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ABSTRACT
The direct detection of gravitational waves has provided new opportunities for study-
ing the universe, but also new challenges, such as the detection and characterisation of
stochastic gravitational-wave backgrounds at different gravitational-wave frequencies.
In this paper we examine two different methods for their description, one based on
the amplitude of a gravitational-wave signal and one on its Stokes parameters. We
find that the Stokes parameters are able to describe anisotropic and correlated back-
grounds, whereas the usual power spectra of the amplitudes cannot – i.e. the Stokes
spectra are sensitive to properties such as the spatial distribution of the gravitational-
wave sources in a realistic backgrounds.

Key words: gravitational waves – (cosmology:) cosmic background radiation –
(stars:) white dwarfs – (galaxies:) quasars: supermassive black holes

1 INTRODUCTION

The observation of gravitational waves by the Laser Interfer-
ometer Gravitational-Wave Observatory (LIGO) detectors
(Abbott et al. 2016) was the result of several decades of
work, both from the LIGO/Virgo collaborations and else-
where. As of writing, there have been six confirmed (plus
one probable) observations of black hole or neutron star bi-
naries published, with varying degrees of localisation. These
are single, individually separable sources but in the future
it is predicted that detectors such as pulsar timing arrays
(PTAs; e.g. Detweiler 1979; Hellings & Downs 1983; Jaffe &
Backer 2003; Yardley et al. 2011; Lentati et al. 2015; Arzou-
manian et al. 2018) and the Laser Interferometer Space An-
tenna (LISA; e.g. Amaro-Seoane et al. 2017; Cornish 2002)
will be able to observe a stochastic background – i.e. one
where there are multiple, nonseparable signals. Such a sig-
nal can have varying properties. It could be astrophysical
(Regimbau 2011) or cosmological (Caprini 2015) in origin,
monochromatic or polychromatic, isotropic or anisotropic
(Mingarelli et al. 2013; Ungarelli & Vecchio 2001; Thrane
et al. 2009). It may also be made up of many individual
sources that are theoretically resolvable but are too numer-
ous/low amplitude to do so at the current time (e.g. galactic
white dwarf binaries) or one that is not due to the fact that
it simply exists everywhere (e.g. inflationary gravitational
waves, e.g. Lasky et al. 2016).

How best to analyse this broad range of multi-frequency

? E-mail: c.conneely14@imperial.ac.uk

stochastic backgrounds is the subject of this paper. Here
we consider two methods to construct power spectra for a
gravitational-wave background, using analogies to Cosmic
Microwave Background (CMB) – one involving a decompo-
sition of the h+ and h× amplitudes (Gair et al. 2014) and
the other one of the GW Stokes parameters (Seto & Taruya
2008; Gubitosi & Magueijo 2017; Kato & Soda 2016).

The power spectral methods we use here make no ma-
jor assumptions about properties of the background, only
that it is observable and there is some directional depen-
dence. As such, they are very general and can be applied to
any gravitational frequency. We introduce the mathematics
of the formalisms in Section 2. In Section 3 we apply the
formalisms to models of various backgrounds – both astro-
physical and cosmological – and consider which method is
appropriate for the description of different backgrounds and
what can be learned from the power spectra in each case.
Finally in Section 4 we conclude and give an outlook for
future work using these techniques.1

2 FORMALISM

For the different types of gravitational-wave backgrounds,
we will consider fields on the sky in harmonic space. That is,
for a scalar field F( f , k̂), where f is the temporal frequency
of gravitational waves or photons, on which the field may

1 Readers interested in the code used to produce the simulations
and analyses presented here should contact the authors.
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depend, and k̂ is a three-dimensional unit vector giving the
direction of propagation2, we define

aF`m( f ) =
∫

d2 k̂F( f , k̂)Y∗`m(k̂) , (1)

where Ỳ m are the spherical harmonics. In this construction,
the ` subscript represents the angular scale of a perturbation
and m its orientation. As in the case of the CMB, the ma-
jority of the background fields considered in this paper are
statistically isotropic and so it is reasonable to consider the
average over orientations, and hence the power spectrum.
For isotropic fields, this is defined by the expectation

〈aF`maF
′∗

`′m′〉 = CFF′
` δ``′δmm′ , (2)

where F ′ may be the same or a similarly constructed field
and 〈· · · 〉 represents an ensemble average, i.e. one over infi-
nite realisations of the background. This is an idealised re-
sult; a single (full-sky, noise-free) realisation motivates the
definition of the estimator

ĈFF′
` ≡ 1

2` + 1

∑̀
m=−`

aF`maF
′∗

`m , (3)

with isotropic expectation

〈ĈFF′
` 〉 = 〈aF`maF

′∗
`m 〉 = CFF′

` . (4)

Even with the assumption of negligible noise, a particular
instance of the spectrum, ĈFF′

`
, will differ from the true

value, CFF′
`

, because of sample variance. In this case, the
standard deviation of the difference can be estimated as

∆CFF′
` =

√√√√ (
ĈFF′
`

)2
+ ĈFF

`
ĈF′F′
`

(2` + 1) fsky
. (5)

The fsky term represents the fraction of the sky considered
for incomplete or masked background – fsky = 1 for a back-
ground including the whole sky.

These errors are derived assuming real, Gaussian fields
and so, where necessary, we will discuss more appropriate
errors. Note further that many of the backgrounds consid-
ered in this paper will be anisotropic and so, in these cases,
we define the power spectra to be the appropriate squared
spherical harmonic coefficients as in equation 3.

A potential alternative to these power spectra is a (2-
point) correlation function, which is defined as

C(θ) =〈F(k̂)F(k̂ ′)〉k̂ ·k̂′=cos θ , (6)

and is very closely related to the power spectrum by

C(θ) =
∑
`

2` + 1
2π

C`P`(cos θ) . (7)

This can be difficult to compute analytically or numerically
if, as in many examples below, we assume that we can lo-
calise sources to arbitrary degrees of accuracy. In this case,
C` 9 0 and so C(θ) does not converge. In measured examples
this will not be an issue, because this assumption of arbi-
trary sensitivity will not be true and response and/or win-
dow functions will reduce sensitivity at higher `s. Because

2 Note that this can be equivalently considered in terms of the
direction of observation, i.e. −k̂. Also, for PTAs, the notation

k̂ = Ω̂ is commonly used.

of the issues with convergence and because they provide no
new information (just a re-representation of the information
in the power spectrum), correlation functions will not be
considered further here.

2.1 CMB Stokes Parameters

The key idea behind the formalisms discussed and compared
in this paper is that a gravitational wave field shares many
properties with an electromagnetic one. In particular, we
consider how the temperature field T , or, equivalently, the
total power IEM, and linear polarisation terms QEM and UEM

are analysed for the CMB. The fourth Stokes parameter,
VEM, is usually assumed to be zero because Compton scat-
tering cannot produce any net circular polarisation. Temper-
ature is a scalar field on the sky and so can be decomposed
as in equation 1 to give coefficients aT

`m
.

The linear polarisation is more complicated – neither
QEM nor UEM are scalar or spin-weighted fields on the sky.
The combinations QEM ± iUEM are, however, spin-±2 and so
can decomposed using ±2 spin-weighted spherical harmon-
ics, derived for general spin ±s from the spin-0 spherical
harmonics (as in, e.g. Newman & Penrose 1966; Goldberg
et al. 1967) giving

sỲ m(k̂) =

√
(l−s)!
(l+s)!ð

sỲ m(θ, φ), for 0 ≤ s ≤ `√
(l−s)!
(l+s)! (−1)s ð̄−sỲ m(θ, φ), for − ` ≤ s ≤ 0

=

√
(` + m)!
(` + s)!

(` − m)!
(` − s)!

2` + 1
4π

sin2`(θ/2)eimφ

×
∑
r

(
` − s

r

) (
` + s

r + s − m

)
(−1)`−r−s cot2r+s−m(θ/2) ,

(8)

and are zero for |s | > |` |. Here, θ and φ are the angular polar
coordinates of the k̂ unit vector. The ð and ð̄ derivatives are
operators which raise and lower, respectively, the spin of a
field and are defined as

ðη = − (sin θ)s
(
∂

∂θ
+ i csc θ

∂

∂φ

)
(sin θ)−sη ,

ð̄η = − (sin θ)−s
(
∂

∂θ
− i csc θ

∂

∂φ

)
(sin θ)sη (9)

for an initially spin-s function η. Using these, we obtain (e.g.
Seljak & Zaldarriaga 1997)

±2a`m =
∫

d2 k̂(QEM ± iUEM)(k̂)±2Y∗`m(k̂) (10)

which give scalar and pseudo-scalar combinations

aE`m = −
1
2
(+2a`m + −2a`m) ,

aB`m = +
i
2
(+2a`m − −2a`m) (11)

that can be used to construct corresponding scalar and
pseudo-scalar fields E and B by, for example, E =∑
`m aE

`m
Ỳ m. The fact that spin-weighted spherical harmon-

ics are zero for |s | > |` | means that aE,B
`m
= 0 for ` = 0, 1.

Using these harmonics, we can construct power spectra
as in equation 3. Measurement of these power spectra can be
used to learn about various properties of the early universe.

