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Abstract—This paper summarizes the technical activities of
the Task Force on Power System Dynamic State and Parameter
Estimation. This Task Force was established by the IEEE
Working Group on State Estimation Algorithms to investigate
the added benefit of dynamic state and parameter estimation
for the enhancement of the reliability, security, and resilience
of electric power systems. The motivations and engineering
values of dynamic state estimation (DSE) are discussed in detail.
Then, a set of potential applications that will rely on DSE
is presented and discussed. Furthermore, a unifie framework
is proposed to clarify the important concepts related to DSE,
forecasting-aided state estimation, tracking state estimation and
static state estimation. An overview of the current progress in
DSE and dynamic parameter estimation is provided. The paper
also provides future research needs and directions for the power
engineering community.
Index Terms—Dynamic state estimation, Kalman filtering

synchrophasor measurements, static state estimation, tracking
state estimation, forecasting-aided state estimation, parameter
estimation, robust estimation, bad data, power system protection,
power system dynamics, power system stability and control.

I. INTRODUCTION

POWER systems are planned to be operated and controlled
in a hierarchical manner [1]. The controls are particularly

designed to deal with a variety of dynamic phenomena at
multiple time scales [2]. For example, synchronous genera-
tor’s automatic voltage control is based on locally available
measurements only. However, their voltage set points can be
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modifie when the command from the centralized control
center is received. Hence, there exists a hierarchical decen-
tralized closed-loop control that responds to system variations
and to set point changes. The centralized open-loop control is
triggered by the operator after a decision-making process. In
accordance with this philosophy of design, the majority of the
monitoring and control applications at the control center rely
on the steady-state model of the system. However, in reality,
power systems never operate in steady-state condition as
there are stochastic variations in demand and generation. The
situation is further aggravated by the large-scale integration of
distributed energy resources (DERs) on the generation side,
and complex loads and new demand-response technologies on
the demand side, such as electric vehicles and internet of things
devices. Such a shift has given rise to larger uncertainties of
the system dynamic characteristics. Consequently, the steady-
state assumption becomes questionable, and static state esti-
mation (SSE) methods unable to capture these dynamics in
an operational environment. As a result, SSE methods [3], [4]
used in today’s energy management systems (EMS) should be
reassessed and enhanced with new monitoring tools, such as
dynamic state estimation (DSE). DSE is capable of accurately
capturing the dynamics of the system states, and will play an
important role in power system control and protection [5]–[9],
especially with the increasing complexity resulting from the
uncertainties by the new technologies being deployed in the
generation and demand sides.
With the widespread deployment of phasor measurement

units (PMUs) and advanced communication infrastructure in
power systems [10], [11], the development of a fast and robust
DSE tool has become possible. Despite the extensive research
work on this topic, there is still a lack of common agreement
on what constitutes DSE, how it should be implemented
and effectively utilized in today’s power system EMS. In
particular, the motivations for DSE have not been thoroughly
discussed and agreed upon. As a result, its engineering value
is currently not fully clear to the power industry and software
developers. To this end, the IEEE Working Group on State
Estimation Algorithms has established a 3-year long task force
on Power System Dynamic State and Parameter Estimation
with the objective of creating a reference document describing
the motivations, concepts, implementation and utilization of
DSE for more resilient and reliable operation of future power
systems.
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In this paper, DSE is presented in a unifie framework,
which uses commonly accepted notations and formulations in
power system dynamics and control literature with the aim
of establishing a fir baseline for future research and devel-
opment efforts. The similarities and differences between DSE
and other existing estimation methods, including forecasting-
aided state estimation (FASE), tracking state estimation (TSE)
and SSE, are clarified Potential applications of DSE are
identifie and discussed, in an effort to justify its significanc
for enhanced monitoring, protection and control.
The remainder of the paper is organized as follows: Section

II outlines the motivations for DSE; a new unifie state
estimation framework that includes various existing state esti-
mation methods is proposed in Section III; Section IV provides
a thorough review of various dynamic state and parameter
estimation methods followed by some discussions; Section V
concludes the paper and provides future research needs and
directions for the power engineering community.

II. MOTIVATIONS FOR DYNAMIC STATE ESTIMATION

With the increasing penetration of DERs, responsive loads,
and microgrids, the power system has been subject to different
types of dynamics. For example, the stochastic and intermittent
characteristics of DERs increase the probability of sudden
changes in the bus voltage phasors in a short time-frame [12].
These changes are mainly driven by the changes in active
and/or reactive power injections, which further cause changes
in the generator’s state variables, such as rotor speeds and rotor
angles. The majority of today’s monitoring and control tools
at the control center EMS are based on steady-state power
system models, which cannot capture the system dynamics
[13]. This limitation is primarily due to the fact that the EMS
functions rely on the SCADA systems, which have slow scan
rates and no timestamps. Therefore, the state estimates are
updated every few seconds to minutes, and most of the control
schemes associated with the generators or the FACTS devices
are based on locally available information and measurements.
With the increased number of installed PMUs, the de-

velopment of DSE for power system monitoring, control,
and protection becomes possible. The benefit of using DSE
include but are not limited to:

• Improved oscillations monitoring: the estimated dynamic
state variables can be used to carry out modal analysis
[14], and the identifie modes can then be utilized to
adaptively tune power system stabilizers (PSS), thereby
achieving better damping of inter-area modes of oscil-
lation and improving system stability. Recall that the
effectiveness of conventional PSS using local measure-
ments may be limited by the observability of the modes
in the signal. Using state estimates of entire regions as
opposed to only local measurements will increase the
stabilizer’s response to inter-area modes if the generator
has significan influenc on such modes. Note that there
are several ways for monitoring the entire regions/systems
via DSE, namely the hierarchical and distributed DSE and
the centralized DSE using high-performance computing
technique [15], [16] or reduced order model of power
system [17]. Hierarchical and distributed DSE methods
are firs implemented locally to monitor small areas, and

their results are submitted to the control center for further
processing. This is the widely used strategy in the current
literature. The high-performance computing technique-
based DSE for large-scale systems is in its infancy and
merits further research;

• Enhanced hierarchical decentralized control [18]–[20]:
the availability of local and wide-area dynamic states
obtained from DSE enables the design of effective local
and wide-area controls; for instance, the estimated rotor
speed and other states can be used as input signals
to control excitation systems of synchronous machines
[19], [20] or of FACTS devices [18] so as to damp out
oscillations. The implementation can be in either fully
decentralized or hierarchically decentralized manner;

• Improved dependability and reliability of protection sys-
tems [6], [21]–[23]: by testing the consistency between
the PMU measurements and the dynamical model of the
protection zone for which the parameters are identifie by
DSE, both internal and external faults can be effectively
detected without any a priori protection relay settings,
yielding more reliable protection systems compared with
the traditional coordinated settings-based schemes; the
estimated online dynamic states can be utilized to ini-
tiate effective generator out-of-step protections [9], [23]
and transient stability monitoring based on the extended
equal-area criterion or the energy function approach [23];
furthermore, fast state estimation is a prerequisite for the
implementation of system integrity protection schemes
that can prevent blackouts;

• Enhanced reliability of the system models utilized for
dynamic security assessment (DSA) [24]: DSA requires
the availability of accurate models of the generators and
their associated controllers, of the composite loads and
of the special protection schemes, to name a few. By
developing DSE, both the static and dynamic models
can be validated [25], and if incorrect parameter values
are identified they can be included as additional state
variables in DSE for parameter estimation and calibration,
yielding improved system models [26] and more reliable
DSA;

• Other applications: improved synchrophasor data quality
and cyber security leveraging the model information, such
as filterin out measurement error that is modeled as
Gaussian or non-Gaussian distribution [27], [28], detect-
ing bad and delayed measurements, or recovering missing
data [29]; enhanced synchronous generators coherency
identificatio and dynamic model reduction [30] using
the estimated dynamic states and parameters; enhanced
bus frequency and center of inertia estimation [31], [32]
and detection of failures in controllers, such as excitation
systems, PSS, etc., [33], [34].

III. UNIFIED STATE ESTIMATION FRAMEWORK

This section develops a unifie framework for various
power system state estimation, namely DSE, FASE, TSE
and SSE. Specificall , the system operating conditions and
the associated mathematical models are firs revisited. Then,
the resulting state transition expressions are identified and
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subsequently customized for transient and quasi-steady state
operating conditions.

A. Quasi-Steady State versus Transient Operating Conditions
The states of a system are essentially in any of two mutually

exclusive operating conditions, quasi-steady and transient [35].
Transient operating condition: arises when a sudden dis-

turbance takes place in the system. In this context, only
electromechanical transients are considered and the associated
governing equations are those customarily adopted for tran-
sient stability analysis, given by
ẋ(t) =f(x(t),y(t),u(t),p), 0 = g(x(t),y(t),u(t),p),

xmin
i ≤xi ≤ xmax

i , i ∈ Ξ umin
j ≤ uj ≤ umax

j , j ∈ Ω

pmin
l ≤ pl ≤ pmax

l , l ∈ Γ (1)

where x ∈ R
n represents the system state vector, such as

the internal states of a machine or a dynamic load, etc.;
y ∈ R

m represents the algebraic state vector, such as voltage
and current phasors; note that the algebraic equations include
those that are associated with the power flow and generators’
stator [35]; u is the system input vector; p represents the
model parameters; and f and g are nonlinear functions; due
to physical limitations, controller design, some dynamic state
variables, control inputs and model parameters are bounded
by their upper and lower limits, which are represented by the
sets Ξ, Ω and Γ, respectively [35].
Quasi-steady state operating condition: refers to the situa-

tion in which the system operating point changes exclusively
due to slow and smooth load/renewable generation changes. In
this scenario, the generators and other controllers are able to
almost instantly absorb these slow changes, yielding negligible
changes of the dynamic states x(t), i.e., ẋ(t) ≈ 0. As a result,
the system is mathematically characterized by:

0 ≈ f(x(t),y(t),u(t),p),

0 = g(x(t),y(t),u(t),p), (2)

subject to equality and inequality constraints, where slowly
varying voltage phasors, i.e., algebraic state variables, are of
interest. Since system inputs are usually not perfectly known
and the parameters are always inaccurate to a certain extent,
state estimators capable of processing measurement snapshots
are developed, including FASE, TSE and SSE. It is worth
emphasizing that, at the distribution level, individual loads may
change abruptly enough for the distributed generators or local
controllers to be subject to disturbances, requiring the dynamic
model (1) to be resorted to.
In practice, the continuous-time models for both transient

and quasi-steady state operating conditions are transformed
into their discrete-time state space forms through some time
discretization technique [36]. Then (1) can be written as

xk = f(xk−1,yk−1,uk,p) +wk, (3)
0 = g(xk,yk,uk,p) + ek, (4)

where wk and ek are error terms that include time discretiza-
tion and model approximation errors. By treating the equality
constraints (4) as pseudo-measurements and processing them
together with the incoming measurements, a more general state
space model for state estimation is

xk = f(xk−1,yk−1,uk,p) +wk, (5)
zk = h(xk,uk,p) + vk, (6)

subject to the constraints define before, where zk is the mea-
surement vector, including pseudo-measurements, measured
algebraic variables, real and reactive power injections and
fl ws, current phasors, etc. [10]; h is the nonlinear measure-
ment function; vk is measurement error. The wk and vk are
usually assumed to be normally distributed with zero mean
and covariance matrices, Qk and Rk, respectively. Note that
they are the superposition of different sources of noise/errors
(e.g. from sensors, communication channels, or models) and
may not follow a Gaussian distribution in practice [37].
To perform state estimation under the quasi-steady state

operating condition, (2) is discretized as well, yielding the
similar formula as (5) and (6) except for setting xk ≈ xk−1.
The use of conventional measurements from remote terminal
units is sufficient Conversely, when the system is operating
under transient conditions, synchrophasor measurements may
be the only source of information to carry out DSE. At the
local level (e.g. generation station, substation or FACTS device
site), digital recorders or protection devices [6], also referred
to as intelligent electronic devices, can provide the required
synchronized information to execute DSE, possibly including
key parameters of the monitored device.
Remark: for the existing DSEs, not all the equality and the

inequality constraints are duly considered, for example, the
inequality constraints of the states, control inputs, and model
parameters. The latter may cause serious concerns, such as
algorithm divergence, violation of physical laws, obtaining
only sub-optimal solutions, to name a few. Thus, DSE methods
that take into account all constraints are needed.

B. Dynamic State Estimation
In order to estimate the dynamic state vector or model

parameters of the general discrete-time state space model
shown in (5)-(6), various nonlinear filter developed within
the Kalman filte framework are used. It typically consists
of two-steps [38], namely a prediction step using (5), and a
filtering/updat step using (6). Specificall , given the state es-
timate at time step k-1, x̂k−1|k−1 , with its covariance matrix,
Pk−1|k−1 , the predicted state vector is calculated from (5)
directly or through a set of points drawn from the probability
distribution of x̂k−1|k−1 , which is dependent on the assumed
probability distributions of wk. As for the filterin step, the
predictions are used together with the measurements at time
step k to estimate the state vector and its covariance matrix.
Depending on how the state statistics are propagated, different
Kalman filter are available, such as extended Kalman filte
(EKF), unscented Kalman filte (UKF), ensemble Kalman
filte (EnKF), particle filte (PF) [39], to name a few. They
are reviewed and discussed in Section IV.
The derived state space equations (5)-(6) allow DSE to be

applied rigorously to any power system, in any condition,
provided the available computing power is sufficien for the
size of the problem being addressed and the assumptions that
all the equality and inequality constraints are appropriately
enforced. The term ‘dynamic’, when applied to a quasi-steady
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state operating condition may be misleading, as the system
dynamics are actually assumed to be absent/negligible and the
state transitions are determined solely by the smooth evolution.
In fact, under this scenario, we call the developed estimators
as either FASE or TSE.
Remarks: The state vector can be the enlarged one that

contains x and y simultaneously, or the reduced one (x or
y), depending on whether algebraic or dynamic states are
being estimated; the state vector x can be expanded to include
uncertain parameters of generators and associated controllers.
On the other hand, except for the widely used recursive
estimators that are based on the Kalman filte framework, other
non-recursive estimators can also be adopted for the state and
parameter estimation, such as the infinit impulse response
filte , the finit impulse response filte [40], to name a few.

