system allows these

agents to debate on a disputed topic, which is capital punishment. One agent adopts

agree with capital punishment, and another adopts against and visa versa. These

agents start debating with these positions until one agent persuades the other

with its point of view. However, issues such as, fallacies arguments, and prevented

questions begging, were encountered by Yuan [7] and Yuan et al. [145] with the

proposed DC system under investigation. The DE system was developed to address
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these issues by means of modified commitment and dialogue rules. Based on these

modifications, Yuan developed an agent with heuristic strategies which is ready to

play a dialogue game with humans (DE dialogue game). These have been previously

discussed in detail in Section 2 .3.1.

Since the DE system is known to improve common errors in the DC system, similar

agents have been implemented in DC to further study their behaviour [145]. These

agents have been made to debate with each other, wherein, one agent attempts to

persuade the opponent to accept it’s point of view. These two agents have been built

with different strategies one with heuristics and another with randomised strategy.

As discussed in [7], strategy is important for facilitating the DE dialogue with

the RL agent. Strategy enables the agents to play a game with high quality dialogue

contribution [98, 206, 207, 218]. In the DE model [7, 44–46] there are five different

dialogue scenarios which an agent could face. This is defined by the previous move

type made by the opponent such as, a challenge, a question, a resolution demand,

a statement or a withdrawal [98]. Thus, each baseline agent has to be taken into

account in relation to the strategic decisions that are taken.

2 .2.1 DE heuristic strategy

The DE heuristic strategy is an agent built with a hard-coded strategy in the DE

model [7]. It depends on the set of heuristics, which was based on three levels of

decisions taken from [43, 98]:

1. Retain or change the current focus 3.

2. Build own view or demolish the user’s view.

3. Select method to fulfil the objective set at levels (1) and (2) [98].

Yuan et al. [98, p. 219] explain the levels as:

3Current focus means carry on within the previous move, Yuan [7] clarifies this "The level (1)
decision concerns whether to retain the current focus or to change it. The decision, that is, involves
whether to continue the attempt to substantiate or undermine a particular proposition."
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"Levels (1) and (2) refer to strategies which apply only when the computer

is facing a statement or withdrawal, since in all other cases the computer

must respond to the incoming move. Level (3) refers to tactics used to reach

the aims fixed at level (1) and (2)." 4

Levels 1 and 2 apply only when the agent is facing a statement or withdrawal as a

result of it’s response to incoming moves in all other cases. Whereas level 3 refers to

the tactics which the agent uses to reach the aims fixed at both levels 1 and 2, and

are then applied in every game scenario [98].

In the levels taken from Yuan et al. [98], level 1 is when an agent decides whether to

retain the current focus or change it. In other words, the decision involves whether

to continue the attempt to substantiate or undermine a specific proposition. Level

2 is when an agent decides to adopt a build or demolish strategy. A build strategy

includes the acceptance of propositions that support the thesis of the proponent,

while a demolishing strategy seeks to remove support from the opponent for their

thesis. Level 3 can be applied to each of the dialogue situation within different

heuristics, which are:

1. A question raised by the opponent.

2. A challenge made by the opponent.

3. A resolution demand made by the opponent.

4. A “no commitment" made by the opponent.

5. A statement made by the opponent.

This is a set of different strategy heuristics which are adopted by the DE agent to

play against an opponent. More details of these strategies can be found in Yuan et

al. [44, 45, 98] (this can also be found in Appendix A taken from [98]).

2 .2.2 DE randomised strategy

A Random agent will choose a move randomly from the set of legally available moves

in the DE game rules. This agent is designed to use random arguments based on [7].
4Details of the level 3 strategies can be found from [44, 45, 98].

99



CHAPTER 5. REINFORCEMENT LEARNING FOR LOGIC-BASED DIALOGUE
GAMES

2 .3 Environment

A knowledge base to allow agents to argue with each other is needed to engage

agents to play the game. In [7], different ways of representing the knowledge in

the literature such as in [43, 99, 132, 133] are reported. It is suggested that the

knowledge base should have statements to enable the answering of questions or

supporting the argument [7, 43]. Additionally, it should provide statements to rebut

other statements. For these reasons, Yuan [7] adopt a modified version of Toulmin’s

schema [133]5 for developing the DE model and making the knowledge base struc-

ture as shown in Figure 2.11.

Some features have been added to the knowledge base (such as, argument schemes

and an evidence source), with the expectation that the argument patterns can be

recognised by an RL agent through features as shown in Figure 5.1.

According to Walton [63] "argumentation schemes are forms of argument (struc-

ture of inference) that represent structures of common types of arguments used in

everyday discourse, as well as in special contexts like those of legal argumentation

and scientific argumentation". Rahwan [20] suggests that these schemes capture

stereotypical (deductive or non-deductive) reasoning patterns present in a regular

discourse. Walton in [219] has 25 Argumentation schemes which are identified for

common forms of presumptive reasoning. Rahwan [20] states that argument schemes

offer several useful features for communication with MAS such as in legal reasoning.

Atkinson et al.[108] use argument schemes for proposing actions to structure their

dialogue game protocol. Also, Karunatillake et al.[220] use schemes to make a nego-

tiation strategy in the presence of social influence. Hence, it would be interesting to

study if the RL agent is able to use argument schemes and evidence support sources

to recognise it as patterns.

An argument scheme (such as arguing from consequence [221]) is represented in a

parallelogram. The circles in Figure 5.1 represent evidence of the argument (such

as newspapers, magazines or scientific papers) as a source of the argument. For

5"The modal qualifier and the backing are omitted from Toulmin’s original schema"[7]
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instance, the RL agent could learn the reliability of supporting evidence from the

environment [4] as seen in Figure 5.2.

Figure 5.2: Sources environment

The structure of capital punishment (CP) knowledge base [7], which was adopted

after adding schemes and sources with respect to the practical level is illustrated

in Figure 5.3. There are two main claims which are "CP is acceptable" and "CP is

not acceptable". The "CP is acceptable" has five main arguments and further five

supporting arguments. Whereas, another claim "CP is not acceptable" has five main

arguments and six supporting arguments.
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3 Experimental setup

To understand whether the performance of the RL agent is improving, it is needed to

engage the RL agent in the DE game to play against baseline agents. For evaluation

purposes, conducting a number of experiments is required in which the RL agent

needs to play against the DE heuristic strategy agent and the DE randomised agent.

The current capital punishment discussion topic is shown in Figure 5.3. In this

argument game, one player needs to persuade the other party to accept their point of

view to resolve conflicts between parties. So, the RL agent should adopt an opinion

and then attempt to learn to argue with it’s opponent. Baseline agents have already

been constructed into the DE model such as in [7]. So all players have a set of moves

which are Assertion, Question, Challenges, Withdrawal and Resolution Demands.

Each agent has a commitment store to record what has been stated and accepted

during the dialogue. All agent have to follow the DE dialogue rules RF ROM , RQU EST ,

RCH ALL, RRESOLV E, RRESOLU T ION and RLEG ALCH AL.6

To engage the RL agent in the game, state, actions and reward have been justi-

fied previously (Equation 5.1). State is defined as: (previousmove∪CS1∪CS2)

which is a combination of previous move and commitment store for both agents.

The action will be the set of available moves in the DE model. The reward function

that is defined in Equation 5.1 and the Q-learning algorithm in Equation 2.2 was

implemented in this experiment. In Equation 2.2, r t+1 =−0.01 is configured to make

a little punishment to encourage the RL agent to choose the minimum number of

moves to win the game quickly and is associated with the reward function.

Hence, learning rate (α), discounted factor (γ) and epsilon (ε)7 were set up as 0.9,

0.9 and 0.3 respectively which is expected to impact positively in making the RL

agent to outperform and improve learning against baseline agents. The game has

4,000 episodes starting from 0 and the RL agent initially starts behaving randomly

since it does not have any experience at this stage. Episode 0 is repeated 10 times to

avoid a lucky choice, after which the subsequent episodes are executed. Exploration

6Discussed in more details in Section 2 .3.1.1
7ε-Greedy which introduced in Chapter 2
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and exploitation need to be traded off to explore more actions space or exploit the

knowledge at any given time 8. The reason for this is to evaluate the experience that

the RL agent has learned. Therefore, exploitation is updated every 100 episodes,

where it is reset to 0 and is repeated 10 times. The performance was measured by

calculating the reward for each agent, RL agent and it’s opponent every 100 episodes

(exploitation episodes) to observe the RL agent’s ability to make decisions based on

the values in the Q-table. The aim was to understand the RL agent’s performance in

terms of rewards gained in the long-term and winning the game with the minimum

number of moves.

4 Experimental results

The results against both baseline agents look promising, as shown in Figures 5.4

and 5.5.

Figure 5.4: RL agent against fixed strategy agent

8ε-greedy policy has been used which takes action using the greedy strategy with a probability of
1-ε and a random action with a probability of ε. This strategy makes sure that all actions space are
explored [222]
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Figure 5.5: RL agent against Random agent

Both Figures 5.4 and 5.5 show that the RL agent curves have a trend to rise with

increasing numbers of episodes. This suggests that, the RL agent is able to learn to

argue against different DE baseline agents and after converging it wins most games.

The ADF test was used to assess the stationary aspect of a time series. If the data

was found stationary a non-parametric test would be used for the chosen episode

to assess the significance of finding (The Mann-Whitney U test). The reasons for

choosing these tests are mentioned before in Section 3 of Chapter 3.

From Figure 5.5 it can be observed that the rewards of DE Random agent exhibited

a downward trend while the rewards of RL agent exhibited an upward trend. The

(ADF) unit root test was used to test whether the reward obtained after episode 1000

was stationary and constant. An ADF test was used to test the null hypothesis that,

there exists a unit root, against the alternative hypothesis of stationary.

H0: That there exists a unit root (non-stationarity).

H1: There is stationarity.
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Table 5.1: Summary statistics for ADF test

Agent Mean
Standard
devia-
tion

ADF
Statistic P-value

Critical
value
1%

Critical
value
5%

Critical
value
10%

RL agent 7.352 10.027 -11.082 0 -3.452 -2.871 -2.572
DE Random
agent

-5.900 9.058 -11.303 0 -3.452 -2.871 -2.572

An ADF test on the rewards of the RL agent showed that the null hypothesis of

existence of a unit root could be rejected with p−value = 0 which is lower than the

significance level 0.05. ADF statistics (−11.082)< critical value (−2.871) so we reject

the H0 which means the time series is stationary. Therefore the rewards of RL agent

were stationary.

An ADF test on rewards of the DE Random agent showed that the null hypothesis

of existence of a unit root could be rejected with( p−value = 0 which is lower than

the significance level 0.05). The result of ADF statistics (−11.303) was less than the

critical value (−2.871), therefore, we reject the H0. This means that the time series

is stationary. Therefore it can be concluded that the rewards of DE Random agent

were stationary.

Table 5.2: Rewards of RL agent and DE Random agent at the last episode

Trials for the last episode
Agent 1 2 3 4 5 6 7 8 9 10
RL agent 15.85 12.50 14.97 4.39 3.65 3.47 26.76 -8.51 8.79 0.14
DE Ran-
dom agent

-14 -10 -13.60 -4.20 2 -2.20 -21.20 9.80 -5.80 0.20

Table 5.3: Basic statistics RL agent and DE Random agent at the last episode

Agent Mean Standard deviation Median
RL agent 8.201 9.829 6.590

DE Random agent -5.900 9.058 -5
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From Table 5.3, the higher mean and median suggest that the RL agent had higher

rewards. A Mann-Whitney U test was used to test the null hypothesis and the two

groups were found to be homogeneous against the alternative hypothesis as the RL

agent had higher rewards than the DE Random agent.

H0: The two groups are homogeneous.

H1: The RL agent had higher rewards than DE Random agent.

A Mann-Whitney U test showed that the null hypothesis could be rejected as the two

groups were homogeneous with p− value = 0.010 which is lower than the signifi-

cance level 0.05. Therefore the RL agent had higher rewards than DE Random agent.

Comparing the results obtained by the RL agent (Figures 5.4 and 5.5), it could

be stated that the RL agent’s performance against the heuristic strategy agent was

better than the DE Random agent. This is due to the fact that, the random moves

picked up by the DE Random agent could impact on the RL agent’s performance in

selecting its best move to win the game. This was expected, since it played against

an agent with no planned strategy. The RL agent can therefore improve its ability to

learn to argue by winning the game against the DE Random agent.

Since it is fruitful for the RL agent to minimise the number of moves or argu-

ments, the RL agent is encouraged to win with minimum number of moves. The

reward function motivates the RL agent to win the game with minimum moves as

the immediate reward r t+1 has been set to −0.01 to make the RL agent win as fast

as possible. Hence, it works against both opponents, the DE heuristic strategy agent

and the DE Random agent as shown in Figures 5.6 and 5.7 respectively.

The reason to make an RL agent minimise moves is interesting, particularly based

on Oren et al. [201], who suggest that while an agent tries to win a dispute reveals

as least knowledge as possible. They also mention that these kind of tactics can be

seen in many real world scenarios such as in [223]. This supports that the agent

revealing much information in the current dialogue could effect on the outcome of a

dialogue by loosing a game [201].
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Figure 5.6: Average moves count against Fixed strategy agent

Both Figures 5.6 and 5.7 show that the number of moves converged to decrease after

around 750 episodes. So, the RL agent was able to improve to learn to minimise the

number of moves and win the games to achieve the task. The reward function has

worked successfully to make the RL agent learn to argue with minimum number of

argument utterances.

Further statistical tests are needed to to assess whether the data is stationary

for both Figures 5.6 and 5.7. From Figure 5.6 it can be observed that the number of

RL agent moves increased after a few hundred episodes and sharply declined after

the next few episodes before stabilising. The ADF unit root test was used to test

whether the mean number of moves after episode 1000 was stationary and constant.

The reason for this has been mentioned in Section 3 of Chapter 3. An ADF test was

used to test the null hypothesis that there exists a unit root against the alternative

hypothesis of stationarity.

