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Abstract
This is a review paper on the mixed-phase wavelet estimation using high-order statistics. We
use an iterative linear inversion method as a primary thread, stringing together others including
the maximum time-delayed moment (MTM) method and the normalized cumulant (NC)
method. Both MTM and NC methods are not stable, because they make use of only single
high-order-statistics slices. As for the iterative linear inversion method, it is stable but needs a
good initial model. Therefore, we adopt a hybrid strategy that uses the MTM or NC method to
generate an initial estimate of the wavelet for the iterative linear inversion method. The real
seismic data test has shown that all inversions with different initial models converge to the
same result within allowable accuracy. Therefore, the iterative linear inversion method is
applicable to real multi-channel seismic data for wavelet estimation.

Keywords: mixed-phase wavelet, high-order statistics, fourth-order cumulant, third-order
moment, inversion

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Seismic wavelet estimation is an important issue in seismic
data processing and inversion. During the course of wave
propagation, the wavelet excited by a seismic source that has a
fixed amplitude and phase spectra will alter both in amplitude
and phase, and the resultant wavelet is usually with the mixed
phase, varying in time and space. In seismic inversion, only
after the accurate extraction of the mixed-phase wavelet can
we have a reliable estimation of the reflectivity series.

For the mixed-phase wavelet estimation, the essential
issue is how to accurately extract the phase information of
the wavelet. High-order statistics can preserve the phase
information of a system (Mendel 1991). Giannakis (1987)
showed that the impulse response of a moving average system
could be calculated just from the system’s output cumulants,
and then proposed a normalized cumulant (NC) method for
wavelet estimation. Lazear (1993) presented a fourth-order
cumulant (FOC) matching technique for mixed-phase wavelet

estimation in which the wavelet is updated iteratively until its
fourth-order statistics match those of the seismic data. This is
a highly nonlinear optimization problem, for which Velis and
Ulrych (1996) adopted a simulated annealing (SA) strategy for
moment (windowed cumulant) matching. The SA-inversion
method is reliable and accurate but, because of great time
consumption, is suitable for generating only the single trace
result. Sacchi and Ulrych (2000) used the cepstrum of the
fourth-order cumulant to derive the minimum and maximum
phase components of the wavelets. Lu (2005) proposed a
maximum time-delayed moment (MTM) method to estimate
the phase spectrum of the wavelet from its third-order moments
without optimization or inversion. For the latter method, Velis
and Sacchi (2006) discussed the reliability. Lu et al (2007)
also tried to use the zero-lag slice of the fourth-order moment
(FOM) for estimating seismic wavelets.

This is a review paper on mixed-phase wavelet estimation
using high-order statistics. In this paper, we use an iterative
linear inversion method for the moment matching as a primary

1742-2132/07/020184+10$30.00 © 2007 Nanjing Institute of Geophysical Prospecting Printed in the UK 184

http://dx.doi.org/10.1088/1742-2132/4/2/007
mailto:yanghua.wang@imperial.ac.uk
http://stacks.iop.org/JGE/4/184


Mixed-phase wavelet estimation by iterative linear inversion of high-order statistics

thread, stringing together others mentioned above including
the MTM method and NC method.

We will show that both MTM and NC methods are not
stable, because both of them make use of only single high-
order-statistics slices. Therefore, we use the MTM or NC
method to generate an initial wavelet estimate for the iterative
linear inversion. Given a sufficiently good initial estimate, we
perform iteratively the linear inversion of moment matching.
This method includes stabilization in the matrix inversion,
and is robust for the wavelet estimation of real seismic data
with wide spatial coverage. Then, an optimal wavelet can be
selected from the multi-channel wavelet estimates.

2. High-order statistics of seismic traces and
wavelets

Moments and cumulants are high-order covariance functions
which are very useful for describing both deterministic and
stochastic signals. For the sake of completeness, this
section summarizes the basics of high-order statistics and their
applicability for seismic signal analysis.

