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Abstract 17 

Case isolation and contact tracing can contribute to the control of COVID-19 outbreaks1,2. 18 

However, it remains unclear how real-world social networks could influence the effectiveness and 19 

efficiency of such approaches. To address this issue, we simulated control strategies for SARS-20 

CoV-2 transmission in a real-world social network generated from high resolution GPS data that 21 

was gathered in the course of a citizen-science experiment3,4. We found that tracing contacts-of-22 

contacts reduced the size of simulated outbreaks more than tracing of only contacts, but this 23 

strategy also resulted in almost half of the local population being quarantined at a single point in 24 

time. Testing and releasing non-infectious individuals from quarantine led to increases in outbreak 25 

size, suggesting that contact tracing and quarantine might be most effective as a ‘local lockdown’ 26 

strategy when contact rates are high. Finally, we estimated that combining physical distancing with 27 

contact tracing could enable epidemic control while reducing the number of quarantined 28 

individuals. Our findings suggest that targeted tracing and quarantine strategies would be most 29 

efficient when combined with other control measures such as physical distancing.  30 

https://paperpile.com/c/pgUGTg/HyzbL+OGRYM
https://paperpile.com/c/pgUGTg/3cUgL+33J3J
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Main 31 

Non-pharmaceutical interventions (NPIs) are central to reducing SARS-CoV-2 transmission in the 32 

absence of an effective vaccine5–8. Such measures include: case isolation, tracing and 33 

quarantining of contacts, use of personal protective equipment and hygiene measures, and 34 

policies designed to encourage physical distancing (including closures of schools and workplaces, 35 

banning of large public events and restrictions on travel). Due to the varying economic and social 36 

costs of these interventions, there is a clear need for sustainable strategies that limit SARS-CoV-2 37 

transmission while reducing disruption as much as possible. 38 

 39 

Isolation of symptomatic cases and quarantine of their contacts (e.g. household members) is a 40 

common public health strategy for reducing infectious disease spread1,2,8. This approach has been 41 

used as part of SARS-CoV-2 control strategies globally9. However, the relatively high reproduction 42 

number of the SARS-CoV2 virus in early outbreak stages10,11, alongside likely high contribution to 43 

transmission from presymptomatic and asymptomatic individuals12, means that manual tracing of 44 

contacts alone might not be a sufficient containment strategy under a range of outbreak 45 

scenarios13. As countries relax lockdowns and other more stringent physical distancing measures, 46 

combining the isolation of symptomatic individuals and quarantine of contacts identified through 47 

fine-scale tracing is likely to play a major role in many national strategies for targeted SARS-CoV-2 48 

control14. 49 

 50 

It is possible to assess the potential effectiveness of contact tracing by simultaneously modelling 51 

disease spread and contact tracing strategies through social systems of individuals15. These 52 

systems are usually simulated through parameterisation with simple social behaviours (e.g. the 53 

distribution of the number of physical contacts per individual). Further, social systems can be 54 

simulated as networks that are parameterised according to assumptions regarding different 55 

contexts (for example, with different simulated networks for households, schools and workplaces), 56 

or using estimated contact rates of different age groups16. However, little is known about how 57 

different types of real-world social behaviour and hidden structures in real-life networks could affect 58 

https://paperpile.com/c/pgUGTg/VJ7N7+1NHia+ei3aV+hPPr
https://paperpile.com/c/pgUGTg/HyzbL+OGRYM+hPPr
https://paperpile.com/c/pgUGTg/GAguR
https://paperpile.com/c/pgUGTg/w4Ja+9pbId
https://paperpile.com/c/pgUGTg/eAPw2
https://paperpile.com/c/pgUGTg/JYGjq
https://paperpile.com/c/pgUGTg/xcqMm
https://paperpile.com/c/pgUGTg/fH9cr
https://paperpile.com/c/pgUGTg/p55cX
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both patterns of disease transmission and efficacy of contact tracing under different scenarios17,18. 59 

Examining contagion dynamics and control strategies using a real-world network allows for a more 60 

realistic simulation of SARS-CoV-2 outbreak and contact tracing dynamics. 61 

 62 

Here, we develop an epidemic model which simulates COVID-19 outbreaks across a real-world 63 

network, and we assess the impact of a range of testing and contact tracing strategies for 64 

controlling these outbreaks. We then simulate physical distancing strategies and quantify how the 65 

interaction between physical distancing, contact tracing and testing affects outbreak dynamics. A 66 

summary of the main findings, limitations and policy implications of our study is shown in Table 1. 67 

  68 

We used a publicly available dataset on human social interactions collected specifically for 69 

modelling infectious disease dynamics as part of the British Broadcasting Corporation (BBC) 70 

documentary “Contagion! The BBC Four Pandemic”3,4. The high-resolution data collection focused 71 

on residents of the town of Haslemere, where the first evidence of UK-acquired infection with 72 

