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RANK 2 LOCAL SYSTEMS AND ABELIAN VARIETIES II

RAJU KRISHNAMOORTHY AND AMBRUS PÁL

Abstract. Let X/Fq be a smooth, geometrically connected, quasiprojective scheme. Let E be a
semisimple overconvergent F -isocrystal on X. Suppose that irreducible summands Ei of E have rank
2, determinant Q̄p(−1), and infinite monodromy at ∞. Suppose further that for each closed point x
of X, the characteristic polynomial of E at x is in Q[t] ⊂ Qp[t]. Then there exists a non-trivial open
set U ⊂ X such that E|U comes from a family of abelian varieties on U .

As an application, let L1 be an irreducible lisse Q̄l sheaf on X that has rank 2, determinant
Q̄l(−1), and infinite monodromy at ∞. Then all crystalline companions to L1 exist (as predicted by
Deligne’s crystalline companions conjecture) if and only if there exists a non-trivial open set U ⊂ X
and an abelian scheme πU : AU → U such that L1|U is a summand of R1(πU )∗Q̄l.

1. Introduction

Throughout this article, p is a prime number and q is a power of p. If X/k is a smooth scheme over a

perfect field of characteristic p, then F-Isoc†(X) denotes the category of overconvergent F -isocrystals

on X and F-Isoc†(X)
Qp

denotes its Qp-linearization. Overconvergent F -isocrystals are a p-adic analog

of lisse l-adic sheaves.

Definition 1.1. Let X/k be a smooth, geometrically connected scheme over a perfect field k of

characteristic p and let E ∈ F-Isoc†(X)
Qp

. We say that E has infinite local monodromy at infinity if

for every triple (X ′, X ′, f) where X ′ is smooth projective over k, X ′ ⊂ X ′ is a Zariski open subset, and
f : X ′ → X is an alteration, the overconvergent F -isocrystal f∗E does not extend to an F -isocrystal
on X ′.

This definition of infinite local monodromy at infinity applies equally well to lisse Ql-sheaves and is
compatible with the other notions of infinite local monodromy at infinity.

Theorem 1.2. Let X/Fq be a smooth, geometrically connected, quasiprojective scheme. Let E ∈

F-Isoc†(X) be a semisimple overconvergent F -isocrystal. Suppose:

• for every closed point x of X, the polynomial Px(E , t) has coefficients in Q ⊂ Qp;

• every irreducible summand Ei ∈ F-Isoc†(X)
Qp

of E has rank 2, determinant Qp(−1), and

infinite local monodromy around infinity.

Then E comes from a family of abelian varieties. More precisely, there exists a non-empty open subset
U ⊂ X and an abelian scheme AU → U , so that D(AU [p

∞])⊗Qp
∼= E|U .

Here, if G→ X is a p-divisible group, D(G) is the (contravariant) Dieudonné crystal attached to G.
We have the following application. Deligne formulated what is now called the companions conjecture
in [Del80, Conjecture 1.2.1]. For a guide to the crystalline companions conjecture, see [Ked16, Ked18].

Corollary 1.3. Let X/Fq be a smooth, geometrically connected scheme. Let L1 be an irreducible rank

2 lisse Ql sheaf with infinite monodromy around infinity and determinant Ql(−1). Then the following
are equivalent:

(1) there exists a non-empty open subset U ⊂ X and an abelian scheme π : AU → U such that L1

is a summand of R1(πU )∗Ql;
(2) all crystalline companions to L1 exist (as predicted by Deligne’s crystalline companions con-

jecture).
1
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Corollary 1.4. Let X/Fq be a smooth, geometrically connected scheme. Let E1 be an irreducible rank

2 object of F-Isoc†(X)Qp
with infinite monodromy around infinity and determinant Qp(−1). Suppose

the (number) field E1 ⊂ Qp generated by the coefficients of Px(E1, t) as x ranges through the closed
points of X has a single prime over p. Then E1 comes from a family of abelian varieties: there exists
a non-empty open subset U ⊂ X and an abelian scheme AU → U such that E1|U is a summand of
D(AU [p

∞])⊗Qp.

In particular, Corollaries 1.3 and 1.4 provide some evidence for a question of Drinfeld [Dri12,
Question 1.4] and a conjecture of the authors [KP18, Conjecture 1.2]. Our motivation for formulating
this conjecture was a celebrated theorem of Corlette-Simpson over C [CS08, Theorem 11.2], the proof
of which uses non-abelian Hodge theory. In contrast to our earlier work [KP18], this article does
not use Serre-Tate deformation theory nor does it use the algebraization/globalization techniques of
[Har70].

We briefly sketch the proof. Drinfeld’s first work on the Langlands correspondence for GL2, together
with Abe’s work on the p-adic Langlands correspondence, implies Theorem 1.2 when dim(X) = 1. To
do the higher-dimensional case, we first assume that X admits a simple normal crossings compact-
ification X̄ and E is a logarithmic F -isocrystal with nilpotent residues. (We recall the notion of
logarithmic F -isocrystals in Appendix A.) A technique of Katz, combined with slope bounds originally
due to Lafforgue, allow one to construct a logarithmic Dieudonné crystal whose associated logarithmic
F -isocrystal is isomorphic to E . This logarithmic Dieudonné crystal yields a natural line bundle, which
we call the Hodge bundle ω of the logarithmic Dieudonné crystal, on X̄ .

For any odd prime l 6= p, it is well-known that the Hodge line bundle is ample on Ah,1,l over
Spec(Z[1/l]). We use Poonen’s Bertini theorem over finite fields together with Drinfeld’s result and
Zarhin’s trick to find a well-adapted family of extremely ample space-filling curves C̄n of X̄ that each
map to the minimal compactification A ∗

h,1,l ⊂ Pm via some fixed power of the Hodge bundle ω|r
C̄n

.

(This step uses foundational work of Kato, Kedlaya, le Stum, and Trihan that we explain in Appendix
A.) The finitude of the set H0(X̄, ωr) ensures that infinitely many of these maps can be pieced together
to a map X̄ 99K Ah,1,l ⊂ Pm; hence we obtain an abelian scheme ψU : BU → U over some open U ⊂ X .
The space-filling properties of the C̄n and Zarhin’s work on the Tate isogeny theorem for fields finitely
generated over Fq then allow us to conclude.