The kth-order moment function of a real stationary
discrete-time signal, x(t), is defined as (Mendel 1991)

mx
k(τ1, τ2, . . . , τk−1) = E{x(t)x(t + τ1) · · · x(t + τk−1)}, (1)

where E {·} denotes statistical expectation. Cumulants may be
expressed through moments. The kth-order cumulant function
of a real stationary process is given by (Velis and Ulrych 1996)

cx
k (τ1, τ2, . . . , τk−1) = E{x(t)x(t + τ1) · · · x(t + τk−1)}

−E{g(t)g(t + τ1) · · · g(t + τk−1)}, (2)

where g(t) is an equivalent Gaussian process that has the same
second-order statistics as x(t). Cumulants not only display the
amount of higher order correlation, but also provide a measure
of the distance of the random process from Gaussianity.
Obviously, for the third or high order, if x(t) is Gaussian,
cx
k (τ1, τ2, . . . , τk−1) = 0. The second-, third- and fourth-order

cumulants of a zero mean x(t) are given explicitly as (Mendel
1991)

cx
2 (τ ) = E{x(t)x(t + τ)}, (3)

cx
3 (τ1, τ2) = E{x(t)x(t + τ1)x(t + τ2)}, (4)

cx
4 (τ1, τ2, τ3) = E {x(t)x(t + τ1)x(t + τ2)x(t + τ3)}

− cx
2 (τ1)c

x
2 (τ2 − τ3) − cx

2 (τ2)c
x
2 (τ3 − τ1)

− cx
2 (τ3)c

x
2 (τ1 − τ2). (5)

Consider a convolutional seismic model

x(t) = w(t) ∗ r(t) + n(t), (6)

where w(t) is a seismic wavelet, r(t) is a reflectivity function,
∗ is a convolutional operator and n(t) is a term for noise.
The Bartlett–Brillinger–Rosenblatt equation (Mendel 1991)
denotes a relationship among the high-order statistics for the
convolutional model. That is,

cx
k (τ1, . . . , τk−1) = cr

k(τ1, . . . , τk−1) ∗ mw
k (τ1, . . . , τk−1)

+ cn
k (τ1, . . . , τk−1), (7)

(a)

(b)

Figure 1. (a) A zero-mean synthetic wavelet, and (b) a synthetic
seismic trace obtained by convolving the wavelet with a sparse
reflectivity series.

where cr
k(τ1, . . . , τk−1) and cn

k (τ1, . . . , τk−1) are the kth-
order cumulant of the reflectivity sequence and the noise,
respectively, and mw

k (τ1, . . . , τk−1) is the kth-order moment of
the wavelet. Assuming that r(t) is independent, identically
distributed (IID) and non-Gaussian, the cumulant of r(t)

becomes

cr
k(τ1, . . . , τk−1) =

{
γ r

k , for τ1 = · · · = τk−1 = 0,

0, otherwise,
(8)

where γ r
k = cr

k(0, . . . , 0) is the kurtosis of the reflectivity.
Meanwhile, if the additive noise n(t) is assumed to be Gaussian
(but need not be white), which means its third and higher order
cumulants vanish, equation (7) will be simplified to

cx
k (τ1, . . . , τk−1) = γ r

k mw
k (τ1, . . . , τk−1). (9)

This equation states that the kth-order (k > 2) cumulants of the
seismic data differ from the kth-order moments of the seismic
wavelet only by a scalar. Therefore, it has been the starting
point for most of the mixed-phase wavelet estimation methods
based on high-order statistics (Lazear 1993, Velis and Ulrych
1996, and references therein).

In practice, however, neither the cumulant of the noise
is zero nor is the cumulant of the reflectivity series a
multidimensional spike at zero lag. Figure 1 gives a zero-
mean wavelet and a synthetic seismic trace. Figures 2(a) and
(b) show a view of the fourth-order moment slice (at τ3 = 0)
of the wavelet and the fourth-order cumulant slice (at τ3 = 0)
of the synthetic trace, and they do not differ only by a scalar
at all.