H0: That there exists a unit root (non-stationarity).
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Figure 5.7: Average moves count against DE Random agent

H1: There is stationarity.

Table 5.4: Summary statistics for ADF test

Agent Mean
Standard
devia-
tion

ADF
Statistic P-value

Critical
value
1%

Critical
value
5%

Critical
value
10%

RL
agent

27.155 11.616 -16.213 0 -3.452 -2.871 -2.572

An ADF test on the number of moves from episode 1000 to 4000 showed that the

null hypothesis of existence of a unit root could be rejected (p− value = 0 which

is lower than the significance level 0.05). ADF statistics was (−16.213) < critical

value (−2.871), therefore we reject the H0 which means the time series is station-

ary (Table 5.4). Therefore the observations from episode 1000 to 4000 were stationary.

Additionally for Figure 5.7 it can be observed the number of RL agents increased for

the first few hundred episodes then decreased for the next few episodes before stabil-

ising. The ADF unit root test was used to test whether the mean number of moves

after episode 1000 was stationary and constant. The reason for this has been men-
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tioned in Section 3 of Chapter 3. An ADF test was used to test the null hypothesis

that there exists a unit root against the alternative hypothesis of stationarity.

H0: That there exists a unit root (non-stationarity).

H1: There is stationarity.

Table 5.5: Summary statistics for ADF test

Agent Mean
Standard
devia-
tion

ADF
Statistic P-value

Critical
value
1%

Critical
value
5%

Critical
value
10%

RL
agent

29.090 29.909 -17.366 0 -3.452 -2.871 -2.572

An ADF test on number of moves from episode 1000 to 4000 showed the null hypo-

thesis of existence of a unit root could be rejected with (p−value = 0 which is lower

than the significance level 0.05). ADF statistics (−17.366)< critical value (−2.871)

so we reject the H0 which means the time series is stationary (Table 5.5). Therefore

the observations from episode 1000 to 4000 were stationary.

Indeed, it can be concluded from the experiments that the RL agent is able to

learn to argue with different opponents, such as the DE heuristic strategy agent

and the DE Random agent using different approaches such as, winning the game or

aiming to win the game with minimum number of moves.

5 Alternative reward function

Reward function in Equation 5.1 was introduced which successfully enabled the

RL agent to learn to argue and minimising number of moves. In the next step we

consider an alternative reward function to study the behaviour of the RL agent and

compare its results with with Equation 5.1.

The suggested alternative reward function sharing the desired behaviour is given in

111



CHAPTER 5. REINFORCEMENT LEARNING FOR LOGIC-BASED DIALOGUE
GAMES

the following equation:

(5.2) R =


W
L If RL agent wins

−1 Otherwise

The state and actions remain the same (previousmove∪CS1∪CS2) and the set of

available moves are as per the DE model. Additionally In Equation 2.2 r t+1 =−0.01

is configured as a small punishment to make the RL agent choose minimum number

of moves and win the game quickly. The game includes 4000 episodes starting from

0. In the initial phase where the RL agent has no explored, it behaves similar to

the DE Random agent. Exploration and exploitation trade-off is the same as the

previous reward function Equation 5.1 where every 100 episode stopped exploration

and exploit experience and repeating this 10 times to avoid lucky choice. This is done

to evaluate the experience of the RL agent and understand if it has learnt.

Figure 5.8: RL agent against DE

In Figure 5.8 the RL agent starts from a value -0.2 and then the curve fluctu-
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ates. In fact from this figure it is difficult to say that the RL agent is able to learn

efficiently since most of the time the DE agent outperforms the RL agent. The av-

erage reward of first 1000 is almost zero which is more than average reward of the

last 1000 episodes which is almost -0.6. This suggests that, since it is not rewarded

enough, the RL agent was able to learn from experience (as in Equation 5.1) by

maximising the the cumulative rewards.

Figure 5.9: RL agent move counts

As seen in Figure 5.9, the RL agent starts from around 51 moves then decreases with

small fluctuations as t plays more. The RL agent tries to minimise the moves but in

the end achieves approximately the same number of moves as in the first episode.

This means that it does not learn effectively due to the reward value not being

enough for choosing the optimal action. Additionally, when the RL agent focused on

minimising the number of moves, it started to loose the game and vice versa and

therefore could not balance. Due to these confusions the RL agent could not behave

well to minimise the number of moves.

Generally, the DE agent outperforms the RL agent which means that the RL could
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not learn to win the game. With respect to the number of moves, the RL agent tries

to minimise the number of moves but in the end, it is not able to learn effectively as

it achieved in the beginning. This is because, the RL agent was not given enough

reward to learn properly by winning more games.

Figure 5.10: RL agent against DE Random

As shown in Figure 5.10 the RL agent played against the DE Random agent. The RL

agent starts from a value of 0 and tries to learn with time. However, it is not able

to identify an optimal policy to converge and stabilise even as it outperforms the

DE Random agent. The reason for this is that, the RL agent defeated the opponent

easily but, since it is still exploring, it is not able to perform well.

From the Figure 5.11, the RL agent starts from 25 moves, however its behaviour

fluctuates since it did not converge to the optimal policy. Despite trying, the re-

ward function does not motivate the RL agent to minimise the number of moves

by exploring to find the optimal action. When the number of moves of the first and

the last episode (i.e. 27 moves and 34 moves respectively) are compared, the RL

agent did not learn effectively. Hence, the RL agent is not confident with the policy
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Figure 5.11: RL agent move counts

and therefore cannot predict the next move correctly by minimising number of moves.

By comparing these results with the earlier results of reward function in Equa-

tion 5.1, it shows that the initial reward function enhances the RL agent to behave

better. When the RL agent played against the DE heuristic agent, the RL agent in

Equation 5.1 learns to win with a reward of 100 which is very high compared the

reward in Equation 5.2 with respect to the number of moves. The first priority in

Equation 5.1 is to win the game then reduce the number of moves. The behaviour

of the RL agent in the initial reward function starts from negative and learns and

adapts its behaviour to the DE heuristic agent and eventually starts winning by

finding accurate moves for all states. However, in the alternative reward function

Equation 5.2, the RL agent had very low reward compared to the initial reward

for winning and only -1 for losing. Therefore, when the RL agent tried to win with

"number of moves" it was not able to follow that, and when the "number of moves"

decreased, the agent started to lose the game. Therefore, the RL agent was not able

to converge and outperform the DE heuristic agent as given in Equation 5.1.
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We compare minimising the number of moves for the RL agent in both reward

functions (Equation 5.1 and 5.2) in Figures 5.6 and Figure 5.9 respectively. As in

Figure 5.6, the number of moves increase in the beginning and then start decreasing.

Whereas, the behaviour of the RL agent in Figure 5.9 shows that the number of

moves are increasing and decreasing. In the initial reward function Equation 5.1 the

main priority is to win the game which requires to increase the number of moves.

Once the agent learns and adapts to winning, it then focuses on reducing the number

of moves. This is because, the winning gets high priority with a high reward value.

However, in the latter reward function in Equation 5.2, when the RL agent focused

on reducing the number of moves, it starts losing the game and when it focuses on

winning it starts increasing the number of moves. This confused the RL agent and

it was not able to trade off. Hence, it was not able to take a decision leading to the

fluctuations. In fact, this seems to be the case for Figures 5.7 and Figure 5.11, when

RL agent reduces the number of moves when it played against the DE Random agent.

The behaviour of the RL agent in the earlier reward Equation 5.1 is better than the

latter reward function Equation 5.2 when played against DE Random agent. In the

first reward function, the RL agent starts from negative value and is able to (acquire

or get) positive reward values and outperform the DE Random agent. Whereas in

the second reward function there is not much difference between the RL agent and

the DE Random agent (as it is aggregate reward so that means sometimes RL agent

also lose). This is because, the DE Random agent has a totally random behaviour

and it is unpredictable. Therefore, the RL agent tried to learn and not lose the game,

however, it is not able to have a high reward as it is still losing from new states.

Whereas in the alternative reward function the RL agent cannot learn since it is

not able to get enough rewards on winning and agent tries to reduce the number of

moves.

6 Summary

In this chapter, the DE dialogue model was used to involve the RL agent in playing

an argument game against DE baseline agents in the capital punishment domain.
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The aim to improve the performance of the RL agent, was achieved. It also success-

fully enabled the RL agent to win with minimum number of moves. The reward

function was reshaped (Equation 5.2) to consider an alternative reward function and

studied. However, the RL agent did not behave satisfactorily against both the DE

baseline agents. When compared with the initially proposed reward function given

in Equation 5.1, the initial reward behaves better because the reward that is given

to the RL agent is of high value. This encourages the RL agent to converge to the

optimal action. Also, the agent becomes aware of a bad move because the punishment

is of very high value (-100). These encouraging results motivated further exploration

of learning with improved quality of dialogue with attributes such as coherence and

relevance. These will be discussed in the following chapter.
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In the previous chapter the improved performance of the RL agent winning

in minimum number of moves using both heuristic and randomised strategies

was demonstrated. As a next step, it is worthwhile to look more deeply into

the dialogue itself and investigate the quality of the dialogue. In the literature,

measurements such as coherence and fluency are used to understand the quality of

the dialogue and examine how the RL agent learns to make high quality dialogue

contributions. These will be covered in the present chapter.

1 Introduction

The goal of this research is to make the RL agent learn to argue. In the previous

chapter it was showed that the RL agent was able to argue to win with a minimum

number of moves. This work is now being extended to other goals, such as improving

the quality of the dialogue [224].

Previously, criteria such as, coherence and relevance for persuasion dialogues have

been used for measuring dialogue quality [224–226]. Amgoud et al. [225] suggest that

these measures can be used for different protocols and different strategies within

different agents to evaluate the dialogue quality. In the DE game, it is important to

implement some of these criteria in the RL agent to investigate the quality of the

dialogue [7, 44–46].

In the present research, a knowledge base was built into the DE dialogue model [7]

and each agent tried to persuade its opponent to believe its point of view. Indeed

each agent attempted not to contradict itself [225, 227, 228], which means that it

tried to make its debate coherent [229]. Hence, each agent attempted to stay coher-

ent during the dialogue. Additionally, relevance is considered useful for assessing

dialogue quality [109, 225, 226]. Relevance refers to all contributing arguments that

are related to the main topic [229]. In [230], Walton states that, relevance is when

one speaks of arguments, or makes moves in argumentation, that are considered to

be logically or objectively flawed in some sense. Therefore, as arguments or moves

that should be subject to criticism. Additionally Kok et al, [109] define relevance
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based on, attacking move and surrounding move whereas attacking move is relevant

in a dialogue iff it changes the move status of the proposal and surrounding move is

relevant iff its attacking counterpart is relevant.

However, in the DE dialogue game [7] all arguments in the knowledge base were

related to the main topic, which was capital punishment. Since one of the strategies

of the hard-coded agent in the DE dialogue game was switching-focus, it is therefore

necessary to define relevance here as maintaining the same dispute line without

switching focus [5] [5, 98].

2 Coherence and relevance

Amgoud et al. [225] present three different measures of dialogue quality as: the

quality of exchanged arguments; the agent’s behaviour (for instance coherence and

aggressiveness); and, the quality of the dialogue itself, such as its relevance. Amgoud

et al. [225] suggest that the dialogue measures are important as they can be used

as guidelines for agents making high quality dialogue contributions. Weide [231]

supports using the measures in [225] as benchmarks for the agent to make a decision

on which dialogue moves to choose. In Chapter 5 it was proposed that the RL agent

should learn how to argue. Towards understanding the learning performance of the

RL agent, it is worthwhile to consider some of the criteria that are used to measure

the dialogue quality of the RL agent, such as coherence and relevance [225]. It is

believed that the measures of coherence and relevance could be used to evaluate the

RL agent as it learns to argue in minimum number of moves, while also contributing

to high quality dialogue against baseline opponents [4].

In Chapter 5 it was shown that the RL agent learnt how to argue against different

baseline agents and persuade the other party to believe its point of view. However,

in order to understand the effectiveness of the approach, it is required to measure

and assess the quality of the dialogue. Coherence is one of the measures for dialogue

quality. Coherence can be identified based on the persuasiveness of the dialogue in

which an agent tries to defend its point of view or what it believes, and does not

121



CHAPTER 6. LEARNING TO IMPROVE DIALOGUE COHERENCE AND
RELEVANCE

contradict itself [94, 225, 232]. Coherence in a dialogue can be measured through

incoherence, where less incoherence in the dialogue suggests more coherence [225].

Incoherence, therefore indicates more contradiction throughout the dialogue. In our

earlier work [4], a formula 6.1 to measure the percentage of incoherence based on

[225] has been proposed as:

(6.1) AgentIncoherent = C
M

where:

C is the number Of Contradictions.

M is the number Of Moves.

Equation 6.1 assesses the percentage incoherence, which depends on how many

times the agent contradicts itself throughout the dialogue divided by the number of

moves the agent makes.

On the other hand, relevance for the agent in a dialogue can be defined as - making

a move that does not deviate from the topic of the dialogue [226]. Since, all moves

made by the agent in the DE dialogue game [7] are related to the main claim [4], a

way of measuring the relevance of the agents after allowing the RL agent to learn

how to argue is required [4]. One of the strategies in the DE dialogue game [7, 98]

is to change the current dialogue focus. Therefore, it is important to minimise the

focus change for the players. It can be argued that switching focus will result in less

fluent dialogue. Therefore, a new formula is proposed (Equation 6.2) to measure the

irrelevance of each agent which is based on the number of times an agent switches

focus throughout the dialogue with respect to the number of moves as:

(6.2) AgentIrrelevance = SF
M

where:

SF is the number of focus switches.

M is the number of moves.

122



2 . COHERENCE AND RELEVANCE

However, the proposed equations for incoherence and irrelevance need to be tested

using experiments. The experiments involve, the RL agent playing against two

different manually constructed baseline agents that are based on DE heuristic strat-

egy and DE Random strategy [7]. The DE heuristic strategy baseline agent used a

fixed heuristic strategy and the DE Random strategy agent used a random strategy.