C. Forecasting-Aided State Estimation
The so-called FASE is a particular application of DSE

concept to quasi-steady state conditions, in which the state-
transition model (change in operating point) is driven only by
slow enough stochastic changes in the power injections (de-
mand and generation) and the dynamics of xk are sufficientl
small to be neglected. In addition, unlike the original DSE
formulation, in the FASE approach, the state-transition model
(5) is assumed to be linear, leading to

yk = Akyk−1 + ζk−1 +wk,

zk = h(yk, p) + vk, (7)

where yk represents the algebraic state variables that specif-
ically refer to the bus voltage magnitudes and angles; fur-
thermore, instead of resorting to the nonlinear state-transition
models, the required transition matrix Ak and the trend vector
ζk−1, which is a function of uk, are identifie from historical
time series data. The widely used approaches for that are expo-
nential smoothing regression or recursive least squares [12],
[41]–[45]. In other words, the current values are computed
from a weighted average of the most recent past values, with
exponentially decreasing set of weights, disregarding any other
information about the structure of the problem in hand.
When the input or the trend vector evolves smoothly, the

FASE approach provides satisfactory results, generally better
than the simpler TSE. However, potentially inaccurate results
can be obtained in presence of sudden changes caused by
loads, DERs, system topology, to name a few, as the state
transition coefficient take a while to adapt to the new situation
[45]. There are some mitigation approaches proposed in the
literature to address that, such as the normalized innovation
vector-based statistical test, the skewness test [42], [43], etc.
However, these tests are generally under the Gaussian assump-
tion, which is difficul to hold for true in practice, yielding
unreliable detection thresholds. Furthermore, the differentia-
tion among different anomalies remains a grand challenge.
Further research work along this line is required. One of the
advantages frequently associated with FASE is that the pre-
dicted state provides useful information for security analysis
and preventive control functions. However, the benefit of such
look-ahead or forecasting capability can be materialized in
practice only if there is enough time for reaction, which may

not be the case in transmission systems, featuring scanning
rates of few seconds. The readers can refer to the two FASE
review papers [46], [47] for more details.

D. Tracking State Estimation
With the assumptions that the state transition matrix Ak is

an identity matrix and the change in the state vector is very
small, the FASE simplifie to TSE [48]–[52]. Formally, the
TSE model is expressed as

yk = yk−1 +wk,

zk = h(yk, p) + vk, (8)

where the change of state (random walk) wk is assumed
to be a white Gaussian noise with zero mean and known
covariance matrix. One of the challenges in formulating TSE
is the lack of an appropriate model to represent dynamics
of the system state. TSE assumes a quasi-steady state state
condition where the system state remains unchanged other than
an additive Gaussian noisewk. With the increasing penetration
of DERs and fl xible loads, the trend ζk−1 is no longer
negligible and the change of state cannot be simply replaced
by a white Gaussian noise [12], [52]. This scenario is further
aggravated in the presence of changes in network topology
and parameters owing to line or transformer switching, or
switching of capacitor banks or shunt reactors. As a result, it
becomes a challenge to adopt TSE for practical applications.

E. Static State Estimation
The SSE arises from a further simplificatio of TSE, in

which the state transition information is fully ignored and only
the nonlinear measurement function is maintained. As a result,
SSE has no memory of the states at the previous time steps
[53]. It is worth pointing out that SSE may perform better than
TSE or FASE in the presence of sudden changes. However,
it does not have the capability to track system dynamics as
compared to DSE. Furthermore, unlike DSE, it requires that
the state vector be observable solely with the latest set of
available measurements. In fact, adding pseudo-measurements
through state or measurement forecasting to SSE is somewhat
equivalent to performing a FASE [45], [47].
It is worth pointing out that a recent variation of SSE is the

linear state estimation (LSE) [54]–[56], which uses voltage and
current phasors from PMUs, leading to a linear measurement
function:

zk = Hyk + vk, (9)

whereH is a constant matrix that consists of system transmis-
sion line parameters. LSE is able to track the online voltage
magnitude and angle of each bus at the PMU reporting rate.
However, it does not track the actual dynamics of the system,
which are the dynamic states of machines, loads, etc.

IV. TOOLS AND METHODS FOR IMPLEMENTATION OF DSE
In what follows, we present a thorough yet not comprehen-

sive review of the tools and methods for the implementation
of DSE. The system observability concept is also discussed.
After that, the focus is turned to DSE itself; the objective is to
provide a summary of the different approaches, highlight their
pros and cons, and discuss their implementation challenges.
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A. Observability Analysis for DSE
Observability is define as the ability to uniquely determine

the states of the system from available measurements. For
the SSE problem, observability analysis can be carried out by
topological or numerical methods [4] and it results in a binary
outcome. By contrast, for DSE, one may refer to strongly
or weakly observable systems [57]–[59]. Furthermore, due to
the nonlinearity and time-dependent nature of the problem,
observability results are also time dependent. The observability
of a linear time-invariant dynamical system can be readily
determined by whether or not its observability matrix has full
rank. As for the nonlinear system in (5)–(6), one can perform
a linearization around a given operating point and assess its
local observability. While this approach may be advantageous
from the computational standpoint, it will occasionally lead to
incorrect results under highly nonlinear operating conditions.
We therefore advocate the use of methods that do not perform
any linearization. To date, two methods have been proposed
and they are described next.
1) Method based on the Lie derivatives: A nonlinear

dynamical system is said to be observable at a state x0

if the nonlinear observability matrix obtained by using Lie
derivatives at x = x0 has a full rank [60]. This can be
explained as follows: consider the nonlinear system given by
(5)–(6), the Lie derivative of h with respect to f is define as

Lfh = ∇h · f . (10)

From the definitio (10),

L0
fh = h, Lk

fh =
∂Lk−1

f h

∂x
· f . (11)

Now, defin Ω as

Ω =

⎡
⎢⎢⎢⎣

L0
f(h1) ... L0

f(hm)

L1
f(h1) ... L0

f(hm)
... ...

