
   
 

   
 

Activity of −lactam/taniborbactam (VNRX-5133) combinations against carbapenem-resistant 1 

Gram-negative bacteria 2 

 3 

 4 

Shazad MUSHTAQ1 ,  Anna VICKERS1, Michel DOUMITH,1,a Matthew J ELLINGTON1, Neil WOODFORD1 5 

and David M LIVERMORE1,2* 6 

1Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National 7 

Infection Service, Public Health England, London NW9 5EQ; United Kingdom 8 

2Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, United Kingdom 9 

 10 

 11 

Running head: Taniborbactam as a -lactamase inhibitor 12 

 13 

 14 

 15 

Current address:  16 

a King Abdullah International Medical Research Center, Infectious Diseases Research Department, 17 

Riyadh, Saudi Arabia and King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia 18 

 19 

*Corresponding author: David M Livermore, Norwich Medical School, University of East Anglia, 20 

Norwich, NR4 7TJ; tel. +44-(0)1603-597-568; d.livermore@uea.ac.uk 21 

  22 

mailto:d.livermore@uea.ac.uk


   
 

   
 

Background.  Boronates are of growing interest as −lactamase inhibitors.  The only marketed 23 

analogue, vaborbactam, targets KPC carbapenemases, but taniborbactam (VNRX-5133, Venatorx) has 24 

a broader spectrum.  Materials and methods.  MICs of cefepime and meropenem were determined 25 

combined with taniborbactam or avibactam for carbapenem-resistant UK isolates. −Lactamase 26 

genes and porin alterations were sought by PCR or sequencing.   Results.  Taniborbactam potentiated 27 

partner −lactams against (i) Enterobacterales with KPC, other Class A, OXA-48-like, VIM and NDM 28 

(not IMP) carbapenemases and against (ii) Enterobacterales inferred to have combinations of ESBL or 29 

AmpC activity and impermeability. Potentiation of cefepime (the partner for clinical development) by 30 

taniborbactam was slightly weaker than by avibactam for Enterobacterales with KPC or OXA-48-like 31 

carbapenemases, but MICs of cefepime/taniborbactam were similar to those of 32 

ceftazidime/avibactam and the spectrum was wider. MICs of cefepime/taniborbactam nonetheless 33 

remained >8+4 mg/L for 22-32% of NDM-producing Enterobacterales.  Correlates of raised 34 

cefepime/taniborbactam MICs among these NDM Enterobacterales were: a cefepime MIC >128 mg/L, 35 

particular sequence types, also, for Escherichia coli only: (i) the blaNDM variant (even though published 36 

data suggest all are inhibited similarly),  (ii) inserts in PBP3, and (iii) raised aztreonam/avibactam MICs. 37 

Little or no potentiation of cefepime or meropenem was seen for Pseudomonas aeruginosa and 38 

Acinetobacter baumannii with MBLs, probably reflecting less uptake or more efflux. Potentiation of 39 

cefepime was seen for Stenotrophomonas maltophilia and Elizabethkingia meningoseptica, which 40 

have both chromosomal ESBLs and MBLs. Conclusion.  Taniborbactam broadly  reversed cefepime or 41 

meropenem non-susceptibility in Enterobacterales, less reliably for non-fermenters.  42 

43 



   
 

   
 

Introduction 44 

Boronates have long been known to inhibit some −lactamases, with this property used to identify 45 

AmpC enzymes,1 and to purify them by affinity chromatography.2  Recent interest has moved to using 46 

boronates as clinical −lactamase inhibitors. One analogue, vaborbactam, has been licensed in 47 

combination with meropenem.  Vaborbactam inhibits KPC and other Class A carbapenemases 48 

(IMI/NMC and SME), but not Class D (OXA) or metallo (Class B, IMP, NDM, VIM) types.3   Consequently 49 

meropenem/ vaborbactam is most likely to find a niche in countries where KPC enzymes are the 50 

predominant carbapenemases – as in the Americas, Italy, Portugal, Greece and China.4  Utility is less 51 

in the Middle East and in much of the rest of Europe, where OXA-48-like enzymes predominate in 52 

Enterobacterales, or in south Asia, where NDM-1 is the prevalent carbapenemase.5-7  These limitations 53 

have stimulated a search for broader-spectrum boronates, leading, inter alia, to taniborbactam 54 

(formerly VNRX-5133, Venatorx, figure 1), which acts as an irreversible, covalent inhibitor of serine 55 

−lactamases and as a competitive inhibitor of MBLs.8,9  We investigated the activity of taniborbactam 56 

combined with cefepime and meropenem against Gram-negative bacteria with a range of 57 

−lactamase types; cefepime is now favoured as a partner for clinical development. 58 

 59 

Materials and methods    60 

Two organism panels were used. The first comprised clinical Enterobacterales and non-fermenters 61 

selected to represent a diversity of carbapenemases and other modes of carbapenem resistance.   The 62 

organisms were chosen from among these received by the PHE Antimicrobial Resistance and 63 

Healthcare Associated Infections (AMRHAI) Reference Unit, mostly from UK hospitals, between 2013 64 

and 2016.  Bacterial identification was by MALDI-ToF; carbapenemase genes were characterised by 65 

PCR10 or sequencing. Combinations of ESBL or AmpC and impermeability were inferred on the bases 66 

of isolates: (i) being resistant to ertapenem on EUCAST criteria and with an meropenem MIC >0.12 67 

mg/L,11  (ii) showing synergy between oxyimino-cephalosporins and clavulanate 4 mg/L (ESBL 68 



   
 

   
 

producers) or between cefotaxime and cloxacillin 100 mg/L (AmpC hyperproducers), and (iii) lacking 69 

detectable carbapenemase genes. 70 

The second panel comprised 124 consecutively-referred blaNDM–positive Enterobacterales (29 71 

