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Abstract

This thesis addresses two forms of quantum uncertainty. In part I, we focus on preparation
uncertainty, an expression of the fact that there are sets of observables for which the induced
probability distributions are not simultaneously sharp in any state. We exactly characterise
the preparation uncertainty regions for several finite dimensional case studies, including a new
derivation of the preparation uncertainty region for the Pauli observables of qubits, and two
qutrit case studies which have not previously been addressed in the literature.
We also consider the variance based preparation uncertainty for position and momentum ob-
servables for the well known “particle in a box” system. We see that the appropriate momen-
tum observable is not given by the spectral measure of a self-adjoint operator, although the
position observable is. The box system lacks the phase-space symmetry used to determine the
free particle and particle on a ring systems so determining the box uncertainty region is rather
more difficult than in these cases. We give upper and lower bounds on the boundary of the
uncertainty region, and show that our upper bound is exact in an interval.
In part II we turn our attention to measurement uncertainty, exploring the space of compatible
joint approximations to incompatible target observables. We prove a general theorem, which
shows that, for a broad class of figures of merit, the optimal compatible approximations to
covariant targets are themselves covariant. This substantially simplifies the problem of deter-
mining measurement uncertainty regions for covariant observables, since the space of covariant
compatible approximations is smaller than the space of all compatible approximations.
We employ this theorem to derive measurement uncertainty regions for three mutually orthog-
onal Pauli observables, and for the quantum Fourier pair acting in any finite dimension.
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Introduction and Synopsis

In his seminal paper 92 years ago Heisenberg brought attention to two different, but comple-
mentary, forms of uncertainty in quantum mechanics [41]. The first, known as preparation
uncertainty, refers to the fact that there exist sets of observables for which there are no states
which make the probability distributions given by the Born rule simultaneously deterministic
for every observable in the set. The standard description of uncertainty (see, for example [33])
in textbooks of quantum mechanics follows this approach, generally focusing on the standard
deviation as a measure of the spread of a probability distribution, and exploring a tradeoff
forcing one standard deviation to become large as another becomes small. This idea has been
explored and generalised extensively in the literature, for example by using different definitions
of the spread of a probability measure [55, 60, 18]. We will explore further generalisations of
this idea in the first part of this thesis.

In recent years it has become well known that the most famous thought experiment in
Heisenberg’s 1927 paper does not fit into this preparation focused view of uncertainty, and a
new perspective has emerged known as measurement uncertainty [16, 17, 89]. A feature that
separates quantum theory from classical is that quantum theory contains sets of observables
for which there does not exist any joint observable. Such observables are called incompatible
and the study of quantum incompatibility is a burgeoning field [39, 20, 38, 65]. On the
other hand it is possible, for example, to form approximations to the original observables
by mixing them with trivial observables1, and at some level of mixing these approximations
will become compatible [6]. We might broaden this view by considering arbitrary sets of
compatible observables as approximators and, armed with some measure of the goodness of
our approximations, investigate how closely we can approximate the original set.

1Those for which the Born rule probability distribution is independent of the state.
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CHAPTER 1. INTRODUCTION AND SYNOPSIS

Chapter 3

Here we investigate the concept of an uncertainty region, a slight generalisation of the usual
concept of an uncertainty relation. We determine the variance-uncertainty region for all pairs,
and an infinite family of triples of sharp ±1 valued observables. These case have been charac-
terised in the literature [52, 1], but we present new derivations, with a geometrical flavour. We
also investigate the uncertainty regions of some qutrit systems, where the structure of states
is more complex, and analytical bounds are more difficult to obtain. We determine the uncer-
tainty region for a pair obtained by embedding two mutually unbiased qubit observables in a
qutrit system, and that for a pair of Gell-Mann observables. We show that the uncertainty
region for a pair of Pauli observables is entirely characterised by the Schrödinger uncertainty
relation. On the other hand we demonstrate that the Schrödinger relation is insufficient to
determine the uncertainty region for Gell-Mann observables.

Chapter 4

Here we consider the preparation uncertainty for “position” and “momentum” observables
associated with a standard example system, the so-called “particle in a box” system. The case
of the free particle was addressed by Heisenberg and is well known, and uncertainty region for
the particle on a ring was characterised by Busch, Kiukas and Werner [13], but the box case
does not seem to have been addressed in the literature. We show that it is necessary for the
position representation wave-function to vanish at the boundary in order that the momentum
variance is finite, although this assumption is often imposed due to the model that the walls
of the box are infinite potential barriers. We obtain upper and lower bounds for the boundary
curve of the uncertainty region of the particle in a box, and show that our upper bound is tight
for an interval comprising slightly under two thirds2 of the possible position variance values.

Chapter 5

We formulate symmetries of quantum observables via a finite group, with action on the outcome
set, and unital, linear representation acting on the effect space. We introduce a systematic
approach for exploiting such symmetries via an “invariant mean” map, acting as a projection
from the space of quantum observables to the subspace of covariant observables. We show
that the “invariant” mean preserves compatibility of observables. Explicitly, a joint observable
for the invariant means is given by the invariant mean of the Cartesian joint of the original
observables. We apply this to show that for a wide range of figures of merit, the optimal
compatible approximations to covariant observables are given by covariant observables. This

2More precisely 1−
√

1
3 − 2

π2 ≈ 0.64.
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simplifies the problem of characterising measurement uncertainty regions for compatible targets
because the set of covariant compatible approximators is smaller than the set of all compatible
approximators. We apply this framework to the measurement uncertainty region of three
mutually unbiased Pauli observables, and that of the quantum Fourier pair in an arbitrary,
finite dimensional space. Unknown to, and independently of, us this latter case was recently
addressed by Werner [90] although his methods are rather different from ours, and specific to
phase space observables.

We conjecture that the invariant mean map so defined may be generalised to the case of
a compact Hausdorff topological group acting on a separable, locally compact metric space,
where the average over group elements is replaced by an integral with respect to the Haar
measure. Under the additional assumption that the observable that map is applied to is
absolutely continuous with respect to a covariant observable.
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Preliminaries

2.1 Mathematical background of quantum theory

2.1.1 Hilbert space theory

We will be considering separable Hilbert spaces over the complex numbers, where separability
is taken to mean the existence of a countable orthonormal basis. We will adopt the convention
that the inner product, denoted 〈·|·〉, is linear in the second argument and conjugate-linear
in the first. Such an inner product naturally induces a norm ‖x‖ :=p〈x|x〉. We will use the
notation L (V ,W) for the space of continuous (and equivalently bounded) linear maps between
normed vector spaces V and W, over the same field, omitting the second argument if the two
spaces are the same. This set is once more a vector space over the same field, with addition
and scalar multiplication being defined pointwise. Moreover it inherits a natural norm, called
the operator norm

‖·‖ : L (V ,W)→K(2.1.1)
‖T‖ := sup

v∈V‖v‖≤1

‖Tv‖,(2.1.2)

under which it is a Banach space. A particularly important special case is the space of maps
L (V ,K), where K is the field underlying V , which we will denote V∗, and is commonly called
the topological dual of V . A celebrated theorem due to Riesz [69] and Fréchet [31], commonly
called the Riesz representation theorem, states that Hilbert space over R is isomorphic to its
topological dual, and one over C is anti-isomorphic to its dual. More explicitly every continuous
linear functional on a Hilbert space is of the form Ψw : v 7→ 〈w|v〉, for some fixed w ∈ V , and
the map Ψw, defined in this way is a continuous linear functional for every w ∈V .
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CHAPTER 2. PRELIMINARIES

We are often required to consider maps which are not defined on the whole Hilbert space.
An operator is a linear map A whose domain, denoted D(A), is a vector subspace (not neces-
sarily closed) of the Hilbert space of interest. A motivating example is the differential operator
P : ϕ 7→ −iϕ′, defined on the subspace of absolutely continuous functions in L2(R), whose weak
derivatives are also in L2(R). If A : H →K is an operator, defined on a dense domain D(A)⊆H

we may define the domain of the adjoint D(A∗), to be the set of vectors ψ ∈K for which there
exists an ηψ ∈H such that

〈ψ|Aϕ〉 = 〈ηψ|ϕ〉,(2.1.3)

holds for all ϕ ∈ D(A). We then define A∗ on this domain to be

A∗ψ= ηψ,(2.1.4)

noting that the density of D(A) ensures that the element ηψ is unique, for those ψ for which
it exists. For L (H ) the situation is somewhat simpler, the domain of A and A∗ can both be
taken to be H . In this case the map A 7→ A∗ is a conjugate linear isomorphism preserving the
operator norm (2.1.2), and the equations

(AB)∗ = B∗A∗(2.1.5)

A∗∗ = A(2.1.6) (
A−1)∗ = (

A∗)−1 ,(2.1.7)

hold, with the last equation requiring the additional assumption that A is invertible with
bounded inverse.

The compact operators are an important subclass of the bounded operators, they are those
which may be written as the limit of a sequence of finite rank operators

Tn :φ 7→
n∑

k=0
λk〈 fk|φ〉|gk〉(2.1.8)

Tn
n→∞−−−−→ T,(2.1.9)

where the limit converges in the operator norm and ( fk)k∈N and (gk)k∈N are orthonormal sets
in H .

Certain operators are equal to their own adjoint, we call those self-adjoint, denoted Ls(H ),
and note that they form a vector space over the reals, where the domain of a sum of two
operators is the intersection of the domains.

Those operators which may be written in the form A = B∗B, for some operator B are called
positive, we denote this with A ≥ 0. The set of such operators forms a convex cone in Ls(H )
(see section 2.2, for definitions related to convexity) denoted L +

s (H ). For any ψ ∈ D(A∗A) we
have that

〈ψ|B∗Bψ〉 = 〈Bψ|Bψ〉(2.1.10)

= ∥∥Bψ
∥∥2 ≥ 0.(2.1.11)
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2.1. MATHEMATICAL BACKGROUND OF QUANTUM THEORY

There is a natural a partial order on the space Ls(H ): defined via L +
s (H ), we will say A ≥ B,

iff A−B ≥ 0. Every positive operator A has a square root, the unique positive operator B such
that A = B2; this may be shown via the spectral theorem, although independent proofs also
exist.

We define the operator absolute value to be

|A| :=
p

A∗A,(2.1.12)

noting that A∗A and |A| are bounded if and only if A is.
If (ek)k∈N is an orthonormal basis for a Hilbert space H then we define the trace of an

operator A ∈L (H ) by

tr (A)=
∑
k
〈ek|Aek〉,(2.1.13)

however this quantity is not, in general, independent of the basis chosen, even if it is finite, see
appendix A.1 for an example. We consider the restricted class of operators such that∑

k
〈ek| (|A|ek〉) ,(2.1.14)

converges to some real number for any, equivalently every, basis (ek)k∈N. We call these operators
trace-class, denoted T (H ). For elements of T (H ) the infinite sum

tr (A)=
∑
k
〈ek|Aek〉,(2.1.15)

is absolutely convergent, and is independent of the choice of basis. Every trace-class operator
is bounded, and compact. The trace-class operators form a vector space over C, we summarise
several useful properties in Lemma 2.1.

Lemma 2.1 (Properties of the trace-class).

• the trace is a linear functional on T (H ),

• the map (A,B) 7→ tr (A∗B) is an inner product on T (H ),

• the map A 7→
√

tr (A∗A) is a norm on T (H ), called the Hilbert-Schmidt norm and denoted
‖A‖HS,

• tr (A∗)= tr (A)∗,

• if A is trace-class and B is bounded then AB and BA are trace-class, hence T (H ) is a
two-sided ideal in the bounded operators,

• further, the vector-space of maps on the trace-class of the form A 7→ tr (AB), where B is
bounded is the topological dual of the trace-class.
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CHAPTER 2. PRELIMINARIES

Given two Hilbert spaces H and K there is a Hilbert space H⊗ and a bilinear map
f : H ×K → H⊗ such that the subspace span

({
f (ϕ,ψ)

∣∣ϕ ∈H ,ψ ∈K
})

is dense in H⊗ and
〈 f (ϕ1,ψ2)| f (ϕ2,ψ2)〉 = 〈ϕ1|ϕ2〉〈ψ1|ψ2〉 for all ϕ1,ϕ2 ∈H and ψ1,ψ2 ∈K . We write H⊗ =: H ⊗K ,
called the tensor product of H and K , since it is unique up to isomorphism. Given S ∈L (H )
and V ∈L (K ) there exists a unique operator, S⊗T ∈L (H ⊗K ) such that

(S⊗T)(ϕ⊗ψ)= (Sϕ)⊗ (Tψ),(2.1.16)

holds for all ϕ ∈H and ψ ∈K . We call (S⊗T) the tensor product of S and T and note some
fundamental properties in lemma 2.2.

Lemma 2.2 (Properties of the operator tensor product).

• α(S⊗T)= (αS)⊗T = S⊗ (αT), for all α ∈C,

• (S1 +S2)⊗T = S1 ⊗T +S2 ⊗T,

• (S1 ⊗T1)(S2 ⊗T2)= S1S2 ⊗T1T2,

• (S⊗T)∗ = S∗⊗T∗,

• if S and T are both self-adjoint, unitary, positive or trace-class then so is S⊗T respectively,

• tr (S⊗T)= tr (S)tr (T).

A partial inverse of the tensor product is the so-called partial trace: if T ∈T (H ⊗K ) then
there is a unique T1 ∈T (H ) such that

tr (T1 A)= tr (T(A⊗ IK )) ,(2.1.17)

holds for all A ∈L (H ). The partial trace is linear, and trace-preserving. It is also positive, in
the sense that it maps positive operators to positive operators and completely positive in the
sense of definition 2.1.2.

Definition 2.1.1. A subset A of the algebra of bounded operators on a Hilbert space is a
C∗-algebra if it is

• Closed under the operator product a,b ∈A =⇒ ab ∈A ,

• Closed under the operator sum a,b ∈A =⇒ a+b ∈A

• Closed under multiplication by complex numbers a ∈A ,α ∈C =⇒ αa ∈A

• Closed under taking adjoints: a ∈A =⇒ a∗ ∈A

• Closed in the topology induced by the operator norm
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2.1. MATHEMATICAL BACKGROUND OF QUANTUM THEORY

We note that this definition is somewhat nonstandard, a C∗-algebra may also be defined as
an abstract algebra obeying certain assumptions. However the Gelfand-Naimark theorem [32]
shows that all abstract C∗-algebras are isometrically ∗-isomorphic to some C∗-subalgebra of
the bounded operators on a Hilbert space. There is, therefore, no loss of generality in taking
definition 2.1.1.

Definition 2.1.2. A map Φ : A → L (K ), where A ⊆ L (H ) is a C∗-algebra is k-positive if
the induced map

idk⊗Φ :Ck×k ⊗A →Ck×k ⊗L (K )(2.1.18)

is positive, and Φ is completely positive if it is k-positive for all k ∈N.

Theorem 2.1 (Stinespring). Let Φ : A →L (K ) be a completely positive map, where A ⊆L (H )
is a C∗ algebra, then Φ is completely positive if and only if it admits the representation

Φ(X )=V∗π(X )V ,(2.1.19)

where V : K →K ′ is a a bounded linear map, K ′ is a Hilbert space and π is a ∗-homomorphism1

of A in L
(
K̃

)
.

Of particular interest for applications in quantum theory are the completely positive maps
between spaces of trace-class operators which preserve the trace. Recalling that the dual of
the trace-class is the space of bounded operators we can define the dual of a trace-preserving
completely positive map by requiring that

tr (AΦ(B))= tr
(
Φ∗(A)B

)
,(2.1.20)

for all A ∈ L (H ) and B ∈ T (H ). The dual of a trace-preserving completely positive map is
again completely positive and is unital Φ∗(I)= I and normal in the sense that

Xa ↑ X =⇒ Φ∗(Xa) ↑Φ(X ),(2.1.21)

where ↑ denotes the increasing limit. For detailed information on Stinespring’s theorem and
the properties of positive and completely positive maps see e.g. [80] and [79].

2.1.2 Measures and operator valued measures

Let Ω be a set and F a subset of the power set of Ω which includes the empty set, is closed
under complements and is closed under countable unions. A set with these properties is called a
σ-algebra on Ω, and an ordered pair (Ω,F ) of set and σ-algebra of subsets is called a measurable
space. A (positive, extended real) measure on (Ω,F ) is a function µ from F to R∪ {∞} such
that

1A homomorphism of algebras, each equipped with an involution ∗, such that π(a∗)=π(a)∗.
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CHAPTER 2. PRELIMINARIES

• ∀S ∈F , µ(S)≥ 0,

• There exists a set S ∈F such that µ(S) ∈R,

• If (Sk)k∈N is a countable sequence of non-intersecting sets in F , then µ(
⋃

k Sk)=∑
kµ(Sk),

From these properties it immediately follows that µ(∅) = 0, as µ(S) = µ(S∪∅∪∅ . . .) = µ(S)+
µ(∅)+µ(∅) . . .. We define general extended real, and complex measures in the obvious way: an
extended real measure µ is a pair of positive measures µ± such that µ(S)= µ+(S)−µ−(S), and
a complex measure may be defined by its real and imaginary parts. A positive measure such
that µ(Ω) = 1 is called a probability measure, and we denote the set of probability measures
on (Ω,F ) by P (Ω,F ). If Ω has a topology τ then the Borel σ-algebra, denoted B (Ω,τ), or
B (Ω), where there is no possibility of confusion, is the smallest σ-algebra containing the open
sets of τ. The elements of B (Ω) are called the Borel sets. All of the probability measures we
encounter in this thesis will be Borel, either with respect to the standard topology on the reals
or the topology generated by the singleton sets where Ω is finite.

It is essential for the development of the spectral theory of self adjoint operators to consider
“measures” which map into (subsets of) the bounded operators on some Hilbert space.

Definition 2.1.3 (Positive operator valued measure). A positive operator valued measure
(POVM) on a set Ω with σ-algebra F is a function E : F →L +

s (H ) such that E(Ω)= I and for
all sequences of non-intersecting sets in F (Sk)k∈N we have

E

(⋃
k

Sk

)
=∑

k
E(Sk).(2.1.22)

We note that one can show that the effects (often called POVM elements) {E(S) |S ∈F } are
bounded operators, in particular

∥∥E(S)φ
∥∥≤ ∥∥E(Ω)φ

∥∥= ∥∥φ∥∥. We will often be interested in the
case where a POVM is a projection valued measure (PVM), in the sense that E(S)2 = E(S), for
all S ∈ F . Equivalent to this definition is a multiplicative property E(S)E(T) = E(S∩T), for
all S,T ∈F . Given a Borel PVM EA over the reals, there is a vector subspace D(A)⊆H such
that the integral ∫

R
xd〈ψ|EA(x)ϕ〉(2.1.23)

converges for all ψ,ϕ ∈ D(A), and a unique self-adjoint operator A with domain D(A) such that

〈ψ|Aϕ〉 =
∫
R

xdEa(x),(2.1.24)

for ψ, ϕ in the domain.
We give several versions of the spectral theorem, the first of which is the converse of the

above statement.
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Theorem 2.2 (Spectral theorem for self-adjoint operators). If A is a self-adjoint operator
with dense domain D(A), then there is a unique PVM EA such that

〈ψ|Aϕ〉 =
∫
R

xd〈ψ|EA(x)ϕ〉,(2.1.25)

holds for all ψ,ϕ ∈ D(A).

Theorem 2.3 (Spectral theorem for self-adjoint operators - bounded functional calculus). Let
A be a self-adjoint operator on H , there is a unique map ϕ̂ from the bounded Borel functions
on R to L (H ) such that

• ϕ̂ is an algebraic ∗-homomorphism,

• ϕ̂ is norm continuous
∥∥ϕ̂(h)

∥∥≤ ‖h‖∞,

• if hn is a sequence of bounded Borel functions converging (pointwise) to the identity
function and |hn(x)| ≤ x for all x and n, then for any ψ ∈ D(A) we have limn→∞ ϕ̂(hn)ψ=
Aψ,

• if hn → h pointwise and the sequence ‖hn‖∞ is bounded then ϕ̂(hn)→ ϕ̂(h) strongly,

• if Aψ = λψ then ϕ̂(h)ψ= h(λ)ψ,

• if h ≥ 0 then ϕ̂(h)≥ 0.

We use this as a stepping stone to a more general formulation.

Theorem 2.4 (Spectral theorem for self-adjoint operators - Borel functional calculus). Let A

be a self-adjoint operator on H , and χΩ the characteristic function of the measurable set Ω⊆R.
We define the operators PΩ = ϕ̂(χΩ), and note the properties

• the PΩ are orthogonal projections,

• PR = I and P∅ = 0,

• if Ω is a countable union of disjoint sets Ωn then PΩ = limN→∞
∑N

n=1 PΩn , where the limit
converges strongly,

• PΩP∆ = PΩ∩∆.

We call the map EA :Ω 7→ PΩ the spectral measure of A. The map Ω 7→ 〈ψ|PΩϕ〉 is a complex-
valued Borel measure on R for each ψ,ϕ ∈ H and denote it µψϕ. If g is a bounded Borel
function on R then we can define g(A) by

〈ψ|g(A)ϕ〉 =
∫
R

g(λ)dµψϕ(λ),(2.1.26)
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and note that this agrees with ϕ̂(g), further if g is an unbounded, complex valued Borel function
on R we define

D(g(A))=
{
ψ

∣∣∣∣∫
R
|g(λ)|2dµψψ(λ)<∞

}
(2.1.27)

〈ψ|g(A)ϕ〉 =
∫
R

g(λ)dµψϕ(λ).(2.1.28)

We write g(A)= ∫
R g(λ)Pλ, and note that g(A) is self-adjoint if g is real.

We call the support of a self-adjoint operator A, supp(A), the complement of the union of
all the open sets Ω for which PΩ = 0, and note that we can restrict the integrals over R in the
previous theorem to be over supp(A); we therefore allow Borel functions defined on supp(A),
rather than requiring that they are defined on the whole real line. We note that the definition
of the support given here matches the spectrum of a closed operator

σ (A)=C\ρ (A) ,(2.1.29)

where the resolvant set, ρ (A) is defined to be the set of λ ∈ C for which λI − A is a bijection
onto H with a bounded inverse. For a self-adjoint operator the terms spectrum and support
are interchangeable.

Some important special cases are: the spectral measure of a compact operator is supported
on a finite number of points or a sequence of points which converges to zero; the spectral
measure of an operator on a finite dimensional Hilbert space is supported on a finite number
of points; the spectral measure of a positive operator is supported within the non-negative real
numbers.

2.2 Convex analysis

Convex analysis concerns itself with convex sets and convex functions. Although there is an
interesting theory of convex subsets of infinite dimensional vector spaces2 this is beyond the
scope of this thesis. Here all convex sets will be subsets of finite dimensional real vector
spaces. We will follow the exposition of Rockafellar [71]. Since we are only dealing with
finite dimensional spaces a vector space V is canonically isometrically isomorphic to its bidual
V∗∗, and we do not distinguish the two, equating the vector x ∈ V and the evaluation map
(ψ 7→ ψ(x)) ∈ V∗∗. This identification is convenient for discussing the convex conjugate of a
function.

Definition 2.2.1. A subset C of a real vector space is convex if for all x, y ∈ C and for all
λ ∈ [0,1]

λx+ (1−λ)y ∈ C.(2.2.1)
2See, for example [59].
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Examples of convex sets include

• Any interval in R,

• The balls in any normed vector space over the reals,

• The state-space S of quantum mechanics, defined in Section 2.4,

• The set of points in R2 that lie “above” the graph of the function x 7→ x2, i.e. the set of
points

{
(x, y)

∣∣ y> x2}
.

This last example motivates the definition of a convex function

Definition 2.2.2. The epigraph of a function f : V →R, where V is a real vector space is the
set of points in the vector space V ⊕R “above” the graph of f ,

epi f = {
(v,µ)

∣∣v ∈V , µ ∈R,µ≥ f (v)
}
.(2.2.2)

Definition 2.2.3. A function from a real vector-space to the reals is convex if its epigraph is
a convex set.

This definition of convexity for functions is slightly too restrictive, in the present context,
since it only covers functions defined on an entire vector space V . We will mainly be concerned
with, for example, uncertainty measures which are non-negative, and so we are motivated to
find a definition of convexity appropriate for more general domains.

It is convenient to define the extended reals R = R∪ {∞,−∞}, with the obvious axioms
for extending the order relation, addition and multiplication. We also define inf∅ =∞ and
sup∅=−∞. We can now consider functions defined on arbitrary convex subsets of real vector
spaces, simply by extending the function to be ∞ outside. We note that, strictly speaking, this
recourse to the extended reals is unnecessary and one can consider convex functions defined
on convex subsets of real vector spaces directly, but this leads to more tedious consideration
of domains. In the present formulation one can recover the domain by considering the points
where the extended function takes finite values. The forms ∞−∞ and −∞+∞ are left undefined,
in principle it is important to be cautious about these cases, but they do not arise within this
work.

For completeness we define the epigraph and convexity for extended real functions, although
these are essentially identical to definitions given above.

Definition 2.2.4. A function f : V →R, where V is a real vector space, is convex if its epigraph

epi f = {
(v,µ)

∣∣v ∈V , µ ∈R, µ≥ f (v)
}
,(2.2.3)

is a convex subset of V ⊕R. Note that if f (v)=∞ there are no µ ∈R such that µ≥ f (v), so these
v do not occur in any of the ordered pairs in epi f .
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We now state two useful theorems of convex functions.