Coherence and relevance of dialogues were estimated by calculating incoherence and

irrelevance using Equations 6.1 and 6.2 respectively. Incoherence was calculated by

tracking the number of contradictions made by each agent. Whilst irrelevance was

calculated as the number of times each agent switched focus. This corresponds to

the number of occasions an agent did not address the previous move. Therefore, the

lower the number of focus switches, the more focused the agent is in the dialogue

and therefore more fluency [4].

As a first step, an experiment was conducted using the RL agent playing against

baseline agents to measure the quality of the dialogue using Equations 6.1 and 6.2.

To measure incoherence, the RL agent engaged in a game with 4,000 episodes where

each episode was considered a debate episode between the RL agent and an opponent

(i.e. either DE heuristic strategy or DE random). To trade-off between exploration

and exploitation, the RL agent was allowed to test the learned policy every 100

episodes and this test was repeated 10 times to avoid random luck. The incoherence

and irrelevance measured in this experiment are shown in Figures 6.1 and 6.2. The

dialogue quality measures (based on the above equations) are shown in the results

after every 500 episodes for representative purposes.

The x axis in Figure 6.1 represents the number of episodes, while the y axis denotes

the incoherence measure for agents that are calculated as per Equation 6.1. In

Figure 6.2, the x axis denotes the number of episodes and y axis represents the irrel-

evance measurement as per formula given in Equation 6.2. The results demonstrate

that the RL agent did not improve in performance in either coherence or relevance.

The results also showed that the proposed measures for coherence and relevance

are independent of the number of moves. These suggest that, the coherence and

relevance measurements stabilise and remain at the same level when the RL agent
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Figure 6.1: Incoherent measuring between RL agent and heuristic agent

wins the game with minimum number of moves.

To investigate whether the RL agent could improve its performance with respect

to the coherence and relevance measures, these were incorporated into the reward

function using Equation 5.1 described in Chapter 5:

R =


100+ W

L If RL agent wins

−100 Otherwise

3 Reshaped reward function

The coherence and relevance in Equations 6.1 and 6.2 are independent and not part

of the reward function (Formula 5.1). It was shown in the previous section that the

RL agent was not able to improve coherence or relevance. In order to overcome this,

and improve the performance and dialogue quality of the RL agent, the incoherence

and irrelevance equations were incorporated into the reward function. Hence, the
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Figure 6.2: Irrelevance measuring between RL agent and heuristic agent

reward function (Formula 5.1) was reshaped, as shown in Equation 6.3

(6.3) R =


100+ M1

Mn
+ C1

Cn
+ SF1

SFn
If RL agent wins

−100 Otherwise

where:

R is the reward function.

M1 is the number of moves in the first episode.

Mn is the number of moves in the current episode.

C1 is the number of contradictions in the first episode.

Cn is the number of contradictions in the current episode.

SF1 is the number of switching focus in the first episode.

SFn is the number of switching focus in the current episode.

Therefore, this reward function (Equation 6.3) was designed to motivate the RL

agent to win the game faster, with minimum number of moves, with least number of
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contradictions, and switching focus.

To evaluate the effectiveness of the new reward function, the RL agent was used

in a number of experiments against different DE baseline agents. Initially, the RL

agent played against the DE heuristic strategy agent. The results of incoherence

and irrelevance are shown in Figures 6.3 and 6.4 respectively.

Figure 6.3: Incoherence measuring between RL agent and DE heuristic agent

Figure 6.3 shows the incoherence measurement for both the RL agent and the

DE heuristic strategy agent. The gradual decrease in the incoherence measurement

indicates improved coherence in the RL agent’s performance. This indicates that the

suggested reward function in Equation 6.3 supports the RL agent in maximising the

coherence in the dialogue by decreasing the number of contradictions, whilst the DE

heuristic strategy agent maintains coherence in the dialogue.

The (ADF) unit root test was used to test whether the incoherence obtained after

episode 1000 was stationary and constant of the time series data. Non-parametric

tests will then be used for the chosen episode to assess the significance of finding
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Figure 6.4: Irrelevance measuring between RL agent and DE heuristic agent

(Mann-Whitney U test). The reasons for choosing these tests are mentioned before

in Section 3 in Chapter 3.

H0: That there exists a unit root (non-stationarity).

H1: There is stationarity.

Table 6.1: Summary statistics for ADF test (Incoherence)

Agent Mean
Standard
devia-
tion

ADF
Statistic P-value

Critical
value
1%

Critical
value
5%

Critical
value
10%

RL agent 0.028 0.010 -3.100 0.02 -3.453 -2.871 -2.572
DE agent 0 0 -16.966 0 -3.453 -2.871 -2.572

An ADF test on incoherence of RL agent showed the null hypothesis of existence

of a unit root could be rejected (p−value = 0.02 which is less than the significance

level of 0.05). ADF statistics (−3.100)< critical value (−2.871) suggests that the H0

could be rejected and indicates stationarity of the time series data. This leads to the

conclusion that the incoherence of the RL agent was stationary.
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Similarly, an ADF test on incoherence of DE agent showed the null hypothesis

of existence of a unit root could be rejected (p− value = 0 which is less than the

significance level of 0.05). ADF statistics (−16.966)< critical value (−2.871) indicated

that the time series data was stationary and the H0 could be rejected. These results

suggest that the incoherence of the DE agent was also stationary.

Table 6.2: Incoherence values of RL agent and DE agent at the last episode

Trials for the last episode
Agent 1 2 3 4 5 6 7 8 9 10
RL agent 0.02 0.04 0.02 0.02 0.01 0.03 0.02 0.03 0.04 0.03
DE agent 0 0 0 0 0 0 0 0 0 0

Table 6.3: Basic statistics RL agent and DE agent at the last episode

Agent Mean Standard deviation Median
RL agent 0.026 0.009 0.025
DE agent 0 0 0

From the Table 6.3 the higher mean and median suggest the RL agent had higher

incoherence than DE agent. A Mann-Whitney U test was used to test the null hypo-

thesis that the two groups are homogeneous against the alternative hypothesis the

RL agent had higher incoherence than DE agent.

H0: The two groups are homogeneous.

H1: The RL agent had higher incoherence than DE agent.

A Mann-Whitney U test showed that the null hypothesis of the two groups being

homogeneous could be rejected as the (p− value = 0.0001 which is less than the

significance level of 0.05). This leads to the conclusion that the RL agent had higher

incoherence than the DE agent. However, though the DE agent shows better inco-

herence than RL agent, the RL agent is found to show improvement if first episode

is compared with the last episode.

Looking at the relevance measurement in Figure 6.4, it was astonishing to note that

in the first appearance the RL agent stayed more relevant than the DE heuristic
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strategy agent. An inspection of the dialogue transcript revealed the reason for this

as, the DE heuristic strategy agent being more aggressive and asking a large number

of questions. By passively answering the questions, the learning agent constantly

stayed focused.

The (ADF) unit root test was used to test whether the irrelevance obtained after

episode 1000 was stationary and constant in the time series data. Non-parametric

test will be used for the chosen episode to assess the significance of finding (The

Mann-Whitney U test). The reasons for chosen these tests are mentioned before in

Section 3 in Chapter 3.

H0: That there exists a unit root (non-stationarity).

H1: There is stationarity.

Table 6.4: Summary statistics for ADF test (Irrelevance)

Agent Mean
Standard
devia-
tion

ADF
Statistic P-value

Critical
value
1%

Critical
value
5%

Critical
value
10%

RL agent 0.185 0.041 -10.401 0 -3.452 -2.871 -2.572
DE agent 0.344 0.040 -9.579 0 -3.452 -2.871 -2.572

An ADF test on irrelevance of RL agent showed that the null hypothesis of the

existence of a unit root could be rejected with (p−value = 0 less than significance

level 0.05). ADF statistics (−10.401) < critical value (−2.871), therefore, we reject

the H0 which means the time series is stationary. Therefore the irrelevance of RL

agent was stationary.

An ADF test on irrelevance of DE agent showed that the null hypothesis of ex-

istence of a unit root could be rejected (p−value = 0 less than the significance level

0.05). ADF statistics (−9.579)< critical value (−2.871), therefore, we reject the H0

which means that the time series is stationary. Therefore, the irrelevance of DE

agent were stationary.

From the Table 6.6 the higher mean and median suggest the DE agent had higher
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Table 6.5: Irrelevance values of RL agent and DE agent at the last episode

Trials for the last episode
Agent 1 2 3 4 5 6 7 8 9 10

RL agent 0.20 0.15 0.23 0.13 0.21 0.16 0.18 0.19 0.26 0.18
DE agent 0.32 0.42 0.29 0.36 0.37 0.35 0.30 0.32 0.33 0.39

Table 6.6: Basic statistics RL agent and DE agent at the last episode

Agent Mean Standard deviation Median
RL agent 0.19 0.038 0.19
DE agent 0.35 0.041 0.34

irrelevance. A Mann-Whitney U test was used to test the null hypothesis the two

groups were homogeneous against the alternative hypothesis the DE agent had

higher irrelevance than RL agent.

H0: The two groups are homogeneous.

H1: The DE agent had higher irrelevance than RL agent.

A Mann-Whitney U test showed the null hypothesis the two groups were homoge-

neous could be rejected with p−value = 0.0001, which is less than significance level

(0.05). Therefore the DE agent had higher irrelevance than RL agent.

A subsequent experiment was conducted between the RL agent and DE Random

agent. Similar experiments were done between the learning agent and the DE Ran-

dom agent. The results shown in Figures 6.5 and 6.6 for incoherence and irrelevance

respectively. Figure 6.5 confirms the result in Figure 6.3. However, 6.6 shows that

the learning agent improved relevance by decreasing irrelevance.

The (ADF) unit root test was used to test whether the incoherence obtained after

episode 1000 was stationary and constant in the time series data. Non-parametric

test was used for the chosen episode to assess the significance of finding (The Mann-

Whitney U test). The reasons for chosen these tests are mentioned before in Section

3 in Chapter 3.

H0: That there exists a unit root (non-stationarity).
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Figure 6.5: Incoherence measuring between RL agent and DE Random agent

H1: There is stationarity.

Table 6.7: Summary statistics for ADF test (Incoherence)

Agent Mean
Standard
devia-
tion

ADF
Statistic P-value

Critical
value
1%

Critical
value
5%

Critical
value
10%

RL agent 0.002 0.007 -4.588 0 -3.452 -2.871 -2.572
DE Ran-
dom agent

0.015 0.011 -4.937 0 -3.452 -2.871 -2.572

An ADF test on incoherence of RL agent showed that the null hypothesis of the

existence of a unit root could be rejected with p− value = 0, which is less than

significance level (0.05). ADF statistics (−4.588)< critical value (−2.871), therefore,

we reject the H0 which means that the time series is stationary. Therefore the inco-

herence of RL agent was stationary.

An ADF test on incoherence of DE Random agent showed that the null hypothesis of

the existence of a unit root could be rejected with p−value = 0, which is less than

significance level (0.05). ADF statistics (−4.937)< critical value (−2.871), therefore,
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Figure 6.6: Irrelevance measuring between RL agent and randomised based agent

we reject the H0 which means that the time series is stationary. Therefore the inco-

herence of DE Random agent were stationary.

Table 6.8: Incoherence values of RL agent and DE Random agent at the last episode

Trials for the last episode
Agent 1 2 3 4 5 6 7 8 9 10

RL agent 0 0 0 0 0 0 0 0 0.020 0
DE Random agent 0.025 0 0 0.019 0.023 0.022 0.018 0.024 0.019 0

Table 6.9: Basic statistics RL agent and DE Random agent at the last episode

Agent Mean Standard deviation Median
RL agent 0.002 0.006 0

DE Random agent 0.015 0.011 0.019
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From the Table 6.9 the higher mean and median suggest that the DE Random

agent had higher incoherence. A Mann-Whitney U test was used to test the null

hypothesis (the two groups are homogeneous) against the alternative hypothesis

(the DE Random agent had higher incoherence than RL agent).

H0: The two groups are homogeneous.

H1: The DE Random agent had higher incoherence than RL agent.

A Mann-Whitney U test showed that the null hypothesis (the two groups are ho-

mogeneous) could be rejected with p−value = 0.016 which is less than significance

level (0.05). Therefore, the DE Random agent had higher incoherence than RL agent.

The (ADF) unit root test was used to test whether the irrelevance obtained after

episode 1000 was stationary and constant in the time series data. Non-parametric

test was be used for the chosen episode to assess the significance of finding (The

Mann-Whitney U test). The reasons for choosing these tests have been mentioned

previously in Section 3 in Chapter 3.

H0: That there exists a unit root (non-stationarity).

H1: There is stationarity.

Table 6.10: Summary statistics for ADF test (Irrelevance)

Agent Mean
Standard
devia-
tion

ADF
Statistic P-value

Critical
value
1%

Critical
value
5%

Critical
value
10%

RL agent 0.115 0.008 -4.997 0.00002 -3.452 -2.871 -2.572
DE Random
agent

0.297 0.055 -3.073 0.02 -3.452 -2.871 -2.572

An ADF test on irrelevance of RL agent showed that the null hypothesis of the

existence of a unit root could be rejected with (p− value = 0.00002) which is less

than significance level (0.05)). ADF statistics (−4.997)< critical value (−2.871) so we

reject the H0 which means the time series is stationary. Therefore the irrelevance of
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RL agent were stationary.

An ADF test on irrelevance of DE Random agent showed the null hypothesis of

existence of a unit root could be rejected (p− value = 0.02 < p significant at 0.05).

ADF statistics (−3.073)< critical value (−2.871) so we reject the H0 which means

the time series is stationary. Therefore the irrelevance of DE Random agent were

stationary.