SARS-CoV-2 would later be reported in late February 202019. This dataset is structurally relevant 73 

to modelling disease spread, and hence holds substantial potential for understanding and 74 

controlling spread of real-world infectious diseases3,4. Here, we defined dyadic contacts on a day-75 

by-day basis as at least one daily 5 min period with a distance of 4 m (see Methods), which gave 76 

1616 daily contact events and 1257 unique social links between 468 individuals. The social 77 

network was therefore weighted by the number of days that individuals made contact. This network 78 

was strongly correlated (r >0.85 in all cases) with social networks made using different distances 79 

for defining contacts (from 1-7 m contact ranges; Extended Data Fig. 1), and with social networks 80 

created using different time-periods for weighting the dyadic contacts (Extended Data Fig. 2). As 81 

such, this social network quantification gives a representative indication of daily contact 82 

propensities within the relevant transmission range between individuals (see Methods) and 83 

captures various aspects of the patterns and structure presented by different quantifications of this 84 

social system.  85 

 86 

https://paperpile.com/c/pgUGTg/Ni6Wd+yw3lz
https://paperpile.com/c/pgUGTg/Di78
https://paperpile.com/c/pgUGTg/3cUgL+33J3J
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Example outbreaks across the Haslemere social network under different control scenarios are 87 

displayed in Fig. 1, with a full animated visualisation in Supplementary Video 1 and a Shiny app 88 

available to run individual outbreak simulations (see data sharing). Across all simulations, our 89 

epidemic model showed that uncontrolled outbreaks in the Haslemere network stemming from a 90 

single infected individual resulted in a median of 75% (5th - 95th percentiles   72%-77%) of the 91 

population infected 70 days after the first simulated infection (Fig. 2). Isolation of individuals when 92 

they become symptomatic resulted in 66% (62%-69%) of the population infected, and primary 93 

contact tracing resulted in 48% (42%-54%) infected. Secondary contact tracing resulted in the 94 

smallest percentage (16%, 11%-22%) of the population infected after 70 days. The proportion of 95 

quarantined individuals was very high under both primary and secondary contact tracing, with a 96 

median of 43% (19%-63%) of the population quarantined during the outbreak peak with secondary 97 

contact tracing (Fig. 2). Examining temporal dynamics showed that outbreak peaks typically 98 

occurred within the first 1-3 weeks following the first simulated infection, and that all simulated 99 

NPIs reduced the overall size of the outbreaks as well as their growth rate (Fig. 2). The proportion 100 

of people required to isolate or quarantine followed a similar trajectory to the number of cases, 101 

although under secondary contact tracing, substantial proportions of the population (26%, 8%-102 

47%) were quarantined even during the final (10th) week of the simulations (Fig. 2). This is 103 

consistent with a large-scale simulation model of app-based contact tracing in the UK20, which 104 

suggested that contact tracing could be highly effective, but also that it required large numbers of 105 

people to be quarantined. We assumed that 10% of contact tracing attempts were missed, which 106 

when combined with the large number of quarantined cases under secondary contact tracing (Fig. 107 

2), suggests that a majority of the population could receive a notification that they should 108 

quarantine within the first 2-3 weeks of an outbreak.  109 

 110 

Sensitivity analysis of the efficacy of contact tracing under the epidemic model is presented in 111 

Extended Data Figs 3-6. As expected, outbreak size decreased as the percentage of contacts 112 

traced increased in all scenarios, and increased with increasing values of the reproduction number, 113 

the proportion of asymptomatic cases, the proportion of pre-onset transmission, the delay between 114 

https://paperpile.com/c/pgUGTg/q9QHU
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onset/tracing and isolation/quarantine, and the number of initial cases (Extended Data Figs 3-6). 115 

Outbreak dynamics were strongly affected by outside infection rate across all intervention 116 

scenarios, as were the number of isolated and quarantined cases (Extended Data Fig. 6). These 117 

findings suggest that, likely due to the high levels of SARS-CoV-2 transmission from asymptomatic 118 

and presymptomatic individuals12, contact tracing would be most effective when the proportion of 119 

traced contacts is high, when the delay from notification to quarantine is short13, and when the 120 

number of starting cases and rate of movement into the network are low. Importantly, however, 121 

outbreak control is only achieved when there is a large number of quarantined cases, and this is 122 

consistent across the entirety of the parameter space (Extended Data Figs 3-6). Further, 123 

increasing the network density through increasing the distance threshold for defining contacts led 124 

to broadly similar results across intervention scenarios, albeit with larger numbers of quarantined 125 

cases required for outbreak control via contact tracing (Extended Data Fig. 7). Therefore, while 126 

more real-world networks are needed to demonstrate how well these results apply to other 127 

locations and settings, our results are robust to a range of epidemiological and network 128 

parameters. 129 

 130 

The number of quarantined cases can be reduced through mass testing and release of individuals 131 

who return a negative result. Conversely, if contact rates in the population are high, large-scale 132 

test and release strategies could provide greater opportunity for transmission and decrease the 133 

effectiveness of contact tracing. We therefore assessed how the testing and releasing of isolated 134 

and quarantined subjects might affect the numbers of cases and time spent in isolation and 135 

quarantine, using false positive and false negative rates estimated from empirical data21,22 136 