Theorem 2.5. Let f : V → (−∞,∞], with V a real vector space. Then f is convex if and only
if the inequality

f (λx+ (1−λ)y)≤λ f (x)+ (1−λ) f (y)(2.2.4)

holds for all x, y ∈V and λ ∈ [0,1]. The exception of −∞ is to exclude pathological cases where
f (x) and f (y) are different infinite values.

Theorem 2.6 (Jensen’s inequality). Let f : V → (−∞,∞], with V a real vector space. Then f

is convex if and only if the inequality

f

(
n∑

i=1
λixi

)
≤

n∑
i=1

λi f (xi),(2.2.5)

holds for all xi ∈V and λi ∈ [0,1] such that ∑n
i=1λi = 1.

There are also generalisations to countable sets of points, and probability measures in the
uncountable case [25][64].

It is useful to define the convex conjugate of a function, which we will apply extensively in
section 5.

Definition 2.2.5. Given a function f : V →R, where V is a topological vector space over the
reals, we define the convex conjugate of f to be

f ∗ : V∗ →R(2.2.6)

f ∗ :α 7→ sup
v∈V

{〈α,v〉− f (v)},(2.2.7)

where V∗ is the space of continuous linear functionals on V and 〈·, ·〉 denotes the dual pairing
between V and V∗.

Theorem 2.7. The biconjugate ( f ∗)∗ of a function f : V →R is the greatest (pointwise) lower-
semi continuous function which is bounded above by f .

Where f is a convex function ( f ∗)∗ (hereafter denoted f ∗∗) is equal to f .

2.3 Semidefinite programming

The usual formulation [84] of semi-definite programming is in terms of n×n positive-semidefinite
real matrices with real elements. Here, following the exposition given in [87], we use a slightly
different but entirely equivalent formulation better adapted to problems in quantum mechan-
ics.
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Definition 2.3.1. Let H , K be finite-dimensional Hilbert spaces, C ∈Ls(H ), D ∈Ls(K ) and
let Ψ : Ls(H )→Ls(K ) be a linear map. The primal semidefinite problem and dual semidefinite
problem associated to the triple (Ψ,C,D) are

(2.3.1)
maximise
X∈L +

s (H )
tr (C X ) minimise

Y∈L +
s (K )

tr (DY )

subject to Ψ(X )≤D subject to Ψ∗(Y )≥ C,

respectively.

Here it is traditional to note the analogy with the classical theory of linear programming,
we therefore note the duality theorem for linear programs (2.8) from ref. [72].

Theorem 2.8. Let A ∈Rn×m, c ∈Rn and b ∈Rm then

sup
{
c · x∣∣x ∈Rn, Ax≤ b

}= inf
{
b · y

∣∣∣y ∈Rm, AT y= c
}

,(2.3.2)

if at least one of the sets is non-empty, with the convention that the sup and inf of an empty
set are −∞ and ∞, respectively.

The analogy follows from considering the trace of the product of two operators as an inner
product on the (real) vector vector space of self-adjoint operators on a given Hilbert space.
The extra complication that comes from considering operator inequalities rather than vector
inequalities causes the duality theory for semidefinite programs to be somewhat weaker than
that for linear programs.

Definition 2.3.2. Given a triple (Ψ,C,D), chosen as in definition 2.3.1 we define the primal
feasible set and dual feasible set to be

P = {
X ∈L +

s (H )
∣∣Ψ(X )≤D

}
(2.3.3)

and

D = {
Y ∈L +

s (K )
∣∣Ψ∗(Y )≥C

}
,(2.3.4)

respectively.

Theorem 2.9 (Weak duality). For every triple (Ψ,C,D) chosen as in definition 2.3.1 the
inequality

sup
X∈P

tr (C X )≤ inf
Y∈D

tr (DY ) ,(2.3.5)

holds.
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A proof of theorem 2.9 is contained in ref. [84]. We call a semidefinite problem strongly
dual if

sup
X∈P

tr (C X )= inf
Y∈D

tr (DY ) .(2.3.6)

Although necessary conditions are not easy to find Slater’s condition [78] is sufficient to prove
strong duality, and in practice is how such problems are approached.

Theorem 2.10 (Slater’s condition). Let (Ψ,C,D) be chosen as in definition 2.3.1, then the
following two implications hold:

1. If infY∈D tr (DY ) ∈ R and there exists an operator X > 0 such that Ψ(X ) < D, then the
equality (2.3.6) holds and there exists an operator Y ∈D achieving the infimum.

2. If supY∈P tr (C X ) ∈ R and there exists an operator Y > 0 such that Ψ∗(Y ) > C, then the
equality (2.3.6) holds and there exists an operator X ∈P achieving the supremum.

2.4 Quantum theory

Throughout this thesis we will use the standard formulation of quantum mechanics, in the main
following the exposition of references [14] and [43]. All Hilbert spaces are assumed to be over
the field of complex numbers. The quantum states will be the positive, trace-class operators on
H with trace equal to 1 and will be denoted S (H ). There is a natural convex structure to the
states. Given states ρ and σ and a real λ ∈ [0,1], the convex combinations λρ+(1−λ)σ are also
states which may be interpreted as preparing ρ with probability λ and σ with probability 1−λ.
We also allow countable combinations ∑

i∈Nλiρ i, where λi ≥ 0 and ∑
i∈Nλi = 1, to be interpreted

analogously. There are certain operators which may not be expressed as a convex combination
in a non-trivial way, i.e. a decomposition ρ = ∑

i∈Nλiρ i requires that ρ i 6= ρ =⇒ λi = 0. We
call these the pure states of quantum theory. An application of the spectral theorem shows
that they are given by rank-1 projections and that every quantum state may be written as a
countable convex combination of pure states.

We expect the observables of quantum theory to be maps taking a quantum state and
returning a probability measure over an outcome set. This matches what happens in experi-
ments where one applies an observable to an input state and gets an output drawn from some
probability distribution. It is natural to require that these maps respect the convex structure
of the state space, in the sense that if one prepares a probabilistic mixture of states and mea-
sures an observable, one expects the probability distribution obtained on the mixture of states
to be the mixture of the probability distributions obtained from the original states.
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Definition 2.4.1. Let (Ω,F ) be a measure space and H a Hilbert space. A map M : S (H )→
P (Ω,F ) is linear if for all convex combinations of states ∑

i∈Nλiρ i we have

M

(∑
i∈N

λiρ i

)
= ∑

i∈N
λiM

(
ρ i

)
,(2.4.1)

where addition and scalar multiplication of measures is defined pointwise.

Maps of this form have a useful representation in terms of positive operator valued measures.

Theorem 2.11. Let (Ω,F ) be a measure space, H a Hilbert space and let M : S (H )→P (Ω,F )
be a linear map, then there exists a POVM E : F →L +

s (H ) such that

M(ρ) : X → tr
(
E(X )ρ

)
.(2.4.2)

The proof of this theorem is essentially identical to the methods used in [61], although with
weaker assumptions on the observables. The converse is also true, each POVM gives rise to a
linear map from the state space to the space of probability measures. We denote the probability
measure obtained by the pairing between a POVM E and a state ρ with Eρ : X 7→ tr

(
E(X )ρ

)
.

We henceforth consider POVMs and linear maps to be interchangeable, and use the term
“observable” for both. Where the outcome set Ω is finite and the set of events A is the entire
power set of Ω, a simpler definition suffices. In this case a POVM is defined entirely by its action
on the singleton sets, so we can equivalently consider a map E :Ω→L +

s , such that ∑
ω∈ΩE(ω)= I.

We call sharp those Borel observables on the real line whose range consists of orthogonal
projections. An application of the spectral theorem shows that the sharp observables are the
spectral measures of self-adjoint operators. It is sometimes more convenient to consider the
self-adjoint operator instead of the POVM, for example, if E is the spectral measure of the
bounded operator A then

〈
Eρ

〉 = tr
(
Aρ

)
,(2.4.3)

where the angle brackets denote the mean, or expected value of the probability distribution
Eρ.

Given two quantum observables, say E1 : F1 → L +
s (H ) and E2 : F2 → L +

s , where (Ω1,F1)

and (Ω2,F2) are measurable spaces there may exist a joint, an observable J on the product
measure space (Ω1 ×Ω2,F1 ⊗F2) such that

J(A×Ω2)= E1(A), ∀A ∈F1,(2.4.4)

J(Ω1 × A)= E2(A), ∀A ∈F2.(2.4.5)

When such a joint observable exists we call the E1 and E2 compatible, two observables will
generally be incompatible.
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σz “up”,“down”,“up”,“up”

(a) A Stern-Gerlach type device correctly measures the σz observable on
some input qubits, each in a σz eigenstate.

σz “down”,“up”,“down”,“down”

(b) Rotating the device 180 degrees reverses the output.

Figure 2.1: The group {0,1} with addition modulo 2, with the group representation implement-
ing “flipping the measuring upside-down”, action fg : h 7→ gh, and the observable σz form a
system of covariance.

Definition 2.4.2. Given a group G, with an action fg : Ω→Ω, g ∈ G, and a representation
{Rg | g ∈G} as positive, unital, linear maps acting on Ls(H ), we say that an observable E : F →
Ls(H ) is (G,R, f )−covariant if

(2.4.6) E( fg(X ))= Rg [E(X )] , ∀g ∈G, X ∈F

where F is the σ-algebra of measurable sets over Ω. Where there is no possibility of confusion
we will simply call these observables covariant.

Note that the Rg must be unital since

I=E( fg(Ω))= Rg [Ω]= Rg [I] .(2.4.7)

A group, representation, action and observable satisfying equation (2.4.6) are called a system
of covariance, where the observable E is projection-valued this is equivalent to a system of
imprimitivity, well known in the representation theory literature (see, e.g. [57], for an intro-
duction). Figure 2.1 describes a simple system of covariance.

An application of Wigner’s theorem [94, 93] shows that the representation must be of the
form

Rg : A 7→Ug AU∗
g ,(2.4.8)

where the Ug are either unitary or anti-unitary operators on H . Since anti-unitary operators,
and anti-linear operators in general, are much less common than their linear counterparts in
the quantum information and foundation literature we note the following example, a map
K :Cn →Cn provided by fixing an orthonormal basis B = |0〉 . . . |n−1〉, and defining

K : |φ〉 7→∑
i
〈i|φ〉∗|i〉,(2.4.9)

which differs from a definition of the identity operator only by the complex conjugate. The
resulting map is not, of course, independent of the basis chosen, however, for any two anti-
unitary maps K ,K ′ there exists a unitary U such that

K ′ =UK ,(2.4.10)
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so a single anti-unitary, combined with the familiar structure of the unitary operators, suffices
to explore the space of anti-unitaries [95].

Covariant quantum observables were introduced by Davies [28], using the language of gen-
eral quantum instruments rather than POVMs, and were already being used in the study of
uncertainty by Holevo in 1978 [44]. Special cases which have been studied in the literature
are covariant symmetric informationally complete-POVMS (SIC-POVMs) [4, 67] and extreme
covariant POVMs [21, 35, 23, 34]. Covariance has been employed in the study of measurement
uncertainty for angular momentum observables [27], number and angle [13], and general phase
spaces [90].

The time evolution will be given by quantum channels, those linear maps from the trace-
class operators on one Hilbert space to the trace-class operators on another which preserve the
trace, and are completely positive. A corollary of Stinespring’s Theorem 2.1 states that the
completely positive maps from a Banach space U ⊆ L (H ) to L (K ) are exactly those which
may be written in the form

Φ(ρ)= trH0

(
Uρ⊗ρ0U∗)

,(2.4.11)

where H0 is a Hilbert space and ρ0 is a quantum state in H0. One may, alternatively, consider
the quantum state to be unchanging and allow the observables to evolve. This “Heisenberg
picture” (in contrast to the former “Schrödinger picture”) is furnished by the dual map and is
sometimes more convenient.

The dynamics of a perfectly isolated quantum system are reversible, using Wigner’s theorem
it is possible to show that the bijective channels are those of the form

Φ : ρ 7→UρU∗(2.4.12)

Φ∗ : E(X ) 7→U∗E(X )U ,(2.4.13)

where U : H → H is a unitary or anti-unitary map, (see [93] for a translation of the original
work [94], or [7] for a detailed proof). The time evolution of quantum mechanics is given by the
unitary case, although the anti-unitary operators will be useful in section 5 when we consider
observables symmetric under the action of a group with a representation consisting of both
unitary and anti-unitary maps.

2.5 Comparing measures and observables

The textbook description of quantum uncertainty (see e.g. [62]) may be summarised as the
claim that there exist pairs of quantum observables E, F for which there does not exist any
state ρ which makes the induced probability measures Eρ and Fρ simultaneously sharply con-
centrated. Often this is characterised by a lower bound on some functional of the variances
or entropies [55, 88] of the two distributions, valid for all quantum states. A slightly broader
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view is to consider the set

{(
δ(Eρ

1), ...,δ(Eρ
n)

)∣∣ρ ∈S (H )
}⊆Rn,(2.5.1)

where the Ei are observables on H and δ is a measure of the uncertainty of a probability
measure (e.g. (2.5.30), (2.5.32) or (2.5.49)). This approach is known as preparation uncertainty,
since we range over the quantum states (also called preparations).

An alternative facet of quantum uncertainty is called measurement uncertainty. This is a
consequence of the fact that quantum mechanics contains incompatible observables, that is,
there exist pairs (or larger collections) of quantum observables for which there is no joint ob-
servable. We can make quantitative the qualitative statement that a family of observables is in-
compatible by considering the distance of each observable from the corresponding margin of an
approximate joint observable, in more mathematical language, given {E i : Fi →S (H ) | i ∈ 1...n},
and δ, representing a distance between observables we are interested in the set

{(δ(E1,F1), ...,δ(En,Fn)) |Fi : Fi →S (H ) are all compatible} .(2.5.2)

Loosely, the E i are a family of target observables that we would like to measure, incompati-
bility prohibits this, but we want to know how close we can come to approximating them all
simultaneously. This situation is depicted in figure 5.1.

To develop the theory of uncertainty, and particularly measurement uncertainty, it is useful
to be able to compare probability measures on some space. For example we might want to
make the claim that one distribution is “broader” than another, or that one of two distributions
approximates a third, target distribution, more accurately than the other. Here we introduce
the mathematical tools we will use to do this.

In section 5 we will compare finite-outcome probability distributions using the Lp-metric,
defined as

δp (S,T) :=
( ∑
ω∈Ω

|S(ω)−T(ω)|p
) 1

p

, 1≤ p <∞,(2.5.3)

δ∞ (S,T) :=max
ω∈Ω

|S(ω)−T(ω)|.(2.5.4)

Note here we are considering probability distributions as functions on the outcome set Ω, rather
than measures as function on a σ algebra over Ω. The former notation is not well suited to
measures with infinite outcome sets, but we will employ it extensively in the finite outcome
setting. We note the L1 metric is equal to the definition of total variation distance given in
the standard references, e.g. [85] and [86], which has a natural generalisation to the case of
measures with infinite outcomes

δ1
(
µ,ν

)
:= sup

S∈F

∣∣µ(S)−ν(S)
∣∣.(2.5.5)
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The use of the total variation for measurement errors of continuous variables has been criticised
in [17], on the basis that it is insensitive to any metric on the underlying space. Explicitly,
every point measure is at distance 2 from every other point measure, whereas in a physical
context it is often natural to consider point measures corresponding to points which are close
together to be similarly close.

Definition 2.5.1. If (A,d) is a metric space and α> 0 then the Wasserstein α-metric is

Wα

(
µ,ν

)
:=

(
inf

γ∈Γ(µ,ν)

∫
A×A

d(x, y)αdγ(x, y)
) 1

α

.(2.5.6)

Here Γ(µ,ν) is the set of “couplings” between µ and ν, the probability measures on the product
space A×A, with first margin µ and second margin ν.

We provide a simple example, computing the Wasserstein αdistance between two probabil-
ity distributions on the outcome set {−1,1}. We let

µ(1)= m(2.5.7)

µ(−1)= 1−m(2.5.8)

ν(1)= v(2.5.9)

ν(−1)= 1−v.(2.5.10)

An arbitrary probability distribution on the outcome set {−1,1}×{−1,1}= {(1,1), (1,−1), (−1,1), (−1,−1)}

is given by

p(1,1)= a(2.5.11)

p(1,−1)= b(2.5.12)

p(−1,1)= c(2.5.13)

p(−1,−1)= 1−a−b− c.(2.5.14)

Applying the constraint that p is a coupling of µ and ν we obtain

p(1,1)+ p(1,−1)= a+b =µ(1)= m(2.5.15)

p(−1,1)+ p(−1,−1)= 1−a−b =µ(−1)= 1−m(2.5.16)

p(1,1)+ p(−1,1)= a+ c = ν(1)= v(2.5.17)

p(1,−1)+ p(−1,−1)= 1−a− c = ν(−1)= 1−v.(2.5.18)

We therefore have a family of couplings parameterised by a single real parameter

pa(1,1)= a(2.5.19)

pa(1,−1)= m−a(2.5.20)

pa(−1,1)= v−a(2.5.21)

pa(−1,−1)= 1+a−m−v,(2.5.22)
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where positivity requires

max{0,m+v−1}≤ a ≤min{m,v}.(2.5.23)

Since µ and ν are discrete the integral in equation 2.5.6 becomes a sum and we obtain

Wα

(
µ,ν

)= (
2α inf

a
(pa(1,−1)+ pa(−1,1))

) 1
α(2.5.24)

= 2
(
inf
a

(m+v−2a)
) 1
α(2.5.25)

= 2|m−v| 1
α .(2.5.26)

We take the formula for the moments from ref. [22].

Definition 2.5.2 (Moments). For n ∈ N the the nth moment of a probability measure µ :

B(R)→ [0,1], on the reals is defined by the integral

µ[n] :=
∫
R

xndµ(x).(2.5.27)

In general the even moments may be real numbers or positive infinity, whereas the odd
moments may be real, positive or negative infinity, or undefined, for example in the case of the
Cauchy distribution. In the case where the probability measure is dominated by the familiar
Lebesgue measure, that is where there exists a probability density function p : R→ [0,1] such
that

µ(X )=
∫

X
p(x)dx,(2.5.28)

the formula for the moments becomes

µ[n] :=
∫
R

xn p(x)dx.(2.5.29)

If the first and second moments of a probability measure exist and are finite then we can define
the variance

∆2µ :=µ[2]−µ[1]2,(2.5.30)

which we will use extensively in chapter 3.
An application of the Wasserstein metric allows a generalisation of the variance to proba-

bility distributions with outcome sets which are not subsets of R. To motivate this we consider
the simplest case which can not be embedded in the real line; an observable whose outcome
set is the set of points on the unit circle T. The circle differs from a closed interval [a−π,a+π]

only by identifying the endpoints and is given the structure of a metric space by defining the
quantity

d(x1, x2) := min
n∈{−1,0,1}

|x1 +2nπ− x2|,(2.5.31)
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where the minimisation reflects the fact that two points may be connected by arcs either way
around the circle. We show there is no way to define the variance of a probability distribution
on the unit circle by considering the uniform distribution, to define the variance one first needs
to define a mean, and there is no unique way to assign a mean to the uniform distribution over
the circle. Nonetheless, there is a natural sense in which some distributions on T are more
concentrated than others.

Definition 2.5.3. If µ is a probability measure on a metric space (A,d) and α > 1, the α-
deviation is

∆α

(
µ
)

:= inf
x0∈A

Wα

(
µ,δx0

)
,(2.5.32)

where δx0 is a point measure supported at x0.

The α-deviation appears in [17], and was applied in [13] to the case of covariant number
and phase observables. Note that the only coupling between a measure and a point measure
is the product measure, so the formula (2.5.6) simplifies substantially in this case

∆α

(
µ
)= inf

x0∈A

(∫
A

d(x, x0)αdµ(x)
) 1

α

.(2.5.33)

We prove a piece of “folklore”, giving connecting ∆2
(
µ
)
, with the standard variance for the

case where µ is a Borel probability measure on the reals.

Lemma 2.3. If µ is a probability measure on the Borel sets of R, with the standard topology,
for which first and second moment exist and are finite then

∆2
(
µ
)=∆2µ,(2.5.34)

where ∆2µ is the variance. Furthermore the infimum in equation (2.5.32) is achieved at the
mean, and nowhere else.

Proof. We let µ be a Borel probability measure on R and consider the function

f :R→R(2.5.35)

f : x0 7→
∫
R

d(x, x0)2dµ(x).(2.5.36)

We can expand

f (x0)=
∫
R

d(x, x0)2dµ(x)(2.5.37)

=
∫
R
(x− x0)2dµ(x)(2.5.38)

=
∫
R
(x2 −2xx0 + x2

0)dµ(x),(2.5.39)
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since the first and second moment exist and are assumed to be finite we can apply the linearity
of the expected value to obtain

f (x0)=
∫
R

x2dµ(x)−2x0

∫
R

xdµ(x)+ x2
0

∫
R

dµ(x)(2.5.40)

=
∫
R

x2dµ(x)−2x0

∫
R

xdµ(x)+ x2
0.(2.5.41)

This is simply a quadratic in x0 so we can obtain the minimum and unique minimzer

inf
x0

f (x0)= f
(∫

R
xdµ(x)

)
(2.5.42)

=
∫
R

x2dµ(x)−
(∫

R
xdµ(x)

)2
,(2.5.43)

which are just the variance and mean, respectively. ■

Although this proof is rather trivial, and almost certainly is known else where, we have not
been able to find a reference for it. In addition we emphasise it to contrast with the case of
∆1

(
µ
)

where the minimisation does not uniquely pick out the relevant central tendency, which
is the median. An incorrect claim to the contrary was made in ref. [17]. A counterexample is
given by the two outcome probability distribution defined by

p(0)= p(1)= 1
2

,(2.5.44)

then

∆1 (p)= inf
x0

f (x0),(2.5.45)

where

f (x0)=


x0 − 1

2 , x0 ≤ 0
1
2 , x0 ∈ [0,1]

x0 − 1
2 , x0 ≥ 0.

(2.5.46)

Hence any x0 ∈ [0,1] is a minimizer for f (x0). The Wasserstein metric was used in the context
of quantum uncertainty by Busch, Lahti and Werner in [16], with a focus on the case of
canonically covariant observables EQ and EP , and restricted to α= 2. In [17] the same authors
generalised this approach to consider arbitrary α. In these papers the authors considered both
the supremum of the Wasserstein metric over all states, called the metric error, and a quantity
called the calibration error. For observables for which there are states which make the induced
probability distributions deterministic the calibration error is given by the maximum over those
states. In general an observable may not induce a deterministic probability distribution in any
state, so the calibration error is given by a limiting procedure

∆ε
α (F,E) := sup

ρ,x

{
Wα

(
Fρ,δx

)∣∣Wα

(
Eρ,δx

)}
(2.5.47)

∆c
α (F,E) := lim

ε→0
∆ε
α (F,E)(2.5.48)
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The overall width is a natural measure of the broadness of a probability measure on the reals.
Given ε ∈ (0,1) we define

Wε

(
µ
)

:= inf
a,b∈R

{|a−b| ∣∣µ([a,b])≥ 1−ε
}
,(2.5.49)

the set bounded below by zero, and non-empty since for any ε there is an n large enough such
that µ([−n,n]) ≥ 1−ε so this quantity is a real number. The overall width has been studied
in the context of timelimited and bandlimited functions in [50], in the quantum mechanical
literature by Uffink [82], Busch et. al. [5] and Miyadera [60].

Entropic quantities have also been used to study quantum uncertainty, although the set
of quantities which are called “entropies” is large, for our purposes it suffices to consider the
Rényi α-entropies [68]. For a probability distribution on a finite set, these are given by

Hα(P)= 1
1−α

log
∑

i
P(i)α.(2.5.50)

The Rényi entropies are Schur concave as functions of the probability distribution. We write
P ≺Q if P may be written as a convex combination of permutations of Q, and say Q majorizes
P in this case. Schur concavity is the property that

P ≺Q =⇒ Hα(P)≥ Hα(Q),(2.5.51)

roughly speaking the entropy will be larger for a more “spread out” distribution than a more
concentrated one.

Given a distance measure δ on probability distributions one can define a distance measure
on quantum observables by choosing a relevant set of states S ⊆S (H ) and setting

δS(E,F) := sup
ρ∈S

δ(Eρ,Fρ),(2.5.52)

of course the choice of the set S is highly significant and the appropriate choice will depend
on the application. In general choosing a larger S makes the test more stringent. To make
a classical analogy one would be unconvinced by a clock sold as being able to tell one time
(per day) highly accurately, but a clock sold as being able to tell all times with error less than
some bound is more convincing. Indeed this analogy can be made quite precise, given any two
observables E and F one can perfectly reproduce the statistics Eρ, and Fρ in a fixed state ρ

with the (trivial) observable

J : (A,B) 7→ Eρ(A)Fρ(B)I.(2.5.53)

In chapter 5 the set S will be the whole state-space, and the distance measure on probability
distributions will be the α-deviation given in (2.5.32). In general the choice of distance on the
probability measures is also application dependent, but we note that if δ is a metric on the
space of probability distributions, and S spans S H then δS is a metric on the observables.
Measuring differences between observables in terms of the outcome statistics was proposed by
Ludwig [54], although the formulation of measurement uncertainty we are interested in in this
thesis was introduced by Busch, Lahti and Werner [17].
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Preparation uncertainty
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Low dimensional Preparation uncertainty

3.1 Introduction

The textbook expression of the uncertainty principle is given by the standard uncertainty
relation,

(3.1.1) ∆A∆B≥ 1
2

∣∣〈AB−BA〉∣∣ .