From Table 6.12 the higher mean and median suggest the DE Random agent

Table 6.11: Irrelevance values of RL agent and DE Random agent at the last episode

Trials for the last episode
Agent 1 2 3 4 5 6 7 8 9 10

RL agent 0.13 0.11 0.11 0.11 0.13 0.12 0.11 0.12 0.11 0.13
DE Random agent 0.35 0.29 0.30 0.27 0.40 0.33 0.30 0.20 0.28 0.25

Table 6.12: Basic statistics RL agent and DE Random agent at the last episode

Agent Mean Standard deviation Median
RL agent 0.118 0.009 0.115

DE Random agent 0.297 0.055 0.295

had higher irrelevance. A Mann-Whitney U test was used to test the null hypothe-

sis (the two groups are homogeneous) against the alternative hypothesis (the DE

Random agent had higher irrelevance than RL agent).

H0: The two groups are homogeneous.

H1: The DE Random agent had higher irrelevance than RL agent.

A Mann-Whitney U test showed the null hypothesis the two groups were homoge-

neous could be rejected with p−value = 0.000085, which is less than the significance

level (0.05). Therefore the DE Random agent had higher irrelevance than RL agent.

Therefore, it can be concluded from the experiments that the RL agent was able to

learn how to argue with more fluency and coherence using the suggested reward

function in Equation 6.3
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4 Additional reshaped reward function

After implementing the reward function in Equation 6.3 and demonstrating promis-

ing results with improved dialogue performance, the merits of alternative reward

function were systematically reviewed. It is suggested that this alternative reward

function can be derived from the original reward function by dropping one from each

of its four terms. These reward functions can be seen in the following table:

Table 6.13: Suggesting alternative reward functions

Reward func-
tion (Equation) Winning Moves

count
Contradictions Irrelevance

6.4 0 1 1 1
6.5 1 0 1 1
6.6 1 1 0 1
6.7 1 1 1 0

Equation 6.4

(6.4) R =


M1
Mn

+ C1
Cn

+ SF1
SFn

If RL agent wins

−100 Otherwise

Equation 6.5

(6.5) R =


100+ C1

Cn
+ SF1

SFn
If RL agent wins

−100 Otherwise

Equation 6.6

(6.6) R =


100+ M1

Mn
+ SF1

SFn
If RL agent wins

−100 Otherwise
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Equation 6.7

(6.7) R =


100+ M1

Mn
+ C1

Cn
If RL agent wins

−100 Otherwise

From these equations (Equation 6.4, 6.5, 6.6 and 6.7) Since in the DE dialogue

game, it has two agents one with fixed strategy agent (DE agent) and another agent

with randomised strategy so it will consist of two main studies which are described

in the following Sections 4 .1 and 4 .2:

4 .1 Experiments against DE heuristic strategy agent

In this experiment, the RL agent will play game against DE with heuristic strategy

agent using the alternative reward functions mentioned above.

4 .1.1 Dropping winning

In this section, the RL agent will use Equation 6.4 which is dropped winning part

(100) as seen in the original reward function 6.3

I Performance

From the Figure 6.7 it can be seen that the RL agent performs worse initially

and then starts improving and attempts to outperform DE agent in certain

games. However, in most episodes the reward is fluctuating. Overall, the RL

agent experienced fluctuations of reward when it encountered a new configu-

ration at the beginning or was not able to learn properly. In this case, the RL

agent was not able to completely learn and outperform the DE agent, because

(100) rewards encourages the RL agent to win more games against the DE

agent within a deterministic environment.

II Number of moves

The RL agent in Figure 6.8 starts from around 77 moves count and then

decreases. This indicates that the RL agent was able to learn to minimise
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Figure 6.7: Agents’ performance

number of moves when playing more until the value decreased to 17. Therefore,

the RL agent can minimise number of moves using this reward function since

it takes into account the minimum moves factor and hence it can be inferred

that it plays with decisive moves.

III Incoherence

The RL agent in Figure 6.9 has a higher value of incoherence than DE agent

and shows that RL tries to learn to minimise incoherence after episode 2000. As

seen in the graph, incoherence value does not stabilise after it was minimised.

Therefore, the RL agent could not learn efficiently to decrease incoherence as

expected. The decreasing curve suggests that the RL agent explores and learns

as it plays and therefore changes the way it plays with learning. The reason

for higher incoherence could be attributed to the limitation of the RL agent to

explore much to find a strategy that could minimise incoherence with other

attributes.

137



CHAPTER 6. LEARNING TO IMPROVE DIALOGUE COHERENCE AND
RELEVANCE

Figure 6.8: RL agent number of moves

IV Irrelevance

The performance of RL agent shown in Figure 6.10 demonstrated a decrease

in irrelevance with time, while the DE agent showed increasing irrelevance.

This suggests that the RL agent stayed focused but due to aggressively asking

more questions by switching focus strategy the DE agent’s focus was reduced.

The value of irrelevance of RL agent was also found to decrease as more games

were played. This is an indication of the RL agent continuously learning and

improving itself by finding a strategy to maximise reward.

The reward function in Equation 6.4 considered removing the winning part (+100)

from the original reward function in Equation 6.3. From the agent performance

against DE agent, it can be concluded that the RL agent was not able to learn

efficiently after 1500 episode to maximise overall rewards but it was able decrease

irrelevance and number of moves. This is because, the RL agent attempts to maximise

the cumulative reward function and it is not rewarding much for the agent with

respect to winning. Although, the RL agent found a way to increase cumulative

reward to decrease the number of moves and irrelevance, it was not able to find a
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Figure 6.9: Agents’ incoherence

good strategy to decrease incoherence. Therefore, the Figures 6.7 and 6.9 showed

fluctuations in both incoherence and agent’s performance.

4 .1.2 Dropping moves

In this case, the RL agent will use Equation 6.5 which dropped moves count as seen

in the original reward function 6.3.

I Performance

In Figure 6.11, it can be seen that, the DE agent initially outperforms the

RL agent. However, the performance gradually decreases and the RL agent

outperforms the DE agent which stabilises after episode 4000. The RL agent

was therefore able to learn to win with time and outperform the DE agent.

II Number of moves

As seen in Figure 6.12, the RL agent initially has a value of around 15 to

20, which then increases to 25. As the RL agent plays more, the performance

139



CHAPTER 6. LEARNING TO IMPROVE DIALOGUE COHERENCE AND
RELEVANCE

Figure 6.10: Agents’ irrelevance

stabilises approximately at 18. Since this reward function Equation 6.5 did not

consider the number of moves, there is an effect on the RL agent’s behaviour

to decrease number of moves and increase cumulative rewards without consid-

ering less moves.

III Incoherence

Figure 6.13 shows that the RL agent has higher incoherence values than the

DE agent. This is because, the DE agent is deterministic and does not perform

explorations. On the other hand, the RL agent performs exploration and learns

as it plays which results in changing the way it plays. Additionally, the results

from the above graph suggest that, as the number of moves increase, it is more

likely that the contradictions will also be increased.

IV Irrelevance

Initially, the RL agent as seen in the Figure 6.14 has a higher value of irrele-

vance. However, as it plays some games, the irrelevance decreases and is lower
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Figure 6.11: Agents’ performance

than the DE agent. This suggests that the RL agent did not change focus often.

Also, the value of irrelevance of the RL agent decreases as more games are

played. This is because, the RL agent is continuously learning and improving

itself by finding a strategy to maximise reward and the DE agent behaves

aggressively by asking more questions with changing focus.

In this reward function Equation 6.5, the number of moves factor is removed from the

reward function. From the agent performance with the DE agent, it can be concluded

that the RL agent is learning efficiently and is able to outperform the DE agent after

4000 games. This is because the RL agent tries to maximise the cumulative reward

function and that the RL agent was rewarded for winning. However, minimising

the number of moves is not able to decrease irrelevance because, the number of

moves factor has not been considered. Therefore, this might cause the RL agent to

increase moves count. The RL agent found a way to increase cumulative reward by

winning almost every game by decreasing irrelevance, however, it was not able to

a find strategy for decreasing incoherence. This is possibly due to the increase in

number of contradictions with increase in number of moves.
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Figure 6.12: RL agent number of moves

4 .1.3 Dropping contradictions

In this section, the RL agent will use Equation 6.6 which has dropped the contradic-

tions part from the original reward function 6.3

I Performance

In the above Figure 6.15, the DE agent was found to outperform the RL agent in

the initial stages which then decreased gradually and RL agent took turn and

outperformed the DE agent and later stabilised after episode 4000. Hence, the

RL agent was able to learn and explore as it played that led to outperforming

the DE agent.

II Number of moves

As seen in the Figure 6.16, the RL agent starts with high number of moves

(around 78) which then decreases after some small fluctuations. And as it plays

more, the number of moves decreases to around 16. This suggests that the RL
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Figure 6.13: Agents’ incoherence

agent is able to minimise the number of moves because it was attempting to

maximise cumulative rewards.

III Incoherence

The RL agent has a higher value of incoherence than the DE agent. This is

because the DE agent is deterministic and does not perform explorations. On

the other hand, the RL agent performs exploration and learns as it plays. In

addition, the factor of contradiction is not considered in Equation 6.3. Due

to the factor of contradiction not being explicitly incorporated in the reward

function, the incoherence value is found to be higher. This is the reason that we

can see a higher incoherence in RL agent. As seen in Figure 6.17, incoherence

starts from a very low value which then starts to increase but never stabilises

as RL agent did not have a factor to minimise incoherence.
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Figure 6.14: Agents’ irrelevance

IV Irrelevance

In this context, the RL agent shows a decreased irrelevance, suggesting it

stayed focus. Whereas, the DE agent has higher irrelevance as it was more

aggressive in its attempt to win the game by asking more questions and

switching focus strategy. The initial value of irrelevance for the RL agent was

high, which then decreased to a 0.1-0.2 range.

Overall, in agents’ performance, the RL agent initially performs worse then improves

performance and outperforms the DE agent. The factor of contradiction is missing,

which impact on incoherence behaviour of the RL agent. The RL agent finds a way to

maximise the cumulative reward by winning most of the games as well as decrease

moves count and irrelevance.

4 .1.4 Dropping switching focus

In this case, the RL agent will use Equation 6.7, in which the switching focus term

from the original reward function 6.3 is dropped.
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Figure 6.15: Agents’ performance

I Performance

The RL agent initially performs poorly. However, it is bale to improve its

performance later and outperform the DE agent. This is an expected trend

because the RL agent learns to play better as it explores more games and

the winning factor (+100) is considered as well. Figure 6.19 shows that the

RL agent is able to continuously outperform the DE agent after 4100 episode

suggesting that the RL agent wins most of the games.

II Number of moves

The Figure 6.20, shows that the RL agent starts with a value of 50 and

decreases to 40. This is larger than the average number of moves in the

previous reward functions. This means that the RL agent has not learnt how to

finish the game in average less number of moves and hence it can be inferred

that it does not perform highly decisive moves. This is because we have dropped

the switching focus factor and hence it does not take that into account. However,
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Figure 6.16: RL agent number of moves

the RL agent switched more focus often which led to an increase in the number

of moves.

III Incoherence

The RL agent in Figure 6.21 improves incoherence as it is decreasing the inco-

herence value over the time. The RL agent has a higher value of incoherence

than the DE agent. This is because the DE agent is deterministic and does not

perform explorations. On the other hand, the RL agent performs exploration

and learns how to minimise incoherence as it plays. In this reward function,

the RL agent is able to minimise incoherence while also performing better than

DE agent.

IV Irrelevance

Since switching focus factor is dropped in this reward function, the RL agent

has a higher value of irrelevance than the DE agent as seen in Figure 6.22.

The value of irrelevance of RL agent increases as more games are played. It
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Figure 6.17: Agents’ incoherence

means that the RL agent is not learning how to focus appropriately. As a result,

this reward function Equation 6.7 has a negative impact on the irrelevance

behaviour for the RL agent.

Initially, the RL agent performs poorly, then as it starts to play more games, it is

able to learn and improve its performance. This is an expected trend because the

RL agent learns to play better as it plays more games by maximising cumulative

rewards. Also, the factor of switching focus is not considered in this equation. As it

is not explicitly incorporated in the reward function, the irrelevance value is also

higher. This also negatively impacts the moves count leading to higher moves count

than previous reward functions given in Equation (6.4 and 6.6) suggesting more

switching focus has happened. At the start, the initial incoherence value was higher,

but as the RL agent played and explored with more games it was able to learn to

minimise incoherence.

By comparing these results with the original reward function in Equation 6.3 which

takes into account all the attributes, the results are different. The original reward

function tries to reward the RL agent as it wins with a high value and gives negative
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Figure 6.18: Agents’ irrelevance

reward as it loses, minimise the number of moves, incoherence and irrelevance by

giving appropriate reward. Therefore, the RL agent achieves the aim by maximising

the cumulative reward. The original reward function is more robust and takes into

account all the factors based on the results.

4 .2 Experiments against DE random strategy agent

In this experiment, the RL agent will play against the DE with random strategy

agent using the alternative reward functions which are Equations (6.4,6.5,6.6 and

6.7).

4 .2.1 Dropping winning

In this section, the RL agent will use Equation 6.4 in which the winning part (100)

is dropped as seen in the original reward function 6.3.
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Figure 6.19: Agents’ performance

I Performance

Figure 6.23 illustrates that, the RL agent initially performs poorly, and then

starts improving and attempts to outperform the DE Random agent. Although,

there are many fluctuations and it never stabilises, the RL agent performs

better than the DE Random agent. Generally, since reward winning has been

dropped and played with agent which has got fixed strategy, the RL agent’s

performance could not stabilise and converge which impacted its behaviour.

II Number of moves

The above graph (Figure 6.24), shows that the RL agent can improve by

minimising number of moves. It started at around 52 moves then decreases

gradually as more games are played to around 15 moves. That means that the

RL agent learns how to finish the game with minimum number of moves over

time which can be inferred that it plays decisive moves as more games are

played.
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Figure 6.20: RL agent number of moves

III Incoherence

In Figure 6.25, the RL agent shows decreasing value of incoherence than the

DE Random agent. Since, contradiction factor was incorporated in the reward

function Equation 6.4, the RL agent received more rewards by minimising

contradiction. Hence, RL agent is able to learn to minimise incoherence.

IV Irrelevance

Figure 6.26 demonstrates that the RL agent has a lower value of irrelevance

than the DE Random agent. This means that the DE Random agent changes

focus often than the RL agent and RL agent stayed focused most of the time.