Escherichia coli, 82 Klebsiella pneumoniae and 13 Enterobacter cloacae) received in 2014 to 2015 – a 72 

period when AMRHAI routinely sequenced each new patient’s first carbapenemase-producing isolate.  73 

 74 

Susceptibility testing 75 

MIC determinations were performed and interpreted according to CLSI agar dilution criteria.12,13  76 

Taniborbactam, vaborbactam and avibactam were provided by Venatorx; cefepime and meropenem 77 

were provided by Venatorx for initial studies, but subsequently purchased from Alfa Aesar (Heysham, 78 

UK) and Sequoia Research Products (Pangbourne, UK) respectively; ceftazidime was purchased from 79 

Sigma (Poole, UK) and aztreonam from Alfa Aesar. Control organisms included throughout comprised 80 

Escherichia coli ATC 25922, Pseudomonas aeruginosa ATCC27853 and Klebsiella pneumoniae ATCC 81 

BAA-1705 (KPC). For the second panel we additionally included K. pneumoniae ATCC70060 (ESBL), also 82 

E. coli 113, E. coli RIC and K. pneumoniae  BS047 – all with NDM carbapenemases, these were supplied 83 

by Venatorx and sourced by them from Dr Docquier and Nordmann.  Synergy was taken as a >8-fold 84 

reduction in MIC of the partner −lactam in the presence of a −lactamase inhibitor.  Unless stated 85 

otherwise, taniborbactam and avibactam were used at a fixed 4 mg/L and vaborbactam at 8 mg/L. 86 

 87 

Analysis of genomic sequences 88 

WGS was undertaken on an Illumina HiSeq instrument.  Reads from each genome were assembled de 89 

novo and screened for antimicrobial resistance genes using Blast software and PHE’s in-house 90 

Genefinder bioinformatics pipeline.14 Porin alterations and the presence of resistance determinants 91 

were confirmed using a mapping-based approach.   Specifically, genes encoding the major porins 92 

OmpF and OmpC of E. coli and Enterobacter spp. and their homologues OmpK35 and OmpK36 in 93 

Klebsiella spp. were extracted and checked for alterations that introduced translational frameshifts or 94 



   
 

   
 

premature stop codons. Similarly, the PBP3-encoding gene ftsI was extracted and examined for 95 

insertion sequences. Copy numbers of blaNDM were estimated by comparing sequencing read depths 96 

to those for the single-copy chromosomal genes, gyrA and parC. 97 

 98 

Results 99 

MICs for isolates with diverse modes of carbapenem resistance 100 

MIC distributions of the taniborbactam combinations and their comparators for the first collection– 101 

i.e. Enterobacterales with various modes of carbapenem resistance – are shown in Table 1, with results 102 

for non-fermenters in Table 2.   Taniborbactam itself lacked antibacterial activity against any species 103 

at 32 mg/L and achieved no potentiation or antagonism with cefepime or meropenem against control 104 

strains lacking resistance to these −lactams (Tables 1 and 2).  105 

 106 

Carbapenem-resistant Enterobacterales 107 

At 4 mg/L, taniborbactam reduced the MICs of cefepime for isolates (n=41) with KPC carbapenemases 108 

from 4 - >128 mg/L to 0.03 – 2 mg/L and those of meropenem from 1->128 mg/L to <0.015-8 mg/L. 109 

MICs of cefepime/taniborbactam and meropenem/taniborbactam remained 2- to 4- fold above those 110 

of cefepime/avibactam and meropenem/avibactam, but were similar to those of 111 

ceftazidime/avibactam.  Only four isolates with non-KPC Class A carbapenemases (IMI/NMC or SME 112 

types) were tested.  These were susceptible to unprotected cefepime, with MICs of 0.06-0.5 mg/L. 113 

These values only reduced 2- to 4-fold by taniborbactam or avibactam 4 mg/L. MICs of meropenem 114 

were elevated to 8-64 mg/L and were reduced to 0.06-0.25 mg/L by either taniborbactam or 115 

avibactam at 4 mg/L, indicating that both β-lactamase inhibitors protected meropenem, but not 116 

cefepime, from these enzymes.   Avibactam also potentiated ceftazidime against one isolate, which 117 

was inferred additional to have high-level AmpC enzyme activity, as it remained cefepime-susceptible. 118 



   
 

   
 

 Cefepime MICs for Enterobacterales with OXA-48-like enzymes (n=40) ranged from 0.25->128 119 

mg/L, with the wide range likely reflecting co-presence or not of ESBLs.  This range fell and narrowed 120 

to 0.03-2 mg/L with taniborbactam 4 mg/L added and to 0.03-0.5 mg/L if avibactam 4 mg/L was added. 121 

MIC reductions were often >64-fold for highly cefepime-resistant isolates but only 2- or 4-fold for 122 

isolates with cefepime MICs <2 mg/L, consistent with the view that the former group have 123 

(taniborbactam-inhibited) ESBLs and that the latter group lack these enzymes and that OXA-48 itself 124 

lacks appreciable activity against cefepime. Taniborbactam and avibactam also potentiated 125 

meropenem, typically by around 16-fold and 64-fold, respectively; nevertheless; 13/40 126 

meropenem/taniborbactam MICs remained >1 mg/L and 5/40 were >4 mg/L; corresponding 127 

proportions for meropenem/avibactam were 2/40 and 1/40, respectively.   128 

 Taniborbactam potentiated cefepime and meropenem against Enterobacterales with VIM and 129 

