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Clustering of tracers floating on the ocean surface and evolving due to combined velocity fields consisting
of a deterministic mesoscale component and a kinematic random component is analysed. The random
component represents the influence of submesoscale motions. A theory of exponential clustering in random
velocity fields is applied to characterise the obtained clustering scenarios in both steady and unsteady time-
dependent mesoscale flows, as simulated by a comprehensive realistic, eddy-resolving, general circulation
model for the Japan/East Sea. The mesoscale flow field abounds in transient eddy-like patterns modulating
and branching the main currents, and the underlying time-mean flow component features closed recirculation
zones that can entrap the tracer. The submesoscale flow component is modelled kinematically, as a divergent
random velocity field with a prescribed correlation radius and variance. The combined flow induces tracer
clustering, that is, the exponential growth of tracer density in patches with vanishing areas. The statistical
topography methodology, which provides integral characteristics to quantify the emerging clusters, uncovers
drastic dependence of the clustering rates on whether the mesoscale flow component is taken to be steady
or time-dependent. The former situation favours robust exponential clustering, similar to the theoretically
understood case of purely divergent and zero-mean random velocity. The latter situation, on the contrary,
hinders exponential clustering due to significant advection of the tracer out of the nearly enclosed eddies,
at the rate faster than the clustering rate.

Keywords: Mesoscale; submesoscale; steady and unsteady flows; tracer clustering; tracer mixing; tracer
advection

1. Introduction

Tracer transport at the ocean surface is one of the challenging problems that attract much
attention due to the complexity of the dynamical processes involved in generating the trans-
port patterns. The main difficulty in understanding these patterns comes from the multi-scale
nature of the ocean currents. There are large-scale circulations (e.g., ocean gyres and currents
separating them) that induce the large-scale mean advection (Pedlosky 1996, Vallis 2017).
Then, the mesoscale advection is induced by mostly transient synoptic eddies (Gryanik et al.
2006, Chelton et al. 2007, McWilliams 2013, Reznik 2010, Reznik and Kizner 2010, Chelton
et al. 2011, Sokolovskiy and Verron 2014, Koshel et al. 2019a), which are hard to resolve
in the comprehensive general circulation models, and whose dynamics is often nonlinearly
complicated and difficult to be parameterised. Further downscale there are largely unresolved
submesoscale motions (Berti et al. 2011, Schroeder et al. 2012, Zhong and Bracco 2013, Berta
et al. 2016, McWilliams 2016, Haza et al. 2016, Ohlmann et al. 2019), increasingly more
researched due to the improved observational skills and spatial resolution of the circulation
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models. The simplistic view on the problem assumes that these scales are well separated in
the spectra and, thus, can be treated separately. We also adopt this approach, but note that
often these scales are intertwined and interact via complex backscatters (Jansen and Held
2014, Jansen et al. 2015, Shevchenko and Berloff 2016, Bachman et al. 2017, Berloff 2018).
All these scales contribute significantly to the floating tracer patterns and ideally should be
taken into account.

Because of the many scales of motion involved, the resulting tracer patterns often exhibit
spatial inhomogeneities with sharp local aggregations of tracer (Okubo 1980, McComb 1990,
Law et al. 2010, Cozar et al. 2014, Martinez et al. 2009, Maximenko et al. 2012, Väli et al. 2018)
that survive for long times. This effect is called clustering and attributed to the effect of the
surface velocity divergence (Klyatskin et al. 1996a, Koshel and Alexandrova 1999, Klyatskin
and Koshel 2000, Huntley et al. 2015, Jacobs et al. 2016, Koshel et al. 2019b, Stepanov et al.
2020) on the scales by orders of magnitude smaller than those of the dynamically dominant,
coherent mesoscale eddies. The main objective of this paper is to show that the clustering
process can be significantly and nontrivially altered by the interplay between the mesoscale
and submesoscale velocity components.

