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ABSTRACT: Proteolysis targeting chimeras (PROTACs) are catalytic
heterobifunctional molecules that can selectively degrade a protein of
interest by recruiting a ubiquitin E3 ligase to the target, leading to its
ubiquitylation and degradation by the proteasome. Most degraders lie
outside the chemical space associated with most membrane-permeable
drugs. Although many PROTACs have been described with potent
activity in cells, our understanding of the relationship between structure
and permeability in these compounds remains limited. Here, we
describe a label-free method for assessing the permeability of several
VH032-based PROTACs and their components by combining a
parallel artificial membrane permeability assay (PAMPA) and a
lipophilic permeability efficiency (LPE) metric. Our results show that
the combination of these two cell-free membrane permeability assays provides new insight into PROTAC structure−permeability
relationships and offers a conceptual framework for predicting the physicochemical properties of PROTACs in order to better
inform the design of more permeable and more effective degraders.

KEYWORDS: Selective degradation, PAMPA, LPE, permeability, structure−permeability relationships

Proteolysis targeting chimeras (PROTACs) enhance our
ability to drug biologically relevant targets through

selective degradation.1−3 These heterobifunctional compounds
include an E3 ligase-binding ligand and a protein-targeting
ligand connected by a linker. PROTACs facilitate proteasomal
degradation by recruiting the target protein to an E3 ligase,
leading to ubiquitylation and subsequent degradation of the
targeted protein.4−6 Unlike traditional inhibitors, PROTACs
are catalytic and have increased target-specificity derived
largely from ternary complex protein−protein contacts.7−9

While our understanding of the bioactivity of PROTACs is
rapidly increasing, the physicochemical properties of these
molecules have received relatively little attention.10,11

Due to the interest in PROTAC therapeutics, there is a clear
need to better understand their physicochemical properties.
Given their high molecular weight (MW > 800) and the
presence of multiple hydrogen bond donors (HBDs) and
acceptors (HBAs), PROTACs are expected to have low
membrane permeability.12−15 A recent study that used the
label-based chloroalkane penetration assay (CAPA)16 showed
very low permeabilities for PROTACs relative to their
individual components.17 While this assay provides relative
cell permeabilities across a large dynamic range, it does not
provide permeability coefficients that can be compared to
other data sets. Also, CAPA requires a chloroalkane tag and
therefore does not directly measure the permeability of the

parent compound. Establishing a label-free method to quantify
the permeability of PROTACs provides greater flexibility in
compound design without needing to synthesize a second set
of CAPA tag-containing molecules. While there are some mass
spectrometry approaches to quantify the intracellular concen-
tration of unlabeled compounds, these indirect studies do not
inform on oral bioavailability and some do not differentiate
between membrane-trapped compounds and those free for
target binding.17−20 The VHL-NanoLuc Fusion assay21 offers
label-free assessment of cell permeability, but results are
confounded by their dependence on variable VHL-binding
affinities. Here we report a label-free approach for studying the
passive permeability of von Hippel−Lindau (VHL)-based
PROTAC molecules using the parallel artificial membrane
permeability assay (PAMPA) and lipophilic permeability
efficiency (LPE).22 These simple, high-throughput assays
correlate strongly with cell-based permeabilities and oral
bioavailability while being relatively inexpensive.23 PAMPA
quantifies orders-of-magnitude differences in PROTAC
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permeabilities with a low limit of quantitation. LPE provides
insight as to how structural changes affect permeability.
We tested the membrane permeabilities of JQ-1 (1), four