To deduce the general case, we use Kedlaya’s semistable reduction theorem for overconvergent
F -isocrystals.

2. Preliminaries

Before proving Theorem 1.2, we need several preliminary results. A key ingredient in the proof is
the following, which is a byproduct of Drinfeld’s first work on the Langlands correspondence for GL2.

Theorem 2.1. (Drinfeld) Let C/Fq be a smooth affine curve and let L1 be a rank 2 irreducible Ql sheaf

with determinant Ql(−1). Suppose L1 has infinite local monodromy around some point at ∞ ∈ C\C.
Then L1 comes from a family of abelian varieties in the following sense: let E be the field generated
by the Frobenius traces of L1 and suppose [E : Q] = g. Then there exists an abelian scheme

πC : AC → C

of dimension g and an isomorphism E ∼= EndC(A) ⊗ Q, realizing AC as a GL2-type abelian scheme,
such that L1 occurs as a summand of R1(πC)∗Ql. Moreover, AC → C is totally degenerate around ∞.

See [ST18, Proof of Proposition 19, Remark 20] for how to recover this result from Drinfeld’s work.
This amounts to combining [Dri83, Main Theorem, Remark 5] with [Dri77, Theorem 1].

We will also need the following useful lemma to ensure that, given the hypotheses of Theorem 1.2,
every p-adic companion of Ei is again a summand of E ; moreover, the companion relation preserves
multiplicity in the isotypic decomposition of E .

Lemma 2.2. Let X/Fq be a smooth, geometrically connected scheme.
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(1) Let l 6= p be a prime and let L be a lisse, semi-simple Ql-sheaf on X, all of whose irreducible
summands Li have algebraic determinant. Suppose for all closed points x of X, we have:

Px(L, t) ∈ Q[t] ⊂ Ql[t].

Let Li be an irreducible summand of L that occurs with multiplicity mi and ι ∈ AutQ(Ql) be a
field automorphism. Then the ι-companion to Li, denoted ιLi, is isomorphic to an irreducible
summand of L that occurs with multiplicity mi.

(2) Let F be a semi-simple object of F-Isoc†(X)
Qp

, all of whose irreducible summands Fi have

algebraic determinant. Suppose for all closed points x of X, we have:

Px(F , t) ∈ Q[t] ⊂ Qp[t].

Let Fi be an irreducible summand of F that occurs with multiplicity mi and let ι ∈ AutQ(Qp).
Then the ι-companion of Fi, denoted ιFi,exists and is isomorphic to a direct summand of F
that occurs with multiplicity mi.

Before beginning the proof, we note that l-adic companions are known the exist for smooth varieties
over finite fields [Dri12, Theorem 1.1]. In contrast, p-adic companions are not yet known to exist
except when X is a curve [Abe18], though Kedlaya has recently proposed a promising strategy.

Proof. We reduce the crystalline case to the étale case. (Note that we could have equivalently proceeded
by reduction to curves using [AE19].) As F is semisimple, write an isotypic decomposition:

F ∼=

a⊕

i=1

Fmi

i .

Note that each Fi is pure by [AE19, Theorem 2.7]. Fix an isomorphism σ : Qp → Ql. By [AE19,
Theorem 4.2] or [Ked18, Corollary 3.5.3], the σ-companion to each Fi exists as an irreducible lisse
Ql-sheaf Li. Setting L to be the semi-simple σ-companion of F , we have:

L ∼=

a⊕

i=1

Lmi

i .

Set ι ∈ AutQ(Qp). Then Fj is the ι-companion to Fi if and only if Lj is the σ ◦ ι ◦ σ−1-companion
to Li. Therefore it suffices to prove the result in the étale setting.

Let M be an irreducible lisse Ql-sheaf on X . Then M is pure by [Del12, Théorème 1.6] and class
field theory. Then the multiplicity of M in the semisimple sheaf L is: dim(H0(X,M∗ ⊗ L)). By
assumption we have that for all closed points x of X , Px(L, t) ∈ Q[t] ⊂ Ql[t]. Let ι ∈ AutQ(Ql),
and note that the semi-simple ι-companion to L is again isomorphic to L. Then the ι-companion to
M∗⊗L is isomorphic to (ιM∗)⊗L. On the other hand, the exact argument of [AE19, 3.2] for lisse l-adic
sheaves implies that dim(H0(X,M∗⊗L)) = dim(H0(X,ι (M∗⊗L)). Therefore dim(H0(X,M∗⊗L)) =
dim(H0(X, (ιM∗)⊗ L)), and the result follows.

�

Remark 2.3. The argument of [AE19, 3.2] cited in the proof of Lemma 2.2 is based on [Laf02, Cor
VI.3] and uses L-functions. See also [Ked18, Lemma 3.1.5, Theorem 3.3.1].

Remark 2.4. It follows from Lemma 2.2 that, in the context of Theorem 2.1, there is a decomposition:

R1(πC)∗Ql
∼=

g⊕

i=1

(Li)

where the Li form a complete set of Ql companions. There are exactly g non-isomorphic companions
because the field generated by Frobenius traces of L1 is isomorphic to E and the l-adic companions
are in bijective correspondence with the embeddings E →֒ Ql. In particular, each companion occurs
with multiplicity 1. In fact, as E ∼= EndC(AC)⊗Q, it follows that E ⊗Ql acts on R1(πC)∗Ql. On the
other hand, E⊗Ql

∼=
∏

iQl, where i runs over the embeddings E →֒ Ql. For each i, pick a non-trivial
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idempotent ei ∈ E ⊗ Ql whose image is the ith component of the direct product decomposition. The
above direct sum decomposition is induced by these ei.

To apply Drinfeld’s Theorem 2.1, we will use the following lemma.

Lemma 2.5. Let Y/Fq be a smooth, geometrically connected, projective scheme and let α be a line
bundle on Y . Let M ⊂ Pm

Fq
be a closed subset. Suppose there exists an infinite collection (Cn)n∈N of

smooth, projective, geometrically connected curves Cn ⊂ Y such that

(1) for each n ∈ N, the natural map H0(Y, α) → H0(Cn, α|Cn
) is an isomorphism;

(2) for any infinite subset S ⊂ N, the union:
⋃

n∈S

Cn

is Zariski dense in Y ;
(3) for each curve Cn, there exists an m+ 1 globally generating sections

tn,0, . . . , tn,m ∈ H0(Cn, α|Cn
)

such that the induced map to Pm factors through M :

Cn

!!❈
❈
❈
❈
❈
❈
❈
❈

fn // Pm

M

OO

Then there exist global sections t̃0, . . . , t̃m ∈ H0(Y, α) such that the induced rational map f̃ : Y 99K Pm

has image in M . Moreover, f̃ can be chosen to be compatible with infinitely many of the maps fn.