MNRAS 000, 1–18 (2018)
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For example, we can use the strength and shape of the ĈTT
`

signal to infer the value of cosmological parameters in the
early universe including the dimensionless matter and dark
energy densities (e.g. Planck Collaboration 2016b), and a
measurement of a non-zero ĈBB

`
would be taken by many to

be a“smoking gun”of inflationary gravitational waves. Addi-
tionally, because E and T fields are scalar and B is pseudo-
scalar, we expect CTB

`
and CEB

`
to be zero by parity. As

such, any statistically significant measurement of a non-zero
value for either of these spectra could say a lot about the
early universe – for example, that primordial gravitational
waves were parity violating (e.g. Contaldi et al. 2008).

A further comment is that all of the CMB power spectra
are, by construction, real. For the auto-spectra, this follows
immediately from their definition. For the cross-spectra it is
due to the fact that the Stokes parameters are real, and so
their harmonic coefficients can be shown to satisfy

aM∗`m =(−1)maM`,−m, M ∈ {I, E, B} . (12)

This combined with the fact that sỲ 0 is real (as can be seen
by setting m = 0 in equation 8), and so aF

`m
∈ R, gives

ĈFF′
` =aF`0aF

′∗
`0 +

∑̀
m=1

(
aF`maF

′∗
`m + aF`,−maF

′∗
`,−m

)
=aF`0aF

′∗
`0 +

∑̀
m=1

(
aF`maF

′∗
`m + aF∗`maF

′
`m

)
∈ R . (13)

2.2 Gravitational Wave Amplitude

A gravitational wave can be represented as a small perturba-
tion, hµν(t, ®x), about a static metric. This can be calculated
as a sum over the Fourier components

hµν(t, ®x) =
∫ ∞
−∞

d f
∫

d2 k̂ h̃µν( f , k̂)ei2π f (t−k̂ · ®x/c) , (14)

where the h̃µν( f , k̂) are the contributions to the pertur-
bation propagating in direction k̂ – i.e a field on the 2-
sphere – and the reality condition on hµν(t, ®x) is satisfied
by h̃µν( f , k̂) = h̃∗µν(− f , k̂). This field will form the basis of
the methods in this paper. Given a set of coordinate axes,
h and h̃ can be decomposed in terms of two polarisations, +
and × – for example, h+( f , k̂) and h×( f , k̂). These terms are
not themselves scalar fields on the 2-sphere but can used to
create fields of varying spin-weight.

One such method is to directly use the h+ and h× am-
plitude signals. As the gravitational wave tensor is rank-2,
it can be shown that combinations h+ ± ih× have spin-±2 re-
spectively – consistent with the spin of the graviton. They
can, therefore, be decomposed as

±2a`m( f ) =
∫

d2 k̂(h+ ± ih×)( f , k̂)±2Y∗`m(k̂) . (15)

These harmonics then can be combined into the more useful
gradient (scalar), G, and curl (pseudo-scalar), C, combina-
tions –

aG`m = +
1
√

2
(+2a`m + −2a`m) ,

aC`m = −
i
√

2
(+2a`m − −2a`m) . (16)

Note the difference in coefficients between equations 11 and

16. The factor of −
√

2 is largely irrelevant for the discussion
herein, what is important is the scalar and pseudo-scalar
nature of the coefficients and their corresponding fields.

Using these coefficients, the power spectra can be com-
puted in an analogous way as equations 2 and 3. We evaluate
all amplitudes near some single frequency f (see Section 3
for some specific examples in which this is most useful), al-
though a generic background may not be stationary in time
and so can have correlations between different frequencies.
In the CMB example, the reality of the I, Q and U fields
means that the aI

`m
, aE

`m
and aB

`m
harmonics satisfy equa-

tions 12 and 13, but this is not true in this case. This is,
of course, due entirely to the complex-valued Fourier trans-
form of the original real fields hµν(t, ®x). This implies that the
harmonics satisfy aP

`m
( f ) = (−1)maP∗

`,−m(− f ) for P = G,C and
the angular spectra are Hermitian in terms of frequency, i.e.
CPP′
`
( f ) = CPP′∗

`
(− f ).

The auto-spectra, CGG
`

and CCC
`

, are, as before, real,
but in general the complex nature of the amplitudes will
mean that equation 12 will not always be true and the
cross-spectrum can be complex. As CGC

`
= CCG∗

`
, by con-

struction, we will present the signal in terms of R[CGC
`
]

and I[CGC
`
]. The complex nature of the cross-spectrum is,

in principle, moot as conservation of parity again implies
that CGC

`
( f ) = 0. Therefore, any measurement of a non-zero

cross-spectrum will imply parity violation and so have impli-
cations for the physics of the background (e.g. Crowder et al.
2013). In fact, we will see in sections 3.1 and 3.3 examples
where backgrounds which explicitly violate parity symmetry
can be purely imaginary.

An equivalent derivation for the harmonics and power
spectra can be calculated using tensor spherical harmonics
– see Gair et al. (2014) in analogy to Kamionkowski et al.
(1997).

As mentioned, the standard deviation between the true
and observed spectra, as given in equation 3, is only valid
when the initial fields are real. As that is not the case here
the result is more complicated and is given in equations A3.

2.3 Gravitational Wave Stokes Parameters

Alternatively, as is the case in CMB decomposition, we
can combine the amplitude fields into Stokes parameters
(e.g. Breuer et al. 1975; Lightman et al. 1979; Gubitosi &
Magueijo 2017)

IGW( f , k̂) =〈|h+( f , k̂)|2〉 + 〈|h×( f , k̂)|2〉 ,
QGW( f , k̂) =〈|h+( f , k̂)|2〉 − 〈|h×( f , k̂)|2〉 ,
UGW( f , k̂) = − 2〈R[h+( f , k̂)h∗×( f , k̂)]〉 ,
VGW( f , k̂) = − 2〈I[h+( f , k̂)h∗×( f , k̂)]〉 . (17)

Each parameter has the same meaning as its electromagnetic
counterpart (Jackson 1975):

• IGW is the total power
• QGW and UGW are the linear polarisations
• VGW is the circular polarisation

The 〈· · · 〉 average is often (e.g. Seto & Taruya 2008; Gubitosi
& Magueijo 2017) taken to be the ensemble average over all
possible realisations, though in the electromagnetic case it
is more usually assumed to be a temporal average. Neither

MNRAS 000, 1–18 (2018)
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average is completely well defined, especially for the case of
gravitational waves. The temporal average works in prac-
tice for the CMB because the observation times are much
longer than both the period of the waves (∼ 3.5 × 10−13s)
and the timescale for relevant changes to the signal, but
LISA is sensitive to gravitational waves with hour periods,
and nanohertz gravitational waves detectable by PTAs have
periods of years to decades or longer. Because of this, it
will not always be possible to measure the signal for long
enough to compute such an average. The ensemble averages
have the issue that we do not always have a well-defined
ensemble (or, equivalently, a well-defined probability distri-
bution for the gravitational wave amplitudes). In this paper,
we are mainly concerned with power spectra and their ex-
pected values, rather than the power spectra of the expected
Stokes parameters. This is particularly an issue for the po-
larisation terms as, for many cases, the ensemble average of
QGW, UGW and VGW will be zero. This means that any spec-
tra constructed from these will also be zero. However, any
given realisation may be non-zero and so will have associated
non-zero power spectra with non-zero expected values.

Because of these issues, it is mathematically convenient,
and sometimes necessary, to ignore the averages and calcu-
late the Stokes parameters at a single time or frequency. This
assumption is equivalent to removing some level of statis-
tical freedom from the distribution. For example, assuming
the signal to be monochromatic – which we do in many cases
below – will have the same effect as ignoring a temporal av-
erage. Specifically, this assumption characterises waves that
are 100% polarised, which is what one would expect from
certain monochromatic sources such as binaries.

A significant consequence is that there are fewer degrees
of freedom for the Stokes parameters than when considering
the amplitude formalism in the above calculations – four
Stoke parameters combine to only give three amplitudes,
satisfying I2 = Q2 +U2 + V2 for completely polarised waves.
More generally the Stokes parameters for partially-polarised
fields satisfy the inequality I2 ≥ Q2 + U2 + V2 and their
detailed analysis will be left to future work.

As is the case for electromagnetic Stokes parameters,
IGW is a scalar field and VGW is pseudo-scalar and so we can

construct bI/V
`m

coefficients as in equation 1. The combination

QGW ± iUGW are spin-±4, rather than spin-±2 as in electro-
magnetism, but we can construct ±4b`m in the same way as
equation 10 – using the spin-±4 spherical harmonics, ±4Ỳ m,
instead of spin-±2. The scalar and pseudo-scalar combina-
tions of ±4b`m are respectively (e.g. Gubitosi & Magueijo
2017)

bE`m( f ) = −
1
2
(+4b`m + −4b`m) ,

bB`m( f ) = +
i
2
(+4b`m − −4b`m) . (18)

From these harmonics, we can construct 4 auto-power spec-
tra and 6 cross-power spectra, of which CIV

`
, CIB

`
, CVE

`
and

CEB
`

are expected to be zero by parity conservation. Even in
the case of parity violation, the reality of the Stokes parame-
ters leads to power spectra (including the cross-spectra) that
are also real – by the same logic as in the CMB. This is in
contrast to the CGC

`
spectrum in the amplitude formalism.

Additionally, the spin-±4 nature of the linear polarisation
terms means any of the spectra involving E or B will be iden-

tically zero for ` = 0, 1, 2, 3, regardless of parity conservation.
For all cases below, the GW superscript will be dropped.