(Supplementary Table 1). We estimated that increasing the testing capacity (and therefore testing 137 

and releasing more quarantined cases) led to substantial increases in outbreak size, especially 138 

under secondary contact tracing (median = 52%, 5th - 95th percentiles = 46%-57%; Fig. 3A). This 139 

result occurred despite an optimistically high false negative rate of 10%, suggesting that the 140 

increase in outbreak size with high testing rates is a result of increased transmission within the 141 

network, rather than through releasing infected cases per se. Indeed, increases in outbreak size 142 

https://paperpile.com/c/pgUGTg/eAPw2
https://paperpile.com/c/pgUGTg/JYGjq
https://paperpile.com/c/pgUGTg/Z6TJ0+HEPJJ
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are observed even when a false negative rate of zero is assumed. Therefore, secondary tracing 143 

could effectively function as a ‘local lockdown’ rather than a targeted intervention strategy. High 144 

levels of testing did not lead to large reductions in the number of quarantined cases under 145 

secondary contact tracing scenarios, and the number of tests required to reduce the proportions of 146 

quarantined cases were large, with 68% (45%-74%) of the population requiring tests in a single 147 

week during outbreak peaks (Fig. 3A). We cannot be certain to what extent our results represent 148 

larger populations, but the tripartite relationship between the number of cases, the number of 149 

quarantined contacts and the number of tests required will apply in the majority of scenarios in 150 

which rates of social interaction are high. 151 

 152 

Our model is optimistic in its assumption that individuals isolate independently of previous 153 

notifications or isolations, and highly optimistic in its assumption that all traced contacts remain in 154 

quarantine for the full 14-day period. In reality, a high notification and quarantine rate could result 155 

in individuals being less likely to undertake quarantine in the future, which in turn will affect 156 

outbreak dynamics. More evidence and models to better understand these behavioural dynamics 157 

are needed in order to develop sustainable intervention strategies23. One suggested solution to 158 

reduced adherence to quarantine is through (digital) targeted quarantine requests to the individuals 159 

at highest risk of infection or to those most likely to spread to others24. The extent to which these 160 

interventions will be needed and how effectively they will work is not yet clear, and there are 161 

important concerns around privacy in the implementation of contact-tracing strategies25. However, 162 

our study provides a methodological template for network-based research into SARS-CoV2 163 

transmission and potential control strategies. 164 

 165 

Combining contact tracing with other physical distancing measures could allow for outbreak control 166 

while reducing the number of people in quarantine, as well as the number of tests required. We 167 

simulated physical distancing by reducing the number of weak links in the Haslemere network 168 

(Methods). We aimed to consider low to moderate levels of physical distancing, so we used a 169 

model whereby the only interactions with rare contacts (those observed only on a single day) are 170 

https://paperpile.com/c/pgUGTg/mWoU
https://paperpile.com/c/pgUGTg/pIMa6
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removed. Depending on the scenario, the highest simulated levels of physical distancing led to 171 

reductions of between 28% and 61% in the number of overall cases (Fig. 3B). Importantly, 172 

increasing physical distancing was associated with lower proportions of quarantined cases, which 173 

was reduced to as little as 6% of the population (1%-14%) during outbreak peaks under secondary 174 

contact tracing (Fig. 3B). Simulating physical distancing using an alternative approach whereby 175 

removed rare contacts were reassigned to existing contacts (see methods) yielded similar results 176 

to our inital model; however, using this approach, physical distancing led to smaller decreases in 177 

outbreak size (Extended Data Fig. 8). We do not have information on household structure within 178 

the Haslemere dataset, but our physical distancing scenario is analogous to decreasing the 179 

probability of transmission between non-household contacts. This could include physical distancing 180 

measures in public places, restrictions on large gatherings, or increased hand hygiene and use of 181 

masks outside of household settings26. Combining such measures with highly effective contact 182 

tracing could be a useful tool for control of SARS-CoV-2 spread. However, further work is required 183 

to determine exactly what kinds of physical distancing measures would enable effective outbreak 184 

control alongside contact tracing. Future investigations examining how the spread of the disease 185 

shapes behavioural change interventions (e.g. where large outbreaks trigger more extensive 186 

physical distancing measures) and how this feedback shapes the contagion dynamics and 187 

predicted effectiveness of interventions are needed. 188 

 189 

Network structure has substantial effects on epidemic model predictions27,28. We used null network 190 

models based on the Haslemere data, which maintained the same number of individuals, 191 

connections and weights of connections, but shuffled network architecture in different ways (see 192 