Proof. There are finitely many ordered m + 1-tuples of sections H0(Y, α) ∼= H0(Cn, α|Cn
) because

H0(Y, α) is a finite dimensional vector space over Fq. By the pigeonhole principle, in our infinite
collection we may an find an m + 1-tuple of sections t̃0, . . . , t̃m ∈ H0(Y, α) such that there exists an
infinite set S ⊂ N with

(t̃0, . . . , t̃m)|Cn
= (tn,0, . . . , tn,m)

for every n ∈ S. There is therefore an induced rational map f̃ : Y 99K Pm with f̃ |Cn
= fn for each

n ∈ S. On the other hand, the collection (Cn)n∈S is Zariski dense in Y by assumption and f̃(Cn) ⊂M ;

therefore the image of f̃ lands inside of M , as desired. �

To use Lemma 2.5, the following definition will be useful.

Definition 2.6. Let X̄/k be a smooth, geometrically connected, projective scheme of dimension at
least 2, let Z ⊂ X̄ be a reduced simple normal crossings divisor, and set X := X\Z. Let Ū ⊂ X̄ be
an open subset whose complement has codimension at least 2. Let (xj)

s
j=1 be a finite collection of

closed points of U := Ū ∩X . Let α be a line bundle on X̄. We say that C̄ ⊂ Ū is a good curve for the
quintuple (X̄,X, Ū , α, (xj)

s
j=1) if

• C̄ is the smooth complete intersection of smooth ample divisors of X̄ that intersect Z in good
position;

• C̄ contains each of the closed points xj , for j = 1 . . . s;
• the natural map H0(X̄, α) → H0(C̄, α|C̄) is an isomorphism.

In the proof of Theorem 1.2, we will need to know that good curves exist. This is guaranteed by
the following two results.

Proposition 2.7. Let Y/k be a smooth, geometrically connected, projective scheme of dimension d ≥ 2
and let α be a line bundle on Y . Let D ⊂ Y be an ample divisor. Then there exists an s0 > 0 such
that for any s ≥ s0, and for any integral divisor E ∈ |sD| in the linear series, the natural map:

H0(Y, α) → H0(E,α|E)

is an isomorphism.
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Proof. For any s > 0, let E ∈ |sD| be an integral divisor in the linear series. Then there is an exact
sequence:

0 → α(−E) → α→ α|E → 0.

If h0(Y, α(−E)) = h1(Y, α(−E)) = 0, then by the long exact sequence in cohomology, the restriction
map H0(Y, α) → H0(E,α|E) is an isomorphism. Our task is therefore to show that for all sufficiently
large s, h0(Y, α(−sD)) = h1(Y, α(−sD)) = 0.

Let L be the canonical bundle of Y . Then by Serre duality, hi(Y, α(−sD)) = hd−i(Y, α∨(sD)⊗ L).
It follows from Serre vanishing that there exists an s0 > 0 such that for any s ≥ s0 and for any i < d,
hd−i(Y, α∨(sD) ⊗ L) = 0. Therefore for any s ≥ s0 and for any i < d, hi(Y, α(−sD)) = 0 and the
result follows.

�

Lemma 2.8. Let X̄/k be a smooth, geometrically connected, projective scheme of dimension at least
2, let Z ⊂ X̄ be a reduced simple normal crossings divisor, and set X := X\Z. Let Ū ⊂ X̄ be an open
subset whose complement has codimension at least 2. Let (xj)

s
j=1 be a finite collection of closed points

of U := Ū ∩ X. Let α be a line bundle on X̄. Then there is a good curve C̄ ⊂ Ū for the quintuple
(X̄,X, Ū , α, (xj)

s
j=1)

Proof. By induction, it suffices to construct a smooth ample divisor D̄ ⊂ X̄ such that

• D̄ ∩ Ū has complementary codimension at least 2 in D̄;
• D̄ intersections Z transversely;
• D̄ contains xj , for j = 1 . . . s; and
• the natural map H0(X̄, α) → H0(D̄, α|D̄) is an isomorphism.

First suppose k is infinite. Then the existence of such D̄ follows from Bertini’s theorem [Sta20, Tag
0FD4] by Proposition 2.7. Now suppose k is finite. Then, the existence of such D̄ follows from Poonen’s
Bertini theorem over finite fields [Poo04, Theorem 1.3], together with Proposition 2.7. �

3. Proofs of Theorem 1.2 and Corollaries 1.3, 1.4

Proof of Theorem 1.2. We proceed in several steps.
Step 1: organizing the summands of E. As Ei is irreducible, has determinant Qp(−1), and

has rank 2, the slopes of (Ei)x are in the interval [0, 1] for every closed point x of X , see e.g. [DK17,
Theorem 1.1.5].

Write the isotypic decomposition of E in F-Isoc†(X)Qp
:

E ∼=

a⊕

i=1

(Ei)
mi .

The field generated by the coefficients of Px(E , t) as x ranges through closed points of X is Q.
Therefore, by [Dri18, E.10] and either [AE19, Theorem 4.2] or [Ked18, Corollary 3.5.3], we can pick
an l and a field isomorphism σ : Qp → Ql such that the semi-simple σ companion L to E exists and in
fact may be defined over Ql, i.e. corresponds to a representation:

π1(X) → GLN (Ql).

