-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by University of Dundee Online Publications

OPEN ACCESS University
of Dundee

University of Dundee

Don't Believe The Hypel
Rough, Daniel J.; Cowan, Benjamin R.

Published in:
CuUl '20

DOIl:
10.1145/3405755.3406140

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):

Rough, D. J., & Cowan, B. R. (2020). Don't Believe The Hype! White Lies of Conversational User Interface
Creation Tools. In CUI '20: Proceedings of the 2nd Conference on Conversational User Interfaces (pp. 1-3). [17]
Association for Computing Machinery (ACM). https://doi.org/10.1145/3405755.3406140

General rights

Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

« Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain.
* You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Apr. 2021

https://core.ac.uk/display/328759593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3405755.3406140
https://discovery.dundee.ac.uk/en/publications/b9603c6b-66a6-453c-906a-9d7073619d28
https://doi.org/10.1145/3405755.3406140

Don’t Believe The Hype! White Lies of Conversational User
Interface Creation Tools

Daniel Rough
University College Dublin
Dublin, Ireland
daniel.rough@ucd.ie

ABSTRACT

Following the initial hype and high expectations of conversational
user interfaces (CUIs), a number of creation tools have emerged to
simplify development of these complex systems. These have the
potential to democratise and expand application development to
those without programming skills. However, while such tools allow
end-user developers to build language understanding and dialog
management capability into a CUI application, actually fulfilling or
executing an action still requires programmatic API integration. In
this paper, we look at how CUI builders that claim to be “no code
required” struggle to yield more than toy examples, with an aim to
provoke the community to develop better tools for CUI creation.

CCS CONCEPTS

+ Human-centered computing — Natural language interfaces;
User interface design.

KEYWORDS
conversational user interfaces, chatbots, end-user programming

ACM Reference Format:

Daniel Rough and Benjamin Cowan. 2020. Don’t Believe The Hype! White
Lies of Conversational User Interface Creation Tools. In 2nd Conference on
Conversational User Interfaces (CUI °20), July 22-24, 2020, Bilbao, Spain. ACM,
New York, NY, USA, 3 pages. https://doi.org/10.1145/3405755.3406140

1 INTRODUCTION

Conversational user interfaces (CUIs), either controlled through
voice as Intelligent Personal Assistants (IPAs), or through text as
chatbots, are regaining popularity after an initial slump caused
by over-estimation of their potential capabilities [10]. Rather than
relying on more social forms of conversation, which may not be
desirable [5], these assistants have found a niche in both commercial
and domestic contexts through simple, task-oriented adjacency-
pair dialogues. For domestic use, these types of interactions are
employed to check the weather, perform simple search queries, and
control smart home devices (if their end-users have the incentive
to figure out how to connect them) [1].

Although they are named as such, many personal assistants are
far from personal - they are at best one-size-fits-all Swiss Army

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CUI °20, July 22-24, 2020, Bilbao, Spain

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7544-3/20/07.

https://doi.org/10.1145/3405755.3406140

Benjamin Cowan
University College Dublin
Dublin, Ireland
benjamin.cowan@ucd.ie

Table 1: Popular commercial tools’ approaches to each stage
of CUI dialog (code-based approaches highlighted in red)

Tool name NLU DM NLG Fulfilment
Dialogflow intent/entity follow-up/ hand node.js
[7] mapping Ul slot-fill Ul crafted = webhook
Lex intent/entit hand lambda
[12] mapping Ui] slot-All UL crafted ~ function
Watson intent/entity follow-up/ hand node.js
Assistant[2] mapping Ul slot-fill Ul crafted = webhook
Oracle intent/entity =~ XML-like = hand node.js
Assistant[3] mapping Ul ~ flow script crafted =~ webhook
Rasa intent/entity JSON-like hand python
[15] scripting flow script crafted scripts
FlowXO keyword drag-drop hand built-in
[9] matching Ul flow editor crafted integration
Pandorabots pattern XML-like hand no defined
[14] scripting flow script crafted process

knives. Development of their behaviour is driven by organisations
or individuals with significant programming skills and resources.
To truly democratise agent development by allowing users to per-
sonally tailor functionality, we need development platforms that
can be accessed by end-users with little technical expertise. In other
words, tools for end-user programming are needed to allow software
end-users - the experts of their own needs and desires - to make
their CUIs truly personal [8]. The good news is that a number of
these tools exist. The bad news is that fulfilment of services still
requires programming experience, yielding nothing more than the
ability to develop toy systems for the average end-user. In this paper,
we aim to provoke a practical response to our assertion that CUI
creation tools hype up their “no code required” features, glossing
over the need for programming to do anything of use.