Methods). The number of cases estimated using the null networks was broadly similar to the real-193 

world network, although this was substantially underestimated in a lattice-like network (Fig. 4). 194 

Importantly, the rate of quarantine varied substantially among the null networks, especially under 195 

secondary contact tracing (Fig. 4). These results demonstrate that the use of network-based 196 

simulations of SARS-CoV-2 transmission dynamics requires caution. Even if such models had 197 

precise information on the number of individuals and amount of social interactions occurring within 198 
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a system, the assumed architecture of the social network structure alone can shape predictions for 199 

both the extent of spread and the usefulness of control strategies. Through providing insight into 200 

how changes to network structure influence contagion dynamics, the null network simulation 201 

approach gives some indication of how this contagion and associated control strategies may 202 

operate in different social environments. For example, different social structures could arise when 203 

considering particular social settings (e.g. workplaces, commuting), some of which may be closer 204 

to the null networks generated here. Considering these structures will improve predictions of 205 

outbreak dynamics. 206 

 207 

There are a number of important limitations to our study and the current availability of empirical 208 

data. Most importantly, this social network is taken from a single, small town and over a short 209 

period of time. We do not know to what extent the social dynamics will be applicable to larger cities 210 

and other contexts and over long periods. Future large-scale efforts in gathering data on dynamic 211 

fine-scale social behaviour over longer periods of time (ideally over the entire contagion period) in 212 

major cities would be beneficial for assessing the relative uses of SARS-CoV-2 control strategies, 213 

and for understanding how and why interventions implemented in some cities have been relatively 214 

more successful than others29. Further, detailed real-world data could be used to parameterise 215 

more realistic simulations of human social mixing patterns. The epidemic network-based model 216 

provided here can be applied generally to larger-scale real or simulated social networks if such 217 

data becomes available in the future. Further, the Haslemere data, while rich, does not sample the 218 

entire population of Haslemere, and children under the age of 13 were not included in the 219 

experiment, which could potentially have an impact on outbreak and social tracking dynamics. The 220 

limited available evidence suggests that children are less susceptible to COVID-19 than adults and 221 

may therefore play a smaller role in transmission30. The ability to track children will also be limited 222 

in real-world contact tracing attempts, particularly with app-based approaches that require a 223 

smartphone. It is encouraging that our results broadly align with other, larger-scale simulations of 224 

contact tracing which explicitly model these limitations, but lack the fine-scale social tracking 225 

data20. Therefore, by supplying a general framework for simulating the spread of COVID-19 on 226 

https://paperpile.com/c/pgUGTg/q9QHU
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real-world networks, we hope to promote integration of multiple real-world social tracking datasets 227 

with epidemic modelling, which may provide a promising way forward for optimising contact tracing 228 

strategies and other non-pharmaceutical interventions. 229 
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Figure legends 320 

Figure 1 Illustration of the Haslemere network with epidemic simulation predictions. A The social 321 

network of 468 individuals (grey nodes) with 1257 social links (blue edges) weighted by 1616 daily 322 

contacts (edge thickness) and a single starting infector (red). Subsequent panels show progression 323 

of the COVID-19 epidemic under the no intervention (B,C,D) and the secondary contact tracing 324 

(E,F,G) scenarios. Red arrows show an infection route, and squares show isolated/quarantined 325 

individuals. 326 

Figure 2 Epidemic model predictions of outbreak size and number of people isolated/quarantined 327 

under different non-pharmaceutical intervention scenarios in the Haslemere network. A cumulative 328 

number of cases, number of people isolated, and number of people quarantined at a given point in 329 

time under each scenario. Lines and shaded areas represent median and 5th-95th percentiles 330 

from 1000 simulations. B Example networks from a single simulation of each scenario at day 20 of 331 

the outbreak. See figure 1 for network details. 332 

Figure 3 A Epidemic model simulations of outbreak size and number of people isolated and 333 

quarantined under A different levels of testing and B physical distancing in the Haslemere network. 334 

In A, Tests are plotted per week rather than per day for visualisation purposes. In B The 335 

percentage reduction refers to the number of ‘weak links’ removed from the networks (see 336 

methods). Lines and shaded areas represent median and 5th-95th percentiles from 1000 337 

simulations. 338 

Figure 4 A Epidemic model simulations of outbreak size and number of people isolated and 339 

quarantined under different null-network permutations based on the Haslemere network (see 340 

methods for details). Lines and shaded areas represent median and 5th-95th percentiles from 341 