(We emphasize that L is independent of the choice of σ because because the field generated by coeffi-
cients of characteristic polynomials Px(E , t) as x ranges over closed points of X is Q.) By compactness
of π1(X), we may conjugate the representation into GLN (Zl). We refer to the attached lisse Zl-sheaf

as L̃. Similarly, for each i we denote by Li the σ-companion to Li (the Li indeed do depend on the
choice of σ). The companion relation implies that:

L ∼=

a⊕

i=1

Lmi

i
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Let Ei ⊂ Qp denote the (number) field generated by the coefficients of Px(Ei, t) as x ranges through
the closed points of X . Note that for each Ei, all p-adic companions exist and are summands of E by
Lemma 2.2. For each Ei, set Fi to be the sum of all distinct p-adic companions of Ei. Note that there
are [Ei : Q] distinct p-adic companions of Ei, parametrized by the embeddings Ei →֒ Qp. By reordering
the indices, we write the decomposition of E as follows:

(3.1) E ∼=

b⊕

i=1

Fmi

i

for some integer 1 ≤ b ≤ a. (Under this reordering, the collection of (Ei)
b
i=1 are all mutually not

companions and for each b+ 1 ≤ j ≤ a, there exists a unique 1 ≤ i ≤ b such that Ej is a companion of
Ei.) Set

(3.2) g =

b∑

j=1

mi[Ei : Q].

Step 2: the proof in a simplified situation. We first assume that X admits a simple normal
crossings compactification X̄ such that E extends to a logarithmic F -isocrystal with nilpotent residues
on X̄ and moreover that L̃ has trivial residual representation. Write Z := X̄\X for the boundary.

By Lemma A.6, there exists a Zariski open Ū ⊂ X̄ with complementary codimension at least 2, and
a logarithmic Dieudonné crystal (MŪ , F, V ) on Ū (with the logarithmic structure coming from Z ∩U).
Let

(NŪ , F, V ) := (MŪ , F, V )4 ⊕ ((MŪ , F, V )t)4,

where the t denotes the dual logarithmic Dieudonné crystal. We also consider this logarithmic Dieudonné
crystal as we will need to use Zarhin’s trick. We set U := Ū\(Ū ∩ Z).

After Remark A.7, it follows that we may define Hodge line bundles ωM and ωN on Ū attached to
the two logarithmic Dieudonné crystals. As Ū ⊂ X̄ has complementary codimension at least 2 and X̄
is smooth, it follows that ωM and ωN extend canonically to line bundles on all of X̄.

The Hodge line bundle α on the fine moduli scheme A8g,1,l ⊗ Fq is ample by [Mor85, Ch. IX,
Théorème 3.1, p. 210] or [FC90, Ch. V, Theorem 2.5(i), p. 152]. Let g be as in Equation 3.2 and
choose an r so that the αr is very ample on A8g,1,l. As 8g > 1, it follows from the Koecher principle
that H0(A8g,1,l ⊗ Fq, α

r) is a finite dimensional Fq-vector space for all r ∈ Z [FC90, Ch. V, Theorem
1.5 (ii)]. Fix a basis s0, . . . , sm of the vector space:

(3.3) s0, . . . , sm ∈ H0(A8g,1,l ⊗ Fq, α
r)

once and for all. There is an induced embedding A8g,1,l ⊂ Pm. As is customary, denote by A ∗
8g,1,l the

Zariski closure of A8g,1,l in Pm; we call this the minimal compactification. Abusing notation, we also
denote by α the Hodge line bundle on A

∗
8g,1,l. The Koecher principle implies thatH0(A8g,1,l⊗Fq, α

r) =

H0(A ∗
8g,1,l ⊗ Fq, α

r): this follows from [FC90, Ch. V, Theorem 1.5 (ii), Theorem 2.5 (iii)].

It follows from [Del12] there exists a finite number of closed points (xj)
s
j=1 of U such that for each

Ei, the field generated by the coefficients of Pxj
(Ei, t) ∈ Qp[t] as j = 1 . . . s is Ei ⊂ Qp.

If C̄ ⊂ Ū is a good curve for the quintuple (X̄,X, Ū , ωr
N , (xj)

s
j=1) as in Definition 2.6, set C := C̄∩X .

Then the following three properties hold.

• Each Ei|C is irreducible by [AE19, Theorem 2.6].
• The field generated by Frobenius traces of Ei|C is Ei.
• Each Ei|C has infinite monodromy around ∞. Indeed, from the positivity of C̄, and the good

position assumption, it follows that C̄ intersects each component of Z is a non-empty and
transverse way. Then the assumption that Ei has infinite monodromy around Z implies C̄ has
infinite monodromy around C̄ ∩ Z.
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It follows from the construction of p-to-l companions for curves, Theorem 2.1, and Remark 2.4 together
with Equation 3.1 that if C̄ ⊂ X̄ is a good curve, then there exists an abelian scheme πC : AC → C of
relative dimension g such that

R1(πC)∗Ql
∼= L|C .

As we assumed that the Zl-lattice L̃ has trivial residual representation, it follows that we may replace
AC by an l-primarily-isogenous abelian scheme to ensure that the étale group scheme AC [l] → C is
split.

Similarly, we have that D(AC [p
∞]) ⊗ Qp

∼= E|C . Therefore D(AC [p
∞]) is isogenous to (M,F, V )C

as Dieudonné crystals on C. We claim that we may replace AC by an (p-primarily) isogenous abelian
scheme in order to ensure that:

D(AC [p
∞]) ∼= (M,F, V )C

as Dieudonné crystals on C. To see this, use [dJ95] to construct a p-divisible group GC on C where
D(GC) ∼= (MC , F, V ). It follows that AC [p

∞] and GC are isogenous. Pick an isogeny AC [p
∞] → GC ;

the kernel K ⊂ A is a p-primary finite flat group scheme. There is a p-primary isogeny of abelian
schemes AC → AC/K. As the group of l-torsion points of an abelian scheme is l-primary, it follows
that AC/K also has trivial l-torsion. Replace AC by AC/K.

By construction, the l-torsion is trivial; hence AC has semistable reduction along C̄∩Z. Let AC̄ → C̄
be the Néron model. It follows from Remark A.8 that the logarithmic Dieudonné crystal of AC̄ → C̄
is isomorphic to (M,F, V )C̄ . Again by Remark A.8, the Hodge bundle of the AC̄ → C̄ is isomorphic
to ωM |C̄ .

Set BC := (AC ×C A
t
C)

4. By Zarhin’s trick [Mor85, Chapitre IX, Lemme 1.1, p. 205], BC admits a
principal polarization. By construction, we have that

• BC has trivial l-torsion, and
• D(BC [p

∞]) ∼= (NC , F, V )

Once more, by Remark A.8 it follows that there is an isomorphism of logarithmic Dieudonné crystals:

D(BC̄ [p
∞]) ∼= (N,F, V )C̄ .