model compounds (SL-X series) (3−6), and 11 previously
published VHL-PROTACs.24,25 These PROTACs include four
series: MZ (7−9),6,7,26 AT (15−17),7 CM/CMP (12−14),27
and MZP (10−11),26 grouped according to the target-binding
ligand and attachment to the VHL-recruiting ligand (Figures 2
and 5). Most previously published PROTACs have MWs
ranging from 900 to 1200 and between four and six HBDs.
Based on traditional criteria of drug-likeness, these compounds
are expected to have low membrane permeability. This is
indeed what we found. The highest PAMPA permeability
measured for this set was Pe = 0.6 × 10−6 cm/s, slightly below
the standard for “modest” permeability (Pe = 1 × 10−6 cm/s).
Notably, we were able to quantify permeabilities for all our
compounds with coefficients as low as 0.002 × 10−6 cm/s.
From our initial set of amide-containing compounds, the

most permeable compound was 4 (Pe = 8.6 × 10−6 cm/s,
Figure 1), an N-terminally capped VH032 analog with a

phenylacetamide acting as a simple protein-targeting model.
Compound 4 was 43-fold more permeable than a similar
compound, 6, with a 3-unit PEG linker between the VH032
and the phenylacetamide. Strikingly, 4 was 4000-fold more
permeable than the two least permeable compounds, 17 and
14 (Figures 2 and 5, respectively). Furthermore, among all 11
PROTACs tested, there was a 300-fold difference between the
most permeable compound, 7, and the least permeable

compounds, 14 and 17. In the MZ series alone (7−9, Figure
2), there was a 100-fold difference between the most (7, Pe =
0.6 × 10−6 cm/s) and least (9, Pe = 0.006 × 10−6 cm/s)
permeable derivatives. Combined, these data demonstrate the
large dynamic range of PAMPA and support its use for
unlabeled, quantitative measurements.
MW and solvent-exposed HBDs can significantly affect

membrane permeability.12 Permeability generally decreases as
MW increases,28 leading to a significant reduction in
permeability beyond MW = 1000.13,29 All else being equal,
the relatively high MWs (900−1200 Da) of the PROTACs
represent a predicted size-dependent permeability cost of
approximately one log unit compared to typical small
molecules of the same lipophilicity (MW < 600).13,22

However, because the PROTACs in this study are all in a
similar MW range, comparisons between them reflect differ-
ences in their physical properties separate from the size
penalty. Recent reviews argue that MW effects should not be
considered alone because factors like hydrophobicity and
HBDs affect permeability more prominently than MW.30,31

Supporting this conclusion, our two least permeable
PROTACs, 14 and 17, had the highest and lowest MWs,
respectively. Furthermore, 16 and 8 have nearly the same MW
(1005 and 1003, respectively), the same calculated octanol−
water partition coefficients (ALogP), and the same number of
HBDs and HBAs, yet their permeabilities differ by 10-fold
(Figure 2). Likewise, 15 and 7 are similar in terms of MW,

Figure 1. Physicochemical properties of protein-targeting small
molecules and model compounds. Cmpd = compound; PAMPA
units: × 10−6 cm/s; LogD(dec/w): 1,9-decadiene and PBS pH 7.4 shake
flask partition coefficient; LPE = LogD(dec/w) − 1.06(ALogP) + 5.47;
“--” = not determined.

Figure 2. Physicochemical properties of “AT” and “MZ” PROTACs.
Cmpd = compound; PAMPA units: × 10−6 cm/s; LogD(dec/w): 1,9-
decadiene and PBS pH 7.4 shake flask partition coefficient; LPE =
LogD(dec/w) − 1.06(ALogP) + 5.47.
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ALogP, and HBAs/HBDs, but 7 is 120-fold more permeable
than 15 (Figure 2). As expected, the compounds that had
lower MW and fewer HBDs/HBAs, including 1, 3, and 4, were
significantly more permeable (Pe ≥ 5 × 10−6 cm/s, Figure 1)
than the PROTACs.
Permeability data alone provide little information on how

structural features affect permeability. Therefore, we measured
lipophilic permeability efficiency (LPE).22 Originated by our
group, LPE quantifies the efficiency with which a compound
achieves passive membrane permeability at a given lipophilicity
based on the experimental hydrocarbon−water partition
coefficient (LogD(dec/w)) and ALogP. Combining PAMPA
and LPE represents a powerful method for assessing how
structural features contribute to compound permeability.
This is most evident when comparing the two matched pairs

