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Abstract 

Renewable energy sources will anticipate significantly in the future energy system paradigm due to their low 

cost of operation and low pollution. Considering the renewable generation (e.g., wind) intermittency, flexible 

gas-fired power plants will continue to play their essential role as the main linkage of natural gas and electricity 

networks, and hence coordinated operation of these networks is beneficial. Furthermore, uncertainty is always 

found in gas demand prediction, electricity demand prediction, and output power of wind generation. Therefore, 

in this paper, a two-stage stochastic model for operation of natural gas and electricity networks is implemented. 

In order to model uncertainty in these networks, Monte Carlo simulation is applied to generate scenarios 

representing the uncertain parameters. Afterwards, a scenario reduction algorithm based on distances between 

the scenarios is applied. Stochastic and deterministic models for natural gas and electricity networks are 

optimized and compared considering integrated and iterative operation strategies. Furthermore, the value of 

flexibility options (i.e., electricity storage systems) in dealing with uncertainty is quantified. A case study is 

presented based on a high pressure 15-node gas system and the IEEE 24-bus reliability test system to validate 

the applicability of the proposed approach. The results demonstrate that applying the stochastic model of gas 

and electricity networks as well as considering integrated operation strategy in the presence of flexibility 

provides different benefits (e.g., 14% cost savings) and enhances the system reliability in the case of 

contingency. 

Keywords: Scheduling; Natural gas and electricity networks; Uncertainty; Two-stage stochastic programming; 

Monte Carlo simulation; Electricity storage systems. 

Nomenclature 1 

Indices: 
𝑌 Set of terminal nodes indexed by 𝑦 (𝑦 ∈ 𝑌 ⊆ 𝑁) 
𝑁 Set of nodes indexed by 𝑛  (𝑛 ∈ 𝑁) 
𝑃 Set of pipelines indexed by 𝑝  (𝑝 ∈ 𝑃 ⊆ (𝑁,𝑁′)) 
𝑆 Set of scenarios indexed by 𝑠 (𝑠 ∈ 𝑆) 
𝐶 Set of compressors indexed by 𝑐 (𝑐 ∈ 𝐶 ⊆ (𝑁,𝑁′)) 
𝑇 Set of time indexed by 𝑡 (𝑡 ∈ 𝑇) 
𝐺 Set of thermal units indexed by 𝑔 (𝑔 ∈ 𝐺 ⊆ 𝐵) 
𝐷 Set of cost function slopes indexed by 𝑑 (𝑑 ∈ 𝐷) 

                                                           
 Corresponding author 
Email addresses: v.shahbazbagian@mail.sbu.ac.ir (Vahid Shahbazbegian), h.ameli14@imperial.ac.uk (Hossein Ameli), m_ameli@sbu.ac.ir 

(Mohammad Taghi Ameli), g.strbac@imperial.ac.uk (Goran Strbac) 

mailto:v.shahbazbagian@mail.sbu.ac.ir
mailto:h.ameli14@imperial.ac.uk
mailto:m_ameli@sbu.ac.ir
mailto:g.strbac@imperial.ac.uk


𝐵 Set of busbars indexed by 𝑏 (𝑏 ∈ 𝐵) 
𝐿 Set of transmission lines indexed by 𝑙 (𝑙 ∈ 𝐿 ⊆ (𝐵, 𝐵′)) 
𝑄 Set of gas storages indexed by 𝑞 (𝑞 ∈ 𝑄 ⊆ 𝐵) 
𝑅 Set of electricity storages indexed by 𝑟 (𝑟 ∈ 𝑅 ⊆ 𝐵) 

Parameters: 

Cgas Cost of gas supply (£ /𝑚3) 

Clp Cost of line pack management (£ /𝑚3) 

Cgsh Cost of gas load shedding (£ /𝑚3) 

𝒫𝑠 Probability of each scenario (%) 

𝐷𝑛.𝑡.𝑠
gas

 Gas demand at node n, time 𝑡, and scenario 𝑠 

𝐿𝑒𝑛𝑔ℎ𝑡𝑝 Length of pipe 𝑝 (m) 

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑝 Diameter of pipe 𝑝 (m) 

βcomp Gas turbine fuel rate coefficient of a compressor (0.084 𝑚3/MJ) 

ηcomp Overall compressor efficiency (80 %)   

PRmax Pressure ratio of compressor (1.5) 

𝑄𝑐
comp max/min

 Maximum/minimum gas flow rate to compressor 𝑐 

𝑃𝑐
comp ma𝑥

 Maximum/minimum power consumption of compressor at node 𝑐 (𝑃𝑎)  

𝑄𝑠
sup  max/min

 Maximum/minimum capacity of gas flow rate of terminal at node 𝑦 (8.5 mcm) 

𝜋𝑛
min/max

 Maximum/minimum pressures at node 𝑛 (𝑃𝑎) 

𝑄𝑝
pipe min/max

 Maximum/minimum permitted gas flow for pipeline 𝑝 

𝜌normal Gas density under standard condition (0.713 𝑘𝑔/𝑚3) 

Z Compressibility factor for natural gas (0.95) 

R Gas constant for natural gas (518 𝐽/𝑘𝑔. 𝐾) 

𝑉𝑝 Volume of gas (𝑚3)  

𝐿𝑃𝑝 Linepack through pipe 𝑝 

Tnormal Gas temperature under standard condition (288 𝐾) 

𝐿𝑃𝑝𝑡
0  Initial gas stored in the pipe 𝑝 at time 𝑡 

𝐶𝑔
elec Fuel cost of generation unit 𝑔 (£/𝑀𝑊) 

𝑆𝑈𝑔 Startup cost of generating unit 𝑔 (£) 

𝑆𝐷𝑔 Shutdown cost of generating unit 𝑔 (£) 

𝜇𝑑.𝑔.𝑡 Slope of segment 𝑛 pertaining to the cost function of unit 𝑖 at time 𝑡 (£/𝑀𝑊) 

VOLL Cost of load shedding (£/𝑀𝑊) 

VOLW Cost of loss of wind (£/𝑀𝑊) 

𝑣𝑤 Wind speed 

𝑃𝑡𝑔
min/max

 Maximum/minimum power output of thermal unit 𝑔 in segment 𝑑 at time 𝑡 and scenario 𝑠 (MW) 

𝑃𝑑.𝑔
min/max

 Maximum/minimum total power output of thermal unit 𝑔 (MW) 

𝐾𝑔 Startup cost of thermal unit 𝑔 (£) 

𝐽𝑔 Shutdown cost of thermal unit 𝑔 (£) 

𝑇𝑔
on Minimum uptime (hour)  

𝑇𝑔
off Minimum downtime (hour) 

𝑅𝑈𝑔 Ramp-up (MW/h) 

𝑅𝐷𝑔 Ramp-down (MW/h) 

𝑆𝑈𝑅𝑔 Startup ramp (MW/h) 

𝑆𝐷𝑅𝑔 Shutdown ramp (MW/h) 

𝐷𝑏.𝑡.𝑠
elec Electricity demand at node n, time 𝑡, and scenario 𝑠 

𝐵𝑙  Susceptance of line l 

Hv Gas heating value 

Ψ Thermal efficiency of gas generator 

𝐺𝑙𝑞
min/max

 Maximum/minimum gas level of storage 𝑞 

𝑄𝑞
withdrawal max Maximum withdrawal gas of storage 𝑞 

𝑄𝑞
injection max

 Maximum injected gas of storage 𝑞 

𝑃𝑟
ch min/max

 Max/minimum charging power of electricity storage 𝑟 

𝑃𝑟
dch min/max

 Maximum/minimum charging power of electricity storage 𝑟 



𝑆𝑂𝐶𝑟
min/max

 Maximum/minimum state of charge of electricity storage 𝑟 

ηch Charging efficiency of electricity storage 

ηdch Discharging efficiency  of electricity storage 

  

Variables: 

Binary decision variables: 

𝑢𝑔.𝑡 Commitment status of unit 𝑔 at time 𝑡 (𝑢𝑔.𝑡ϵ{0.1}) 

Decision variables: 

𝑄𝑦.𝑡.𝑠
sup

 Gas flow rate of terminal at node 𝑦, time 𝑡, and scenario 𝑠 (𝑚3) 

𝑄𝑝.𝑡.𝑠
pipe

 Gas flow through pipeline 𝑝 at time 𝑡 and scenario 𝑠 (𝑚3) 

𝐺𝑁𝑆𝑛.𝑡.𝑠 Gas load shedding at node 𝑛, time 𝑡, and scenario 𝑠 (𝑚3)  

𝑄𝑐.𝑡.𝑠
comp

 Gas flow through compressor 𝑐 at time 𝑡 and scenario 𝑠 (𝑚3) 

𝑃𝑐.𝑡.𝑠
comp

 Consumption power of compressor 𝑐 at time t and scenario 𝑠 (MW) 

𝜋𝑛.𝑡.𝑠 Pressure of node 𝑛 at time 𝑡 and scenario 𝑠 

𝐿𝑃𝑝.𝑡.𝑠 Line pack of pipe 𝑝 at time 𝑡 and scenario 𝑠  

𝑃𝑔𝑑.𝑔.𝑡.𝑠 Power output of thermal unit 𝑔 in segment 𝑑 at time 𝑡 and scenario 𝑠 (MW) 

