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ABSTRACT In bacteria, adaptation to changes in the environment is mainly con-
trolled through two-component signal transduction systems (TCSs). Most bacteria
contain dozens of TCSs, each of them responsible for sensing a different range of
signals and controlling the expression of a repertoire of target genes (regulon). Over
the years, identification of the regulon controlled by each individual TCS in different
bacteria has been a recurrent question. However, limitations associated with the
classical approaches used have left our knowledge far from complete. In this report,
using a pioneering approach in which a strain devoid of the complete nonessential
TCS network was systematically complemented with the constitutively active form of
each response regulator, we have reconstituted the regulon of each TCS of S. aureus
in the absence of interference between members of the family. Transcriptome se-
quencing (RNA-Seq) and proteomics allowed us to determine the size, complexity,
and insulation of each regulon and to identify the genes regulated exclusively by
one or many TCSs. This gain-of-function strategy provides the first description of the
complete TCS regulon in a living cell, which we expect will be useful to understand
the pathobiology of this important pathogen.

IMPORTANCE Bacteria are able to sense environmental conditions and respond ac-
cordingly. Their sensorial system relies on pairs of sensory and regulatory proteins,
known as two-component systems (TCSs). The majority of bacteria contain dozens of
TCSs, each of them responsible for sensing and responding to a different range of
signals. Traditionally, the function of each TCS has been determined by analyzing
the changes in gene expression caused by the absence of individual TCSs. Here, we
used a bacterial strain deprived of the complete TC sensorial system to introduce,
one by one, the active form of every TCS. This gain-of-function strategy allowed us
to identify the changes in gene expression conferred by each TCS without interfer-
ence of other members of the family.

KEYWORDS Staphylococcus aureus, regulon, two-component systems

wo-component signal transduction systems (TCSs) are found in organisms of all

domains of life (1). In bacteria, they constitute the basic stimulus-response coupling
mechanisms to allow bacteria to sense and respond to changes in the environmental
conditions (2, 3). A prototypical two-component system contains a histidine kinase (HK),
which autophosphorylates on a conserved histidine residue in response to extracellular
stimuli. The phosphorylated HK then binds and transfers the phosphoryl group to a
conserved aspartate residue on the response regulator (RR) (4-6). The RRs are often
DNA-binding transcriptional activators and/or repressors, and the affinity for their DNA
targets increases when they are phosphorylated. Thus, the primary consequence of the
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activation of a TCS is the expression of a specific set of genes controlled by that TCS.
In fewer cases, the RR lacks the DNA-binding domain and exerts its regulatory effect by
establishing direct interactions with protein or RNA targets and adaptation does not
necessarily imply modifications in gene expression (7).

Traditionally, the regulon controlled by an individual TCS has been identified
through the comparative analysis of the transcription profiles between the wild type
and isogenic mutants in the respective sensor kinase and/or response regulator
genes. Despite the tremendous progress made in understanding the functions of
individual TCSs, limitations associated with this approach have rendered our current
knowledge about the sets of genes controlled by each specific TCS far from
complete. For example, in most of the cases, the signal(s) sensed by TCSs remains
unknown, and consequently, studies have been conducted in environmental con-
ditions where the TCS might be only partially activated. Thus, changes in gene
expression caused by the absence of the TCS might be biased toward those
promoters for which the RR shows higher affinity (8). Other limitations include the
fact that some genes can be regulated by multiple TCSs. As such, the absence of
one of these TCSs may not have an impact on the expression of the regulated genes
while the other TCSs are present. An additional and substantial problem that limits
our knowledge about the genes controlled by specific TCSs is the fact that very
often, studies of different TCSs of the same bacterium have been performed in
different laboratories using different bacterial strains that were grown under dif-
ferent environmental conditions. As a consequence of these limitations, many
important questions about the TCS network such as the specific and complete
regulon controlled by each TCS, the set of genes regulated uniquely by a single TCS,
or conversely, the common genes activated by many different TCSs, or the extent
by which the regulons of individual TCSs overlap, remain to be determined.

Over the past few years, global questions related with the TCS network have been
addressed in the clinically important pathogen Staphylococcus aureus (9-11). This
bacterium carries genes that encode 16 TCSs, and only a particular subtype of
methicillin-resistant S. aureus (MRSA) strains harbors an additional TCS in the mec
cassette element (https://www.ncbi.nm.nih.gov/Complete_Genomes/SignalCensus
.html) whose function is linked to the induction of methicillin resistance. Multiple
studies have demonstrated the relevance of the different TCSs both in the biology and
pathogenesis of S. aureus (12). Thus, TCSs have been involved in virulence (AgrCA and
SaeSR) (13-15); antibiotic resistance and cell wall damage (VraRS, GraXRS, and BraSR)
(16-21); cell wall metabolism, autolysis, biofilm development, and cell death (WalRK,
ArlISR, and LytSR) (22-25); bacterial respiration, fermentation, and nitrate metabolism
(SrrBA, AirRS, and NreCAB) (26-28); and nutrient sensing and metabolism (HssRS,
KdpDE, and PhoRP) (29-32). In previous work, we deleted all the TCSs present in two
different S. aureus strains and demonstrated that among the 16 TCSs, only WalRK is
essential for the bacterial growth, while the other TCSs are dispensable and can be
deleted simultaneously in the same strain without affecting cell viability (10). In this
study, we have complemented the S. aureus strain containing only the essential WalRK
TCS (S. aureus AXV) with the constitutively active forms of every response regulator
(RR*) to characterize the complete TCS regulon. The combination of this genetic
reductionist strategy with transcriptome and proteome techniques has allowed us to
identify the group of genes whose expression changes in the presence of each TCS. The
results revealed that the size of the direct regulons is highly diverse and with few
exceptions each TCS regulon always included genes exclusively regulated by the
respective TCS. At the same time, the regulons of many TCSs act in concert to
control the same subgroup of genes, strongly suggesting that bacterial physiology
adapts to different environments using common pathways. These results uncover
the commonalities and specificities of each TCS regulon with respect to its partners
and provide, for the first time, the complete catalogue of genes controlled by each
TCS in S. aureus. We anticipate these results will be of enormous value to under-
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stand the biology and virulence of S. aureus and to design strategies to combat this
important pathogen.