1000 simulations. B Example networks showing an infection simulation (with secondary contact 342 

tracing, after 20 days) on each null network. See Figure 1 for network details. 343 

  344 
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Table 1 Policy summary 345 

Background Understanding how isolation, contact tracing and other non-
pharmaceutical interventions can be combined effectively and 
efficiently is crucial to maintaining COVID-19 control. We 
developed an epidemic model that simulates COVID-19 
outbreaks in a real-world network and assessed the impact of a 
range of testing, isolation, quarantine and contact tracing 
strategies for controlling new local outbreaks.  

Main findings and limitations We found that tracing and quarantining contacts-of-contacts 
was the most effective simulated measure for controlling local 
COVID-19 outbreaks, but required large numbers of individuals 
to be quarantined. This strategy is similar to introducing a ‘local 
lockdown’. Testing and releasing quarantined individuals 
reduced the numbers quarantined, but also the effectiveness of 
control measures. Combining physical distancing with contact 
tracing resulted in reduced outbreak size, with fewer individuals 
required to quarantine. A major limitation of this study is that it 
is based on pre-COVID-19 social network data from a sample 
of individuals from a single small town; more data are needed 
to fully understand potential outbreak dynamics in other 
settings. 

Policy implications Our findings suggest that effective contact tracing measures 
could require large numbers of people in a community to be 
quarantined, with individual-level tracing resulting in outcomes 
equivalent to broad ‘local lockdowns’. Targeted tracing and 
quarantine strategies might be less disruptive overall when 
combined with other control measures such as moderate 
physical distancing. 

  346 
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Methods 347 

Ethics statement 348 

Information was provided and consent obtained from all participants in the study before the app 349 

recorded any data. The study was approved by London School of Hygiene & Tropical Medicine 350 

Observational Research Ethics Committee (ref 14400). 351 

 352 

Social tracking data 353 

The Haslemere dataset was generated and described as part of previous work, which gives 354 

detailed description of the characteristics of this dataset and town3,4. Briefly, the data were 355 

collected during the 2017/18 BBC Pandemic project conducted in Haslemere, Surrey, UK. The 356 

project involved a massive citizen-science experiment to collect social contact and movement data 357 

using a custom-made phone app, and was designed to generate data relevant to understanding 358 

directly transmitted infectious disease3,4. Of the 1272 individuals within Haslemere that 359 

downloaded the app, 468 individuals had sufficient data points at a resolution of 1m over three full 360 

days within the focal area for further analysis3. All 468 focal individuals were known to have spent 361 

>6hrs within 51.0132;-0.7731SW : 51.1195,-0.6432NE (within Postcode GU27), but the dataset 362 

used here comprises of de-identified proximity data made available as pairwise distances (~1 m 363 

resolution) at 5 min intervals (excluding 11pm-7am)3. 364 

 365 

Social network construction 366 

In our primary analysis, we defined social contacts as events when the average pairwise distances 367 

between individuals within a 5 min time interval (calculated using the Haversine formula for great-368 

circle geographic distance3) are 4 m or less. By doing so, we aimed to capture the majority of 369 

relevant face-to-face contacts (i.e. those that may result in transmission) over 5 min periods, 370 

particularly given the 1 m potential error3 on the tracking measurement during these short time 371 

intervals. Furthermore, this 4 m threshold is within typical mobile phone Bluetooth ranges for 372 

relatively accurate and reliable detections. Therefore, this contact dataset will also be comparable 373 

to proximity-based contacts identified through Bluetooth contact tracing apps, which may be 374 

https://paperpile.com/c/pgUGTg/3cUgL+33J3J
https://paperpile.com/c/pgUGTg/3cUgL+33J3J
https://paperpile.com/c/pgUGTg/3cUgL
https://paperpile.com/c/pgUGTg/3cUgL
https://paperpile.com/c/pgUGTg/3cUgL
https://paperpile.com/c/pgUGTg/3cUgL
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preferred to real-location tracking for privacy reasons. We considered the sensitivity of the network 375 

to the contact definition by testing six further social networks from contacts defined using different 376 

threshold distances spanning the conceivable potential transmission range within the 5 min 377 

intervals (1 m to 7 m thresholds). We first measured the correlation of the network structure (i.e. 378 

pairwise contacts) across the seven networks using Mantel tests. We also measured the 379 

correlation of each individual's degree (number of contacts), clustering coefficient (number of 380 

contacts also connected to one another), betweenness (number of shortest paths between nodes 381 

that pass through an individual), and eigenvector centrality (a measure that accounts both for a 382 