Here A,B are self-adjoint operators representing two observables whose standard deviations
∆A, ∆B are constrained by the (modulus of the) expectation value of the commutator of
A,B. This relation was originally conceived for position and momentum by Heisenberg [41],
with formal proofs provided by Kennard [49] and Weyl [91]. The above general form is due
to Robertson [70]; it was soon strengthened by Schrödinger [74, 73], who deduced a tighter
bound by including the so-called covariance term,

(3.1.2) ∆2A∆2B≥ 1
4

∣∣〈AB−BA〉∣∣2 + 1
4

(〈AB+BA〉−2〈A〉〈B〉)2.

These inequalities were originally presented for vector states from the system’s Hilbert space,
but also hold for mixed states, represented by density operators ρ. We use the standard
notation 〈A〉 = 〈A〉ρ = tr[ρA] for expectation values and ∆2A=∆2

ρA= 〈A2〉ρ−〈A〉2ρ for variances.
For many decades, the task of providing a quantitative statement of the uncertainty prin-

ciples was considered to be settled by stating the above inequalities. Still, a closer look shows
that these relations do not have all the features one might justifiably require of an uncertainty
bound. For instance, in the case of observables with discrete bounded spectra, both (3.1.1) and
(3.1.2) reduce to trivialities: if ρ is an eigenstate of (say) A, so that ∆ρA = 0, the inequalities
entail no constraint on the value of ∆ρB. A remedy to this particular deficiency came with
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the discovery of other forms of uncertainty relations, based on the minimisation of functionals
of ∆A,∆B other than the product [46, 56]. Another issue lies in the fact that the uncertainty
of a quantity may not always be best described by the variance, or, more generally, the mo-
ments of its distribution; accordingly, new forms of uncertainty relations have been proven for
alternative measures of uncertainty, such as entropies [9, 29, 55] or overall width [83]. We
will illustrate another curiosity below: the limiting case of equality in (3.1.1) may not always
indicate minimum uncertainty.

Rather than asking for bounds on some particular choice of uncertainty functional, such
as the product or sum of uncertainties, it is of interest to know the uncertainty region of A

and B, defined as the whole range of possible value pairs (∆ρA,∆ρB). This notion does not
seem to have considered until recently when similar problems were envisaged with respect to
measurement uncertainty [11, 27, 52, 98]: the concept of error region was introduced as the
set of admissible pairs of approximation errors for joint measurements of non-commuting quan-
tities [12]. Arguably, the content of the uncertainty principle can be captured as a statement
concerning the ‘lower boundary’ of the preparation and measurement uncertainty regions: if
A,B do not commute, these regions cannot, in general, contain all points near the origin of the
relevant uncertainty diagrams.

An extensive study of uncertainty regions for spin components was undertaken by Dammeier
et al. [27] However, the features uncovered in these cases are not representative, as illustrated by
the example we examine in section 3.4. In particular we note that if the point (∆A,∆B)= (0,0)

is in the uncertainty region, then the monotone-closure procedure, taking the set of points
{(x, y)|∃ρ s.t. x ≥∆ρA, y ≥∆ρB}, employed to great effect in the spin case, has the undesirable
property that the closure defined is the entire positive quadrant.

A state dependent bound for the joint expectation values of an n-tuple of sharp, ±1-valued
observables was given by Kaniewski, Tomamichel and Wehner [47]. Since a binary probability
distribution is entirely characterised by the expectation value this provides an implicit charac-
terisation of the uncertainty region. A complete characterisation of the uncertainty region in
terms of variances for pairs of observables on qubits was given by Li and Qiao [52]. However,
their relation is an implicit rather than explicit one, with the expectation values and variances
of each observable appearing on both sides of the inequality. Abbott et al [1] then derived the
full qubit uncertainty region in a way which more readily generalises to provide (not necessarily
tight) bounds in higher dimensional systems and for more than two observables.

Some analytical, as well as some semianalytical bounds on uncertainty regions were recently
given by Szymański and Życzkowski [81], who also give a method for writing a saturated, state
independent bound for a general “sum of variances” uncertainty relation as a polynomial root
finding problem.

Here we review the case of qubit observables, providing yet another proof of a geometric
flavor that immediately focuses on and highlights the extremality property that defines the
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boundary of the uncertainty region (Section 3.3). We also investigate to what extent the
standard uncertainty relations may or may not characterise the uncertainty region and find
that the Schrödinger inequality cannot, in general, be cast in a state-independent form as
defined here. The examples of pairs of qutrit observables given in Section 3.4 show that
structural features found in the qubit case are no longer present in higher dimensions, for
example the uncertainty region for two sharp, ±1-valued qubit observables contains the origin
if and only if they commute.

The purpose of the present work is to give an accessible introduction of the subject of un-
certainty regions, offering worked examples for pairs of observables in low-dimensional Hilbert
spaces. We also explore the logical relation between characterisations of uncertainty regions
and standard uncertainty relations.

The section is organised as follows. After a brief review of the uncertainty region for the
position and momentum of a particle on the line (Section 3.2.1), we give a general definition
of the uncertainty region (Section 3.2.2) and proceed to consider the qubit case in some detail
(Section 3.3). We then proceed to determine uncertainty regions for some pairs of qutrit
observables, noting interesting contrasts with the case of qubit observables (Section 3.4). We
conclude with a summary and some general observations (Section 3.5).

3.2 Uncertainty regions

3.2.1 Warm-up: a review of position and momentum

The Heisenberg uncertainty relation for position Q and momentum P of a particle on a line is
given by the inequality (3.1.1),

(3.2.1) ∆ρQ∆ρP≥ ℏ
2

,

valid for all states ρ for which both variances are finite. This relation is tight in the following
sense: for any pair of numbers (∆Q, ∆P) with ∆Q∆P ≥ ℏ/2, there exists a state ρ such that
∆Q=∆ρQ and ∆P=∆ρP. In particular, points of the lower bounding hyperbola branch in the
positive quadrant of the ∆Q-∆P-plane are realized by pure states, ρ = |ψ〉〈ψ|, where the unit
vector ψ represents a Gaussian wave function. Moreover, it is not hard to show that every
point in the area above the hyperbola can be realized by some quantum state, so that the
whole uncertainty region for position and momentum is described by the uncertainty relation
(3.2.1) (Fig. 3.1).

It is interesting to note that the inequality (3.2.1) can be equivalently recast in the form of
additive uncertainty relations (Paul Busch, personal communication).
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Theorem 3.1. Let ℓ> 0 be an arbitrary fixed parameter with the dimension of length, then

∆ρQ
ℓ

+ ℓ∆ρP
ℏ

≥
p

2,(3.2.2)

∆2
ρQ

ℓ2 +
ℓ2∆2

ρP

ℏ2 ≥ 1.(3.2.3)

Proof. The proof of this equivalence follows from an elementary algebraic observation: given
arbitrary ξ,η> 0 we have the simple identity

ξ

x
+ xη=

√
ξ

x
−p

xη

2

+2
√

ξη,(3.2.4)

valid for all x > 0. This quantity assumes its minimal value 2
√

ξη at x =√
ξ/η. Therefore, if C

is a positive constant, then

(3.2.5) ξη≥ C ⇐⇒ ∀x > 0 :
ξ

x
+ xη≥ 2

p
C.

Putting (ξ,η,C)= (∆Q/ℓ,ℓ∆P/ℏ,1/2) or = (∆2Q/ℓ2,ℓ2∆2P/ℏ2,1/4) and choosing x = 1, we see that
the uncertainty relation (3.2.1) entails (3.2.2) and (3.2.3), for every state ρ via the equivalence
(3.2.5).

To obtain the reverse implication, we have to make the stronger assumption that one of
the additive inequalities, say (3.2.2), holds for all ρ, for some fixed value ℓ. To show that then
this inequality holds for all ℓ, we replace ℓ with ℓ′ ≡ xℓ, with x > 0. Using the unitary scaling
transformation,

(3.2.6) Uτ = exp
[

i
2ℏ

τ(QP+PQ)
]

, τ= ln x,

we have U∗
τ QUτ =Q/x ≡Qx, U∗

τ PUτ = xP≡Px, and set ρx =UτρU∗
τ . We then calculate:

∆ρQ
xℓ

+ xℓ∆ρP
ℏ

= ∆ρQx

ℓ
+ ℓ∆ρPx

ℏ
= ∆ρxQ

ℓ
+ ℓ∆ρxP

ℏ
≥
p

2.(3.2.7)

Therefore, using (3.2.5), we conclude that (3.2.1) follows from (3.2.2) (and similarly from
(3.2.3)). ■

Geometrically, the limiting case of equality in (3.2.2) represents a family of straight lines
tangent to the hyperbola plotted in a ∆Q−∆P-diagram given by ∆Q∆P = ℏ/2; the totality of
these tangents defines the hyperbola. Similarly, the second additive inequality bound (3.2.3)
gives a family of ellipses (with axes given by the coordinate axes) tangent to the hyperbola,
again defining it (see Fig. 3.1). We conclude that Heisenberg’s uncertainty relation or any of
its additive equivalents completely determine the position-momentum uncertainty region.
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Figure 3.1: The uncertainty region for the standard deviations of position and momentum (in
units where ℏ= 1). The solid boundary line represents the hyperbola ∆Q∆P= 1

2 , and the dash-
dotted and dotted curves show examples of the tangential straight and elliptic line segments
represented by the bounds given in (3.2.2) and (3.2.3), respectively.

3.2.2 Uncertainty region: general definition

We seek to explore further the feature of tightness of an uncertainty relation and so adopt
the following definitions (see, e.g., Ref. [1]). We will understand tightness in the sense that
the given uncertainty relation fully characterises the set of admissible uncertainty pairs. In
order for an inequality for the uncertainties to achieve this, it is necessary that the only state-
dependent terms are the uncertainties themselves; hence such inequalities are of the form
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f (∆A,∆B,A,B) ≥ 0. As the reference to ρ can then be dropped, we refer to such uncertainty
relations as state-independent, in line with the terminology introduced in Ref. [1]. The term
tight is sometimes used to describe an inequality for a set of variables where the limiting case
of equality can be reached for some values; here instead we refer to this situation as saturation
of the inequality.

Definition 3.1. The (preparation) uncertainty region for a pair of observables A and B is the
set of points (∆A,∆B) ∈R2 that can be realised by some quantum state, ρ ∈S (H ), that is,

(3.2.8) PUR∆ (A,B)= {
(∆A,∆B) | ∃ρ ∈S (H ) : ∆A=∆ρA, ∆B=∆ρB

}
.

Definition 3.2. A state-independent uncertainty relation, given by an equality, inequality
or set of such, for the uncertainties ∆ρA, ∆ρB of observables A, B will be called tight if it is
satisfied for exactly the points (∆A,∆B) inside the uncertainty region.

Although we focus here mostly on pairs of observables the definitions may be generalised
to n observables in the obvious way. Furthermore, one may also take alternative measures of
uncertainty instead of the standard deviations. We will occasionally use the variance instead
of the standard deviation, where the former is more appropriate.

It is natural to ask whether the tightness of the inequality (3.1.1) (and hence (3.1.2))
extends beyond the case of position and momentum. More generally, one can ask for any pair
(or family) of observables whether the associated uncertainty region can be characterised by
suitable uncertainty relations (which then would be tight).

For the purposes of finding expressions of the uncertainty principle, it is sufficient to focus
on specifying the curve defined by fixing the value of ∆A and finding ρ ∈S (∆A) := {ρ |∆ρA=∆A}

such that ∆ρB is minimized:

(3.2.9) ∆Bmin ≡min
{
∆ρB |ρ ∈S (∆A)

}
.

Assuming (as we do henceforth) that the underlying Hilbert space is finite-dimensional, the set
of states S (H ) is compact in any norm topology (trace norm, operator norm, etc.). Therefore,
the continuity of the map ρ 7→ (∆ρA,∆ρB) ensures that the preparation uncertainty region and
the subset of states S (∆A) are compact. It follows that the minimum in (3.2.9) exists. Hence
the uncertainty region has a well-defined lower boundary curve (and similarly upper and side
boundary curves).

We illustrate cases where there are non-trivial upper bounds for ∆ρB for some values of
∆ρA. Additionally, when examining qutrit observables in section 3.4, we discover that the
uncertainty region is not necessarily of a ‘simple’ shape, such as a convex set. In these cases
the uncertainty region is too complicated to be conveniently described by a single inequality,
but may be given, for example, in terms of its bounding curves.
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3.3 Optimal qubit uncertainty relations

We consider sharp qubit observables with outcomes (eigenvalues) ±1. These are represented as
Hermitian operators (or 2×2-matrices) of the form A= a ·σ= axσx+ayσy+azσz, where vector
a has Euclidean length ‖a‖ = 1 and σx,σy,σz denote the Pauli matrices on C2. A general qubit
state may be expressed as the density operator

(3.3.1) ρ = 1
2

(I + r ·σ), ‖r‖ = r ≤ 1,

where I denotes the identity operator (unit matrix). Note that ρ is a pure state if and only if
‖r‖ = 1.

For A= a ·σ, we have 〈A〉ρ = a · r and, since A2 = I,

(3.3.2) ∆2
ρA= 1− (a · r)2 = 1−‖r‖2 +‖r×a‖2.

We recall that for unit 3-vectors a and b separated by angle θ we have a · b = cosθ and
‖a×b‖ = sinθ. We also note the operator norm of the commutator of A,B is given by

(3.3.3)
∥∥[A,B]

∥∥= 2‖a×b‖,

which suggests that ‖a× b‖, area of the parallelogram spanned by a and b, is the relevant
quantity to measure the degree of noncommutativity (incompatibility) of A and B. It is inter-
esting to note that uncertainty relations have been derived for n observables obtained from
the position and momentum of the particle on a line where the lower bound is given by the
volume of an n dimensional parallelepiped [48].

3.3.1 Uncertainty bounds for σx,σy,σz

Considering the variances of σx,σy,σz in a general state ρ,

(3.3.4) ∆2
ρσx = 1− r2

x, ∆2
ρσy = 1− r2

y, ∆2
ρσz = 1− r2

z,

it is easy to see that the positivity condition for ρ, r2
x + r2

y + r2
z ≤ 1, is in fact equivalent to the

following additive uncertainty relation:

∆2
ρσx +∆2

ρσy +∆2
ρσz = 3−‖r‖2 ≥ 2.(3.3.5)

This inequality is saturated if and only if ρ is a pure state (r2 = 1). Given that the standard de-
viations ∆ρσk ∈ [0,1], the uncertainty region for the triple (σx,σy,σz) is given as the complement
of the open ball at the origin with radius

p
2 intersected with the unit cube [0,1]× [0,1]× [0,1]

(Fig. 3.2). The inequality (3.3.5) is an instance of a general triple uncertainty relation for the
components of a spin-s system, with the bound for the sum of variances being s, as shown in
Ref. [42].
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Figure 3.2: The uncertainty region for the standard deviations of the qubit triple (σx,σy,σz).
Note that the top surface with ∆σz = 1, shows the uncertainty region for the pair σx,σy,
determined by ∆2

ρσx +∆2
ρσy ≥ 1, which can be filled with states whose Bloch vectors have

component rz = 0.

We briefly revisit and compare the Heisenberg and Schrödinger inequalities for spin com-
ponents. The uncertainty relation (3.1.1) for σx,σy is equivalent to

(3.3.6) ∆2
ρσx∆

2
ρσy ≥ |〈σz〉ρ|2 = 1−∆2

ρσz.

We note that the lower bound on the right hand side becomes zero if rz = 0, in which case this
inequality gives no constraint on the variances on the left hand side. However, using (3.3.5),
we obtain

(3.3.7) ∆2
ρσx∆

2
ρσy ≥∆2

ρσx
(
2−∆2

ρσx −∆2
ρσz

)≥∆2
ρσx

(
1−∆2

ρσx
)
.

We see that the bound is now nontrivial for all ρ with ∆ρσx =∆σx ∈ (0,1). It can be as large
as 1/4, which is obtained when r = (±1,±1,0)/

p
2. The above inequality is equivalent to the

following, which is also entailed directly by (3.3.5) bearing in mind that ∆2
ρσz ≤ 1:

(3.3.8) ∆2
ρσx +∆2

ρσy ≥ 1.

From this, we can straightforwardly obtain the minimum (3.2.9) for ∆2
ρσy given a fixed ∆2

ρσx ∈
(0,1). In fact, ∆2

ρσy is minimized when ∆2
ρσy = 1−∆2

ρσx. This is equivalent to r2
x+r2

y = 1, which
entails rz = 0, that is, ∆2

ρσz = 1. This means, in particular, that the bound given by (3.3.6)
becomes trivial and that given by (3.1.2) is tight.
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It is instructive to consider the conditions under which the Heisenberg inequality (3.3.6) is
saturated. This gives (1− r2

x)(1− r2
y)= r2

z, or 1+ r2
xr2

y = r2
x + r2

y + r2
z. Since the right-hand side is

never greater than 1 and the left hand side never less than 1, both sides must be equal to 1

and, therefore either rx = 0 or r y = 0. If rx is fixed and non-zero, then r y = 0, which is to say
that ∆2

ρσy = 1.
Note that here ∆2

ρσy is maximal rather than minimal. Saturation of the standard uncer-
tainty relation for these observables thus leads to maximising the uncertainty product instead of
minimising it, as one might, naively, have expected. In contrast, equality in (3.3.8) forces min-
imality of the uncertainty product. We also see that (3.3.6) forces maximality ∆2

ρσx =∆2
ρσy = 1

by requiring minimal uncertainty for σz, whereas (3.3.8) does not stipulate this.
Taking into account the natural upper bound of 1 for the variances, the inequality (3.3.8)

is tight, that is, it captures exactly the uncertainty region for σx,σy, while (3.3.6) does not.
(As we observed above, (3.3.6) does not set a positive lower bound for ∆2

ρσy when ∆2
ρσz = 1.)

Since 0≤ (
1−∆2

ρσx
)(

1−∆2
ρσy

)
, we have

(3.3.9) ∆2
ρσx∆

2
ρσy ≥∆2

ρσx +∆2
ρσy −1≥ 1−∆2

ρσz,

where the latter inequality is obtained from ‖r‖2 ≤ 1 or the equivalent relation (3.3.5). It
follows that, just like (3.3.8), (3.3.6) is also a consequence of (and indeed weaker than) (3.3.5).

The fact that (3.3.5) implies (3.3.6) should not be surprising once one realises that the
former inequality is indeed equivalent to the Schrödinger relation (3.1.2), which takes the
following form in the present case

(3.3.10) ∆2
ρσx∆

2
ρσy ≥ 〈σz〉2ρ+〈σx〉2ρ〈σy〉2ρ =

(
1−∆2

ρσz
)+ (

1−∆2
ρσx

)(
1−∆2

ρσy
)
.

This is equivalent to

(3.3.11) ∆2
ρσx∆

2
ρσy ≥ 2− (

∆2
ρσx +∆2

ρσy +∆2
ρσz

)+∆2
ρσx∆

2
ρσy,

and hence to (3.3.5), and ultimately to ‖r‖2 ≤ 1, anticipating the results of section 3.3.3. We
summarise in proposition 3.1

Proposition 3.1 (Summary of uncertainty bounds for orthogonal Pauli observables).

1. The Schrödinger inequality (3.3.10) (but not the Heisenberg inequality (3.3.6)) for σx,σy

determines their uncertainty region.

2. Saturation of the Heisenberg inequality does not entail minimal, but instead maximal,
uncertainty (i.e., maximal ∆σy given ∆σx 6∈ {0,1}).

3. The uncertainty region for σx,σy is the intersection of the unit square [0,1]×[0,1] with the
complement of the open unit ball ∆2σx+∆2σy < 1. The lower boundary is reached exactly
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for pure states with ∆σz = 1, which entails the vanishing of the commutator term in the
Heisenberg inequality (3.3.8) (which therefore becomes trivial at minimum uncertainty).
In this case, one has equality in the Schrödinger relation, and the uncertainty bound is
found to be entirely due to the covariance term.

4. The Schrödinger inequality, due to its equivalence with (3.3.5), also determines the triple
uncertainty region for σx,σy,σz, Fig. 3.2.

5. Saturation of the Schrödinger inequality and the equivalent triple uncertainty relation
(3.3.5) is given exactly on the set of pure states. Hence, all pure states are minimum
uncertainty states for the sum uncertainty relation for the triple σx,σy,σz.

3.3.2 Uncertainty region for pairs of ±1-valued qubit observables

We now consider general observables represented as A = a ·σ, B = b ·σ where a and b are
unit vectors but no longer assumed to be orthogonal. Observables of this form are sufficient
to explore the shapes of uncertainty regions since any two outcome qubit observable may be
simulated by one of this form using classical post processing (relabelling the outcomes ±1 and
adding classical noise).

We begin by noting some simple known examples of state-independent uncertainty relations
for the pair A,B given in Ref. [15]:

∆A+∆B ≥ 1
2

∥∥[A,B]
∥∥,(3.3.12)

∆2A+∆2B ≥ 1−
√

1− 1
4

∥∥[A,B]
∥∥2.(3.3.13)

While these are easily proven by elementary means, it is equally easy to see that they are not
tight; they only touch the actual lower boundary curve of the uncertainty region at isolated
points. Nevertheless they are of a simple form and illustrate the concept of a state-independent
uncertainty bound. In the remainder of this subsection we will derive the exact uncertainty
region, given in theorem 3.2.

Theorem 3.2. Given a pair of qubit observables A= a·σ, B= b·σ as well as a fixed uncertainty
∆ρA=∆A we have

∣∣∣∣∆A(a ·b)−‖a×b‖
√

1−∆2A
∣∣∣∣≤∆ρB≤

∆A(a ·b)+‖a×b‖
√

1−∆2A if ∆A< a ·b
1 otherwise

.(3.3.14)

The resulting uncertainty region is plotted in Fig. 3.3.
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Figure 3.3: Plots of the uncertainty region for sharp, ±1-valued qubit observables. The straight
and curved dot-dashed lines are the previously known lower bounds (3.3.12) and (3.3.13),
respectively.
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In the following considerations we will make use of the identity

(3.3.15) ‖a×b‖2 ‖r‖2 = (
(a×b) · r)2 +∥∥(a×b)× r

∥∥2,

which is a version of Pythagoras’ law. In the special case that ‖a‖ = ‖b‖ = ‖r‖ = 1 and r ⊥ a×b,
this yields

(3.3.16) ‖a×b‖ = ∥∥b(a · r)−a(b · r)
∥∥= ∥∥a(a · r)−b(b · r)

∥∥.

We obtain the following Lemma.

Lemma 3.1. Let a,b be unit vectors spanning a plane P. For any unit vector r ∈ P, denote
a∗ = a(a · r), b∗ = b(b · r) and x= r−a∗, y= r−b∗. Then

(3.3.17)
∥∥a×b

∥∥= ‖a∗−b∗‖ = ‖x− y‖.

To describe the uncertainty region, we set out to determine the maximum and minimum
values of ∆2

ρB given a fixed value ∆2A of ∆2
ρA. Minimality (maximality) of ∆2

ρB is equivalent
to maximality (minimality) of (r · b)2 whilst keeping (r ·a)2 = 1−∆2A constant. Fixing the
variance of A restricts the state to be within the two disks that are the intersections of the
planes r·a=±

√
1−∆2A with the Bloch sphere. We may assume a·b ≥ 0. For the determination

of minimal and maximal ∆ρB it will be sufficient to focus on the disks of constant ∆A with
r ·a≥ 0, and look for the two disks of constant r ·b which intersect the former disk in just one
point. The resulting vectors r0,r1 (which are or can be chosen to lie in the plane spanned by
a,b) are those giving the largest, resp. smallest, non-negative value of b · r within the disk of
vectors satisfying r ·a=

√
1−∆2A.

