
                                                                    

University of Dundee

Joint Magnetospheres of Star-planet Systems

Holzwarth, Volkmar; Gregory, Scott G.

Published in:
Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Holzwarth, V., & Gregory, S. G. (2015). Joint Magnetospheres of Star-planet Systems. In G. van Belle, & H.
Harris (Eds.), Proceedings of the 18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (pp.
405-413)

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. May. 2021

https://discovery.dundee.ac.uk/en/publications/28e56db4-8509-43be-935b-c000595c109f


Joint Magnetospheres of Star-planet
Systems

Volkmar Holzwarth1, Scott G. Gregory2

1Kiepenheuer-Institut für Sonnenphysik, Schöneckstr. 6, 79104 Freiburg, Germany
2School of Physics & Astronomy, University of St Andrews, St Andrews KY16 9SS, UK

Abstract. The proximity between close-in hot Jupiters and their host star is expected
to give rise to star-planet interactions. One signature of such interactions can be the
observed phase shift between the location of enhanced chromospheric emission and the
orbital phase of the exoplanet. Here, we investigate the magnetic interaction of a hot
Jupiter with its magnetically active host star in the framework of a potential magnetic
field approximation. The focus of our work is on the structure of the joint magneto-
sphere of the system, in particular, on the locations of inter-connecting magnetic field
flux on the stellar and planetary surfaces. For the host star a realistic magnetic surface
map, reconstructed from Zeeman-Doppler imaging observations, is used. The planetary
magnetic field is taken to resemble a magnetic dipole perpendicular to the orbital plane.
Our results show single- and double-loop magnetic field structures inter-connecting stel-
lar surface regions at di↵erent latitudes with opposite polarity regions around the poles
of the exoplanet.

1. Introduction

The large number of confirmed exoplanet systems goes along with a considerable number of
close-in hot Jupiters with orbits only a few stellar radii above the surface of their host star (see
Tab. .1, last column). The close proximity in such systems is expected to entail enhanced star-
planet interactions (SPI) through magnetic and tidal processes (Shkolnik 2013). Previous
investigations considered di↵erent aspects of SPI, such as chromospheric activity caused by
magnetic fields (e.g. Lanza 2009) or the erosion of planetary atmospheres through the impact
of stellar winds (Grießmeier et al. 2004; Lanza 2013).

Here, we focus on magnetic interactions and analyse the structure of the joint magneto-
sphere of a close-in exoplanet and its host star in the framework of the potential field source
surface (PFSS) approximation. Our main objective is the determination of the properties of
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Table .1.: Geometric system parameters of selected close-in exoplanets (Rep: exoplanet
radius; R?: host star radius; a: star-planet separation). The list is ordered by the ratio a/R?

(last column). Source: NASA Exoplanet Archive.

system name Rep[RJupiter] R?[R�] a[au] a/R?

Kepler-91 1.38 6.3 0.072 2.46
WASP-103 1.53 1.44 0.020 2.96
WASP-12 1.79 1.57 0.023 3.14
Kepler-10 0.13 1.06 0.017 3.42
WASP-19 1.38 1.02 0.017 3.49
WASP-18 1.17 1.23 0.020 3.54
55 Cnc 0.18 0.94 0.016 3.62
KELT-1 1.11 1.46 0.025 3.63
OGLE-TR-056 1.36 1.36 0.024 3.77
WASP-33 1.50 1.44 0.026 3.81
Kepler-207 0.14 1.59 0.029 3.92

inter-connecting magnetic field structures and possible locations of enhanced stellar chromo-
spheric activity and planetary surface regions exposed to penetrating coronal material. The
latter aspect is particularly important for planetary science, since high-energetic particles
resulting from flaring events in the stellar corona may interact with and heat the planetary
atmosphere, modify its chemistry and change, for instance, the spectral surface albedo of
small, rocky planets. Based on the assumption that the exoplanet is su�ciently close to its
host star for wind ram pressures to be negligible, our work complements earlier investiga-
tions considering the impact of stellar winds on planetary magnetospheres (e.g. Vidotto et
al. 2013).