RESULTS

Phosphomimetic response regulators completely activate TCS regulons. To
identify the set of genes regulated by each TCS in S. aureus and considering that the
signals that activate the histidine kinase remain in most cases unknown, we evaluated
the efficacy of two different strategies to activate TCS transduction pathways in vivo.
The first strategy involved expression of the complete histidine kinase and response
regulator pair, whereas the second strategy involved the expression of the constitu-
tively active form of the response regulator (RR*) through mutation of the phosphor-
ylation reception residue aspartic acid to a phosphomimetic residue glutamate (33). To
confirm whether expression of the different complementation strategies resulted in
physiologically relevant gene expression alterations, we next compared the capacity of
the native TCS and the RR* to rescue phenotypes associated with three selected TCSs
(SaeSR, NreCB, and BraSR) in S. aureus AXV. The results showed that both complemen-
tation strategies were able to restore the corresponding phenotypes. Thus, SaeR*
restored the capacity of the bacteria to adhere to human fibronectin (Fig. 1A), NreC*
restored the capacity to reduce nitrate to nitrite (Fig. 1B), and BraR* restored the
resistance to bacitracin (Fig. 1C), confirming that both strategies were viable for
determining the regulons of the different TCSs.

To evaluate the efficiency of both strategies more accurately, we next compared the
changes in the transcriptome of cells expressing three selected TCSs (SaeSR, NreCB, and
BraSR) or their RR* (SaeR*, NreR*, and BraR*). The differential expression was defined as
significant when transcript abundance changed at least twofold with an adjusted P
value of <0.05 in comparison with the control strain containing the empty plasmid. The
results showed that the expression levels and the number of differentially expressed
genes was significantly higher in cells complemented with the RR* compared to those
complemented with the native TCS. Results in Fig. 2 and Fig. S1 in the supplemental
material represented as volcano plots showed that 107, 154, and 264 transcripts
increased their relative abundance more than twofold in S. aureus AXV complemented
with SaeR*, NreR* and BraR*, respectively. Surprisingly, just 4, 12, and 2 transcripts
changed their expression more than twofold in S. aureus AXV complemented with
native SaeSR, NreCB, and BraSR, respectively. Importantly, all the genes whose expres-
sion changed when the mutant was complemented with the native TCSs were also
identified using the RR* forms.

In accordance with the volcano plots, the normalized log, values representing the
number of mapped reads per nucleotide of specific known target genes of each of the
three TCSs showed a higher number of reads in genes when the RR* was overproduced
in the S. aureus AXV compared with the native TCS (see examples in Fig. 2 and Fig. S1).
This was even though expression levels of both RR* and the wild-type TCS were
comparable (see examples in Fig. 2 and Fig. S1).

Overall, and although both strategies were able to complement the mutant strain
phenotypes with the same efficiency, these data indicate that overproduction of the
phosphomimetic response regulators is more efficient in activating the corresponding
signal transduction pathway than overproduction of the native TCS. Therefore, this
strategy was used to unravel the complete regulon of the rest of the TCSs. Another
relevant implication of our findings is that genes with fold changes of less than two can
still be biologically meaningful.

Global transcriptional regulon for the two-component sensorial network. Given
the higher capacity of RR* to activate the signal transduction pathway, we used the
collection of 16 S. aureus AXV strains complemented with the constitutively active form
of each response regulator to identify the complete regulon of the TCS in S. aureus.
Overall, we observed 2,443 transcripts in total, affecting 1,075 genes (37% of the S.
aureus MW2 genome), changed their expression at least twofold with an adjusted P
value of <0.05 compared to the control strain containing the empty plasmid (Fig. 3). Of
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FIG 1 Overproduction of the TCS and RR* and phenotypic restoration. (A) Adhesion to human
fibronectin. Wells of ELISA plates were coated with 10 wg ml—" of human fibronectin. Bacteria containing
PRMC2 plasmids were induced with 100 ng ml~" of aTC. Data are averages and error bars are standard
deviations (SD) for independent triplicate determinations. GraphPad Prism 5.01 was used to analyze and
plot the results. Statistical significance was determined by one-way analysis of variance (ANOVA)
followed by Bonferroni’s multiple-comparison test and indicated by bars and asterisks as follows: **, P <
0.05. WT, wild type. (B) Nitrate reduction capacity. The presence of nitrite was colorimetrically detected.
A 10 ng ml~" concentration of aTC was used to induce expression from the pRMC2 plasmids. (C)
Bacitracin resistance. Bacterial growth on TSA medium supplemented with bacitracin (5 ug ml~—') was
assessed by serial dilutions. A 100 ng ml~' concentration of aTC was needed to obtain optimal levels of
the BraR* protein.

these genes, the expression levels increased for 712 genes and decreased for 306 genes
(Table 1).