To approximate the wavelet moment by using the seismic
trace cumulant, one could apply a 3D smoothing-tapering

185
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(a) (b)

(c) (d)

(e)

Figure 2. (a) A FOM slice of the wavelet in figure 1(a). (b) A FOC slice of the synthetic trace shown in figure 1(b). (c) A slice of the
Parzen window. (d) An approximate FOM slice of the wavelet by windowing the FOC of the seismic trace. (e) A FOC slice of a very long
seismic trace.

window to the seismic trace cumulant (Velis and Ulrych 1996).
Equation (9) may be rewritten as

mw
4 (τ1, τ2, τ3) = 1

γ r
4

a(τ1, τ2, τ3)c
x
4 (τ1, τ2, τ3), (10)

where a(τ1, τ2, τ3) is a 3D window function. The window
function should have the following properties:

(1) a(τ1, τ2, τ3) = a(−τ1, τ2 − τ1, τ3 − τ1) = a(τ1 − τ2,

−τ2, τ3 − τ2) = a(τ1 − τ3, τ2 − τ3,−τ3) and any possible
exchange of any pair of the three arguments (symmetry
properties of the fourth-order statistics),

(2) a(τ1, τ2, τ3) = 0 for |τi | > L (where L defines the region
involved in computation),

(3) a(0, 0, 0) = 1 for the normalizing condition.

It is easy to build the multidimensional window by using
standard 1D windows. So we can write

a(τ1, τ2, τ3) = d(τ1)d(τ2)d(τ3)d(τ2 − τ1)

d(τ3 − τ2)d(τ3 − τ1), (11)

where d(τ) = d(−τ), d(τ) = 0 when τ > L, d(0) = 1.
Among many possible 1D windows (rectangular, triangular,
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(a)

(b)

Figure 3. Wavelets estimated using the MTM method, and their phase spectra: (a) in MTM using the third-order moment directly; (b) in
MTM using the third-order moment that is downgraded from the fourth-order moment. The red (grey) curve is the true wavelet and black
curve is the estimated one.

Hamming, Gaussian, etc), Velis and Ulrych (1996)
recommended a Parzen window defined by

d(τ) =



1 − 6(|τ |/L)2 + 6(|τ |/L)3, |τ | � L/2,

2(1 − |τ |/L)3, L/2 � |τ | � L,

0, |τ | > L.

(12)

Figure 2(c) shows a slice of the 3D Parzen window.
Figure 2(d) shows the FOC slice (τ3 = 0) of the synthetic
trace after applying the 3D Parzen window. Figure 2(d) is
similar to figure 2(a), the FOM slice (τ3 = 0) of the zero-
mean wavelet.

The estimated wavelet moment (figure 2(d)) is a distorted
version of the true wavelet moment (figure 2(a)), because of
the limited number of data in the seismic trace. Figure 2(e) is
the FOC slice (at τ3 = 0) of a very long seismic trace (10 000
samples). The longer the seismic trace, the more accurate the
wavelet FOM estimation we could have.

3. Two wavelet estimation methods

The main melody of this paper is the iterative linear inversion
scheme for the wavelet estimation from real seismic data. For
generating an initial estimate for the iterative inversion, we use
two mixed-phase wavelet estimation methods overviewed in
this section.