2. Model description

Originally introduced by Schatten et al. (1969) for the case of the Sun, the PFSS model
assumes that plasma emanating from the stellar surface follows the magnetic field until,
beyond the Alfvénic point, it starts to dominate the outflow, carrying the magnetic field with
it. The radius of the source surface corresponds to the distance at which the magnetic field
is dragged into the purely radial direction. In dependence on the magnetic field distribution
on the stellar surface the PFSS model yields open wind zones, from which stellar plasma
emanates in the form of magnetised winds, and dead zones, in which closed magnetic loops
retain million-degree plasma from escaping the stellar corona. Our SPI model excludes any
mechanical interaction, because the potential magnetic field is per se force-free and, thus,
exerts neither force nor torque on the exoplanet.

In the framework of the PFSS approximation the region of interest is current-free and
the magnetic field, B = �r , described by the gradient of a potential function,  . Owing
to the solenoidal condition of the magnetic field,  is a solution of the Laplace equation,
r2 = 0, subject to specific boundary conditions. The potential function is expanded in
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terms of solid spherical harmonics:
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where r0 = r0r̂0 = r�rep and rep is the actual position of the exoplanet (Fig. .3). We consider

Figure .1.: Schematic exoplanet system. The region of interest (grey) is bounded at the
outside by the source surface (dotted line) and inside by the stellar and planetary surfaces.

a star-exoplanet system with a separation of rep = 3 R�, a stellar radius of a? = 1 R�, a
Jupiter-sized exoplanet of radius aep = 0.1 R�, and a source surface with radius ass = 4 R�.

The coe�cients of expansion in Eq. (1) are determined subject to boundary conditions
given for the star, the exoplanet, and the source surface. Figure .2 shows the observed radial
magnetic field distribution of the primary component of V4046 Sgr (Donati et al. 2011), which
we use to specify the magnetic moments of the host star. For the exoplanet we assume a
magnetic dipole oriented perpendicular to the orbital plane with a polar surface field strength
of 100 G, which is about 10 times the average field strength of Jupiter (Christensen et al.
2009). The coe�cients of the source surface expansion depend on the stellar and planetary
magnetic moments and are calculated to make the magnetic field at the source surface purely
radial. For a more detailed description of how the coe�cients of expansion are determined
see Holzwarth & Gregory (2014).
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3. Results and Discussion

3.1 Stellar magnetic field

Figure .3 shows a snapshot of the joint magnetosphere resulting from the potential field
extrapolation described above. One part of the stellar magnetic field forms open wind zones,
whereas another part of the stellar magnetic flux is organised in closed loops connecting
surface regions of opposite polarities. According to the complexity of the observed surface
magnetic field distribution these loops cover a wide range of length scales, from regional
arcades to global loops connecting both hemispheres of the star. Furthermore, our results also
show more localised magnetic field structures which inter-connect the stellar and planetary
surfaces (Fig. .4).

We are particularly interested in the inter-connecting magnetic field structures in the
lower stellar atmosphere, since their footpoints indicate possible locations of planet-induced
enhanced stellar activity signatures. Some observations of stars hosting close-in exoplanets
show azimuthal o↵sets between the position of the exoplanet and enhanced chromospheric
emission (Shkolnik et al. 2003; Shkolnik 2013). Our results are in general agreement with
this observational feature, showing o↵sets between footpoints and exoplanet of up to 45o.

The type of the inter-connecting magnetic structure as well as the o↵set depend on the
underlying magnetic field distribution on the stellar surface and on the orbital phase of the
exoplanet. The sequence shown in Fig. .5 illustrates how the type of the inter-connection
changes from single- to double-loop field structures during the approach and passage of mag-
netic polarity boundaries on the stellar surface. In contrast to double-loop structures, which

Figure .2.: Surface distribution of the radial magnetic field strength on the primary com-
ponent of the pre-main sequence binary V4046 Sgr, reconstructed from Zeeman-Doppler
imaging observations (Donati et al. 2011).
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span large azimuthal angles of up to 90o, inter-connecting single-loop structures show some-
what smaller o↵sets between their stellar footpoint and the exoplanet. More observations of
close exoplanet systems are needed to provide better constraints on this dichotomy of single-
and double-loop inter-connections with small and large phase shifts, respectively.