Figure 3.4 shows the Bloch vectors r0,r1 corresponding to the states that minimize, resp.
maximize ∆ρB. These are unit vectors in the plane spanned by a,b (except for the cases where
the maximum ∆ρB = 1 and ∆A > a ·b). There are four constellations of interest according to
distinct regions of increasing values of ∆A. We determine the minimal and maximal values
∆Bmin,∆Bmax in each case. To be specific, we assume a · b ≥ ‖a× b‖, that is, θ ≤ π/4; the
case θ > π/4 is treated similarly. As evident from Figures 3.5 and 3.6, we have ‖x‖ = ∆A,
and ‖y‖ =∆Bmin, resp. ‖y‖ =∆Bmax. Then repeated application of Eq. 3.3.17 and using the
relation x · y = ±a ·b‖x‖‖y‖ with the appropriate choice of sign gives the following equations
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a
b = r0

b′

r1

(a) a · r > a ·b ⇐⇒ ∆A< ‖a×b‖

a
b = r0

b′

r1

(b) a·r = a·b > a·b′ = ‖a×b‖ ⇐⇒ ∆A= ‖a×b‖

a
b

r0

b′ = r1

(c) a · r = a ·b′ = ‖a×b‖ ⇐⇒ ∆A= a ·b

a
b

r0

b′ = r̂1

r1

(d) 0< a · r < a ·b′ ⇐⇒ ∆A> a ·b

Figure 3.4: Determining the locations of Bloch vectors r0,r1 (in the plane spanned by a,b) for
states minimizing and maximizing ∆2

ρB within the set of states with ∆ρA =∆A. We consider
the case a ·b > ‖a×b‖ only (shown here for θ = π

6 ).

for ∆Bmin, ∆Bmax

0≤∆A≤ ‖a×b‖ ⇐⇒ 1≥ a · r ≥ a ·b(3.3.18)

=⇒‖a×b‖2 =∆2A+∆2Bmin+2a ·b∆A∆Bmin(3.3.19)

‖a×b‖ ≤∆A≤ 1 ⇐⇒ a ·b ≥ a · r ≥ 0(3.3.20)

=⇒‖a×b‖2 =∆2A+∆2Bmin−2a ·b∆A∆Bmin(3.3.21)

0≤∆A≤ a ·b ⇐⇒ 1≥ a · r ≥ ‖a×b‖(3.3.22)

=⇒‖a×b‖2 =∆2A+∆2Bmax−2a ·b∆A∆Bmax(3.3.23)

∆A≥ a ·b ⇐⇒ a · r ≤ ‖a×b‖(3.3.24)

=⇒∆Bmax = 1 at r = r1 (in the direction of b′).(3.3.25)
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a

b

r0 a∗

x
b∗

y

(a) Cross-section through the Bloch sphere
showing the relations between the various vec-
tors in the case where the choice of ∆ρA= ‖x‖
fixes r0 to be between a and b to minimize
∆ρB= ‖y‖. Note that x · y=−a ·b‖x‖‖y‖.

a

b

r0

a∗

x b∗

y

(b) Cross-section through the Bloch sphere
showing the relations between the various vec-
tors in the case where the choice of ∆ρA fixes r0
to be outside a and b to minimize ∆ρB. Note
that x · y= a ·b‖x‖‖y‖.

Figure 3.5: Illustration of the r0 vectors which minimize ∆ρB given a fixed value of ∆ρA

ab

b′r1

a∗ x

b∗

y

(a) Upper bound diagram. Note that x · y =
a ·b‖x‖‖y‖.

ab

r1

a∗ x

(b) Upper bound diagram version where ∆A≥
a ·b. Here we can achieve the (trivial) upper
bound of ∆B= 1 since r ·b = 0. Note that if one
wants to have ρ a pure state one can obtain
this by moving perpendicularly out of the a, b
plane.

Figure 3.6: Illustration of the r1 vectors which maximize ∆ρB= ‖y‖ given a fixed ∆ρA= ‖x‖

The presence of an upper bound less than 1 for ∆B in the cases shown in (3.3.18) and (3.3.20)
(i.e., ∆A < a ·b) can be interpreted in terms of another observable B′ = b′ ·σ where b′ is the
unit vector, in the plane spanned by a and b, orthogonal to b. With this definition we have
∆2
ρB= 1−∆2

ρB′ so the lower bound on the uncertainty ∆B′ (due to its trade-off with ∆A) imposes
an upper bound on ∆B.

By solving the various quadratic equations we obtain the following relation which defines,
exactly, the allowed uncertainty region. In particular we can achieve our aim of giving a
closed form for the minimum and maximum values of ∆ρB given a fixed ∆A. Note that the
resulting tight uncertainty relation (3.3.14) is state-independent in the sense described above:
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the bounds for ∆2
ρB depend only on the chosen ∆2A and the observables A and B.

3.3.3 Schrödinger uncertainty relation

We now turn to a brief analysis of the Schrödinger inequality, beginning with the following
observation.

Lemma 3.2. The identity (3.3.15) for unit vectors a,b ∈ R3 and any vector r ∈ R3 can be
rewritten in the following two equivalent forms:

‖a×b‖2 ‖r‖2 = (
(a×b) · r)2 +∥∥(a×b)× r

∥∥2
(3.3.26)

⇐⇒ (
1− (a · r)2)+ (

1− (b · r)2)+ (‖a×b‖2 − (a×b · r)2)= ‖a×b‖2(
1−‖r‖2)+2(1−a ·b a · r b · r)

(3.3.27)

⇐⇒ (
1− (a · r)2)(

1− (b · r)2)− (
(a×b · r)2 + (a ·b−a · r b · r)2)= ‖a×b‖2(

1−‖r‖2)
.

(3.3.28)

Proof. Recall the identity based on the Lagrange formula for the double vector product,

‖(a×b)× r‖2 = ‖a(b · r)−b(a · r)‖2 = (a · r)2 + (b · r)2 −2(a ·b) (a · r) (b · r).(3.3.29)

We use this to rewrite (3.3.15) as follows:

‖a×b‖2‖r‖2 = (a×b · r)2 + (a · r)2 + (b · r)2 −2a ·b a · r b · r)(3.3.30)

= ‖a×b‖2 − (‖a×b‖2 − (a×b · r)2)+(3.3.31)

1− (
1− (a · r)2)+1− (

1− (b · r)2)−2(a ·b) (a · r) (b · r)

Upon rearranging terms, we obtain (3.3.27), showing at once its equivalence with (3.3.15).
Next, working on the left hand side of (3.3.28), we obtain:(

1− (a · r)2)(
1− (b · r)2)− (

(a×b · r)2 + (a ·b−a · r b · r)2)
(3.3.32)

= 1− (a · r)2 − (b · r)2 + (a · r)2(b · r)2 − (a×b · r)2(3.3.33)

− (a ·b)2 − (a · r)2(b · r)2 +2a ·b a · r b · r
= (

1− (a · r)2)+ (
1− (b · r)2)−1+ (‖a×b‖2 − (a×b · r)2)

(3.3.34)

− (‖a×b‖2 + (a ·b)2)+2a ·b a · r b · r
= (

1− (a · r)2)+ (
1− (b · r)2)+ (‖a×b‖2 − (a×b · r)2)

(3.3.35)

−2(1−a ·b a · r b · r)=: g(a,b,r)

Equating this with the right hand side of (3.3.28), we see that (3.3.28) implies (3.3.27).
Conversely, we may use (3.3.27) to see that g(a,b,r) is actually equal ‖a×b‖2(

1−‖r‖2)
,

which shows that (3.3.27) implies (3.3.28). ■
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We recall that for any qubit state ρ = 1
2 (I+r ·σ) we have

∆2
ρA= 1− (a · r)2 , ∆2

ρB= 1− (b · r)2 ,(3.3.36) ∣∣〈[A,B]〉ρ
∣∣= 2 |(a×b) · r| ,(3.3.37)

〈AB+BA〉ρ = 2(a ·b), 〈A〉ρ = a · r, 〈B〉ρ = b · r.(3.3.38)

Further, we note that the variance of the observable C= a×b ·σ is ∆2
ρC= ‖a×b‖2− (a×b ·r)2.

This can be used to translate the above identities into two equivalent forms of uncertainty
equations.

Theorem 3.3. The observables A= a·σ, B= b·σ, and C= a×b·σ obey the following equivalent
uncertainty equations for all states ρ = 1

2 (I + r ·σ):

(3.3.39) ∆2
ρA+∆2

ρB+∆2
ρC= ‖a×b‖2(

1−‖r‖2)+2(1−a ·b a · r b · r),

(3.3.40) ∆2
ρA∆2

ρB−
[

1
4

∣∣〈[A,B]〉ρ
∣∣2 + 1

4
(〈AB+BA〉ρ−2〈A〉ρ 〈B〉ρ

)2
]
= ‖a×b‖2(

1−‖r‖2)
.

This yields, in particular, the Schrödinger inequality (3.1.2).
The Schrödinger inequality does not have the form of a state-independent uncertainty

relation, except in the case a ·b = 0 (treated in Subsection 3.3.1). Nevertheless, it does provide
a specification of the lower boundary of the uncertainty relation. The upper boundary is
obtained by appliciation of the full equation (3.3.40).

Corollary 3.1. The upper and lower boundary value of each vertical segment
{
(∆A,∆ρB) |ρ ∈

S (∆A)
}

of the uncertainty region for A= a ·σ,B= b ·σ is determined by the Schrödinger bound

(3.3.41) S(A,B,ρ)= 1
4

∣∣〈[A,B]〉ρ
∣∣2 + 1

4
(〈AB+BA〉ρ−2〈A〉ρ 〈B〉ρ

)2

as follows:

∆2Bmin =min
{

S(A,B,ρ)
∆2A

∣∣∣∣ρ ∈S (∆A)
}

,(3.3.42)

∆2Bmax =max
{

S(A,B,ρ)
∆2A

∣∣∣∣ρ ∈S (∆A)
}

.(3.3.43)

Proof. This is a direct consequence of Eq. (3.3.40) and the fact that the maximizing and
minimizing states can be chosen to be pure. ■

Thus we find that the strengthening (3.3.40) of the Schrödinger inequality into an equation
determines the uncertainty region for a ·σ, b ·σ. However, the Schrödinger inequality itself
gives the lower bound for ∆ρB given ∆A, and similarly the lower bound for ∆A given ∆ρB.
Since the uncertainty region is symmetric under reflection on the axis ∆A =∆B, the minimal
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boundaries for the two uncertainties together, obtained by the Schrödinger inequality alone,
determine the uncertainty region.

An unexpected feature becomes apparent in the case of minimal uncertainty. Note that
one may always move the vector r into the plane spanned by a and b without changing
the variances ∆2

ρA and ∆2
ρB. Since r is then perpendicular to a× b the “commutator term”

((a×b) · r)2 in the uncertainty relation (3.3.40) is zero for all of these vectors. Hence the
lower uncertainty bound (which is always assumed on unit vectors, so that the above corollary
remains applicable) is a feature purely of the anti-commutator term. This term is analogous
in form to the classical covariance; however, in the quantum context, this interpretation only
applies where the observables are compatible and thus have physical joint probabilities.

3.3.4 Uncertainty region for triples of ±1-valued qubit observables

Here, as before, A = a ·σ and B = b ·σ, for a,b non-collinear 3-vectors of unit norm, however
we now consider the uncertainty region PUR∆(A,B,C), where C = c ·σ, for c = a×b

‖a×b‖ . We
summarise this uncertainty region in theorem 3.4.

Theorem 3.4. Given ∆2C ∈ [0,1], then

√
1−∆2C≤∆2A≤ 1,(3.3.44)

and

ξ− ≤∆2B≤
ξ+ ∆2A≤ 1−∆2C‖a×b‖2

1 otherwise
(3.3.45)

where

ξ± = (a ·b)2∆2A+‖a×b‖2(1−∆2A+1−∆2C)±2(a ·b)
√

1−∆2A‖a×b‖
√
∆2A+∆2C−1.

(3.3.46)

Furthermore this inequality is tight, that is it determines exactly the set of variances that make
up the uncertainty region.
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(a) The uncertainty region with a ·b =
cos π

16 .
(b) Another view of the uncertainty re-
gion with a ·b = cos π

16 .

(c) The uncertainty region with a ·b =
cos 4π

16 .
(d) Another view of the uncertainty re-
gion with a ·b = cos 4π

16 .

(e) The uncertainty region with a ·b =
cos 8π

16 .
(f) Another view of the uncertainty re-
gion with a ·b = cos 8π

16 .

Figure 3.7: Plots of the uncertainty region for 3 sharp, ±1-valued qubit observables where the
Bloch vector of one observable is orthogonal to the other two.
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Proof. Without loss of generality, we assume the following

a=


1

0

0

 b =


b1

b2

0

 c =


0

0

1

(3.3.47)

1> b1,b2 > 0,(3.3.48)

where we have exploited our freedom to choose coordinates to fix a, b3 and the equivalence
of the observables e ·σ and −e ·σ to choose b1,b2 and c3 > 0. We now choose a Z ∈ (0,1) and
consider the disk formed by the intersection of the Bloch sphere with plane {r ∈ R3 |r · c = Z}.
This disk is perpendicular to the vector c, has centre Zc and radius

p
1−Z2. The largest

value of r1 realisable in this disk is
p

1−Z2 which, since ∆2
ρC= 1−Z2 and ∆2

ρA= 1− r2
1 implies

(3.3.44).
Fixing ∆2

ρC in the allowed range defines two lines through the disk, since it implies |a · r| =√
1−∆2

ρA. We compute the extreme values of r2 allowed given the constraint that |r|2 ≤ 1

Z2 + (1−∆2
ρA)+ r2

2 = 1(3.3.49)

r2
2 =∆2

ρA−Z2(3.3.50)

r2 =±
√
∆2
ρA2 +∆2

ρC2 −1,(3.3.51)

where we note that the constraint (3.3.44) implies that ∆2
ρA2 +∆2

ρC2 ≥ 1. We now seek the
values of ∆2

ρA for which the trivial upper bound ∆2
ρB= 1 is attainable. For this we require

0= b · r(3.3.52)

= b1r1 +b2r2(3.3.53)

= (a ·b)
√

1−∆2
ρA+‖a×b‖r2.(3.3.54)

Combining (3.3.51) and (3.3.54), shows that the least value of ∆2
ρA for which it is possible to

attain ∆2
ρB= 1 is given by

0= (a ·b)
√

1−∆2
ρA−‖a×b‖

√
∆2
ρA2 +∆2

ρC2 −1(3.3.55)

‖a×b‖2
(
∆2
ρA

2 +∆2
ρC

2 −1
)
= (a ·b)2

(
1−∆2

ρA
)

(3.3.56)

∆2
ρA= 1−‖a×b‖2∆2

ρC
2
.(3.3.57)

The minimum attainable value of ∆2
ρB, as well as the maximum attainable in the in the region

where ∆2
ρA < 1−‖a×b‖2∆2

ρC2 are then obtained by substituting the positive and negative
extreme values of b2, respectively into the variance formula ∆2

ρB= 1− (b · r)2. ■
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3.4 Qutrit uncertainty

3.4.1 Extended qubit observables

A natural continuation of the qubit example is provided by extending the general, sharp, ±1-
valued qubit observables a ·σ and b ·σ into a third dimension

A=(a ·σ)⊕0=
(
a ·σ 0

0 0

)
(3.4.1)

B=(b ·σ)⊕0=
(
b ·σ 0

0 0

)
,(3.4.2)

where a and b are normalised, and σ is the usual vector of qubit Pauli matrices. It is easily
verified that given any qutrit density matrix we can attain the same variance pairs ∆2A,∆2B

with a density matrix of the form

ρ = w
2

(I2+r ·σ)⊕ (1−w)=
(

w
2 (I2+r ·σ) 0

0 (1−w)

)
,(3.4.3)

where 1
2 (I2+r ·σ) is a qubit density matrix, and w is a real parameter between 0 and 1 (in-

clusive). We can compute the variances of A and B for a state of this form directly from the
definition, to find

∆2
ρA= w−w2(a · r)2(3.4.4)

∆2
ρB= w−w2(b · r)2.(3.4.5)

Unfortunately an analytical description of the uncertainty region does not seem to be forth-
coming for the case of general a and b, although numerical approximations to the boundary
curve may readily be computed. We therefore focus our attention on the case a·b = 0. We note
that projecting a vector onto the plane spanned by a and b leaves both of variances unchanged
so, without loss of generality, set

r = raa+ rbb,(3.4.6)

subject to

r2
a + r2

b ≤ 1.(3.4.7)

At a fixed w the minimum for ∆2
ρB will be attained by making (b · r)2 as large as possible; we

therefore set r2
b = 1−r2

a. We also see that for X ∈ [0,1] the equation X =∆2
ρA enforces a relation

between w and r2
a:

w± =
1±

√
1−4X r2

a

2r2
a

.(3.4.8)
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Since w is required to be real for ρ to be a valid state, we need r2
a ≤ 1

4X ; in addition w must
be in the range [0,1]. Note that w+ ≥ w− ≥ 0, so that w− leads to a valid state whenever w+
does. Now, w+ ≤ 1 is equivalent to having both r2

a ≥ 1
2 and r2

a ≥ 1− X . Denoting

Y± = w±−w2
±(1− r2

a),(3.4.9)

we have that

Y+−Y− = (
2r2

a −1
)√

1−4X r2
a

r4
a

.(3.4.10)

Hence, wherever w+ leads to a valid quantum state, w− gives a lower ∆2
ρB, and so we can focus

on w−,Y−. The requirement w− ≤ 1 is satisfied if and only if r2
a ≤ 1− X whenever r2

a < 1
2 . We

now note that w−(r2
a) always gives a valid solution when r2

a = 0,

w−(0)= lim
r2

a→0

1−
√

1−4X r2
a

2r2
a

= X ,(3.4.11)

Y−(0)= X (1− X ),(3.4.12)

It is easily verified that w−(r2
a)≡ w−(u)> X whenever u = r2

a > 0; this entails that the derivative

(3.4.13) w′
−(u)= w−(u)− X

u
p

1−4X u
> 0 for u > 0.

We then differentiate Y−(u)

Y ′
−(u)= 2(w−− X )(1−w−)

u
p

1−4X u
≥ 0,(3.4.14)

so that Y−(r2
a)−Y−(0)≥ 0 always. Hence we take r2

a = 0 to find the minimum ∆2Bmin = X (1−X )

at a fixed ∆2A = X . The lower boundary of the uncertainty region is therefore given by the
curve ∆B =∆A

√
1−∆2A. Since the region is symmetric under reflection on the axis ∆A =∆B

and in the present case must contain the uncertainty region for orthogonal qubit observables,
it is given by the set

PUR∆ (A,B)=
{

(∆A,∆B) ∈ [0,1]× [0,1]
∣∣∣∣∆B≥∆A

√
1−∆2A and ∆A≥∆B

√
1−∆2B

}
,(3.4.15)

shown in Figure 3.8.

3.4.1.1 “Gell-Mann” observables

An interesting counterpoint to section 3.3.2 is provided by the case of quantum observables
on a three dimensional Hilbert space. Here it is possible to show, by counterexample, that
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Figure 3.8: The uncertainty region for the qutrit observables defined in equation (3.4.1). The
dashed line indicates the lower boundary of the set of standard deviation pairs achievable by
states of the form ρ2 ⊕0, where ρ2 is a qubit density matrix. The points (0,1), (0,0) and (1,0)
are attained by the states 1

2 (I2+b ·σ)⊕0, 0⊕1, and 1
2 (I2+a ·σ)⊕0 respectively. The “spike”

towards the origin is formed by putting increasingly more of the weight of the state in the
shared eigenspace of the two operators.

the Schrödinger uncertainty relation is not sufficient to define the exact uncertainty region.
We expect that the same will hold true for all finite dimensions greater than two. For our
counterexample we choose the observables to be two of the Gell-Mann matrices, and let ρ be
an arbitrary, Hermitian, positive-semi-definite three by three matrix of trace 1.

(3.4.16) A=


1 0 0

0 −1 0

0 0 0

 B=


0 0 1

0 0 0

1 0 0

 ρ =


ρ11 ρ12 ρ13

ρ∗
12 ρ22 ρ23

ρ∗
13 ρ∗

23 ρ33


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Then

(3.4.17)

A2 =


1 0 0

0 1 0

0 0 0

 [A,B]=


0 0 1

0 0 0

−1 0 0



B2 =


1 0 0

0 0 0

0 0 1

 AB+BA=


0 0 1

0 0 0

1 0 0


,

〈A〉ρ = ρ11 −ρ22(3.4.18)
〈B〉ρ = ρ13 +ρ∗

13 = 2Reρ13(3.4.19) 〈
A2〉

ρ = ρ11 +ρ22(3.4.20) 〈
B2〉

ρ = ρ11 +ρ33 = 1−ρ22(3.4.21)

〈[A,B]〉ρ = ρ13 −ρ∗
13 = 2Imρ13(3.4.22)

〈AB+BA〉ρ = ρ13 +ρ∗
13 = 〈B〉ρ(3.4.23)

∆2
ρA= ρ11 +ρ22 − (ρ11 −ρ22)2(3.4.24)

∆2
ρB= ρ11 +ρ33 −4(Reρ13)2.(3.4.25)

We can set ρ12 and ρ23 equal to zero without changing the uncertainties or the Schrödinger
relation at all. Note that the new matrix we obtain by this procedure is positive semi-definite
and trace 1 if the original was. We can, therefore, explore the entire uncertainty region using
states of the form

(3.4.26) ρ =


ρ11 0 ρ13

0 ρ22 0

ρ∗
13 0 ρ33

 .

By elementary methods (differentiating, finding local extrema and comparing them) we
can find the minimum and maximum values of ∆2

ρB as a function of ∆2
ρA. Because of the way

the various constraints change with ∆2
ρA the functional form of the minima and maxima also

change. In all there are ten distinct bounding curve segments, given in equation (B.1.33) and
shown in Figure 3.9. We give a derivation of these curves in Appendix B.1.

Similar to the qubit case, the uncertainty region contains nontrivial upper bounds, and
it is not of a simple (e.g. convex shape); however, there are fundamental differences. The
region shown in Fig. 3.9 does touch and include the origin (0,0), reflecting the fact that the
two observables have a common eigenstate. The shape of the region is also quite asymmetrical;
in particular, it is not possible for both uncertainties to get large simultaneously. It is possible
that these features can be connected to trade-off relations involving other observables, as we
indicated in the qubit case. However, this may require the acquisition of a host of further case
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Figure 3.9: The uncertainty region for the qutrit observables defined in equation (3.4.16). The
dark region is the allowed uncertainty region.

studies. The Schrödinger relation does not entail the lower bound of the uncertainty region in
this case.

We show this by determining the maximum value in the interval of possible values of the
Schrödinger bound, {S(A,B,ρ) |ρ ∈S (∆A)}, and we find indeed that for some range of values of
∆A,

(3.4.27) ∆2Bmin >max

{
1

4∆2
ρA

(∣∣〈[A,B]〉ρ
∣∣2 + (〈AB+BA〉ρ−2〈A〉ρ 〈B〉ρ

)2
)}

=max
{

S(A,B,ρ)
∆2A

}
.

To verify this we first solve the equation

x =∆2
ρA(3.4.28)

= 1−ρ33 −
(
2ρ11 +ρ33 −1

)2(3.4.29)

=⇒ ρ±
33 =

1
2

(
1−4ρ11 ±

√
1+8ρ11 −4x

)
.(3.4.30)
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We then note that in the range x ∈ [3
4 ,1

]
only the ρ+

33 solution with ρ11 ∈
[

1
2 −

p
1−x
2 , 1

2 +
p

1−x
2

]
=: I

leads to ρ being a valid state (positive and trace 1). We therefore seek

f (x) := 1
x

max
{
Im(ρ13)2 +Re(ρ13)2 (

6−8ρ11 −4ρ+
33

)2
∣∣∣ρ11 ∈ I,

∣∣ρ13
∣∣2 ≤ ρ11ρ

+
33

}(3.4.31)

= 1
x

max
{

Im(ρ13)2 +Re(ρ13)2
(
4−2

√
1+8ρ11 −4x

)2
∣∣∣∣ρ11 ∈ I,

∣∣ρ13
∣∣2 ≤ ρ11ρ

+
33

}(3.4.32)

= 1
x

max
{(

λ+ (1−λ)
(
4−2

√
1+8ρ11 −4x

)2
)
ρ11

2

(
1−4ρ11 +

√
1+8ρ11 −4x

)∣∣∣∣ρ11 ∈ I, λ ∈ [0,1]
}

.

(3.4.33)

For ease of exposition we here restrict our attention to x = 1, in which case only ρ11 = 1
2 leads

to a valid quantum state. We can therefore directly compute f (1) = 0, and note that as the
function is continuous there is an interval where the Schrödinger inequality is too weak to
completely describe the uncertainty region.

3.5 Conclusion

We have introduced the notion of the uncertainty region for a pair (or a finite collection) of
quantum observables, and provided a range of examples illustrating the concept. In contrast
to the well-known uncertainty relations, we observed that an uncertainty region is most ap-
propriately described by a state-independent form of relation that describes, in particular, its
boundary.

We have given a geometrical derivation of the exact uncertainty region for an arbitrary pair
of ±1-valued qubit observables, in the explicit form of a state independent uncertainty relation.
When the observables A,B have non-orthogonal Bloch vectors a,b, we found non-trivial upper
bounds for the variance ∆2

ρB as a function of ∆2
ρA, and showed that this may be understood in

terms of the uncertainty trade-off between A and another observable B′ (whose Bloch vector
b′ is in the plane of a,b and perpendicular to b): the observables B,B′ obey the uncertainty
relation ∆2B+∆2B′ ≥ 1, and then the minimum value of ∆B′ given ∆A dictates the maximum
value of ∆B.

We have seen that the Schrödinger inequality determines the uncertainty region in the
qubit case, despite the fact that it is only a state-independent inequality in the case where
a⊥ b. This is essentially due to the fact that satisfaction of this inequality is equivalent to the
positivity condition for states.