3.1. Maximum time-delayed moment method

Wavelet estimation may be divided into two stages:
amplitude spectrum estimation and phase spectrum estimation.
For amplitude spectrum estimation, we approximate
the autocorrelation of the wavelet by windowing the

autocorrelation of the seismic trace, which is also the second-
order moment of the seismic data:

mw
2 (τ ) = d(τ)mx

2(τ ). (13)

We obtain the amplitude spectrum of the expected wavelet
w(t) from the Fourier transform of mw

2 (τ ).
For the phase spectrum estimation, the MTM method

consists of the following main calculation steps: mw
3 (τ1, τ2),

r̃(t) = mr
3(t,Dmax), and then for the phase spectrum of

wavelet.
The third-order moments of the wavelet, mw

3 (τ1, τ2), may
be obtained by downgrading the fourth-order moments with a
scale factor (Giannakis and Delopoulos 1995):

mw
3 (τ1, τ2) = 1

α

∑
τ3

mw
4 (τ1, τ2, τ3), (14)

where α = ∑
t w(t). Although the scalar α cannot be

computed during the downgrade process from the fourth-order
moments to the third-order moment of the wavelet, since w(t)

is just what we want to acquire finally, it is unnecessary to pay
much attention to it because we only care about the relative
values of the fourth-order moments during the stage of phase
spectrum estimation.

Since the wavelet in our test is zero mean, which is usually
the case in the real seismic wavelet, the seismic trace is also
zero mean. Thus, the third-order moment of the seismic
trace is identical to its third-order cumulant. According to
equation (9), the third-order moment of the wavelet,
mw

3 (τ1, τ2), can also be obtained by

mw
3 (τ1, τ2) = a(τ1, τ2)c

x
3 (τ1, τ2), (15)
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(a)

(b)

Figure 4. Wavelets estimated using the normalized cumulant method and the phase spectra of the wavelets: (a) using the third-order
cumulant, and (b) using the fourth-order cumulant. The red (grey) curve is the true wavelet and the black one is the estimated wavelet.

where cx
3 (τ1, τ2) is the third-order cumulant of the seismic

trace and a(τ1, τ2) is the 2D tapering window

a(τ1, τ2) = d(τ1)d(τ2)d(τ2 − τ1), (16)

built using a 1D standard window d(τ). However, when
the reflectivity coefficients in the convolution model are
symmetrically distributed, the origin value of the third-
order moment calculated by equation (15) is close to zero.
Therefore, the downgrading method (equation (14)) is more
stable for the wavelet estimation that follows.

The convolutional seismic model (equation (6)) can be
expressed in a form of third-order moments

mx
3(τ1, τ2) = mw

3 (τ1, τ2) ∗ mr
3(τ1, τ2), (17)

if the noise is assumed to be Gaussian distributed. Once the
third-order moment of the wavelet and the third-order moment
of the seismic trace are obtained, the third-order moment of
the reflectivity series can be derived by a division in the 2D
frequency domain,

Mr
3(ω1, ω2) = Mx

3 (ω1, ω2)
/
Mw

3 (ω1, ω2). (18)

The inverse Fourier transformation of Mr
3(ω1, ω2) produces

mr
3(τ1, τ2), the third-order moment of the reflectivity series.

As summarized in the appendix, the maximum time-
delayed slice is a scaled and time-shifted version of the
reflectivity (Lu 2005):

r̃(t) = mr
3(t,Dmax), (19)

where Dmax is the maximum time delay of the reflectivity r(t),
and is defined by

Dmax = dN − d1, (20)

and di , for i = 1, 2, . . . , N , is the location for the ith reflector
in the sparse reflectivity series. The reflectivity may be
approximated by

r(ω) = r̃(ω) e−iωd1/(a1aN), (21)

where ai are the amplitude of the ith reflection. As a1aN is a
scalar that is not responsible for the phase spectrum, we can
estimate the wavelet phase spectrum in the frequency domain
by

w(ω) = x(ω)

r̃(ω)
eiωd1 . (22)

Figure 3 displays the wavelet estimation results using the MTM
method, and their phase spectra. In figure 3, (a) uses the third-
order moment directly and (b) uses the third-order moment
downgraded from the fourth-order moment. The relationship
between the fourth-order moment and fourth-order cumulant
was given by equation (10).