𝑃𝑡𝑔.𝑡.𝑠 Total Power output of thermal unit 𝑔 at time 𝑡 and scenario 𝑠 (MW) 

𝐸𝑁𝑆𝑏.𝑡.𝑠 Electrical load shedding at bus 𝑏, time 𝑡, and scenario 𝑠 (MW) 

𝑃𝑤𝑏.𝑡.𝑠 Power output of wind generators connected to bus 𝑏 at time 𝑡 and scenario 𝑠 in (MW) 

𝑆𝑈𝑔.𝑡 Startup cost of thermal unit 𝑔 at time 𝑡 

𝑆𝐷𝑔.𝑡 Shutdown cost of thermal unit 𝑔 at time 𝑡 

𝑃𝑙𝑙.𝑡.𝑠 Power flow through transmission line 𝑙 at time 𝑡 and scenario 𝑠 (MW) 

𝜃𝑙.𝑡.𝑠 Voltage angle at time 𝑡 and scenario 𝑠 

𝑆𝑅𝑅𝑡.𝑠 Spinning reserve requirement at time 𝑡 and scenario 𝑠 

𝑄𝑔.𝑡.𝑠
gen

 Gas demand of thermal generator 𝑔 at time 𝑡 and scenario 𝑠 

𝐺𝐿𝑞.𝑡.𝑠 Gas level of storage 𝑞 at time 𝑡 and scenario 𝑠 

𝑄𝑞.𝑡.𝑠
withdrawal Gas-withdrawal of storage 𝑞 at time 𝑡 and scenario 𝑠 

𝑄𝑞.𝑡.𝑠
injection

 Gas injection into storage 𝑞 at time 𝑡 and scenario 𝑠 

𝑃𝑟.𝑡.𝑠
ch  Charging power of electricity storage 𝑟 at time 𝑡 and scenario 𝑠 

𝑃𝑟.𝑡.𝑠
dch Discharging power of electricity storage 𝑟 at time 𝑡 and scenario 𝑠 

𝑆𝑂𝐶𝑟.𝑡.𝑠 State of charge of electricity storage 𝑟 at time 𝑡 and scenario 𝑠 

1. Introduction 

Climate change is among the most challenging issues in Earth, which is mainly caused due to dependency on 2 

fossil fuels. Annually, a high amount of fossil fuels is consumed to generate electricity, which plays a major 3 

role in producing of Greenhouse Gas (GHG) emissions [1]. Due to the urgency of the matter, a high number of 4 

studies have been carried out to solve this problem, and the Paris agreement on climate change was signed 5 

between 196 countries in which employment of renewable energy resources was introduced as a part of the 6 

solution to deal with the climate change [2]. 7 

Considering the high penetration of renewable energy generation in the power system, flexible gas-fired 8 

power plants are a promising generation technology to deal with the intermittency of renewable energy resources 9 

(e.g., solar energy and wind energy). This is due to the fact that gas-fired power plants offer numerous 10 

advantages, such as (a) low cost of investment, (b) high efficiency, (c) low GHG emissions (compared to coal), 11 

and (d) flexible performance (e.g., providing short startup time and fast ramping rate) [3]. As a consequence of 12 

increasing the share of renewable energies in the power system, the imposed intermittency in the electricity 13 

network impacts the natural gas network by increasing the intermittency of the required demand for gas-fired 14 



power plants. Consequently, the interdependency of the operation of natural gas and electricity networks 15 

increases significantly. Therefore, the coordinated operation of these networks can be beneficial in improving 16 

reliability of the energy system and reducing the operational cost [4]. 17 

In the natural gas network, due to the low velocity of gas transportation within the network from supply 18 

points to the demand centers, a minimum level of gas is stored in the pipelines (called as linepack) to respond 19 

to sudden changes in the gas demand in time. The variability of renewable energy resources, which affects the 20 

gas demand for power generation makes linepack management more challenging [5]. 21 

Coordinated operation of natural gas and electricity networks is presented in literature through iterative and 22 

integrated strategies. In the iterative strategy, first, the operation of electricity network is optimized and the gas 23 

demand for gas-fired power plants is calculated and added to the non-electric gas demand. Then, the operation 24 

of natural gas network is optimized. If there is gas shedding, the power output of that gas-fired plants is limited 25 

accordingly, until the gas shedding equates to zero. In the integrated strategy, the operation of these networks 26 

is optimized simultaneously, and the objective function is the sum of objective functions of natural gas and 27 

electricity networks. The whole-system constraints along with a constraint, coupling these networks together 28 

are taken into account [6]-[7]. For instance, in [8], the natural gas and electricity networks were modeled, and 29 

the benefits of multi-directional compressors were examined through the iterative strategy. The obtained results 30 

indicated the benefits of each flexibility option, and electricity storage systems were presented as the optimal 31 

choice for reducing the operational costs among the studied flexibility options. Electricity storage systems are 32 

mostly charged during off-peak hours of operation period by power plants with a lower cost of operation (e.g., 33 

wind farms). These systems can be discharged during peak hours of demand, which can prevent supplying 34 

demand through expensive power plants. In addition, in the case of outage of generators, using electricity storage 35 

systems provides the possibility to supply a higher peak of demand, which enhances the reliability of the system. 36 

In [9], coordinated operation of natural gas and electricity networks was optimized considering linepack, and 37 

the impacts of natural gas network on the Unit Commitment (UC) was examined through the iterative strategy. 38 

It was demonstrated that the steady-state model of natural gas networks cannot simulate the pipelines strictly, 39 

which provides impractical solutions. 40 

In order to study the operation of natural gas and electricity networks more realistically, uncertainties in 41 

demand and renewables should be taken into account, since the perfect foresight is not possible. For instance, 42 

the uncertainty in the electricity and gas demands is due to the randomness inherent and volatility of a high 43 

number of consumers. Furthermore, the integration of renewable energy resources entails uncertainty due to 44 

unpredictability of wind speed. Therefore, applying an approach that takes into account the uncertainty of 45 

electricity demand, non-electric gas demand, and output power of renewable energy resources, is of great 46 

importance. In [10]-[12], stochastic models of gas and electricity network were presented. In [10], an iterative 47 

strategy was applied to optimize coordinated operation of gas and electricity networks considering UC and 48 

Economic Dispatch (ED) models in the power network and non-linear equations of gas network, such as 49 



compressor performance and gas flow calculation. Furthermore, stochastic programming was applied to deal 50 

with the uncertainty in the output power of wind generators. The results indicated operation cost reduction of 51 

the stochastic model in comparison with the deterministic model. In [11]-[12], a number of scenarios were 52 

generated on transmission lines and generators outages, and the non-linear constraints of natural gas network 53 

were linearized using piecewise linearization. The proposed models were solved under iterative strategy, in 54 

which the obtained results illustrated the impacts of the stochastic programming and hourly demand response 55 

on the consequences of the probable outages and operation cost reduction of the system, respectively. In [13], a 56 

robust optimization model was proposed to study a coordinated operation of natural gas and electricity networks. 57 

In the proposed model, the operation cost was optimized considering the worst-case scenario (i.e., the largest 58 

possible security violation). Furthermore, to cope with complexity of the problem, alternating direction method 59 

of multipliers was applied, and electricity and gas subproblems were solved iteratively with piecewise linearized 60 

gas network constraints. Finally, the impacts of natural gas network on the UC and the benefits of employing 61 

flexible components, such as electricity storage systems, against wind generators intermittency were examined. 62 

There are also a growing number of studies in the literature that examined the value of coordinated operation 63 

of natural gas and electricity networks through an integrated strategy [14]-[23]. A combined gas and electricity 64 

network model was developed in [14]. In this model, the linepack, gas storages, and ramp rate of gas-fired 65 

generators were considered. Finally, the obtained results demonstrated lower load shedding in the integrated 66 

networks in case of an outage of a gas terminal. Due to the dependency of Ireland gas network on gas imports 67 

from Great Britain (GB), in [15], coordinated operation of natural gas and electricity networks was optimized 68 

in both countries. Furthermore, a few scenarios were determined to study the interaction of gas and electricity 69 

networks in more detail. The results indicated that when the GB electricity system operates independently from 70 

the gas network, it is resilient against the increase of demand during peak hours of operation period. However, 71 

during coordinated operation of these networks, the ramping capability of localized generating units was limited 72 

due to the physics of gas flow and hence the reliability of the system decreased. Ability of gas storage systems 73 

to improve the operation of the power system was presented as a key finding of this study. In [16], coordinated 74 

operation of gas and electricity networks was examined through the integrated strategy, and the efficacy of 75 

flexible gas-fired plants and electricity storage systems were investigated to address electricity balancing 76 

challenges. In [17], a linearized model for coordinated operation of natural gas and electricity networks was 77 

also presented considering energy and reserve markets. In [18], sparse semidefinite programming was used to 78 

solve the similar mixed-integer nonlinear and nonconvex problem, in which analytical studies indicated the 79 

accuracy of the results. In [19], an economic dispatch model was presented for gas and electricity networks. In 80 

this study, Weymouth gas flow constraints were approximated using second-order cone relaxation. The results 81 

of this study were compared to linear models that demonstrated the acceptable accuracy of the solutions. In 82 