These results revealed that the TCSs are more prone to modify the bacterial
physiology by activating the expression of their targeted genes than repressing their
expression. The number of differentially expressed genes by each TCS under the
conditions used in this study ranged between 2 genes in HptR* to 386 genes in PhoP*
(Fig. S2 and Table 1).

To determine the genes specifically regulated by each TCS, we considered the
transcriptomic data of the whole network and excluded those genes affected by
another TCS (Fig. S2). The results showed that the regulons of all TCSs contained genes
that, with the exception of LytSR and VraRS, are specific for each of them (see Data Set
S1 in the supplemental material). Some TCSs affect the expression of few genes (HptSR,
LytSR, and TCS7SR), whereas other TCSs regulate the expression of hundreds of genes.
TCSs (PhoRP, KdpDE, HssRS, and NreCB) share a significant number of genes with other
TCSs, suggesting that various TCSs coincide in the activation or repression of the same
physiological pathway(s) to adapt to different environmental conditions (see Table S1
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FIG 2 Overproduction of the phosphomimetic RRs leads to higher levels of signal transduction activation. (A) Transcriptomic results of the strain expressing
the native version of braRS under the control of the P_,, promoter compared with control. (B) Transcriptomic results for the strain complemented with the
phosphomimetic form of braR under the control of the inducible promoter P, .., compared to the control. Bacteria were grown at 37°C until exponential phase
(ODgq, Of 0.8). Differentially expressed genes were deemed significant for P < 0.05 (—log,, P value > 1.3) and fold change (FC) higher/lower =2 (log, FC >=*1)
and are plotted in red. The number of differentially expressed genes is higher in the cells expressing the phosphomimetic RRs. (C) Transcriptomic read maps
showing RNA-Seq mapped read distribution of the braRS TCS operon and contiguous genes were extracted from CLC Genomics and modified in Adobe
lllustrator CS4. A schematic representation of the region of the genome is shown. Open reading frames (ORFs) represented as green arrows correspond to the
HK and RR, and ORFs represented as blue arrows correspond to the contiguous genes known to be regulated by BraR. Alignments in the panels from top to
bottom correspond to S. aureus MW2 AXV carrying either pCN51 (empty control plasmid), pCN51::braRS (expressing the complete TCS), pRMC2 (empty control
plasmid for expression of phosphomimetic mutants) or pAH0150 (expressing the phosphomimetic version of braR™).

in the supplemental material). In particular, the group of genes whose expression is
regulated by several TCSs included purine biosynthesis genes (pur operon), as well as
iron acquisition (sirA and isdCD), glycolysis (gapR), methionine biosynthesis (metN7 and
metN2), and lysine permease (lysP) genes, among others (Table S2). Interestingly, the
expression of the large majority of genes regulated by multiple TCSs is always affected
in the same direction. However, 57 genes showed expression changes in the opposite
direction when expressing different RR* (Table S3), suggesting that the expression
levels of these genes were finely controlled by the action of several TCSs in response
to multiple external and/or internal stimuli. The regulons of HssRS and NreCB presented
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FIG 3 Heatmap of significant gene expression changes. Gene expression changes determined for S. aureus MW2 AXV carrying pRMC2 derivatives
expressing the indicated phosphomimetic TCS RR* were graphed using heatmap3 in R studio version 1.1.463 and R version 3.5.1. Hierarchical clustering
was performed using Euclidian distance and a complete linkage model. The normalized transcriptome data are fully available at our RNA map web
browser (http://rnamaps.unavarra.es/).
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TABLE 1 Number of genes affected by TCS expression?

No. of genes No. of genes

upregulated downregulated

by fold by fold

change change
Phospho- 7= O 7= U % of genes % of genes
mimetic RR >2 >4 <-2 <-4 regulated >|2|¢ regulated >|4|c
WalR 138 31 38 6 6.00 1.26
HptR 2 2 0 0 0.07 0.07
LytR 3 3 0 0 0.10 0.10
GraR 18 15 1 0 0.65 0.51
SaeR 74 53 33 2 3.65 1.87
TCS7 8 7 6 0 0.48 0.24
ArlR 34 20 59 19 3.17 1.33
SrrA 141 63 101 15 8.25 2.66
PhoP 237 64 149 48 13.16 3.82
AirR 96 50 54 3 5.1 1.81
VraR 63 21 24 2 297 0.78
AgrA 95 44 40 2 4.60 1.57
KdpE 224 87 103 17 11.15 3.54
HssR 138 52 64 2 6.88 1.84
NreC 154 55 82 8 8.04 2.15
BraR 127 23 137 16 9.00 1.33

aThe expression of genes in the sample expressing the defined phosphomimetic response regulator (RR¥)
were analyzed, and differentially expressed genes were determined relative to the pRMC2 control sample.
bThe columns showing the number of genes up- or downregulated by the expression of the indicated RR*
using a fold change cutoff of at least >2-fold or >4-fold and a false discovery rate-corrected P value of
<0.05.

“The columns showing percentages of genes regulated show the proportion of the S. aureus MW2 genome
changing its expression at least two- or fourfold.

the maximum overlap sharing 68% of the genes in their respective regulons. Overall,
these results uncover the complete transcriptomic regulon under an identical environ-
mental condition and show that each TCS regulates a specific group of genes together
with other genes affected by multiple TCSs.