The reality condition on hµν(t, ®x) can be used to show
that I(− f , k̂) = I( f , k̂), Q(− f , k̂) = Q( f , k̂) and U(− f , k̂) =
U( f , k̂) but V(− f , k̂) = −V( f , k̂). The harmonics therefore
satisfy aN

`m
(− f ) = aN

`m
( f ) for N ∈ {I, E, B} and aV

`m
(− f ) =

−aV
`m
( f ). All of the auto-spectra are therefore symmetric in

frequency, as are the cross-spectra that do not include V but
are antisymmetric for those that do.

For any given background defined from the amplitudes
(i.e. a pair of fields on the sphere, h+( f , k̂) and h×( f , k̂), sat-
isfying the constraints), it is clear how to obtain the Stokes
parameters from their definition. For the inverse, in our case
of 100% polarisation, it is almost possible to generate the
amplitude signal from a Stokes parameter background. If
h+/× = |h+/× |eiφ+/× then

|h+ | =
√

1
2
(I +Q) ,

|h× | =
√

1
2
(I −Q) ,

φ+ − φ× = arctan
(

V
U

)
(19)

– i.e. h+ and h× can be obtained up to a phase factor. This
phase factor can be defined arbitrarily (and is assumed to be
φ× ∼ U(0, 2π) where relevant) and does not affect the power
spectra as it will cancel in each correlation function (hAh∗

A′)
that appear in the calculation of the power spectra.

For many (but not all) examples below, the monopole
signal of I will be very large and so CI I

0 will be many orders
of magnitude larger than any other spectral term. In such
cases, we will instead present CI I

`
with CI I

0 = 0, which is
equivalent to removing the monopole. The same idea is used
in CMB calculations, where only the fluctuations about the
monopole T0 = 2.73K are considered for the temperature
spectrum and not the monopole itself.

3 GRAVITATIONAL-WAVE BACKGROUNDS

3.1 White noise

The simplest stochastic background that could be consid-
ered is an isotropic, uncorrelated, unpolarised and station-
ary background – such as that expected from inflation or a
phase transition – satisfying

〈hA( f , k̂)h∗A′( f
′, k̂ ′)〉 = 1

2
H( f )δ( f − f ′)δ2(k̂, k̂ ′)δAA′ ,

A, A′ ∈ {+,×} . (20)

Here the δ2(k̂, k̂ ′) is a delta function in direction space, i.e.
δ2(k̂, k̂ ′) = 0 for k̂ , k̂ ′ and

∫
d2 k̂δ2(k̂, k̂ ′) = 1. The average

represents a sample from e.g. a Gaussian distribution, with
different frequencies and directions being uncorrelated. As
in Gair et al. (2014), this will lead to two white power spec-
tra, CGG

`
( f ) = CGG

`
( f ) = C( f ) with no correlation between

modes CGC
`
( f ) = CCG

`
( f ) = 0.

More generally, an amplitude background that is al-
lowed to be anisotropic and polarised but still spatially un-
correlated and stationary – for example in a cosmology with

MNRAS 000, 1–18 (2018)
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a preferred direction or a background with significant fore-
ground sources, such a binaries within the Milky Way. Such
a background will have amplitude signals obeying

〈hA( f , k̂)h∗A′( f
′, k̂ ′)〉 = 1

2
gAA′( f , k̂)δ( f − f ′)δ2(k̂, k̂ ′) ,

A, A′ ∈ {+,×}. (21)

Using the summation properties of spin-weighted spherical
harmonics in equations A4 and A5, it can be shown that,
for ` ≥ 2,

CGG
` ( f ) =CCC

` ( f ) = 1
4π

∫
d2 k̂

(
g++( f , k̂) + g××( f , k̂)

)
=

1
8π

∫
d2 k̂ 〈I( f , k̂)〉 , (22a)

CGC
` ( f ) = − CCG

` ( f ) = 1
4π

∫
d2 k̂

(
g+×( f , k̂) − g×+( f , k̂)

)
= − i

8π

∫
d2 k̂ 〈V( f , k̂)〉 . (22b)

Other than ` = 0, 1, this is independent of ` and so, un-
less the amplitudes have correlations between different di-
rections, the power spectra are always white. We also satisfy
the parity constraints if there is no correlation between the
two polarisations or h+ is statistically identical to h× – in
either case this means g+× = g×+. Further, the power spec-
tra in equations 22 are proportional to an average over all
direction of the ensemble average of the I and V Stokes pa-
rameters, respectively. This implies, that the power spectra
here are insensitive to linear polarisation (Q and U), and are
only sensitive to the monopole (i.e. direction averaged value)
of 〈I〉 and 〈V〉, whose power it spreads over ` ≥ 2. In this
case, as mentioned in Section 2.2, the CGC

`
power spectrum

is purely imaginary. However, as V is pseudo-scalar under a
change of parity (i.e. V → −V), we will still have CGC

`
= 0

in a parity-symmetric background,.
The observation that the G and C power spectra are in-

dependent of ` (for ` ≥ 2) will be seen several times. It arises
because of the δ2(k̂, k̂ ′) term in equations 20 and 21 which
is, in turn, due to the following – if the phase and magni-
tude of a hA amplitude signal are statistically independent
quantities, then

〈hA( f , k̂)h∗A′( f
′, k̂ ′)〉 =〈|hA( f , k̂)| |h∗A′( f

′, k̂ ′)|〉〈eiφ(k̂)e−iφ(k̂′)〉 .
(23)

However, the phases of two gravitational wave amplitudes
will be uncorrelated in many common scenarios. For ex-
ample, to have two binary black hole systems in differ-
ent directions with correlated phases requires the orbits
of the black holes to have been correlated to a significant
degree – which is unlikely due to a large number of lo-
cal factors that will affect the orbits. We therefore expect

〈eiφ(k̂)e−iφ(k̂′)〉 ∝ δ2(k̂, k̂ ′).
While non-standard cosmological events, such as those

of formation of primordial black hole, can, in principle, cause
such correlations (i.e. 〈hA( f , k̂)h∗

A′( f
′, k̂ ′)〉 6∝ δ2(k̂, k̂ ′)), it is

not expected and so will indicate something significant about
the background that will require explanation (e.g. Gair et al.
2014). One potential background that could have correlated
phases is that of standing modes in squeezed gravitational
waves (e.g. Grishchuk & Sidorov 1990). These, in theory,
can have correlated phases, particularly between k̂ and −k̂.

As the h+ ± ih× fields considered are spin-±2, their power
spectra will not be sensitive to the dipole term – though they
would be sensitive to similar correlations on smaller scales.
Such cosmological signals will not be considered further here,
however.

The issue of uncorrelated phases also causes problems
with simulation of the backgrounds. We want to analyse the
same white noise background in terms of both gravitational
wave amplitude and Stokes parameters. It is, however, not
possible to generate the full range of possible Stokes param-
eters correlators (e.g. 〈I( f , k̂)I( f ′, k̂ ′)〉) from a background
generated purely from the statistical distributions given in
equations 20 or 21. This is down to the idea of what we
assume is Gaussian. As in the CMB case, we assume that
it is the Stokes parameters that are Gaussian distributed
and, using this, we generate the amplitude field statistics
accordingly. To do this, we generate linear and circular po-
larisations from assumed power spectra and, removing the
averages in the definition of the Stokes parameters, set the
overall power using I2 = Q2 +U2 +V2. For the cross-spectra,
we justify assuming that CEB

`
= CVE

`
= 0 by conservation

of parity and CVB
`
= 0 by assuming that the φ+ and φ× are

uncorrelated with each other and |h+ | and |h× | – see equa-
tion A9. This assumption also leads to the white input CVV

`
spectrum, as can be seen using equation A11 and the same
methods as for equations 22. It does not, however, immedi-
ately mean that the input CEE

`
and CBB

`
spectra are white

and so here they are given some, albeit identical, shape. Us-
ing all four Stokes parameters, we can then use equations 19
to calculate the amplitudes.

The resultant power spectra from such a simulation are
given in Fig. 1. Here we plot a single instance of the Ĉ`
power spectra in addition to the input value of the CVV

`
,

CEE
`

and CBB
`

spectra and use an average over the 10,000
simulations as an estimate for the values of the remaining
ensemble averaged spectra. The errors bars used are defined
by equation 3 for the Stokes parameters (with fsky = 1)
and equations A3 for the G and C spectra. Note that, for
simplicity, we have implicitly assumed that the amplitude
fields, as well as the Stokes parameters, are Gaussian, as the
effect on the error bars is negligible in this case.

We see that, as predicted, the CGG
`

and CCC
`

spectra
are white and equal and both the real and imaginary parts
of the CGC

`
spectrum are zero – as predicted by parity con-

servation. In contrast, the CI I
`

spectrum is not white – and
is in fact a slowly decreasing function of `. Here, unlike in
other examples we will see, the CI I

`
spectrum is less than

CVV
`

for ` > 0. This is a consequence of the removal of the
monopole and Parseval’s theorem, which can be shown to
imply that∑
`

(2` + 1)CI I
` =

∑
`

(2` + 1)
(
CVV
` + CEE

` + CBB
`

)
(24)

but the majority of the I signal lies in CI I
0 and so there is

less power distributed amongst other `.
As mentioned previously, the fact that we do not include

any averages in our definition of the Stokes parameters has
implied that the gravitational waves are monochromatic and
100% polarised. This is one extreme. The other extreme is
that the gravitational waves are completely unpolarised, i.e.
Q = U = V = 0 – as is the case if we had assumed ensem-
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ble averages in our definition. In this case all of the Stokes
parameter power spectra (auto- and cross-) would be zero
except for CI I

`
, and there would not be enough information

to calculate any of amplitude power spectra.