NDM MBLs, though not those with IMP enzymes.  MICs of unprotected cefepime were 2->128 mg/L 130 

for Enterobacterales with VIM MBLs (excepting one anomalously low value of 0.5 mg/L). This range 131 

was reduced to 0.06-8 mg/L by taniborbactam 4 mg/L, with 37/40 values <2+4 mg/L. For unprotected 132 

meropenem the MIC range was 2-128 mg/L, reducing to <0.015-4 mg/L in the presence of 133 

taniborbactam 4 mg/L, with 37/40 of values <1 mg/L and with MIC reductions mostly >32-fold.   134 

Isolates with NDM carbapenemases were more resistant to unprotected −lactams than those with 135 

VIM MBLs: MIC ranges were 32->128 and 8->128 mg/L for cefepime and meropenem, respectively.  136 

These MICs were reduced by taniborbactam: thus, 25/40 of the NDM-positive Enterobacterales were 137 

inhibited by cefepime/taniborbactam at 2+4 mg/L and 32/40 were inhibited at 8+4 mg/L. Proportions 138 

inhibited by meropenem/taniborbactam were 27/40 at 1+4 mg/L, rising to 35/40 at 4+4 mg/L.  139 

Avibactam often achieved some potentiation of cefepime, but not meropenem, against MBL 140 

producers;  this is consistent with it inhibiting coproduced ESBLs but not the MBLs themselves. 141 

 Almost all isolates with inferred combinations of ESBL and impermeability were highly 142 

resistant to cefepime, with 17/20 MICs >128 mg/L; these values were reduced by taniborbactam, with 143 



   
 

   
 

13/20 brought at least 64-fold lower to <2+4 mg/L and 18/20 to <8+4 mg/L. Potentiation was stronger 144 

with avibactam, which reduced all cefepime MICs to <2+4 mg/L. Meropenem MICs ranged from 0.12-145 

16 mg/L, with 14/20 values >1 mg/L; in all cases except one these values were reduced to <1 mg/L by 146 

either taniborbactam or avibactam at 4 mg/L.  147 

 MICs of cefepime ranged from 0.25-16 mg/L for the 20 isolates with inferred combinations of 148 

AmpC activity and impermeability; 9 values exceeded 2 mg/L, and 3 exceeded 8 mg/L. These MICs 149 

were reduced by the inhibitors, with 19/20 isolates inhibited by cefepime/taniborbactam at 2+4 mg/L 150 

and all 20 by cefepime/avibactam at 2+4 mg/L.   MICs of meropenem ranged from 1-8 mg/L and, for 151 

19/20 isolates were reduced to <1 mg/L by either taniborbactam or avibactam.  152 

 153 

Non-fermenters 154 

Cefepime MICs for P. aeruginosa isolates with VIM MBLs were 16->128 mg/L and were reduced to <8 155 

mg/L by taniborbactam in 7/20 cases.  For meropenem, 19/20 MICs were >32 mg/L and 6/20 were 156 

reduced to <4 mg/L by taniborbactam (Table 2).  Cefepime/taniborbactam MICs against P. aeruginosa 157 

isolates with NDM or SPM carbapenemases remained >128 mg/L irrespective of addition of 158 

taniborbactam. In the case of A. baumannii with NDM carbapenemases, meropenem was potentiated 159 

2- to 4-fold by taniborbactam but with no MICs reduced below 32+4 mg/L; cefepime was not usefully 160 

potentiated by avibactam against these NDM-positive isolates of A. baumannii. Avibactam did not 161 

potentiate partner −lactams against P. aeruginosa or A. baumannii with any of these MBLs.  162 

 Taniborbactam commonly reduced the MICs of cefepime, though not meropenem, by one 163 

doubling dilution for A. baumannii isolates with OXA carbapenemase; nonetheless MICs of both 164 

combinations typically remained >8+4 mg/L. avibactam reduced the modal MIC of meropenem by two 165 

doubling dilutions, but only to 16 mg/L.   166 



   
 

   
 

More substantial interactions were seen for non-fermenters with chromosomal 167 

carbapenemases.  Thus, MICs for unprotected cefepime for Elizabethkingia meningoseptica were 16-168 

32 mg/L and were reduced to 2-8 mg/L by either taniborbactam or avibactam at 4 mg/L; MICs of 169 

unprotected meropenem for E. meningoseptica were 16-128 mg/L and were reduced to 4-16 mg/L by 170 

taniborbactam at 4 mg/L, but were little affected by avibactam.  Cefepime MICs for S. maltophilia 171 

were reduced from 8-128 mg/L to 2-16 mg/L by either taniborbactam or avibactam at 4 mg/L but MICs 172 

of meropenem were unaffected by either inhibitor. 173 

 174 

MIC ranges for Enterobacterales with NDM carbapenemases  175 

In the second part of this study we tested 124 genomically-sequenced Enterobacterales with NDM 176 

carbapenemases, as consecutively received by the reference service. The organisms were clonally 177 

diverse. They comprised 82 Klebsiella spp., 29 E. coli and 13 Enterobacter spp. MIC distributions for 178 

cefepime and cefepime/taniborbactam resembled the earlier results: thus 89/124 (71.8%) isolates 179 

were inhibited by cefepime/taniborbactam at 8+4 mg/L (Table 3) as compared with 32/40 (80%) of 180 

the NDM-positive Enterobacterales in the first series (Table 1).  The proportion susceptible to 181 

cefepime 8 mg/L rose to 79.8% if the taniborbactam concentration was raised from 4 to 8 mg/L.  More 182 

isolates (87.9% versus 71.8%) were inhibited by aztreonam/avibactam at 8+4 mg/L than cby 183 

efepime/taniborbactam, whereas resistances to meropenem/vaborbactam 8+8 mg/L and 184 

ceftazidime/ avibactam 8+4 mg/L were near universal.  Notably, the isolates with 185 

cefepime/taniborbactam MICs >8+4 mg/L were predominantly  were E. coli (15/29) rather than 186 