[20], Outer Approximation with Equality Relaxation (OA/ER) was used to solve the mixed-integer nonlinear 83 

model for coordinated operation of gas and electricity networks through integrated approach. The results of the 84 

model were compared with the optimization under iterative strategy for a gas and electricity network, which 85 



proved the lower cost of operation through the integrated strategy. The role of flexibility options was also 86 

investigated, and it was indicated that if the energy system is flexible enough, it is not necessary to change the 87 

current operation framework to integrated strategy. 88 

Some studies have taken uncertainty into account in the coordinated operation of these networks through the 89 

integrated strategy of operation [21]-[23]. For instance, in [21], demand response and wind uncertainty were 90 

incorporated into the operation of natural gas and electricity networks. In order to validate the developed model, 91 

two case studies were derived, and the results proved improving the efficiency of the operation and providing 92 

profit for the decision-makers. A robust scheduling model for optimal operation of natural gas and electricity 93 

networks was presented in [22]. In this study, non-linear constraints of the natural gas network were linearized, 94 

and the model was optimized considering the worst-case scenario for electricity demand and output power of 95 

wind generators, which leads to the largest possible security violation. The results indicated the effectiveness 96 

of the model when the electricity demand and output power of renewable energy generators varied from the 97 

predicted values. In [23], a probabilistic model was proposed to optimize the operation of the gas and electricity 98 

network. In this study, Cumulant approach and Gram-Charlier expansion were applied to provide the 99 

distribution of state variables considering the effects of uncertain parameters. The results of the study showed 100 

that the applied approach can reduce the execution time and enhance accuracy.  101 

In Table 1, the previous studies are compared in terms of optimization approach, mathematical modeling, 102 

and uncertainty consideration. By reviewing the previous studies, it is revealed that some papers have not 103 

considered the volume of natural gas in pipelines (linepack) and represented a simple model of the gas network 104 

([11] and [12]). Some other papers have not considered electricity network constraints in detail, such as the 105 

limitation of power flow through transmission lines and constraints in UC ([13]-[15], and [17]). Furthermore, a 106 

number of studies have linearized non-linear constraints of the gas network ([9], [11]-[13], [17], [19], and [23]). 107 

Although it considerably decreases the complexity of solving the problem, provided solutions are not as strict 108 

as the non-linear model. A few studies have also considered the uncertainty of electricity demand or wind power 109 

([8], [10], [13], [21], and [22]). However, in order to make the operational model more realistic, considering 110 

uncertainty in three vectors, including electricity demand, gas demand, and output power of wind generators, 111 

simultaneously is of great importance.  112 

 

 

 

 

 

 

 

 



Table 1. Systematic review of the studied papers.  
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Qadrdan et al. 

(2017) [8] 
     MINLP          

Liu et al. (2011) 

[9] 
     MILP          

Qadrdan et al 

(2014) [10] 
     MINLP          

Alabdulwahab 

et al. (2017) 

[11] 

     MILP          

Zhang et al. 

(2016) [12] 
     MILP          

He at al. (2017) 

[13] 
     MILP          

Chuadry et al. 

(2008) [14] 
     MINLP          

Delwin et al. 

(2017) [15] 
     MINLP          

Ameli et al. 

(2017) [16] 
     MINLP          

Sirvent et al. 

(2017) [17] 
     MILP          

Menshadi et al. 

(2017) [18] 
     MINLP          

Sayed et al. 

(2018) [19] 
     MILP          

Ameli et al. 

(2019) [20] 
     MINLP          

Bai et al. (2016) 

[21] 
     MINLP          

Chuan et al. 

(2017) [22] 
     MINLP          

Yuan et al. 

(2017)[23] 
     MILP          

This research      MINLP          

(1) ED: Economic dispatch, (2) UC: Unit commitment, (3) NCUC: Network constrained unit commitment, (4) MILP: Mixed-integer 

linear programming, and (5) MINLP: Mixed-integer non-linear programming. 

This paper aims to propose a stochastic model for the coordinated operation of natural gas and electricity 113 

networks. For this purpose, a comprehensive and strict Mixed-Integer Nonlinear Program (MINLP) (i.e., due to 114 

non-linear equations in the gas system as well as binary-variables in the generation unit commitment) 115 

optimization model for the operation of natural gas and electricity networks is developed. In the proposed model, 116 

constraints such as gas flow balance, gas supply limits for the terminals, linepack, pressure operational limits, 117 

and gas compressor operation limits are considered. In the electricity network, a network-constrained unit 118 

commitment (NCUC) is presented, which takes into account power flow balance, spinning reserve requirements, 119 

electricity storage systems, wind generators, and characteristics of thermal generating units, such as ramp 120 

up/down, minimum uptime/downtime, and minimum/maximum generation of thermal units. In light of this, two 121 



different operational strategies, namely iterative and integrated approaches are carried out to study the 122 

interaction of natural gas and electricity networks. Considering the strengths and weaknesses of the previous 123 

studies, this paper fills the gap by considering the following main contributions: 124 

 As the role of uncertainty in this problem is not deniable, Monte-Carlo simulation is applied to generate 125 

scenarios for gas demand, electricity demand, and wind power based on their Probability Density Functions 126 

(PDFs). Furthermore, a scenario reduction algorithm based on the distances between the scenarios is 127 

developed. To the best of authors’ knowledge, simultaneous consideration of uncertainty in non-electric gas 128 

demand as well as electricity demand and output power of wind generators is not reported in the literature.  129 

 A two-stage stochastic model of these networks is proposed. In the stochastic gas network operation 130 

subproblem, the optimal gas injection through terminals is obtained through the optimization in the first 131 

stage. However, the sum of costs of linepack management and gas shedding is optimized in the second stage 132 

to minimize the undesired effects of the first stage decisions. On the other hand, in the stochastic NCUC, 133 

the commitment of units is obtained through the optimization in the first stage, although the sum of costs of 134 

power generating of thermal units and load shedding is optimized in the second stage. Therefore, a stochastic 135 

model is proposed to enhance solution robustness by providing a unit commitment and amount of gas 136 

injection in which all scenarios can be met. 137 

 Solving MINLP models are highly dependent on initial-points. Hence, an algorithm is proposed to provide 138 

initial-points and solve the MINLP model for the coordinated operation of gas and electricity networks. 139 

This algorithm consists of two main steps, which is based on solving the relaxed model in the first step, and 140 

solving the original model by adding slack variables to the gas and electricity balance equations and the 141 

corresponding penalty in the second step. 142 

 The value of flexibility options (namely electricity storage systems) in order to deal with uncertainties in 143 

the coordinated operation strategies of gas and electricity systems is quantified. For this purpose, costs of 144 

operation, wind curtailment, and the linepack changes are investigated in the normal conditions. 145 

Furthermore, the amount of load shedding is compared with and without employing electricity storage 146 

systems in the contingency conditions (i.e., different scenarios for outages of generators). 147 

Finally, the obtained results from the stochastic model based on reduced scenarios for uncertain parameters 148 

are compared and analyzed against a deterministic model based on the perfect foresight of the parameters during 149 

24 hours considering the integrated and iterative strategies of operation. For this purpose, the proposed model 150 

is implemented on a 15 node gas network and the modified IEEE 24 bus reliability test system. 151 

The structure of this study is organized as follows. After the introduction, in Section 2, the model formulation 152 

and description are presented. In Section 3, a case study is introduced to illustrate the applicability of the 153 

proposed model. Consequently, results and analyses are conducted to assess the effectiveness of the proposed 154 

model in Section 4. Finally, the conclusion is presented in Section 5.  155 



2. Proposed methodology 

In this study, a two-stage stochastic operation model of natural gas and electricity networks is presented in 156 

detail. In this model, the integrated operation strategy is compared to the iterative operation strategy with and 157 

without considering uncertainty. The electricity demand, gas demand, and output power of wind generators 158 

cause uncertainty in the operation of these networks. In order to solve the stochastic model for the operation of 159 

natural gas and electricity networks, Monte-Carlo simulation is applied to generate scenarios representing the 160 

uncertain parameters involved in the model. As it is difficult and impractical to deal with a high number of 161 

scenarios considering the physical limitation of the computers, a scenario reduction algorithm is applied. The 162 

framework for the operation of natural gas and electricity is depicted in Fig. 1. 163 

 

Figure 1. Proposed approach for the operation of gas and electricity networks. 