Finally we described the uncertainty region for two pairs of qutrit observables, which
provide illustrations of the often non-trivial shape of an uncertainty region. The pairs of ob-
servables studied here do have a common eigenstate and consequently the uncertainty region
is allowed to touch and include the point (0,0). The last example also demonstrates the fact
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that the Schrödinger relation cannot, in general, determine the lower boundary (and certainly
not the upper boundary) of the uncertainty region in dimensions higher than two.

The examples studied here reinforce the qualitative understanding of the uncertainty prin-
ciple as the statement that the incompatibility (non-commutativity) of a pair of observables
generally enforces a state-independent lower bound to their uncertainty region. Where incom-
patible observables do have joint eigenstates, allowing the uncertainty region to include the
origin, one must still expect that parts of some neighbourhood of (0,0) will remain excluded
from the uncertainty region.

The structure of uncertainty regions is still unknown. It seems likely that an expanding
library of case studies, like those described above, will help point the way for future investiga-
tions of this theory. A notable feature of these investigations is how rapidly the computations
become more difficult as the Hilbert space dimension increases, for example attempting to
generalise the results of sections 3.3.2 and 3.4.1 to the case of extended qubit observables with
non-orthogonal Bloch vectors requires computing the roots of fifth order polynomials. One av-
enue for further investigation could be the use of numerical methods in the analysis; since the
variance is quadratic in the state the problem may be reduced to polynomial root finding, which
may be efficiently solved using well known numerical techniques. To conclude, we expect that
much can be learned about the uncertainty principle through the study of uncertainty regions
and hope our investigation will encourage some readers to undertake further case studies.
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Infinite dimensional preparation uncertainty

4.1 Introduction

A standard introductory course on quantum mechanics, for example one following ref. [33], [97]
or [76], mentions several infinite dimensional state-spaces. Namely the pure states of a particle
free to move on an line (L2(R)), a particle fixed to a one dimensional ring (L2(T), where T

denotes the unit circle), and a particle in a “box”, a finite interval (without loss of generality
L2([−π,π])). Preparation uncertainty for position and momentum observables has been studied
for several of these spaces, with the variance [41] and Shannon-entropy [9, 8] uncertainty regions
for the Euclidean spaces being characterised in 1927 and 1975, respectively. More recently
the case of the particle on a ring has been addressed for both measurement uncertainty and
preparation uncertainty [13].

There does not seem to have been a similar analysis for the particle in a box system. In
part this omission may be due to the lack of phase-space symmetry which makes the problem
more tractable in other cases. We contrast our approach with that taken in ref. [58] which
seems superficially similar, however the authors of that reference only examine the uncertainty
of eigenstates of the Hamiltonian of the “box” system, rather than the full state-space. Our
approach is more similar to the original Heisenberg result, in that we seek an uncertainty
relation which is valid for all quantum states of the system.

We will be interested in comparing our results to those obtained for the ring, as well as
the free particle. A barrier to this is that it is not possible to directly define the variance
for a probability distribution defined on a circle. This may be seen by noting that in order
to define the variance one must first define the mean and that, for example, the uniform
distribution on the circle does not have a well-defined mean. For this reason Busch, Kiukas and
Werner employed the α-deviation (see equation (2.5.32)), in order to compare the localisation
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of probability distributions.
In section 4.2 we will define the observables of interest, which will be obtained as restrictions

of the standard position and momentum observables on L2(R). We will also determine the
relevant domain, the largest subspace of L2([−π,π]) for which the first and second moments of
both observables are finite. In section 4.3 we will determine some constraints on the structure
of the uncertainty region, in particular we show that it is the epigraph of a continuous function,
which decreases on the interval

(
0, π

2

3 −2
)
, attains a minimum of 1

4 at π2

3 −2 and increases again
on

(
π2

3 −2,π2
)
. In addition the boundary function is convex in the interval on which it is

increasing. In section 4.4 we obtain some analytical bounds on the boundary function, in
particular showing it is bounded below by, and is asymptotic to, the hyperbola which bounds
the free particle uncertainty region. In section 4.5 we discuss numerical approximations to the
boundary curve, in particular we give a method to approximate a curve which upper bounds
the boundary function. We prove that the curve which is being approximated is exactly the
boundary function in the region where the latter is convex, and conjecture that this is also
true outside this interval. Finally in section 4.6 we compare the results for the box system
with those already known for the particle on a ring, and the free particle. We note that the
variance for the box system is the same as the 2-deviation used for the analysis of the ring
system in [13], so it is reasonable to compare the two.

4.2 State-space

We model the box system as one obtained from the full Hilbert space L2(R) by imposing the
restriction that the states are zero outside the interval [−π,π], this is an idealisation of the
physical situation where there are large (but finite) potential “walls” causing the probabil-
ity density of the particle to decay rapidly outside the box. There is an obvious isometry
l : L2([−π,π])→ L2(R) which extends a state by 0 outside the allowed interval

(lφ)(x)=
φ(x), x ∈ [−π,π]

0, otherwise
,(4.2.1)

from which we obtain position and momentum observables

E : X 7→ l∗E0(X )l(4.2.2)

F : Y 7→ l∗F0(Y )l,(4.2.3)

where E, E are the observables (POVMs) acting on L2([−π,π]) and E0, F0 are those for L2(R),
i.e. E0, F0 are the spectral measures of the standard position and momentum self-adjoint oper-
ators respectively. More explicitly E0(X ) is the operator which multiplies by the characteristic
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function of the (Borel) set X , while F0 is the Fourier transform

(E0(X )φ)(x)=
φ(x), x ∈ X

0, otherwise
(4.2.4)

(F0(Y )φ)(x)= (F∗E0(Y )F )(x),(4.2.5)

where the unitary F implements the Fourier transform

(Fφ)(p)=
∫
R

e−2πixpφ(x)dx.(4.2.6)

We restrict our attention to those states for which the first and second moments of both
observables are finite, this imposes some non-trivial conditions on the quantum states.

Theorem 4.1. The first and second moments

〈E[1]〉φ =
∫
R

x〈φ|E(dx)φ〉 〈F[1]〉φ =
∫
R

p〈φ|F(dp)φ〉(4.2.7)

〈E[2]〉φ =
∫
R

x2〈φ|E(dx)φ〉 〈F[2]〉φ =
∫
R

p2〈φ|F(dp)φ〉.(4.2.8)

are finite on the domain of the self-adjoint operator

D(F[1]∗F[1])= {
φ ∈D(F[1])

∣∣φ′ is abs. cont., φ′′ ∈ L2([−π,π])
}
,(4.2.9)

furthermore they are not finite on any larger domain.

Proof. The actions of the moments are exactly those of the more familiar operators on L2(R),
since they are just restrictions of those operators to L2([−π,π]), so

(
E[1]φ

)
(x)= xφ(x)

(
F[1]φ

)
(x)=−iφ′(x)(4.2.10) (

E[2]φ
)
(x)= x2φ(x)

(
F[2]φ

)
(x)=−φ′′(x).(4.2.11)

The states φ must be absolutely continuous, as well as taking the value 0 at the boundary
points, −π and π, in order that lφ is in the domain of F0[1]. We note that F[1] is not a
self-adjoint operator on its domain,

D(F[1])= {
φ ∈ L2([−π,π])

∣∣φ is abs. cont., φ′ ∈ L2([−π,π]), φ(−π)=φ(π)= 0
}
,(4.2.12)

and therefore the expectation of the second moment F[2] is finite on a larger set than

D(F[1]F[1])= {
φ ∈D(F[1])

∣∣(F[1]φ
) ∈D(F[1])

}
.(4.2.13)

The difference between equations (4.2.13) and (4.2.9) being that in the latter we have the
extra condition that φ′(−π) = φ′(π) = 0. To prove that this is the largest possible domain for
F[2] we recall that the integral of a real function against a POVM is a symmetric operator
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(see, e.g., [14], chapter 4) and that von Neumann’s formulas imply that a densely defined self
adjoint operator can have no proper symmetric extensions. Indeed any symmetric extension
of a densely defined symmetric operator A is a restriction of A∗ [2].

It remains to show that the domain of F[1]∗F[1] is indeed the set given in (4.2.9), which
we may verify using integration by parts, recalling that the domain of F[1]∗ is given by the set
of vectors ψ such that there exists a vector ξ ∈ L2([−π,π]) such that for all ϕ ∈D(F[1])

〈ψ|F[1]ϕ〉 = 〈ξ|ϕ〉.(4.2.14)

In the position representation we therefore have

〈ψ|F[1]ϕ〉 = 〈ξ|ϕ〉(4.2.15) ∫ π

−π
dxψ(x)∗(−i)ϕ′(x)=

∫ π

−π
dxξ(x)∗ϕ(x),(4.2.16)

= Ξ(x)ϕ(x)
∣∣π−π+∫ π

−π
dxiΞ(x)∗ϕ′(x)(4.2.17)

=
∫ π

−π
dxiΞ(x)∗ϕ′(x),(4.2.18)

where

Ξ(x)= ξ(−π)+
∫ x

−π
dyξ(y),(4.2.19)

exists since we assume ξ ∈ L2([−π,π]) and the interval is bounded, while ϕ′ exists since we
are assuming ϕ ∈ D(F[1]). A standard argument, choosing ϕ such that ϕ′ ranges over a basis
for L2([−π,π]) now ensures that

ψ(x)=−iΞ(x)(4.2.20)

=−iξ(−π)− i
∫ x

−π
dyξ(y).(4.2.21)

There therefore exists a Lebesgue integrable function g such that

ψ(x)=ψ(−π)+
∫ x

−π
dyg(y),(4.2.22)

by Lebesgue’s fundamental theorem of calculus this is equivalent to ψ being absolutely contin-
uous.

We do not require any additional conditions to ensure that the moments of position are
finite, since absolute continuity, combined with the boundary conditions, implies that the states
are bounded functions in the position representation. ■

Due to the boundary conditions in (4.2.9) we do not have shift operators, which move the
states in position space. Explicitly, given a pure state φ ∈ D(F[1]∗F[1]), and a ∈ [0,2π] the

72



4.2. STATE-SPACE

function

φ̃ : [−π,π]→C(4.2.23)

φ̃ : x 7→
φ(x+a), x+a ∈ [−π,π]

φ(x+a−2π), x+a−2π ∈ [−π,π]
,(4.2.24)

will generally not obey the boundary conditions and therefore will not be a state. This ability
to shift states is a key point in proofs of the usual Heisenberg uncertainty relation for the
particle on the line. In particular on the real line one can shift any state in order to set the
expectation values of position and momentum to zero, at which point the variance functional
becomes linear in the state, offering a significant simplification.

We do, however, have the ability to shift the expectation of the first moment of momentum
of the states as we choose.

Lemma 4.1. Given φ ∈D(F[1]∗F[1]) and a ∈R there exists φa ∈D(F[1]∗F[1]) such that

〈E[1]〉φa = 〈E[1]〉φ 〈F[1]〉φa = 〈F[1]〉φ+a(4.2.25)
〈E[2]〉φa = 〈E[2]〉φ 〈F[2]〉φa = 〈F[2]〉φ+2a 〈F[1]〉φ+a2.(4.2.26)

Further, these formulae imply that

∆2
φa

E=∆2
φE(4.2.27)

∆2
φa

F=∆2
φF.(4.2.28)

Proof. Given φ ∈D(F[1]∗F[1]) and a ∈R the map

Ma : D(F[1]∗F[1])→D(F[1]∗F[1])(4.2.29)

(Maφ) : x 7→ eiaxφ(x),(4.2.30)

leaves the variance of momentum unchanged, along with the expectation of all the moments
of position. As required Ma changes the expectation of the first moment of momentum by a

〈E[1]〉Maφ = 〈E[1]〉φ 〈F[1]〉Maφ = 〈F[1]〉φ+a(4.2.31)
〈E[2]〉Maφ = 〈E[2]〉φ 〈F[2]〉Maφ = 〈F[2]〉φ+2a 〈F[1]〉φ+a2.(4.2.32)

These formulae may be proved by expressing the states in the position representation and
computing

(E[1]Maφ)(x)=−i
d
dx

(
eiaxφ(x)

)
(4.2.33)

= eiax (
aφ(x)− iφ′(x)

)
,(4.2.34)
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and

(E[2]Maφ)(x)=− d2

dx2

(
eiaxφ(x)

)
(4.2.35)

=−i
d
dx

eiax (
aφ(x)− iφ′(x)

)
(4.2.36)

= eiax (
a2φ(x)−2aiφ′(x)−φ′′(x)

)
,(4.2.37)

before computing the integrals that form the inner products. ■

4.3 Structure of the uncertainty region

We are interested in the region

U =
{
(∆2

ρE,∆2
ρF))

∣∣∣ρ ∈S
}

,(4.3.1)

where S is the set of density operators over the D(F[1]∗F[1]), that is the set of operators of
the form ∑

k
pkPk,(4.3.2)

such that the Pk are mutually orthogonal projectors onto subspaces of D(F[1]∗F[1]), pk ≥ 0

and ∑
k

pk = 1.(4.3.3)

For convenience we summarise the results of this section in proposition 4.1.

Proposition 4.1. The uncertainty region U is the epigraph of a function b : (0,π2)→R. Further

1. b is continuous.

2. b has a global minimum b(x)≥ b
(
π2

3 −2
)
= 1

4 .

3. The minimum is unique.

4. The minimum is achieved by the state ψ0 : x 7→ 1p
π

sin
(1

2 (x−π)
)
.

5. b is decreasing on
(
0, π

2

3 −2
)

and increasing on
(
π2

3 −2,π2
)
.

6. b is convex on the interval
(
π2

3 −2,π2
)
.

It is clear that the region is contained in the quadrant with 0≤∆2
ρE, 0≤∆2

ρP, further, since
the interval is bounded above and below by π and −π, we must have that ∆2

ρE ≤ 〈E[2]〉ρ ≤ π2.
These bounds are classical, for example the probability distribution which assigns probability
1
2 to each of the points −π and π has (classical) position variance π2.
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Lemma 4.2. For any x ∈ (0,π2) there exists a state φ ∈D(F[1]∗F[1]) such that

∆2
φE= x.(4.3.4)

Proof. Take any smooth, L2 normalised, function f : R → R, supported only on [0,1], and
consider

(4.3.5) ga,s(x)= 1p
2s

f
( x−a

s

)
+ 1p

2s
f
(−x−a

s

)
,

where a is non-negative, s is positive and they are taken such that a+ s < π. The resulting
ga,s is a smooth function supported on [−a−s,−a]∪ [a,a+s], with 〈Q〉ga,s = 0, and so has finite
momentum variance as well as

(4.3.6) a2 <∆2Qga,s < (a+ s)2.

By varying a and s in the allowed region we see that in any interval I = (α,α+ε)⊂ (0,π2) there
exists some state φ with ∆2

φE ∈ I. Further, given any two position uncertainties ∆2
φE and ∆2

ψQ,
achieved by pure states φ and ψ we can define the state

ξθ = 1√
1+2cosθsinθRe

(〈φ|ψ〉)
(
cosθφ+sinθψ

)
,(4.3.7)

and the continuous, real valued function θ 7→ ∆2
ξθ

Q. The intermediate value theorem then
asserts that for every variance v ∈ (∆2

φQ,∆2
ψQ) there exists θ∗ ∈ (0,π) such that ∆2

ξθ∗
Q= v. ■

Lemma 4.3. Given a state φ with variances (∆2
φE,∆2

φF) the half-line

L =
{
(∆2

φE, y)
∣∣∣y≥∆2

φF
}

,(4.3.8)

is contained in the uncertainty region.

Proof. We apply the map

Ma :φ 7→
(
x 7→φ(x)eaix2

)
,(4.3.9)

to obtain a new state, for which the expectations and variances can be computed

〈E[1]〉Maφ = 〈E[1]〉φ 〈F[1]〉Maφ = 〈F[1]〉φ+2a 〈E[1]〉φ(4.3.10)
〈E[2]〉Maφ = 〈E[2]〉φ 〈F[2]〉Maφ = 〈F[2]〉φ+4a2 〈E[2]〉φ(4.3.11)

∆2
Maφ

E=∆2
φE ∆2

Maφ
F=∆2

φF+4a2∆2
φE−2a 〈E[1]〉φ 〈F[1]〉φ .(4.3.12)

Since 0<∆2
φE for all states φ there exists an a such that ∆2

Maφ
F= y, for all y≥∆2

φF. ■

This offers a convenient description of the uncertainty region in terms of a boundary func-
tion.
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Lemma 4.4. The uncertainty region is the epigraph (the set of points lying above the graph)
of the function

b : (0,π2)→R(4.3.13)

b : x 7→ inf
{
∆2
φF

∣∣∣∆2
φE= x

}
.(4.3.14)

Loosely this means that in addition to being unbounded above the uncertainty region has
no “holes” in it.

Proof. In order to define such a function it is necessary that for each x ∈ (0,π2) the infimum in
equation (4.3.14) exists and is finite. This is true since the set the infimum is being taken over
is non-empty (by lemma 4.2) and bounded below (by 0, since the variance is non-negative).

The uncertainty region U contains the epigraph of b if all the points above b are in U,
which follows from lemma 4.3 combined with the definition of b. If (x, y) is a point not in U

then there is no point directly below1 (x, y) which is in U due to lemma 4.3, therefore y is a
lower bound for the set

U(x)=
{
∆2
φF

∣∣∣∆2
φE= x

}
.(4.3.15)

From the definition of b(x) have y ≤ b(x), since y is a lower bound for U(x) and b(x) is the
greatest lower bound for U(x), so (x, y) is not in the epigraph of b.

Conversely the epigraph of b contains U, which can be seen by noting that for each x ∈ (0,π2),
all of the points (x, y) in the uncertainty region are, by definition directly above b(x). ■

We can find the minimum of b.

Lemma 4.5. For all x ∈ (0,π2)

b
(
π2

3
−2

)
= 1

4
≤ b(x).(4.3.16)

Further this minimum is achieved by the state

ψ0 = 1p
π

sin
(

1
2

(x−π)
)
,(4.3.17)

and is unique

x 6= π2

3
−2 =⇒ 1

4
< b(x).(4.3.18)

Proof. We first seek the least eigenvalue of the self-adjoint operator F[2]=F[1]∗F[1]. It is well
known that the solutions to

−φ′′ =λφ(4.3.19)

1By directly below (resp. above) (x, y) we here mean a point (x, y′) such that y′ < y (resp. y′ > y).
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are sines and cosines. Applying the boundary conditions φ(−π) = φ(π) = 0 implies that the
eigenstates are

ψk(x)= 1p
π

sin
(

k+1
2

(x−π)
)
, k ∈ {0,1,2, . . .}(4.3.20)

and the eigenvalues are

F[2]ψk(x)= (k+1)2

4
ψk(x),(4.3.21)

where we have chosen the form such that ψk is an odd function if k is odd, and even if k is
even. Note that each eigenspace is one-dimensional, in particular there is only one state (up
to phase) attaining the value 〈F[2]〉ψ0 = 1

4 . One can compute

〈F[1]〉ψk =−i
∫ π

−π
dxψk(x)∗ψ′

k(x)(4.3.22)

=−i
k+1
2π

∫ π

−π
dxsin

(
k+1

2
(x−π)

)
cos

(
k+1

2
(x−π)

)
(4.3.23)

= 0,(4.3.24)

so applying lemma 4.1 the least eigenvalue of F[2] is exactly the least possible momentum
variance,

inf
{
∆2
ρF

∣∣∣ρ ∈D(F[2])
}
= 1

4
.(4.3.25)

We also compute the position variance of the state ψ0 which minimises the momentum variance

∆2
ψ0

E= 〈E[2]〉ψ0 −〈E[1]〉2ψ0
(4.3.26)

= 1
π

∫ π

−π
dxx2 sin

(
1
2

(x−π)
)2

−
(

1
π

∫ π

−π
dxxsin

(
1
2

(x−π)
)2)2

(4.3.27)

= π2

3
−2.(4.3.28)

Finally we show the minimum is unique. Assume a state achieves

∆2
φF= 1

4
,(4.3.29)

then we can employ lemma 4.1 to obtain a state ξ with

〈F[1]〉ξ = 0(4.3.30)

〈F[2]〉ξ =
1
4

,(4.3.31)

the fact that the eigenspaces of F[2] are one dimensional then implies that

ξ=αψ0,(4.3.32)
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for some complex phase α. Reversing the transformation from the proof of lemma 4.1 then
implies that

φ(x)=αe−iaxψ0(x),(4.3.33)

for some a ∈R. It follows that

∆2
φF=∆2

ψ0
F= π2

3
−2,(4.3.34)

and so the minimum of b is unique. ■

The minimum splits b into two regions, to the left of the minimum b is decreasing and to
the right it is increasing.

Lemma 4.6. The boundary function b is strictly decreasing on
(
0, π

2

3 −2
)

and strictly increasing
on

(
π2

3 −2,π2
)
.

Proof. Choose x, y ∈
(
0, π

2

3 −2
)
, without loss of generality let x < y, and choose a sequence of

states ρn such that

∆2
ρn

E= x(4.3.35)

lim
n→∞∆2

ρn
F= b(x).(4.3.36)

Such a sequence exists due to the definition of b(x). Without loss of generality, due to lemma 4.1
choose

〈F[1]〉ρn = 0.(4.3.37)

Now we mix these states with the projector onto the minimizer of the momentum variance,
|ψ0〉〈ψ0|, and define the functions

fn : (0,1)→R(4.3.38)

fn :λ→∆2
λρn+(1−λ)|ψ0〉〈ψ0|E,(4.3.39)

by continuity, for each n ∈N there exists λ∗ ∈ (0,1) such that fn(λ) = y. Now by the definition
of b we have

b(y)≤ 〈F[2]〉λ∗ρn+(1−λ∗)|ψ0〉〈ψ0|(4.3.40)

=λ∗ 〈F[2]〉ρn + (1−λ∗)〈F[2]〉|ψ0〉〈ψ0|(4.3.41)

< 〈F[2]〉ρn .(4.3.42)

Taking the limit n →∞ of the last inequality gives

b(y)≤ b(x),(4.3.43)

as required. The proof for the increasing region is essentially identical. ■
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We recall that the variance is concave as a function of the (mixed) state.

Lemma 4.7. Given any observable A, if S is the set of density operators for which the first
and second moments of A are finite then the map ν : S →R, ν : ρ 7→∆2

ρA is concave.

Proof. Take ρ, σ ∈S with finite first and second moments of A and choose λ ∈ (0,1) then

0≤λ(1−λ)
(〈A〉ρ−〈A〉σ

)2(4.3.44)

λ2 〈A〉2ρ+ (1−λ)2 〈A〉2σ+2λ(1−λ)〈A〉ρ 〈A〉σ ≤λ〈A〉2ρ+ (1−λ)〈A〉2σ(4.3.45) (
λ〈A〉ρ+ (1−λ)〈A〉σ

)2 =(4.3.46) 〈
A2〉

λρ+(1−λ)σ−
(
λ〈A〉ρ+ (1−λ)〈A〉σ

)2 ≥λ
(〈

A2〉
ρ−〈A〉2ρ

)
+ (1−λ)

(〈A〉2σ−〈A〉2σ
)

(4.3.47)

∆2
λρ+(1−λ)σA≥λ∆2Aρ+ (1−λ)∆2Aσ.(4.3.48)

■

Lemma 4.8. If (v,w), (x, y) ∈U and v < x, and w < y then

λ(v,w)+ (1−λ)(x, y) ∈U ,(4.3.49)

for all λ ∈ (0,1).

Proof. We choose density operators ρ,σ such that

∆2
ρE= v ∆2

σE= x(4.3.50)

∆2
ρF= w ∆2

σF= y(4.3.51)
〈F[1]〉ρ = 0 〈F[1]〉σ = 0,(4.3.52)

Consider the real, continuous function

f :λ 7→∆2
λρ+(1−λ)σE.(4.3.53)

By continuity, for any λ ∈ (0,1) there exists µ ∈ (0,1) such that

f (µ)=λv+ (1−λ)x.(4.3.54)

Due to the concavity of the variance functional (lemma 4.7) f is concave and

f (µ)≥µv+ (1−µ)x(4.3.55)

λv+ (1−λ)x ≥µv+ (1−µ)x(4.3.56)

λ(v− x)≥µ(v− x)(4.3.57)

=⇒ λ≤µ.(4.3.58)

79



CHAPTER 4. INFINITE DIMENSIONAL PREPARATION UNCERTAINTY

Then w < y implies

µw+ (1−µ)y≤λw+ (1−λ)y.(4.3.59)

Since we chose ρ and σ such that the first moments of momentum are zero, the momentum
variance is linear in the state and

∆2
µρ+(1−µ)σE=µw+ (1−µ)y(4.3.60)

≤λw+ (1−λ)y.(4.3.61)

Recall we are attempting to show that the point λ(v,w)+ (1−λ)(x, y) ∈ U, but we have now
shown that the point (λv+ (1−λ)x,µw+ (1−µ)y) ∈ U, and µw+ (1−µ)y < λw+ (1−λ)y. We
can now employ lemma 4.3 to move directly up in the uncertainty region to get to the desired
point. ■

Lemma 4.9. The boundary function b is convex on
(
π2

3 −2,π2
)
.