Klebsiella spp. (19/82) and Enterobacter spp. (1/13). 187 

 Regardless of species, the clearest correlate (p <0.001) of a cefepime/taniborbactam MIC >8+4 188 

mg/L was a cefepime MIC >128 mg/L (Table 4). On the other hand, there was no general association 189 

to lesions in porin genes nor to blaNDM gene copy number. For E. coli only, there were associations 190 

between a cefepime/taniborbactam MIC >8+4 mg/L and an aztreonam/avibactam MIC >8+4 mg/L (p 191 



   
 

   
 

<0.001) also with (i) carriage of blaNDM-5 or blaNDM-7 rather than blaNDM-1 and (ii) with the presence 192 

(always in isolates that had NDM-5 or -7 rather than NDM-1) of Tyr-Arg-Ile-Asn/Pro insertions at 193 

amino-acid 334 of penicillin-binding protein (PBP)3.  Both these traits were only seen among the 194 

isolates with cefepime/taniborbactam MICs >8+4 mg/L but were not universal among them:  in 195 

particular only 4/15 NDM isolates with cefepime/taniborbactam MICs >8+4 mg/L had PBP3 insertions 196 

and, complicating analysis, all these also had NDM-5 or -7 MBLs. Nine sequence types (STs) were 197 

represented among the 15 E. coli isolates with cefepime/taniborbactam MICs >8+4 mg/L, with ST167, 198 

410 and 648 each having three or four representatives; ST167 – always with NDM-5 or -7 but without 199 

the PBP3 insert – had no representatives with cefepime/taniborbactam ≤8+4 mg/L.   200 

 Only NDM-1 carbapenemase was seen in the 82 K. pneumoniae isolates and, unlike for E. coli, 201 

there was no association between cefepime/taniborbactam MICs >8+4 mg/L, seen for 19 isolates, and 202 

aztreonam/avibactam MICs >8+4 mg/L, which were seen for only two isolates. PBP3 remained 203 

unaltered and there was no clear association between resistance and porin changes. There was a weak 204 

statistical association (p <0.05) between co-carriage of blaCTX-M and cefepime/taniborbactam MIC >8+4 205 

mg/L, nevertheless blaCTX-M was also present in more than half the Klebsiella isolates with 206 

cefepime/taniborbactam MICs ≤8+4 mg/L. Eight STs were represented among the 19 Klebsiella 207 

isolates with cefepime/taniborbactam MICs >8+4 mg/L, with 10, from seven centres, belonging to 208 

ST14, which only had one representative with cefepime/taniborbactam MICs ≤8+4 mg/L.   Among the 209 

13 E. cloacae isolates there was only one with a cefepime/taniborbactam MIC >8+4 mg/L.  Perhaps of 210 

note, this isolate was the only one among the 13 with an aztreonam/avibactam MIC >8+4 mg/L, and 211 

it had insertion of an additional Glu residue at position 258 of PBP3. 212 

 213 

Discussion 214 

Taniborbactam irreversibly inhibits serine −lactamases and competitively inhibits MBLs.8 We showed 215 

that this behaviour is reflected in antibacterial activity. At 4 mg/L, it lowered the MICs of cefepime and 216 



   
 

   
 

meropenem for Enterobacterales with all carbapenemases except IMP types and for those with 217 

carbapenem resistance inferred due to combinations of impermeability with AmpC or ESBL activity.  218 

Cefepime/taniborbactam - the combination now in clinical development - had lower MICs than 219 

meropenem/taniborbactam for Enterobacterales with OXA-48-like carbapenemases, probably 220 

because cefepime is stable to OXA-48-like enzymes, meaning that the critical requirement is to inhibit 221 

co-produced ESBLs, not OXA-48 itself, as for meropenem/taniborbactam.  Although avibactam 222 

achieved 2- to 4-fold greater potentiation of cefepime than taniborbactam for Enterobacterales with 223 

several enzyme types (e.g. KPC and OXA-48), MICs of cefepime/ taniborbactam for these groups were 224 

as low as for ceftazidime/avibactam, reflecting the greater potency of cefepime than ceftazidime.   225 

 Spectrum gaps nonetheless remain. Lack of coverage of IMP MBLs has been remarked already.  226 

This is a limitation but IMP MBLs are rarer than VIM and NDM types.4-7  Secondly, potentiation was 227 

weak or absent for P. aeruginosa with MBLs and for A. baumannii with NDM or OXA enzymes - a less 228 

encouraging result than on recent (2018-2019) global surveillance by broth microdilution, which found 229 

that cefepime/taniborbactam 8+4 mg/L inhibited 63.5% (33/52) of MBL P. aeruginosa.15 Thirdly, 20-230 

30% of Enterobacterales with NDM carbapenemases evaded cefepime/taniborbactam at 8+4 mg/L, a 231 

higher proportion than the 6/38 (14%) found for globally-collected NDM-positive Enterobacterales.16   232 

 Greater potentiation against Enterobacterales than P. aeruginosa and A. baumannii with 233 

MBLs probably likely reflects the non-fermenters’ greater impermeability and, at least for P. 234 

aeruginosa, greater efflux.17,18 In the same context, although no useful potentiation of partners was 235 

seen here for P. aeruginosa with SPM-1 enzyme, resistance mediated by this MBLs was reversed when 236 

it was cloned into E. coli.[9] Lack of potentiation against A. baumannii with OXA carbapenemases may 237 

reflect limited uptake or failure to inhibit these enzymes.  238 

 The behaviour of the non-fermenter species with chromosomal carbapenemases reflected 239 

their known −lactamase profiles: E. meningoseptica. have multiple chromosomal −lactamases 240 

including BlaB, a strain-variable MBL, and a chromosomal ESBL.19,20 Taniborbactam potentiated both 241 