Global proteome analysis for the two-component network. Measuring the abun-
dance of mRNA transcripts in a specific environmental condition provides an incomplete
snapshot of the response that the TCSs activate in the cell. Thus, we performed a quanti-
tative profile of protein abundance by mass spectrometry (liquid chromatography-mass
spectrometry [LC-MS]) to gain a more complete understanding of the biological
processes regulated by each TCS. Differential expression analysis between S. aureus
AXV and the collection of 16 S. aureus AXV strains complemented with each RR*
resulted in 267 differentially expressed proteins out of the 1,721 proteins identified
in the total lysates. Among them, the expression levels increased for 163 proteins
and decreased for 100 proteins, while 4 proteins altered their expression level
(positive and negative expression changes) depending on the TCS RR* present
(Table S3 and Data Set S2). In most of the TCSs, the number of differentially
expressed proteins is lower than the number of genes, except for the regulons of
HptR*, LytR*, and GraR*, where the number of differentially expressed proteins is
higher (Fig. S2 and Data Set S2). The maximum correlation between the genes and
proteins detected in the transcriptomic and proteomic analysis corresponds to 31%
of overlap for SaeR* (Fig. 4).

Gene ontology (GO) enrichment analysis confirmed that the majority of genes
specifically regulated by the expression of SaeR* were secreted proteins involved in
staphylococcal interactions with the host such as toxins targeting immune cells (leu-
kocidins), erythrocytes, and factors of the human immune system. In contrast, genes
involved in the de novo biosynthesis of purine nucleotides as well as in methionine
transport were downregulated in the SaeR*-expressing strain (Fig. 4). Overall, the
proteomic subgroup affected by every TCS contained proteins specifically modified by
a single TCS, confirming the functional singularity of each TCS (Fig. S2). In agreement
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with the transcriptomic data, all proteomic expression changes matched the direction «
of change in the transcriptomic data set (Fig. S3). Together, these data confirm that %
each TCS modifies the expression of a different panel of genes to adapt bacterial 2]

physiology to environmental cues and regulates gene expression at the RNA and
protein levels.

Comparative analysis of individual two-component system regulons. Given that
the phosphomimetic form of the RR is constitutively active, we wondered whether
complementation with the RR* may exacerbate the response and induce changes in
expression of inappropriate genes. Analysis of the regulons of HptSR, LytSR, TCS7SR,
GraRS, VraRS, ArlRS, and WalRK comprised 1, 3, 14, 18, 87, 93, and 176 genes, respec-
tively (Table 1). Expression of HptR* resulted in the exclusive upregulation of uhpT. uhpT
is located directly downstream of hptSR and transcribed in the opposite direction and
encodes the unique glucose 6-phosphate transporter of S. aureus. LytR* affects the
expression of only 3 genes, while an early microarray analysis revealed that a LytSR
mutation affected the expression of 467 genes (34). Expression of TCS7 RR* resulted in
the upregulation of 14 genes, most of them located within the vicinity of the TCS-
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FIG 5 Principal-component analysis comparing phosphomimetic TCS response regulator regulons with published regulons. Differentially expressed genes were
extracted from published data sets: regulated genes of the SaeRS TCS comparing the WT strains against clean deletion mutants in saeRS in two strain
backgrounds (COL and Newman) as well as in two growth phases were extracted from reference 58. Genes affected by the NreBC TCS were extracted from
reference 28 comparing the WT against a clean deletion mutant of nreABC grown under anaerobic conditions with or without nitrate. Genes affected by the
ArISR TCS are derived from reference 36 comparing the WT against a clean deletion mutant of either arlRS or mgrA. The published regulons were combined
with the data obtained in this study and genes affected by at least one of the TCSs or phosphomimetic RRs indicated were included in the data set analyzed.
Principal-component analysis was performed using BioVinci version 1.1.5 developed by BioTuring Inc., San Diego, CA, USA, and eigenvectors of the different

data sets analyzed were plotted.

encoding genes. GraR* activated the expression of 18 genes and downregulated the
expression of one gene. Half of these genes were included among the 424 genes
differentially expressed in the AgraRS mutant compared with the parental strain (18).
VraR* upregulated the expression of 63 genes and downregulated the expression of 24
genes. A previous characterization of the Vra regulon in the presence of vancomycin
identified 139 genes (35). Expression of ArlR* activated the expression of 34 genes and
downregulated the expression of 59 genes. The ArIRS regulon characterized by com-
parison of the wild type and its isogenic ArlRS mutant identified 250 genes differentially
expressed (36). Forty percent of the genes regulated by ArlRS in our study were also
differentially expressed in this study (Fig. 5). Finally, the WalRK system is essential for
the bacteria, and the regulon of WalRK was previously characterized using a similar
approach of overproducing the phosphomimetic form of WalR* in the wild-type
bacteria (37). WalR* activated the expression of 138 genes and downregulated the
expression of 38 genes. A substantial number of these genes was confirmed to be
activated through the SaeSR TCS in this study indicating that activation of the WalR
regulon can result in the activation of the SaeSR and/or other TCS regulons. Of the 176
genes regulated by WalR* in S. aureus AXV, 28 were also differentially expressed when
WalR* was overexpressed in the wild-type bacteria (37), and importantly, none of the
SaeSR-regulated genes were found in our WalR* regulon (Fig. 5).