Proof. The boundary function b is convex on this interval iff the restriction of the uncertainty
region

U> =
{

(x, y) ∈U
∣∣∣∣x > π2

3
−2

}
,(4.3.62)

is convex. We therefore have to show that for any two points (v,w), (x, y) ∈U> the points

λ(v,w)+ (1−λ)(x, y) ∈U ,(4.3.63)

for all λ ∈ (0,1). Without loss of generality we choose v < x, we wish to employ lemma 4.8 but
we do not necessarily have w < y. We therefore consider a new point (v,w′) ∈U>, directly below
(v,w). Since we have shown in lemma 4.6 that the boundary curve is increasing in this interval
we can choose w′ ≤ y. By lemma 4.8 we have that

λ(v,w′)+ (1−λ)(x, y) ∈U .(4.3.64)

Employing lemma 4.3 and noting that w′ < w =⇒ λw′+ (1−λ)y < λw+ (1−λ)y proves that
λw+ (1−λ)y is in the uncertainty region as required. ■

A useful feature of the particle on a line is the ability to rescale states, if φ ∈ L2(R), and
a > 0 then

φa : x 7→p
aφax,(4.3.65)

is also a state. We do not have this symmetry in the particle in a box system, since “broadening”
a state will generally break the boundary conditions, but we can “squeeze” states if we wish.
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Lemma 4.10. If φ ∈D(E[2]), a ≥ 1 and

φa : x 7→

p

aφ(ax), |ax| ≤π

0, otherwise
,(4.3.66)

then φa ∈D(E[2]), further

∆2
φa

E= 1
a2∆

2
φE(4.3.67)

∆2
φa

F= a2∆2
φF.(4.3.68)

Proof. It is well known that this rescaling preserves the domains of the moments of the position
and momentum observables on L2(R). The only additional constraint in the present case is the
imposition of the boundary conditions, which are easily shown to be preserved. One can verify
equations (4.3.67) and (4.3.68) by directly computing the integrals. ■

Lemma 4.11. The boundary function b is continuous.

Proof. Convex functions are continuous, so b is automatically continuous on
(
π2

3 −2,π2
)
. In

order to show that b is continuous on
(
0, π

2

3 −2
)

we recall that b is decreasing in this interval
(lemma 4.6), that monotone functions have limits from the left and the right at every point,
and can only have jump discontinuities.

We assume that there exists some discontinuity at a point a ∈
(
0, π

2

3 −2
)

so that

lim
x→a− b(x)= lim

x→a+ b(x)+α,(4.3.69)

where monotonicity implies α> 0. We choose a sequence of states ρn such that

lim
n→∞∆2

ρn
E= x(4.3.70)

∆2
ρn

E≥ a(4.3.71)

lim
n→∞∆2

ρn
F= lim

x→a+ b(x).(4.3.72)

We fix y< a then apply the “squeezing map” from lemma 4.10 to each ρn to obtain a sequence
of states σn such that

∆2
σn

E= y,(4.3.73)

then

∆2
σn

E∆2
σn

F=∆2
ρn

E∆2
ρn

F(4.3.74)

yb(y)≤∆2
ρn

E∆2
ρn

F,(4.3.75)
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since, by definition, b(y)≤∆2
σn

F. Taking the limit n →∞ on the right hand side then gives the
second inequality of

y lim
x→a+ b(x)≤ yb(y)≤ a lim

x→a+ b(x),(4.3.76)

where the first inequality is just the monotonicity of b. Now taking the limit y→ a− gives

a lim
x→a+ b(x)≤ a lim

y→a− b(y)≤ a lim
x→a+ b(x),(4.3.77)

so limy→a− b(y) = limx→a+ b(x) implying limx→a b(x) exists. A simple generalisation (choosing
σn such that ∆2

σn
E= a) establishes that limy→a b(y)= b(a).

It remains to show that b is continuous at the point a = π2

3 −2. This can be achieved by
slightly altering the proof of lemma 4.6. We fix v < π2

3 −2 and choose a state ρ such that

∆2
ρE= v(4.3.78)

〈F[1]〉ρ = 0.(4.3.79)

Then consider the states

σ(λ)=λρ+ (1−λ)|ψ0〉〈ψ0|.(4.3.80)

As before, for each x ∈
(
v, π

2

3 −2
)

there exists some λ(x) such that

∆2
σ(λ(x))E= x,(4.3.81)

then, by construction
1
4
≤ b(x)≤∆2

σ(λ(x))F(4.3.82)

=λ(x)∆2
ρF+ (1−λ(x))∆2

|ψ0〉〈ψ0|F.(4.3.83)

Now as x → a− we have λ→ 0+ and obtain
1
4
≤ lim

x→a− b(x)≤ 1
4

.(4.3.84)

The proof for x → a+ is similar. ■

4.4 Analytical bounds on the boundary function

We first note that a simple bound may be obtained by recalling that the position and mo-
mentum observables E,F we have defined are essentially restrictions of the standard position
and momentum observables on L2(R). In particular given a state φ ∈D(F) there exists a state
(lφ) ∈ L2(R) such that

〈E[1]〉φ = 〈E0[1]〉lφ 〈E[2]〉φ = 〈E0[2]〉lφ(4.4.1)
〈F[1]〉φ = 〈F0[1]〉lφ 〈F[2]〉φ = 〈F0[2]〉lφ ,(4.4.2)
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where E0,F0 are the position and observables on L2(R), respectively. This means that the lower
bound

∆2
φE∆2

φF≥ 1
4

,(4.4.3)

due to Heisenberg, is still valid for the box system. We can not expect that the Heisenberg
bound will be tight for the box, since it is saturated by Gaussian states and these certainly
do not obey the boundary conditions φ(−π) = φ(π) = 0. We can compare this lower bound to
upper bounds obtained by considering families of states in D(F). An obvious family of states
is achieved by squeezing the minimizer of momentum, to obtain the bounds

1
4x

≤ b(x)≤ 1
4x

(
π2

3
−2

)
,(4.4.4)

valid for x ∈
(
0, π

2

3 −2
)
.

Lemma 4.12. As the position variance becomes small the boundary function b is asymptotic
to the canonical hyperbola, that is

lim
x→0

xb(x)= 1
4

.(4.4.5)

Proof. An upper bound for b, may be computed using the family of “tempered-Gaussians”

ξs = 1
N2 e−sx2

(π− x)(x+π),(4.4.6)

where

N =
p

2π
(
16π4s2 −8π2s+3

)
erf

(p
2sπ

)+4πe−2π2s (
4π2s−3

)p
s

32s5/2 ,(4.4.7)

normalises the state. Then we have

∆2
ξs

E=
p

2π
(
16π4s2 −24π2s+15

)
erf

(p
2sπ

)+4πe−2π2s (
4π2s−15

)p
s

128s7/2N
(4.4.8)

∆2
ξs

F=
p

2π
(
16π4s2 +8π2s+7

)
erf

(p
2sπ

)+4πe−2π2s (
4π2s−7

)p
s

32s3/2N
.(4.4.9)

These expressions are unfortunately rather unwieldy, but we have

lim
s→0+∆

2
Eξs = 0,(4.4.10)

and one can verify

lim
s→0+∆

2
Eξs∆

2
Fξs = 1

4
.(4.4.11)

Combining this limiting upper bound with the lower bound provided by equation (4.4.3) proves
that

lim
x→0

xb(x)= 1
4

.(4.4.12)

■
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4.5 Numerical approximation of b

We can do somewhat better than the analytical bounds from section 4.4 in the interval(
π2

3 −2,π2
)
. Here the uncertainty region is convex, and so may be determined by its convex

conjugate. We seek

c(α) :=−b∗(−α)= inf
{

b(x)+αx
∣∣∣∣x ∈

(
π2

3
−2,π2

)}
,(4.5.1)

where we have introduced the minus signs for later convenience. Substituting the definition of
b gives

c(α)= inf
{

inf
{
∆2
φF

∣∣∣∆2
φE= x

}
+αx

∣∣∣∣x ∈
(
π2

3
−2,π2

)}
.(4.5.2)

We notice we can combine the two infima to obtain

c(α)= inf
{
∆2
φF+α∆2

φE
∣∣∣φ ∈D(F[2])

}
,(4.5.3)

since searching over all x, and then over all states with variance equal to that x is equivalent
to searching over all the states directly. Recalling that b is increasing on

(
π2

3 −2,π2
)
, we can

see that

α≥ 0 =⇒ c(α)= 1
4
+α

(
π2

3
−2

)
.(4.5.4)

We now employ lemma 4.1 to restrict the search to those states with momentum expectation
value equal to 0

c(α)= inf
{
〈F[2]〉φ+α∆2

φE
∣∣∣φ ∈D(F[2]), 〈F[1]〉φ = 0

}
.(4.5.5)

For convenience we define the function

hα :φ 7→ 〈F[2]〉φ+α∆2
φE(4.5.6)

= 〈F[2]〉φ+α
(
〈E[2]〉φ−〈F[1]〉2φ

)
,(4.5.7)

and the operator

Hα =F[2]+αE[2],(4.5.8)

which is self-adjoint on D(F[2]).

Lemma 4.13. Let α< 0 and let ηα be the ground state of Hα. For any state φ

∆2
φE=∆2

ηα
E =⇒ ∆2

φF≥∆2
ηα

F(4.5.9)
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Proof. First note that Hα commutes with the parity operator

Π : L2([−π,π])→ L2([−π,π])(4.5.10)

(Πφ) : x 7→φ(−x),(4.5.11)

which implies the eigenstates of Hα are also eigenstates of Π, in particular this means that the
eigenstates of Hα have zero expectation of position so

∆2
Eηα = 〈E[2]〉ηα

.(4.5.12)

Assume there is some state ρ such that

〈E[2]〉ρ−〈E[1]〉2ρ =∆2
ρE=∆2

ηα
E= 〈E[2]〉ηα

(4.5.13)
〈F[2]〉ρ < 〈F[2]〉ηα

,(4.5.14)

then

〈F[2]+αE[2]〉ηα
≤ tr

(
ρ (F[2]+αE[2])

)
(4.5.15)

= 〈F[2]〉ρ+α〈E[2]〉ρ(4.5.16)

= 〈F[2]〉ρ+α
(
〈E[2]〉ηα

+〈E〉2ρ
)

(4.5.17)

< 〈F[2]+αE[2]〉ηα
+α〈E〉2ρ(4.5.18)

which is an obvious contradiction for α< 0, which is the region for which we do not yet know
c(α). We conclude that in this region the ground states of the operators Hα explore the
boundary curve. ■

We are now searching for the ground state, and least eigenvalue, of the operator Hα. It is
well known that the solutions to

Hαφ=λφ,(4.5.19)

are combinations of Whittaker functions or hypergeometric functions [37, 92]. Unfortunately
applying the boundary conditions to determine the constants leads to equations which seem
impossible to solve in terms of any common functions. We therefore resort to computing a
numerical approximation to the ground state. We can compute the matrix elements of the
operator Hα in the basis of eigenfunctions of F[2]

〈ψ j|Hαψk〉 =


(k+1)2

4 +α
(
π2

3 − 2
(k+1)2

)
, j = k

32α ( j+1)(k+1)
(( j+1)2−(k+1)2)2 , j+k is even

0, otherwise

.(4.5.20)

We then fix some n ∈N and numerically determine the eigenvalues and eigenvectors of an n×n

dimensional truncation of the infinite matrix 〈ψ j|Hαψk〉. Once we have computed approximate
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values of c(αi) for a large enough set of values αi we can compute the variances by numerically
approximating the derivative

c′(α)=∆2
ηα

E(4.5.21)

c(α)−αc′(α)=∆2
ηα

F.(4.5.22)

The resulting curve is plotted in figure 4.1a. We note that in addition to the eigenvalue
c(α) we obtain a numerical approximation to the ground state ξα of Hα. We can therefore
directly compute approximations to the variances ∆2

ηα
E, and ∆2

ηα
F, this curve is also plotted

in figure 4.1a but is indistinguishable to the curve obtained by numerical differentiation. We
are interested in the direct computation of the variances since in addition to exactly giving
the boundary curve b(x) in the interval

(
π2

3 −2,π2
)

the ground states are upper bounds on the
boundary curve everywhere, as all states are, explicitly

b
(
∆2
ηα

E
)
≤∆2

ηα
F.(4.5.23)

This is the reason that the curve is plotted for the entire interval (0,π2). We conjecture that
the ground states of Hα are, in fact, optimisers of b globally, rather than just on the interval(
π2

3 −2,π2
)
, in other words we conjecture that the inequality in equation 4.5.23 is an equality.

We note that this is implied by a seemingly natural assumption, that among the optimisers of
momentum variance for each fixed position variance, there exist those with position expectation
equal to zero.

4.6 Comparisons

We have already compared our results for the particle in a box with the well known variance
uncertainty relation for the particle on the line. The particle on a line hyperbola is everywhere
a lower bound for the boundary function b for the particle in a box. We have also shown
that the two curves are asymptotic to each other in the limit as the variance becomes small in
lemma 4.12, that is

lim
x→0

b(x)
1
4x

= 1.(4.6.1)

This is quite natural, loosely one would expect that the more concentrated the box states are
around the origin, the less the boundary conditions influence them.

We would also like to compare our results with those from the particle on a ring system
addressed in ref. [13], in which α-deviations (see definition 2.5.3) are used to quantify the spread
of distributions. As shown in lemma 2.3, for probability measures on the reals this quantity is
identical to the usual variance. In contrast to the case of the particle on a ring, a probability
measure µ defined on the interval [−π,π] may be considered identical to a probability measure
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on R which is supported only on [−π,π]. We are therefore free to interpret the variances we have
been considering in this chapter as 2-deviations, and directly compare them to the 2-deviations
computed in ref. [13]. We invite the reader to compare figures 4.1a and 4.1b, depicting the
particle in a box, and on a ring, 2-deviation based uncertainty regions, respectively. The
particle on the ring system allows momentum eigenstates, with zero momentum variance and
maximal position variance, including the state whose position wavefunction is constant. This
is in contrast to the particle in a box system, where there is not a state maximising the position
variance, but we can approach the maximum of π2 by sequences of states which are increasingly
concentrated at the points −π and π. This is since the variance of probability measures on
[π,π] is maximised by the symmetric two point measure concentrated at the end points.
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(a) The uncertainty region for the particle in a box system, showing the curve obtained from the least
eigenvalues of the operators Hα (solid curve), this is the exact boundary curve on the right hand side of
the vertical line at

√
π2

3 −2 (dashed). On the left hand side the true curve lies between the solid curve
and the boundary of the free particle uncertainty region (dotted).

(b) The uncertainty region for the particle on a ring system. Note that this is identical to the top left
panel of figure 1 in ref. [13], and is included here only for comparison with figure 4.1a.

Figure 4.1: The box, free particle and ring uncertainty regions.



Part II

Measurement uncertainty
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Measurement uncertainty and covariance - finite dimensional
case studies

5.1 Introduction

Here we are interested in a scenario where we would like to measure several observables, denoted
Ei, to achieve some goal. Unfortunately it may be that these observables are not compatible,
that is there is no way to measure them all on the same state. We therefore instead need to
measure some compatible observables which are “close”, in an appropriate sense, to the targets.
The distance measure we use to quantify this closeness will depend on the application, but we
will explore methods based based on the p-norm of finite dimensional real vectors below.

The general picture is then summarised in figure 5.1, where E i are the target observables,
and Fi are respective compatible approximations, and J is a joint observable for the Fi. If
supplied with a “figure of merit” d indicating how well one observable approximates another
we can explore the set

(5.1.1) S(E1,E2 . . .En)= {(d(E1,F1),d(E2,F2) . . .d(En,Fn)) |Fi are compatible} ,

which we call a measurement uncertainty region. We refer to chapter 13 of [14] for an intro-
duction to this line of thinking, and [17, 75] for representative results.

Finding the uncertainty region for generic observables is a difficult problem for interesting
figures of merit, with exact results known only in cases with high symmetry or low dimen-
sion [96, 27]. Here we do not remedy this situation, but instead employ a systematic approach
to exploiting available symmetries to simplify measurement uncertainty problems.

Section 5.2 defines the p-norm based figure of merit used throughout, 5.4 contains some
technical lemmas related to how we fill the uncertainty region. Section 5.3 contains quite
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CHAPTER 5. MEASUREMENT UNCERTAINTY AND COVARIANCE - FINITE DIMENSIONAL CASE STUDIES

general results about the use of covariance to simplify measurement uncertainty problems,
with the key result being that if the target observables are covariant, then for every family of
jointly measurable approximators there exists a covariant family of joint approximators which
is at least as good, according to the dp figure of merit. Finally sections 5.5 and 5.6 are case
studies, applying the previous results to the three mutually unbiased qubit observables, and
the pair of observables related by the quantum Fourier transform in dimension n, unknown
to us this latter case was addressed already in [90], although our method of proof if different
and provides a case study of the use of the invariant mean in solving problems in measurement
uncertainty.

E1

E2

En

F1

F2

Fn

J
... ...

Figure 5.1: Target observables Ei, compatible approximations Fi, and their joint J

5.2 Definitions and error measure

In this chapter we consider separable complex Hilbert spaces and finite outcome observables.
A map E :Ω→L +

s (H ) is an observable if it is normalised

∑
ω∈Ω

E(ω)= I,(5.2.1)

where I is the identity operator on H .
A set of n observables on the Hilbert space H , {Ei | i = 1 . . .n}, with outcome sets Ωi is

compatible if there exists a joint observable, J :Ω→L +
s (H ),

∑
ω∈Ω

omega i=ω∗

J(ω)=Ei(ω∗), ∀i ∈ 1 . . .n, ∀ω∗ ∈Ωi,(5.2.2)
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where Ω = ∏
iΩi is the Cartesian product and ωi is the ith component of ω = (ω1,ω2 . . .ωn).

Such an observable is called a Cartesian joint observable for the observables {Ei | i ∈ 1 . . .n}. In
other words, J is a Cartesian joint for the Ei iff, for each i, Ei is the ith Cartesian marginal of
J.

Given a pair of probability distributions, S and T over the same (finite) set Ω, we can
compute the p-norm of their (pointwise) difference. The resulting quantity is a metric on the
space of probability distributions over Ω,

δp(S,T) := ‖S−T‖p(5.2.3)

=
( ∑
ω∈Ω

|S(ω)−T(ω)|p
) 1

p

, ∀p ∈ [1,∞),(5.2.4)

δ∞(S,T) :=max
ω∈Ω

|S(ω)−T(ω)|.(5.2.5)

We note that δp(S,T)≥ 0 with equality if and only if S = T and that

δp(S,T)≤ 2
1
p , ∀p ∈ [1,∞].(5.2.6)

When p = 1 this quantity is equal to the total variation distance, up to a global factor of 2

and is also equal to the Wasserstein 1-distance between S and T, where the “cost-function” is
given by the discrete metric [51, 85].

Given an observable E : Ω → L +
s (H ) and a quantum state ρ ∈ S (H ) we can define a

probability distribution over Ω,

(5.2.7) Eρ :ω 7→ tr
(
E(ω)ρ

)
.

We can lift the distance measure on probability distributions with outcome set Ω to one on
observables on the same set, simply by taking the sup of the distance for the probability
distributions over all states

dp(E,F) := sup
ρ∈S (H )

δp(Eρ,Fρ)(5.2.8)

= sup
ρ∈S (H )

( ∑
ω∈Ω

∣∣Eρ(ω)−Fρ(ω)
∣∣p

) 1
p

,(5.2.9)

where S (H ) is the set of trace 1 density operators within L +
s (H ). The supremum is finite,

because the expression is bounded. We specialise the definition (5.1.1) of the uncertainty region
to these error measures, where Ei :Ωi →L +

s (H ) are the target observables
(5.2.10)
Sp(E1,E2 . . .En)= {

(dp(E1,F1),dp(E2,F2) . . .dp(En,Fn))
∣∣Fi :Ωi →L +

s (H ) are compatible
}
, p ∈ [1,∞].

Given two probability measures µ,ν on the same outcome space (Ω,F ) we say that that
µ dominates ν if µ(X ) = 0 =⇒ ν(X ) = 0, for all measureable sets X ∈ F , this is denoted µÀ ν.
This is often referred to as ν being absolutely continuous withe respect to µ.
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A theorem due to Radon and Nikodym, [10, 63] states that if µ dominates ν then there
exists a µ-measureable function f :Ω→R such that

ν(X )=
∫

X
f dµ,(5.2.11)

for all X ∈F . The f , so defined, is unique up to a set of µ-measure 0, more precisely, if f and g

both satisfy (5.2.11) for some measures ν, µ then the set of points ω ∈Ω such that f (ω) 6= g(ω)

has µ-measure 0. A function satisfying (5.2.11) is called a (or, by mild abuse of notation the)
Radon-Nikodym derivative of ν with respect to µ, and denoted dν

dµ so (5.2.11) becomes

ν(X )=
∫

X

dν
dµ

dµ.(5.2.12)

We define the f -divergence, introduced in refs. [3] and [26]. For two probability measures
µÀ ν, on a measurable space (Ω,F ), and convex function f :R→R such that f (1)= 0

D f
(
ν ∥µ)= ∫

Ω
f
(

dν
dµ

)
dµ.(5.2.13)

This definition is quite general, and includes several “divergences” well known from the
literature. Liese and Vajda [53] express the Kullback–Leibler divergence, Pearson divergence,
Hellinger distance and total variation in terms of f -divergences with f equal to

t 7→ t log t,(5.2.14)

t 7→ (t−1)2,(5.2.15)

t 7→ (
p

t−1)2,(5.2.16)

t 7→ |t−1|,(5.2.17)

respectively, while Arimoto defines the β-divergence, given, for finite outcome sets, by

t 7→


1−maxk pk, β= 0

1
1−β

(
1−

(∑
k p

1
β

k

)β)
, β> 0, and β 6= 1

−∑
k pk log pk, β= 1

.(5.2.18)

We note that both the f -divergences and the p-norm based divergences above have the
property of joint convexity, that is if µ1,µ2,ν1,ν2 are probability measures such that each
divergence is defined, and λ ∈ [0,1] then

δp(λν1 + (1−λ)ν2,λµ1 + (1−λ)µ2)≤λδp(ν1,µ1)+ (1−λ)δp(ν2,µ2)(5.2.19)

D f
(
λν1 + (1−λ)ν2 ∥λµ1 + (1−λ)µ2

)≤λD f
(
ν1 ∥µ1

)+ (1−λ)D f
(
ν2 ∥µ2

)
.(5.2.20)

The theorems in section 5.3, in particular theorems 5.1 and 5.2, hold for any jointly convex
error measure, although they may reduce to trivially stating ∞≤∞ unless the error measure
is bounded.
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5.3 Invariant Mean

It is useful to embed the set of observables with a fixed outcome set Ω in the real vector space
of all maps from Ω to the bounded, self adjoint operators on H which, for convenience, we
denote by M . The set of such maps ranging in the positive operators is a convex cone in M ,
and the normalisation ∑

ωE(ω)= I defines an affine space. We equip the space M with a norm
via

‖E‖ = ∑
ω∈Ω

‖E(ω)‖.(5.3.1)

Definition 5.3.1. Given a finite group G, with action fg : Ω → Ω, and normal, completely
positive, unital, linear representation Rg acting on Ls(H ) we define the invariant mean, MR, f :

M →M by

(5.3.2) MR, f (E)(ω)= 1
|G|

∑
g∈G

Rg−1
[
E( fg(ω))

]
which has some useful properties summarised in lemmas 5.1 to 5.3. The invariant mean is

motivated by the concept of a group-twirling map, introduced in [30], but the addition of the
group action on the outcome set means that the invariant mean of an observable is, in general,
different to the observable obtained by acting the twirling map on each of the effects.

Lemma 5.1. The invariant mean is a norm contraction.

Proof. ∥∥MR, f (E)
∥∥= ∑

ω∈Ω

∥∥MR, f (E)(ω)
∥∥(5.3.3)

= ∑
ω∈Ω

∥∥∥∥∥ 1
|G|

∑
g∈G

Rg−1
[
E( fg(ω))

]∥∥∥∥∥(5.3.4)

≤ ∑
ω∈Ω

1
|G|

∑
g∈G

∥∥Rg−1
[
E( fg(ω))

]∥∥(5.3.5)

= 1
|G|

∑
g∈G

∑
ω∈Ω

∥∥Rg−1
[
E( fg(ω))

]∥∥(5.3.6)

= 1
|G|

∑
g∈G

∑
ω∈Ω

∥∥E( fg(ω))
∥∥(5.3.7)

= 1
|G|

∑
g∈G

∑
ω∈Ω

∥∥E( fg(ω))
∥∥(5.3.8)

≤ ‖E‖,(5.3.9)

where 5.3.7 follows from Wigner’s theorem, and noting that (anti-)unitaries are norm preserv-
ing. ■

Lemma 5.2. The invariant mean of an observable is an observable.
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Proof. For any observable E :Ω→L +
s (H ) the map MR, f (E) takes positive values since the Rg

are positive, and the positive operators are a convex set. Further, if E is an observable then
so is MR, f (E), since

∑
ω∈Ω

MR, f (E)(ω)= 1
|G|

∑
ω∈Ω

∑
g∈G

Rg−1
[
E( fg(ω))

]
(5.3.10)

= 1
|G|

∑
g∈G

Rg−1

[ ∑
ω∈Ω

E( fg(ω))

]
(5.3.11)

= 1
|G|

∑
g∈G

I(5.3.12)

= I .(5.3.13)

■

Lemma 5.3. The invariant mean is the projection from M onto the subspace of (G,R, f )-
covariant (in the sense of definition 2.4.2) maps.