Hence, the RL agent is learning how to focus appropriately.

For this reward function, the winning factor of Equation 6.4 has not been considered.

In general, it seems that the RL agent performs better in minimising number of

moves, incoherence and relevance respectively than the DE Random agent. This

is because the RL agent tries to maximise the cumulative reward function with
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Figure 6.21: Agents’ incoherence

regard to these three factors. However, with regards to the performance, the RL

agent tries to outperform the DE Random agent with some fluctuations, but never

stabilises and converges since this reward function had ignored the winning part.

This had an impact on the RL agent’s behaviour by not receiving higher reward

when it was winning. On the other hand, the opponent is not with deterministic

strategy, therefore the RL agent’s response and behaviour are impacted. However,

the RL agent was able to decrease irrelevance and the number of moves. This is

because the RL agent tries to maximise the cumulative reward function and it is not

rewarding the agent much on winning.

4 .2.2 Dropping moves

In this case, the RL agent will use Equation 6.5 which is dropped moves count term

in the original reward function 6.3
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Figure 6.22: Agents’ irrelevance

I Performance

This reward function Equation 6.5 is not considered number of moves. From

Figure 6.27, despite fluctuations in the initial 1000 episodes, the RL agent

performs better than the DE Random agent and stabilises after 5000 episodes.

Therefore, the RL agent can be able to learn as it plays and it outperforms

the DE Random agent. This happens because the RL agent is given positive

reward when it wins and tries to maximise the cumulative reward and hence

wins more games as it plays.

II Number of moves

Figure 6.28, shows that the number of moves is less initially but increases

around 25 moves, after which the performance fluctuates frequently as the

RL agent plays more games. Although, the RL agent attempts to minimise

the number of moves, it increases in the middle because the number of moves

in the reward function has been removed and therefore not considered by RL

agent while playing the game. Hence, the reward related to the number of
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Figure 6.23: Agents’ performance

moves is not incorporated explicitly. In fact, the RL Agent tries to maximise the

cumulative reward, but in the reward function it is not given enough reward

when the number of moves are decreased because the number of move factor

is not present and hence the RL agent is not able to decrease the number of

moves efficiently.

III Incoherence

From Figure 6.29, it can be seen that the RL agent has a lower value of

incoherence than the DE Random agent. Since the RL agent had considered

the contradiction factor in the reward function in Equation 6.5, this allows for

exploring with minimum incoherence by maximising the cumulative reward.

Hence the RL agent is able to improve its learning to minimise incoherence.

IV Irrelevance

Figure 6.30 illustrates that the RL agent had lower value of irrelevance than

the DE Random agent. This means that the DE Random agent changed focus
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Figure 6.24: RL agent number of moves

to win the game, whereas, the RL agent stayed focused. Since the value of

irrelevance of the RL agent decreases with more games being played, the RL

agent is able to learn how to focus appropriately and minimise irrelevance.

Therefore, in the reward function given in Equation 6.5 the number of moves factor

is dropped. With respect to the agent’s performance, it can be concluded that the

RL agent is able to learn to argue after 5000 episodes. This is because the RL agent

tries to maximise the cumulative reward function and therefore the RL agent was

rewarded enough on winning. However, minimising the number of moves did not lead

to decrease in the number of moves as the number of moves factor is not considered.

Hence, the number of moves related reward is not incorporated in the equation

explicitly and it is not given a reward when the number of moves are decreased

(because the number of move factor is not present). Therefore, in this case, the RL

agent could not decrease the number of moves efficiently. Since this reward function

considered contradiction and switching focus factors, the incoherence and irrelevance

had decreased and hence the RL agent is able to learn to decrease both incoherence

and irrelevance.
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Figure 6.25: Agents’ incoherence

4 .2.3 Dropping contradictions

In this section, the RL agent will use Equation 6.6 in which the contradictions term

is dropped from the original reward function 6.3.

I Performance

In Figure 6.31, the RL agent is found to perform better than the DE Random

agent and stabilise after 5500 episodes. The RL agent was found to attempt to

learn and outperform better even in the initial episodes. Hence, the RL agent

is able to learn as it plays more games and outperform the DE Random agent.

The factor of +100 is present in the reward function (Equation 6.6) therefore

it receives higher reward on winning a game. Because the RL agent tries to

maximise the cumulative reward, it is able to learn how to win more games.
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Figure 6.26: Agents’ irrelevance

II Number of moves

As seen in Figure 6.32, as the RL agent played more games the number of

moves decreased from 47 to 14. This means that the RL agent learns how to

finish with less number of moves. Hence, the RL agent is able to learn quickly

to win with less number of moves.

III Incoherence

In Figure 6.33, the RL agent had a higher value of incoherence than DE

Random agent. This was expected, because the reward function 6.6 did not

consider the contradiction factor. This means that, the RL agent does not take

into account contradiction, therefore the incoherence is higher. As a result, the

RL agent does not learn how to minimise the incoherence. The RL agent tried

to maximise the cumulative reward but because the factor of minimising the

incoherence was absent in the reward function, it was not able to optimise it.
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Figure 6.27: Agents’ performance

IV Irrelevance

The RL agent in Figure 6.34 had a lower irrelevance than the DE Random

agent. This means that, the DE Random agent changed focus often than the

RL agent. In addition, the value of irrelevance of RL agent decreases as more

games are played. The RL agent tried to minimise the irrelevance in order to

maximise the cumulative reward. Therefore, this suggests that the RL agent

is learning how to focus appropriately.

Regarding the agents’ performance, the RL agent initially performs worse, but then,

attempts to outperform and improve performance. The factor of contradiction is

dropped in this case. As a result the final incoherence is higher than when this factor

is present in other reward functions. However, the factors of switching focus and

number of moves are present in this reward function. Hence, the number of moves

and irrelevance are successfully decreased over the time.
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Figure 6.28: RL agent number of moves

4 .2.4 Dropping switching focus

In this section, the RL agent will use Equation 6.7 in which the switching focus is

dropped from the original reward function 6.3.

I Performance

As shown in the Figure 6.35, the RL agent outperforms the DE Random agent

and stabilises after 5000 episodes. So, the RL agent was able to learn as it

played more games and hence outperform the DE Random agent. The RL agent

received high reward by considering the winning attribute (+100) to maximise

cumulative reward and hence it learns how to win more games as it played.

II Number of moves

In Figure 6.36, a lot of fluctuations can be seen and the number of moves played

does not stabilise. This means that, the agent could not learn how to finish the

game with less moves. The RL agent takes many moves to win a game. This
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Figure 6.29: Agents’ incoherence

is because the switching focus factor was dropped and hence it does not take

that into account. The RL agent did not consider to minimise switching focus,

therefore it loses focus many times which led to increased number of moves.

III Incoherence

As seen in Figure 6.37, the RL agent could improve incoherence as it is de-

creasing the incoherence value over time. Since the RL agent had considered

the contradiction factor in the reward function in Equation 6.7, this allowed

for exploring with minimum incoherence by maximising cumulative reward.

The RL agent initially had higher incoherence than the DE Random agent but

as the RL agent played more games, and made improvement, it was able to

learn how to decrease incoherence.

IV Irrelevance

As seen in Figure 6.38, the RL agent had a similar value of irrelevance as that

of the DE Random agent. It means both agents changed focus often for winning
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Figure 6.30: Agents’ irrelevance

the game. The RL agent could not decrease irrelevance value over time. This

indicates that the RL agent could not learn to minimise irrelevance. Since,

switching focus factor is factored into the reward function in Equation 6.7, the

RL agent aimed to maximise the cumulative reward, but did not minimise

switching focus, which caused the irrelevance value to increase over time.

In this reward function Equation 6.7, the RL agent could not decrease the value of

irrelevance. This is expected because, the switching focus factor has been dropped.

As a result, the RL agent loses focus many times and the number of moves do not

minimise over time. Since the factor of irrelevance is absent with other factors being

present, the RL agent increases the cumulative reward by optimising the considered

factors. As a result, the RL agent outperforms the DE Random agent and thereby

improves performance. Also, the RL agent was able to decrease the incoherence by

minimising contradictions.

The reward functions described in this chapter aim to make systematic analysis of

the RL agent’s performance against DE Random agent by dropping one attribute at
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Figure 6.31: Agents’ performance

a time. The original reward function Equation 6.3 takes into account all the factors:

winning, moves count, contradictions and switching focus respectively. In the original

reward function, the RL agent aims to improve performance as well as minimise

moves, incoherence and irrelevance which was addressed earlier in this chapter. In

this the RL agent played against DE Random agent. The RL agent did not learn

how to win the games efficiently if the winning factor (+100) was dropped. Similarly,

removing the incoherence factor led to higher incoherence. When the number of

moves factor was dropped, the RL agent was able to minimise number of moves. And,

removing the irrelevance factor resulted in higher irrelevance.

Therefore, the original reward function seems to perform better compared to these

alternative functions as it can trade-off with all attributes and yield more robust

and efficient results. The RL agent aims to maximise the cumulative reward, but in

these alternative reward function, if one attribute is dropped it will impact on the

behaviour of the RL agent and therefore impact on the agent’s performance with

respect to the dropped attribute. Therefore, it can be concluded that the original

reward function Equation 6.3 performs better than alternative reward functions.
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Figure 6.32: RL agent number of moves

5 Summary

To sum up, this chapter proposed quality measures for dialogue between the RL

agent and DE baseline agents, i.e. fluency and coherence. The two measurements

were incorporated into the reward function and a number of experiments were dis-

cussed. From the results, it can be concluded that the RL agent was able to learn to

improve its performance, coherence and fluency compared to the DE baseline agents.

The DE agent performed better than the RL agent in terms of coherence. This is

because the DE agent is deterministic and built with heuristic strategy which makes

it contradict less with itself and therefore stay coherent. Hence, it might take a long

time for the RL agent to adapt the strategy to be better than or similar to the DE

agent.

Alternative reward functions Equation (6.4, 6.5, 6.6 and 6.7) were studied sys-

tematically. In each equation, one factor was dropped at a time. The RL agent tries

to maximise the cumulative reward but when the factor is dropped, the behaviour

of the RL agent is negatively impacted. The reason for this is, when all attributes
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Figure 6.33: Agents’ incoherence

are engaged into the reward function, the RL agent is able to trade-off between the

attributes and maximise cumulative reward through time. Therefore, the original

reward function (Equation 6.3) makes the RL agent behave better than other alter-

native equations.

This research now moves to generalisation using transfer learning techniques [178]

which will be discussed in the next chapter.
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Figure 6.36: RL agent number of moves

Figure 6.37: Agents’ incoherence
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Figure 6.38: Agents’ irrelevance
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CHAPTER 7. GENERALISATION APPROACH

A fter allowing the RL agent to learn to argue in a logic based dialogue game

against hard-wired DE model agents, it was necessary to generalise the

approach to different contexts. This not only saves on the learning time for

the agent by not having to learn from scratch each time, but also helps to transfer

and reuse the learned experience of one domain to other domains. In this chapter,

a generalisation approach to achieve transfer of learning into different tasks is

proposed. This uses argumentation schemes and evidence support as patterns that

can be recognised by the RL agent in different tasks.

1 Introduction

Generalisation refers to applying previously acquired learning that has occurred in

one scenario to other novel scenarios. According to Gluck et al. [233], generalisation

is the concept where humans or animals can use previous experience from a simi-

lar scenario in the current situation. However, generalising any approach requires

patterns. Bocconi et al. [234] supports generalisation as, being associated with the

presence of specific patterns and similarities that can be used to exploit features.

Therefore, a new problem scenario will be easier to solve based on previous experi-

ence. Hence, generalisation is related to transferring experience between different

domains.

In computer science, generalisation refers to a method in which a general ap-

proach to solving a class of problems is sought [235]. Some benefits of generalisation

through transferable experience are lower learning times and improved performance

[178, 236]. This leads to the agent being able to adapt to a new task easily with less

experience.

In machine learning, the motivation for transfer learning is based on the need

for long-term learning techniques that are aimed at retaining and reusing previously

acquired knowledge [237]. Since the RL agent has been able to successfully learn

to argue against baseline agents in a specific domain i.e. capital punishment using

the DE model [7], it is beneficial to generalise the experience that the RL agent has
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gained and adapt it in a new domain. In the current context, this domain is chosen

as BREXIT. BREXIT covers the United Kingdom’s decision to withdraw from the

European Union based on the results of a referendum in 2016. BREXIT was cho-

sen due to the rich set of arguments that are for and against the decision to withdraw.

This chapter will use the transfer learning approach introduced in Chapter 2 to

test whether the RL agent can generalise the policy that it has learnt in one do-

main to apply to another. Additionally, the kind of patterns that can be learned and

transferred to improve performance and speed up learning will be determined.

2 Different context argument domain

A number of methods for representing knowledge in argumentation systems are

available in the literature [7]. For instance, Yuan [7], Ravenscroft and Pilkingtons

[135], and Bench-Capon [132]. It has been suggested that a knowledge base should

enable to provide statements that can be used to answer questions, support other

statements and rebut other statements [43]. Yuan [7] asserts that, building the

knowledge base in a DE system will enable the agent to provide statements based

on answering questions that have been asked and argue with the opponent.

The DE system in [7] adopted a modified version of Toulmin’s schema as illustrated

in Figure 5.1 of Chapter 5. The capital punishment knowledge base was modified by

adding argumentation schemes and supporting evidence which are patterns that are

assumed to be recognised by the RL agent as knowledge for learning transfer.

Along these lines, a new knowledge base with the same structure as the origi-

nal capital punishment domain introduced in Chapter 5 was built. For this, the

highest trending and argument rich topic, that is BREXIT was chosen. It refers to

the UK withdrawing from European Union (EU) membership. The main reason for

selecting BREXIT was the availability of arguments that originated from heated

debates over whether the UK should leave or remain in the EU. A knowledge base

was developed based on the DE dialogue model described previously in Chapter 5.
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The BREXIT knowledge base focused on two main claims "For BREXIT" and "Against

BREXIT", with some selected topics such as the NHS, taxes and employment. Addi-

tionally, the arguments in the dataset were selected from the most debated issues

around BREXIT from September 2016 to March 2019. The problems of trade with

Europe, employment, the NHS and controlling the borders were significant areas of

debate and discussion within the British parliament at that time. The importance of

these issues could be seen from the perceived future effect of BREXIT on each one.