3.2 Galactic White dwarf Binaries

One source of stochastic gravitational waves are galactic
white dwarf binaries. It is predicted that there are around
100–300 million white dwarf binary systems (e.g. Marsh
2011; Nelemans 2013) of which only a fraction will be re-
solvable by LISA with a signal-to-noise ratio of more than
five (e.g. Ruiter et al. 2010; Timpano et al. 2006).

A single binary system in a circular orbit3 is predicted
to emit gravitational waves with amplitudes (e.g. Peters &
Mathews 1963; Maggiore 2000)

h+(t) = + A+ cos(2ψ) cos(2Ωt + φ0) + A× sin(2ψ) sin(2Ωt + φ0) ,
h×(t) = − A+ sin(2ψ) cos(2Ωt + φ0) + A× cos(2ψ) sin(2Ωt + φ0) ,

(25)

where

A+ = +
2G2M1M2

c4r

(
Ω2

G(M1 + M2)

)1/3
(1 + cos2 ϕ) ,

A× = −
4G2M1M2

c4r

(
Ω2

G(M1 + M2)

)1/3
cos ϕ, (26)

M1,2 are the masses of the white dwarfs, Ω the orbital an-
gular frequency of the binary, φ0 the initial phases, r the
distance from the observer at Earth to the binary and ψ

and ϕ are the principal polarisation and inclination, respec-
tively, which describe the binary orientation as viewed by
said observer. The inclination angle is the angle between the
angular momentum direction of the binary, ®L, and the direc-
tion to the binary from an observer at the solar barycentre,
−k̂. The principal polarisation angle is the angle of the semi-
major axis of the binary with respect to the coordinates of
the observer (Rubbo 2004; Timpano et al. 2006).

In frequency space and considering only frequency f ∗ =
Ω/π this is

h+( f ∗) = +
1
2

(
A+ cos(2ψ)eiφ0 − iA× sin(2ψ)eiφ0

)
,

h×( f ∗) = −
1
2

(
A+ sin(2ψ)eiφ0 + iA× cos(2ψ)eiφ0

)
. (27)

The probability distribution for the white dwarfs is modelled
to be something similar to the galactic shape – as shown in
Fig. 2. Specifically, each direction (i.e. each pixel) is given
an independent number t ∼ U(0, 1) and if this is less than
that pixel’s value in the probability distribution (in Fig. 2)
then the pixel is defined to have a binary. The distributions
of ϕ, ψ and φ0 are taken from Timpano et al. (2006) – i.e.

cos(ϕ) = −k̂ · ®L/| ®L | ∼ U(−1, 1), ψ ∼ U(0, π) and φ0 ∼ U(0, 2π).
The distribution of white dwarf masses is in reality

complicated, and for simplicity is assumed to be uniform –
M1, M2 ∼ U(0.4, 1.4)M�. The upper bound is due the Chan-
drasekhar limit and the lower is due to low mass stars not

3 Circular orbits are chosen for simplicity and are justified by the
fact that gravitational wave emission decreases the eccentricity of

an orbit.

having had time to evolve. The distance to the binary, r, is
modelled in such a way as to capture the Earth’s location
in the galaxy. The frequency of the emitted radiation, f ∗, is
assumed to be constant for all sources in a background and
is set to be 1 mHz, which lies in the LISA frequency band
for unresolved sources (Nelemans 2013).

The probability distribution in this case is clearly
anisotropic and can be approximated as a mask on an
isotropic distribution. As this is not actually a mask with
a hard cut off we approximate the effect by choosing the
region containing 75% of the white dwarf binaries. This is
(θ, φ) ∈ [π/2 − 0.39, π/2 + 0.39] × [0, 2π) and corresponds to
fsky ≈ 0.249. This will affect the error bars in accordance
with equation 5. However, as the underlying distribution is
highly non-Gaussian (in both the position of sources and sig-
nal strength), the errors bars plotted are calculated as one
standard deviation over 1024 simulations, rather than using
equations 5 and A3.

Each binary is given a set of parameters and the am-
plitudes and subsequently the Stokes parameters are calcu-
lated. The resultant power spectra are given in Fig. 3. It
can be seen that the majority of the power spectra are ap-
proximately white. In particular we can see that ĈGG

`
and

ĈCC
`

are consistent with both each other and a white power

spectrum – as are ĈEE
`

and ĈBB
`

.

The main interesting features of these power spectra
lie in the relative amplitude of the ĈI I

`
and ĈVV

`
, and ĈEE

`

and ĈBB
`

spectra as well as the structure in the low ` ĈI I
`

spectrum which can be viewed as a measure of the shape
of the galaxy itself. Indeed, in Fig. 4 we compute the power
spectrum for the probability distribution by assuming it to
be a scalar field and applying equations 1 and 3. Using this,
we can see that, for large scales, the I power spectrum closely
matches the probability distribution, only changing for small
scales (large `) – which follows from the approximately point
source nature of the binaries.

Also plotted in Fig. 4 is the effect of the finite mask
size on the independence of the harmonics. If we assume
that there is some correlations of the scale of ∆` ∼ 1/ fsky ∼
4, as plotted, then the majority of the structure on large
scale is averaged out. The broader shape – i.e. a decrease is
strength from ` = 1 to ` = 15 – is still present and so this
method could, in principle, still be used for measurement of
the shape of the galaxy but, for the sake of generality, will
not considered further here.

The cross-spectra that are predicted to be zero by parity
conservation (ĈGC

`
, ĈEB

`
, ĈIV

`
, ĈIB

`
and ĈVE

`
) are consistent

with zero, as expected, as are several which are not required
to be (ĈIE

`
and ĈVB

`
). The latter observation follows from

Appendix A3 and because in this simulation the phases are
independent and h+ and h× are statistically identical. De-
spite being consistent with zero, there appears to be struc-
ture in the ĈIV

`
spectrum, but will be mostly due the fact

that the I and V harmonics have a larger magnitude than
the E and B and so the ĈIV

`
cross-spectrum will be larger

for any given background.

It is worth noting that, as we have restricted to only
a single binary in any given direction, we have explicitly
assumed monochromaticity of the source in each direction.
As such, the considered background is 100% polarised and
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Figure 1. Power spectra for a white noise background generated by known CVV
`

, CEE
`

and CBB
`

spectra. Solid lines are the spectra for

a particular instance of the background, dashed lines indicate the power spectra averaged over 10,000 simulations, except in the cases of
CVV
`

, CEE
`

and CBB
`

where the input spectra are used. Stokes parameter power spectra are normalised with respect to CVV
0 (as the

C I I
0 monopole has been removed) and amplitude power spectra with respect to CGG

2 .

so this presents an upper limit on the power spectra of the
polarisation terms (e.g. CVV

`
, CEE

`
and CBB

`
).

In a future work (Brevik et al., 2018, in preparation) we
will consider a more realistic simulation of the white dwarf
background using full population synthesis methods to char-
acterise the distribution of sources. The characterisation of
these simulations in terms of their angular and frequency
spectra will enable experiments such as LISA to distinguish
evolutionary models for the white dwarf population.

3.3 Single point source

At the time of writing, a stochastic gravitational-wave back-
ground is yet to be detected. Individual signals have, how-
ever, been observed. In this section we consider the effect
of such a source on the power spectra. We approximate the
spatial distribution of a single point source by delta func-
tion δ2(k̂, k̂0), for some arbitrary direction k̂0. The fact that
is not possible to identify the direction of a gravitational
wave point source with the same degree of accuracy as an
electromagnetic signal will only effect the sensitivity of a
detector, not the source power spectra.

The predicted power spectra can computed be analyti-
cally. For the general example, h+/×( f , k̂) = h+/×( f )δ2(k̂, k̂0)

and N( f , k̂) = N( f )δ2(k̂, k̂0), N ∈ {I,Q,U,V} it can be shown,
using equations A4 and A5, that

CGG
` =CCC

` ( f ) = 1
4π
(|h+ |2 + |h× |2) =

1
4π

I( f ) , (28a)

CGC
` =

1
4π
(h+h∗× − h∗+h×) = −

i
4π

V( f ) , (28b)

CI I
` =

I2( f )
4π

, (28c)

CVV
` =

V2( f )
4π

, (28d)

CEE
` =CBB

` =
1

8π
(Q2( f ) +U2( f )) , (28e)

CIV
` =

I( f )V( f )
4π

, (28f)

CIE
` =CIB

` = CVE
` = CVB

` = CEB
` = 0 . (28g)

This means that all of the spectra are expected to be white
(excluding where they are zero by construction) and, as in
the white noise examples, the CGC

`
is imaginary and not

necessarily zero by construction but measures the level of
circular polarisation of the background. That the spectra
are predicted to be white follows from the fact there is a
single source in this model and so there is nothing for the
source to correlate with.
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0.00337397 0.5

(a) Probability of having a white dwarf binary

(b) Positions of white dwarf binaries

Figure 2. Probability distribution and positions of 4448 white

dwarf binaries in a particular simulation. The red lines enclose

the region containing 75% of the binaries and so approximate our
mask.