Proof. First note that MR, f is linear, since the Rg are linear. For any E ∈ M , MR, f (E) is
covariant since

MR, f (E)( fh(ω))= 1
|G|

∑
g∈G

Rg−1
[
E( fg ◦ fh(ω))

]
(5.3.14)

= 1
|G|

∑
g′∈G

R(g′h−1)−1
[
E( fg′h−1 ◦ fh(ω))

]
(5.3.15)

= 1
|G|

∑
g′∈G

Rhg′−1
[
E( fg′(ω))

]
(5.3.16)

= Rh

[
1
|G|

∑
g′∈G

Rg′−1
[
E( fg′(ω))

]]
(5.3.17)

= Rh
[
MR, f (E)(ω)

]
.(5.3.18)

Now (G,R, f )-covariant maps are invariant under MR, f

MR, f (E)(ω)= 1
|G|

∑
g∈G

Rg−1
[
E( fg(ω))

]
(5.3.19)

= 1
|G|

∑
g∈G

Rg−1
[
Rg[E(ω)]

]
(5.3.20)

= 1
|G|

∑
g∈G

E(ω)(5.3.21)

=E(ω),(5.3.22)

so MR, f is idempotent. ■
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It follows that the space of (G,R, f )-covariant maps is a vector subspace of M , and that
E= MR, f (E) if, and only if, E is (G,R, f )-covariant.

Theorem 5.1. Let G, fg : Ω→Ω and Rg : Ls(H ) → Ls(H ) satisfy the assumptions of def-
inition 5.3.1. Let d be a jointly convex map from the probability distributions over Ω to R,
compatible with fg in the sense that

d(P ◦ fg,Q ◦ fg)= d(P,Q),(5.3.23)

for all probability distributions P,Q and all g ∈G, then

sup
ρ

d
(
MR, f (E)ρ, MR, f (F)ρ

)≤ sup
ρ

d
(
Eρ,Fρ

)
,(5.3.24)

for all observables E,F :Ω→L +
s (H ).

Proof.

sup
ρ

d
(
MR, f (E)ρ, MR, f (F)ρ

)= sup
ρ

d

(
1
|G|

∑
g∈G

(
Rg−1 ◦E◦ fg

)ρ ,
1
|G|

∑
g∈G

(
Rg−1 ◦F◦ fg

)ρ)
(5.3.25)

≤ sup
ρ

1
|G|

∑
g∈G

d
((

Rg−1 ◦E◦ fg
)ρ ,

(
Rg−1 ◦F◦ fg

)ρ)
(5.3.26)

≤ 1
|G|

∑
g∈G

sup
ρ

d
((

Rg−1 ◦E◦ fg
)ρ ,

(
Rg−1 ◦F◦ fg

)ρ)
(5.3.27)

= 1
|G|

∑
g∈G

sup
ρ

d
((

E◦ fg
)R∗

g−1 [ρ]
,
(
F◦ fg

)R∗
g−1 [ρ])(5.3.28)

≤ 1
|G|

∑
g∈G

sup
ρ

d
((

E◦ fg
)ρ ,

(
F◦ fg

)ρ)
(5.3.29)

= 1
|G|

∑
g∈G

sup
ρ

d
(
Eρ ◦ fg,Fρ ◦ fg

)
(5.3.30)

= 1
|G|

∑
g∈G

sup
ρ

d
(
Eρ,Fρ

)
(5.3.31)

= sup
ρ

d
(
Eρ,Fρ

)
.(5.3.32)

■

The compatibility condition (5.3.23) may arise for quite different reasons. The p-norm
error measures defined in section 5.2 are invariant under all bijective functions on the outcome
set1, as are entropic quantities such as the Kullback-Leiber divergence. On the other hand
the Wasserstein metrics mentioned in section 2.5 are only compatible with maps which leave
the underlying metric on Ω invariant, for example where Ω = R the standard metric on R is

1Elements of a group action must be invertible, and hence bijective.
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compatible with translations. In the proof of theorem 5.1 we only require that d(P◦ fg,Q◦ fg)≤
d(P,Q), however this being true for all g ∈G implies equality.

Given a set of n ∈N finite sets {Ωi | i ∈ 1 . . .n}, and n finite groups {G i | i ∈ 1 . . .n}, with action
f i

g i
:Ωi →Ωi, for each g i ∈G i there is a product action π of the direct product group G =∏

i G i

on the Cartesian product set Ω=∏
iΩi

πg :Ω→Ω, ∀g ∈G(5.3.33)

π(g1,...,g i ,...,gn) : (ω1, . . .ωn) 7→ ( f 1
g1

(ω1), . . . , f n
gn

(ωn)),(5.3.34)

there is also a marginal action µi of the direct product group on each Ωi

µi
g :Ωi →Ωi, ∀g ∈G(5.3.35)

µi
(g1,...,g i ,...,gn) :ω 7→ f i

g i
(ω).(5.3.36)

Lemma 5.4. For i ∈ 1 . . .n let Ei : Ωi → L +
s (H ) be a compatible family of observables, and

{G i | i ∈ 1 . . .n} be a set of groups, such that G i has action f i
g on Ωi. Let Ω = ∏

iΩi be the
Cartesian product, G =∏

i G i the direct product, and π, µi the product and marginal actions of
G respectively. Let

{
Rg

∣∣ g ∈G
}

be a representation of G as positive, unital, linear maps acting
on Ls(H ). If J is any Cartesian joint observable for the Ei, and J̃i the ith margin of MR,π(J),

J̃i :Ωi →L +
s (H )(5.3.37)

J̃i :ω∗ 7→ ∑
ω∈Ω
ωi=ω∗

MR,π(J)(ω),(5.3.38)

where ωi denotes the ith element of the tuple ω, then

J̃i(ω)= MR,µi (Ei)(ω), ∀ω ∈Ωi.(5.3.39)
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Proof.

J̃i(ω∗)= ∑
ω∈Ω
ωi=ω∗

MR,π(J)(ω)(5.3.40)

= ∑
ω∈Ω
ωi=ω∗

1
|G|

∑
g∈G

Rg−1
[
J(πg(ω))

]
(5.3.41)

= 1
|G|

∑
g∈G

Rg−1

 ∑
ω∈Ω
ωi=ω∗

J(πg(ω))

(5.3.42)

= 1
|G|

∑
g∈G

Rg−1

 ∑
ω∈Ω

πg−1 (ω)i=ω∗

J(ω)

(5.3.43)

= 1
|G|

∑
g∈G

Rg−1

 ∑
ω∈Ω

ωi=µi
g(ω∗)

J(ω)

(5.3.44)

= 1
|G|

∑
g∈G

Rg−1

[
E

(
µi

g(ω∗)
)]

(5.3.45)

= MR,µi (Ei)(ω∗).(5.3.46)

■

Theorem 5.2. Let {Ei | i ∈ 1 . . .n} be a family of (not necessarily compatible) observables, Ei :

Ωi → L +
s (H ), and {G i | i ∈ 1 . . .n} be a set of groups, such that G i has action f i

g on Ωi. Let
Ω = ∏

iΩi be the Cartesian product, G = ∏
i G i the direct product, and π, µi the product and

marginal actions of G respectively. Let
{
Rg

∣∣ g ∈G
}

be a representation of G as positive, unital,
linear maps acting on Ls(H ) such that

MR,µi (Ei)=Ei .(5.3.47)

Then for any compatible family of observables {Fi | i ∈ 1 . . .n}, Fi : Ωi → L +
s (H ), with joint

observable J :Ω→L +
s (H ), the observables

F̃i = MR,µi (Fi)(5.3.48)

are compatible, with joint J̃ = MR,π(J), and for any function d satisfying the constraints of
theorem 5.1

sup
ρ

d(F̃ρ

i ,Eρ

i )≤ sup
ρ

d(Fρ

i ,Eρ

i ).(5.3.49)
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Proof. The compatibility of the F̃i follows directly from lemma 5.4, it only remains to establish
inequality (5.3.49),

sup
ρ

d(F̃i,Ei)= sup
ρ

d(MR,µi (F),Ei)(5.3.50)

= sup
ρ

d(MR,µi (F), MR,µi (Ei))(5.3.51)

≤ d(Fi,Ei).(5.3.52)

where (5.3.51) is a consequence of assuming the target observables are unchanged by the
invariant mean, and (5.3.52) is the result of theorem 5.1. ■

It is tempting to attempt to generalise equation (5.3.2), and, for a locally compact group
G, with (left) Haar measure µ, continuous action α : (g,ω) 7→ g ·ω on a Borel measurable, locally
compact space (Ω,F ), and continuous representation Rg, on L +

s (H ) define

M[F] : X 7→
∫

G
dµ(g)Rg[F(g.X )],(5.3.53)

for a POVM F : F →L +
s (H ). Unfortunately there are significant technical obstacles to defin-

ing such a quantity. In particular one would have to show the function g 7→ Rg[F(g.X )] is
µ-measurable, in the sense of the Bochner integral [24], either for all observables, or for a
physically relevant subset. In the (possibly highly restricted) cases that such a quantity may
be defined it is easy to see that it will be necessary for the group G to be compact, rather than
locally compact since

M[F] :Ω 7→
∫

G
dµ(g)Rg[F(g.Ω)](5.3.54)

=
∫

G
dµ(g)Rg[I](5.3.55)

= I
∫

G
dµ(g).(5.3.56)

The Haar measure µ may be normalised to a probability measure if, and only if, the group is
compact. This excludes several physically relevant groups including the translation group of R
or Rn, the Galilei group and the Poincaré group. Compact groups relevant to physical applica-
tions include the finite groups covered above, the unitary, special unitary groups, orthogonal
and special orthogonal groups in n ∈N dimensions.

The generalised invariant mean will require additional regularity conditions on the observ-
ables it is applied to. To see why this is the case we recall that to be Bochner integrable the
function g 7→ Rg[F(g.X )] must be the limit of piecewise constant functions, where the pieces are
measurable sets. To take a concrete example we restrict our attention to probability measures
on the circle. Let Ω = [−π,π), (Ω,τ) be the topological space of the unit circle, X = (0,1) ⊂Ω,
F : B (Ω,τ)→ [0,1] be the point measure, assigning 1 to sets if they contain the element 0, and
0 otherwise otherwise, finally take G to be the circle group and fg : h 7→ gh be the action of the
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circle group on itself. Consider a sequence gn of negative elements of Ω, converging to zero,
then

F( fgn (X ))= F(gn + X )(5.3.57)

= F((gn,1+ gn))(5.3.58)

= 1,(5.3.59)

whereas F(X ) = 0. With general observables it is difficult to control these discontinuities. We
conjecture that a necessary and sufficient condition for measurability is the existence of a
covariant observable dominating F.

5.4 Increasing the error

Applying the techniques in section 5.3 results leads to compatible approximations that are
“not worse than” any other compatible approximations, in the sense that for any family of
compatible approximations to the targets, there exists a covariant family of compatible ap-
proximations with dp values less than or equal to the original family. It is therefore useful to
know when we can increase the dp values so we can cover the entire uncertainty region with
convex combinations of covariant and trivial observables.

Lemma 5.5 (Increasing the error - ∞-norm). Let {Ei} be a family of observables with outcome
sets Ωi. Choose i ∈ 1 . . .n and v = (v1 . . .vi . . .vn) ∈ S∞(E1 . . .En), such that there exists some
ω∗ ∈Ωi where Ei(ω∗) is not of full rank, then vi ≤ v′i ≤ 1 =⇒ v′ = (v1 . . .v′i . . .vn) ∈ S∞(E1 . . .En).

Proof. Let Ω=∏
iΩi be the Cartesian product of the outcome sets, since v ∈ S∞(E1 . . .En) there

exists a compatible family of observables Fi with joint J :Ω→Ls(H ) such that

d∞(Ei,Fi)= vi(5.4.1)

Now define

J̃ :Ω→Ls(H )(5.4.2)

J̃ : (ω1 . . .ωn) 7→


∑
ω∈Ωi J(ω1 . . .ωi−1,ω,ωi+1 . . .ωn), ωi =ω∗

0, else
,(5.4.3)

Let F̃ j be the jth Cartesian margin of J̃, and note that for j 6= i we have F̃ j = F j, but that
F̃i : ω 7→ δωω∗ I is the trivial observable which gives outcome ω∗ with certainty in any state.
Since Ei(ω∗) is not of full rank, there exists a pure state ρ such that tr

(
Ei(ω∗)ρ

)= 0; therefore
d∞(Ei, F̃i)= 1.
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We can now define the observable Jλ = (1−λ)J+λJ̃, for λ ∈ [0,1], with margins F jλ. As
before we have j 6= i =⇒ F jλ =F j, but Fi,λ = (1−λ)Fi +λF̃i. We can compute the distance

d∞(Ei,Fiλ)= sup
ρ∈S (H )

max
ω∈Ω

∣∣tr (
ρ(Ei(ω)−Fiλ(ω))

)∣∣(5.4.4)

= sup
ρ∈S (H )

max
ω∈Ω

∣∣(1−λ)tr
(
ρ(Ei(ω)−Fi)

)+λtr
(
ρ(Ei(ω)− F̃i)

)
(ω)

∣∣,(5.4.5)

as we take the supρ over a compact set, so λ 7→ d∞(Ei,Fiλ) is a continuous function from
[0,1]→R+, by the intermediate value theorem every value between d∞(Ei,Fi) and d∞(Ei, F̃i)= 1

is achieved by some λ. ■

Lemma 5.6 (Increasing the error - p-norm). Let {Ei} be a family of observables with outcome
sets Ωi. Choose i ∈ 1 . . .n and v = (v1 . . .vi . . .vn) ∈ Sp(E1 . . .En), such that there exists some
ω∗ ∈Ωi where tr

(
Ei(ω∗)ρ∗)= 1 for some ρ∗ ∈S (H ) then vi ≤ v′i ≤ 2

1
p =⇒ v′ = (v1 . . .v′i . . .vn) ∈

Sp(E1 . . .En).

Proof. Let Ω=∏
iΩi be the Cartesian product of the outcome sets, since v ∈ Sp(E1 . . .En) there

exists a compatible family of observables Fi with joint J :Ω→Ls(H ) such that

dp(Ei,Fi)= vi(5.4.6)

Now choose ω̃ 6=ω∗ and define

J̃ :Ω→Ls(H )(5.4.7)

J̃ : (ω1 . . .ωn) 7→


∑
ω∈Ωi J(ω1 . . .ωi−1,ω,ωi+1 . . .ωn), ωi = ω̃

0, else
,(5.4.8)

Let F̃ j be the jth Cartesian margin of J̃, and note that for j 6= i we have F̃ j = F j, but that
F̃i :ω 7→ δωω̃ I is the trivial observable which gives outcome ω̃ with certainty in any state. Since
we have tr

(
E(ω∗)ρ∗)= 1 we can compute

dp(Ei, F̃i)= sup
ρ

( ∑
ω∈Ωi

∣∣tr (
ρ(Ei(ω)− F̃i(ω))

)∣∣p
) 1

p

(5.4.9)

≥
( ∑
ω∈Ωi

∣∣tr (
ρ∗(Ei(ω)− F̃i(ω))

)∣∣p
) 1

p

(5.4.10)

= (∣∣tr (
ρ∗F̃i(ω̃)

)∣∣p + ∣∣tr (
ρ∗Ei(ω∗)

)∣∣p) 1
p(5.4.11)

= 2
1
p(5.4.12)

We can now define the observable Jλ = (1−λ)J+λJ̃, for λ ∈ [0,1], with margins F jλ. As
before we have j 6= i =⇒ F jλ =F j, but Fi,λ = (1−λ)Fi +λF̃i. We can compute the distance

dp(Ei,Fi,λ)= sup
ρ

( ∑
ω∈Ωi

∣∣tr (
ρ(Ei(ω)− F̃iλ(ω))

)∣∣p
) 1

p

,(5.4.13)
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as we take the supρ over a compact set, λ 7→ d(Ei,Fi,λ) is a continuous function from [0,1]→R+.
By the intermediate value theorem every value between d(Ei,Fi) and d(Ei, F̃i)= 2

1
p is achieved

by some λ. ■

5.5 The qubit triple

Let a, b and c be three orthonormal vectors in R3, and consider the three, two-outcome qubit
observables

A : {+1,−1}→L
(
C2)

, B : {+1,−1}→L
(
C2)

, C : {+1,−1}→L
(
C2)

(5.5.1)

A : k 7→ 1
2

(I +ka ·σ), B : l 7→ 1
2

(I + lb ·σ), C : m 7→ 1
2

(I +mc ·σ).(5.5.2)

We would like to find the set
(5.5.3)

S(A,B,C)= {
(d(A,D),d(B,E),d(C,F))

∣∣D,E,F : {+1,−1}→L
(
C2)

are compatible
}⊆ [0,1]3 .

The condition D, E, F are compatible is equivalent to the existence of an observable J :

{+1,−1}3 →L
(
C2)

such that

∑
l,m

J(k, l,m)=D(k)(5.5.4)

∑
k,m

J(k, l,m)=E(l)(5.5.5)

∑
k,l

J(k, l,m)=F(m).(5.5.6)

Since we have three, two-outcome target observables we take as our product group the
elementary Abelian group of order 8, the additive group of the vector space (Z/2Z)3

G = {
g (k, l,m)

∣∣ (k, l,m) ∈ {+1,−1}3
}

(5.5.7)

g (h, i, j) g (k, l,m)= g (hk, il, jm) ,(5.5.8)

this group has product action on the outcome set {+1,−1}3

(5.5.9) πh,i, j ((k, l,m))= (hk, il, jm),

and marginal actions

µ1
h,i, j (k)= hk(5.5.10)

µ2
h,i, j (l)= il(5.5.11)

µ3
h,i, j (m)= jm(5.5.12)
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and may be represented by the following set of positive, unital, linear maps on Ls
(
C2)

Rk,l,m

1
2

r0 I +


r1

r2

r3

 ·σ


= 1

2

r0 I +


kr1

lr2

mr3

 ·σ

.(5.5.13)

Given any compatible two-outcome qubit observables, D, E and F, we can apply the invari-
ant mean with respect to this group, action and representation to the joint J

(5.5.14) J̃(k, l,m)= 1
8

∑
(h,i, j)∈{+1,−1}3

Rh,i, j [J(hk, il, jm)] ,

and take the margins of the J̃ to get a new set of compatible, two outcome qubit observables

D̃(k)= ∑
(l,m)∈{+1,−1}2

J̃(k, l,m)(5.5.15)

Ẽ(l)= ∑
(k,m)∈{+1,−1}2

J̃(k, l,m)(5.5.16)

F̃(m)= ∑
(k,l)∈{+1,−1}2

J̃(k, l,m).(5.5.17)

By lemma 5.4 this is equivalent to taking the invariant mean with respect to the G, R and µi

of D, E, F directly

D̃(k)= MR, f 1(D)(k) Ẽ(l)= MR, f 2(E)(l) F̃(m)= MR, f 3(F)(m)(5.5.18)

These margin groups, actions and representations satisfy all of the requirements of lemma 5.2
above, so the group averaging maps reduce the error. We also have that MR,µ1(A) = A etc.
so we can apply theorem 5.2 implying that for every compatible triple D, E, F there exists
a covariant compatible triple with lower distances to the targets. Since we can also increase
the distances using lemma 5.5 as needed we can fill the set S(A,B,C) by searching over the
covariant observables, and then increasing the distances up to the trivial maximum of 2

1
p . The

covariant joints have the form

J(k, l,m)= 1
8

I +


k j1

l j2

m j3

 ·σ

,(5.5.19)

for ‖ j‖ ≤ 1. The margins have the form

D(k)= 1
2

(I +k j1a ·σ) E(l)= 1
2

(I + l j2b ·σ) F(m)= 1
2

(I +m j3c ·σ),(5.5.20)

which have distances

dp(A,D)= 2
1
p−1 (1− j1) dp(B,E)= 2

1
p−1 (1− j2) dp(C,F)= 2

1
p−1 (1− j3) .(5.5.21)
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Hence the positivity constraint ‖ j‖ ≤ 1 becomes

(5.5.22)
(
d(A,D)−2

1
p−1

)2
+

(
d(B,E)−2

1
p−1

)2
+

(
d(C,F)−2

1
p−1

)2
≤ 2

2
p−2.

The subset of Sp covered by covariant observables is a sphere of radius 2
1
p−1 centered at(

2
1
p−1,2

1
p−1,2

1
p−1

)
, the full region is the monotone closure of this within the cube [0,2

1
p ]3 and is

plotted in figure 5.2. We compare this to the work of Busch and Heinosaari [12] and Heinosaari,
Stano and Reitzner [40], the authors consider measurement uncertainty regions for pairs of
sharp, two-outcome qubit observables with a measure of statistical distance that is equivalent
to ours (identical up to a multiplicative constant). They determine semi-analytical bounds for
arbitrary pairs of such observables and tight, analytical bounds for the case where the two
observables are mututually unbiased (i.e. the Bloch vectors are orthogonal). This latter case
is contained as a two-dimensional slice through the uncertainty region for three observables
which we have determined in this section. More precisely the uncertainty region determined
in those papers is the slice through the region plotted in figure 5.2 where d∞(C,F)= 1.

Figure 5.2: Various views of the uncertainty region for three mutually unbiased qubit observ-
ables S∞(A,B,C) covered by compatible approximations D, E and F.
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5.6 The Fourier pair

Let Zn = {0 . . .n−1} denote the cyclic group of order n, equivalent to the set of natural numbers
less than n, with the group operation addition modulo n, denoted +. Although this is only
a field for n prime, it will be useful to define multiplication, denoted by juxtaposition, as the
usual multiplication of natural numbers modulo n.

Let H be a Hilbert space of dimension n ∈N, n ≥ 2, {|g〉 | g ∈Zn} be an orthonormal set of
vectors, hereafter called the computational basis and let

| fh〉 :=
√

1
n

∑
g∈Zn

e
2πi
n gh|g〉, h ∈Zn(5.6.1)

=⇒ |g〉 =
√

1
n

∑
h∈Zn

e−
2πi
n gh| fh〉, g ∈Zn(5.6.2)

be the well known Fourier basis. It is easily verified that the | fh〉 are an orthonormal basis for
H and are mutually unbiased with the computational basis. We define sharp observables for
these bases

A :Zn →L +
s (H ) B :Zn →L +

s (H )(5.6.3)

A : g 7→ |g〉〈g| B : h 7→ | fh〉〈 fh|.(5.6.4)

We can define unitary shift operators for these bases

Uk|g〉 = |g+k〉 ∀g,k ∈Zn(5.6.5)

Vq| fh〉 = | fh+q〉 ∀h, q ∈Zn,(5.6.6)

and note that each form a unitary representation of the group Zn. Further, we have that

Uk =
∑

h∈Zn

e−
2πi
n kh| fh〉〈 fh| =

∑
h∈Zn

e−
2πi
n kh B(h)(5.6.7)

Vq =
∑

g∈Zn

e
2πi
n qg|g〉〈g| = ∑

g∈Zn

e
2πi
n qg A(g).(5.6.8)

It is easy to verify the commutation relations

UkVq = e
2πi
n kqVqUk,(5.6.9)

by, for example, applying the operator on each side of the equality to the states in the Fourier
basis. These are exactly the Weyl commutation relations for the discrete Heisenberg (or
Heisenberg-Weyl) group [36]. It follows that

UkVqρV †
qU†

k =VqUkρU†
kV †

q , ∀ρ ∈Ls(H ) ,k, q ∈Zn.(5.6.10)
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We therefore consider the linear maps

Rk,q : Ls(H )→Ls(H )(5.6.11)

Rk,q : ρ 7→UkVqρV †
qU†

k =VqUkρU†
kV †

q ,(5.6.12)

and note that they form a representation of the direct product group G = Zn ×Zn, with the
group operation given by operator composition

Rk,q ◦Rl,r = Rk+l,p+r, ∀k, l, q, r ∈Zn.(5.6.13)

These maps act on the effects of the target observables correctly

Rk,q [|g〉〈g|]= |g+k〉〈g+k|(5.6.14)

Rk,q [| fh〉〈 fh|]= | fh+q〉〈 fh+q|.(5.6.15)

Therefore we can apply the theorems of section 5.3 to establish that the covariant joint observ-
ables are optimal with respect to the dp distance measures.

