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Nutrient sensing 

AMPK as a direct sensor of long chain fatty acyl-CoA esters 

 

D. Grahame Hardie 

Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dow 

Street, Dundee DD1 5EH, Scotland, UK 
 
AMPK is a crucial sensor of the cellular energetic state and is also activated during glucose 
starvation. A new study reports that AMPK is activated by interaction with long-chain fatty acid-
CoA esters (LCFA-CoAs), which appear to be the long-sought endogenous AMPK ligands that 
bind to the Allosteric Drug and Metabolite (ADaM) site. 
 
 

The AMP-activated protein kinase (AMPK), which occurs in essentially all eukaryotes as 

heterotrimeric complexes comprising catalytic a subunits and regulatory b and g subunits, is best 

known as a sensor of cellular energy status that is also activated during glucose starvation1. AMPK 

senses energy and nutrient status by competitive binding of AMP, ADP or ATP at multiple 

nucleotide-binding sites on the g subunit and via an indirect, nucleotide-independent mechanism 

involving sensing of the glucose metabolite fructose 1,6-bisphosphate by the glycolytic enzyme 

aldolase1. Once switched on, AMPK restores energy balance and adjusts cellular metabolism by 

phosphorylating numerous downstream targets2. In this issue of Nature Metabolism, Pinkosky et al3 

report that AMPK is also a direct sensor of nutrients, by providing evidence that long-chain fatty 

acid-CoA esters (LCFA-CoAs) are the long-sought naturally-occurring ligands that activate AMPK 

by binding the so-called “ADaM” site. 

 Since AMPK activation was already known to cause a switch away from anabolism and nutrient 

storage and towards catabolism instead, small molecule activators of AMPK were proposed as 

potential treatments for disorders of energy balance such as obesity and Type 2 diabetes over 20 

years ago4. These considerations led to high-throughput screens aimed at identifying novel 

compounds that allosterically activated AMPK. First to be described was A-769662, which had 

poor oral availability and was selective for AMPK complexes containing the b1 isoform5, but these 

efforts culminated in the development of MK-8722 and PF-739, which activate both b1- and (less 

potently) b2-complexes, and have beneficial effects on metabolism in mouse and non-human 

primate models of obesity and diabetes when administered orally6,7. The exact binding site for this 



class of activator was identified by crystallography to be a hydrophobic cleft between the b subunit 

carbohydrate-binding module (b-CBM) and the N-lobe of the a subunit kinase domain7; since this 

site lies between two subunits of the heterotrimer, it is unique to AMPK. However, a conundrum 

was that all compounds known to bind this site were synthetic molecules (apart from salicylate, a 

plant product8), and no ligands that occur naturally in mammals had been found. This site was 

therefore considered a type of “orphan receptor”, although it was suspected that a natural metabolite 

ligand exists, hence its speculative designation as the “Allosteric Drug and Metabolite” (ADaM) 

site9. 

 To “de-orphanize” this site, Pinkosky et al3 started with an educated guess that the mystery 

ligands might be LCFA-CoA esters, based in part on much earlier reports (e.g.10). They found that 

micromolar concentrations of LCFA-CoAs containing saturated or mono-unsaturated fatty acids of 

12 carbons or more all activated AMPK, whereas the corresponding free acids or carnitine esters 

did not. Like A-769662, palmityl-CoA (C16) only activated b1-complexes, and b-CBM mutations 

that perturb the ADaM site, but not g subunit mutations affecting the nucleotide-binding sites, 

eliminated or reduced LCFA-CoA-induced AMPK activation. Although the authors did not succeed 

in obtaining crystal structures of AMPK with LFCA-CoAs, they modelled the binding of palmityl-

CoA, which suggested that the fatty acid could bind in the well-defined ADaM site cleft, while the 

adenine moiety of CoA bound in a pocket in the b-CBM not utilized by the synthetic activators. 

 In cells or tissues subject to energy stress or glucose starvation, mitochondrial oxidation of 

LCFAs can represent a crucial source of ATP. Activation of AMPK by LCFA-CoAs, derived either 

from external sources or breakdown of triglycerides stored in lipid droplets, would represent a type 

of feed-forward activation triggering enhanced LCFA oxidation via phosphorylation of acetyl-CoA 

carboxylases (ACC1/ACC2), with consequent relief of malonyl-CoA inhibition of 

carnitine:palmitoyl-CoA transferase-1 (CPT1) to promote LCFA uptake into mitochondria (Fig. 1). 

Consistent with this model, Pinkosky et al3 found that incubation of mouse hepatocytes with 

LCFAs promoted phosphorylation of ACC1/ACC2 at the AMPK sites (S79/S221), while oral 

administration of Intralipid (an emulsion containing triglycerides and phospholipids)  in vivo 

promoted fat oxidation in wild type mice, but not in knock-in mice in which S79 and S221 had been 

mutated. 



 These results are exciting because they appear to have solved a long-standing conundrum about 

the physiological role of the ADaM site, and also suggest for the first time that AMPK is a direct 

nutrient sensor. However, some important questions remain. Firstly, which pathways downstream 

of AMPK other than LCFA oxidation (e.g. LCFA synthesis, mitochondrial biogenesis, autophagy?) 

are also modulated by LCFA-CoAs? Secondly, are there other natural metabolites that activate 

AMPK by binding the ADaM site, particularly for b2-complexes that appear to be resistant to 

LCFA-CoAs? Thirdly, since AMP does not allosterically activate AMPK orthologs from all 

species, how well-conserved is this effect of LCFA-CoAs across eukaryotes?  
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FIGURE LEGEND: 

Figure 1:  Activation of AMPK by long chain fatty acid (LCFA)-CoA esters and other 

stimuli. AMPK can be activated by energy stress, by glucose starvation or by the 

newly found binding of LCFA-CoAs to the ADaM site3. AMPK then phosphorylates 

and inactivates ACC1 and/or ACC2, leading to decreases in their product malonyl-

CoA, relieving inhibition of LCFA uptake into mitochondria via the CPT1/CPT2 

system. Once inside mitochondria, LCFAs are oxidized to generate large quantities of 

ATP. Phosphorylation of ACC1/ACC2 by AMPK would also be expected to inhibit 

LCFA synthesis, while AMPK may phosphorylate other targets with additional effects 

on metabolism, such as up-regulation of PGC-1a leading to mitochondrial biogenesis, 

which would further promote LCFA oxidation in the longer term. KEY: ACC1/2, 

acetyl-CoA carboxylase-1/-2; CPT1/2, carnitine:palmityl-CoA transferase-1/-2; FBP, 

fructose-1,6-bisphosphate; TG, triglyceride; dashed arrows indicate multiple steps 

and/or indirect effects. 
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