Overall, these results showed that the sizes of the regulons in our approach are
significantly smaller than the regulons previously described, indicating that overexpres-
sion of the phosphomimetic form of the RR* does not affect the expression of
inappropriate genes. These results also suggested that regulons inferred from the
comparison of the wild type and the corresponding TCS mutant include genes that are
activated through other TCSs.
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FIG 6 The reporter for efb is specifically regulated by its cognate TCS. (A) Representative Western blot showing the GFP
levels of Pefb-gfp plasmid expressed from a collection of S. aureus AXV strains containing the indicated RR*. Only when the
specific RR* or the genomic copy of the TCS from the wild-type strain is present is the biosensor active. (B) Representative
Western blot showing the GFP levels from a collection of single TCS mutants harboring the Pefb-gfp plasmid. Wild-type S.
aureus MW2 and AXV were used as controls. GFP expression was observed in all the strains, but the ones lacking the
specific TCS responsible for the activation of the genes were studied. Bacteria were grown at 37°C until exponential phase
(ODgp of 0.8), and when needed, aTC was added at a concentration of 100 ng ml~'. A stain-free gel portion is shown as
a loading control.

Two-component system-specific fluorescent biosensors. To confirm our tran-
scriptomic analyses and to provide specific tools that can be used to study S. aureus
biology, we exploited the transcriptome and proteome analysis shown above. We
elucidated the specific subset of genes regulated by each TCS (Table 1 and Data Set S1)
and the overlap between the transcriptomic and proteomic results (Data Set S2 and
Fig. S3) to generate a collection of reporters specific for each TCS. With the exception
of VraR*, we were able to identify a promoter whose expression was significantly higher
in the presence of the corresponding RR* for all the TCS (Fig. S4). In the case of at/
(WalR*), IrgA (LytR*), gox (SrrA*¥), and ctsR (BraR*), there is residual low-level expression
of the reporter in the absence of the inducer (anhydrotetracycline [aTC] [100 ng mI—]).
We next evaluated the specificity of each reporter by analyzing the expression of three
reporters efb (SaeR*), mgrA (ArIR*), and gox (SrrA*) in the collection of S. aureus AXV
strains complemented with each RR* (Fig. 6 and Fig. S4). The results confirmed that the
activation of the reporter was significant only in the presence of its cognate RR*.
Conversely, we used a collection of mutant strains with mutations in each TCS to
demonstrate that only in the absence of the specific TCS did the expression levels of the
reporter decrease significantly (Fig. 6 and Fig. S4). Together, these data demonstrate
the existence of genes whose expression exclusively depends on the presence of a
specific TCS, whereas other genes are affected by several TCSs.

DISCUSSION

Bacteria sense and respond to changes in their environments through two-
component signal transduction systems. Free-living bacteria usually contain dozens of
TCSs with their number being proportional to the diversity of environments in which
organisms live and the complexity in cellular differentiation (38). After 2 decades of
intense study, we have a detailed knowledge about the molecular mechanisms under-
lying TCS signal transduction to the cellular machinery through the phosphotransfer
cascade. There is also abundant information about the genes affected by many TCSs,
especially those from pathogenic bacteria (12, 39-43). However, a systematic analysis of
the functionality of the complete TC sensorial system in the same bacterial cell under
signal-independent activation conditions has never been performed. Here, instead of
analyzing the effect of the deletion of each TCS, we have analyzed the consequences
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of introducing one by one the active form of every TCS in a bacterial strain containing
only the essential WalRK TCS.

Initially, we compared the efficiency of overexpressing the native TCS or the
phosphomimetic RR in activating their corresponding regulons and restore the phe-
notypes. Our results indicate that the level of activation of the corresponding regulon
in both approaches is very different. When the native sensor and response regulator are
overproduced, the RR is phosphorylated either by its cognate sensor or by unspecific
phosphate donors such as acetyl phosphate or alternative kinases (serine-threonine
kinase). These phosphorylated RRs have to withstand the phosphatase activity of the
cognate histidine kinase. In contrast, the RR* is insensitive to the phosphatase activity
and thus potentially able to reveal target genes that are not the major regulatory
targets but that are affected/fine-tuned in the presence of high levels of phosphory-
lated RR (i.e.,, when the signaling cascade is activated completely). In addition, the
signaling cascade on which activation with the native TCS relies might not be fully
active under the growth conditions used to purify the total RNA for transcriptional
analysis. These differences might explain why complementation with the native TCS
results in very few genes reaching the arbitrary twofold threshold value established to
discriminate genes specifically regulated by the TCS from those changes in gene
expression due to transcriptional noise. Despite the low number of genes whose
expression changes significantly, complementation with native TCS restored the phe-
notypes as efficiently as complementation with the phosphomimetic RR. These results
highlight the well-recognized problem about the adequacy of the fold change cutoff
values that are currently used to associate genes to biological phenotypes (44, 45).
Identification of the individual TCS regulon is intrinsically dependent on the availability
of its cognate signal when assessing transcriptional changes and further emphasizes
the need to use culture conditions that activate TCS signaling when determining their
target genes. Given that, the signals sensed by staphylococcal TCS are mostly unchar-
acterized; our approach offers the first systematic characterization of each individual
TCS's regulon that is independent of upstream signaling events. Another uniqueness of
our approach is that each RR is analyzed individually in the absence of other members
of the family, and therefore, all the changes in gene and protein expression depend
specifically on the presence of the constitutively active form of one RR, avoiding
sophisticated regulatory networks (46). The most common mechanism for controlling
gene expression by RR is through binding to cis-regulatory sequences in the promoter
of the target gene which affects the recruitment of RNA polymerase for transcription
output (8). The finding that a considerable percentage of the genes affected by one RR
are also regulated by other RRs confirms the importance of analyzing the regulon of
each TCS in the absence of other TCSs to identify unequivocally the genes that are
specifically regulated by a TCS from those genes indirectly regulated through another
TCS. A limitation of our approach resides in the fact that some RRs regulate biological
processes when they are unphosphorylated (47, 48). Understandably, genes regulated
by the unphosphorylated form of the RR were not detected in our approach. Future
studies may consider identifying the genes regulated by the unphosphorylated form of
each RR using the platform developed in this study.