There are other important issues, such as education and the impact of BREXIT on

the cost of living, but these are more concerned with long-term consequences than

short-term ones. Figures 7.1 and 7.2 show that financial involvement in the EU, as

well as percentage of British jobs represent two arguments from the standpoint of

attitude. In addition, control of national borders and spending on the NHS represent

arguments based on the consequences.

As BREXIT is an ongoing topic of debate, there was some difficulty in finding

primary sources for collecting information. Most information was collected from

secondary sources, such as newspapers, TV documentaries and journals. As such, a

decision was made to select information from the following outlined sources, in order

to present a wide range of views on BREXIT, and these sources can be found in the

following:

1. Reflecting the official link between the UK parliament and the public, pre-

sented via e.g. BBC news from October 2016 to March 2019.

2. British newspapers, such as, The Guardian, The Telegraph, The Sun and The

Daily Mail.

3. Articles on BREXIT published from 2016 to 2019 which were discussed and

reviewed critically.

4. NHS policy: The UK’s NHS plays an important role in the politics of the UK.

Although the public is largely supportive of the service, The King’s Fund [238]

stated in 2017, that public satisfaction with NHS services was at its lowest
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point for ten years. Therefore, any issues with BREXIT funding for the NHS

rated high on the agenda.

5. BBC news: According to Ofcom [239], the BBC news was rated by participants

as highly accurate and reliable. In the annual polling, participants were asked,

which news source they trusted most of all those available. Approximately 59%

gave the BBC a good rating for trustworthiness, while 54% rated it as the most

accurate reporting. However, it was ranked as impartial and unbiased by just

48%.

6. The Guardian: The Guardian newspaper has a peak degree of domain authority

for Google and Google news1, which means it has a high rank of searching for

breaking news. The Guardian’s editorial code talks strongly about verification

and does not claim anything that cannot be confirmed as a fact. According to a

2017 survey conducted by Pew Research Centre [240], the publication has a

50% confidence rating among UK adults, compared with a 22% distrust rating.

7. The Daily Mail: Although the confidence rating of the newspaper is fairly

low, as an unreliable source2, it is still read by adults in the UK 3. According

to Jigsaw Research [241], of the 40% of adults who claim to get news via

newspapers, 31% claimed to do so through the Daily Mail. This represented

the highest percentage in any publication. (It would be remiss, therefore, to

not consider the The Daily Mail as a source, in spite of its lack of perceived

credibility, in light of its high level of circulation).

8. Scottish independence question: The question over Scottish independence

from the United Kingdom is directly related to the issue of BREXIT 4. In the

referendum, Scotland voted closely to remain part of the UK. A number of polls

showed close attitudes in Scotland towards leaving the UK post BREXIT, for

1https://www.theguardian.com/commentisfree/2015/jul/06/how-the-guardian-decides-which-
sources-can-be-deemed-trustworthy

2https://www.pressgazette.co.uk/facebook-more-trusted-news-daily-star-according-bbc-
commissioned-survey/

3https://www.statista.com/statistics/380710/daily-mail-the-mail-on-sunday-monthly-reach-by-
demographic-uk/

4https://www.theguardian.com/uk-news/2020/feb/04/scottish-independence-survey-shows-brexit-
has-put-union-at-risk
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instance YouGov 5 and Survation 6. Many in Scotland want to stay in Europe;

therefore, this is high on the BREXIT agenda with Scottish union and the rest

of the UK being potentially at risk.

9. Rejection of no-deal BREXIT: Refusal of members of parliament, including

many Scottish members, in support of the no deal BREXIT is significant

because it shows a difference in what people view leaving Europe to mean. The

findings of a number of surveys conducted in the second half of 2019 found

that nearly 75% of those who voted to leave Europe during the referendum

supported a no deal BREXIT 7. Thus, with the 25% who do not support this, it

can be supposed that the outcome of the referendum would have been different

if this option had been made clear before the voting campaign.

10. Direct and indirect tax implications of leaving Europe, as well as increasing

rents: This was a real problem throughout the campaign. According to Deloitte8,

a lot of changes to taxation were not expected, though the UK would need to

implement changes in regard to indirect taxation. Even with the possibility

that future governments would have more freedom of choice, uncertainty about

the direction in which the UK would be taken may be cited as a major factor for

those who voted in the referendum. Concerns about rent prices and hence the

cost of living were also highly affected 9. Despite confusion about the matter,

many may have seen serious reasons to be concerned by the UK leaving Europe.

11. The Sun: According to the press Gazette10, in terms of impartiality, the Sun

has the lowest rank of news sources.

12. Lack of a viable deal: Post referendum, several rounds of negotiations happened

in order to define the relationship between the UK and Europe after BREXIT.

With any such deal being extremely unlikely to satisfy everyone, the lack of

5https://yougov.co.uk/topics/politics/articles-reports/2020/01/30/scottish-independence-yes-leads-
remainers-increasi

6https://www.survation.com/even-split-between-yes-and-no-in-new-scottish-independence-
voting-intention-poll/

7https://www.bbc.co.uk/news/uk-politics-49551893
8https://www2.deloitte.com/uk/en/pages/tax/articles/uk-leaving-the-eu.html
9https://www.leaders.co.uk/advice/brexit-affect-on-rental-market

10https://www.pressgazette.co.uk/facebook-more-trusted-news-daily-star-according-bbc-
commissioned-survey/
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a proposal with a good possibility of a deal in the end proved a problem for

BREXIT eventually happening 11. The Prime Minister suggested a BREXIT

deal around three times, and a lack of resolve to leave with no deal was worth

considering.

It took a lot of effort and was very time consuming to collect information from sources.

Collecting information from these sources required watching, reading and analysing

relevant content, which took significant time to execute.

Structure of the knowledge base: With respect to the practical level, it can be seen in

Figures 7.1 and 7.2 there are seven main arguments for "For BREXIT" and a further

seven supporting arguments "Against BREXIT". In the following tables Table 7.1

and 7.2 show arguments and supporting arguments for both claims For and Against.

11https://citywire.co.uk/wealth-manager/news/mays-brexit-plan-in-jeopardy-as-mps-deliver-
second-historic-defeat/a1209225
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Arguments Support arguments

Threat from EU to British
sovereignty (and lack of EU ac-
countability).

EU Law overrides UK Law.

More jobs for British people ei-
ther full or part time.

UK will be for British people and
salary will be raised.

Full control of UK borders, wa-
ters and commodities.

Only UK terms and regulations
will be used with NO exception
to EU countries.

Less money spent on UK NHS.

Non-British people with no per-
mission to stay in UK forever will
no longer be authorised to use
NHS for free.

UK would avoid deeper integra-
tion with Eurozone.

Euro has proved to be volatile
and staying with pound a good
idea.

Threats of possible BREXIT(s)
are not realistic.

Scottish voices voted "no" to be
out of the UK.

Government will control the tax-
ation among companies.

Without auditing prices, living
costs will increased evidently.

Table 7.1: For BREXIT claim dataset
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Arguments Support arguments

Unclear what "sort" of BREXIT
should be carried out.

Opinions are more varied than
just remain or leave - consensus
very difficult.

Increase the percentage of taxes
on UK taxpayers.

To avoid potential loss, British
companies will raise the prices of
goods, properties.

Encourage more divisions within
UK.

Scottish resistance by asking for
another internal BREXIT.

Being out of EU will decrease the
level of collaboration financially.

Political change lead investors to
look for safe and stable place.

More money will be spend on
NHS.

This is attributed to the cut of
partnership from the EU. Govern-
ment will be the main resource of
funding.

Companies will be not respond
immediately to job offers.

Statistically, UK companies in-
tend to shift online commodities
to reduce paying salaries (e.g.,
Waitrose).

British involvement can benefit
both EU and Britain - common
interests.

UK has very rarely voted against
EU policy.

Table 7.2: Against BREXIT claim dataset
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3 Transferable argument

Since the argumentation schemes and evidence support source patterns were created

previously, it can be supposed that these patterns are useful to the RL agent in

transferring its experience across different domains. This is due to the fact that

these schemes classify arguments and can be shared in different knowledge bases

[242]. Various argumentation schemes, such as argument from expert opinion and

argument from consequence [221, 242] have been proposed in the literature. These

argumentation schemes can be implemented in both the capital punishment and

BREXIT knowledge bases.

Likewise, the sources that are represented in the knowledge base as evidence sup-

port for arguments can be applied in different domains. These kinds of sources

such as the Guardian newspaper, The Times and BBC news are evaluated based on

their reliability. Their reliability scores are established based on how much people

generally trust these sources.

Therefore, it is expected that these two patterns can be used by the RL agent

to enable transfer learning [176, 178, 184]. These patterns allow mapping between

domains and tasks which are the main categories of transfer learning algorithms

along with the five dimensions mentioned in [178, p. 1640] (discussed in the next

section). Taylor and Stone [178] suggest that, transfer is more likely to be beneficial

as the mechanism for selection becomes more related. Taylor et al. [243] support

the point that transfer data may be reused between different tasks. Having been

recorded first in a source task, it can then be transferred into a target task and

used for the target task’s learner as it builds its model. Lazaric [244] also suggests

that, learning algorithms can use the transferred knowledge to solve and improve

performance significantly in a target task when the tasks are similar. Hence, these

patterns can be useful to transfer between tasks due to their mapping and relation

between domains.
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4 Method of transfer

The methods that are previously mentioned in Chapter 2 in Section 3 .1 explain

how to apply transfer learning between the source task (capital punishment) and

target task (BREXIT). In Table 7.3, the transfer implementation for each method is

illustrated.

Method Implemented in capital punishment and BREXIT domains

Allowed task
differences

Each task, even capital punishment and BREXIT have different
states and actions. However, the state shape is still the same
((previousmove ∪ CS1 ∪ CS2)) as is the reward function (R =
100+ M1

Mn + C1
Cn + SF1

SFn ).

Source task se-
lection

First, the RL agent learns how to argue in the source task capital
punishment. BREXIT has been chosen as a target task to test how
successful transfer learning can occur.

Transferred
knowledge

Since the states and actions will be different between tasks, high
level knowledge has been chosen to transfer such as, important
features between tasks (patterns) i.e argumentation schemes and
evidence support sources.

Task mappings
Both tasks have the same shape of states, actions and reward func-
tion. With task mapping, it assumes that transfer learning will
decrease the time of learning.

Allowed learn-
ers

Both tasks have used the same RL algorithm which is the Q-
learning algorithm

Table 7.3: Transfer from capital punishment to BREXIT

5 Experiment and result

Experiments were carried out to evaluate the performance and efficiency of transfer

learning. In order to facilitate the assessment, baseline agents (DE agents) were

paired against RL agents. The RL agent first played against one of the baseline

agents in the capital punishment domain and then played against it again in the

BREXIT domain.
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Transfer learning between the two domains was facilitated using the popular tabu-

lar transfer approach. Evidence support sources and argumentation schemes were

chosen as patterns and common features between domains. Therefore, two tables

were generated to transfer the weights that empowered the RL agent to win the

game: one for the evidence support sources and one for the argumentation schemes.

From the source task, tables for both sources and argumentation schemes were

generated using the established patterns. These tables were used to help the RL

agent in the target task to learn to win the game. Then, weights were calculated

by how likely it was for each chosen source and argument scheme to have won,

for instance how many times the BBC news source would lead to the RL agent

winning the game. In the target task, the agent found statements that are related

to the sources and argument schemes which made the RL agent most likely to win

the game. Finally, the RL agent chose actions which were related to sources and

argument schemes that were more likely to win as they were in the source task.

The same reward function as in Equation 6.3 was used:

R =


100+ M1

Mn
+ C1

Cn
+ SF1

SFn
If RL agent wins

−100 Otherwise

The agent was made to play the dialogue game for 4,000 episodes with the same

settings with learning rate (α) discounted factor (γ), set to 0.9 and 0.9 respectively

in the Q-learning algorithm:

Q(st,at)←Q(st,at)+α[r t+1 +γmax
a

Q(st,at+1)−Q(st,at)]

In addition, the immediate reward (r t+1) was set to -0.01 to make the RL agent

win faster. The RL agent played against both the DE agent with heuristic strategy

or the DE Random agent in the source task. Once the RL agent had learning

experience in the capital punishment domain the two tables for evidence sources

and argumentation schemes were generated. Then, the RL agent repeated playing

against baseline agents in the BREXIT domain with the same number of episodes
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Figure 7.3: Transfer learning from source task (capital punishment) to target task
(BREXIT)

and settings. Figures 7.4 – 7.5 show the RL agent’s performance with and without

transfer learning against baseline agents.

Both figures illustrate that the RL agent was able to perform positively with transfer

learning when compared to the one without transfer learning. By evaluating the

three transfer learning metrics: jumpstart, time to threshold and asymptotic per-

formance, it is evident that the RL agent successfully transferred experience from

the capital punishment to the BREXIT domain resulting in speeding up of learning

with improved learning performance in the target task [243]. Based on the three

measurements mentioned earlier, Figure 7.4 demonstrates that the RL agent with

transfer performed better than without. It shows that the RL agent with transfer
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Figure 7.4: RL agent using transfer learning against DE agent with heuristic strategy

initially received a higher reward than without transfer and a significant carry on

with higher reward. For the second measure, time to threshold, the RL agent with the

transfer was earlier to threshold than without. Asymptotic performance, which is the

third measure, shows that the RL agent with transfer is slightly higher than without.

Hence, the RL agent with transfer satisfied all the three evaluation metrics that

were used to compare the performance of successful transfer and learning from

scratch. This can be seen in Figure 7.5. The results are similar to the DE agents’

performance that are shown in Figure 7.4 with minor differences in jumpstart and

asymptotic performance. Therefore, by evaluating these three measures, the transfer

learning goal was achieved and improvement in learning was demonstrated in the

target task by leveraging knowledge acquired from the source task [176, 178].