The Eulerian evolution of the floating-tracer density, considered on the ocean surface and
subject to its 2D velocity field U(R, t), is governed by the equation

∂

∂t
ρ(R, t) +∇R (U(R, t)ρ(R, t)) = 0, ρ(R, 0) = ρ0(R), (1)

where R = (x, y) is the horizontal position vector, ∇R is the horizontal gradient, ρ(R, t) is
the tracer density distribution, ρ0 (R) is the initial tracer density, and the 2D velocity field
U(R, t) generally has both divergent and rotational components. We consider a combination
of deterministic mesoscale and random submesoscale velocity fields

U(R, t) = 〈U(R, t)〉︸ ︷︷ ︸
mesoscale

+ γUp(R, t) + (1− γ)U s(R, t)︸ ︷︷ ︸
submesoscale

. (2)

Here, superscripts s and p stand for rotational (solenoidal) and divergent (potential) random
velocity components, and 〈. . . 〉 is the averaging over an ensemble of random velocity field
realizations. The deterministic (mesoscale) component 〈U(R, t)〉 is given by a realistic eddy-
resolving simulation of the Japan/East Sea (JES) circulation and can be treated as either
steady or time-dependent. The submesoscale component is modelled by a random kinematic
velocity field that comprises both divergent and rotational components, whose relative con-
tributions are defined by parameter 0 ≤ γ ≤ 1. The resulting clustering process is ultimately
induced by the velocity divergence (Klyatskin et al. 1996b,a, Saichev and Woyczynski 1996,
Falkovich et al. 2001, Eckhardt and Schumacher 2001, Schumacher and Eckhardt 2002, Cress-
man and Goldburg 2003, Bec et al. 2004, Fouxon 2012, Klyatskin 2015, Huntley et al. 2015,
Jacobs et al. 2016, Klyatskin 2016, Väli et al. 2018). Our previous papers dealt with cluster-
ing in kinematic, zero-mean, random velocity fields (Koshel et al. 2019b), and also in such
fields with the additional, deterministic, steady velocity component represented by realistic
mesoscale flow features (Stepanov et al. 2020). The present work generalises and extends the
previous results by considering a more complex, unsteady time-dependent mesoscale flow
component and its influence on the clustering processes.

2. The mesoscale deterministic flow component model The mesoscale flow model

For the deterministic flow velocity component, we use the horizontal velocity field obtained
from the realistic, primitive-equations general circulation INMOM model of the JES, which is
of the sigma-coordinate type (i.e., with the vertical coordinate following the bathymetry). For
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Table 1. Parameters of the JES model

Modelling region 123E – 147.25E; 28.3N – 52.1332N
Horizontal resolution 1/12◦ × 1/12◦

Vertical resolution 25 sigma-levels
Sea ice model Thermodynamic model
Unresolved scale parameterisation 2- and 4-order Laplacian along geopotential surfaces
Heat and salinity diffusivity of the second order 10 m2/s
Heat and salinity diffusivity of the fourth order 7 · 109 m4/s
Turbulent viscosity of the second order 50 m2/s
Turbulent viscosity of the fourth order 7 · 109 m4/s
Vertical viscosity and diffusion parameterisation Pacanowski-Philander
Vertical diffusivity from 10−6 to 0.005 m2/s
Vertical viscosity from 10−4 to 0.025 m2/s

Table 2. Atmospheric forcing parameters from JRA55-do dataset

Horizontal resolution 0.5625◦ in the meridional and zonal directions
Time interval 1958 – 2017
Time resolution
Meridional and zonal wind speed at height 10m 3 hours
Air temperature at height 10m 3 hours
Air humidity at height 10m 3 hours
Pressure at the sea surface 3 hours
Long- and short-wave solar radiation and rain precipitation averaging every 3 hours
Daily-averaged river flows included

detailed descriptions of the numerical implementations and other details (see Marchuk et al.
2005, Zalesny et al. 2017, Stepanov et al. 2018). Examples of the INMOM implementations
include modelling of the global ocean and marginal seas (Danabasoglu et al. 2014, Gusev and
Diansky 2014, Stepanov 2017, 2018).

For modelling the JES circulation system, several factors have to be taken into account:
e.g., the atmospheric forcing and water exchange through the JES straits (Chang and Teague
2004, Chang et al. 2016). The water exchange is taken into account by enlarging the model
domain to include the adjacent parts of the East China Sea, Okhotsk Sea and Pacific Ocean.
This approach enables one to generate the unforced water inflow through the Korea/Tsushima
strait in the south and the outflow through the Tsugaru and Soya straits in the east.

The lateral boundaries of the enlarged domain are no-slip for velocity, while the heat and
salt fluxes are equal to zero. Near the open boundaries, we implemented the relaxation layers
with spatial extent ∼ 1◦, where the potential temperature and salinity profiles are nudged to
their climatological monthly means (taken from the WOA2013 v2.0 dataset: Locarnini et al.
2013, Zweng et al. 2013).