...
Ln−1
f (h1) ... Ln−1

f (hm)

⎤
⎥⎥⎥⎦ , (12)

and a gradient operator

O = dΩ =

⎡
⎢⎢⎢⎣

dL0
f (h1) ... dL0

f(hm)

dL1
f (h1) ... dL0

f(hm)
... ...

...
dLn−1

f (h1) ... dLn−1
f (hm)

⎤
⎥⎥⎥⎦ . (13)

The observability matrix O must have rank n in order for the
system to be observable, and n is the dimension of the state
vector x.
In [61], this approach is used to determine the observability

of several test systems in which the synchronous generators
are represented by the classical model. Furthermore, the ratio
between the smallest and the largest singular values of the
observability matrix is used as a measure of the degree of
observability. This work is further extended in [59], where the
synchronous generators are represented by the two-axis model,
including the model of the IEEE-Type1 excitation system. It is
worth pointing out that the computation of the Lie derivative-
based observability matrix can be cumbersome even for small-
scale power systems. The automatic differentiation approach

[61] can be used to reduce the burden of calculating the Lie
derivatives of higher order.
2) Method based on the empirical observability Gramian:

The empirical observability Gramian [62], [63] provides a way
to analyze the state-output behavior of a nonlinear system.
Different from analysis based on linearization, it is define
over an operating region of the original system model and
reflect the observability of the full nonlinear dynamics in the
given domain. One important property is that the empirical
observability Gramian for a system with multiple outputs is the
summation of the empirical Gramian computed for each of the
outputs individually [57]. Therefore, the added observability
after any sensor placement can be evaluated by calculating
the empirical observability Gramian for each sensor. In [57]
the observability of the system states is quantifie by the
determinant of the empirical observability Gramian. In [58],
the level of unobservability of a nonlinear system is evaluated
by the unobservability index approximated by the smallest
eigenvalue of a Gramian matrix. In [64], different measures
of the empirical observability Gramian, including the deter-
minant, the trace, the minimum eigenvalue, and the condition
number are compared. It is shown that when the observability
is weak, the minimum eigenvalue and the condition number
are better measures of the observability. By contrast, when the
observability is strong, the determinant is a better measure.

B. Implementations of DSE
From a Bayesian perspective, the DSE problem consists

of recursively calculating some degree of belief in the state
vector xk at time k, given the data up to time k. Thus, it
is required to calculate the conditional probability density
function (pdf), p (xk |z1:k ). The latter may be obtained re-
cursively by the state prediction and updating steps. Suppose
that p(xk−1|z1:k−1) at time k-1 is available, that is, state
estimate at time step k − 1, x̂k−1|k−1 , with its covariance
matrix, Pk−1|k−1 is given. Then, the prediction step involves
applying (5) to obtain the a priori pdf of the state at time k
via
p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (14)

The probabilistic model of the state evolution p (xk |xk−1 )
is define by the system equation given by (5) and the
assumed probability distribution of wk. At time k, when the
measurements/observations zk are available, the update step
can be performed via Bayes’ rule expressed as

p (xk |z1:k ) = p (zk |xk ) p (xk |z1:k−1 )

p (zk |z1:k−1 )
(15)

where the normalizing constant given by p (zk |z1:k−1 ) =∫
p (zk |xk ) p (xk |z1:k−1 ) dxk depends on the likelihood

function p (zk |xk ), which is define by the observation model
(6) and the assumed probability distribution of vk.
The recurrence relations (14) and (15) form the basis

for the optimal Bayesian solution. However, this recursive
propagation of the a posteriori density is only a conceptual
solution in general; it cannot be determined analytically for the
nonlinear dynamical system model [65]. It is in this sense that
the EKF, UKF, EnKF, PF, and their variants only approximate



IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. , NO. , 2019 6

the optimal Bayesian solution under the Gaussian noise as-
sumption. In what follows, a thorough but not comprehensive
review of these filter for power system DSE is presented.
1) Linearization-based Methods: If the predicted state vec-

tor x̂k|k−1 and its associated statistics p (xk |z1:k−1 ) are
calculated from (5) directly through the Taylor series expan-
sion, (14)-(15) will reduce to the EKF variants. Pioneering
work along this line is done by [5] with the assumption that
the instrumentation system at that time can measure power
injections and frequency at generator buses accurately enough
and at high enough sampling rates. With the advancement
of PMU technologies, these assumptions can be alleviated.
To this end, [66] proposed and investigated the benefit of
adopting PMU data for real-time state estimation using EKF
while [67], [68] leveraged data from relays, PMUs, FDRs
to monitor and control system transients at the substation
level. In [69], an EKF algorithm is proposed using model
decoupling technique to estimate states and parameters of a
classical generator model. Following their work, Ghahremani
and Kamwa [70] proposed a modifie EKF-based DSE to cope
with cases where the fiel voltage is not accessible to metering
due to brushless excitation systems. This work was later
extended with the development of a decentralized DSE while
relaxing the assumption of a known mechanical torque [71].
The linearization-based methods work well if the nonlinearity
of the dynamical system is not strong and the derivatives of
nonlinear equations can be calculated. However, the system
can be operated under stressed conditions, exhibiting strong
nonlinearity. Furthermore, the derivatives can be challenging
for complicated models and discrete switching events. To
address these issues, derivative-free methods are preferred.
2) Derivative-free based Methods: If x̂k|k−1 and its asso-

ciated statistics p (xk |z1:k−1 ) are calculated through a set of
points drawn from the probability distribution of x̂k−1|k−1 ,
the resulted methods are derivative-free. The main ideas of
these methods are to use either the deterministic sampling
techniques such as the unscented transform and its variants
or the Monte Carlo based sampling technique, to choose a set
of sample points, which have the same mean and covariance
as the a priori state statistics [65], [72], [73]. These points
are then propagated through the non-linear functions f and
h, yielding an estimation of the a posteriori state statistics by
using the Kalman filte structure, i.e., the mean and covariance
estimates. Consequently, no difficul and complex calculation
of Jacobian matrices is required. Depending on the types of
the chosen points, different methods are proposed, including
the UKF and its variants using sigma points, EnKF, PF and
their variants using ensembles or particles, which are Monte
Carlo sampling techniques.
An UKF-based DSE using a fourth-order generator model

is proposed in [74] to estimate the states of a single-machine
infinite- us power system. Along the same lines, a centralized
UKF is developed in [75], [76] for a multi-machine system,
while a decentralized strategy that does not require trans-
mission of local signals is advocated in [77], significantl
increasing the computational efficien y. The decentralized
UKF is further extended to estimate fourth-order generator
model dynamic state variables, the unknown fiel voltage

and mechanical torque simultaneously [78]. It demonstrated
improved performance with regard to the approach proposed
in [71]. While in [79], the decentralized UKF is performed
by incorporating internal angle in the dynamic model and by
decoupling the estimation process into two stages with con-
tinuous updating of measurement-noise variances. To further
improve the estimation accuracy of the decentralized UKF, the
measurement correlations of the PMUs are considered [80].
As an alternative derivative-free method, EnKF uses Monte
Carlo methods to estimate the error covariance matrix of the
background error/noise, get an approximation to the filtere
states, and produce an ensemble of initial conditions for the
forecasting system. The latter is different from the UKF as
sigma points need to be recalculated after the state filterin at
each time instant. An EnKF method is firstl applied to track
dynamic states of generators and its sensitivities to initial state
errors, measurement noise and unknown faults are investigated
in [81]. That approach is further extended in [82] to consider
time-correlated mechanical input power from DERs. While
in [83], a maximum likelihood ensemble filte is proposed to
estimate state variables by optimizing a nonlinear cost function
and leveraging low-dimensional ensemble space to calculate
Hessian preconditioning of the cost function. Different from
the EnKF, PF uses the particles generated throughMonte Carlo
sampling to propagate and approximate the state statistics
through nonlinear functions. An extended PF is proposed to
estimate the fourth-order synchronous machine states using the
iterative sampling and inflatio of particle dispersion [84]. In
[85], [86], the PF is applied to estimate synchronous machine
states with detailed models.
3) Enhanced Numerical and Statistical Robustness: The

Kalman-type filter work well only under the validity of certain
assumptions [38]. First, the system process and observation
noise are assumed to have at each time instant zero means
and known covariance matrices Qk and Rk , respectively.
Secondly, they are assumed to follow a Gaussian distribu-
tion, at which the filte is optimal with minimum variances.
Finally, the system model is assumed to be known with
good accuracy. However, for most practical power systems,
these assumptions do not hold true. Indeed, Qk and Rk are
difficul to obtain in practice; the process and observation
noise follow non-Gaussian distributions as demonstrated in
[37]; the functions f and h are approximate; for instance,
they may not account for all the nonlinearities of the system;
some model parameter values may be unknown or incorrect;
and the received measurements may be strongly biased due to
impulsive communication noise, or cyber attacks [87].
In [39], it is shown that the performances of EKF, UKF,