   
 

   
 

meropenem and cefepime, whereas avibactam potentiated only cefepime, results compatible with 242 

both the ESBL and BlaB being inhibited by taniborbactam whereas avibactam inhibits only the ESBL.  243 

For S. maltophilia, resistance to −lactams involves the L-1 MBL and L-2, a class A cephalosporinase.21 244 

MICs of cefepime were generally reduced 4-8-fold by both taniborbactam and avibactam whereas 245 

MICs of meropenem were little affected by either inhibitor; we infer that both taniborbactam and 246 

avibactam inhibit the cefepime-hydrolysing L-2 enzyme, but not the L-1 MBL.   247 

 Higher MICs of taniborbactam combinations for Enterobacterales with NDM rather than VIM 248 

MBLs may reflect NDM enzymes (i) being inhibited less well;8 (ii) being expressed more strongly and/or 249 

(iii) having greater substrate affinity, protecting against inhibition. These possibilities deserve future 250 

investigation. More immediately, we explored reasons for MIC variation in a collection of 124 251 

consecutively-referred and genomically-sequenced Enterobacterales with NDM MBLs.  252 

Cefepime/taniborbactam MICs for 35 of these (15/29 E. coli, 19/82 K. pneumoniae and 1/13 E. 253 

cloacae) exceeded 8+4 mg/L. We failed to find a single universal correlate of raised 254 

cefepime/taniborbactam MICs but, for E. coli, did associate these with raised MICs also for 255 

aztreonam/avibactam, with carriage of NDM-5 or -7, with isolates belonging to ST167, and with the 256 

presence of a Tyr-Arg-Ilu-Pro/Asn insert in PBP3.22,23   The last trait, though seen for only 4/15 257 

representatives provides the clearest explanation of reduced activity, being known to be reduce 258 

affinity for −lactams, including cefepime, that target this PBP; it was also recorded for E. coli isolates 259 

with elevated cefepime/taniborbactam MICs from China.24  The apparent association with NDM-5 and 260 

-7 enzymes is more doubtful. Four isolates with these enzymes and raised cefepime/taniborbactam 261 

MICs also had the PBP3 insert providing an alternative explanation for their behaviour.  Moreover, 262 

aztreonam/avibactam MICs were also raised, yet aztreonam evades NDM-5 and -7 enzymes.25,26 263 

Lastly, taniborbactam is able to protect cefepime for E. coli with cloned, and identically expressed, 264 

NDM-1, -5 and -7 enzymes,9 implying that these enzymes are similarly inhibited by the boronate. It 265 

remains possible that NDM-5 or -7 enzymes tend to be more strongly expressed. 266 



   
 

   
 

 A combination of OmpF mutations and a single amino-acid insertion in PBP3 may explain 267 

raised cefepime/taniborbactam and aztreonam/avibactam MICs for the sole E. cloacae with these 268 

traits, but confirmation with more isolates evidently is needed.  For K. pneumoniae, we found no 269 

convincing correlates of reduced susceptibility: all 19 isolates with cefepime/taniborbactam MIC >8+4 270 

mg/L had NDM-1 enzymes, wild-type PBP3 and, with a solitary exception, were inhibited by 271 

aztreonam/avibactam  ≤8+4 mg/L. Ten, from seven hospitals, belonged to ST14 versus only 1/63 that 272 

were inhibited by cefepime/taniborbactam at 8+4 mg/L. Whilst this association is statistically 273 

significant (p <0.001, Chi Square test) we caution that ST14 is a frequent K. pneumoniae type known 274 

to acquire MBLs repeatedly and independently.27  We cannot exclude novel mechanisms, not 275 

represented in the Genefinder bioinformatic database. 276 

 These uncertainties may be elucidated by future mutant, transconjugant and laboratory 277 

mutant studies. What is nonetheless clear is that taniborbactam has a broader spectrum of direct 278 

inhibition than any other −lactamase inhibitor presently in use or in Phase III.  Except for isolates 279 

with IMP MBLs, cefepime/taniborbactam has similarly extensive coverage against carbapenem-280 

resistant Enterobacterales as (i) combinations employing triple-action diazabicyclooctanes,28-30 (ii) 281 

aztreonam/avibactam,31 or (iii) carbapenemase-relatively-stable molecules such as cefiderocol32 and 282 

BOS-228 (LYS-228)33. Coverage was more limited against non-fermenters.   Only clinical experience 283 

will reveal which approach provides the best spectrum answer to the carbapenemase challenge; what 284 

is encouraging is that multiple different potential remedies are now in development. 285 
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Table 1.  MICs of taniborbactam and avibactam combinations for Enterobacterales, according to −lactamase type 405 

 

Categorisation 
based on partner 

−lactama No. isolates with indicated MIC (mg/L) 

 S I/SDD R <0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 >128 

Controls (n=30: 10 E. coli, 10 Enterobacter spp., 10 K. pneumoniae) 

Cefepime 100 0 0 3 11 13 3                       

+ Tani 4 mg/L 100 0 0 2 12 14 2                       

+ Avi 4 mg/L 100 0 0 7 12 8 2 1                     

                    

Meropenem 100 0 0 8 16 3   3                     

+ Tani 4 mg/L 100 0 0 13 14 2   1                     

+ Avi 4 mg/L 100 0 0 25 5                           

                    

Ceftazidime 100 0 0     1 2 12 13 2                 

+ Avi 4 mg/L 100 0 0   3 1 7 14 5                   

                   

KPC carbapenemases (n=41: 10 E. coli, 10 Enterobacter spp., 21 K. pneumoniae) 