The Hodge line bundle of BC̄ is hence isomorphic to ωN |C̄ . However, we emphasize that the choice
BC → C is not canonical!

We have an induced morphism to a fine moduli scheme C → A8g,1,l. This extends to a morphism

(3.4) C̄ → A
∗
8g,1,l

to the minimal compactification. We now claim the pullback of α, the Hodge line bundle on A ∗
8g,1,l,

is isomorphic to ωN |C̄ . Here is the reason: choose a toroidal compactification Ā8g,1,l. We then have a
commutative diagram:

(3.5) C̄

""❉
❉
❉
❉
❉
❉
❉
❉
❉

h // Ā8g,1,l

ϕ

��
A ∗

8g,1,l.

By [FC90, Ch. V, Theorem 2.5, p. 152], there is a semi-abelian scheme G → Ā8g,1,l such that ϕ∗α
is isomorphic to the Hodge line bundle of G → S. Now, [FC90, Ch. I, Proposition 2.7, p.9] implies
that h∗G is isomorphic to the semi-abelian scheme given by the open subset of AC̄ → C̄ obtained by
removing the non-identity components along C̄\C. In particular, it follows that the Hodge line bundle
of h∗G is compatible with the Hodge line bundle constructed in Remark A.8.

In Equation 3.3, we have already fixed a basis of sections

s0, . . . , sm ∈ H0(A8g,1,l ⊗ Fq, α
r) = H0(A ∗

8g,1,l ⊗ Fq, α
r);

after pulling back the sections to C̄ via Equation 3.4, we obtain an m+1-tuple of sections t0, . . . , tm
in H0(C̄, ωr

N |C̄) that define the morphism C̄ → A ∗
8g,1,l ⊂ Pm.
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In conclusion, for every good curve C̄ ⊂ Ū for the quintuple (X̄,X, Ū , ωr
N , (xj)

s
j=1), we have con-

structed an m+1-tuple of globally generating sections t0, . . . , tm ∈ H0(C̄, ωr
N |C̄) such that the induced

map lands in A ∗
8g,1,l ⊂ Pm, such that C maps into A8g,1,l, and such that the induced abelian variety

on BC → C is isomorphic to (AC ×C At
C)

4 where AC → C is an abelian scheme with D(AC [p
∞]) ∼=

(M,F, V )|C as Dieudonné crystals on C. Therefore we also have that D(BC [p
∞]) ∼= (N,F, V )|C .

For each n > 0, let Pn denote the union of the set of closed points of U whose residue field is
contained in Fqn! with (xj)

s
j=1. By Lemma 2.8, it follows that for each n > 0, there exists a good curve

C̄n ⊂ Ū for the quintuple (X̄,X, Ū , ωr
N , Pn).

For each n ∈ N, by the above remarks we obtain an m+ 1-tuple of globally generating sections

tn,0, . . . , tn,m ∈ H0(C̄n, ω
r
N |C̄n

)

such that the induced map factors fn : C̄n → A ∗
8g,1,l ⊂ Pm. Moreover, any infinite subcollection of the

C̄n are Zariski dense because they are space-filling. By Lemma 2.5, it follows that there exists an infinite
set S ⊂ N and sections t̃0, . . . , t̃m ∈ H0(X̄, ωr

N) such that the induced rational map f̃ : X 99K Pm lands

in A ∗
8g,1,l and moreover, for each n ∈ S, we have an equality of morphisms f̃ |C̄n

= fn.

By shrinking U , we therefore obtain a map f̃ : U → A8g,1,l and hence an abelian scheme BU → U
such that BU [l] is a trivial étale cover of U . The maps fn : C̄n → A8g,1,l were all constructed such that
the induced abelian scheme BCn

→ Cn is compatible with (NCn
, F, V ) ⊗ Qp

∼= (E ⊕ E∗(−1))4|C . On
the other hand, if u is a closed point of U , then u lies on Cn for all n≫ 0: indeed, if the residue field
of u is Fqe , then Cn contains u for all n ≥ e. Therefore BU → U is compatible with (L⊕ L∗(−1))4|U .

For each n ∈ S we have that f̃ |C̄n
= fn by Lemma 2.5. Then, by construction there exists an

abelian scheme ACn
→ Cn of dimension g with

BU |Cn
∼= (ACn

×Cn
At

Cn
)4.

Consider the map of representations induced by the first Zl-cohomology of the abelian schemesBU → U
and BU |Cn

→ Cn:

(3.6) π1(Cn)

&&▲▲
▲▲

▲▲
▲▲

▲▲

// π1(U)

yyrrr
rr
rr
rr
r

GL16g(Zl).

Then [Kat01, Lemma 6(b)] implies that for n≫ 0, the two representations have the same image (which
lands in GL2g(Zl)

8). By the fundamental work of Tate-Zarhin on Tate’s isogeny theorem for abelian
varieties over finitely generated fields of positive characteristic [Mor85, Ch. XII, Théorème 2.5(i), p.
244], it follows that the natural injective map EndU (BU ) →֒ EndCn

(BU |Cn
) is an isomorphism when

tensored with Zl and hence also when tensored with Ql. It follows that the map

EndU (BU )⊗Q → EndCn
(BU |Cn

)⊗Q

is an isomorphism as both sides are finite dimensional semi-simple Q-algebras of the same rank.
We know that EndCn

(BU |Cn
) has a nontrivial idempotent eCn

that projects onto a copy of ACn
.

After replacing eCn
by a high integer multiple, we may lift eCn

to eU ∈ EndU (BU ). Set the image of
eU to be the abelian scheme πU : AU → U . It follows from Equation 3.6 that AU is compatible with
E (equivalently: L), as desired.

Step 3: the proof in the general case via reduction to Step 2. There exists a projective
divisorial compactification X̄ of X . (This means that X̄ is normal and the boundary is an effective
Cartier divisor.) By Kedlaya’s semistable reduction theorem (see [Ked16, Theorem 7.6] for a meta-
reference), there is a generically étale alteration ϕ : X ′ → X together with a simple normal crossings
compactification X̄ ′ such that the overconvergent pullback E ′ extends to a logarithmic F -isocrystal
with nilpotent residues. After replacing X ′ with a further finite étale cover, we may guarantee that
the residual representation of L′ is trivial.
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We have proven the theorem for E ′ on X ′: there exists an open subset W ′ ⊂ X ′ and an abelian
scheme AW ′ → W ′ with D(AW ′ [p∞]) ∼= E ′|W ′ . After shrinking W ′ and W , we may assume that
ϕ|W ′ : W ′ →W is finite étale, of degree d.