The power spectra for a single polarised (h+) signal on
the sky are calculated numerically and plotted in Fig. 5.
This single source gives Stokes parameters of I = Q = |h+ |2
in the same direction and U = V = 0. Here we can see that
for this simple example, there are no significant features in
any of the auto-power spectra – they are constant for all
`, except where they are zero by the definition of the spin-
weighted spherical harmonics. This is consistent with the
predicted power spectra from equations 28 – noting that
ĈGC
`
= ĈVV

`
= 0 and ĈEE

`
= ĈBB

`
= ĈI I

`
/2 because V = 0 and

U = 0, respectively.
While the source distribution is not Gaussian (we

choose |h+ | = δ2(k̂, k̂0) and φ+ ∼ U(0, 2π)), the error bars
presented in Fig. 5 are those given by equations 5 and A3
as a representative example. Note that because the real and
imaginary parts of h+ are not equal, neither are the error
bars for R[CGC

`
] and I[CGC

`
].

3.4 Multiple Sources

Mingarelli et al. (2017) (hereafter M17) assembled a galaxy
catalogue of massive galaxies from the 2 Micron All Sky
Survey (2MASS; Skrutskie et al. 2006) and computed the
probability of each galaxy hosting a SMBHB emitting grav-
itational waves in the PTA band. Moreover, they computed
the expected contribution of these nearby SMBHBs to the
isotropic gravitational-wave background, and using methods
from Mingarelli et al. (2013) and Taylor et al. (2015), found

that these local sources contribute to anisotropy in the back-
ground at a level of ∼ 15 − 20% of the monopole.

Here we build on this work, making heavy use of M17’s
open access code (Mingarelli 2017). One notable difference
between the method used in M17 and the version here is
that we consider both the amplitude and Stokes parameters
of the background. M17 instead consider the characteristic
strain, hc , which is an inclination and principal polarisation
averaged term. As we will see, the square of the character-
istic strain is closely related to the power I.

Assuming circular orbits, equations 25 and 26 apply,
with a few modifications. Because the sources considered
are extragalactic, the redshift of the emitting galaxy, z, is
factored into the equations – though the fact that we only
consider galaxies out to 225 Mpc means that its numerical
effect will be small. In this case, the distance r is ambiguous
and is replaced by luminosity distance DL . Similarly, the
orbital angular frequency, Ω, is not directly observable and
the observed gravitational wave frequency fo = Ω/[π(1 + z)]
is used instead. Equations 25 and 26 therefore become

h+(t) =A+ cos(2ψ) cos(2π fot + φ0) + A× sin(2ψ) sin(2π fot + φ0) ,
h×(t) = − A+ sin(2ψ) cos(2π fot + φ0)

+ A× cos(2ψ) sin(2π fot + φ0) (29)

and

A+ = +
2G2M1M2

c4DL

(
[π fo(1 + z)]2
G(M1 + M2)

)1/3
(1 + cos2 ϕ) ,

A× = −
4G2M1M2

c4DL

(
[π fo(1 + z)]2
G(M1 + M2)

)1/3
cos ϕ, (30)

where ϕ and ψ are defined as before. Using this, it can be
shown that

I =
5

16
〈I〉ψϕ(1 + 6 cos2 ϕ + cos4 ϕ) , (31a)

Q =
5

16
〈I〉ψϕ(1 − 2 cos2 ϕ + cos4 ϕ) cos(4ψ) , (31b)

U =
5

16
〈I〉ψϕ(1 − 2 cos2 ϕ + cos4 ϕ) sin(4ψ) , (31c)

V =
5
4
〈I〉ψϕ(cos ϕ + cos3 ϕ) , (31d)

where the average 〈· · · 〉ψϕ is over all possible inclinations
and principal polarisation axes of the binary,

〈I〉ψϕ =
1
8

32
5

(
2G2M1M2

c4DL

(
[π f0(1 + z)]2
G(M1 + M2)

)1/3)2

=
1
2

32
5

(
G5/3

c4
M5/3

c

DL
[π f0(1 + z)]2/3

)2

, (32)

and Mc = (M1M2)3/5/(M1 + M2)1/5 is the chirp mass. Com-
paring this to equation 2 from M17 we see that 〈I〉ψϕ = h2/2
where h is defined to be the inclination and principal po-
larisation averaged strain. As we consider each source to be
emitting from a single pixel, h2

c will be (M17; Finn & Thorne
2000)

h2
c =

∑
i

h2 fi
∆ f
= 2

∑
i

〈Ii〉ψϕ fi
∆ f

, (33)

where 〈Ii〉ψϕ is the inclination and principal polarisation av-
eraged power of the i-th source, fi its frequency and ∆ f the
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Figure 3. Power spectra for a white dwarf background. Amplitude power spectra are normalised with respect to ĈGG
2 and Stokes

parameters with respect to ĈVV
0 . For clarity, a horizontal black line shows C` = 0 where appropriate.

-5.95881 0

(a) log(I/Imax) for a white dwarf background

0 10 20 30 40 50
10 6

10 4

10 2

100

102

C
/C

1

CMM

CII

CII, = 4 

(b) Effect of the mask on C I I
`

Figure 4. Mollweide plot of the natural log of the I Stokes parameter, normalised with respect to max(I ), for a white dwarf background,
and the power spectra for the I Stokes parameter for all ` ≤ 50, for I averaged over ∆` = 4 and for the probability distribution from
Fig. 2 (M). The power spectra for the I field are normalised with respect to Ĉ I I

1 and ĈMM
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Figure 5. Power spectra for a single source (h+ = e4.2122i , h× = 0) on the sky. Stokes parameter power spectra are normalised with

respect to Ĉ I I
0 and amplitude power spectra with respect to ĈGG

2 .

inverse of the observation time. Firstly, given a particular in-
stance of the hc background, and a simulated set of ϕ and ψ,
all four Stokes parameters can be computed and so can their
corresponding power spectra. However, as the exact distri-
bution of ϕ and ψ are known, it is possible to calculate the
expected power spectra for the distribution of orientations.
It is worth noting that this is the expected value of the power
spectra of a field, not the power spectra of the expected field
– which is important as 〈Q〉ψϕ = 〈U〉ψϕ = 〈V〉ψϕ = 0.

The power spectra for such a background of point
sources is an easy extension of the single-source version. Re-
stricting to overall power I, it can be shown that

ĈI I
` =

1
4π

(∑
i

I2
i +

∑
i j,i,j

Ii IjP`(cos βi j )
)
, (34)

where Ii are the individual powers and βi j the angle between
sources i and j.

This has some interesting properties. Firstly, while it is
not always white, for a single source, we recover the delta
function source as considered in the previous section. If each
source has statistically independent power and sky-location,
then for a very large number of sources,

ĈI I
` →

{
1

4π

(∑
i I2

i +
∑
i j,i,j Ii Ij

)
, ` = 0

1
4π

∑
i I2

i , ` , 0 .
(35)

This is due to the fact that each Legendre polynomial with
` > 0 has average value zero over the range [−1, 1]. Because
of this, CI I

0 dominates in the limit of a large number of
sources and the rest of the spectrum is white. Of course,
this has similar properties to the ensemble average – that
is, one over sky locations, power of individual sources and
number of sources –

CI I
` =

1
4π

N̄
(
〈I2〉 + 〈I〉2δ`0

)
, (36)

where N̄ is the average number of sources and 〈I〉 is the
ensemble averaged power for a source – i.e. averaged over all
properties of the binary and galaxy.

This effect can be seen to some extent in Fig. 3. As
there is a large number of white dwarfs, we had to remove
the large ` = 0 value and can observe that the ĈI I

`
spectrum

is approximately white for ` � 0. The observation that the
spectrum is not white for low ` implies that there is corre-
lation of power/sky location on large scales – i.e. the shape
of the galaxy. For a lower number of sources, there can be
interesting features – as will be seen below.

Given a particular realisation of a gravitational-wave
background generated by local sources, we can compute the
relevant power spectra. Using the same sample realisation
as in M17 Fig. 2, this is done for two cases. In the “all-
sky” background (Fig. 2d from M17) there is one dominant

MNRAS 000, 1–18 (2018)



GWB Angular Power Spectra 11

source – i.e. one loud enough to be detected by a PTA – and
a background from the unresolvable nearby sources. This
dominant source is removed to produce an anisotropic, or
“noise”, background. The Mollweide projections of 〈I〉ψϕ for
these two skies are given in Fig. 6. We can see that the dom-
inant source is many orders of magnitude larger than any
other source, to the extent that it is the only one visible in
the“all-sky”background. Note that plots of power have been
smoothed to make the sources more visible. Plotted in Figs 7
and 8 are the power spectra for a sample of 16 from 512 sim-
ulations of different inclinations and principal polarisations
of the source SMBHBs. For ease of comparison, particularly
in terms of magnitudes, these are all normalised with re-
spect to 〈ĈI I

0 〉ψϕ and 〈ĈGG
2 〉ψϕ from the “noise” background

for the Stokes parameters and amplitudes, respectively.

The C
〈I 〉ψϕ 〈I 〉ψϕ
`

spectra (i.e. those constructed by ap-
plying equations 1 and 2 to 〈I〉ψϕ) are those most closely
related to those from M17. There will be some slight vari-
ation in the shape of the spectra because of the factor of
fi between 〈I〉ψϕ and h2

c , but this is not a large effect. The
factor of 2/∆ f will not make a difference because it is con-
stant for all sources and cancels out when the spectra are
normalised. One key difference is in the change in shape for
large `. The background field in M17 is Gaussian smoothed,
whereas here it is not. Because of this, the power spectra
here do not decay for large ` and are approximately white,
though this will stop being the case when ` approaches the
pixel scale. As mentioned, a real background will take into
account detector effects and so will be more complicated.