The size of the regulons is highly variable, indicating that some TCSs sense a single
ligand, whereas others are more sophisticated and integrate numerous different signals
to regulate (a) major lifestyle switch(es), e.g., between virulence, biofilm formation, and
cell division. The smallest regulon corresponds to HptSR (49) and affects a single gene,
uhpT, which is located downstream of the TCS genes and transcribed in the opposite
direction. This TCS has remained insulated from other regulatory pathways after
acquisition by horizontal transfer (3). A very similar situation occurs with LytSR (50).
LytSR regulates mainly the IrgAB operon, which is located immediately downstream,
strongly suggesting that lytSR and IrgAB operons form a module that is transmitted
horizontally (25). Unlike for HptSR, the regulon of LytSR has not remained insulated,
because SrrBA also affected IrgAB's expression. As the number of genes in the regulon
increases, the possibility that the same gene belongs to the regulon of more than one
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TCS also increases. Our results indicated that overlap between regulons of different
TCSs ranged from 24% in the regulons with a higher number of genes (PhoRP and
KdpDE) to 65% (NreCB and HssRS). An extreme example of overlap is the group of
genes regulated by many TCSs. The fact that the expression of some specific genes
is affected by many different TCSs strongly suggest that adaptation to different
environmental conditions requires the activation of basic housekeeping functions
and points toward these genes as attractive targets for combatting S. aureus
infections. The requirement of these common pathways cannot be detected
through comparisons between the wild type and the corresponding single mutant
because in the presence of other TCSs, these pathways will already be active. We are
well aware that the existence of promiscuous targets in the regulons of different
TCSs implies that different RRs can directly or indirectly recognize and affect the
promoter region of these targets.

In conclusion, this study reports the first global analysis of the complete TCS
sensorial network using a reductionist approach where we evaluated the contribution
of each TCS individually in the same bacterial strain under identical environmental
conditions. A noticeable benefit of this strategy compared with all previous studies is
that it allows the identification of the specificities and commonalities of the regulon of
each TCS without interference from other members of the family. We anticipate that
these results will be of enormous value not just for a better understanding of the
biology of an important human and animal pathogen but also for the identification of
targets that can be used to combat S. aureus infections.

MATERIALS AND METHODS

Oligonucleotides, plasmids, bacterial strains, and culture conditions. Bacterial strains, plasmids,
and oligonucleotides (Stabvida and Sigma-Aldrich) used in this study are listed in Table S4 in the
supplemental material. Escherichia coli strains XL1-Blue (Stratagene), DC10B, and IMO1B (51, 52) were
grown in LB medium (Conda-Pronadisa), and Staphylococcus aureus strains were grown in Trypticase soy
broth (TSB) supplemented with 0.25% glucose (TSBg) or not supplemented with glucose (TBS) (Conda-
Pronadisa and Oxoid). Media, when required for selective growth, were supplemented with the appro-
priate antibiotics at the following concentrations: erythromycin, 10 ug ml~*; ampicillin, 100 ug ml—7;
chloramphenicol, 20 ug ml=".

DNA manipulations and bacterial transformation. General DNA manipulations were performed
using standard procedures. Plasmids were purified using the NucleoSpin plasmid miniprep kit
(Macherey-Nagel) according to the manufacturer’'s protocol. FastDigest and High-Fidelity restriction
enzymes (Thermo Scientific and NEB, respectively) and Rapid DNA ligation kit (Thermo Scientific) were
used according to the manufacturer’s instructions. Plasmids were transformed into E. coli XL1-Blue,
DC10B, or IMO1B and S. aureus by electroporation, using previously described protocols (53).

Generation of phosphomimetic mutants for the individual S. aureus TCS RR. Phosphomimetic
versions of each response regulator were generated by amplifying two overlapping DNA segments by
PCR substituting the aspartic acid for the phosphomimetic glutamate codon. The N-terminal fragment
also included the fhuD2 ribosomal binding site substituting the original ribosomal binding site of each
TCS RR. Both PCR fragments were fused using standard PCR procedures and cloned into the Kpnl and
Sacl sites of the anhydrotetracycline-inducible expression plasmid pRMC2 (54).

Generation of full TCS expression constructs and strains. Full TCS constructs were cloned into
PCN51 under the control of a leaky cadmium-inducible promoter and transformed into the S. aureus
MW2 AXV strain as previously described (10) (Table S4).