5.6.1 Commutivity

There is a one-to-one relation between covariant joint observables J : Zn ×Zn → L +
s (H ) and

trace one positive operators on H given by

J : (k, q) 7→ 1
n

Rk,q [τ] .(5.6.16)

All covariant, Zn×Zn valued observable are obtained in this way, for some trace 1 positive τ, as
we can take τ= nJ(0,0), and all trace 1 positive operators give rise to some covariant, Zn ×Zn

valued observable. We can write down the margins of such an observable

C :Zn →L +
s (H ) D :Zn →L +

s (H )(5.6.17)

C : g 7→∑
h

J(g,h)= 1
n

∑
h

Rg,h [τ] D : h 7→∑
g

J(g,h)= 1
n

∑
g

Rg,h [τ] .(5.6.18)

We can show that each C(k) commutes with each Vq

C(g)=∑
h

J(g,h)(5.6.19)

=∑
h

J(g,h+ q)(5.6.20)

=∑
h

R0,q[J(g,h)](5.6.21)

=Vq C(g)V∗
q(5.6.22)

=⇒ C(g)Vq =Vq C(g), ∀g, q ∈Zn.(5.6.23)
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A similar calculation gives

D(h)Uk =Uk D(h), ∀h,k ∈Zn.(5.6.24)

Indeed an explicit calculation gives

C(g)=∑
k
|k+ g〉〈k+ g|〈k|τ|k〉(5.6.25)

D(h)=∑
q
| fq+h〉〈 fq+h|〈 fq|τ| fq〉.(5.6.26)

5.6.2 Computing the sup-norm

The simultaneous diagonalisability of A and C allows us to compute d∞(A,C) explicitly. With-
out loss of generality let

C(0)= ∑
k∈Zn

ck|k〉〈k|(5.6.27)

for ck ∈ [0,1], and ∑
k ck = 1. Then

d∞(A,C)= sup
ρ

max
g

∣∣tr (
ρ [A(g)−C(g)]

)∣∣(5.6.28)

= sup
ρ

max
g

∣∣∣∣∣tr
(
ρ

[
|g〉〈g|−Ug

∑
k∈Zn

ck|k〉〈k|U†
g

])∣∣∣∣∣(5.6.29)

= sup
ρ

max
g

∣∣∣∣∣tr
(
ρUg

[
|0〉〈0|− ∑

k∈Zn

ck|k〉〈k|
]

U†
g

)∣∣∣∣∣(5.6.30)

= sup
ρ

max
g

∣∣∣∣∣tr
(
U†

gρUg

[
|0〉〈0|− ∑

k∈Zn

ck|k〉〈k|
])∣∣∣∣∣(5.6.31)

= sup
ρ

∣∣∣∣∣tr
(
ρ

[
|0〉〈0|− ∑

k∈Zn

ck|k〉〈k|
])∣∣∣∣∣(5.6.32)

=max{1− c0, c1, . . . , cn−1}.(5.6.33)

Now note that ∑
k∈Zn

ck = 1 =⇒ ∑
k 6=0

ck = 1− c0(5.6.34)

combined with ck ≥ 0 we see that

1− c0 ≥ ck, ∀k > 0,(5.6.35)

so

d∞(A,C)= 1− c0.(5.6.36)
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Similarly, if

D(0)= ∑
r∈Zn

dr| fr〉〈 fr|,(5.6.37)

then

d∞(B,D)= 1−d0.(5.6.38)

5.6.3 Semidefinite program

We can use relations (5.6.36) and (5.6.38), along with (5.6.18) to put constraints on the operator
τ we used to define the joint observable

∑
h

J(g,h)=C(g)=Ug C(0)U†
g(5.6.39)

1
n

∑
h

UgVhτV †
hU†

g =Ug C(0)U†
g(5.6.40)

⇐⇒ 1
n

∑
h

VhτV †
h =C(0)(5.6.41)

1
n

∑
g

UgτU†
g =D(0).(5.6.42)

Computing matrix elements gives

〈k|C(0)|l〉 = 1
n

∑
h
〈k|VhτV †

h |l〉 =
1
n

∑
h
〈k|V †

hτVh|l〉(5.6.43)

= 1
n

∑
h
〈k|τ|l〉e 2πi

n h(l−k)(5.6.44)

= 〈k|τ|l〉δk,l(5.6.45)

〈 fr|D(0)| fs〉 = 〈 fr|τ| fs〉δr,s.(5.6.46)

Given that the only matrix elements that affect the uncertainties are the (0,0) matrix element
of C(0) and the ( f0, f0) matrix element of D(0) the relevant constraints are

〈0|τ|0〉 = 1−d∞(A,C)(5.6.47) ∑
k,l

〈k|τ|l〉 = n(1−d∞(B,D)).(5.6.48)

If we set

An =∑
k,l

|k〉〈l|(5.6.49)
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then computing the lower boundary of the uncertainty region is equivalent to the following
semidefinite program, for each da ∈ [0,1]

(5.6.50)

maximise
X

p = tr (AnX )

subject to tr (|0〉〈0|X )= 1−da,

tr (In X )= 1,

X ≥ 0.

We can impose the equality constraints in (5.6.50), by means of the linear map

M : Ls(H )→ M2(C)(5.6.51)

M : X 7→
(
tr (|0〉〈0|X ) 0

0 tr (X )

)
,(5.6.52)

where M2(C) is the set of 2 by 2 matrices over the field C. If

B =
(
1−da 0

0 1

)
(5.6.53)

then the equality constraints are

M (X )= B(5.6.54)

We can compute the dual of M directly from the defining relation

tr
(
M∗(Y )X

)= tr (YM (X ))(5.6.55)

=Y00 tr (|0〉〈0|X )+Y11 tr (In X )(5.6.56)

M∗
((

Y00 Y01

Y10 Y11

))
=Y00|0〉〈0|+Y11 In .(5.6.57)

The dual problem to (5.6.50) is then given by

(5.6.58)

minimise
Y

d = tr (BY )

subject to M∗(Y )≥ An

Y ∈ M2(C).

Alternatively

(5.6.59)
minimise

y0,y1∈R
d = (1−da)y0 + y1

subject to 0≤ y0|0〉〈0|+ y1
∑
k
|k〉〈k|−∑

k,l
|k〉〈l| = Z.

It is easy to see that we have strong duality for these problems, since we can always choose
y1 large enough that Z > 0, by the Slater condition [71] we therefore know that wherever the
solution d to the dual problem is finite we have that infd = sup p.
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Henceforth we mix operators interchangeably with their matrices in the computational
basis. Define the characteristic polynomial function for each n ∈N

χn : Mn(C)×R→R(5.6.60)

χn(X , x)= det(xIn−X ).(5.6.61)

We can compute the characteristic polynomial of the matrix Z

χn(Z, x)= det(xIn−Z)(5.6.62)

= det((x− y1)In−y0|0〉〈0|+ An)(5.6.63)

= det((x− y1)In+An)− y0〈0|adj((x− y1)In+An)|0〉(5.6.64)

= det((x− y1)In+An)− y0 det((x− y1)In−1+An−1)(5.6.65)

= (−1)n det((y1 − x)In−An)− (−1)n−1 y0 det((y1 − x)In−1−An−1)(5.6.66)

= (−1)nχn(An, y1 − x)+ (−1)n y0χn−1(An−1, y1 − x)(5.6.67)

= (−1)n [
(x− y1 −n)(x− y1)n−1 + y0(x− y1 −n+1)(x− y1)n−2]

(5.6.68)

= (−1)n(x− y1)n−2 [(x− y1 −n)(x− y1)− y0(x− y1 −n+1)](5.6.69)

= (−1)n(x− y1)n−2 [
x2 + x(n− y0 −2y1)+ (

y2
1 + y1(y0 −n)+ y0(1−n)

)]
(5.6.70)

where adj denotes the adjudicate matrix, and we have employed the classical matrix determi-
nant lemma, as well as the fact that

χn(An, x)= (x−n)xn−1,(5.6.71)

for An the n by n matrix of ones [45]. We are seeking constraints on y0 and y1 which are
necessary and sufficient for all of the roots of x 7→ χn(Z, x) to be non-negative, we can read off
from (5.6.70) that y1 ≥ 0. We now need to examine the roots of

x 7→ x2 + x(n− y0 −2y1)+ (
y2

1 + y1(y0 −n)+ y0(1−n)
)
,(5.6.72)

the quadratic formula gives

x± = 1
2

(
y0 +2y1 −n±

√
(y0 +2y1 −n)2 −4(y2

1 + y1(y0 −n)+ y0(1−n))
)
,(5.6.73)

note that the roots are automatically real, as our matrices are self-adjoint. The x± are both
non-negative if, and only if√

(y0 +2y1 −n)2 −4(y2
1 + y1(y0 −n)+ y0(1−n))≤ y0 +2y1 −n,(5.6.74)

which is satisfied if and only if

0≤ y0 +2y1 −n,(5.6.75)
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and

0≤ y2
1 + y1(y0 −n)+ y0(1−n),(5.6.76)

are both satisfied. The solutions of

y2
1 + y1(y0 −n)+ y0(1−n)= 0(5.6.77)

are

y±1 = 1
2

(
n− y0 ±

√
(n− y0)2 −4y0(1−n)

)
.(5.6.78)

It is easy to show that the radicant is positive. The constraint in (5.6.76) is therefore satisfied
if, and only if

y1 ≥ 1
2

(
n− y0 +

√
(n− y0)2 +4y0(n−1)

)
(5.6.79)

or

y1 ≤ 1
2

(
n− y0 −

√
(n− y0)2 +4y0(n−1)

)
(5.6.80)

Rewriting (5.6.75) we see we need

y1 ≥ 1
2

(n− y0) ,(5.6.81)

therefore all of the constraints are satisfied if, and only if

y1 ≥ 1
2

(
n− y0 +

√
(n− y0)2 +4y0(n−1)

)
,(5.6.82)

since the quantity on the right hand side is always positive. Recall that we are attempting to
minimise the quantity

d = (1−da)y0 + y1,(5.6.83)

subject to the positivity constraints. We therefore choose

y1 = 1
2

(
n− y0 +

√
(n− y0)2 +4y0(n−1)

)
(5.6.84)

=⇒ d =
(

1
2
−da

)
y0 + 1

2

(
n+

√
(n− y0)2 +4y0(n−1)

)
,(5.6.85)

differentiating, we find that d is minimised where

y0 = 2−n−|1−2da|
√

n−1
da(1−da)

,(5.6.86)
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and that at this point

d = 1+da(n−2)+2
√

da(1−da)(n−1)(5.6.87)

=⇒ dmin
b = 1− d

n
(5.6.88)

= 1− 1
n

(
1+da(n−2)+2

√
da(1−da)(n−1)

)
.(5.6.89)

We note that this is a section of the ellipse with defining equation

0= n2d2
a +n2d2

b +2n(n−2)dadb +2n(1−n)da +2n(1−n)db + (n−1)2,(5.6.90)

which has center
(1

2 , 1
2
)
, and touches the coordinate axes at the points

(
0,1− 1

n
)

and
(
1− 1

n ,0
)
.

The major axis of the ellipse has angle π
4 with each coordinate axis, as it must by symmetry.
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(a) Hilbert space H =C2
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(b) Hilbert space H =C3
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(d) Hilbert space H =C6
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(e) Hilbert space H =C8
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(f) Hilbert space H =C10

Figure 5.3: The measurement uncertainty region for quantum Fourier pair observables in
several dimensions.
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Conclusions and Outlook

In part I of this thesis we examined preparation uncertainty in both finite and infinite dimen-
sional contexts. We give a new, geometric, derivation of the uncertainty region for sharp ±1, val-
ued observables. We also provide simple counterexamples demonstrating that the Schrödinger
uncertainty relation does not always suffice to fully characterise the uncertainty region for
Hilbert spaces of dimension greater than 2. We also compute the uncertainty region for a pair
of qutrit observables arising as spectral measures of non-commuting operators, which com-
mute on a subspace, and show that it contains the point where both probability measures are
deterministic.

We also examine the preparation uncertainty for the position and momentum observables
arising from the well known example of the “particle in a box” system. We compare this with
the preparation uncertainty of the free particle, as well as the particle on a ring, previously
examined in ref. [13]. The box system lacks the full phase space symmetry which makes the
analysis possible for the ring and free particle. Consequently we can not use the methods pre-
viously employed to analyse the uncertainty region. Nonetheless we obtain an upper bound on
the boundary of the uncertainty and show it is exact in some interval. Explicitly it is exact for
position uncertainties greater than some bound. We also show that the well-known canonical
hyperbola, attributed to Heisenberg, is a lower bound for the boundary of the uncertainty
region and that the difference between the upper and lower bound is small1, and converges
to zero as the position uncertainty becomes small. This reflects the physical intuition that
as the states become highly concentrated in position the influence of the boundary conditions
becomes less.

An obvious open question is to characterise the uncertainty region in the interval where we

1At the point where they are furthest apart the upper bound is 1
2 and the lower bound is 1

2
√

π2
3 −2

≈ 0.44
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only have upper and lower bounds. We conjecture that the upper bound shown in figure 4.1a
is exact globally, rather than just in the region where we have shown it is exact. More strongly,
it seems natural to assume that among the states which minimise the momentum uncertainty
for a fixed position uncertainty, there are those with position expectation zero. We began
analysing the box system as part of a study of preparation uncertainty in the context of
multi-slit interferometry. In particular we believe the particle in a box and particle on a
ring systems arise if one imposes certain covariance conditions on the which-way and fringe-
contrast observables of an idealised infinite interferometer. It would be interesting to explore
this further, in particular the physical interpretation of the covariance conditions is not clear.
If this can be achieved it might also be interesting to explore alternative covariance conditions.

Little is known about measurement uncertainty in infinite dimensional systems in the ab-
sence of the full phase-space symmetry. One could also investigate what could be achieved
exploiting only the partial phase-space symmetry exhibited by the “particle in a box” setup.

In part II we provide a systematic framework for exploiting the covariance properties of
a family of observables to determine their measurement uncertainty region. This framework
may be applied to arbitrary families of finite-outcome observables and a wide class of natural
distance measures for observables. Specifically we define a map we call the “invariant mean”
which acts as a projection on the space of bounded operator-valued functions on the outcome
set. We show that for jointly convex error measures, “compatible” with the symmetry group
action, the best compatible approximations to covariant observables are also covariant.

We apply these methods to the case of a metric on observables based on the p-norm,
and completely characterise the measurement uncertainty region for a triple of qubit Pauli
observables, and for the quantum Fourier pair in arbitrary finite dimensions.

The jointly convex error measures that our framework applies to include the f -divergences
introduced in [3] and [26], however the f -divergences may be infinite unless the approximating
probability distribution is dominated by the target. If we attempt to follow the previous work
and define an f -divergence for quantum observables by taking the supremum over quantum
states we will, in general, break this constraint. It might be interesting to characterise the
class of functions f for which this does not occur. A reasonable starting point would be those
f for which the lim f→∞ f (x) ∈R, including f : t 7→ 1

t −1, which defines the Neyman divergence.
It would be useful to generalise the invariant mean construction to positive operator valued

measures, with infinite outcome sets, for example the canonical position and momentum for
a quantum particle. In this case it is not generally possible to express the observable as a
simple function from the outcome set. Is not known if the sum over group elements we use to
define the invariant mean map may be replaced by a Bochner integral with respect to the Haar
measure. Even if the integral is well defined, the resulting quantity may not be an observable.
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Appendix: Chapter 2

A.1 Example of a non-basis independent “trace”

Consider an infinite dimensional Hilbert space spanned by basis vectors {|ek〉|k ∈N}. Let Z be
the operator acting as

Z|e2n〉 = |e2n〉(A.1.1)

Z|e2n+1〉 =−|e2n+1〉,(A.1.2)

effectively the direct sum of Pauli-z operators acting in two dimensional subspaces. For k ∈N

define the operators Ukθ acting as rotations around the y axis in the kth two dimensional
subspace, and the identity outside

Ukθ|e2k〉 = cos(θ)|e2k〉+sin(θ)|e2k+1〉(A.1.3)

Ukθ|e2k+1〉 =−sin(θ)|e2k〉+cos(θ)|e2k+1〉(A.1.4)

Ukθ|ek〉 = |e j〉,(A.1.5)

where j 6= 2k,2k+1, then

〈Ukθe2k|ZUk,θe2k〉 = cos2(θ)−sin2(θ)(A.1.6)

〈Ukθe2k+1|ZUk,θe2k+1〉 =−cos2(θ)+sin2(θ).(A.1.7)

We choose θk such that

〈Ukθk e2k|ZUk,θk e2k〉 =
1

k+1
=−〈Ukθk e2k+1|ZUk,θk e2k+1〉.(A.1.8)
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If the basis
{|ϕk〉

∣∣k ∈N
}

is chosen such that

|ϕ2k〉 =Uk,θk e2k(A.1.9)

|ϕ2k+1〉 =Uk,θk e2k+1,(A.1.10)

then we can rewrite the terms of the series

∑
k≥0

〈ϕk|Zϕk〉 =
∑
k>0

(−1)k−1

bk/2c ,(A.1.11)

where bxc denotes the floor of x, the largest natural below x. It is now easy to see the series
converges to zero, but does not converge absolutely. By the Riemann series theorem [77] this
series may be rearranged (by relabelling basis elements) to give any real number as the sum.
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Appendix: Chapter 3

B.1 Uncertainty region for Gell-Mann observables

Given

A=


1 0 0

0 −1 0

0 0 0

 B=


0 0 1

0 0 0

1 0 0

 ρ =


ρ11 0 ρ13

0 1−ρ11 −ρ33 0

ρ∗
13 0 ρ33

 ,(B.1.1)

we can solve

x =∆2
ρA(B.1.2)

= 1−ρ33 −
(
2ρ11 +ρ33 −1

)2 ,(B.1.3)

giving

ρ±
33 =

1
2

(
1−4ρ11 ±

√
1+8ρ11 −4x

)
.(B.1.4)

The positivity of ρ constrains the choice of ρ11 values in each case. If

ρ± =


ρ11 0 ρ13

0 1−ρ11 −ρ±
33 0

ρ∗
13 0 ρ±

33

(B.1.5)
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and 0≤ ρ13 ≤p
ρ11ρ33 then

ρ+ ≥ 0 ⇐⇒


[
0≤ ρ11 ≤ 1

2 (1−p
1−4x)

]
or

[1
2 (1+p

1−4x)≤ ρ11 ≤ 1
2 (1+p

1− x)
]
, 0≤ x ≤ 1

4
1
8 (4x−1)≤ ρ11 ≤ 1

2
(
1+p

1− x
)
, 1

4 ≤ x ≤ 3
4

1
2
(
1−p

1− x
)≤ ρ11 ≤ 1

2 (1+p
1− x, 3

4 ≤ x ≤ 1

(B.1.6)

ρ− ≥ 0 ⇐⇒


0≤ ρ11 ≤ 1

2 (1−p
1− x), 0≤ x ≤ 1

4
1
8 (4x−1)≤ ρ11 ≤ 1

2 (1−p
1− x), 1

4 ≤ x ≤ 3
4

no valid solution, 3
4 ≤ x ≤ 1.

(B.1.7)

The constraints on ρ13 imply that 0 ≤ (
Reρ13

)2 ≤ ρ11ρ
±
33. Obviously ∆2

ρ±B will be minimised
by a ρ± with

(
Reρ13

)2 = ρ11ρ
±
33 and maximised when

(
Reρ13

)2 = 0.

∆2
ρ±B= ρ11 +ρ±

33 −4λρ11ρ
±
33.(B.1.8)

For a fixed x the local minima and maxima will either be where the inequalities above are
saturated or where the derivative of ∆2

ρ±A with respect to ρ11 (considering ρ±
33 as a function of

ρ11) is zero.

B.1.1 Exploring minima

Here we consider the case
(
Reρ13

)2 = ρ11ρ
±
33. In this case

∆2
ρ±B= ρ11 +ρ±

33 −4ρ11ρ
±
33(B.1.9)

= 1
2

(
1−6ρ11 +16ρ2

11 ± (1−4ρ11)
√

1+8ρ11 −4x
)

(B.1.10)

d
(
∆2
ρ±B

)
dρ11

=−3+16ρ11 ∓2
√

1+8ρ11 −4x± 2−8ρ11√
1+8ρ11 −4x

(B.1.11)

d
(
∆2
ρ±B

)
dρ11

= 0 ⇐⇒ (3−16ρ11)
√

1+8ρ11 −4x =±(
8x−24ρ11

)
.(B.1.12)

The solutions to this equation obey a cubic equation

(3−16ρ11)2(1+8ρ11 −4x)= (
8x−24ρ11

)2(B.1.13)

0= (32ρ11 −16x+3)(8ρ11(8ρ11 −5)+4x+3),(B.1.14)

with solutions

ρ±
11 =

1
16

(
5±

p
13−16x

)
(B.1.15)

ρ0
11 =

1
32

(16x−3) .(B.1.16)
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Substituting these back into (B.1.12) we see that ρ0
11 and ρ+

11 are solutions wherever they give
valid quantum states, but ρ−

11 is only a solution if x = 9
16 or 3

4 ≤ x. Comparing the solutions
with the restrictions (B.1.6) we get the following solutions for ρ+, and no solutions for ρ−

ρ11 = 1
32

(16x−3) on x ∈
[

3
16

,
15
16

]
(B.1.17a)

ρ11 = 1
16

(
5+

p
13−16x

)
on x ∈

[
9

100
,
13
16

]
(B.1.17b)

ρ11 = 1
16

(
5−

p
13−16x

)
on x ∈

{
9

16

}
∪

[
3
4

,
13
16

]
,(B.1.17c)

note that the apparently exceptional point x = 9
16 , ρ11 = 3

16 lies on the line ρ11 = 1
32 (16x−3).

To these we add the boundary values

ρ11 = 0 with ρ+
33 and x ∈

[
0,

1
4

]
(B.1.18a)

ρ11 = 1
2

(
1−

p
1−4x

)
with ρ+

33 and x ∈
[
0,

1
4

]
(B.1.18b)

ρ11 = 1
2

(
1+

p
1−4x

)
with ρ+

33 and x ∈
[
0,

1
4

]
(B.1.18c)

ρ11 = 1
2

(
1+

p
1− x

)
with ρ+

33 and x ∈ [0,1](B.1.18d)

ρ11 = 1
8

(4x−1) with ρ+
33 and x ∈

[
1
4

,
3
4

]
(B.1.18e)

ρ11 = 1
2

(
1−

p
1− x

)
with ρ+

33 and x ∈
[

3
4

,1
]

(B.1.18f)

ρ11 = 0 with ρ−
33 and x ∈

[
0,

1
4

]
(B.1.18g)

ρ11 = 1
8

(4x−1) with ρ−
33 and x ∈

[
1
4

,
3
4

]
(B.1.18h)

ρ11 = 1
2

(1−
p

1− x) with ρ−
33 and x ∈

[
0,

3
4

]
(B.1.18i)

the (locally) extremising values of ρ11 are summarised in Figure B.1a. The values of ∆2
ρ+

11
B

given these choices of ρ11, and
(
Reρ13

)2 = ρ11ρ
±
33 are plotted in Figure B.1b.
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(a) Range of ρ11 given ρ33 = ρ+
33. The dot-

ted lines are the where Reρ13 is maximal
and the derivative of ∆2

ρ+B with respect
to ρ11 is zero (B.1.17), the dashed line is
the where Reρ13 = 0 and the derivative of
∆2
ρ+B with respect to ρ11 is zero (B.1.23).

(b) Range of ρ11 given ρ33 = ρ−
33. There

are no local extrema other than the
boundary curves.

Figure B.1: The filled region indicates the allowed values of ρ11 as a function of ∆2
ρ+A in each

case. The solid lines are the boundary curves, given in (B.1.18).

B.1.2 Exploring maxima

Here we consider the case
(
Reρ13

)2 = 0. In this case

∆2
ρ±B= ρ11 +ρ±

33(B.1.19)

= 1
2

(
1−2ρ11 ±

√
8ρ11 −4x+1

)
(B.1.20)

d
(
∆2
ρ±B

)
dρ11

=−1± 2√
8ρ11 −4x+1

(B.1.21)

d
(
∆2
ρ±B

)
dρ11

= 0 ⇐⇒ √
8ρ11 −4x+1=±2.(B.1.22)

There are no solutions for ρ−
33, but ρ+

33 has the solution

ρ11 = 1
8

(3+4x) ,(B.1.23)

which is always a valid solution for ρ+ and never valid for ρ−. To this we add the boundary
values which are the same as those with

(
Reρ13

)2 = ρ11ρ33, given in (B.1.18).
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B.1.3 The bounding curves

Comparing the local extrema we can now describe the full uncertainty region shown in figure
3.9

∆2B= 1, ∆2A ∈
[
0,

1
4

]
(B.1.24)

∆2B= 1
8

(
9−4∆2A

)
, ∆2A ∈

[
1
4

,
3
4

]
(B.1.25)

∆2B= 1
2

(
1+

√
1−∆2A

)
, ∆2A ∈

[
3
4

,1
]

(B.1.26)

∆2B= 1
2

(
1−

√
1−∆2A

)
, ∆2A ∈

[
15
16

,1
]

(B.1.27)

∆2B= 2
(
∆2A

)2 − 11
4

∆2A+ 153
128

∆2A ∈
[

13
16

,
15
16

]
(B.1.28)

∆2B= 1
8

(
4∆2A−1

)
, ∆2A ∈

[
1
4

,
13
16

]
(B.1.29)

∆2B= 1−∆2A, ∆2A ∈
[

15
64

,
1
4

]
(B.1.30)

∆2B= 1
2

(
1−

√
1−∆2A

)
∆2A ∈

[
0,

15
64

]
(B.1.31)

∆2B= 1
2

(
1−

√
1−4∆2A

)
∆2A ∈

[
0,

3
16

]
(B.1.32)

∆2B= 1−4∆2A, ∆2A ∈
[
0,

3
16

]
.(B.1.33)
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