Cefepime 0 41.5 58.5                 6 11 4 3 5 8 4 

+ Tani 4 mg/L 100 0 0   8 12 5 4 8 3 1               

+ Avi 4 mg/L 100 0 0 9 11 7 2 10 2                   

                    

Meropenem 2.4 7.3 90.2             1 3 10 10 3 3 2 5 4 

+ Tani 4 mg/L 92.7 2.4 4.9 2 21 4 3   4 4 1 1 1           

+ Avi 4 mg/L 100 0 0 22 7   5 2   5                 

                    

Ceftazidime 0 7.3 92.7                   3 8 10 4 2 14 

+ Avi 4 mg/L 95.1 4.9 0         6 14 11 4 4 2           



   
 

   
 

                   

IMI/NMC/SME carbapenemase (n=4: 3 Enterobacter spp. with IMI enzymes; 1 Serratia marcescens with SME-1) 

Cefepime 100 0 0     1 1   2                   

+ Tani 4 mg/L 100 0 0   1 1 1 1                     

+ Avi 4 mg/L 100 0 0   1   3                       

                    

Meropenem 0 0 100                   1   2 1     

+ Tani 4 mg/L 100 0 0     1 2 1                     

+ Avi 4 mg/L 100 0 0     2 2                       

                    

Ceftazidime 75.0 0 25.0           2   1       1       

+ Avi 4 mg/L 100 0 0           2 1 1               

                   

OXA-48 carbapenemases (n=40: 10 E. coli, 10 Enterobacter spp., 20 K. pneumoniae) 

Cefepime 50 12.5 37.5         7 2 7 4 2 3 1 5 2 4 3 

+ Tani 4 mg/L 100 0 0   2 9 6 9 6 5 3               

+ Avi 4 mg/L 100 0 0   7 13 8 5 7                   

                    

Meropenem 17.5 32.5 50       1     6 13 5 1 5 4 2 3   

+ Tani 4 mg/L 67.5 12.5 20     6 13 1 5 2 5 3 4 1         

+ Avi 4 mg/L 95.0 2.5 2.5 3 14 8 5 1 2 5 1 1             

                    

Ceftazidime 60 5.0 35.0         2 7 3 7 5 2   1 3 6 4 

+ Avi 4 mg/L 100 0 0       3 11 15 11                 

                   

NDM carbapenemases (n=40: 10 E. coli, 10 Enterobacter spp., 20 K. pneumoniae) 

Cefepime 0 0 100                       2 11 8 19 

+ Tani 4 mg/L 62.5 17.5 20         1 12 2 10 6 1 1 2 4   1 

+ Avi 4 mg/L 2.5 2.5 95.0       1   1 3 6 10 7 12 



   
 

   
 

                    

Meropenem 2.5 0 97.5     1             1 6 6 16 8 2 

+ Tani 4 mg/L 67.5 17.5 15.0   1     15 4 7 7 1 3         2 

+ Avi 4 mg/L 2.5 0 97.5 1        1 3 9 8 13 3 2 

                    

Ceftazidime 0 0 100                             40 

+ Avi 4 mg/L 2.5 0 97.5                 1           39 

                   

VIM carbapenemases (n=40: 10 E. coli, 10 Enterobacter spp., 20 K. pneumoniae) 

Cefepime 15.0 27.5 57.5           1   5 7 4 6 5 6 2 4 

+ Tani 4 mg/L 92.5 7.5 0     8 10 8 5 6   1 2           

+ Avi 4 mg/L 60 20 20           2 8 14 5 3 3   1   4 

                    

Meropenem 0 10 90               4 11 14 7 2 1 1   

+ Tani 4 mg/L 97.5 0 2.5 1 19 8 8   1 2   1             

+ Avi 4 mg/L 12.5 15.0 72.5           3 2 6 11 10 6 1   1   

                    

Ceftazidime 0 0 100                       4 4 9 23 

+ Avi 4 mg/L 2.5 0 97.5             1       8 12 6 9 4 

                   

IMP carbapenemases (n=13: 5 E. coli, 3 Enterobacter spp., 5 K. pneumoniae) 

Cefepime 0 30.8 69.2                 2 2 1 4 3   1 

+ Tani 4 mg/L 0 30.8 69.2                 3 1 5 2 2     

+ Avi 4 mg/L 7.7 23.1 69.2        1 2 1 1 4 2 2  

                    

Meropenem 23.1 7.7 69.2           1 2 1 3 1 3 2       

+ Tani 4 mg/L 23.1 15.4 61.5           1 2 2 2   4 2       

+ Avi 4 mg/L 23.1 23.1 53.8    1  1 1 3 1 2 3 1    

                    



   
 

   
 

Ceftazidime 0 0 100                             13 

+ Avi 4 mg/L 0 0 100                         1 2 10 

ESBL + impermeability (n=20, all K. pneumoniae) 

Cefepime 0 5.0 95.0                 1     2   1 16 

+ Tani 4 mg/L 65.0 25.0 10       1 1 4 4 3 4 1 1   1     

+ Avi 4 mg/L 100 0 0       3 11 2 4                 

                    

Meropenem 30 10 60       1 2 3   2 4 5 3         

+ Tani 4 mg/L 80 5.0 15.0   1 1 3 2 9   1 3             

+ Avi 4 mg/L 90 5.0 5.0 1 1 3 5 5 3   1 1             

                    

Ceftazidime 0 0 100                       1 4 4 11 

+ Avi 4 mg/L 100 0 0         3 3 8 6               

                   

AmpC + impermeability (n=20, all Enterobacter spp.) 