EnKF and PF are greatly degraded in the presence of obser-
vation outliers due to their lack of robustness. To mitigate this
issue, the normalized innovation vector-based test [77], [85] is
usually used to detect observation outliers despite the vulnera-
bility of this test to innovation outliers and non-Gaussian noise.
In [88], a distributed two-stage robust UKF-based DSE using
the least-absolute-value (LAV) estimator is presented to handle
observation outliers in the PMU measurements. This approach
has the similar issues as the normalized innovation vector-
based test. To this end, the generalized maximum-likelihood
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(GM) iterated EKF (GM-IEKF) [89], [90] is proposed to deal
with the observation and innovation outliers. However, its
statistical efficien y is relatively low in the presence of non-
Gaussian system process and measurement noise. To address
that, the robust GM-UKF [27], [28] is proposed that is able
to achieve a high statistical efficien y under a broad range
of non-Gaussian noise while maintaining the robustness to
observation and innovation outliers. A reformulation of the
GM-UKF with multiple hypothesis testing [29] further enables
it to handle three types of outliers. Note that the three types
of gross errors or outliers include observation, innovation,
and structural outliers [28]. They can be caused by either
an unreliable dynamical model or real-time synchrophasor
measurements with data quality issues. However, these GM-
type DSE may yield biased state estimates in the presence
of large system uncertainties. To this end, the H-infinit EKF
and UKF that rely on robust control theory are proposed [91],
[92]. It is shown that H-infinit filte can bound the system
uncertainties but lacks robustness to outliers and non-Gaussian
noise.
Remark: every approach has its domain of feasibility and

beyond that, its performance is no longer guaranteed. Due
to numerical issues, model errors and cyber-attacks, to cite
a few, the DSE may not converge. In this scenario, only
the forecasted states from the dynamical system model are
available. Since the system dynamic states cannot change
immediately following a disturbance, the forecasted states
are reasonably close to the true dynamic states given that
the system dynamic model is accurate. Then, this type of
information can still be useful for operation and control. If
that is not the case, we may only use the state estimates
at the previous time instant for further processing. This is
similar to the traditional SSE. Future research about enhancing
the robustness of DSE against divergence is required. DSE
results should also be validated carefully to avoid converging
to wrong state estimates. The data-driven methods or machine-
learning-based tools can be taken as a complementary to help
that. This is another direction for research.

C. Parameter Estimation and Calibration using DSE
The application of Kalman filte and its variants for the

state and parameter estimation has been widely used in signal
processing, communication, among others. Along this line,
there are typically two ways for implementations [93]: i) joint
estimation, that is, the unknown parameters are augmented
with the system state variables for joint estimation. This joint
state is estimated through a single Kalman filte recursion;
ii) dual approach: it contains two parallel filters one on the
state and the other on the parameters; in other words, the
parameters are treated as known within the state filte at
any given time, k, while the states are treated as known in
the parallel parameter filte . Note that these two approaches
show little differences in the estimation results for most
applications [93]. On the other hand, the observability analysis
must be performed and the number of measurements should
be sufficien to initiate parameter estimation. In the power
system parameter estimation context, only the joint estimation
is used. For example, the transient reactance and inertia of

the classical generator are augmented with state variables for
joint estimation [94]. In [95]–[97], the UKF, the square-root
UKF and constrained iterated UKF are used to estimate high-
order generator model state and parameters simultaneously.
The UKF is also used to estimate dynamic load parameters
[98] and the frequency and fundamental power components
[99]. Due to observability issues, not all unknown parameters
can be estimated. Therefore, sensitivity analysis is carried
out to narrow down the number of candidate parameters
for calibration. This strategy is widely used in the model
validation and calibration, such as [26], [100], [101].
Remark: the implementation of DSE for large-scale sys-

tems is challenging. To deal with that, the distributed or
decentralized implementations proposed in the literature are
encouraged. Another way of achieving that goal is through
the high-performance computing and parallel computing tech-
niques [102], [103], which require further investigations. Fur-
thermore, when augmenting the identifie incorrect parameters
into the state vector for calibration, local observability analysis
should be carefully carried out to avoid multiple solutions as
well as numerical issues.

D. Centralized vs. Decentralized DSE
There are two ways of DSE implementations, namely the

centralized and decentralized ones. Centralized DSE assumes
that the system is observable by PMUs and Kron reduction
can be carried out to reduce the system to the generators’
terminals. In addition, it requires accurate knowledge of
each system component parameters as well as the real-time
wide-area PMU measurements. By contrast, the decentralized
DSE is implemented using only local PMU measurements.
It assumes that the terminal bus of the interested dynamic
components is observed by PMU measurements and local
observability of dynamic states is satisfied If a generator
terminal bus is not equipped with PMU, a PMU-based linear
state estimator [54]–[56] for that local system should be
performed first Then, the estimated measurements at the
interested terminal buses can be obtained and the decentralized
DSE is executed. Note that the local phasor data concentrator
(PDC) is in charge of communicating and processing the PMU
measurements. Centralized DSE allows us to achieve global
monitoring and control applications and has good robustness
to data quality and security issues as the measurement redun-
dancy is high. However, it has large computational burden and
strong assumptions about the accuracy of the whole dynamic
system models. By contrast, decentralized DSE only needs
local measurements at the terminal buses and the dynamic
model of interested components, which is fast to execute
and not impacted by the model inaccuracy of other system
components. However, the local measurement redundancy
is low and therefore decentralized DSE has difficultie in
dealing with PMU data quality and security issues. On the
other hand, with a decentralized DSE, only local controls
are implemented. If coordinated control is deployed between
different local DSEs, additional communication bandwidth is
required, making the comparison with the communication cost
of the centralized DSE difficul to assess. Choosing between
the two implementation schemes depends on the applications
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and the communication infrastructures being used. It should be
noted that for both centralized and decentralized DSE-based
applications, time tags of the estimated dynamic state variables
are required when the communication network is involved
[104].