node's centrality and that of its neighbours) across the seven networks. 383 

 384 

The Haslemere data is a temporal dataset spanning three full days. While the epidemic model we 385 

use is dynamic (see below Methods), the contagion process of COVID-19 operates over a longer 386 

time period than three days. To be able to meaningfully simulate longer-term outbreak dynamics, 387 

we quantified the data as a static social network in which edges indicate the propensities for social 388 

contact between nodes. Temporal information is incorporated by weighting the edges using the 389 

temporal contact information, instead of using a dynamic network which would require contact data 390 

over a much longer period. In the primary analysis, we weighted the edges as the number of 391 

unique days a dyad was observed together (but see Supplementary Information for other temporal 392 

definitions). Therefore, the weight score indicates the propensity for each dyad to engage in a 393 

social contact event on any given day, whereby 0 = no contact, 1 = ‘weak links’ observed on the 394 

minority of days (one third), 2 = ‘moderate links’ observed on the majority of days (two thirds), and 395 

3 = ‘strong links’ observed on all days. In this way, the weights of this social network could be 396 

included directly, and intuitively, into the dynamic epidemic model (see below). For sensitivity 397 

analysis, we also created other weightings for this network, and examined the correlation in dyadic 398 

social associations scores (using Mantel tests) with our primary weighting method (described 399 

above). Specifically, for the sensitivity analysis, we used edges specified as i) a binary (i.e. 400 

unweighted) network across all days, ii) a raw (and ranked) count of 5 min intervals in contact, iii) a 401 

transformed weighted count (edge weight transformed as 1 − 𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑐𝑜𝑢𝑛𝑡, which approximates 402 
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a scenario where infection risk increases with contact time, but reaches 95% saturation after ~15 403 

mins of contact between dyads) and iv) a ‘simple ratio index’ (SRI) weighting that corrects for 404 

observation number as SRI score31. The SRI score for any two individuals (i.e. A and B) is 405 

calculated as: 406 

 407 

(1)     𝑆𝑅𝐼𝐴,𝐵 =  
𝑂𝑏𝑠𝐴,𝐵

𝑂𝑏𝑠𝐴 + 𝑂𝑏𝑠𝐵  − 𝑂𝑏𝑠𝐴,𝐵
 408 

 409 

where Obs is the number of 5 min observation periods (the intervals since the start of the day) 410 

within which an individual is recorded within 4 m of another individual. 411 

 412 

Null network simulation approach 413 

We used null networks32 to understand the network properties that shape predictions of COVID-19 414 

spread under different control scenarios. Null networks can also show how contagion may depend 415 

on the arrangement of social ties, how it may operate in different social environments, and which 416 

simulation approaches may be the most similar to real-world infection dynamics. We created four 417 

null network scenarios (Extended Data Fig. 9) with 1000 networks generated under each of these. 418 

All of the null network scenarios kept the same number of nodes, edges, and weights of these 419 

edges, as the Haslemere network, but were generated under the following nulls: (1) ‘edge null’ 420 

(Extended Data Fig. 9A) considered random social associates, allowing the edges of the network 421 

to be randomly allocated between all nodes; (2) ‘degree null’ (Extended Data Fig. 9B) considered 422 

individual differences in sociality but random social links between dyads, so randomly swapped the 423 

edges between nodes but maintained the degree distribution of the real network (and was, 424 

therefore, even more conservative than a power-law network simulation aiming to match real 425 

differences in sociality); (3) ‘lattice null’ (Extended Data Fig. 9C) considered triadic and tight clique 426 

associations, so created a ring-like lattice structure through assigning all edges into a ring-lattice 427 

where individuals are connected to their direct neighbours, and their neighbours of the second and 428 

third order (i.e. six links per individual), and then we randomly removed excess links (until the 429 

observed number of edges was reached); (4) ‘cluster null’ (Extended Data Fig. 9D) considered the 430 
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observed level of clustering, so created a ring-lattice structure as described above but only 431 

between individuals observed as connected (at least 1 social link) in the real network, added 432 

remaining links (sampled from 4th order neighbours), and then rewired the edges until the real-433 

world global clustering was observed (~20% rewiring; Extended Data Fig. 9D). These conservative 434 

(and informed) null models allowed connections to be arranged differently within the network but 435 

maintained the exact same number of individuals, social connections and weights of these social 436 

connections at each simulation. 437 

 438 

Epidemic model 439 

Building on the epidemiological structure of a previous branching-process model13, we developed a 440 

full epidemic model to simulate COVID-19 dynamics across the Haslemere network. Full model 441 

parameters are given in Supplementary Table 1. For a given network of individuals, an outbreak is 442 

seeded by randomly infecting a given number of individuals (default = 1). The model then moves 443 

through daily time steps, with opportunities for infection on each day. All newly infected individuals 444 

are assigned an ‘onset time’ drawn from a Weibull distribution (mean = 5.8 days) that determines 445 

the point of symptom onset (for symptomatic individuals), and the point at which infectiousness is 446 

highest (for all individuals)12. Each individual is then simultaneously assigned asymptomatic status 447 