Cefepime 55.0 30 15.0         1 1 3 6 4 2 3         

+ Tani 4 mg/L 95.0 5.0 0       3 4 12     1             

+ Avi 4 mg/L 100 0 0       1 12 6   1               

                    

Meropenem 30 20 50             6 4 7 3           

+ Tani 4 mg/L 95.0 0 5.0     1 4 7 6 1   1             

+ Avi 4 mg/L 95.0 5.0 0     3 11 5     1               

                    

Ceftazidime 0 0 100                     1 1 4 9 5 

+ Avi 4 mg/L 95.0 0 5.0           2 13 3 1     1       
aBased on current CLSI breakpoints for cefepime (S <2, R >8 mg/L) and meropenem (S <1, R >4 mg/L) and for ceftazidime/avibactam, (R <8, R >8 mg/L); 406 

Abbreviations: S, susceptible; I, intermediate; SDD, Susceptible-dose dependent; R, resistant; Avi, avibactam; Tani, taniborbactam407 



   
 

   
 

Table 2 MICs of taniborbactam and avibactam combinations for non-fermenters, according to −lactamase type 408 

 

Categorisation 
based on partner 

−lactam No. isolates with indicated MIC (mg/L) 

 S I R <0.015 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 >128 

P. aeruginosa controls (=9) 

Cefepime 77.8 22.2 0             2 1 3 1 2         

+ Tani 4 mg/L 77.8 22.2 0             2 1 4   2         

+ Avi 4 mg/L 100 0 0           1 1 2 3 2           

                       

Meropenem 100 0 0     1 2 2 2 2                 

+ Tani 4 mg/L 100 0 0   1   1 4 1 2                 

+ Avi 4 mg/L 100 0 0 1     2 4   2                 

                       

Ceftazidime 88.9 0 11.1               5 3     1       

+ Avi 4 mg/L 100 0 0             1 4 3 1           

                   

P. aeruginosa VIM carbapenemases (n=20) 

Cefepime 0 10 90                     2 5 1 5 7 

+ Tani 4 mg/L 35.0 15.0 50             1   1 5 3   1 7 2 

+ Avi 4 mg/L 0 20 80                     4 6 5 2 3 

                       

Meropenem 0 5.0 95.0                 1     4 4 5 6 

+ Tani 4 mg/L 15.0 15.0 70         1     2 3 4 2 3 2   3 

+ Avi 4 mg/L 0 5.0 95.0                 1     4 5 4 6 

                       

Ceftazidime 0 0 100                       3 5 5 7 

+ Avi 4 mg/L 0 0 100                       3 5 6 6 



   
 

   
 

                   

P. aeruginosa NDM/SPM carbapenemases (n=4: 3 with NDM and 1 with SPM enzymes) 

Cefepime 0 0 100                             4 

+ Tani 4 mg/L 0 0 100                             4 

+ Avi 4 mg/L 0 0 100                             4 

                       

Meropenem 0 0 100                             4 

+ Tani 4 mg/L 0 0 100                             4 

+ Avi 4 mg/L 0 0 100                             4 

                       

Ceftazidime 0 0 100                             4 

+ Avi 4 mg/L 0 0 100                             4 

                   

Acinetobacter controls (n=10) 

Cefepime 90 0 10             2 5 2     1       

+ Tani 4 mg/L 90 0 10             1 6 2     1       

+ Tani 8 mg/L 90 0 10             1 6 2     1       

+ Avi 4 mg/L 90 0 10             1 4 1 3   1       

                       

Meropenem 100 0 0       1 6 2 1                 

+ Tani 4 mg/L 100 0 0       1 6 2 1                 

+ Tani 8 mg/L 100 0 0       1 6 2 1                 

+ Avi 4 mg/L 100 0 0       1 5 3 1                 

                       

Ceftazidime 100 0 0               2 5 3           

+ Avi 4 mg/L 80 20 0               1 4 3 2         

                   

A. baumannii OXA carbapenemases (n=40) 

Cefepime 2.5 5.0 92.5                 1   2 23 12 1 1 



   
 

   
 

+ Tani 4 mg/L 5.0 25.0 70                 2   10 19 8   1 

+ Avi 4 mg/L 12.5 20 67.5               1 2 2 8 14 11 2   

                       

Meropenem 0 2.5 97.5                   1 3 12 14 7 3 

+ Tani 4 mg/L 0 2.5 97.5                   1 4 13 12 7 3 

+ Avi 4 mg/L 10 7.5 82.5               2 2 3 12 11 6 3 1 

                       

Ceftazidime 2.5 2.5 95.0                   1 1 2 2 16 18 

+ Avi 4 mg/L 0 12.5 87.5                     5 7 13 3 12 

                   

A. baumannii NDM carbapenemases (n=10) 

Cefepime 0 0 100                             10 

+ Tani 4 mg/L 0 0 100                           4 6 

+ Avi 4 mg/L 0 0 100                             10 

                       

Meropenem 0 0 100                           8 2 

+ Tani 4 mg/L 0 0 100                       4 6     

+ Avi 4 mg/L 0 0 100                         1 7 2 

                       

Ceftazidime 0 0 100                             10 

+ Avi 4 mg/L 0 0 100                             10 

                   

E. meningoseptica (n=10) 

Cefepime 0 60 40                     6 4       

+ Tani 4 mg/L 100 0 0               1 8 1           

+ Avi 4 mg/L 100 0 0               5 5             

                       

Meropenem 0 0 100                     1 3 3 3   

+ Tani 4 mg/L 10 60 30                 1 6 3         



   
 

   
 

+ Avi 4 mg/L 0 0 100                       3 5 2   

                       

Ceftazidime 0 0 100                           2 8 

+ Avi 4 mg/L 0 10 90                     1 1 7 1   

                   

S. maltophilia (n=10) 

Cefepime 20 20 60             1     1 2 2 3 1   

+ Tani 4 mg/L 80 20 0           1   1 3 3 2         

+ Avi 4 mg/L 80 20 0           1   1 3 3 2         

                       