The model has horizontal resolution of 1/12◦ in both zonal and meridional directions. Since
the first baroclinic Rossby radius of deformation is 10–15km in the southern part of the
domain (to the south of 41◦N) and 5–10km in the northern part, the spatial resolution varies
from eddy-resolving in the south to eddy-permitting in the north. The sigma-coordinate levels,
which characterise the vertical resolution, are finer near the surface and bottom, thus, enabling
a better resolution of the surface and bottom boundary layers.

The second- and fourth-order Laplacians are used to account for the horizontal turbu-
lent viscosity and diffusivity, respectively; the vertical turbulent viscosity and diffusivity are
factored in through the Pacanowski-Philander parameterisation (Pacanowski and Philander
1981). Table 1 lists the implemented parameter values.

The surface atmospheric forcing, represented by a combination of heat, fresh-water, and
momentum fluxes, is given by the bulk relations (Large and Yeager 2009). The atmospheric
parameters are taken from the JRA55-do dataset (Tsujino et al. 2018), as presented in Table 2.

The temperature conditions in the JES favour ice formation in its northern part — this
significantly alters the temperature and fresh-water balances at the surface and, thus, may
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Figure 1. Multi-year mean (from 1980 to 2008) surface velocity field of the JES (shading, cm s−1) from the eddy-
resolving model. (Colour online).

influence the Primorye current. Hence, for a better representation of the JES circulation, we
also exploit the thermodynamic and dynamic ice cores of the INMOM (Yakovlev 2009).

For the initial conditions, we use potential temperature and salinity fields from the
WOA2013v2.0 dataset (spatial resolution 1/4◦ with 102 standard depth levels). Various fac-
tors, such as the model configuration’s overall simplicity, inaccuracies of parameterisations and
boundary conditions, contributed towards accumulated simulation errors, as compared to the
observed mean values. To ameliorate the errors, we nudge potential temperature and salinity
in the 50-meter mixed layer to their climatological values, with the nudging coefficients of 1
month for potential temperature and 3 months for salinity.

The model is run from 1958 to 2017. After 10 years, the kinetic energy and temperature,
averaged over the JES at various depth layers, become nearly stationary. For the tracer trans-
port and our clustering analysis, we used the velocity field on the sea surface from 01 March
to 30 April 2000.

The spatial pattern of the multi-year mean surface circulation (figure 1) features the pro-
nounced Tsushima Warm Current (TWC) (Chang et al. 2016), flowing through the Ko-
rea/Tsushima Strait to the JES. Its shore branch (the Neashore branch of the TWC) flows
through the strait’s eastern part and extends along the eastern part of the JES. The cur-
rent outflows partially through the Tsugaru Strait, another part branches near 44N to the
north-western part of the JES, while the rest of the current follows to the north and exits
through the Soya Strait. The western branch of the TCW inflows through the strait’s western
part, and then splits into the East Korea Warm Current (EKWC) and Offshore Branch of the
TWC. The EKWC generates a mesoscale anticyclonic eddy.
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Figure 2. Time-averaged (over March 2000) surface velocity field (arrows in both panels) from the model. (a) Relative
vorticity (ξ) (shading) and (b) velocity divergence (∇R·V , where V = 〈U(R, t)〉) (shading) (both normalised by the
Coriolis parameter f). Tracer deployment sites are marked by letters (see explanation in the text). Purple points denote
the centres of the mesoscale eddies. (Colour online).

2.1. Characteristics of the deterministic velocity component

For further analysis of the tracer evolution and clustering in combined deterministic/random
velocity field, we chose a subdomain of JES, which is indicated by a red square in figure
1. The subdomain is characterised by strong mesoscale activity throughout the year, thus,
demonstrating highly nonstationary flow patterns, which induce complex tracer transport.
Since one of our goals is to compare tracer clustering scenarios for stationary and nonstationary
deterministic velocity components, first, we assess the characteristics of the averaged over
March 2000 velocity field: in figure 2 arrows represent the velocity field, and colour-coded are
both relative vorticity (figure 2(a)) normalised by the Coriolis parameter, f , and 2D velocity
divergence ∇R· 〈U(R, t)〉 (figure 2(b)).

The averaged velocity field features many cyclonic and anticyclonic coherent eddy-like struc-
tures (see the relative vorticity in figure 2(a)) with strong horizontal shears. Characteristic
length scale of the eddies (∼ 40 km), which is 2-2.5 times the local first baroclinic Rossby ra-
dius, allows us to categorise these structures as mesoscale ones. The 2D surface velocity attests
that the eddies are associated with zones of significant surface divergence (convergence).