Set BW := Res
W ′

W (AW ′) to be the Weil restriction of scalars. This is an abelian scheme over W
that is compatible with Ld. Recall that we wrote an isotypic decomposition:

L ∼=

a⊕

i=1

(Li)
mi

where each Li is irreducible on X (and hence on W ). Let Ei ⊂ Ql denote the field generated by the
traces of Frobenius on Li as x ranges through the closed points of W . We claim that we may find a
smooth curve C ⊂W with the following properties:

(1) each Li|C is irreducible;
(2) the field generated by Frobenius traces of Li|C is Ei ⊂ Ql;
(3) each Li|C has infinite monodromy around ∞; and
(4) the induced monodromy representations coming from BW → W and BW |C → C

π1(C)

%%❑❑
❑❑

❑❑
❑❑

❑❑

// π1(W )

yyrrr
rr
rr
rr
r

GL2gd(Zl)

have the same image.

We have a projective normal compactification X̄ of X , which is smooth away from a closed subset
of codimension at least 2. Let F = X̄\X and let F ′ ⊂ F be the singular locus of X̄ . For each Li,
there is an irreducible component Fj of F that witnesses the fact that Li has infinite monodromy
at ∞: having infinite monodromy at ∞ means that a certain inertia group has infinite image in the
representation.

Pick a closed point yj ∈ Fj\(Fj ∩ F
′) for each j. Then, by using [Dri12, C.2], we may construct

an infinite set of curves (Cn)n∈N where each Cn ⊂W is a smooth, geometrically connected curve that
contains all closed points of W whose residue fields are contained in Fqn! and that pass through the
yj transversally (i.e., with a tangent direction that is not contained in Fj). (We remark that this is a
consequence of [Poo04, Theorem 1.3].)

Each Li|Cn
has infinite monodromy around ∞. By [Kat01, Lemma 6(b)], it follows that for all

n≫ 0, Cn satisfies (4). For n≫ 0, [Kat01, Lemma 6(b)] and [Del12] guarantees that setting C := C′
n

satisfies the above four conditions.
Again, by using Drinfeld’s Theorem 2.1, Remark 2.4, and Equation 3.1, there exists an abelian

scheme AC → C that is compatible with L|C . On the one hand, using the Tate isogeny theorem
[Mor85, Ch. XII, Théorème 2.5] it follows that Ad

C is isogenous to BW |C . On the other hand, another
application the Tate isogeny theorem together with property (4) of C implies that the natural map:

EndW (BW ) → EndC(BW |C)

is an isomorphism after tensoring with Q. As BW |C is isogenous to Ad
C , it follows that EndC(BW |C)⊗Q

has an element eC projecting onto a factor of AC . After replacing eC with a high integer multiple,
we may lift to to eW ∈ EndW (BW ). Set the image of eW to be the abelian scheme AW → W ; this is
compatible with L|W , as desired. �

Proof of Corollary 1.3. Suppose there exists πU : AU → U such that R1(πU )∗Ql has L1 as a summand.
A theorem of Zarhin implies that R1(πU )∗Ql is semi-simple [Mor85, Chapitre XII, Theorem 2.5, p.
244-245]. The field generated by the characteristic polynomials of R1(πU )∗Ql is clearly Q.

Similarly, D(AU [p
∞]) ⊗ Qp is a semi-simple object of F-Isoc†(U) by [Pál15]. As D(AU [p

∞]) ⊗ Qp

is isomorphic to the rational crystalline cohomology of AU → U , it follows from [KM74] that that
D(AU [p

∞]) ⊗ Qp and R1(πU )∗Ql are companions. It follows from Lemma 2.2 that all crystalline
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companions of L1|U exist and moreover are summands of D(AU [p
∞])⊗Qp. Then by [Ked18, Corollary

3.3.3], all crystalline companions to L1 exist.
Conversely, suppose all crystalline companions (Ei)

b
i=1 to L1 exist. They all have infinite mon-

odromy at ∞ be the companion relation. There exists a p-adic local field K with each Ei an object of

F-Isoc†(X)K . Set E :=
⊕b

i=1 Ei, considered as an object of F-Isoc†(X) (by restricting scalars from
K to Qp, so the rank of E is 2b[K : Q]). Then E satisfies the hypotheses of Theorem 1.2, and moreover
L1 is a companion of a summand of E . It follows that there is an open set U ⊂ X together with an
abelian scheme πU : AU → U such that E ∼= D(AU [p

∞) ⊗ Qp. Again using Zarhin’s semi-simplicity,

L1|U is a summand of R1(πU )∗Ql, as desired. �

Proof of Corollary 1.4. Under the assumption on E1, all p-adic companions to E1 exist by [KP18,
Corollary 4.16]. (This result is straightforward; they are all Galois twists of each other.) Fix σ : Qp →

Ql. Then the σ-companion to E1 exists by [AE19, Theorem 4.2] or [Ked18, Corollary 3.5.3]. Apply
Corollary 1.3. �

Appendix A. Logarithmic F -crystals

We first recall the notion of a logarithmic F -crystal/isocrystal. While this notion is due to Kato
[Kat89, Section 6], our treatment is copied from recent work of Kedlaya.

Definition A.1. A smooth pair over a perfect field k is a pair (Y, Z) where Y/k is a smooth variety
and Z ⊂ Y is a strict normal crossings divisor.

Definition A.2. Let (Y, Z) be a smooth pair over a perfect field k of characteristic p > 0. A smooth
chart for (Y, Z) is a sequence of elements t̄1, . . . , t̄n of elements of OY (Y ) such that the

• induced map f̄ : Y → An is étale, and
• there exists an m ∈ [0, n] such that the zero-loci of t̄i, for i = 0 . . .m, are exactly the irreducible

components of Z.