V. CONCLUSIONS AND FUTURE WORK

This paper summarizes the technical activities of the task
force members during the firs year. It discusses the motiva-
tions, concepts and key tools and methodologies that are used
for dynamic state and parameter estimation. DSE is presented
in a unifie framework which uses commonly accepted nota-
tion and formulation in power system dynamics and control
literature with the aim of establishing a fir baseline for future
research and development efforts.
Although significan research work has been done for DSE,

there is still room for improvement. Here, several important
aspects listed below are recommended for future work:

• Enhancement of the accuracy and security of DSE: the
quality of the filtered/update state vector relies heavily
on the quality of the measurements and the predicted
states. Therefore, to obtain reliable state estimates for dy-
namic systems, robust state prediction and state filterin
with good efficien y are required. From the statistical ro-
bustness point of view, a robust DSE should be designed
to be robust against several data quality issues, such as
non-Gaussian measurement noise, bad data, cyber attacks,
missing data, etc. From the numerical robustness aspect, a
robust DSE should be developed, such as robust square-
root type filter or other alternatives that can converge
under various operation conditions. Also, as the system
is always subject to various uncertainties, a robust DSE
should be designed that can bound the influenc of
these uncertainties. Furthermore, hybrid approaches that
leverage the strengths of different theories are more likely
to be usable for complicated power systems. Finally, data-
driven DSE based on artificia neural networks [105],
[106] and operator theory [107] that do not rely on
the power system model have been studied. Preliminary
results indicate that these approaches can estimate the
generators’ rotor angle and/or rotor speed. More work
along this line is needed to include the estimation of other
dynamic state variables, and to validate them with real
PMU data;

• Observability Analysis: the use of the smallest singular
value of the observability matrix, be it the one ob-
tained via Lie derivatives or other linear approximation
approaches, for quantifying the degree of observability
of a nonlinear dynamic system has not been formally
proven. Although a large number of simulation cases
has strongly confirme its validity, more work is needed
to develop a computationally efficien and theoretically
proven implementation of observability analysis. It is also
worthwhile investigating the relationship between lin-
earized (small-signal approximation) and Lie derivative-
based observability matrices in order to defin the region
of validity for the computationally attractive small-signal
approximation, in particular during system transients;

• Dynamic Model Parameter Estimation and Anomaly De-
tection: the current DSE-based parameter estimation tech-
niques mainly focus on synchronous generators. They
can be extended for model validation and calibration
of various system components, such as inverter-based
renewable generation units, dynamic loads, etc. It is worth
pointing out that if there exist gross model parameters,
the parameter error detection and identificatio should
be carried out first Although this task is challenging for
complicated models with many parameters, it is the key
for parameter calibration to enhance the reliability and
accuracy of system models. On the other hand, the DSE
can be extended to detect the failures of various control
devices by setting up appropriate criteria, including ex-
citers, PSS, transformers, etc;

• Dynamic Security Assessment: it requires a robust and
computationally efficien DSE in order to accurately and
promptly initialize transient simulations. More work is
needed to identify the major drawbacks and bottlenecks
experienced by the industry in executing their current
dynamic security assessment procedures and addressing
them by robust DSE. These issues will motivate further
research towards development of DSE, which may be
routinely executed along with SSE in future EMS;

• Wide-Area System Integrity Protection Systems: enhanced
system observability through internal angle and speed es-
timates will allow us to compute more accurate transient
energy function and the latter may lead to several break-
throughs, such as faster out-of-step detection, more real-
istic location of runaway generator and minimal amount
of generation/load to be shed in order to preserve system
integrity without knowing the topology accurately;

• DSE of Renewable and Other Asynchronous Distributed
Sources: wind, solar and other distributed sources of
energy are playing an increasingly significan role in
power generation. But, being asynchronous, intermittent
and ‘inertia-less’, these sources are difficul to be con-
trolled for global system stability. Developing DSE for
these sources at their point of common coupling with the
grid is a viable solution, using which we can accurately
estimate the latent ‘synthetic-inertia’ in these sources, and
use it for contributing to the rotor-angle stability of the
system. Local DSE at each wind-turbine or photovoltaic
panel, within a wind-farm or solar-park, can also be used
for optimizing the performance of the whole farm or park.
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