2.1. Scenario generation of uncertain gas demand, electricity demand, and wind power 164 

The uncertainty of gas and electricity demands are modeled using normal probability density function (PDF) 165 

as it was used in previous studies, such as [24]-[26]. Furthermore, in the previous studies, the uncertainty of 166 

wind speed was modeled using Weibull PDF [27]. The output power of wind generators is calculated according 167 

to the wind speed, cut-in speed, cut-out speed, rated speed, and rated power of turbines [24]. After scenario 168 
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generation, the generated scenarios of each parameter are combined to form a set of scenarios. In the combined 169 

scenarios, each scenario is composed of a vector of three elements (gas demand, electricity demand, and wind 170 

power) (Equation (1)). 171 

(1) 𝑆𝑖 = [𝐷𝑡
𝑔𝑎𝑠

, 𝐷𝑡
𝑒𝑙𝑒𝑐, 𝑃𝑤𝑡] 

 2.2. Scenario reduction 172 

Dealing with a high number of scenarios increases the complexity of the model and solving time 173 

considerably. This is due to the complexity of the non-convex MINLP model of coordinated operation of natural 174 

gas and electricity networks, it is computationally impossible to solve this MINLP model for a high number of 175 

scenarios. Therefore, it is worthwhile solving the problem with a small number of scenarios which represents a 176 

reasonable approximation of the original scenarios.  177 

Different scenario reduction techniques have been used in previous studies, such as forward selection and 178 

backward reduction [28]. In the forward scenario selection algorithm, one scenario which appropriately 179 

represents other scenarios is added through each iteration. This algorithm ends when a predetermined number 180 

of scenarios has been generated. The drawback of this algorithm is neglecting some extreme cases with a low 181 

probability of occurrence [29]. In the backward scenario reduction algorithm, on the other hand, one scenario 182 

from original scenarios is removed during each iteration based on the distance between the scenarios. Despite 183 

the simplicity of the implementation, this algorithm reduces the loss of information in comparison with other 184 

scenario reduction algorithms [30]-[31]. The steps of the backward scenario reduction algorithm are represented 185 

in Table 2. In this algorithm, initially, the occurrence probability of each scenario is the same (𝒫initial = 1 𝑁𝑠⁄ ). 186 

Table 2. Scenario reduction algorithm. 

Loop 

 Calculating distance between scenarios. Distance between scenarios 𝑺𝒊 and 𝑺𝒋 is equal to 

𝒅𝒊𝒋 = |𝑺𝒊 − 𝑺𝒋| 
Step 1 

 Formulating the distance matrix 𝓓 which self-distances are equal to zero (𝑵𝒔 ×𝑵𝒔 matrix) 

  Set 𝑵𝒎 = 𝑵𝒔 
Step 2 

 Finding minimum distance in the matrix (except 𝒅𝒊𝒊). Two rows will contain minimum 

values (𝒅𝒊𝒋 = 𝒅𝒋𝒊). The rows are scenarios 𝒙 and 𝒚 with the probability of 𝓟𝒙and 𝓟𝒚 
Step 3 

 If 𝓟𝒙> 𝓟𝒚, remove scenario 𝒙 and update the probability 𝓟𝒙= 𝓟𝒙 +𝓟𝒚 

 Else if 𝓟𝒚> 𝓟𝒙, remove scenario 𝒚 and update the probability 𝓟𝒚= 𝓟𝒚 +𝓟𝒙 
Step 4 

 𝑵𝒎 = 𝑵𝒎 − 𝟏 

 If 𝑵𝒎 > 𝑵∗, go to the first step of the loop 

 Else end 

Step 5 

 

2.3. Two-stage stochastic programming 187 

Two-stage stochastic programming is one of the forms of stochastic programming, which is represented 188 

mathematically in (2) [32]. In this equation, the vectors of 𝑥 ∈ 𝑅𝑛 and 𝑦 ∈ 𝑅𝑚 are the variables of the uncertain 189 

problem and realizations of unknown parameters are shown by 𝑆 = {𝑠1, … , 𝑠𝐼} ⊆ 𝑅𝑟 which 𝑟 is the number of 190 

uncertain parameters. 191 



(2) 

 

First stage problem {
min𝑥               𝑧 = 𝒄𝑻. 𝑥 + 𝔼[𝑄(𝑥, 𝑆)]

subject to   𝑨𝑥 = 𝒅,                          
       𝑥 ≥ 0,            

 

Second stage problem 

{
 
 

 
 Where       𝔼[𝑄(𝑥, 𝑆)] =  ∑𝒑𝒔. 𝒃𝒔

𝐓
. 𝑦𝑠

𝑠𝜖𝑆

𝑩𝒔. 𝑥 + 𝑫𝒔. 𝑦𝑠 = 𝒉𝒔, 𝑠𝜖𝓈, 𝑦𝑠 ≥ 0, 𝑠𝜖𝑆    

∑𝒑𝑠 = 1

𝑠𝜖𝑆

                                                     

 

In the above equation, the first stage and second stage problems are assigned. In the first stage problem, 𝒄𝑻 192 

represents the cost coefficients, 𝔼[𝑄(𝑥, 𝑆)] the expected value of the optimal solution of the second-stage 193 

problem, 𝑨 the coefficients matrix, and 𝒅 the right-hand side of the first stage constraints. In the second stage 194 

problem, 𝑦 denotes decision variable, 𝑩𝒔 transition matrix, 𝑫𝒔 cost matrix, and 𝒉𝒔 the right-hand side of the 195 

second stage constraints [33].  196 

2.4. Stochastic model of natural gas and electricity networks 197 

In this section, the two-stage stochastic model of natural gas and electricity networks is presented in detail, 198 

including the objective function and constraints. 199 

2.4.1. Objective function 200 

Equation (3), shows the objective function of the natural gas network. The first term of this objective function 201 

is the cost of gas supply and the second term is the expected cost of linepack management and gas shedding. 202 

The gas injection is considered as the first stage decision variable to supply gas demand under each scenario 203 

without changing the scheduled amount of gas injection. Equation (4) also shows the objective function of the 204 

electricity network. The first term of this objective function is the fuel costs of power generation, startup costs, 205 

and shutdown costs. The second term of this objective function is the expected cost of power generation, loss 206 

of load, and loss of wind. The commitment status of generators is considered as the first stage decision variable 207 

to supply electricity demand without changing unit commitment under each scenario. Consequently, the 208 

objective function of the coordinated operation of gas and electricity networks is presented in (5), which equates 209 

to the sum of natural gas and electricity networks’ operational costs. 210 

(3) 𝑍𝑔𝑎𝑠 =∑∑Cgas. 𝑄𝑦,𝑡
sup

+  𝔼[𝑄1(𝑥, 𝑆)] 

𝑦𝑡

 

where 𝔼[𝑄1(𝑥, 𝑆)] =∑𝒫𝑠 .

𝑠

∑(

𝑡

∑Clp. Δ𝐿𝑃𝑛,𝑡,𝑠
𝑛

+∑Cgsh.

𝑛

𝐺𝑁𝑆𝑛,𝑡,𝑠) 

 (4) 𝑍𝑒𝑙𝑒𝑐 =∑∑𝐶𝑔
elec. 𝑢𝑔,𝑡

𝑔𝑡

+ 𝑆𝑈𝑔 + 𝑆𝐷𝑔 + 𝔼[𝑄2(𝑥, 𝑆)] 

where 𝔼[𝑄2(𝑥, 𝑆)] =∑𝒫𝑠 .

𝑠

(∑∑∑(𝜇𝑑,𝑔,𝑡)

𝑑

. 𝑃𝑔𝑑,𝑔,𝑡,𝑠
𝑔𝑡

 

+∑∑𝑉𝑂𝐿𝐿

𝑏

. 𝐸𝑁𝑆𝑏,𝑡,𝑠
𝑡

                                   



+∑∑𝑉𝑂𝐿𝑊

𝑏

. (𝑃𝑤𝑏,𝑡
max − 𝑃𝑤𝑏,𝑡,𝑠))

𝑡

 

(5) 𝑍𝑡𝑜𝑡𝑎𝑙=𝑍𝑔𝑎𝑠+𝑍𝑒𝑙𝑒𝑐  

2.4.2. Natural gas network constraints 211 

In this subsection, the gas network constraints are presented. Limitation of gas injection is defined in (6), 212 

which is a first stage constraint in the natural gas network model. On the other hand, the second stage constraints 213 

of this network are shown in (7)-(16). Equation (7) shows the gas flow balance at each node of gas network and 214 

each period. Equation (8), is applied to simulate the compressible gas flow within the pipelines (Panhandle A 215 

equation) [34]. In natural gas network, compressors are used to boost the pressure between two nodes. Equation 216 

(9), shows the power consumption of the compressors prime-mover, which is added to the gas flow balance 217 

equation [35]. In this equation, superscripts "out"  and  "in"  imply outlet and inlet of the compressors, 218 

respectively. Equations (10)-(12), define the operation limits of the compressors, such as pressure ratio, flow 219 

capacity, and maximum power. The pressure limits at each node and gas flow limits within the pipelines are 220 

also defined in (13) and (14). The gas storage operation limits are represented in (15)-(18). 221 

(6) ∀𝑦 ∈ 𝑌, ∀𝑡 ∈ 𝑇 𝑄𝑦
sup min

≤ 𝑄𝑦,𝑡
sup

≤ 𝑄𝑦
sup max

 