Additionally, the key insight behind the transfer learning process is generalisation

[178]. From the results of our experiments, it can be concluded that argumentation

schemes and evidence support sources allow the RL agent to learn and transfer

experience from a source domain to a target domain. This can be considered as a
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Figure 7.5: RL agent using transfer learning against DE agent with random strategy

generalisation approach for argumentation.

A non-parametric test (Mann-Whitney U test) was used to assess the significance

of the findings. The assessment will be the time to threshold for RL agent with TL

reached faster than RL agent without TL against DE agent with heuristic strategy.

The trials to reach an average reward of 100 (time to threshold). The reason for

choosing this test is mentioned before in Section 3 of Chapter 3.

Table 7.4: Basic statistics RL agent with TL and RL agent with NO TL against DE
agent with heuristic strategy

Agent Mean Standard deviation Median
RL agent with TL 850 150 900

RL agent with NO TL 1830 155 1800

From Table 7.4 the lower mean and median suggest that the RL agent with TL

reach to time to threshold (average 100) faster than the RL agent with NO TL
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(against DE agent with heuristic strategy). Mann-Whitney U test was used to test

the null hypothesis and the two groups were homogeneous against the alternative

hypothesis that the time to threshold for the RL agent with transfer learning will be

faster than the RL agent without transfer learning.

H0: The two groups are homogeneous.

H1: The time to threshold for the RL agent with transfer learning will be faster

than the RL agent without transfer learning.

A Mann-Whitney U test showed the null hypothesis (the two groups are homoge-

neous) could be rejected with p−value = 0.00007 which was less than the significance

level at 0.05. Therefore, time to threshold for the RL agent with TL was significantly

faster than the RL agent with NO TL.

A non-parametric test (Mann-Whitney U test) was used to assess the significance

of finding. The assessment will be the time to threshold for the RL agent with TL

reached faster than the RL agent without TL against DE Random agent. Time to

threshold is defined as the number of trials to reach average reward of 100. The

reason for choosing this test is mentioned before in Section 3 of Chapter 3.

Table 7.5: Basic statistics RL agent with TL and RL agent with NO TL against DE
Random agent

Agent Mean Standard deviation Median
RL agent with TL 780 382 850

RL agent with NO TL 1470 691 1750

From Table 7.5 the lower mean and median suggest that the RL agent with TL

reached time to threshold (average 100) faster than the RL agent with NO TL

(against DE Random agent). Mann-Whitney U test was used to test the null hypo-

thesis that the two groups were homogeneous against the alternative hypothesis

that the time to threshold for the RL agent with transfer learning will be faster than

the RL agent without transfer learning.
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H0: The two groups are homogeneous.

H1: The time to threshold for the RL agent with transfer learning will be faster

than the RL agent without transfer learning.

A Mann-Whitney U test showed that the null hypothesis (the two groups are homo-

geneous) could be rejected with p− value = 0.020 being less than the significance

level of 0.05. Therefore, time to threshold for the RL agent with TL was significantly

faster than the RL agent with NO TL.

6 Summary

In this chapter, transfer learning was used to generalise learning within a different

domain. A new domain BREXIT was built in order to test transfer learning. Patterns

(argument schemes and sources) were identified in both capital punishment and

BREXIT domains. A tabular approach was used to implement in the target domain.

The results from the experiments are promising. It can be concluded that the RL

agent can reuse knowledge learnt in one domain into different domains for speeding

up and improving learning.
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1 Conclusion

The research reported in this thesis explores how an agent learns to argue

using reinforcement learning and applies it to argumentation theory. To-

wards this, literature on argumentation and reinforcement learning was

reviewed. The literature review was particularly focused on applying argumenta-

tion theory to abstract argumentation systems and logic-based dialogue systems

[6, 7, 11, 25, 26, 28, 29, 32, 44]. These systems, explore how an agent interacts with

arguments by playing argument games. Reinforcement learning allows an agent to

learn by interaction with the environment. It allows an agent to take actions and re-

ceive rewards in an observed state [38]. This research also involves the development

of software test-beds for an abstract argument game [6, 29] and a DE dialogue game

[7]. By enabling the RL agent to argue with baseline agents, the test-beds provide a

platform to compare and assess the agents’ performance.

From the results of this research, we are able to conclude that the RL agent was

able to learn to argue effectively in abstract argument games and the logic-based

dialogue games (these are discussed in Chapters 3 and 5). In both the games, the RL

agent was able to win more games and outperform the baseline agents. Additionally,

the RL agent was able to learn to adopt strategies such as coherence and relevance

which were found to improve the quality of the dialogue (these are discussed in

Chapter 6). The RL agent demonstrated an improved performance in the abstract

argument game that was based on maximising the final reward for the number of

acceptable arguments in grounded extensions. Whereas, in the logic-based dialogue

games, the reward function was enhanced by allowing the RL agent to win the DE

dialogue game with a minimum number of moves. Coherence and relevance were

incorporated as measures in the reward function to encourage the RL agent to learn

to improve the dialogue quality.

For the purpose of policy generalisation, it was challenging for the RL agent to

find useful features to transfer in a simple argument game. Therefore, the research

moved to a logic-based dialogue game with richer argument representations. Ar-
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gument schemes and source evidence were proposed to transfer the learning. The

transfer learning experiments, from the source task capital punishment to a new

target task BREXIT, demonstrated that the RL agent with transfer learning showed

a significant advantage over the RL agent without transfer learning.

The aim of this thesis, as stated in Chapter 1 was to fulfil the following:

To build an intelligent agent based on reinforcement learning that is able to learn to

argue against baseline agents and demonstrate improved performance.

A variety of issues have been discussed in the preceding chapters that relate to

achieving the above aim and responding to the research questions and objectives

set out in Chapter 1. The research overview will be outlined below, to show how the

following research objectives presented in chapter 1 were addressed.

Obj1 : To develop an RL agent that improves its performance over time by obtaining

greater rewards compared with baseline agents in an abstract argument game.

Obj2 : To analyse whether using current features in abstract argumentation allows a

RL agent to transfer experience from one abstract argument graph to another.

Obj3a : To develop a RL agent that can improve its performance to the point of obtain-

ing more wins than the DE agents.

Obj3b : Reshape the reward function to enable a RL agent to outperform the DE agent

by winning with the minimum number of moves.

Obj4 : To reshape the reward function such that the RL agent can improve dialogue

quality in terms of increased relevance and coherence in the DE dialogue game.

Obj5 : To identify argument patterns, such as argument schemes and evidence

sources, that can enable a DE-style RL agent to transfer learning between

argument domains.

In Chapter 3 ARGUMENTO+ was built to allow the RL agent to play abstract argu-

ment game against different baseline agents. The results show that the RL agent

was able to improve its performance and outperform the baseline agents by obtaining
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more cumulative rewards than opponents. This indicates that the RL agent was

able to learn to argue in a abstract argument game, and, therefore the Ob j1 was met.

In Chapter 4 the current features for abstract argumentation framework (i.e. argu-

ments and relations) face challenges in capturing useful argument patterns. These

are important for reusing the learnt arguments and relations in different argument

graphs. Attack relations, which are the number of attackers and the number of im-

mediately winning attackers, were also found to enable learning. However, the agent

found it difficult to transfer experience within different argument graphs. Therefore

the above mentioned features were not useful for the RL agent to generalise its policy.

Further, logic-based dialogue model was adopted to explore if this will enable the

RL agent to generalise its policy. As presented in Chapter 5 the DE model was

used, where the RL agent was allowed to debate with baseline agents. This ap-

proach showed promising results, wherein, the RL agent demonstrated improved

performance by winning more games than the DE agents. Additionally, reshaping

the reward function by incorporating the number of moves factor into the reward

function, caused the RL agent to win the DE dialogue game with minimum number

of moves. Hence the objectives Ob j3a and Ob j3b were met.

After objectives Ob j3a and Ob j3b were successfully achieved, Ob j4 i.e. dialogue

quality was addressed. In this, the reward function was reshaped by incorporating

other factors such as, coherence and relevance. The RL agent was able to learn to

improve the dialogue quality by decreasing incoherence and irrelevance over time

against the DE baseline agents. Therefore, the RL agent was able to learn to argue

with increasing coherence and relevance in the DE dialogue game.

After learning to win the game with minimum number of moves with improved

dialogue quality, generalising of policy was considered. In order to generalise the

policy, it is required to identify patterns for transfer learning. It was suggested that

argument schemes and evidence sources can be reused within different contexts

as patterns for transferring experience. The RL agent was able to use the transfer
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learning method successfully to transfer experience between different contexts (i.e.

Capital Punishment to BREXIT). A comparison of RL agent’s performance with and

without transfer showed promising results. Therefore the fifth objective Ob j5 was

successfully addressed.

Towards addressing the objectives and research questions in Chapter 1, experi-

ments were conducted. The results were analysed using appropriate statistical tests

to assess the significance of the findings. Tables 8.1 to 8.12 provide a summary of

proposed hypotheses of this research and the results of the statistical tests.
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Experiment Agent Null hypothesis Test Significance Decision
RL agent Vs. Max-
Prob Agent (Figure
3.11 )

RL That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0, ADF statis-
tics (−51.920) < critical
value (−2.863).

Reject null hypothesis - the rewards
for RL agent are stationary.

MaxProb That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0, ADF statis-
tics (−51.785) < critical
value (−2.863).

Reject null hypothesis - the rewards
for MaxProb agent are stationary.

RL, Max-
Prob

The two groups are ho-
mogeneous.

Mann-
Whitney
U test.

p-value = 0. Reject null hypothesis - the RL agent
had higher rewards than the Max-
Prob agent.

Table 8.1: Hypotheses test RL agent vs. MaxProb agent. The significance level is 0.05.

192



1
.

C
O

N
C

L
U

S
IO

N

Experiment Agent Null hypothesis Test Significance Decision
RL agent Vs. Min-
Prob Agent(Figure
3.12)

RL That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0, ADF statis-
tics (−53.757) < critical
value (−2.863).

Reject null hypothesis - the rewards
for RL agent are stationary.

MinProb That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0, ADF statis-
tics (−54.179) < critical
value (−2.863).

Reject null hypothesis - the rewards
for MinProb agent are stationary.

RL, Min-
Prob

The two groups are ho-
mogeneous.

Mann-
Whitney
U test.

p-value = 0. Reject null hypothesis - the RL agent
had higher rewards than the Min-
Prob agent.

Table 8.2: Hypotheses test RL agent vs. MinProb agent. The significance level was 0.05.
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Experiment Agent Null hypothesis Test Significance Decision
RL agent Vs. Ran-
dom Agent (Figure
3.13 )

RL That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0, ADF statis-
tics (−53.322) < critical
value (−2.863).

Reject null hypothesis - the rewards
for RL agent are stationary.

Random That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0, ADF statis-
tics (−52.245) < critical
value (−2.863) .

Reject null hypothesis - the rewards
for Random agent are stationary.

RL, Ran-
dom

The two groups are ho-
mogeneous.

Mann-
Whitney
U test.

p-value = 0. Reject null hypothesis - the RL agent
had higher rewards than the Random
agent.

Table 8.3: Hypotheses test RL agent vs. Random agent. The significance level is 0.05.
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Experiment Agent Null hypothesis Test Significance Decision
Figure 5.5 RL agent
Vs. DE Random
Agent

RL That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0 , ADF statis-
tics (−11.082) < critical
value (−2.871).

Reject null hypothesis - the rewards
for RL agent are stationary.

DE Ran-
dom

That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0, ADF statis-
tics −11.303 < the criti-
cal value −2.871 .

Reject null hypothesis - the rewards
for DE Random agent are stationary.

RL, DE
Random

The two groups are ho-
mogeneous.

Mann-
Whitney
U test.

p-value = 0.010. Reject null hypothesis - the RL agent
had higher rewards than DE Random
agent.

Table 8.4: Hypotheses test RL agent vs. DE Random agent. The significance level is 0.05.
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Experiment Agent Null hypothesis Test Significance Decision
Figure 5.6 RL That there exists a unit

root (non-stationarity).
ADF
test.

p-value = 0, ADF statis-
tics (−16.213) < critical
value (−2.871).

Reject null hypothesis - moves count
for RL agent are stationary.

Table 8.5: Hypotheses test RL agent moves count (against DE agent). The significance level is 0.05.
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Experiment Agent Null hypothesis Test Significance Decision
Figure 5.7 RL That there exists a unit

root (non-stationarity).
ADF
test.

p-value = 0, the ADF
statistics (−17.366) <
critical value (−2.871).

Reject null hypothesis - moves count
for RL agent is stationary.

Table 8.6: Hypotheses test RL agent moves count (against DE Random agent). The significance level is 0.05.
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Experiment Agent Null hypothesis Test Significance Decision
RL agent Vs. DE
heuristic agent (Inco-
herence) (Figure 6.3)

RL That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0.02 , ADF
statistics (−3.100)< crit-
ical value (−2.871).

Reject null hypothesis - incoherence
values for RL agent are stationary.

DE
heuristic

That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0, ADF statis-
tics (−16.966) < critical
value (−2.871).

Reject null hypothesis - incoherence
values for DE heuristic agent are sta-
tionary.

RL, DE
heuristic

The two groups are ho-
mogeneous.

Mann-
Whitney
U test.

p-value = 0.0001. Reject null hypothesis - RL agent had
higher incoherence than DE heuris-
tic agent.

Table 8.7: Hypotheses test RL agent vs. DE heuristic agent (Incoherence). The significance level is 0.05.
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Experiment Agent Null hypothesis Test Significance Decision
RL agent Vs. DE
heuristic agent (Ir-
relevance) (Figure
6.4 )

RL That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0 , ADF statis-
tics (−10.401) < critical
value (−2.871).

Reject null hypothesis - irrelevance
values for RL agent are stationary.

DE
heuristic

That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0 , ADF statis-
tics (−9.579) < critical
value (−2.871).