Further properties of stellar footpoints are discernible in Fig. .6, which shows inter-
connecting loops for di↵erent orbital phases of the exoplanet from slightly above the orbital
plane. When the exoplanet orbits close to a polarity boundary on the stellar surface, the
footpoint is spread-out, with inter-connecting field lines tracing the boundary. In contrast,
when the exoplanet is above an extended region of uni-polar flux, the footpoint is concen-
trated at the location of highest magnetic flux. This behaviour also holds in the case of
double-loop structures, where the footpoint of each loop – connecting both poles of the ex-
oplanet with opposite polarity regions – may be located at significantly di↵erent latitudes.
The latter finding is important in the investigation of slow- and fast-rotating host stars, since

Figure .3.: Joint magnetosphere showing magnetic field lines (yellow) forming closed loops
on the star and on the exoplanet, ‘open’ stellar wind-bearing magnetic field lines, and field
lines inter-connecting between the star and the exoplanet in a double-loop structure. Colour-
shading of the stellar and planetary surfaces corresponds to magnetic field strengths from
�300 G (blue) to 300 G (red).
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Figure .4.: Side view of the double-loop magnetic field structure inter-connecting star and
exoplanet with opposite polarity magnetic field regions.

the magnetic flux of rapidly rotating active stars is predominantly located at high stellar
latitudes (Schüssler & Solanki 1992; Holzwarth 2007). Consequently, planet-induced mag-
netic activity signatures may also occur at high stellar latitudes and possibly on opposite
hemispheres of the star.

3.2 Planetary magnetic field

The focus concerning the planetary magnetic field is on the identification of surface regions
inter-connected to the star and, thus, exposed to infalling stellar material. We find that
both polar regions of the exoplanet are characterised by ‘open’ magnetic flux, which is
either connected to the star or subject to the stellar wind (Fig. .7). In case of a single-
loop field structure the polar region of one hemisphere is inter-connected with an opposite
polarity region on the stellar surface, whereas magnetic flux of the polar region in the other
hemisphere is carried away from the star by the stellar wind. In case of a double-loop field
structure, both poles are inter-connected with opposite polarity regions on the stellar surface,
thus roughly doubling the exposed surface area. At low latitudes, near the equatorial polarity
boundary, the planetary surface is covered by closed, loop-like magnetic field structures.

In analogy to the gravitational interaction of a two-body system, where Hill spheres
describe the region of dominant gravitational influence, the concept of magnetic Hill spheres
(MHS) is used to describe regions of dominant magnetic influence around star and exoplanet.
In Fig. .7 we identify the MHSs with the two regions inside the magnetic iso-surface separat-
ing the stellar and planetary domain. Changes in the planetary magnetic field hardly a↵ect
the stellar footpoints of inter-connecting field structures, since they are predominantly deter-
mined by the field distribution in the stellar MHS. Likewise the size and location of exposed
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planetary surface regions mainly depend on the actual planetary magnetic moments. For in-
stance, a reversal of the polarity of the planetary magnetic field, as it may occur in the course
of a planetary dynamo cycle, only changes the magnetic field structure in the vicinity of the
planet (see Fig. .7). A polarity reversal – or, in general, any intermittent or cyclic variability
– of both planetary and stellar magnetic fields adds to the intrinsic time-dependence of the
inter-connecting field structures caused by the exoplanet approaching and passing polarity
boundaries of the stellar magnetic field in the course of its orbital revolution.

Further detailed investigations of star-exoplanet systems considering di↵erent (observed
or simulated) stellar and planetary magnetic field distributions and orbital parameters have
to be carried out to determine the long-term averaged amount of planetary surface exposure
to high-energetic particles originating from the stellar corona.

Acknowledgements. SGG acknowledges support from the Science & Technology Facilities Council
(STFC) via an Ernest Rutherford Fellowship [ST/J003255/1].
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Figure .5.: Inter-connecting magnetic field structures at di↵erent orbital phases of the ex-
oplanet; azimuthal angles (white label) are with respect to the magnetic map shown in
Fig. .2.



V. Holzwarth & S.G. Gregory 413

Figure .6.: Stellar footpoints of inter-connecting loop structures for di↵erent orbital phases
of the exoplanet: wide-spread footpoint tracing the polarity boundary (left), localised single-
loop structure (middle); localised double-loop structure.

Figure .7.: Magnetic field in the vicinity of the exoplanet for a magnetic dipole being parallel
(left) and anti-parallel (right) to the z-axis; the host star (not visible) is located to the left.
The 6 G-isosurface (shaded) separates regions in which either the stellar or the planetary
field dominate the magnetic interaction, giving rise to the concept of magnetic Hill spheres.
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