(7) ∀𝑛 ∈ 𝑁, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑄𝑦,𝑡
sup

− 𝑄𝑝,𝑡,𝑠
pipe

− 𝑄𝑐,𝑡,𝑠
comp

+ 𝑄𝑞,𝑡,𝑠
injection

+ 𝐺𝑁𝑆𝑛,𝑡,𝑠 = 𝐷𝑛,𝑡,𝑠
gas

+ 𝑄𝑞,𝑡,𝑠
witdrawal  

(8) ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (𝜋𝑝,𝑡,𝑠
out )2 − (𝜋𝑝,𝑡,𝑠

in )2 =
18 ∙ 43 𝐿𝑒𝑛𝑔ℎ𝑡𝑝

(𝜂𝑙)
2. 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟𝑝

4.854
. (𝑄𝑝,𝑡,𝑠

pipe
)1.854 

(9) ∀𝑐 ∈ 𝐶, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑃𝑐,𝑡,𝑠
comp

=
βcomp. 𝑄𝑐,𝑡,𝑠

comp

ηcomp
. [(

𝜋𝑐,𝑡,𝑠
𝑜𝑢𝑡

𝜋𝑐,𝑡,𝑠
𝑖𝑛
)

1
βcomp

− 1] 

(10) ∀𝑐 ∈ 𝐶, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 1 ≤  
𝜋𝑐,𝑡,𝑠
out

𝜋𝑐,𝑡,𝑠
in

≤ PRmax 

(11) ∀𝑐 ∈ 𝐶, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑄𝑐,𝑡,𝑠
comp

≤ 𝑄𝑐
comp max

 

(12) ∀𝑐 ∈ 𝐶, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑃𝑐,𝑡,𝑠
comp

≤ 𝑃𝑐
comp max

 

(13) ∀𝑛 ∈ 𝑁, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝜋𝑛
min ≤ 𝜋𝑛,𝑡,𝑠 ≤ 𝜋𝑛

max 

(14) ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑄𝑝
pipe min

≤ 𝑄𝑝,𝑡,𝑠
pipe

≤ 𝑄𝑝
pipe max

 

(15) ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝐺𝐿𝑞
min ≤ 𝐺𝐿𝑞,𝑡,𝑠 ≤ 𝐺𝐿𝑞

max 

(16) ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝐺𝐿𝑞,𝑡,𝑠=𝐺𝐿𝑞,𝑡−1,𝑠 +(𝑄𝑞,𝑡,𝑠
witdrawal-𝑄𝑞,𝑡,𝑠

injection
) 

(17) ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 0 ≤ 𝑄𝑞,𝑡,𝑠
witdrawal ≤ 𝑄𝑞

max withdrawal 

(18) ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 0 ≤ 𝑄𝑞,𝑡,𝑠
injection

≤ 𝑄𝑞
max injection

 

In addition to the aforementioned constraints, the linepack of the pipelines should be considered to meet the 222 

rapid changes in the gas demand. Equation (19), shows that the linepack through the pipes is proportional to the 223 

average pressure along the pipes in the steady-state condition. The inlet and outlet gas flow of a pipe are changed 224 

by supply and demand variation under dynamic conditions. Furthermore, the change of gas volume equates to 225 

the difference between inlet and outlet flow of the pipe (law of conservation of mass). Therefore, equation (19) 226 

is substituted with equation (20), which is an approximation of the dynamic situation ([16] and [20]). 227 



𝐿𝑃𝑝 =
𝜋𝑝
average

. 𝑉𝑝

𝜌normal. 𝑍. 𝑅. 𝑇normal
 ∀𝑝 ∈ 𝑃 (19) 

𝐿𝑃𝑝,𝑡,𝑠 = 𝐿𝑃𝑝,𝑡,𝑠
0 +∑ (𝑄𝑝,𝑡,𝑠

pipe in
− 𝑄𝑝,𝑡,𝑠

pipe out
𝑡

0
) ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 (20) 

2.4.3. Electricity network constraints 228 

In this subsection, electricity network constraints are represented [36]. Equations (21)-(24) define the first 229 

stage constraints of the electricity network. In (24) and (25), startup/shutdown costs are defined. In (23) and 230 

(24), the minimum uptime/downtime of thermal generating units is indicated. The second stage constraints are 231 

shown in (25)-(33). Equation (25) defines the power flow balance at each bus and each period. Equation (26), 232 

shows the power output of thermal generating units that is linearized through the piece-wise linear function. 233 

Equations (27)-(30) define the maximum/minimum stable output power of thermal generation units. The ramp-234 

up/down constrains of thermal generating units are indicated in (29) and (30). In (31), power flow through 235 

transmission lines is expressed and in (32), the capacity of transmission lines is limited. The reserve 236 

requirements are also determined in (33). Equations (34)-(37) also define the electricity storage systems 237 

constraints. 238 

(21) ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 𝑆𝑈𝑔,𝑡 ≥ 𝐾𝑔. (𝑢𝑔,𝑡 − 𝑢𝑔,𝑡−1) 

(22) ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 𝑆𝐷𝑔,𝑡 ≥ 𝐽𝑔. (𝑢𝑔,𝑡−1 − 𝑢𝑔,𝑡) 

(23) ∀𝑔, 𝑡𝜖 [1, 𝑇 − 𝑇𝑔
𝑜𝑛 + 1] ∑𝑢𝑔,𝑡 ≥ 𝑇𝑔

on. (𝑢𝑔,𝑡 − 𝑢𝑔,𝑡−1)

𝑡′

 

(24) ∀𝑔, 𝑡𝜖 [1, 𝑇 − 𝑇𝑔
𝑜𝑓𝑓

+ 1] ∑(1 − 𝑢𝑔,𝑡) ≥ 𝑇𝑔
off. (𝑢𝑔,𝑡−1 − 𝑢𝑔,𝑡)

𝑡′

 

(25) ∀𝑏 ∈ 𝐵, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑃𝑡𝑔,𝑡,𝑠 + 𝑃𝑤𝑏,𝑡,𝑠 − 𝑃𝑙𝑙,𝑡,𝑠 + 𝑃𝑟,𝑡,𝑠
dch+𝐸𝑁𝑆𝑏,𝑡,𝑠 = 𝐷𝑏.𝑡.𝑠

elec + 𝑃𝑟,𝑡,𝑠
ch  

(26) ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑃𝑡𝑔,𝑡,𝑠=𝑢𝑔,𝑡 . 𝑃𝑡𝑔
min + ∑ 𝑃𝑔𝑑,𝑔,𝑡,𝑠𝑑  

(27) ∀𝑑 ∈ 𝐷, ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 0 ≤ 𝑃𝑔𝑑,𝑔,𝑡,𝑠 ≤ 𝑃𝑑,𝑔
max 

(28) ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑢𝑔,𝑡 . 𝑃𝑡𝑔
min ≤ 𝑃𝑡𝑔,𝑡,𝑠 ≤ 𝑢𝑔,𝑡 . 𝑃𝑡𝑔

max 

(29) ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 𝑃𝑡𝑔,𝑡,𝑠 − 𝑃𝑡𝑔,𝑡−1,𝑠 ≤ 𝑅𝑈𝑔. 𝑢𝑔,𝑡−1 + 𝑆𝑈𝑅𝑔. (𝑢𝑔,𝑡 − 𝑢𝑔,𝑡−1) 

(30) ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 𝑃𝑡𝑔,𝑡−1,𝑠 − 𝑃𝑡𝑔,𝑡,𝑠 ≤ 𝑅𝐷𝑔 . 𝑢𝑔,𝑡 + 𝑆𝐷𝑅𝑔 . (𝑢𝑔,𝑡−1 − 𝑢𝑔,𝑡) 

(31) ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑃𝑙𝑙,𝑡,𝑠 = 𝐵𝑙 . (𝜃𝑙,𝑡,𝑠
in − 𝜃𝑙,𝑡,𝑠

out) 

(32) ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 −𝑃𝑙𝑙
max ≤ 𝑃𝑙𝑙,𝑡,𝑠 ≤ 𝑃𝑙𝑙

max 

(33) ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 ∑𝑃𝑡𝑔
max

𝑔

≥ 𝑆𝑅𝑅𝑇𝑡,𝑠 +∑𝐷𝑏,𝑡,𝑠
elec

𝑏

 

(34) ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑆𝑂𝐶𝑟,𝑡,𝑠=𝑆𝑂𝐶𝑟,𝑡−1,𝑠 + (𝑃𝑟,𝑡,𝑠
ch . ηch − 𝑃𝑟,𝑡,𝑠

dch/ηdch) 

(35) ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑃𝑟,𝑡,𝑠
ch min ≤ 𝑃𝑟,𝑡,𝑠

ch ≤ 𝑃𝑟,𝑡,𝑠
ch max 

(36) ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑃𝑟,𝑡,𝑠
dch min ≤ 𝑃𝑟,𝑡,𝑠

dch ≤ 𝑃𝑟,𝑡,𝑠
dch max 

(37) ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑆𝑂𝐶𝑟
min ≤ 𝑆𝑂𝐶𝑟,𝑡,𝑠 ≤ 𝑆𝑂𝐶𝑟

max  

2.4.4. Coupling constraints 239 



Gas-fired power plants and electricity-driven compressors couple the natural gas and electricity networks. 240 

The gas consumption of these generators should be added to the gas flow balance. This value is calculated 241 

considering the output power of gas-fired power plants in (38), and the gas flow balance in (7) is rewritten in 242 