Reject null hypothesis - irrelevance
values for DE heuristic agent are sta-
tionary.

RL, DE
heuristic

The two groups are ho-
mogeneous.

Mann-
Whitney
U test.

p-value = 0.0001. Reject null hypothesis - the DE
agent had higher irrelevance than
RL agent.

Table 8.8: Hypotheses test RL agent vs. DE heuristic agent (Irrelevance). The significance level is 0.05.
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Experiment Agent Null hypothesis Test Significance Decision
RL agent Vs. DE
Random agent (Inco-
herence) (Figure 6.5)

RL That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0 , ADF statis-
tics (−4.588) < critical
value (−2.871).

Reject null hypothesis - the incoher-
ence values for RL agent are station-
ary.

DE Ran-
dom

That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0 , ADF statis-
tics (−4.937) < critical
value (−2.871).

Reject null hypothesis - the incoher-
ence values for DE Random agent are
stationary.

RL, DE
Random

The two groups are ho-
mogeneous.

Mann-
Whitney
U test.

p-value = 0.016. Reject null hypothesis - the DE Ran-
dom agent had higher incoherence
than RL agent.

Table 8.9: Hypotheses test RL agent vs. DE Random agent (Incoherence). The significance level is 0.05.
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Experiment Agent Null hypothesis Test Significance Decision
RL agent Vs. DE
Random agent (Irrel-
evance) (Figure 6.6)

RL That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0.00002 , ADF
statistics (−4.997)< crit-
ical value (−2.871).

Reject null hypothesis - the irrele-
vance values for RL agent are sta-
tionary.

DE Ran-
dom

That there exists a unit
root (non-stationarity).

ADF
test.

p-value = 0.02, ADF
statistics (−3.073)< crit-
ical value (−2.871).

Reject null hypothesis - the irrele-
vance values for DE Random agent
are stationary.

RL, DE
Random

The two groups are ho-
mogeneous.

Mann-
Whitney
U test.

p-value = 0.000085. Reject null hypothesis - the DE Ran-
dom agent had higher irrelevance
than RL agent.

Table 8.10: Hypotheses test RL agent vs. DE Random agent (Irrelevance). The significance level is 0.05.
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Experiment Agent Null hypothesis Test Significance Decision
RL agent with TL
Vs. RL Agent No TL
(Against DE heuris-
tic) (Figure 7.4)

RL agent
with TL,
RL agent
No TL

The two groups are ho-
mogeneous.

Mann-
Whitney
U test.

p-value = 0.00007. Reject null hypothesis - the time
to threshold for the RL agent with
transfer learning was faster than the
RL agent without transfer learning.

Table 8.11: Hypotheses test RL agent with TL Vs. RL Agent No TL (Against DE heuristic). The significance level is 0.05.
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Experiment Agent Null hypothesis Test Significance Decision
RL agent with TL
Vs. RL Agent No
TL (Against DE Ran-
dom) (Figure 7.5 )

RL agent
with TL,
RL agent
No TL

The two groups are ho-
mogeneous.

Mann-
Whitney
U test.

p-value = 0.020. Reject null hypothesis - the time
to threshold for the RL agent with
transfer learning was faster than the
RL agent without transfer learning.

Table 8.12: Hypotheses test RL agent with TL Vs. RL Agent No TL (Against DE Random). The significance level is 0.05.
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CHAPTER 8. CONCLUSION AND FURTHER WORK

2 Contributions to knowledge

This research is a contribution to the design and implementation of argumentative

software agents. With regard to the design, a new sophisticated dialogue state repre-

sentation was proposed in ARGUMENTO+ which involves levelO f Tree, agentID,

currentArgument and previousArgument. It replaces the classic state represen-

tation provided in the literature [6, 25, 211] to make each state unique. In the DE

dialogue game, a new state representation was proposed for use by the RL agent.

In the DE model [7], the agents initially considered previous moves as a dialogue

state only. The new state representation, which combines previous moves with

commitment stores for both players, is adopted for making the dialogue state as

unique as possible for the RL agent. The RL agent performs significantly better than

baseline agents by adopting new state representations in both ARGUMENTO+ and

DE dialogue game respectively.

A new reward function was designed by counting the number of acceptable ar-

guments in grounded extensions in ARGUMENTO+. It was demonstrated that the

RL agent is able to win the games using this reward function and improve its perfor-

mance. Two new reward functions were proposed for the DE dialogue game. One is

for encouraging the RL agent to win the dialogue game with a minimum number

of arguments moves, whereas the other reward function is designed to motivate

the agent to obtain a greater reward based on four attributes: winning, number

of movements, number of contradictions and number of focus switches. Compared

with the state-of-the-art in dialogue quality [225, 226], the RL agent demonstrates

promising results when using the proposed reward function, as originally developed

by Amgoud and de Saint-Cyr [225].

A new method for using argument schemes and evidence sources was designed

to transfer learning between tasks in the DE dialogue model. The BREXIT knowl-

edge base was designed with a rich set of arguments to establish a testing domain

for transfer learning. The knowledge base was built based on a modified version of

Toulmin’s schema [7, 133]. The knowledge bases for both capital punishment and
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2 . CONTRIBUTIONS TO KNOWLEDGE

BREXIT were enhanced by adding argument schemes and evidence support. As

such, these patterns could be related between tasks through the transfer learning

process [178]. The experiments demonstrate that the RL agent was able to reuse

knowledge in different domains for speeding up and improving learning.

With regard to the implementation, the present research can be regarded as an

evolution of ARGUMENTO (the work by Yuan et al. [6, 29]). Along these lines, the

ARGUMENTO+ argument game version was developed. This enables an agent to

learn to argue with another agent based on the Q-learning algorithm. The RL agent

was able to make moves primarily based on optimal actions to maximise cumulative

rewards. The developed strategy was based on the optimal policy. An RL agent was

also implemented in the DE dialogue game [7]. The DE RL agent was developed

based on the Q-learning algorithm, which performed better than DE baseline agents

in terms of number of moves and dialogue quality. Both ARGUMENTO+ and DE RL

agent are built using the object-oriented programming language Java, they can be

reused by researchers in the area to test their agents.

In order to determine whether the research questions of this research have been ad-

dressed effectively in this thesis and how they are related to the thesis contributions,

this section revisits the research questions mentioned in Chapter 1, as follows:

RQ1: Is it possible for an RL agent to learn to win an abstract argument game and

demonstrate improved performance?

RQ2: Do the current features of abstract argumentation systems allow an RL agent

to generalise its learning approach to other abstract argumentation graphs?

RQ3: Is a RL agent more likely to win a DE dialogue game with minimum number of

moves using a reward function to improve its performance than DE heuristic

agents?

RQ4: Does the reshaped reward function, which takes into account attributes such

as the number of contradictions and switches of focus, improve the quality of

the RL agent’s dialogue contributions and makes the dialogue more coherent

and relevant?

205



CHAPTER 8. CONCLUSION AND FURTHER WORK

RQ5: Does using the argument’s internal structure, such as argumentation schemes

and evidence support sources encourage the RL agent to transfer learning to

different domains using a DE model?

For RQ1 it can be clearly seen from the contributions stated above that, the RL agent

is able to learn and improve the performance in an abstract argument game. As men-

tioned in Chapter 3, ARGUMENTO+ is introduced and the RL agent outperformed

baseline agents. This led to wining more games by the RL agent by adapting the

optimal policy.

The RQ2 was investigated in Chapter 4. The results showed that the current fea-

tures of abstract argumentation system are challenging for an RL agent to identify

patterns to transfer learning experience from one argumentation graph to another.

Although, number of attackers was implemented, the RL agent could not find useful

patterns that could be reused in different argumentation graphs. Therefore, it can

be inferred that current features in abstract argumentation present challenges to

identifying useful argument patterns that could be reused in different argument

graphs.

Regarding RQ3, Chapter 5 shows that, the RL agent was able to learn to argue

by winning more games in the DE dialogue game. The RL agent outperformed the

DE baseline agents with lower number of moves. Reward function was designed to

encourage the RL agent to win more games with lesser number of moves.

In order to look deeply into dialogue quality, RQ4 considered the reshaped reward

function. Other factors such as contradictions and switching focus were added to

reshape the reward function. This reward function led to minimising incoherence

and irrelevance in the RL agent. Therefore, findings presented in Chapter 6 suggest

that the reshaped reward function caused an improvement in coherence, relevance

and dialogue quality.

The final research question RQ5 concerns whether argument internal structure

(i.e. argumentation schemes and evidence support sources) encourage RL agent
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3 . LIMITATIONS AND FURTHER WORK

to transfer learning experience within different context. Our results in Chapter

7 showed that the RL agent allowed to transfer learning successfully. For this,

the agent followed the evaluation criteria in transfer learning approach such as

jumpstart and time to threshold which was previously mentioned and discussed in

Chapter 7. Hence these patterns which are argumentation schemes and evidence

support sources support the RL agent for transferring learning successfully.

From the perspective of further work and factors that need to be taken into ac-

count for upcoming studies, it is pertinent to mention the limitations of this research.

The limitations of this research and ideas for future research will be presented in

the next section.

3 Limitations and further work

Our findings suggest that the RL agent can learn to argue against baseline agents.

The results show that, the RL agent was able to learn within inference and logic

based dialogue game levels of argumentation [26]. These were successfully demon-

strated in Chapter 3, Chapter 5 and Chapter 6 along with transfer of experience.

However, the results of this research are bound by certain limitations. The cur-

rent abstract argument game ARGUMENTO+ does not implement the backtracking

strategy as was previously implemented in [94]. The current game adopted the

game in the literature for reasons of simplicity of rules [6, 25, 29]. In literature

backtracking is often perceived as a successful approach Yuan et al. [6] and Prakken

[94]. Prakken [32] argues that, incorporating a backtracking strategy in argument

games would be more flexible and fair for the agent by providing an explicit answer

structure on dialogue where each move can constitute an attack or a surrender to

an earlier move by the opponent. Backtracking is flexible in some respects such

as, moving to an earlier branch and postponing replies to move [85]. However, for

implementing the backtracking strategy, the simple argument game would need to

be enhanced by developing new game rules to handle backtracking. It would be an

interesting direction to take and look deeply into how to implement backtracking
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strategy for agents in ARGUMENTO+ in the longer term as future work.

This research adopts games involving only two agents which play against each

other based on the game rules discussed in Chapter 3 and Chapter 5. Extending this

work to multi-agent learning with more than two agents playing the game would be

helpful to allow more than two agents playing the game. Playing games with two or

more agents in systems has a tradition in game theory [245]. Agents would need to

coordinate and collaborate with each other in order to beat other agents [246], which

can lead to enhanced competitiveness [56]. This would also open up the question on

how to make the rules of the argument game fairer for all players which could make

way for future work.

BREXIT knowledge base is implemented in Chapter 7 to make the RL agent transfer

learning between different contexts. This knowledge base (BREXIT) is the highest

and trending collection of rich set of for and against arguments. The motivation

behind choosing BREXIT was the availability of arguments which are derived from

the heated debates on whether the UK should leave or remain in the EU. From

the knowledge base some topics from the most debated issues about BREXIT from

September 2016 to March 2019 were selected such as, NHS, taxes and employment.

However, the BREXIT knowledge base consists of other topics which have not been

covered in this research. Also, within building the knowledge base there were some

challenges to find the primary sources for collecting the information. As a result ma-

jority of the information used in this research was collected from secondary sources

i.e. newspapers, TV documentaries with limited primary sources.

However, the work represents the first step towards creating an intelligent agent

that can learn to argue. More study and further work is needed to expand our under-

standing on this topic and address open questions. Further research can be carried

out in a number of interesting directions.

The RL agent currently plays against baseline agents, one future step that can

be considered is self-playing; namely, making RL agents play with each other and
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studying the consequences. In self-playing, each agent aims to maximise its own

rewards. Eck and Wazel [247] studied two q-learning agents playing a game based on

sequential decisions and found that both agents were able to learn better than agents

using a straightforward positional or mobility strategy. Marek in [248], Papahristou

and Refanidis in [249], and Tokic and Palm in [250] found that making both learning

agents play with each other by implementing reinforcement learning is an effective

means to encourage exploration. Given the above arguments, it would be interesting

to study two reinforcement learning agents playing a DE dialogue game and then

evaluate the results.

Further work may also consider propositional logic based argument patterns in

the DE dialogue model, which may be beneficial for learning transfer [7, 98, 178].

This will enable the RL agent to recognise a pattern for use in transfer learning

and conduct task mapping between source and target tasks. It is suggested that the

heuristic strategies introduced by Yuan et al. [98] could be used to show how the

agent should argue by using propositional logic when it is faced with such situations.

For instance when an agent is facing a statement P it is more likely to use Q i f

(Q =⇒ ¬P). These heuristic rules may allow the RL agent to learn and use patterns

and related maps between tasks [178].

This research considers learning agents which argue against the baseline agents.

Further experimental work can be done by playing the RL agent with human users.

In the literature the DE dialogue model was developed for an educational purpose by

allowing students to argue against DE heuristic agents [7, 44]. It is worthwhile allow-

ing human users to conduct an experiment against the RL agent in the DE dialogue

model and evaluate the results. For ARGUMENTO+, it would also be interesting to

conduct experiments with human users since its precedent ARGUMENTO facilitates

an intelligent agent playing against human users and the evaluation revealed that

the game was both challenging and entertaining [29]. It would be interesting to

evaluate whether ARGUMENTO+ is also challenging and entertaining when playing

with human users.
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At the end of the PhD journey, this thesis has shown how the RL agent can learn

to argue against the baseline agents. Taking into account the expectations from

the objectives and research questions set out at the beginning of the research, the

results are generally promising. The hypotheses and statistical test shows also

significant findings. The research provides grounds for future research. However,

this is the start and not the end, as there are many unanswered research questions.

It is believed that additional techniques can be explored in the field of argumenta-

tion and reinforcement learning to address the current limitations and add useful

contributions to this research.
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These are the debating strategy heuristics for the DE computational agents in the

DE dialogue model, taken from Yuan et al. [98, pp.143-147]:
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