Preparation of RNA for RNA-seq analysis. S. aureus MW2 AXV derivatives carrying either a control
plasmid (pRMC2 or pCN51) or a plasmid containing the single phosphomimetic RR or the full TCS,
respectively, were grown overnight in TSB at 37°C. Next, 50 ml TSB cultures were inoculated with a
starting optical density at 600 nm (ODy,,) of 0.05 and grown to exponential phase (ODg,, of ~0.8, full
TCS constructs) at 37°C and 250 rpm. Cultures expressing the phosphomimetic RR or containing the
empty control plasmid pRMC2 were grown to early exponential phase (ODg,, of ~0.3), induced with
100 ng ml~" anhydrotetracycline (aTC), and incubated for 60 min prior to sample collection (final ODy,,
of ~0.8). Five milliliters of culture was stabilized using RNAprotect bacteria reagent (Qiagen) according
to the manufacturer’s instructions. Bacteria were thereafter collected by centrifugation for 10 min at
5,100 X g and 4°C. Bacterial pellets were then either directly processed for RNA extraction or stored at
—80°C. For RNA extraction, the bacterial pellet was resuspended in 1 ml of TRIzol reagent (Ambion) and
lysed in a FastPrep-24 homogenizer (MP Biomedicals) using three cycles of 60 s at 6.5 m s, followed
by 5-min incubation on ice after each cycle. RNA was extracted from the suspension using the PureLink
kit (Ambion) applying an on-column DNase digestion step using the RNase-free DNase kit (Qiagen)
according to the manufacturer’s instructions. Residual DNA was removed by a second DNase treatment
using RQ1 DNase (Promega), followed by RNA purification using the PureLink kit (Ambion) according to
the manufacturer’s instructions. RNA quality was assessed by gel electrophoresis.

July/August 2020 Volume 5 Issue 4 e00511-20

mSystems’

msystems.asm.org 12

1sanb Aq 0z0z ‘9z 1snbny uo /610 wse swaisAswy/:dny woly papeojumoq


https://msystems.asm.org
http://msystems.asm.org/

Complete Two-Component Regulon of a Living Cell

rRNA was depleted from 8 to 10 ug of extracted RNA using the MicrobeExpress kit (Ambion)
according to the manufacturer's instructions. The concentration of the remaining RNA sample was
determined by Nanodrop followed by confirmation of successful rRNA depletion using the Perkin Elmer
Labchip GX Touch 24 according to the manufacturer’s instructions. The libraries were prepared using the
lllumina TruSeq stranded mRNA kit omitting the poly(A) selection step and sequenced on the lllumina
NextSeq 500 using 75-bp single-end reads and ~10 M reads per sample.

RNA-seq analysis. RNA-seq data were analyzed using CLC Genomics Workbench (version 7.5.2), and
reads were mapped to the S. aureus MW2 genome (GenBank accession number NC_003923). Data were
log, transformed and normalized using quantile normalization on transformed expression values and the
quality of replicates assessed by principal-component analysis. After confirming that all replicates
clustered together, differential gene expression analysis was performed comparing each of the phos-
phomimetic RR-expressing samples with the pRMC2-containing control samples. Differential gene
expression analysis was performed using the built-in algorithm of CLC Genomics Workbench (version
7.5.2) and the following settings: total count filter cutoff, 5.0; estimate tagwise dispersion, yes; compar-
ison, against reference; reference name, pRMC2; false discovery rate (FDR) corrected, yes. Genes were
considered to be significantly regulated when a fold change of more than twofold was observed and the
P value after FDR correction was below 0.05.

Preparation of samples for proteomic analysis. Samples for proteomic analysis were collected at
the same time as samples for RNA-seq. For each sample, 1 ml of bacterial culture was added to 250 ul
of 5X proteomic lysis buffer (10% sodium dodecyl sulfate [SDS], 50 mM dithiothreitol [DTT], and 5X
EDTA-free protease inhibitor cocktail [Roche]), and cells were lysed in a FastPrep-24 homogenizer (MP
Biomedicals) using three cycles of 60 s at 6.5 m s~ ', followed by 15-min incubation at 95°C. The lysed
samples were stored at —80°C until further processing. Cysteines were alkylated by addition of 20 mM
iodoacetamide and incubation for 20 min at 25°C in the dark, and then the reaction was quenched by
addition of 20 mM DTT.

Proteomic analysis. One hundred micrograms of protein extract was precipitated adding trichlo-
roacetic acid and sodium deoxycholate to a final concentration of 10% and 0.04%, respectively. The
samples were incubated overnight at 4°C and then centrifuged for 10 min at 21,000 X g and 4°C to pellet
the proteins. The pellet was washed three times with 70% (vol/vol) ethanol, air dried, and then digested
by adding 2 ug of trypsin dissolved in 50 mM ammonium bicarbonate solution to the pellet followed by
overnight incubation at 37°C. After digestion, the samples were desalted using Oasis columns (Waters)
following the manufacturer’s instructions and dried in an Eppendorf Speedvac. Samples were resus-
pended to a final concentration of 0.2 ug ul="in 0.1% (vol/vol) formic acid, and 5 ul was used for LC-MS
injection. Mass spectrometric analysis was performed on a Linear ion trap-orbitrap hybrid mass spec-
trometer (Orbitrap-VelosPro; Thermo) coupled to a U3000 rapid separation liquid chromatography (RSLC)
high-performance liquid chromatograph (HPLC) (Thermo). Peptides were trapped on a nanoViper Trap
column (2 cm by 100 um C,5 column; 5 um, 100 A (Thermo, catalog no. 164564) then separated on a 50
c¢m Thermo EasySpray column (ES803) equilibrated with a flow of 300 nl min—" of 3% solvent B. (Solvent
A consisted of 2% acetonitrile and 0.1% formic acid. Solvent B consisted of 80% acetonitrile and 0.1%
formic acid.) Peptides were eluted with a 112-min gradient from 3% to 99% solvent B.