(whether they will develop symptoms at their onset time), as well as presymptomatic status 448 

(whether or not they will infect before their assigned onset time), drawn from Bernoulli distributions 449 

with defined probabilities (defaults = 0.4 and 0.2 respectively, see Supplementary Table 1). At the 450 

start of each day, individuals are assigned a status of susceptible, infectious or recovered (which 451 

would include deaths) based on their exposure time, onset time and recovery time (calculated as 452 

onset time plus seven days), and are isolated or quarantined based on their isolation/quarantine 453 

time (described below). The model then simulates infection dynamics over 70 days. 454 

 455 

Possible infectors are all non-isolated and non-quarantined infectious individuals. Each day, all 456 

susceptible, non-isolated, non-quarantined contacts of all infectors within the network are at risk of 457 

being infected. The transmission rate for a given pair of contacts is modeled as: 458 

https://paperpile.com/c/pgUGTg/JYGjq
https://paperpile.com/c/pgUGTg/eAPw2
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 459 

(2)      𝜆(𝑡, 𝑠𝑖 , 𝑝𝑖) = 𝐴𝑠𝑖
𝐼𝑒𝑖 ∫ 𝑓(𝑢;  𝜇𝑖 , 𝛼𝑝𝑖

, 𝜔𝑝𝑖
)𝑑𝑢

𝑡

𝑡−1
  460 

 461 

where 𝑡 is the number of days since the infector i was exposed, 𝑠𝑖and 𝑝𝑖 are the infector’s 462 

symptom status (asymptomatic yes/no, and presymptomatic yes/no, respectively). 𝐴𝑠𝑖
is the scaling 463 

factor for the infector’s symptomatic status (Supplementary Table 1) and 𝐼𝑒𝑖 is the weighting of the 464 

edge in the network (i.e. number of days observed together) between the infector and the 465 

susceptible individual. The probability density function 𝑓(𝑢;  𝜇𝑖 , 𝛼𝑝𝑖
, 𝜔𝑝𝑖

) corresponds to the 466 

generation time, which is drawn from a skewed normal distribution (see 13 for details). Briefly, this 467 

uses the infector’s onset time as the location parameter 𝜇𝑖, while the slant parameter 𝛼𝑝𝑖
 and the 468 

scale parameter 𝜔𝑝𝑖
 both vary according to the infector’s presymptomatic transmission status 469 

(Supplementary Table 1). This enabled us to simulate a predefined rate of presymptomatic 470 

transmission while retaining a correlation structure between onset time and infectiousness, 471 

avoiding a scenario whereby a large number of individuals were highly infectious on the first day of 472 

exposure (see Supplementary Table 1 and data sharing for more details). 473 

 474 

Using this transmission rate, the probability of infection between a susceptible-infected pair of 475 

individuals t days after the infector’s exposure time is then modeled as: 476 

 477 

(3)      𝑃(𝑡, 𝑠𝑖 , 𝑝𝑖)  =  1 − 𝑒−𝜆(𝑡,𝑠𝑖,𝑝𝑖) 478 

 479 

Note that the change in status from “infectious” to “recovered” at seven days after symptom onset 480 

does not affect infection dynamics (as transmission rate ≈ 0 seven days after onset time in our 481 

model), but is instead used for contact tracing purposes (see below). To test how the above rate of 482 

infection related to the reproduction number R0 and the observed generation times, we generated 483 

empirical estimates of the number of secondary infections in the early outbreak stages of the 484 

model. We ran 1000 trial simulations from a random single starting infector and quantified i) the 485 

https://paperpile.com/c/pgUGTg/JYGjq
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mean number of secondary infections from this case, and ii) the time at which each secondary 486 

case was infected. We multiplied the rate of infection by a scaling parameter to get a baseline R0 of 487 

2.8, although we also performed sensitivity analysis (Supplementary Table 1). The mean 488 

generation time using this method was 6.3 days (median = 6 days). These basic parameters  489 

correspond closely to published estimates12,33. 490 

 491 

In addition to the infection rate from within the network, the infection rate from outside the network 492 

is also simulated daily by randomly infecting susceptible individuals with a probability of 0.001 493 