As in previous examples, the power spectra are approx-
imately constant for all ` but there is still information in
them. Firstly, while there is a single power spectrum for the
unobservable 〈I〉ψϕ (or hc) field, the 512 different instances
have a wide variation of realised spectra. To see this define
the average variation for auto-spectra

σF =
1

`max − `F

`max∑
`=`F

∆CFF
`

〈ĈFF
`
〉ψϕ

, (37)

where `F = 0 for F ∈ {I,V}, `F = 4 for F ∈ {E, B} and `F = 2
for F ∈ {G,C} is chosen so as avoid where the spectra are
identically zero. The upper limit `max is set to 50, corre-
sponding to an angular resolution of ∆Ω ≈ (180deg)2/`2

max ≈
13deg2 – a conservative estimate of the resolution of LISA
compared to, for example, ∆Ω ≈ 0.3deg2 in Cutler (1998).
This is similar to the result for PTAs from Sesana & Vec-
chio (2010); Taylor et al. (2015) where 2000 pulsars from
the Square Kilometre Array and a signal-to-noise ratio of
10 would give an angular resolution of ∆Ω ≈ 8deg2 – corre-
sponding to `max ≈ 63. Using this, we can see that σI ∼ 0.7
for the “noise” case and ∼ 1.2 for the “all-sky”. This is due
to the fact that I varies by a factor of 8 depending on the
inclination – as the binary can be edge- or face-on. This ef-
fect is also pronounced in the remaining auto-power spectra
(σV ∼ 0.8, σE ∼ σB ∼ 0.6, σG ∼ σC ∼ 0.3 for the “noise”
background σV ∼ 1.3, σE ∼ σB ∼ 0.9, σG ∼ σC ∼ 0.6 for
the “all-sky”) particularly because it is theoretically possible
to have any (but at most two) of Q, U or V as being zero
given particular sets of orientations.

This is important for measurements. If a background
were, by coincidence, made up of signals from face-on or
close to face-on binaries then the overall signal would be a

lot stronger than if they were all edge-on. Because of this,
the power spectra for a given collection of binaries may be
detectable or not depending on the collection of orientations.
For a large number of binaries, this effect should be reduced
as it is unlikely to have all of the binaries face-on. However,
for a smaller number of sources or (as is the case in the “all-
sky” background) a collection of sources with one dominant,
it is plausible to have the alignments affecting the overall
power in such a way. In such cases, the treatment of the
signal as being Gaussian is perhaps inappropriate.

The “all-sky” spectra are noticeably whiter than the
“noise” spectra, particularly for the CI I

`
spectra. This is re-

lated to the single-source spectra. If we consider the “all-
sky” background to be a sum of the “noise” background and
the single dominant source – i.e. Iall = Inoise + Idominant –
then the power spectrum will be a sum of the two spectra

in quadrature – i.e. ĈI I,all
`

= ĈI I,noise
`

+ ĈI I,dom
`

+ ĈI I,cross
`

,

where the ĈI I,dom
`

will be white as in the single-source ex-
ample. As there is actually more power in the single domi-
nant source than the rest of the background combined (and
so significantly more in the I2 terms relevant to the power

spectra), the ĈI I,dom
`

will be larger than the other terms and
the power spectrum is white with small modulations. This
also explains why the magnitude of the “all-sky” spectra are
so much larger than the “noise”.

A similar consequence of the dominant source can be
seen in Fig. 8(k). Here it can be seen that, though on average
it is zero, many of the simulated backgrounds have non-zero
I[CGC

`
]. This is related to equations 22b and 28b and this

spectrum measures the level of circular polarisation. In the
“noise” case this is negligible but for the “all-sky” version
the circular polarisation of the dominant source can lead to
a non-zero sky-average value of V .

Another key observation is the relative levels of various
power spectra. Using equations 31a and 31d, it can be shown
that

〈ĈI I
` 〉ψϕ =C

〈I 〉ψϕ 〈I 〉ψϕ
`

+
1

4π
103
252

∑
i

〈Ii〉2ψϕ , (38a)

〈ĈVV
` 〉ψϕ =

1
4π

115
84

∑
i

〈Ii〉2ψϕ , (38b)

where the difference is primarily due to the fact that 〈V〉ψϕ =
0 and so C

〈V 〉ψϕ 〈V 〉ψϕ
`

= 0. This explains why various spectra

(including 〈ĈI I
`
〉ψϕ , Ĉ

〈I 〉ψϕ 〈I 〉ψϕ
`

, Ĉ
〈I 〉ψϕ 〈I 〉ψϕ
`

− Ĉ
〈V 〉ψϕ 〈V 〉ψϕ
`

and 〈ĈI I
`
〉ψϕ − 〈ĈVV

`
〉ψϕ) have the same shape, just shifted

by a constant factor. Some of this shape, particularly for
the “noise” example, will be due to an effective mask on the
signal. As the electromagnetic signals (unlike gravitational
waves) used to determine the positions and properties of the
galaxies in the 2MASS survey are obscured by the galactic
plane of the Milky Way, there is a region of the sky that is
effectively masked in this simulation. To see this, compare
the masking term in Fig. 4(b) to Fig. 7(a).

As in many previous examples, the ĈEE
`

and ĈBB
`

have
very similar shapes and are on average (over inclinations and
principal polarisations) equal – as can be seen in Figs 7(f)
and 8(f). However, their difference for any given realisation
can be of the order of 〈CEE

`
〉ψϕ for any given ` of a back-

ground. That they are on average equal can be explained
using Appendix B: it can be shown that 〈Q(k̂)Q(k̂ ′)〉ψϕ =

MNRAS 000, 1–18 (2018)
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(a) Sky location of sources

-0.000188995 1

(b) “All-sky” background

-1.8862e-06 0.0372028

(c) “Noise” background

Figure 6. Going from continuous gravitational-wave sources to gravitational-wave backgrounds. (a) A sample Monte Carlo realisation

from M17: 87 local nanohertz gravitational-wave sources from 2MASS, marker sizes scaled to show the relative strain of the sources.
(b) 〈I 〉ψϕ for the gravitational-wave background generated from the sources on the left hand side, which we call the “all-sky” map. This

includes a loud source which is visible in the top centre-right of the figure. (c) The background without this loud source, which we call

the “noise” background. Both 〈I 〉ψϕ backgrounds normalised with respect to max(〈I 〉ψϕ ) from the “all-sky” background – i.e. from the
dominant source.

〈U(k̂)U(k̂ ′)〉ψϕ and 〈Q(k̂)U(k̂ ′)〉ψϕ = −〈U(k̂)Q(k̂ ′)〉ψϕ = 0, it
follows that 〈ĈEE

`
〉ψϕ = 〈ĈBB

`
〉ψϕ . The difference between

the spectra in any particular realisation will be due to the
finite number of sources in the background. This means that
there can be a set of principal polarisations leading to a sta-
tistically significant difference in the values of Q and U across
the whole sky. For a sky with a larger number of sources (as
in the white dwarf binary example), this effect will be re-
duced.

3.5 Anisotropy from large-scale structure

The assumption used thus far of independent power and
sky-location for all of the signals is not the complete pic-
ture. While the presence of a SMBHB in a given galaxy will
be due to many largely independent effects, the distribution
of galaxies will be correlated due to large-scale structure.
To see the effect of this we must consider a larger num-
ber of galaxies. Specifically we use the 5119 galaxies, out to
225 Mpc, from the 2MASS survey considered by M17. We
compare the power spectrum of the signal from the true dis-
tribution of the galaxies to those where the galaxies have
been uniformly redistributed across the sky. To do this, we
take the “Nanohertz GW” code (Mingarelli 2017) and set
the probability of a given galaxy hosting a binary to be 1.
In real observations, we will be able to measure gravitational
waves from the whole sky, but, as mentioned, this is not the
case with the 2MASS survey and so it is not appropriate
to simply randomly redistribute all 5119 galaxies. Instead,
we consider a mask over all positions in a band defined by
being less than 0.2 radians from the galactic plane. This
masked region contains 316 galaxies which are ignored for
the rest of the analysis. The remaining 4803 galaxies are
redistributed randomly with a uniform distribution for all
positions outside of this band. The original distribution for
a given simulation (indexed by s) and an example of the uni-
form distribution (indexed by i) for this simulation are given
in Fig. 9. Using this, we can compute the power spectra for
the two cases.

The angular power spectra for this masked anisotropic
simulation of the power and the average over 1024 isotropi-
sations of it are plotted in Fig. 10(a) – for a given simulation

s and set of isotropisations i, we define 〈ĈI I,si
`
〉i as the mean

power spectrum and σi[CI I,si
`
] as the standard deviation4.