(39). Furthermore, the electricity consumption of electricity-driven compressors in (9) is also added to power 243 

flow balance equation (40). 244 

(38) ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑄𝑔,𝑡,𝑠
gen

= ψ.Hv. 𝑃𝑡𝑔,𝑡,𝑠  

(39) ∀𝑛 ∈ 𝑁, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑄𝑦,𝑡
sup

− 𝑄𝑝,𝑡,𝑠
pipe

− 𝑄𝑐,𝑡,𝑠
comp

+ 𝑄𝑞,𝑡,𝑠
injection

+ 𝐺𝑁𝑆𝑛,𝑡,𝑠 = 𝐷𝑛,𝑡,𝑠
gas

+ 𝑄𝑔,𝑡,𝑠
gen

+ 𝑄𝑞,𝑡,𝑠
witdrawal  

(40) ∀𝑏 ∈ 𝐵, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑃𝑡𝑔,𝑡,𝑠 + 𝑃𝑤𝑏,𝑡,𝑠 − 𝑃𝑙𝑙,𝑡,𝑠 + 𝑃𝑟,𝑡,𝑠
dch+𝐸𝑁𝑆𝑏,𝑡,𝑠 = 𝐷𝑏.𝑡.𝑠

elec + 𝑃𝑏,𝑡,𝑠
comp

+ 𝑃𝑟,𝑡,𝑠
ch  

2.5. Gas and electricity operational strategies 245 

As mentioned previously, integrated and iterative strategies are applied to model the operation of natural gas 246 

and electricity networks. In the iterative strategy, first, the operation of the electricity network is optimized (i.e., 247 

minimizing (4) subject to electricity network constraints (21)-(37). Afterwards, the gas requirement of gas-fired 248 

power plants is calculated from their output powers and added to non-electrical gas demand (38), and then, the 249 

operation of the natural gas network is optimized (i.e., minimizing (3) subject to gas network constraints (6)-250 

(18) and (20)). If there is either constraint violation or gas shedding due to the excess of gas requirements of the 251 

gas-fired power plants, the power outputs of those generators in (27) and (28) are limited until the total gas 252 

shedding equates to zero ([10], [16], and [20]). The worst-case that can happen is that the gas demand for power 253 

generation cannot be supplied and hence the output power of gas-fired power plants is limited to zero, and 254 

consequently, the electricity demand must be supplied via other generation types (e.g., coal power plants). 255 

Therefore, this can cause a considerable amount of load shedding in the electricity network, which increases the 256 

total cost of operation. The flowchart for an implementation of the proposed iterative strategy is illustrated in 257 

Fig. 2. 258 

 259 



     
Figure 2. Structure of iterative strategy to optimize the coordinated operation of natural gas and electricity 

networks. 

In the integrated strategy, the objective function is equal to the sum of the total operating cost of natural gas 260 

and electricity networks and all constraints are taken into account (minimizing (5) subject to (6), (8)-(18) and 261 

(21)-(24), (26)-(37), and (38)-(40)). Furthermore, a constraint is considered that couples these networks (38) 262 

([13] and [19]).  263 

The integrated model is an MINLP due to nonlinear equations in the natural gas network as well as binary 264 

variables in the unit commitment process. Therefore, solving the relaxed model that neglects integer restrictions 265 

can help to achieve optimality in the original problem [37]. The relaxed model is a nonlinear program that can 266 

provide initial-points to solve the original problem. Moreover, when the relaxed model cannot be solved, the 267 

gas or electricity subproblems should be scaled (first step) [38]. In this problem, using the obtained results from 268 
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optimizing the relaxed model could lead to infeasibility due to the unit commitment’s constraints in (21)-(24). 269 

Therefore, slack variables (𝑆𝐺𝑛,𝑡,𝑠 and 𝑆𝐸𝑏,𝑡,𝑠) are also added in the gas and electricity balance equations (i.e., 270 

substituting (39) and (40) with (41) and (42), respectively) with a considerable amount of penalty (CP) in the 271 

objective function (43). Afterwards, the solution of solving the coordinated operation of gas and electricity 272 

networks with the slack variables and the corresponding penalty (i.e., these variables are for optimization 273 

purposes to avoid infeasibility and do not have any physical meaning) are used in an iterative manner only to 274 

provide initial-points and find optimal solution. Finally, when the slack variables are equal to zero, the solution 275 

is optimal. On the other hand, load shedding is used as a last action by system operators to satisfy supply-276 

demand balance due to lack of generation (e.g., in the case of contingency). For modeling purposes, a very high 277 

penalty is set for gas and electricity load shedding (Cgsh and 𝑉𝑂𝐿𝐿) to make these variables  the last option to 278 

maintain the supply-demand balance equation. In Fig. 3, the flowchart for solving the MINLP model through 279 

the proposed algorithm is presented. 280 

(41) ∀𝑛 ∈ 𝑁, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑄𝑦,𝑡
sup

− 𝑄𝑝,𝑡,𝑠
pipe

− 𝑄𝑐,𝑡,𝑠
comp

+ 𝑄𝑞,𝑡,𝑠
injection

+𝐺𝑁𝑆𝑛,𝑡,𝑠
= 𝐷𝑛,𝑡,𝑠

gas
+ 𝑄𝑔,𝑡,𝑠

gen
+ 𝑄𝑞,𝑡,𝑠

witdrawal + 𝑆𝐺𝑛,𝑡,𝑠 
 

(42) ∀𝑏 ∈ 𝐵, ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆 𝑃𝑡𝑔,𝑡,𝑠 + 𝑃𝑤𝑏,𝑡,𝑠 − 𝑃𝑙𝑙,𝑡,𝑠+𝐸𝑁𝑆𝑏,𝑡,𝑠 = 𝑃𝑏,𝑡,𝑠
comp

+ 𝑆𝐸𝑏,𝑡,𝑠 
 

(43)   𝑍𝑡𝑜𝑡𝑎𝑙 = 𝑍𝑔𝑎𝑠+𝑍𝑒𝑙𝑒𝑐 + CP. (𝑆𝐺𝑛,𝑡,𝑠 + 𝑆𝐸𝑏,𝑡,𝑠) 



 
Figure 3. Proposed solving method of integrated natural gas and electricity networks model. 

3. Case study 

In this section, in order to validate the proposed methodology, a case study is presented (Fig. 4), and the 281 

stochastic and deterministic models of natural gas and electricity networks are optimized through integrated and 282 

iterative operational strategies (i.e., stochastic-integrated, stochastic-iterative, deterministic-integrated, and 283 

deterministic-iterative). Furthermore, a number of scenarios are determined to examine the consequence of 284 

outage of generators under different modeling (i.e., stochastic and deterministic models) and different strategies 285 

of operations (i.e., iterative and integrated strategies). Besides, the value of electricity storage systems is 286 

investigated under normal and contingency conditions to quantify the benefits of this flexibility option to deal 287 

with uncertainties. 288 

3.1. Natural gas network description 289 

The case study consists of a high pressure 15 node gas system ([39]-[40]) and the IEEE 24-bus reliability 290 

test system ([41]-[42]). The gas network consists of one gas terminal, one gas-driven compressor, two gas 291 
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storage facilities, 15 nodes, and 16 pipelines. In the deterministic model, a perfect foresight of gas demand 292 

during 24 hours is considered in the optimization. In the stochastic model, however, the Mont-Carlo simulation 293 

is carried out to generate 1000 scenarios for gas demand. In order to generate gas demand scenarios using normal 294 

PDF, the standard deviation is considered 5% of gas demand. Other required parameters, which are used in the 295 

modeling gas network, are introduced in Appendix. 296 

 
Figure 4. IEEE 24 bus electricity network interconnected with 15 node gas network. 

3.2. Electricity network description 297 

The updated version of the IEEE 24-bus reliability test system is used to test the proposed model [43]. Six 298 

200 MW-wind farms and two 300 MW-electricity storage systems are installed in the network. In the 299 

deterministic model, the reserve is considered to be equal to 10% of the installed capacity of generating units in 300 

the deterministic model [36]. A perfect foresight for electricity demand and output wind power of 24 hours is 301 

also considered in the optimization. In the stochastic model, however, Mont-Carlo simulation is applied to 302 

generate 1000 scenarios of electricity demand and wind power. In order to generate electricity demand scenarios 303 

using normal PDF, the standard deviation is considered to be equal to 10% of electricity demand, and the scale 304 

and shape parameters are considered 10 and 200, respectively, to generate wind power scenarios using Weibull 305 

PDF [43]. 306 

4. Results analysis  

In this section, the obtained solutions of different strategies of operation with and without taking uncertainty 307 

into account, are investigated and analyzed. As mentioned previously, stochastic programming is applied to deal 308 
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with the uncertainty of gas demand, electricity demand, and wind power. For this purpose, 1000 scenarios are 309 

generated to present uncertain parameters during the operation period. To reduce the complexity of the model, 310 

the generated scenarios are separately reduced and combined. Afterwards, the combined scenarios are reduced 311 

again to five scenarios for each uncertain parameter. In this case, this number of scenarios provides an acceptable 312 

range of variation for each uncertain parameter. Figure 5 shows the reduced scenarios and their probabilities for 313 

this case study. 314 

  

 

 
Figure 5. Reduced scenarios for gas demand, electricity demand, and power generation. 