2 NO CODE, NO PROBLEM?

Many tools purport to allow complex CUI experiences to be created
with no programming whatsoever. For instance, the Flow XO pitch
insists one can “Create a chatbot with zero coding skills required” [9].
Using Watson Assistant, IBM claims: “Don’t know how to code? No
problem.” [2]. Despite these promises, if a CUI is to perform useful
services beyond simple canned responses to anticipated questions,
then unfortunately, not knowing how to code is indeed a prob-
lem. Figure 1 outlines the traditional CUI pipeline and the general
requirements for its implementation in existing tools. Following
McTear [13], we illustrate the necessary components of both text
and speech-based CUIs, namely chatbots and IPAs. Further, Ta-
ble 1 details popular commerial CUI tools, identifying methods used
to tailor supported components. Highlighted cells represent where

https://doi.org/10.1145/3405755.3406140
https://doi.org/10.1145/3405755.3406140

CUI *20, July 22-24, 2020, Bilbao, Spain

— code definitely required

| +example phrases E
' —no code required
! Language

Understanding

i Specify input/output
icontexts and dialog flow |

approaches to a CUI pipeline component require programming ex-
perience, or at least an understanding of semi-structured language
scripting. Note that speech recognition/synthesis are not annotated
in Figure 1, nor described in Table 1 as their use with any of the
tools identified is limited to Google’s or Amazon’s provided services.
These components would require significant speech technology
expertise to tailor even if they were open-source.

Most commercial tools focus on supporting end-user developers
in three key components of the CUI development pipeline; natural
language understanding, dialog management, and natural language
generation. The current state-of-the-art approach to tailoring lan-
guage generation in the tools identified is a three-step process. One
creates ‘intents’ - high-level actions a user would wish to perform,
specifies example phrases that map to this intent, and annotates
these phrases with ‘entities’ - parameters that customise the intent.
Data-driven language models are trained on these phrases, such
that no complex grammar creation is required. Pandorabots [14] still
makes use of a grammar rule-based syntax, but all other commercial
tools provide an intent-entity mapping user interface.

Tailoring the dialog management component often involves
specifying transitions in the dialog state through a simple graph-
ical user interface [2, 7, 9, 12], or less intuitive semi-structured
scripting [3, 14, 15]. Major industry platforms (e.g., Google’s Di-
alogflow [7]; Amazon’s Lex [12]; IBM’s Watson Assistant [2]) take a
straightforward frame-based approach to DM, managing context to
ensure that all entities or ‘slots’ are filled prior to fulfilling an intent.
(Harms et al. provide a detailed comparison of DM approaches in
both commercial and research tools [11]).

‘Natural language generation’ is something of a misnomer in
current end-user tools in that no programmatic approach is taken
to generate natural language replies. In all tools, responses are
specified by users as “canned” text with the possibility to include
parameterised, entity-specific slots. This alleviates the need to im-
plement any form of semi-structured language grammar.

In short, the tailoring of key CUI components is generally accessi-
ble to non-programmers in commercial tools. For instance, one can
define a pizza ordering intent that recognises entities for size, crust
type and toppings, a slot-filling dialog manager that prompts for
missing values, and a parameterised confirmation response. Now
our dialog is successfully completed, all we need is to actually place
the order...and therein lies the trouble.

—no code required !

Daniel Rough and Benjamin Cowan

E Write webhooks and API i .
| calls and response parsers Service Fulfilment

E Specify static response text E
| + slots for dynamic entities |
o .

I —nocoderequired |

Text output
(chatbots)
> Speech output
(IPAS)

' Language
Generation

Speech
Synthesis

Figure 1: Traditional pipeline of CUIs and their implementation - adapted from [13]

3 NO CODE? NO! PROBLEM!

Despite bold claims of a no-code-required creation process, involv-
ing external services in a developed CUI application in any way - be
it dimming a smart bulb or ordering pizza - requires programming.

A CUT’s execution of a service is termed “fulfilment” and occurs
when an intent has been matched and its requisite entities provided.
DialogFlow and Lex currently offer integration functionality for
deploying a CUI as a Google Action or Alexa Skill without the
need for coding, but these still require programming experience to
connect APIs together. From an end-user programming perspective,
previous work has highlighted the difficulty that even enthusiastic
end-users have in integrating new devices into their smart home
setups [4, 6]. Without support for fulfilment, no-code-required tools
can still be used to build FAQ answering CUIs. Yet for applications
where some external service needs to be executed based on users’
commands, this lack of functionality is a major issue.

4 WHAT NEEDS TO BE DONE?

There are currently a plethora of CUI development tools available,
but only really useful to those with the knowledge to implement
back-end fulfilment and connect this with user utterances. The
average end-user is instead limited to creating a front-end data-
gathering dialog. This has the potential to be integrated with exter-
nal services but, without programming, remains as a non-functional
toy. We as a community need to drive the development of CUI cre-
ation tools with the following:

e Frank and honest descriptions of capabilities - unrealistic
high expectations are a major cause of frustration and aban-
donment for these tools

o Straightforward integration with existing platforms for ser-
vice integration such as IFTTT!. Such platforms abstract
over code-based implementation for a wide (and growing)
variety of web services

e No-code integration with speech recognition/synthesis ser-
vices offered by Google or Amazon, so that developers who
desire voice interaction are not locked into using the other
components provided by these companies

Addressing these points will be a solid start to meeting the claims
of “no code required” tools and consequently democratising CUI
development by opening it to those without programming skills.