Let (Y, Z) be a smooth pair over a perfect field k of characteristic p > 0. Let t̄1, . . . , t̄n be a smooth
chart of (Y, Z). Let P0 be the formal scheme given by the formal completion of W (k)[t1, . . . , tn] along
(p). By topological invariance of the étale site, there exists a unique smooth formal scheme P together
with an étale morphism f : P → P0 lifting f̄ . We call the pair (P, t1, . . . , tn) the lifted smooth chart of
(Y, Z) associated to the original chart.

Let σ0 : P0 → P0 be the Frobenius lift with σ∗(ti) = tpi for i ∈ [0, . . . , n]. Then there exists an
associated Frobenius lift σ : P → P .

Definition A.3. Let (Y, Z) be a smooth pair over a perfect field k and let t̄1, . . . , t̄n be a smooth
chart of (Y, Z). Keep notations as above. A logarithmic crystal with nilpotent residues on (Y, Z) is a
pair (M,∇) where

• M is a p-torsion free coherent module over P ; and
• ∇ is a integrable, topologically quasi-nilpotent connection on M (with respect to W (k)) with

logarithmic poles and nilpotent residues along the zero-loci of f∗(ti).

A logarithmic F -crystal with nilpotent residues is a triple (M,∇, F ) where (M,∇) is a logarithmic
crystal with nilpotent residues and F is an injective, horizontal morphism

F : σ∗(M) →M

of coherent P -modules. A logarithmic Dieudonné crystal with nilpotent residues is a quadruple
(M,∇, F, V ) where (M,∇, F ) is a logarithmic F -crystal in finite, locally free modules with nilpotent
residues and V is an injective, horizontal map

V : (M) → σ∗M

such that FV = V F = p.

Remark A.4. In the definition of a logarithmic F -crystal with nilpotent residues, we do not demand
that M is locally free.
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This definition extends to general smooth pairs by Zariski gluing; every smooth pair admits a finite
open covering on which the restriction admits a smooth chart. We often drop the connection ∇ from
the notation.

There is a natural category of logarithmic crystals with nilpotent residues on (Y, Z) (where mor-
phisms are P -linear and horizontal), and the category of logarithmic isocrystals with nilpotent residues
is defined to be the induced isogeny category. One similarly defines the category of logarithmic F -
isocrystals with nilpotent residues.

Remark A.5. Let (Y, Z) be a smooth pair over k and let U = Y \Z. We denote by Y the (fine,
saturated) logarithmic scheme given by (Y, α : O∗

U →֒ OY ). Then our definition of a logarithmic crystal
is compatible with the definition of Kato (see [Kat89, Theorem 6.2]), our definition of a logarithmic
F -crystal in finite, locally free modules is compatible with the definition of Kato-Trihan [KT03, 4.1]
and our definition of a logarithmic F -isocrystal is compatible with the definition given by Shiho (see
[Shi00, Definition 4.1.3]).

The mathematical content of the following lemma is essentially [Kat79, Theorem 2.6.1] (and relatedly
[Cre87, Lemma 2.5.1]); we have simply rewritten Katz’s argument to the logarithmic setting. The key
is that Katz’s slope bounds holding on the open subset where the logarithmic structure is trivial
guarantee that they hold everywhere. We use Kato’s definition of logarithmic F -crystals only for
convenience to discuss global objects; all of the computations use the local definitions given above.

Lemma A.6. Let (Y, Z) be a smooth pair over a perfect field k of positive characteristic and let
U := Y \Z. Let E be a logarithmic F -isocrystal on (Y, Z).

(1) Suppose the Newton slopes of EU are all non-negative. Then there exists an open subset W ⊂ Y ,
whose complementary codimension is at least 2, and a logarithmic F -crystal in finite, locally
free modules (M ′′, F ) on the smooth pair (W,W ∩ Z) such that (M ′′, F )⊗ Q ∼= EW .

(2) Suppose the Newton slopes of EU are in the interval [0, 1]. Then there exists an open subset
W ⊂ Y , whose complementary codimension is at least 2, and a logarithmic Dieudonné crystal
in finite, locally free modules (M ′′, F, V ) on the smooth pair (W,W∩Z) such that (M ′′, F )⊗Q ∼=
EW .

Proof. By definition of a logarithmic F -isocrystal, there exists a logarithmic crystal in coherent (not
necessarily locally free!) modules M and a map F : Frob∗YM → M ⊗Q that is isomorphic to E when

thought of as a logarithmic F -isocrystal. Here, FrobY refers to the absolute Frobenius (on the f.s.
log scheme Y induced from the smooth pair (Y, Z)) and the ∗ refers to pullback on the logarithmic
crystalline topos. This is compatible with our above definitions.

As M is a logarithmic crystal in coherent modules, there exists a non-negative integer ν so that

F : (FrobY )
∗M → p−µM.

We have assumed that the Newton slopes of E are all non-negative. Slope bounds of Katz (see the
proof on [Kat79, p. 151-152]) imply then that there exists a non-negative ν such that all n ≥ 0,

(A.1) Fn : (FrobnU )
∗MU → p−νMU .

We explicate this in local coordinates. Take an affine open neighborhood T ⊂ Y such that (T, T ∩Z)
has a smooth chart (t̄1, . . . , t̄n). Let (P, t1, . . . , tn) be the associated lifted smooth chart; note that
P = Spf(A) where A is a noetherian W (k) algebra equipped with the p-adic topology. Then the
logarithmic crystal yields a finitely generated A module MA and the Frobenius structure induces a
MA-linear (continuous) homomorphism F : σ∗MA → p−µMA.

As U ∩ T ⊂ T is open dense, it follows from Equation A.1 that

Fn : (σn)∗MA → p−νMA.

. By varying T , one deduces that Fn : (FrobnY )
∗M → p−νM .

Consider the module
M ′

A :=
∑

n≥0

Fn ((σn
X)∗MA) ⊂ p−νMA.
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As A is noetherian, M ′
A is finitely generated, being a submodule of a finitely generated module. More-

over, M ′
A is stable under F . Finally, M ′

A is the finite sum of (logarithmic) horizontal submodules.
Therefore the pair (M ′

A, F ) is in fact a logarithmic F -crystal in coherent modules. We have an iso-
morphism (M ′

A, F ) ⊗ Q ∼= ET in the category of logarithmic F -isocrystals with nilpotent residues on
(T, Z ∩ T ).