Data were acquired using a data-dependent “top 20" method, dynamically choosing the most
abundant precursor ions from the survey scan, with the “lock mass” option to improve the mass accuracy
of precursor ions (lock mass = 445.120024). Full-scan spectra (m/z 400 to 1600) were acquired in the
orbitrap with resolution R = 60,000 at m/z 400 (after accumulation to a Fourier transform mass spec-
trometer [FTMS] full automatic gain control [AGC] target; 1 X 10°). The 20 most intense ions, above a
specified minimum signal threshold (2,000), based upon a low resolution (R = 15,000) preview of the
survey scan, were fragmented using a normalized collision energy of 35, an activation time of 10 ms, and
recorded in the linear ion trap.

Label-free quantitation (LFQ) was performed using MaxQuant 1.5.8.3. (55) using the following
settings: enzyme in use, trypsin/P; allowing for two missed cleavages; carbamidomethyl of cysteines as
fixed modification; methionine oxidation, glutamine, and asparagine deamidation specified as variable
modifications. Peptide and protein FDR was set at 0.01, the minimal peptide length was 7, and two
unique peptides (unique + razor) were required for label-free quantification. Three biological replicates
were searched against the MW database containing translated protein sequences of the MW2 reference
genome (accession number NC_003923). Data were further processed using Perseus (version 1.5.3.1): a
Student’s t test (two-tailed, homoscedastic) was performed on the LFQ intensities and proteins with P <
0.05 and a fold change of >2-fold were considered significantly altered in abundance.

Phenotypic characterization. To study the capacity for phenotypic restoration of SaeSR, NreCB, and
BraSR, the S. aureus wild-type strain and AXV strain with an empty plasmid (pCN51 or pRMC2) and the
AXV strain complemented with each TCS or each RR* were used (Table S4). Adhesion to human
fibronectin was analyzed for the SaeSR phenotype as follows: overnight cultures were diluted 1:100 in
20 ml of TSBg. Strains containing pRMC2 plasmids were induced at an ODg,, of 0.3 with aTC at a
concentration of 100 ng ml~'. Bacteria were grown up to an OD,, of 1. Cells were harvested by
centrifugation, and pellets were washed and resuspended in a final volume of 20 ml of phosphate-
buffered saline (PBS). Enzyme-linked immunosorbent assay (ELISA) plates (96-well plates) (Nunc Max-
isorp; ThermoFisher) were coated with 10 ug ml=" of fibronectin (Sigma) and the crystal violet (VRW)
measures were performed in an Epoch plate reader (BioTek) after resuspension of the stained wells in
100 ul of a solution of 20% acetone and 80% ethanol. Reduction of nitrate to nitrite was assessed for the
NreCB phenotype as previously described (10). In this case, a concentration of 10 ng ml~" of aTC was
used to induce the strains expressing the pRMC2 plasmids. To assess the bacitracin resistance of
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bacteria expressing the BraSR or BraR* TCS, overnight cultures were adjusted to an ODg,, of 0.4 and
serially diluted in TSBg. A volume of 5 ul of diluted cultures was spotted onto Trypticase soy agar
(TSA) plates supplemented with bacitracin at a concentration of 5 g ml~'; when needed, aTC was
also added at 400 ng ml~" in the overnight cultures and 100 ng ml~" in the agar plates. Plates
without antibiotics were also used as growth control of the strains (data not shown). Representative
pictures were taken.

Generation of transcriptional fusions with GFP of the target gene promoters. To obtain
transcriptional fusions, we amplified the promoter regions of the selected target gene for each TCS using
the primers specified in Table S4 and cloned these into pCN52 (56). Plasmids were transformed into S.
aureus AXV strains that already contained the pRMC2 plasmid with the corresponding phosphomimetic
version of each RR. Plasmids expressing the transcriptional fusions of the efb, mgrA, and gox genes were
also transformed in MW2 wild-type strain and AXV strain (with or without pRMC2 plasmid) as controls,
together with the collection of single TCS mutants (10). To analyze the expression of the target genes,
total protein extracts were recovered at the same conditions as the samples prepared for the transcrip-
tomic and proteomic assays. Protein extracts were analyzed by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) (Bio-Rad) and Western blotting. Green fluorescent protein (GFP) was
detected using an anti-GFP antibody (Living Color A.v. monoclonal antibody [JL-8]; Clontech) diluted
1:2,500 in 0.1% PBS—Tween—5% skim milk. Peroxidase-conjugated goat anti-mouse immunoglobulin G
(Invitrogen) diluted 1:5,000 in 0.1% PBS—Tween—5% skim milk were used as secondary antibodies.
Proteins were detected with the SuperSignal West Pico chemiluminescent substrate (Thermo-Fisher)
following the manufacturer’s recommendations.

Gene ontology analysis. In order to perform gene ontology analysis on the regulated genes in the
S. aureus MW2 AXV mutant strains carrying either the control plasmid or a plasmid expressing a
phosphomimetic mutant version of the relevant TCS RR, we first annotated and matched the MW2
proteins with their relevant counterparts in the S. aureus strain NCTC8325. Genes were thereafter filtered
for their presence on both MW2 and NCTC8325 strains, and regulated gene lists were analyzed using
PantherDB (57) to identify proteins and pathways overrepresented in each of the TCS-regulated gene
sets. Overrepresentation analysis was performed using Fisher’s exact test and gene ontology sets
showing statistically significant enrichment after false discovery rate correction (P < 0.05) are shown at
top-level hierarchical clusters.

Data availability. Transcriptomic data are available on the http://rnamaps.unavarra.es/ server. Raw
sequencing data and aligned reads have been submitted to the National Center for Biotechnology
Information, BioProject identifier (ID) PRINA608927.
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