Using the metric of χ2 averaged over `,

χ2 =
1

`max

`max∑
l=1

(
ĈI I,s
`
− 〈ĈI I,si

`
〉i
)2(

σi[ĈI I,si
`
]
)2 , (39)

for `max = 50 gives χ2 ≈ 2.02. This is typical5 as χ2 has, on
average across different simulations, mean value ≈ 2.15 and
median ≈ 1.80 (though over 128 simulations was as small as
≈ 0.662 and as large as ≈ 13.2) and is significantly larger
than the case for different isotropic redistributions which is,
by definition, 1 on average. It is worth noting that, because
of the large number of isotropisations (1024 different redis-
tributions each for 128 simulations), there is a large range

of values for the value of χ2 for a given ĈI I,si
`

– varying be-
tween ∼ 0.334− 27.0 in these examples. This is a small effect
and only ∼ 2% of the isotropised power spectra give χ2 > 2.

Of course, a true measurement will not have this mask-
ing effect because gravitational waves are not obscured by
the galaxy. It is, however, noticeable how different the spec-
trum of the true distribution is to the isotropised versions.
As such, it appears that a measurement of the power spec-
trum of SMBHBs can, in principle, provide information on
large-scale structure, though this may require more galaxies
to be emitting in the nanohertz band than used by M17.

A single simulation of the power emitted from the 5119
galaxies is plotted in Fig. 10(a) instead of a collection of
them because of the issue of single dominant sources. As the
overall power spectrum can be so affected by the presence
of single, large source, as seen previously in this section, the
overall strength of the power spectra for different simulations
can vary massively and in a very non-Gaussian way. In prin-
ciple such a source may be large enough to be individually
observed and so removed from the analysis but one poten-
tial method of compensating for this is plotted in Fig. 10(b).
Here, instead of the spectra for a single simulation, or the
mean over many simulations, we plot the median. That is,

4 Note that these are both over isotropisations, i, so remain a

function of the simulation, s.
5 This example was chosen because of its typical χ2 value and
because this deviation is comparatively easy to see.
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Figure 7. Plots of power spectra of a sample of 16 of 512 simulations of different principal polarisations and inclinations for binaries

taken from the “noise” background in M17 (red dashed lines) – i.e. nearby unresolvable SMBHBs emitting gravitational waves with nHz
frequencies. The figure also shows the average over the power spectra from each of the simulations (black solid line) and the average ±
one standard deviation (black dash lines). Power spectra of the averaged Stokes parameters are shown where relevant (blue solid line).

The power spectra constructed from the Stokes parameters are normalised with respect to 〈C I I
0 〉ψϕ , and those constructed from the

amplitudes with respect to 〈CGG
2 〉ψϕ – both from the “noise” background.

the median value of ĈI I,s
`

and ĈI I,si
`

for each ` harmonic over
the 128 original simulations and 128 × 1024 isotropisations,
respectively. The corresponding standard deviation term is
the median over the standard deviations calculated for each
initial simulation. Here it can be seen that, perhaps unsur-
prisingly, the median deviation is smaller – corresponding to
an equivalent χ2 of ≈ 0.616. The (median) fractional differ-

ence between these is plotted in Fig. 10(c). Here we can see
that some of the features in Figs 10(a) and 10(b) are sta-
tistically significant – for example, increased power in the
original simulation at the ` = 2 and 6 harmonics over the
isotropisations, in addition to reduced power at ` = 4. Note
that some of the features that may be statistically signif-
icant on average (i.e. in Figs 10(b) and 10(c)) such as an
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Figure 8. As in Figure 7, but for the “all-sky” background of M17, which contains a strong continuous gravitational-wave source.

enhancement at ` = 8 are not necessarily present in any
given simulation. A final note is that the majority of the
structure of the spectra of the original simulations will, in
general, be on larger scales – i.e. for ` / 10.

One potentially informative metric related to this is
cross-correlations of these spectra with the power spectrum
of the large-scale structure. In theory, this should be similar
to an autocorrelation of either spectra but any significant
difference could inform us of properties the source – such
as preferential distribution of the emitting SMBHBs – or

of gravitational waves themselves – such as a difference in
the propagation of electromagnetic and gravitational waves,
though current constraints on prorogation imply that this
would require a very large degree of sensitivity. This will
also have the benefit of a higher signal-to-noise ratio for this
cross-spectrum than the auto-spectrum of the gravitational
waves because the large-scale structure will itself have higher
signal-to-noise than the gravitational wave field, even for the
most sensitive future detectors.
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(a) log(Is ) for a simulation of the 5119 galaxies

(b) log(Isi ) for an isotropisation of 4803 galaxies

Figure 9. Locations and log(I/max(I )) for a single simulation of

the 5119 galaxies considered by M17 including the 316 contained
in the masked region, as indicated by the red lines at 0.2 radians

from the galactic plane. Also plotted is an isotropisation of the
4803 galaxies outside of the band.

4 CONCLUSIONS

We have compared the spin-2 spectra of the gravitational
wave amplitude of a stochastic background to that of the
spin-4 spectra of the gravitational Stokes parameters. We
can see that, in many examples, the amplitude analysis gives
white (constant amplitude) spectra of statistically equal
strength for the autocorrelations and zero for the cross-
correlations. As such, we cannot infer much information di-
rectly from the power spectra in these cases, other than a
measure of the overall signal strength and an indication of
the expected parity symmetry. While it is possible to con-
struct examples where the amplitude auto-spectra are not
equal and the cross-spectrum is not zero (e.g. a background
with a small number of sources or by breaking parity) and
where they are not white (requiring a correlation in phase
which is very difficult to set up), these simple constraints
hold for a majority of cases considered. However, this does
mean that any detection of such non-standard power spectra
indicates something unexpected about the background.

The Stokes parameter analysis method, while still often
giving white spectra, does show more information. Though
the CEE

`
and CBB

`
spectra are usually equal, they differ from

CI I
`

and CVV
`

. Further, in the Stokes case, it is easier to con-
struct reasonable examples of backgrounds where the spec-

tra are not white – as can be seen in the white dwarf binary
and the large-scale structure/SMBHB examples – giving in-
formation on the distribution of sources.

It should be further noted that the power spectra for
Stokes parameters, other than I, share many of the same
constraints as the amplitude spectra. That is, in the ma-
jority of examples they are white and CEE

`
usually equals

CBB
`

. The reasons for this are often similar: for example, in
the case of binaries, the orientations of different binaries are
unlikely to be correlated and so lead to white spectra in the
same way as uncorrelated phases.

Because of these observations, it is clear that the Stokes
parameter method will often provide more information than
the amplitude (and in the majority of cases, the most valu-
able spectrum to consider is that of the I Stokes parameter
– consistent with what has been studied in the past). As
such it will, in general, be the more appropriate method to
analyse the background. We will apply these techniques to
simulations of white dwarf binaries (Brevik et al., 2018, in
preparation) as both a method characterise the background
and distinguish it from other sources of gravitational radia-
tion.

For the application of these methods to real data, con-
taminated by noise and selection effects, much work will be
necessary, going from pulsar-timing or gravitational-wave in-
terferometer timestream data to maps of the background,
e.g. Renzini & Contaldi (2018), and then to the spectra
and related likelihood functions. Estimations of backgrounds
made up of small numbers of sources, or examples with a sin-
gle source that provides a significant part of the signal, will
be subject to non-Gaussian statistics and it could be argued
that the angular power spectra are not appropriate, or at
least do not show the full picture. We expect that methods
from the analysis of the CMB (e.g. Bond et al. 1998; Hivon
et al. 2002; Planck Collaboration 2016a), large scale struc-
ture (e.g. Alam et al. 2017), and weak lensing (e.g. Alsing
et al. 2017) will be particularly useful and we will pursue
these techniques in future work.
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APPENDIX A: PROPERTIES OF SPHERICAL
HARMONICS

A1 Errors for power spectra of amplitude fields

The standard deviation for the power spectra given in equa-
tion 3 assumes that the fields considered (e.g. I, Q, U, V)
are real as the calculation requires that the harmonic coeffi-
cients satisfy equation 12. This means that for power spectra
generated from the complex amplitude fields, the standard
deviation is more complicated. To see this, we split the fields
into real and imaginary parts

±2ar`m + i±2ai`m =
∫

d2 k̂((hr+ + ihi+) ± i(hr× + ihi×))±2Ỳ m(k̂)

=

∫
d2 k̂(hr+ ± ihr×)±2Ỳ m(k̂)

+ i
∫

d2 k̂(hi+ ± ihi×)±2Ỳ m(k̂) ,

aGr/Gi
`m

= +
1
√

2

(
+2ar/i

`m
+ −2ar/i

`m

)
,

aCr/Ci
`m

= − i
√

2

(
+2ar/i

`m
− −2ar/i

`m

)
(A1)

which do satisfy equation 12 and lead to power spectra

CAA′
` =

1
2` + 1

∑
m

aA
`maA′∗

`m , A, A′ ∈ {Gr,Gi,Cr,Ci} . (A2)

Using these, we can then show that the errors on the full
power spectra are

∆CMM
` =

[
2

(2` + 1) fsky
(
CMrMr
` CMrMr

`

+ 2CMrMi
` CMrMi

` + CMirMi
` CMiMi

`

) ] 1
2
,

M ∈ {G,C} ,

∆[R[CGC
` ]] =

[
1

(2` + 1) fsky
(
CGrGr
` CCrCr

` + CGrCr
` CGrCr

`

+ CGrGr
` CCiCi

` + CGiCi
` CGiCi

`

+ CGrGi
` CCrCi

` + CGrCi
` CGiCr

`

) ] 1
2
,

∆[I[CGC
` ]] =

[
1

(2` + 1) fsky
(
CGiGi
` CCrCr

` + CGiCr
` CGiCr

`

+ CGrGr
` CCiCi

` + CGrCi
` CGrCi

`

− CGrGi
` CCrCi

` − CGiCi
` CGrCr

`

) ] 1
2
. (A3)

This can be significantly different from the result in equa-
tion 3. For example in the case where CGrGr

`
= CGiGi

`
and

CGrGi
`

= 0, the value of ∆CGG
`

is a factor of
√

2 less for this
method than if we had assumed that equation 3 applied.