(although we also performed sensitivity analysis of this parameter). 494 

 495 

We simulated different contact tracing scenarios using contact information from the network, with 496 

the aim of evaluating both app-based and manual contact tracing strategies. Primary and 497 

secondary contacts of individuals are identified from the network on the day of the infector’s 498 

symptom onset and, as such, contacts of asymptomatic infectors are not traced. Contacts who 499 

have already recovered are excluded. Susceptible contacts are traced with a given probability (0.3-500 

0.9 tested - see Supplementary Table 1). We assume that this probability captures a wide range of 501 

reasons why contacts might not be traced, and it thus acts as an intuitive simplification. 502 

 503 

The isolation and/or quarantine time of each individual is determined based on their infection 504 

status, their symptomatic status, whether they have been traced, and the control scenario. We 505 

consider four control scenarios: i) no control, where no individuals are isolated or quarantined, ii) 506 

case isolation, where individuals isolate upon symptom onset after a delay period, iii) primary 507 

contact tracing with quarantine, where individuals isolate upon symptom onset (after a delay) and 508 

traced contacts are quarantined upon their infector’s symptom onset (also after a delay), and iv) 509 

secondary contact tracing, as scenario iii) but including contacts of contacts. All isolated and 510 

quarantined individuals are contained for 14 days. 511 

 512 
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Finally, we simulated a range of testing efforts for SARS-CoV-2. Each individual is assigned a 513 

testing time on isolation or quarantine, with the delay between containment and testing sampled 514 

from a Weibull distribution. A cap of the maximum number of daily tests is assigned, and each day 515 

up to this number of individuals are randomly selected for testing. Test results are dependent on 516 

infection and asymptomatic status, with a false negative rate (i.e. the probability that an infectious 517 

case will test negative) 0.121, and a false positive rate (i.e. the probability that susceptible case will 518 

test positive) of 0.0222. Cases who tested negative were immediately released from 519 

isolation/quarantine. 520 

 521 

A set of default parameters were chosen to represent a relatively optimistic model of contact 522 

tracing, which included a short time delay between symptom onset/tracing and isolation/quarantine 523 

(1-2 days), and a high proportion (90%) of contacts traced within this tracked population (default 524 

parameters highlighted in bold in Supplementary Table 1). We assumed that the probability of 525 

tracing was constant over time, and therefore independent of previous isolation/quarantine events, 526 

and that all individuals remained in quarantine for the full 14 days, unless released via testing. We 527 

performed sensitivity tests on all relevant parameters (Supplementary Table 1). To examine how 528 

infection dynamics were affected by network structure, we ran epidemic simulations on each of the 529 

null networks described above. We also ran simulations on networks generated using higher (7m 530 

and 16m) distance thresholds for defining a contact. These networks were 20% and 100% more 531 

dense, respectively, and therefore provide an estimate of the robustness of our simulations to 532 

missing contacts. 533 

 534 

We ran each simulation for 70 days, at which point the majority of new infections came from 535 

outside the network (see results), with all scenarios replicated 1000 times. With the null networks 536 

(above) and physical distancing simulations (below), we ran one replicate simulation on each of 537 

1000 simulated networks. In no simulations were all individuals in the population infected under our 538 

default settings. Therefore, for each simulation we report the number of cases per week and 539 

quantify the total number of cases after 70 days as a measure of outbreak severity. To present the 540 

https://paperpile.com/c/pgUGTg/Z6TJ0
https://paperpile.com/c/pgUGTg/HEPJJ
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level of isolation and quarantine required under different scenarios, we calculate the number of 541 

people contained on each day of the outbreak, and average this over weeks to get weekly changes 542 

in the daily rates of isolations and quarantines. 543 

 544 

Physical distancing Simulations 545 

We simulated a population-level physical distancing effort, whereby a given proportion of the ‘weak 546 

links’ are removed (edges only observed on a single day; Extended Data Fig. 10A-D). This is akin 547 

to a simple situation whereby individuals reduce their non-regular contacts (e.g. to people outside 548 

of their household or other frequently visited settings such as workplaces). As further 549 

supplementary analysis, we also carried out a more complex physical distancing simulation, 550 

whereby the weak links that were removed were randomly reassigned to existing contacts 551 

(Extended Data Fig. 10E-G). This represents a scenario where individuals reduce their non-regular 552 

contacts but spend more time with regular contacts. 553 

 554 

The epidemic model code can be accessed at: https://github.com/biouea/covidhm 555 

 556 

Data availability 557 

This study used the raw data previously published in Kissler et al.3 and are available to download 558 

at: https://github.com/skissler/haslemere. The summarized network data used here are publicly 559 

available with the code. 560 

 561 

Code availability 562 

The code and data used to produce the simulations is available as an R package at: 563 

https://github.com/biouea/covidhm. A shiny app which runs individual outbreak simulations is 564 

available at: https://biouea.shinyapps.io/covidhm_shiny/ 565 
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