The divergence (figure 2(b)) reaches its extreme values mostly along the jets and at periphery
of the eddies. At the periphery of cyclonic eddies ∇R· 〈U(R, t)〉 < 0 (cyclone C), while for
the anticyclone peripheries this is on the opposite∇R· 〈U(R, t)〉 > 0 (anticyclone A1). At the
centres of cyclones/anticyclones, the absolute value of divergence is noticeably smaller, and
the divergence is predominantly positive/negative.

Since the velocity field is nonstationary (taken with the hourly data and interpolated in
time), both divergence and vorticity significantly deviate from their means. We consider full
time dependence of the mesoscale field from 01 March to 30 April of 2000. Instantaneous
snapshots of the velocity field with the overlayed vorticity, normalised by f (figure 3) illustrate
that the currents have weakened during this time interval. Certain eddy structures (anticyclone
A2 and smaller eddies AAC) are absent from the instantaneous field but present in the mean
field. Cyclone C and anticyclone A1, on the other hand, persist but are significantly deformed.
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Figure 3. Instantaneous velocity snapshots overlayed with vorticity (ξ) normalised by the Coriolis parameter f (colour-
coded) at depth level 50 m in year 2000: a) 1 March, b) 5 March, c) 20 March and d) 8 April. (Colour online).

The corresponding divergence field (figure 4), also normalised by f , is significantly spa-
tially inhomogeneous. The largest gradients of the divergence are observed near the regions,
where eddies interact with the large-scale flow. Particularly, we observe that during several
days divergence at the periphery of cyclone C alters its sign; after that the jet weakens, and
the absolute value of divergence decreases. Another example shows how divergence at the
anticyclone A2 centre noticeably subsides in only a few days. These big changes in the diver-
gence and vorticity fields influence tracer advection and clustering rates and will be addressed
further.

3. Random velocity field as a model for submesoscale motions

The submesoscale component is assumed to be represented by a random velocity field, which
is statistically homogeneous in space and stationary in time, and consists of solenoidal (non-
divergent) and potential (divergent) components. We also assume that these components have
Gaussian PDFs, and are statistically isotropic in space and δ-correlated in time. Then, the
space-time correlation tensor (Klyatskin 1994, 2015) for spatial shift R′ and time lag η is

Bj
αβ(R′, η) = 〈U jα(R, t)U jβ(R+R′, t+ η)〉 =

∫
dkEjαβ(k, η)eik·R′

, (3)

where indices α and β represent x and y, index j stands for p (potential) and s (solenoidal),
and indicates different tensors; k = (kx, ky) is the 2D wavevector, k = |k|.
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Figure 4. The same as in figure 3, but with colour-coded divergence ∇R· 〈U(R, t)〉 normalised by the Coriolis parameter
(f). (Colour online).

The following spectral densities are implemented

Epαβ(k, η) = Ep(k, η)
kαkβ
k2

, Esαβ(k, η) = Es(k, η)

(
δαβ −

kαkβ
k2

)
, (4)

where δαβ is the Kroeneker delta. Single-point correlations define the velocity variance σ2
U ,

such that

σ2
U = Bαα(0, 0) =

∫
dkE(k, 0), (5a)

Bj
αβ(0, 0) = 〈U jα(R, t)U jβ(R, t)〉 = 1

2σ
2
Uδαβ . (5b)

3.1. Numerical implementation of the random velocity field

A spectral representation of the velocity field (Roberts and Teubner 1995, Zirbel and Cinlar
1997, Koshel and Alexandrova 1999, Klyatskin and Koshel 2017) is given by

Upβ(R, t) = σU

∫
dk
(
a(k, t) + ib(k, t)

)kβ
k

exp(ik·R), (6a)

U sx(R, t) = σU

∫
dk
(
a(k, t) + ib(k, t)

)ky
k

exp(ik·R), (6b)

U sy (R, t) = − σU
∫

dk
(
a(k, t) + ib(k, t)

)kx
k

exp(ik·R), (6c)
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Figure 5. A realisation of the random velocity field; shown on a smaller subdomain, for parameters σU = 0.1, l = 0.08,
and γ = 0.5. Colour-coded is the length of the random velocity vector. (Colour online).

where σU controls the intensity; index β stands for either x or y; a(k, t) and b(k, t) are
Gaussian, random, δ-correlated in time, spectral coefficients to satisfy

〈a(k, t)〉 = 〈b(k, t)〉 =
〈
a(k, t)b(k′, t′)