A2 Sum of spherical harmonics

Using the sign convention of Hu & White (1997); Goldberg
et al. (1967) (rather than that of Gair et al. (2014)) – specif-
ically equations 2 of (Hu & White 1997) and 3.1 of (Gold-
berg et al. 1967) – the power spectra of an uncorrelated field

(either spin weighted or spin-0) will contain terms like the
following:

1
2` + 1

∑̀
m=`

∫
d2 k̂g( f , k̂)s1Y∗`m(θ, φ)s2Ỳ m(θ, φ)

=
1

2` + 1

∫
d2 k̂g( f , k̂)

√
2` + 1

4π s2Ỳ ,−s1 (0, 0) , (A4)

where the relevant pairs of spins are

0Ỳ 0(0, 0) =
√

2` + 1
4π

,

±sỲ ,∓s(0, 0) =
√

2` + 1
4π

,

±sỲ ,±s(0, 0) =0 . (A5)

A3 Correlation of Stokes parameters

Assuming that the phases, φ+ and φ×, for each direction are
independent of each other and |h+ | and |h× | and are uni-
formly distributed, φ+,× ∼ U(0, 2π), means that we can say
certain things about the expected (i.e. ensemble averaged)
correlations of the Stokes parameters. First note that the ex-
pectation value of functions of the phases only is equivalent
to an integral over the phases

〈 f (φ+, φ×)〉 =
∫

dφ+

∫
dφ× f (φ+, φ×)P(φ+)P(φ×)

=

(
1

2π

)2 ∫ 2π

0
dφ+

∫ 2π

0
dφ× f (φ+, φ×) . (A6)

Specifically consider

〈 sin(φ+ − φ×)〉

=

(
1

2π

)2 ∫ 2π

0

∫ 2π

0
sin(φ+ − φ×)dφ+dφ× = 0 ,

〈 cos(φ+ − φ×)〉

=

(
1

2π

)2 ∫ 2π

0

∫ 2π

0
cos(φ+ − φ×)dφ+dφ× = 0 ,

〈 sin(φ+ − φ×) cos(φ′+ − φ′×)〉

=

{
〈sin(φ+ − φ×)〉〈cos(φ′+ − φ′×)〉, if k̂ , k̂
〈sin(φ+ − φ×) cos(φ′+ − φ′×)〉, if k̂ = k̂

=


0, if k̂ , k̂(

1
2π

)2 ∫ 2π
0

∫ 2π
0 sin(φ+ − φ×) cos(φ+ − φ×)dφ+dφ×, if k̂ = k̂

=

{
0, if k̂ , k̂

1
8π2

∫ 2π
0

∫ 2π
0 sin(2φ+ − 2φ×)dφ+dφ×, if k̂ = k̂

=

{
0, if k̂ , k̂
0, if k̂ = k̂

=0, (A7)
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which means that

〈I( f , k̂)U( f ′ k̂ ′)〉 =〈2(|h+( f , k̂)|2 + |h×( f , k̂)|2)
× |h+( f ′, k̂ ′)| |h×( f ′, k̂ ′)| sin(φ′+ − φ′×)〉
=2〈(|h+( f , k̂)|2 + |h×( f , k̂)|2)
× |h+( f ′, k̂ ′)| |h×( f ′, k̂ ′)|〉〈sin(φ′+ − φ′×)〉
=0 ,

〈V( f , k̂)Q( f ′ k̂ ′)〉 =〈2|h+( f , k̂)| |h×( f , k̂)| sin(φ+ − φ×)
× (|h+( f ′, k̂ ′)|2 − |h×( f ′, k̂ ′)|2)〉
=2〈(|h+( f ′, k̂ ′)|2 − |h×( f ′, k̂ ′)|2)
× |h+( f , k̂)| |h×( f , k̂)|〉〈sin(φ+ − φ×)〉
=0 ,

〈V( f , k̂)U( f ′ k̂ ′)〉 =〈2|h+( f , k̂)| |h×( f , k̂)| sin(φ+ − φ×)
× 2|h+( f ′, k̂ ′)| |h×( f ′, k̂ ′)| cos(φ′+ − φ′×)〉
=4〈|h+( f , k̂)| |h×( f , k̂)| |h+( f ′, k̂ ′)| |h×( f ′, k̂ ′)|〉
× 〈sin(φ+ − φ×) cos(φ′+ − φ′×)〉
=0 . (A8)

The expected power spectrum for CVB
`

is then

CVB
` ( f )

=
1
2i

1
2` + 1

∑
m

(
〈bV ( f )`m+4b∗`m( f )〉 − 〈b

V ( f )`m−4b∗`m( f )〉
)

=
1
2i

1
2` + 1

∑
m

∬
d2 k̂d2 k̂

×
( [
〈V( f , k̂)Q( f ′, k̂ ′)〉 − i〈V( f , k̂)U( f ′, k̂ ′)〉

]
+4Y∗`m(k̂)Ỳ m(k̂ ′)

+
[
〈V( f , k̂)Q( f ′, k̂ ′)〉 + i〈V( f , k̂)U( f ′, k̂ ′)〉

]
−4Y∗`m(k̂)Ỳ m(k̂ ′)

)
=0 . (A9)

For 〈V( f , k̂)V( f ′, k̂ ′))〉 consider

〈sin(φ+ − φ×) sin(φ′+ − φ′×)〉

=

{
〈sin(φ+ − φ×)〉〈sin(φ′+ − φ′×)〉, if k̂ , k̂
〈sin(φ+ − φ×) sin(φ′+ − φ′×)〉, if k̂ = k̂

=

{
0, if k̂ , k̂

1
4π2

∫ 2π
0

[∫ 2π
0 sin2(φ+ − φ×)dφ+

]
dφ×, if k̂ = k̂

=

{
0, if k̂ , k̂
1
2, if k̂ = k̂

=
1
2
δ2(k̂, k̂ ′) . (A10)

Applying this to V gives

〈V( f , k̂)V( f ′ k̂ ′)〉 =〈2|h+( f , k̂)| |h×( f , k̂)| sin(φ+ − φ×)
× 2|h+( f ′, k̂ ′)| |h×( f ′, k̂ ′)| sin(φ′+ − φ′×)〉
=4〈|h+( f , k̂)| |h×( f , k̂)| |h+( f ′, k̂ ′)| |h×( f ′, k̂ ′)|〉
× 〈sin(φ+ − φ×) sin(φ′+ − φ′×)〉
=2〈|h+( f , k̂)| |h×( f , k̂)| |h+( f , k̂)| |h×( f , k̂)|〉
× δ2(k̂, k̂ ′) = g( f , k̂)δ2(k̂, k̂ ′) . (A11)

Using the same methods as equations 22, this can be seen
to lead to a white, but not necessarily zero, CVV

`
spectrum.

Making the further assumption that h+ and h× are sta-
tistically identical gives

〈I( f , k̂)Q( f ′ k̂ ′)〉
= 〈2(|h+( f , k̂)|2 + |h×( f , k̂)|2) · (|h+( f ′, k̂ ′)|2 − |h×( f ′, k̂ ′)|2)〉
= 〈|h+( f , k̂)|2 |h+( f ′, k̂ ′)|2 − |h×( f , k̂)|2 |h×( f ′, k̂ ′)|2〉
+ 〈|h×( f , k̂)|2 |h+( f ′, k̂ ′)|2 − |h+( f , k̂)|2 |h×( f ′, k̂ ′)|2〉
= 0 . (A12)

This, combined with equation A8 gives CIE
`
= 0 in the same

way as equation A9.

APPENDIX B: CORRELATIONS OF
HARMONICS OF A SPIN-WEIGHTED FIELD

Given any spin-s background (F + iG)(k̂) on the sphere
with harmonics ±2a`m we can define (pseudo-)scalar har-
monics aE

`m
and aB

`m
. Then 〈F(k̂)F(k̂ ′)〉 = 〈G(k̂)G(k̂ ′)〉 and

〈F(k̂)G(k̂ ′)〉 = −〈G(k̂)F(k̂ ′)〉 if and only if 〈aE
`m

aE∗
`′m′〉 =

〈aB
`m

aB∗
`′m′〉 and 〈aE

`m
aB∗
`′m′〉 = −〈a

B
`m

aE∗
`′m′〉.

For example, this means that for any pair of field that
are statistically identical (so 〈F(k̂)F(k̂ ′)〉 = 〈G(k̂)G(k̂ ′)〉)
and are independent with mean zero (〈F(k̂)G(k̂ ′)〉 =
〈F(k̂)〉〈G(k̂ ′)〉 = 0 = −〈G(k̂)F(k̂ ′)〉) then we immediately get
that CEE

`
= CBB

`
and CEB

`
= −CBE

`
. It can be further shown

that, with these same assumptions, CEB
`
= CBE

`
= 0 and

parity is satisfied.

This paper has been typeset from a TEX/LATEX file prepared by

the author.
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