from the AT and MZ series: 15 vs 7 and 16 vs 8. These
compounds have the same ALogP, the same number of HBDs/
HBAs, and MWs within 2 Da. Yet, the MZ compounds, 7 and
8, are significantly more permeable than their counterparts
from the AT series, 15 and 16, respectively. These AT and MZ
compounds differ only in the connection between their linker
and VH032 ligand. In 7 and 8, the VH032 ligand has an N-
terminal tert-Leu connected to a linker through an amide bond.
Alternatively, 15 and 16 have a penicillamine group in place of
the tert-Leu which is attached to the linker through a thioether
in place of the amide bond (Figure 2).
Clearly, the chemical environment surrounding HBDs

affects the PAMPA permeability of these PROTACs, similar
to the effects observed in other compounds in this MW
range.32,33 The LPE values of these compounds provide insight
into the potential for these flexible molecules to adopt
conformations capable of shielding HBDs. Typically, the
addition of a solvent-exposed HBD reduces LPE by 1.8.22 The
tert-Leu-containing 7 has an LPE of 0.4, and its penicillamine
counterpart, 15, has an LPE of −2.3, suggesting that 15 has at
least one additional exposed HBD compared to 7. The same
pattern is seen with 8 and 16 that have LPE values of 0.1 and
−2.6, respectively. These LPE data show that switching the
tert-Leu for a penicillamine group exposes an -NH to solvent
which likely contributes to the lower permeability of these AT
compounds.
The crystal structure of 8 in a ternary complex with VHL

and Brd4 further supports the presence of a shielded -NH in
the MZ compound series.7 Inspection of this structure shows
that the tert-Leu amide -NH of 8 is in a position to be shielded
from solvent by the tert-Leu side chain and is within a short
contact distance to the PEG oxygen, likely participating in an
intramolecular hydrogen bond (IMHB) capable of shielding
the -NH polarity from solvent (Figure 3). Co-crystal structures
of binary complexes of VHL with bound ligands provide
additional evidence for this phenomenon showing an oxygen
(in a similar position to the PEG ether in 8) that points in
toward the tert-Leu-NH, potentially close enough to form an
IMHB.34 While the membrane permeating conformation is not
necessarily the same as the target-bound conformation, these
crystal structures provide a possible explanation for the
difference in solvent-exposed HBDs between the MZ and
AT compounds.
This relationship between the MZ and AT compounds

supports reducing the number of exposed HBDs to increase
permeability. The extensive structural information on VHL
ligand cocrystal structures has shown that the tert-Leu amide
does not form a direct hydrogen bond with the VHL

protein.24,25,34 Hence, we hypothesized that removing an
HBD by substituting an amide for an ester would lead to
increased permeability, without detrimentally comprising VHL
binding affinity. To test this, we synthesized 3 and 5, ester
derivatives of 4 and 6, respectively, in which the N-terminal
tert-Leu amide was replaced by an ester (Figure 1). As
predicted, the ester derivatives were more permeable than their
amide counterparts. Compound 3 was 2-fold more permeable
than 4, and 5 was 1.5-fold more permeable than 6. Thus, the
amide-to-ester substitution provides a viable option to increase
the permeability of these types of compounds, though with the
caveat of the ester’s potential susceptibility to intracellular
esterase hydrolysis.
The LPE of the amide compounds (4 and 6) is nearly the