〉
= 0, (7a)〈

a(k, t)a(k′, t′)
〉

=
〈
b(k, t)b(k′, t′)

〉
= E(k)δ(k − k′)δ(t− t′) . (7b)

The inverse Fourier transform of a realisation yields random velocity field with the correlation
tensor (3). The implemented spectral density with a prescribed correlation radius l is

E(k; l) =
1

2π

l4

4
k2 exp

(
−1

2
k2 l2

)
. (8)

In the physical space, the random velocity field is generated on the uniform grid 2048×2048.
figure 5 illustrates one random velocity realisation with equal relative contributions of the
potential and rotational components (γ = 0.5).
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3.2. Lagrangian approach for solving the advection equation

The governing equation (1) is solved using the Lagrangian representation

dR(t)

dt
= U(R(t), t), R(0) = ξ, (9a)

dρ

dt
=∇R·U(R(t), t)ρ(t), ρ(0) = ρ0(ξ) . (9b)

The tracer initial distribution is given by a set of particles with positions ξi, (1 ≤ i ≤
N). The tracer patch size is chosen to encompass eddies in the deterministic flow. Each
particle trajectory, together with particle tracer density, is followed by solving the system
of characteristic equations (9) as a set of stochastic ODEs, by using the standard Euler-̂Ito
scheme (Kloeden and Platen 1992, Koshel and Alexandrova 1999). The Eulerian density can
be approximated by coarse graining over the particles.

3.3. Statistical topography of random fields

To analyse clustering properties of the numerical solutions, we resort to the statistical topog-
raphy methodology (Isichenko 1992, Klyatskin 2003) and find the key integral characteristics.
The method involves calculating effective diffusion coefficients for the potential (Dp) and
solenoidal (Ds) velocity components:

Dp =

∫ ∞
0

dη

∫
dk k2Ep(k, η)

=

∫ ∞
0

dη
〈(
∇R·U(R, t+ η)

) (
∇R·U(R, t)

)〉
= γ2D0 , (10a)

Ds =

∫ ∞
0

dη

∫
dkk2Es(k, η)

=
1

2

∫ ∞
0

dη
〈(
∇×U(R, t+ η)

)
·
(
∇×U(R, t)

)〉
= (1− γ)2D0 , (10b)

D0 =
σ2
U

l2
t0 , (10c)

where D0 depends on the free parameters σU and l, and on the dimensional time scale t0
chosen to be equal to the numerical discretisation time step. The diffusion coefficients are
associated with the effective correlation tensor and its second derivatives

Beff
kl (r) =

∫ ∞
0

dτ Bkl(r, τ), Beff
kl (0) = D0δkl,

∂

∂ri
Beff
kl (0) = 0, (11a)

− 8
∂2

∂ri∂rj
Beff
kl (0) = Ds

(
2δklδij − δkiδlj − δkjδli

)
+Dp

(
2δklδij + δkiδlj + δkjδli

)
. (11b)

Statistical topography characteristics are defined through the indicator function

ϕ(R, t; ρ′) = δ(ρ(R, t)− ρ′) , (12)

which filters out values of the density ρ(R, t) different from a prescribed value ρ′, by using the
Dirac δ-function. The total area of the regions, where ρ exceeds some threshold ρ̄, is referred
to as the cluster area. The total mass of the floating tracer within the cluster area is referred
to as the cluster mass. Then, the area occupied by the clustered tracer and the corresponding
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mass are found as

S(t; ρ̄) =

∫
dR θ

(
ρ(R, t)− ρ̄

)
=

∫
dR

∫ ∞
ρ̄

dρ′ ϕ(R, t; ρ′), (13a)

M(t; ρ̄) =

∫
dR ρ(R, t) θ

(
ρ(R, t)− ρ̄

)
=

∫
dR

∫ ∞
ρ̄

dρ′ ρ′ ϕ(R, t; ρ′) , (13b)

where θ(·) is the Heaviside (step) function and ρ̄ is a given density threshold value.
The exponential clustering of tracer with the net mass M0 is, then, defined as both limits

lim
t→∞

S(t; ρ̄) → 0 , (14a)

lim
t→∞

M(t; ρ̄) →M0 (14b)

are simultaneously satisfied for any threshold ρ̄.
It is instrumental to write down established asymptotics for the purely divergent case, when

the limits are satisfied, signifying that tracer clustering occurs with probability one (Klyatskin
1994, 2015). Ensemble averaging over many realizations of the random velocity field yields