The key parameter in this method is Dmax, which must be
identified from the original input seismic trace. It is subject
to human error and is dependent on the data signal-to-noise
ratio. Therefore, the MTM method is not stable for real data
application.

3.2. Normalized cumulant method

Giannakis (1987) showed that the impulse response of a qth-
order moving average (MA) system can be calculated just
from the system’s output cumulants. Therefore in the wavelet
estimation problem, if the wavelet is a qth-order MA process
and the reflectivity sequences satisfy non-Gaussian, which is
IID, it can be proved that, for third-order cumulants,

w(t) = cx
3 (q, t)

cx
3 (−q,−q)

= cx
3 (q, t)

cx
3 (q, 0)

, t = [0, q], (23)
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(b)

(a)

(c)

(d)

Figure 5. Wavelets estimated by using an iterative linear inversion method, and the phase spectra of wavelets: (a) the initial model
generated from the third-order MTM and the linear inversion result; (b) the initial model generated from the fourth-order MTM and the
linear inversion result; (c) the initial model generated from the third-order normalized cumulant method and the linear inversion result;
(d) the initial model generated from the fourth-order normalized cumulant method and the linear inversion result. Each initial model (dotted
curve) and inversion result (solid black curve) are compared to the true wavelet (red/grey curve).

and similarly, for fourth-order cumulants,

w(t) = cx
4 (q, 0, t)

cx
4 (−q,−q,−q)

= cx
4 (q, 0, t)

cx
4 (q, 0, 0)

, t = [0, q]. (24)

We refer to these two equations as the normalized cumulant
method for wavelet estimation.

In most real seismic process cases, the wavelet is seldom
a MA process, so we can only get a rough estimation of the
mixed-phase wavelet. Figure 4 depicts the example results,

both wavelets and phase spectra. In each wavelet, only the
phase information from the normalized cumulant method is
used. The amplitude spectrum is obtained from the windowed
autocorrelation of the seismic trace, which is the same as in
the previous MTM method.

The key parameter in the NC method is the q value. We set
it to be the length of the expected wavelet, with an assumption
that cx

3 (τ, t) ≈ 0 for every τ > q (Giannakis 1987). However,
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(a) (b)

(c) (d)

Figure 6. (a) Replot of figure 5(a) with the true wavelet (red/grey curve) and the linear inversion result (black curve); the arrow indicates
the quench. (b) One slice of true wavelet FOM. (c) One slice of the estimated wavelet FOM by windowing the seismic trace’s fourth-order
cumulant. (d) The difference between (b) and (c).

the wavelet estimation is so sensitive to the q value, and thus
the NC method is not stable in practice.

4. Wavelet estimation by iterative linear inversion

In this paper, we estimate the wavelet using an iterative linear
inversion method to solve a fourth-order moment matching
problem.

For wavelet estimation, the MTM and NC methods make
use of only single high-order-statistics slices, and both are not
stable. To overcome these problems, one may use an inversion
method (Lazear 1993, Velis and Ulrych 1996) that minimizes
the error in a least-square sense between the calculated fourth-
order moment of the wavelet to be estimated and the windowed
fourth-order cumulant of the seismic trace,

J (w) =
q∑

τ1=−q

q∑
τ2=−q

q∑
τ3=−q

[
m̃w

4 (τ1, τ2, τ3) − mw
4 (τ1, τ2, τ3)

]2
,

(25)

where q is the assumed length of the wavelet to be estimated
and m̃w

4 (τ1, τ2, τ3) is the windowed fourth-order cumulant of
the seismic trace (equation (10)). The objective function J (w)

is a highly nonlinear multidimensional cost function because
it involved high-order covariance computation.