4.1 Computational performance 315 

This model is solved in Generalized Algebraic Modeling System optimization package (GAMS) via Discrete 316 

and Continuous Optimizer solver (DICOPT) [44] using a Core i7 system with 2.67 GHz CPU and 16 GB of 317 

RAM. The algorithm in DICOPT is also based on a decomposition method provided in [44]. The decomposition 318 

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G
as

 d
em

an
d

 (
m

cm
)

Time (hour)

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
le

ct
ri

ci
ty

 d
em

an
d

 (
M

W
)

Time (hour)

40

90

140

190

240

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

W
in

d
 p

o
w

er
 (

M
W

)

Time (hour)

P1=0.184 P2=0.16 P3=0.168 P4=0.24 P5=0.248



method, which is applied to this solver reduces the complexity of the model due to splitting the problem to 319 

MILP and Nonlinear Program (NLP) instead of the original MINLP problem [45], and hence obtaining the 320 

global optimum is more likely. The deterministic model consists of 2534 equations, 2565 continuous variables, 321 

and 2175 binary variables, and the stochastic model consists of 12640 equations, 11935 continuous variables, 322 

and 2175 binary variables. The solving time and solution gap for solving the stochastic model as well as the 323 

deterministic model through the mentioned operation strategies are demonstrated in Table 3. In Table 3, the 324 

number of iterations for each algorithm is presented. As demonstrated, it takes two iterations for solving through 325 

the integrated strategy and one iteration for solving through the iterative strategy to successfully converge 326 

without slack variables using the proposed algorithm. 327 

Table 3. Solving time and solution gap for coordinated operation of natural gas and electricity networks. 

Modeling Stochastic Deterministic 

Operational strategy Integrated Iterative Integrated Iterative 

Solving time (min) 34.15 18.15 9.43 5.42 

Number of iterations 1 2 1 2 

Solution gap (%) 0.14 0.21 0.15 0.18 

    

4.2. Natural gas network operation analysis 328 

There are considerable oscillations in the gas demand during peak hours (06:00 to 09:00 and 17:00 to 20:00) 329 

and off-peak hours (01:00 to 06:00 and 11:00 to 14:00), respectively. The variation of demand impacts the 330 

injected gas through the terminal and linepack within the pipelines, which makes the operation of gas networks 331 

more challenging. 332 

Figure 6, shows the gas injection through the terminal during the operation period. It is demonstrated that 333 

changing the operational strategy to the integrated strategy as well as applying the two-stage stochastic 334 

programming, facilitates supplying the demand and prevents high oscillation of gas injection to the network.  335 

Figure 7 depicts the sum of the linepack within pipelines during the operation horizon. It is demonstrated 336 

that optimizing the problem through integrated strategy as well as applying stochastic modeling also moderate 337 

linepack within the pipelines. In contrast, there are oscillations in the linepack when the deterministic model or 338 

iterative operation strategy is applied, which leads to a higher operation of the compressor, and consequently 339 

more power is consumed by the compressors. In Fig. 8, the tapped gas of the compressor is presented, in which 340 

a more tapped gas leads to an increase in natural gas network operation cost.  341 



 
Figure 6. Gas injection of different models. 

  
Figure 7. Sum of gas network linepack in different models. 

  
Figure 8. Tapped gas of compressor (expected value is shown in the stochastic model). 

4.3. Electricity network operation analysis 342 

The output power of different types of power plants during the operation period and the total output power 343 

of these power plants are depicted in Fig. 9 and Fig. 10, respectively (the expected values are shown in the 344 

stochastic model). In the deterministic model, power plants generated more power to supply the electricity 345 

demand against the stochastic model. One reason is that reserve is required in the deterministic model to handle 346 

the uncertainty. In order to provide the reserve, nuclear and coal power plants generated more power in the 347 

deterministic model compared with the stochastic model. In contrast with the deterministic model, in the 348 

stochastic model, wind generators are more operative to meet the demand during the whole period of operation. 349 

As a result, the operation cost of the electricity network decreases considering the uncertainty through both 350 

operational strategies. Moreover, in stochastic models, charging and discharging of electricity storage systems 351 
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are scheduled more efficiently, which is beneficial to deal with fluctuations in the electricity demand and output 352 

power of wind farms. 353 

On the other hand, when the stochastic and deterministic models are optimized through integrated strategy, 354 

the gas-fired power plants are almost turned off during off-peak hours of electricity demand and the peak hours 355 

of gas demand (from 01:00 to 07:00 and from 19:00 to midnight). However, these power plants are more 356 

operative during peak hours of electricity demand, which is due to the advantages of gas-fired power plants, 357 

such as providing short startup time and fast ramping rate.  358 

  
(a) Stochastic under integrated strategy (b) Stochastic under iterative strategy 

   
(c) Deterministic under integrated strategy (d) Deterministic under iterative strategy 

Figure 9. Power generation of each type of power plant during operation period. 

  
Figure 10. Total power generation by different technologies. 

In Fig. 11, the required fuel provided by gas and coal resources to generate electricity during the operation 359 

period is depicted. As it is shown, when the models of the natural gas and electricity networks are optimized 360 
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through the integrated strategy, the natural gas consumption of the gas-fired power plants is less than optimizing 361 

the problem through the iterative strategy (0.13 mcm/day and 0.27 mcm/day, respectively). Moreover, in the 362 

stochastic model, the coal consumption of the power plants is lower than the deterministic model (0.11 kton/day 363 

and 0.29 kton/day through integrated and iterative strategies, respectively). Therefore, incorporating the 364 

uncertainty in this problem and applying the integrated strategy of operation reduce the consumption of fossil 365 

fuels, which is beneficial, and consequently, it reduces the GHG emissions (Table 4). 366 

 

Figure 11. Consumed fossil fuel during the operation period. 

Table 4. Produced emission for coordinated operation of natural gas and electricity networks. 

Modeling Stochastic Deterministic 

Operational strategy Integrated Iterative Integrated Iterative 

Produced carbon dioxide by 

coal power plants (kton/day) 
3.5600 2.9224 3.7513 3.7535 

Produced carbon dioxide by 

gas-fired power plants 

(kton/day) 

1.4466 2.1459 1.5434 1.8369 

Total produced carbon dioxide 

(kton/day) 
5.0066 5.0682 5.2947 5.5905 

According to the obtained results from optimizing the electricity network operation, the expected wind 367 

curtailment of the stochastic model and the wind curtailment of the deterministic model are depicted considering 368 

both strategies in Fig. 12. The results indicate a lower wind curtailment in the stochastic model compared with 369 

the deterministic model, which highlights one of the benefits of stochastic programming. It is shown that most 370 

wind curtailment is occurred during off-peak hours of operation. The relatively high amount of wind curtailment 371 

in busbars 3, 5, and 7 is due to the congestion through the transmission lines as well as the long distances from 372 

the electricity storage facilities The main reason for the low wind curtailment in busbars 16, 21, and 23 is due 373 

to the short distance from the electricity storage facilities, which bypasses the transmission congestions. 374 
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(b) Stochatic under iterative strategy (a) Stochastic under integrated strategy 

  
(d) Deterministic under iterative stratgey (c) Deterministic under iterative stratgey 

Figure 12. Wind curtailment. 

In addition to the above advantages of stochastic modeling that leads to cost reduction, there are other 375 

benefits in considering uncertainty. For example, it optimizes the charge and discharge of electricity storage 376 

systems more efficiently, which increases the lifetime of these systems by preventing unnecessary charging and 377 

discharging.  378 

In Fig. 13, the state of charge of the electricity storage systems is depicted, where the state of charge of these 379 

systems is minimum, during peak hours, whereas it is maximum during off-peak hours. The standard deviations 380 

of the state of charges are lower using the stochastic model (99.62 and 102.81 considering integrated and 381 

iterative strategies of operation, respectively), in comparison with applying the deterministic model (148.72 and 382 

102.87 considering integrated and iterative strategies, respectively). The lower standard deviation of the 383 

stochastic model shows the better operation of the electricity storage systems that prevents unnecessary charges 384 

and discharges and leads to more batteries life span. 385 
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(b) Stochastic model under iterative strategy (a) Stochastic model under integrated strategy 

  
(d) Deterministic model under iterative strategy (c) Deterministic model under integrated strategy 

Figure 13. State of charge of electricity storage systems. 

4.4. Economic analysis 386 

The operation cost of stochastic and deterministic models in integrated and iterative strategies are presented 387 

in Table 5. According to the obtained results, applying the integrated strategy to optimize the coordinated 388 

operation of natural gas and electricity networks reduces the cost of stochastic and deterministic models by 389 

0.1030 m£/day and 0.1696 m£/day, respectively. The most important reason is that changing the strategy of 390 

operation to integrated leads to a balanced linepack within the pipelines and a balanced gas injection through 391 

the terminal. As a result, benefiting from integrated operation strategy, gas network operators can respond more 392 

efficiently to the changes in the gas demand and gas requirement of gas-fired generators. Furthermore, applying 393 

integrated operational strategy leads to a more efficient charge and discharge of electricity storage systems 394 

Table 5. Operation cost of coordinated operation of gas and electricity networks. 