same as the LPE of their ester compound counterparts (3 and
5, respectively), suggesting that the tert-Leu is likely shielding
the polarity of the HBD in the amide-containing compounds as
has been observed with beta-branched amino acids.32,33 The
relatively modest increase in permeability observed with these
amide-to-ester substitutions reflects the unusually low desol-
vation penalty for the shielded amide NHconsistent with
what was observed in the MZ series. Therefore, it is possible
that substituting a more exposed amide with an ester could
lead to even greater improvement of membrane permeability.
Using a competitive fluorescence polarization (FP) assay, we
found that the ester-containing 3 was still capable of binding its
target protein, VHL, with a Kd only 1.7-fold higher than that of
the amide-containing 4, albeit >10-fold higher than the potent
VHL inhibitor VH298 (18, Figure 4).34 The Kd increase in the
ester compound further advocates for trying similar sub-
stitutions farther away from the VHL-binding ligand to
maintain binding capacity while improving permeability.
Consistent with Foley et al.,17 we found that permeability

increased with decreasing linker length. This was expected, as
increasing the length of the linker usually results in an increase
in one or more of the MW, HBDs, or HBAs. For the AT and
CM/CMP series, compound permeability was reduced by half
with one or two additional PEG units in the linker, respectively
(cf. 15 vs 16, and 12 vs 13, Figures 2 and 5). This effect was
more prominent in the MZ series as 7 (2-unit PEG linker) was
20-fold more permeable than 8 (3-unit PEG linker). A 2-fold
difference in permeability was also seen in the MZP
compounds (11, 4-unit PEG linker, and 10, 2-unit PEG

Figure 3. MZ1 ternary complex with VHL and Brd4 (PDB:5T35).7

Crystal structure showing the ternary complex of MZ1 (colored by
element) with Brd4 (pink) and VHL (orange). The VHL ligand tert-
Leu -NH (blue arrow) is shielded by the tert-Leu side chain and is
within hydrogen bonding distance of the VHL ligand PEG oxygen
(red arrow).
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linker, Figure 5). These results indicate that shorter linkers
typically produce more permeable compounds. Moreover, for
all but the MZP series, the compounds with shorter PEG
linkers had higher LPE values, suggesting that compounds with
shortened linkers were more efficient at permeating the
membrane for their given lipophilicity.
Previous studies have advocated for the use of short alkyl

linkers over PEG linkers to reduce total polar surface area to
improve permeability.17 Our results diverge in this respect, as
we found that our only compound bearing an alkyl linker, 17,
was the least permeable (Pe = 0.002 × 10−6 cm/s). This
compound was 2.5-fold less permeable than 15, which has a 1-
unit PEG linker. Compound 17 has one fewer HBA in this
linker than 15 which could reduce solubility and therefore
affect permeability. While PAMPA allows us to quantify the
differences in permeabilities directly, analyzing LPE enable us
to predict which structural features cause the permeability
changes. Increasing the number of PEG units in the PROTAC
linker reduces the LPE of that compound (cf. 15 and 16). If
the HBAs in these PEG linkers were not contributing to
IMHB, substituting the PEG linker in 15 with an alkyl linker as
in 17 (removing HBAs) should have little effect on LPE.
However, this is not what we observed. Instead, the LPE of
alkyl-linked 17 is 0.8 lower than its PEG counterpart 15,
suggesting that the ether oxygen in the PEG linker of 15 is
capable of shielding HBD, possibly the linker amide bond -NH
(adjacent to JQ-1) in a manner similar to that observed for
MZ1 (Figure 3). As the ΔLPE between 15 and 17 is less than
the 1.8-unit difference expected for a fully exposed HBD, it is
likely that the PEG ether provides only partial shielding by way
of IMHB formation.
The same phenomenon is present in the SL-X series (3−6,

Figure 1). Compounds 5 and 6 have an additional amide and
3-unit PEG linker compared to 3 and 4, respectively. If no
additional IMHBs were present in 5 and 6, the inclusion of
these additional HBAs and HBD should cause a decrease in
LPE of at least 1.8, compared to 3 and 4. Yet, the LPE values
of 5 and 6 are only moderately lower than 3 (ΔLPE = 0.8) and
4 (ΔLPE = 0.4), respectively. Thus, the PEG linker is likely
involved in IMHBs responsible for shielding some polarity.
Moreover, using a linker capable of forming IMHB could

shield the polarity of important HBDs responsible for target
engagement, a feature that would not be possible with an alkyl
linker. Therefore, the best linker type for a given PROTAC is
likely scaffold dependent, further highlighting the need to
examine the overall lipophilicity of the molecule when
designing a PROTAC.