Velis and Ulrych (1996) used a SA technique to solve
the optimization problem in equation (25). However, the SA
algorithm involves a trade-off between convergence to a global
minimum and algorithm speed. Therefore, to speed up the
computation, we adopt an iterative linear inversion method in
this paper. We formulate this nonlinear minimization problem
(25) in a matrix-vector form as

F�w = �e, (26)

where F is a matrix of the Fréchet derivatives of the moment
function at lag j with respect to the current wavelet vector
w(i):

F(j, i) = ∂mw
4 (j)/∂w(i), (27)

and �e is the residual vector:

�e(j) = m̃w
4 (j) − mw

4 (j). (28)

Then, we solve the model update vector by

�w = (FT F + µI)−1FT �e, (29)

where µ is the so-called stabilized factor. We set it proportional
to the maximum of the diagonal value of FT F. Finally, we
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Figure 7. Real seismic traces.

update the wavelet by

w(n+1) = w(n) + �w, (30)

where n is the iteration number.
Figure 5 shows the test results on the synthetic wavelet.

Each of the four cases uses different initial estimates generated
by using (a) the third-order MTM, (b) the fourth-order MTM,
(c) the third-order NC and (d) the fourth-order NC methods,
respectively. These initial estimates are plotted as dotted
curves, and the linear inversion results are plotted as solid
black curves. Each inversion result is also compared to the
true wavelet (red/grey curve). The phase spectra of estimated
wavelets (black curve) are also compared to the phase spectrum
of the true wavelet (in red/grey). After the iterative inversion,
phase spectra are better matched to the phase spectrum of the
true wavelet.

From all the subplots of figure 5, we can see that there
are quenches in the front part of the estimated wavelet where

(a)

(b)

Figure 8. Wavelet estimation of real seismic data using iterative linear inversion. (a) and (b) are two cases with different initial wavelets,
generated using the MTM and NC methods, respectively. For each case, the middle panel is the result of the linear inversion method for the
ten traces in figure 7, and the right panel is the final result, an optimal wavelet selected from the ten wavelets in the middle panel.

there is relatively greater difference compared with other parts.
Figure 6(a) takes figure 5(a), for example, replotting the true
synthetic wavelet in red (grey) and the linear inversion result
in black with an arrow indicating the quench. Figure 6(b)
is the fourth-order moment slice of the true wavelet, and
figure 6(c) is a slice of the estimated wavelet fourth-order
moment by windowing the fourth-order cumulant of the
seismic trace. Figure 6(d) highlights the difference between
figures 6(b) and (c). This difference is the cause of the
quench shown in figure 6(a). Further investigation is needed
to make the windowed fourth-order cumulant (an approximate
fourth-order moment) close to the fourth-order moment of the
wavelet.

Figure 7 is a portion of real seismic data used for our
mixed-phase wavelet estimation. For real data application,
both the MTM method and the NC method are not stable
enough to guarantee every trace use, as they make use of only
single high-order-statistics slices. The accuracy of the linear
inversion method can be guaranteed if a good initial model
is supplied, and is suitable for wavelet estimation for a large
number of traces. The results of either the MTM or NC method
can serve as the initial model for the linear solution of the
moment matching method; thus we can get a good estimation
for a whole seismic profile.

Figure 8 shows the linear inversion results corresponding
to two different initial models. In (a) and (b), the initial models
are generated using the MTM and NC methods, respectively.
For each of these two cases, there are three panels: the left
panel is the initial estimate, the middle panel shows the linear
inversion result of the ten traces in figure 7 and the right panel
is the optimal result, selected from the ten wavelets in the
middle panel. This optimal wavelet is the wavelet that it is
most similar to the other nine trace wavelets. We calculate the
correlation functions of any single wavelet with the other nine
wavelets, and sum up the correlation coefficients. The optimal
wavelet is the one that has the largest summed-up correlation
coefficients.