〈S(t; ρ̄)〉 =

∫
dR

∫ ∞
ρ̄

dρ′ P (R, t; ρ′) , (15a)

〈M(t; ρ̄)〉 =

∫
dR

∫ ∞
ρ̄

dρ′ ρ′ P (R, t; ρ′) , (15b)

written through the one-point PDF

P (R, t; ρ) =
〈
δ
(
ρ(R, t)− ρ

)〉
. (16)

Following Klyatskin (1994, 2015), one can write down expressions for the ensemble-averaged
cluster area and mass

〈shom(t, ρ̄)〉 = Pr

(
ln(ρ0 e−D

pt/ρ̄)√
2Dpt

)
= P{ρ (R, t) > ρ̄} ≈

√
ρ0

πρ̄Dpt
exp
(
−1

4D
pt
)
, (17a)

〈mhom(t, ρ̄)〉 = Pr

(
ln(ρ0 eD

pt/ρ̄)√
2Dpt

)
, (17b)

〈mhom(t, ρ̄)〉
ρ0

≈ 1−
√

ρ0

πρ̄Dpt
exp
(
−1

4D
pt
)
, (17c)

where ρ0 is the initial density, which we choose equal to 1. These estimates frame the maximal
rates of clustering achieved in purely divergent flows; they will be used to benchmark the other
solutions. It is convenient to define the diffusion time

τ = Dpt = t/τp, τp = 1/Dp, (18)

with the diffusion time scale τp.
In the numerical simulations we define the cluster mass to be proportional to the number of

particles with the density exceeding the given threshold, whereas the cluster area is the sum of
all the areas of these particles, each of which is defined as mp/ρpi (t), where mp is the constant
mass of a particle (prescribed and the same for each particle) and ρpi (t) is the density of i-th
particle. The Eulerian tracer density is obtained by averaging information on the particles over
the grid cell. All the integral characteristics are calculated without averaging. Moreover, since
computing trajectories for millions of particles is expensive, the tracer evolution is assessed
only in subdomain designated in figure 1 and containing qualitatively different flow regimes.
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4. Clustering constrained by the mesoscale velocity field

Our main goal is to analyse the tracer evolution and clustering rates, when constrained by
nonstationary deterministic velocity fields. For the stationary and nonstationary cases of the
deterministic mesoscale field, we formulated the following 4 experiments aiming to clarify the
range of possible behaviours:

(i) EXP1 — only the mesoscale field without a submesoscale (random) one;
(ii) EXP2 — plus the purely solenoidal random velocity field (γ = 0);
(iii) EXP3 — plus the purely divergent random velocity field (γ = 1);
(iv) EXP4 — plus the mixed random velocity field (γ = 0.5).

The numerical implementation involves interpolating the deterministic velocity component
onto 2048× 2048 grid, where the random velocity field is defined. The dimensional units are
the grid size 250 m, time step 84 s, submesoscale (random) velocity scale 3 m s−1 with its
dimensionless standard deviation σU = 0.1 and correlation radius l = 2km, all chosen so that
the Rossby number is close to one. The time intervals with the saved deterministic velocity
data are one hour (with linear interpolation in between).

Before plotting the density distributions, we first average them as follows. In each grid cell,
an averaged density is plotted, i.e. the net mass of all Lagrangian particles located in the cell
m(i, j) divided by the area taken by the particles. The area is proportional to

∑n
q=1 1/ρq,

where n is the number of particles in the cell, ρq is the Lagrangian density of a particle
accumulated along its trajectory.

4.1. Stationary mesoscale field

To establish reference solutions, we first consider a stationary deterministic velocity field
(Stepanov et al. 2020) with the time averaging over March 2000. The initial tracer distribution
(dimensionless time t = 0) is marked by a grey square in the following figures; and their upper
panels correspond to ∼20 days, the bottom ones correspond to (∼40 days).

When velocity field consists only of the deterministic component (EXP1), the tracer is
simply advected around. The tracer distribution initially remains qualitatively the same (figure
6). If the tracer is initially enclosed inside an eddy (cyclone C and anticyclone/cyclone pair AC
in figure 2), it remains there permanently since the eddy is stationary and tracer trajectories
move along constant pressure levels; and the tracer initialised outside the eddy regions is
advected out of the domain.

Adding the purely rotational (γ = 0 in (2)) submesoscale component insignificantly changes
the tracer pattern (figure 7) and slightly erodes tracer boundaries, in a way similar to the
effect of diffusion (Koshel et al. 2013, 2015). Exponential clustering, as the theory predicts,
does not occur. The largest density values do not exceed ρmax/ρ0 ∼ 30 (in the averaging sense
over the velocity grid cell; without averaging the value does not change from the initial one),
and they remain bounded for the integration time.