Comparing PAMPA and LogD(dec/w) to ALogP allows us to
analyze permeability trends and predict permeability improve-
ments. For compounds with ALogPs up to ∼4, there is a
positive linear correlation between ALogP and permeability.22

As lipophilicity increases beyond ALogP ∼ 4−5, compounds
become insoluble or membrane-retained, and their effective
membrane permeabilities diminish (Figure 6A). Therefore,
designing PROTACs to have an ALogP below 5.0 could bias
these compounds toward higher permeabilities. The CM/
CMP compounds have low permeabilities and lower ALogPs
(<1) than the other PROTACs. As permeability typically
increases with ALogP from 0−4, a lipophilicity increase, such
as increasing the number of −CH2− groups relative to oxygens
in the linker, could greatly improve CM/CMP permeability.35

Plotting LogD(dec/w) vs ALogP creates a visualization of the
LPE metric which offers potential strategies to improve
permeability (Figure 6B). For example, in the MZ series, 7
and 8 have low permeabilities (>0.6 × 10−6 cm/s) and
moderately low LPE values (>0.5). As 7 and 8 already have
ALogP values close to 4.0, further increasing lipophilicity
would likely push these compounds into the insoluble region
and cause a further decrease in their membrane permeability
(Figure 6A). Also, the addition of a Phe residue to 8 to
generate 9 leads to a 1.2-unit decrease in LPE due to the
addition of an amide NH (which is less than the 1.8-unit cost
expected for the addition of an amide group, indicating partial
IMHB). This decrease in LPE between 8 and 9 is partially
offset by an increase in ALogP of 1.1 units, leading to a 5-fold

Figure 4. Fluorescence polarization (FP)-derived Kd of amide to ester
substitution in SLX compounds: (A) VH298, a small molecule
inhibitor of the E3 ubiquitin ligase VHL, used as a positive control for
high-affinity binding. (B) FP data for compounds 3, 4, and 18.

Figure 5. Physicochemical properties of “MZP” and “CM/CMP”
PROTACs. Cmpd = compound; PAMPA units: × 10−6 cm/s;
LogD(dec/w): 1,9-decadiene and PBS pH 7.4 shake flask partition
coefficient; LPE = LogD(dec/w) − 1.06(ALogP) + 5.47.
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decrease in permeability and putting 9 over the edge of the
solubility cliff. This analysis suggests that the decreased
degrader activity observed in cells for 9 compared to 86

could be, in part, due to these poor physicochemical
properties. Both the decrease in LPE and a significant increase
in ALogP contribute to the very poor permeability of 9. An
alternative solution to improving the permeability of 7 and 8
would be to replace the amide linkage to the bromodomain
warhead with a group (such as an ester) that does not
contribute an HBD.
The effect of structural features on permeability and

bioactivity can be significant. Generally, the bromodomain-
targeting compounds (MZ, AT, MZP), with extremely low
permeabilities (≤0.006 × 10−6 cm/s), were less active in
relevant cellular antiproliferation assays than compounds with
higher permeabilities (≥0.03 × 10−6 cm/s, SI Table 2).26

Specifically, 9 was both less permeable and less bioactive than
7 and 8. This decreased bioactivity is likely attributed to the
decreased permeability (Figure 2, SI Table 2), as binding
affinities with the target proteins were broadly comparable.6,24