Uhttps://ifttt.com/

Don’t Believe The Hype! White Lies of Conversational User Interface Creation Tools

REFERENCES

[1] Tawfiq Ammari, Jofish Kaye, Janice Y. Tsai, and Frank Bentley. 2019. Music, Search,

[2

[3

]

(4]

(6

=

=

and IoT: How people (really) use voice assistants. ACM Transactions on Computer-
Human Interaction 26, 3 (apr 2019), 1-28. https://doi.org/10.1145/3311956

IBM Watson Assistant. 2020. Watson Assistant | IBM Cloud. https://www.ibm.
com/cloud/watson-assistant/. Accessed: 22/2/20.

Oracle Digital Assistant. 2020. Oracle Digital Assistant - Get Started. https:
//docs.oracle.com/en/cloud/paas/digital-assistant/. Accessed: 22/2/20.

AJ.].Bernheim Brush, Bongshin Lee, Ratul Mahajan, Sharad Agarwal, Stefan
Saroiu, and Colin Dixon. 2011. Home automation in the wild: Challenges and
opportunities. In Conference on Human Factors in Computing Systems - Proceedings.
ACM Press, New York, New York, USA, 2115-2124. https://doi.org/10.1145/
1978942.1979249

Leigh Clark, Nadia Pantidi, Orla Cooney, Philip Doyle, Diego Garaialde, Justin
Edwards, Brendan Spillane, Emer Gilmartin, Christine Murad, Cosmin Munteanu,
Vincent Wade, and Benjamin R. Cowan. 2019. What makes a good conversation?
Challenges in designing truly conversational agents. In Conference on Human
Factors in Computing Systems - Proceedings. ACM Press, New York, New York,
USA, 1-12. https://doi.org/10.1145/3290605.3300705

Alexandre Demeure, Sybille Caffiau, Elena Elias, and Camille Roux. 2015. Building
and using home automation systems: A field study. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), Vol. 9083. Springer, Cham, 125-140. https://doi.org/10.1007/

[10

[11

[12

[13

[14

[15

]

]

]

CUI °20, July 22-24, 2020, Bilbao, Spain

978-3-319-18425-8_9

Google DialogFlow. 2020. Dialogflow Documentation | Google Cloud. https:
//cloud.google.com/dialogflow/docs. Accessed: 22/2/20.

Gerhard Fischer, Daniela Fogli, and Antonio Piccinno. 2017. New Perspectives in
End-User Development. Springer International Publishing, Cham. 61-97 pages.
https://doi.org/10.1007/978-3-319-60291-2

FlowXO. 2020. Flow XO - Easy to use chatbot platform. https://flowxo.com/.
Accessed: 22/2/20.

Jonathan Grudin and Richard Jacques. 2019. Chatbots, humbots, and the quest
for artificial general intelligence. In Conference on Human Factors in Computing
Systems - Proceedings. ACM Press, New York, New York, USA, 1-11. https:
//doi.org/10.1145/3290605.3300439

Jan Gerrit Harms, Pavel Kucherbaev, Alessandro Bozzon, and Geert Jan Houben.
2019. Approaches for dialog management in conversational agents. IEEE Internet
Computing 23, 2 (mar 2019), 13-22. https://doi.org/10.1109/MIC.2018.2881519
Amazon Lex. 2020. Amazon Lex Documentation. https://docs.aws.amazon.com/
lex/. Accessed: 22/2/20.

Michael Mctear. 2018. Conversational Modelling for Chatbots: Current Ap-
proaches and Future Directions. In Conference on Electronic Speech Signal Pro-
cessing (ESSV 2018).

Pandorabots. 2020. Pandorabots: Home. https://home.pandorabots.com/. Ac-
cessed: 22/2/20.

Rasa. 2020. Rasa: Open source conversational Al https://rasa.com/. Accessed:
22/2/20.

https://doi.org/10.1145/3311956
https://www.ibm.com/cloud/watson-assistant/
https://www.ibm.com/cloud/watson-assistant/
https://docs.oracle.com/en/cloud/paas/digital-assistant/
https://docs.oracle.com/en/cloud/paas/digital-assistant/
https://doi.org/10.1145/1978942.1979249
https://doi.org/10.1145/1978942.1979249
https://doi.org/10.1145/3290605.3300705
https://doi.org/10.1007/978-3-319-18425-8_9
https://doi.org/10.1007/978-3-319-18425-8_9
https://cloud.google.com/dialogflow/docs
https://cloud.google.com/dialogflow/docs
https://doi.org/10.1007/978-3-319-60291-2
https://flowxo.com/
https://doi.org/10.1145/3290605.3300439
https://doi.org/10.1145/3290605.3300439
https://doi.org/10.1109/MIC.2018.2881519
https://docs.aws.amazon.com/lex/
https://docs.aws.amazon.com/lex/
https://home.pandorabots.com/
https://rasa.com/

	Abstract
	1 Introduction
	2 No code, no problem?
	3 No code? No! Problem!
	4 What needs to be done?
	References