Modeling 

Operation cost (m£) 

Electricity 

network 

Natural gas 

network 
Total 

Stochastic 
Integrated 0.2618 2.4221 2.6839 

Iterative 0.2632 2.5237 2.7869 

Deterministic 
Integrated 0.2697 2.6718 2.9415 

Iterative 0.2798 2.8213 3.1111 

Comparing the results of the coordinated operation of natural gas and electricity networks shows that the 395 

stochastic model provides a better solution under different operation strategies. Applying the stochastic model 396 

reduces the cost of operation by 0.2576 m£/day and 0.3242 m£/day through integrated and iterative strategies, 397 
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respectively. The reasons could be mentioned as a more balanced gas supply, a more balanced linepack within 398 

the pipelines, no reserve requirements, less operation of the compressor, and a lower wind curtailment. 399 

4.5. Contingency analysis 400 

A contingency is defined as a failure of an element, such as a generator in a power system [46]. In practice, 401 

the outage of generators leads to an increase in gas demand. This is due to the re-dispatch of gas-fired generators 402 

to provide supply-demand balance. In order to examine contingency in this problem, a set of scenarios on 403 

generators outages is defined, which leads to load shedding in the electricity network. Then, the amount of 404 

occurred load shedding is compared applying the stochastic model and the deterministic model considering both 405 

strategies of operation. 406 

 Figure 14 indicates the amount of load shedding in the case of contingency. The outage of generators 1, 2, 407 

7, and 8 in which load shedding is occurred are considered as scenarios 1, 2, 3, and 4, respectively. The obtained 408 

results of contingency analysis illustrate using the stochastic model reduces the amount of load shedding 409 

compared to the deterministic model through iterative and integrated operational strategies. Furthermore, 410 

applying the integrated strategy of operation to optimize the coordinated operation of these networks reduces 411 

the amount of load shedding. As a result, considering stochastic programming as well as optimizing the problem 412 

through the integrated strategy enhances the reliability of the electricity network by reducing energy not supply 413 

in the case of contingency. The reason is that the gas-fired power plants are able to deal with variation in supply 414 

and demand-side due to a more balanced linepack within the pipelines that provides the possibility to deal with 415 

variation without causing congestion in the transmission lines. 416 

 
Figure 14. Comparing load shedding in the case of contingency. 

4.6. Value of electricity storage systems in normal and contingency conditions 417 

In order to evaluate the value of flexibility options, specifically electricity storage, the results are compared 418 

with a case that electricity storage is not installed in the system. In Table 6, the operation cost, wind curtailment, 419 

and the maximum/minimum of the sum of the linepack with and without electricity storage throughout all the 420 

case studies are indicated. This is evident that employing electricity storage systems reduces the cost of 421 

electricity and gas networks operation up to £39,400 during the operation period. In the electricity network, 422 

employing these facilities prevents wind curtailment significantly by responding to the changes in the output 423 

power of wind farms, which reduces the cost of electricity network operation. On the other hand, the electricity 424 
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storage systems reduce the high peaks and valleys in linepack (up to 45%), which makes the gas system 425 

operation less challenging. It should be noted that reducing the difference between the maximum/minimum sum 426 

of linepack by employing these storage systems can prevent unnecessary injection through the terminal, and it 427 

can reduce the cost of gas network operation.  428 

Table 6. Comparison of gas and electricity systems operation with and without employing electricity storage 

systems. 

Modeling Stochastic Deterministic 

Operation strategy Integrated Iterative Integrated Iterative 

Electricity storage 

employment 
Yes No Yes No Yes No Yes No 

Electricity network 

operation cost (m£) 
0.2618 0.2812 0.2632 0.2896 0.2697 0.29022 0.2798 0.29022 

Gas network 

operation cost (m£) 
2.4221 2.5341 2.5237 2.6913 2.6718 2.8403 2.8213 2.8406 

Wind curtailment 

(MWh) 
34.78 84.01 54.92 108.11 104.23 199.61 113.73 204.21 

Maximum linepack 

(mcm) 
54.92 108.11 104.23 199.61 113.73 104.21 54.92 108.11 

Minimum linepack 

(mcm) 
1.39 1.61 1.55 1.64 1.54 1.56 1.39 1.61 

On the other hand, as employing electricity storage systems is efficient for dealing with variability and 429 

intermittency in the electricity network, the gas-fired power plants can be mostly used in case of contingency, 430 

which leads to lower load shedding levels compared to the case that electricity storage is not installed in the 431 

system. In Fig. 15, the amount of load shedding reduction compared to the “non-employed storage” case in the 432 

contingency condition is presented. In this subsection, the outage of generators 1, 2, 7, and 8 are also assumed 433 

as scenarios 1, 2, 3, and 4, respectively. 434 

 
Figure 15. Load shedding reduction compared to “non-employed storage” case. 

5. Conclusion 

Considering the increase in integration of renewable energy resources in the electricity sector, flexible gas-fired 435 

power plants could play a crucial role in providing supply-demand balance and couple the electricity and natural 436 

gas networks. Therefore, this study examined different aspects of the coordinated operation of these networks. 437 

Furthermore, as the role of uncertainty in the coordinated operation of natural gas and electricity networks is 438 
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not deniable, a two-stage stochastic model of these networks was introduced in detail considering the 439 

intermittency in the electricity demand, the output power of wind generators, and the non-electric gas demand. 440 

In the proposed model, due to the impact of the variability of wind generators on the gas network operation, the 441 

role of linepack in meeting the rapid changes in gas demand for power generation was also considered. In order 442 

to carry out the stochastic model of these networks, Monte Carlo simulation was applied to generate a number 443 

of scenarios representing the gas demand, electricity demand, and wind generation. Then, a backward scenario 444 

reduction algorithm was applied based on distances between the scenarios. The models were examined on a 15-445 

node natural gas and IEEE 24 bus electricity network, and stochastic and deterministic models were compared 446 

through integrated and iterative operational strategies 447 

According to the results, applying the integrated strategy to optimize the coordinated operation of natural 448 

gas and electricity networks reduced the cost of stochastic and deterministic models by 3.83% and 5.76%, 449 

respectively. In addition, it provided some advantages, such as improving gas injection through the terminal, 450 

balancing linepack within the pipeline, more efficient charging and discharging of electricity storage systems, 451 

and reducing the power consumption by the compressors. Comparing the results of coordinated operation of 452 

these networks also demonstrates the advantages of the stochastic model. For example, through applying the 453 

stochastic model, the cost of operation was reduced by 9.60% and 11.63% in the integrated and iterative 454 

strategies. The results also indicate the decrease of wind curtailment in stochastic model compared with the 455 

deterministic model. Furthermore, applying stochastic programming also facilitated the gas injection through 456 

the terminal and linepack within the pipelines. Besides, defining a set of scenarios on generators outage proved 457 

that applying stochastic programming enhances the reliability of the energy system especially when optimizing 458 

the operation of natural gas and electricity networks through the integrated operational strategy. Furthermore, 459 

the role of electricity storage systems was quantified in the case of normal and contingency conditions. The 460 

results show the benefits of these systems, such as operation cost reduction, wind curtailment reduction, and 461 

load shedding decrement in the case of contingency. 462 

As future research, applying an approach that is not based on scenario is suggested to cope with the 463 

uncertainty of this problem, such as possibilistic programming or robust programming in which there is no need 464 

to consider a number of scenarios. This is due to the complexity of this problem, which is a mixed-integer 465 

nonlinear problem, and adding a number of scenarios increases the complexity of the problem and the solving 466 

time considerably. However, if it is necessary to deal with uncertainty applying a scenario-based approach, 467 

using a decomposition technique, such as Benders decomposition, could be beneficial to solve this problem. 468 
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Appendix. Gas network data 474 

The costs of gas supply and gas shedding are considered 0.35 £/cm and 11.1 £/cm, respectively. The gas 475 

demand profile is presented in Fig. 16 and Table 7 [37]. The pipeline data is also presented in Table 8.  476 

 
Figure 16. Gas demand (non-electrical) 

Table 7. Gas peak of each node. 

Node Gas peak (cm) Node Gas peak (cm) Node Gas peak (cm) 

1 550000 6 400000 11 400000 

2 550000 7 550000 12 400000 

3 550000 8 550000 13 400000 

4 550000 9 550000 14 400000 

5 550000 10 400000 15 400000 

 

Table 8. Pipeline data. 

Diameter 

(mm) 

Length 

(m) 

To 

node 

From 

node 

Pipe 

number 

Diameter 

(mm) 

Length 

(m) 

To 

node 

From 

node 

Pipe 

number 

43 81 8 7 9 157 22211 2 1 1 

888 6563 9 8 10 590 24035 3 1 2 

309 7636 10 6 11 438 5585 4 1 3 

309 3917 11 10 12 438 16322 3 4 4 

309 97 12 10 13 438 6952 5 3 5 

590 10123 13 12 14 309 4287 6 5 6 

157 5520 14 11 15 438 4439 7 5 7 

309 4298 15 11 16 304 5032 8 5 8 
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