Now, set M ′′
A := (M ′

A)
∗∗. This is a coherent reflexive sheaf on the ring A, and hence is locally free

away on an open set of Spec(A) whose complement has codimension at least 3. M ′′
A is manifestly stable

under the connection and F . In particular, we can find an open subset T ′′ ⊂ T with complementary
codimension at least 2 such that the logarithmic F -crystal (M ′′

A, F )T ′′ is a crystal in finite, locally free
modules.

After initially choosing a pair (M,F : Frob∗YM → p−µM) representing E , the constructions we have

made are canonical. Therefore, ranging over T , we may glue the (M ′′, F )T ′′ ; that is, there is an open
subset W ⊂ T with complementary codimension at least 2 and a logarithmic F -crystal (M ′′, F )W in
finite, locally free modules on the smooth pair (W,Z ∩W ) that is a lattice inside of EW .

We now indicate how to complete the result if the Newton polygons on U are in the interval [0, 1].
Let (M,F ) be a logarithmic F -crystal in finite, locally free modules on a smooth pair (Y, Z) over a
perfect field k and suppose the Newton slopes on U are no greater than 1. Set V := F−1 ◦ p. Then V
does not necessarily stabilize M ; however, the pair (M,V )U is a logarithmic σ−1-F-isocrystal in the
language of [Kat79]. (Fortunately, Katz’s entire paper is written in the context of σa-F -crystals for
any a 6= 0, not just the positive a. In particular, all of Katz’s results also hold for σ−1-F -crystals.
Katz does not deal with logarithmic crystals, but we only use the slope bounds on the open set U .)
By the coherence argument as above, we may find η such that:

V : (Frob−1
Y )∗M → p−ηM

on all of Y . Again, using Katz’s slope bounds on U (which hold equally well for σ−1-F -crystals) and
the same coherence argument, one shows that after possibly increasing η, we in fact have

V n : (Frob−n
Y )∗M → p−ηM

for all n ≥ 0. Now run exactly the above argument with V instead of F : then

M ′ :=
∑

n≥0

V n(Frob−1
Y )∗M) ⊂ p−ηM

will be coherent, horizontal, and stabilized by V . Recall that FV = V F = p; therefore M ′ is also
stabilized by F ! Then M ′′ := (M ′)∗∗ is a reflexive logarithmic crystal on (Y, Z) that is stabilized by
both F and V . Exactly as above, there exists an open subset W ⊂ Y of complementary codimension
at least 2 such that (M ′′, F, V )W is a logarithmic Dieudonné crystal in finite, locally free modules, as
desired.

�

Remark A.7. Let (Y, Z) be a smooth pair over k and let (M,F, V ) be a logarithmic Dieudonné crystal
(in finite, locally free modules) on (Y, Z). We construct a natural line bundle ω, which we call the
Hodge line bundle, attached to (M,F, V ).

Evaluating M on the trivial thickening of (Y, Z), we obtain a vector bundle M(Y,Z) on Y together
with an integrable connection with logarithmic poles on Z and a horizontal map:

F(Y,Z) : Frob
∗
YM(Y,Z) → M(Y,Z).

The kernel is a vector bundle on Y . Set ω := det(ker(F(Y,Z))). We call this kernel the Hodge line
bundle associated to (P, F ).

As a reference for this remark: in the case when Z is empty, one finds this construction in [dJ98,
2.5.2 and 2.5.5]. In the setting of logarithmic Dieudonné crystals, Kato-Trihan construct the dual
object: Lie(M,F, V ), see [KT03, 5.1] and especially Lemma 5.3 of loc. cit. Our hypothesis that (Y, Z)
is a smooth pair over a perfect field k imply that the conditions of 5.1 on p. 563 of loc. cit. hold: étale
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locally, there is a p-basis of Y such that each (regular) component of Z is cut out by some member of
the p-basis.

Remark A.8. We have the following relationships.

(1) Let Y/k be a smooth scheme over a perfect field k. Let AY → Y be an abelian scheme. Then
there is an associated Dieudonné crystal (M,F, V ) = D(AY [p

∞]) on Y [BBM82]. The Hodge
bundle of (M,F ) is isomorphic to the Hodge line bundle of the abelian scheme AY → Y by
[BBM82, 3.3.5 and 4.3.10].

(2) Let C/k be a smooth curve over a perfect field k, let U ⊂ C be a dense open subset, and
let Z ⊂ C be the reduced complement. let AU → U be an abelian scheme with semi-stable
reduction along Z. Call the Néron model AC → C. Then there is an attached logarithmic
Dieudonné crystal on (C,Z), which we call D(AC [p

∞]) [KT03, 4.4-4.8]. Kato-Trihan construct
a covariant Dieudonné functor. We assume ours is contravariant, which may be accomplished
by taking a dual as in [KT03, 4.1].

By construction, D(AC [∞])|U is isomorphic to the crystalline Dieudonné functor of the
p-divisible group AU [p

∞]. (See also the description of gluing as in [KT03, Lemma 4.4.1].)
Moreover, the Hodge line bundle of Ao

C → C, the open subset of AC → C obtained by dis-
carding the non-identity components over Z, is isomorphic to the Hodge bundle of D(AC [p

∞]):
this follows from [KT03, Example 5.4(b)], with the caveat that they work with the covariant
Dieudonné functor.

Finally, we argue that when k ∼= Fq, D(AC [p
∞]) is the unique logarithmic Dieudonné crystal

with nilpotent residues on (C,Z) that extends D(AU [p
∞]). First of all, note that we only need

to check that there is at most one extension as a logarithmic F -crystal: in our setting, V is
determined by F under the relation FV = V F = p. By [LT01], it follows that D(AU [p

∞])⊗Qp

is overconvergent. By the hypothesis that AU → U has semistable reduction along Z, Kato-
Trihan have constructed an attached log F -crystal on (C,Z) as above. We claim the residues
of this F -crystal are nilpotent. This may be seen as follows: semistable reduction guarantees
tameness of the l-adic companion, and then one may compare local ε-factors via compatibility
in the Langlands correspondence. (See the proof of [AE19, Proposition 2.8].) Finally, by a
full-faithfulness result of Kedlaya [Ked07, Proposition 6.3.2], it follows that the extension of
D(AU [p

∞]) to a logarithmic F -crystal with nilpotent residues on (C,Z) is unique.
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