The clustering does occur when the submesoscale component is purely divergent (γ = 1),
i.e., in EXP3 (figure 8), and the tracer is clustered in narrow stripes with high density values.
Maximal density values observed are of the order ρmax/ρ0 ∼ 1012 − 1014 at time ∼20 days,
and they are as large as ρmax/ρ0 ∼ 1018 − 1021 for ∼40 days. These anomalous values attest
to the exponential nature of clustering.

Clustering also manifests itself with mixed submesoscale component (γ = 0.5), i.e., in EXP4
(figure 9), but the clustering rates and maximum density values are orders of magnitude
smaller than in EXP3. Maximum density values are 105− 106 for ∼20 days and 108− 109 for
∼40 days.

To present further evidence of the exponential nature of clustering, we explore statistical
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Figure 6. Tracer density evolution of cyclone C and pair AC in EXP1 after: a) 20 days and b) 40 days. (Colour online).

topography characteristics: clustering area (s) and mass (m). In the exponential clustering
process, the clustering area tends to zero, whilst the clustering mass tends to the net tracer
mass. All the tracer is clustered in the infinite time limit, but only finite times are at our
disposal in the numerical simulations.

The clustering rates for the divergent and mixed submesoscale velocity cases exhibit clear
exponential tendencies (the top curves in figure 10(a) indicate the accumulated clustering
mass, the bottom curves indicate the clustering area; compare to the thick top black line
that shows the asymptotic tendency (17) for the purely divergent case without deterministic
component). Despite the fact that the purely divergent case (EXP3) yields much larger density
values, in comparison with the mixed case (EXP4), the statistical topography characteristics
demonstrate similar clustering behaviours in both cases (solid curves – EXP3; dashed curves
— EXP4 in figure 10(a,b)). Moreover, clustering rates remain largely the same for different
tracer deployment sites (blue curves correspond to the cyclonic eddy C; red curves correspond
to the anticyclone/cyclone pair AC).

Logarithmic-scale curves (figure 10(b)) illustrate impact of the mesoscale field. It is weak
on short time scale (∼ τp) and results in reduced clustering rates, which correspond to the
asymptotic diffusion coefficient 0.75Dp. Clustering mass curves (figure 10(c)) also demonstrate
reduced clustering rate on short time scales (τ ∼ 4 − 8). For EXP3 the long-term mass
accumulation rate is slower compared to the corresponding clustering area shrinkage rate but
still exhibits exponential tendencies. For EXP4 the mass accumulation is either drastically
hindered or stopped altogether at levels of total mass accumulation close to 1 (0.85-0.95). For
both EXP3 and EXP4, in terms of the non-normalised time (figure 10(d)), the clustering rate
is proportional to γ2, and the area is clustered at a reduced rate (by 75%).

As expected from the theory, the clustering rates are controlled by the divergent veloc-
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Figure 7. The same as in figure 6, but for EXP2. Advected patterns remain mostly unchanged, whilst the tracer
boundaries are eroded. (Colour online).

ity component, nevertheless, the fact, that the mixed velocity case still exhibits clustering,
although at slower rates (of order γ2, see 10(d)), is worth attention and account.

5. Clustering constrained by the nonstationary mesoscale field

Since the mesoscale eddy fields are non-stationary (McWilliams 1984, Chelton et al. 2007,
2011, Barbosa Aguiar et al. 2013, Samelson 2013, Abernathey and Haller 2018), it is important
to understand sensitivity of clustering to the unsteadiness. The clustering can be significantly
hindered because the characteristic time scales for tracer aggregation can be constrained by
the mesoscale variability time scales. Here, we do not attempt to analyse in detail the relation
between these time scales and only point out the general possibility of the above scenario.

Now, instead of considering the average mesoscale velocity field, we make use of interpolated
hourly outputs of the mesoscale model and consider the same experiments EXP1–EXP4, but
now with the time-dependent deterministic flow. Two tracer deployment sites correspond to
the anticyclonic and cyclonic eddies (marked in figure 2 as A2 and C, respectively).