Similarly, the AT compounds were the least active compounds
tested, consistent with their much lower permeability (Figure
2, SI Table 2). However, the related PROTAC, AT1, exhibited
a 5-fold lower bind affinity for the VHL protein and formed
less stable ternary complexes compared to 8,7,36 which could
also contribute to the significant loss of cellular potency in the
AT series. Conversely, the formation of a cooperative and
stable ternary complex can override the impact of perme-
ability.36 For example, 8 forms a more stable complex with its
targets, Brd4 and VHL, than compound 7, leading 8 to be one
log unit more active, despite being 20-fold less permeable than
7 (Figure 2, SI Table 2).26 Similarly, in the CM/CMP series,
13 is two log units more active than 12 in a cellular protein
degradation assay despite being slightly less permeable (0.005
cm/s vs 0.009 cm/s, Figure 5).27 This suggests that differences
in efficacy between these two compounds are likely due to the
relative stability of their respective ternary complexes27 rather
than differences in their extremely low permeabilities. These
results suggest that efforts to improve the permeability should
be monitored in conjunction with effects on ternary complex
formation.
In this study, we have demonstrated that combining PAMPA

and LPE provides insight into PROTAC structure−perme-

ability relationships. These label-free assays model only passive
permeability without the confounding effects of active
transport. PAMPA and LogD(dec/w) are established methods;
therefore, comparisons can be made to data previously
gathered using these methods. With this simple method for
measuring the permeability of PROTACs in hand, a more
systematic study on PROTAC permeability and pharmacoki-
netics is required. While this study provides some evidence,
assessing the permeability of PROTACs over a complete range
of ALogP values would allow us to develop a more detailed
lipophilicity window to guide the design of PROTACs biased
toward higher permeability. As esters are generally more prone
to hydrolysis than amides, additional studies are required to
assess the viability of amide-to-ester substitutions. Finally,
VH032-based PROTACs have a high number of HBDs and
HBAs often present on both protein-binding domains of the
molecule that are typically connected by a long flexible linker.
This arrangement of HBDs and HBAs lends itself to the
formation of IMHBs capable of shielding some of the
PROTACs’ polarity, enhancing permeability. The recently
reported macrocyclization of PROTACs37 could also prove
beneficial in this regard by taking advantage of the IMHBs and
HBD-shielding often achieved by cyclic peptides. Future
studies on the permeability of these compounds, and
expansion of these studies to include other PROTAC classes
such as those based on cereblon-binding ligands, are warranted
as they could create opportunities to model and predict a
network of IMHBs and fine-tune these interactions to produce
more permeable and more bioactive PROTACs.

■ EXPERIMENTAL PROCEDURES

For methods, see the Supporting Information.
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Figure 6. PROTAC permeability and LPE. Graphs showing the (A) permeability vs ALogP and the (B) LogD(dec/w) vs ALogP for compounds 1−
17. Dashed line on (A) shows the linear correlation between PAMPA and ALogP for ALogP from 0−4 (R2 = 0.9581). Dashed lines on (B)
represent LPE classes, m = 1.06. LPE values (gray) are LPE averages for compounds that fall on or near the line.
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similar (though not identical) set of PROTAC compounds.

ACS Medicinal Chemistry Letters pubs.acs.org/acsmedchemlett Letter

https://dx.doi.org/10.1021/acsmedchemlett.0c00265
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX

G

https://dx.doi.org/10.1021/acs.jmedchem.6b01483
https://dx.doi.org/10.1016/j.bmcl.2019.04.030
https://dx.doi.org/10.1016/j.bmcl.2019.04.030
https://dx.doi.org/10.1016/j.bmcl.2019.04.030
https://dx.doi.org/10.1039/C9MD00272C
https://dx.doi.org/10.1039/C9MD00272C
https://dx.doi.org/10.1021/jacs.8b06144
https://dx.doi.org/10.1021/jacs.8b06144
https://dx.doi.org/10.1021/acschembio.9b00972
https://dx.doi.org/10.1021/acschembio.9b00972
https://dx.doi.org/10.1016/j.ab.2008.08.012
https://dx.doi.org/10.1016/j.ab.2008.08.012
https://dx.doi.org/10.1016/j.ab.2008.08.012
https://dx.doi.org/10.1177/1087057115604141
https://dx.doi.org/10.1177/1087057115604141
https://dx.doi.org/10.1073/pnas.1701848114
https://dx.doi.org/10.1073/pnas.1701848114
https://dx.doi.org/10.1073/pnas.1701848114
https://dx.doi.org/10.1021/acschembio.8b00692
https://dx.doi.org/10.1021/acschembio.8b00692
https://dx.doi.org/10.1021/acschembio.8b00692
https://dx.doi.org/10.1021/acs.jmedchem.8b01259
https://dx.doi.org/10.1021/acs.jmedchem.8b01259
https://dx.doi.org/10.1021/acs.jmedchem.8b01259
https://dx.doi.org/10.1517/17425255.1.2.325
https://dx.doi.org/10.1021/jm5011258
https://dx.doi.org/10.1021/jm5011258
https://dx.doi.org/10.1021/jm5011258
https://dx.doi.org/10.1021/jm5011258
https://dx.doi.org/10.1021/jm5011258
https://dx.doi.org/10.1038/ncomms13312
https://dx.doi.org/10.1038/ncomms13312
https://dx.doi.org/10.1038/ncomms13312
https://dx.doi.org/10.1021/acs.jmedchem.6b01912
https://dx.doi.org/10.1021/acs.jmedchem.6b01912
https://dx.doi.org/10.1021/acs.jmedchem.6b01912
https://dx.doi.org/10.1021/acs.jmedchem.6b01912
https://dx.doi.org/10.1021/acs.jmedchem.6b01912
https://dx.doi.org/10.1038/s41467-017-00954-1
https://dx.doi.org/10.1038/s41467-017-00954-1
https://dx.doi.org/10.1038/s41467-017-00954-1
https://dx.doi.org/10.1007/BF00232899
https://dx.doi.org/10.1007/BF00232899
https://dx.doi.org/10.1016/j.chembiol.2014.08.013
https://dx.doi.org/10.1016/j.chembiol.2014.08.013
https://dx.doi.org/10.1016/j.chembiol.2014.08.013
https://dx.doi.org/10.1016/j.drudis.2011.06.001
https://dx.doi.org/10.1016/j.drudis.2011.06.001
https://dx.doi.org/10.1021/acs.jmedchem.8b00686
https://dx.doi.org/10.1021/acs.jmedchem.8b00686
https://dx.doi.org/10.1002/anie.201405364
https://dx.doi.org/10.1002/anie.201405364
https://dx.doi.org/10.1021/acs.jmedchem.5b00919
https://dx.doi.org/10.1021/acs.jmedchem.5b00919
https://dx.doi.org/10.1021/acs.jmedchem.5b00919
https://dx.doi.org/10.1021/acs.jmedchem.5b00919
https://dx.doi.org/10.1021/acs.jmedchem.7b00675
https://dx.doi.org/10.1021/acs.jmedchem.7b00675
https://dx.doi.org/10.1021/acs.jmedchem.7b00675
https://dx.doi.org/10.1021/acs.jmedchem.7b00675
https://dx.doi.org/10.1021/acs.jmedchem.7b00675
https://dx.doi.org/10.1021/acs.jmedchem.7b00675
https://dx.doi.org/10.1021/acs.jmedchem.7b00675
https://dx.doi.org/10.1021/acschembio.9b00092
https://dx.doi.org/10.1021/acschembio.9b00092
https://dx.doi.org/10.1021/acschembio.9b00092
https://dx.doi.org/10.1002/anie.201914396
doi.org/10.1021/acsmedchemlett.0c00194
doi.org/10.1021/acsmedchemlett.0c00194
pubs.acs.org/acsmedchemlett?ref=pdf
https://dx.doi.org/10.1021/acsmedchemlett.0c00265?ref=pdf