Figure 9 shows a comparison of the fourth-order moment
slice between the initial model and the final optimal wavelet.
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(a)

(b)

Figure 9. A comparison of the fourth-order moment slices between the initial models and the iterative inversion results. (a) and (b)
correspond to the two cases respectively in figure 8. For each case, we show the FOM slice of the initial model, the FOM slice of the final
wavelet and the difference between these two FOM slices.

Figures 9(a) and (b) correspond to the two cases in
figure 8. For each case, we also display the difference between
the two fourth-order moment slices. This difference slice
visualizes the update of ‘data misfit’ made by the iterative
linear inversion.

5. Conclusions

For mixed-phase wavelet estimation, the MTM and NC
methods make use of only single high-order-statistics slices
and both are not stable. As for the iterative linear inversion
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method, it uses the whole fourth-order moment in matching
which is reliable and accurate, but needs a good and reliable
initial estimate, due to the non-uniqueness of the inversion
solution. Therefore, we adopt a hybrid strategy that uses
the MTM or NC method to generate an initial wavelet
estimate for the iterative linear inversion method for wavelet
estimation. This iterative linear inversion method can be
applied to multi-channel real seismic data for mixed-phase
wavelet estimation. The real data test has shown that all
inversion with different initial estimates that are generated
from MTM and NC methods converge to the same result
within allowable accuracy. However, further investigation
is needed to make the windowed fourth-order cumulant of
the seismic trace close to the fourth-order moment of the
wavelet.
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Appendix. The maximum time-delayed slice of the
moment

The maximum time-delayed slice of the moment can be used to
approximate the reflectivity series. For an original derivation,
readers may refer to Lu (2005). We summarize it here for the
sake of completeness of this review paper.

Assume that the reflectivity r(t) is sparse and can be
written as

r(t) =
N∑

i=1

aiδ(t − di), (A.1)

where N is the number of reflectors (non-zero point in the
reflectivity function), ai and di are the amplitude and location
of the ith reflector, respectively, and δ(t) is the unit Kronecker
delta function. Without loss of generality, we assume dj > di

if j > i. The maximum time delay of the reflectivity r(t) is
defined by

Dmax = dN − d1. (A.2)

Substituting equation (A.1) into (1), we obtain

mr
3(τ1, τ2) =

∑
t




N∑
i=1

[aiδ(t − di)]
N∑

j=1

[aj δ(t + τ1 − dj )]

×
N∑

k=1

[akδ(t + τ2 − dk)]


 =

N∑
i=1

N∑
j=1

N∑
k=1

×
{

aiajak

∑
t

[δ(t − di)δ(t + τ1 − dj )δ(t + τ2 − dk)]

}
.

(A.3)

Fixing τ2 = Dmax, we obtain the maximum time-delay slice
of the reflectivity third-order moment,

mr
3(τ1,Dmax) =

N∑
i=1

N∑
j=1

N∑
k=1

{
aiajak

∑
t

[δ(t − di)

× δ(t + τ1 − dj )δ(t + Dmax − dk)]

}
. (A.4)

The maximum time-delay slice has non-zero samples only
when

t = di, i = 1, N, (A.5)

τ 1 = dj − t, j = 1, N, (A.6)

dN − d1 = dk − t, k = 1, N. (A.7)

To satisfy (A.5) and (A.7), it is easy to see that i must be equal
to 1 and k must be equal to N . Therefore, equation (A.4) can
be rewritten as

mr
3(τ1,Dmax) = a1aN

N∑
j=1

aj δ(τ1 − dj + d1). (A.8)

Comparing with equation (A.1), the maximum time-delay slice
(A.8) is a scaled and time-shifted version of the reflectivity.
Let

r̃(t) = mr
3(t,Dmax); (A.9)

the reflectivity series in the frequency domain can be obtained
by

r(ω) = r̃(ω) e−iωd1/(a1aN). (A.10)

That is, the maximum time-delayed slice of the third-order
moment may be used to estimate the reflectivity series. Note
that the denominator in equation (A.10) is not responsible for
the phase spectrum estimation.
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