Meropenem 0 0 100                         3 3 4 

+ Tani 4 mg/L 0 0 100                     1   4 1 4 

+ Avi 4 mg/L 0 0 100                         3 3 4 

                       

Ceftazidime 40 10 50           1     2 1 1 1 1 2 1 

+ Avi 4 mg/L 40 10 50           1   1 1 1 1 1 2 1 1 

 409 

aBased on current CLSI breakpoints for cefepime (S <8, R >16 mg/L) and meropenem (S <2, R >4 mg/L) and for ceftazidime/avibactam, (R <8, R >8 mg/L); 410 

Abbreviations: S, susceptible; I, intermediate; R, resistant; Avi, avibactam; Tani, taniborbactam411 



   
 

   
 

Table 3.  MICs of cefepime/taniborbactam and comparators for consecutive Enterobacterales with 412 
NDM carbapenemases (n=124) 413 

 No. isolates with indicated MIC (mg/L) 

E. coli (n=29) 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 >128 

Cefepime           5 4 20 

Cefepime/Tani 4 mg/L     5 5 1 3 6 6 3   

Cefepime/Tani 8 mg/L   1 7 2 1 2 7 5 4    

Aztreonam  1 1 1 1    1 1 13 3 7 

Aztreonam/Avi 4 mg/L  4 1 3 3 2  3 3 6 3 1  

Ceftazidime/Avi 4 mg/L             29 

Meropenem/Vab 8 mg/L         2 11 9 7  

               

E. cloacae. (n=13)              

Cefepime          3 1 2 7 

Cefepime/Tani 4 mg/L 1 2 1   4 1 3   1   

Cefepime/Tani 8 mg/L   1 2 2 3 4    1   

Aztreonam  1  1     1 2 4 1 3 

Aztreonam/Avi 4 mg/L 1 2 1   4 1 3   1   

Ceftazidime/Avi 4 mg/L             13 

Meropenem/Vab 8 mg/L         2 4 6 1  

               

K. pneumoniae  (n=82)              

Cefepime          3 19 24 36 

Cefepime/Tani 4 mg/L    2 15 20 16 10 3 5 6 5  

Cefepime/Tani 8 mg/L   1 13 23 17 8 5 5 8 2   

Aztreonam  4 1 5 1    1 4 36 26 4 

Aztreonam/Avi 4 mg/L  8 4 38 19 11  1 1     

Ceftazidime/Avi 4 mg/L             82 

Meropenem/Vab 8 mg/L       1 4 3 27 22 16 9 

               

All (n=124)              

Cefepime          6 25 30 63 

Cefepime/Tani 4 mg/L    3 20 28 21 17 9 11 9 6  

Cefepime/Tani 8 mg/L   3 22 27 21 14 12 10 12 3   



   
 

   
 

Abbreviations, Avi, avibactam; Tani, taniborbactam and Vab, vaborbactam.414 

Aztreonam  6 2 7 2    3 7 53 30 14 

Aztreonam/Avi 4 mg/L 1 14 6 41 22 17 1 7 4 6 4 1  

Ceftazidime/Avi 4 mg/L             124 

Meropenem/Vab 8 mg/L       1 4 7 42 37 24 9 



   
 

   
 

Table 4: Comparison of NDM Enterobacterales in relation to MICs of cefepime/taniborbactam 415 

 Number of isolates with stated character among those with : 

Cefepime/taniborbactam MIC 
Cefepime/taniborbactam  

MIC <8+4 mg/L 
Cefepime/taniborbactam  

MIC >8+4 mg/L 

E. coli (n=29) 14 15 
Cefepime MIC >128 5 15*** 
No with NDM-1 8 3* 
No with NDM-5 or -7 6 12 
No with >2 blaNDM copies 0 0 
No also with blaCTX-M 7 7 
No also with blaCMY 7 12 
No with lesions in OmpC 2 0 
No with lesions in OmpF 2 1 
No with Tyr-Arg-Ile-Asn/Pro insert in PBP3 0 4 
No AZT MIC <2 mg/L 3 0 
No with aztreonam/avibactam MIC >2 mg/L 1 15*** 
No with aztreonam/avibactam MIC >8 mg/L 0 13*** 
No belonging to ST167 0 4 
No belonging to ST410 2 2 
No belonging to ST648 1 2 
   
E. cloacae. (n=13) 12 1 
Cefepime MIC >128 6 1 
No with NDM-1 12 1 
No with NDM-5 or -7 0 0 
No with >2 blaNDM copies 0 0 
No also with blaCTX-M 7 1 
No with lesions in OmpC 1 0 
No with lesions in OmpF 4 1 
No with Glu 258 insert in PBP3 0 1 
No aztreonam MIC <2 mg/L 2 0 
No with aztreonam/avibactam MIC >2 mg/L 4 1 
No with aztreonam/avibactam MIC >8 mg/L 0 1 
   
K. pneumoniae (n=82) 63 19 
Cefepime MIC >128 17 19*** 
No with NDM-1 63 19 
No with NDM-5 or -7 0 0 
No with >2 blaNDM copies 2 1 
No also with blaCTX-M 45 18* 
No also with blaCMY 7 2 
No also with blaOXA-1 30 14 
No with lesions in OmpC/OmpK36 3 3 
No with lesions in OmpF/OmpK35 31 7 
No AZT MIC <2 mg/L 9 2 
No with aztreonam/avibactam MIC >2 mg/L 0 2 
No with aztreonam/avibactam MIC >8 mg/L 0 1 
No isolates belonging to ST14 1 10*** 

aIncludes three pairs that may represent local cross infections. 416 

*p <0.05; **p <0.01; *** p <0.001, all by Chi-square tests417 



   
 

   
 

Figure 1.  Structure of taniborbactam418 

 419 