When only the mesoscale velocity acts on tracer, the advection patterns for both deployment
sites (see figure 11 for the cyclone and figure 12 for the anticyclone) feature typical spiral-
like patterns characteristic of mesoscale-induced advection often observed by satellites and
drifters. In this case (EXP1), the density remains largely unchanged and varying in the range
0 ≤ ρ < 3.5 (upper panels in Figs. 11–12 correspond to ∼20 days, bottom ones correspond
to ∼40 days). Activating the submesoscale (random) component entails dynamical patterns
similar to the case of the stationary mesoscale field. Purely rotational submesoscales (EXP2)
in Figs. 11–12) induce fuzziness of the tracer boundaries, similar to the effect of diffusion,
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Figure 8. The same as in figure 6, but for EXP3 after: a) 20 days (τ = 7.915718), b) 40 days (τ = 15.831436). Tracer is
mostly clustered (high density values in red) within the regions of interest forming patterns of elongated stripes. (Colour
online).

whilst the density values remain mostly unchanged (ρ ≤ 4.4). As expected, no exponential
clustering occurs without the divergent flow component.

Purely divergent submesoscales (EXP3) induce partial tracer clustering with relatively
large density values for both deployment sites. At t = 20 days the values are ρ & 1.5× 103 in
the cyclonic eddy and ρ & 0.5×103 in the anticyclonic one. At ∼ 40 days almost all the tracer
is aggregated in patches of density larger than ρ = 10; the maximum values attain ρ & 2×103

and 1.5 × 103 for the cyclonic and anticyclonic eddies, respectively. These values are clearly
many orders of magnitude smaller than the ones obtained for the steady deterministic velocity
case, implying that the flow unsteadiness inhibits clustering. The mixed submesoscale velocity
(EXP4) induces similar patterns with partially clustered tracer. The maximum density values
(ρ ∼ 200 for the cyclonic eddy and ρ ∼ 100 for the anticyclonic one, at both reference times)
are again many orders of magnitude smaller than their counterparts in the steady deterministic
case, thus, confirming the conclusion.

Now, we again resort to the statistical topography characteristics. Only purely divergent
mesoscale component (EXP3) is considered. The statistical topography curves (figure 13)
correspond to the deployment sites with the mean patterns shown in figure 2: the cyclonic
eddy C, the anticyclone/anticyclone/cyclone tripole AAC, and 2 isolated anticyclones A1 and
A2.

Logarithmic-scale clustering area rates can be sorted into 4 distinct regimes (i)–(iv), for all
the initial deployment sites. (i) The first one corresponds to weak influence of the determin-
istic component at earlier times (∼ 2τp − 4τp). The clustering mass and area change almost
exponentially, similar to the theoretical curves (17), i.e., for Dp = 1/τp ≈ D0. (ii) At later
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Figure 9. The same as in figure 6, but for EXP4 after: a) 20 days (τ = 1.978930), b) 40 days (τ = 3.957860). Significant
part of the tracer is clustered (high density values in red), however the rate of clustering is much slower than in the
purely divergent case. (Colour online).

times (∼ 5 − 10τp), the clustering rates drastically decrease, so that the tracer density stops
increasing. We hypothesise that this behaviour is caused by the fast advection induced by the
nonstationary deterministic component. The exact timing, when this regime starts depends
one the details of the deterministic field structure. (iii) At intermediate times (from ∼ 6−12τp
to ∼ 14−22τp), there is again exponential clustering but at reduced rates, compared to regime
(i), where the clustering rates are determined by the diffusion coefficient of the divergent flow
component. Compared with the effective diffusion coefficients (figure 13(b)), the exponential
clustering occurs at reduced rates in the range ∼ 0.35Dp for A1, and ∼ 0.8Dp for A2. The
clustering rates are, similar to the previous regime and sensitive to the deployment sites. (iv)
Further in time, the clustering rates increase again, due to the fact that there is less tracer left
in the area of interest (figure 13(a,d)), and the tracer is now largely localised in stagnation
zones, where it is less perturbed by the underlying nonstationarity.

The clustering mass behaves differently: at any time its rates are slower than the area
shrinkage rates; its initial fast-clustering interval is noticeably shorter (up to τ ∼ 4 − 5τp).
Further in time, mass accumulation stops, except for case C. Another exponential regime takes
place over times from τ ∼ 6τp to τ ∼ 10τp, and with significantly reduced rates. After τ ∼ 10τp,
the clustering mass starts decreasing, nevertheless, large portion of the tracer (∼ 0.7 − 0.9
from the initial mass) is already clustered and remains so for long time.

6. Discussion and conclusions

In this paper we quantified floating-tracer clustering phenomena constrained by a nonsta-
tionary mesoscale field featuring distinct eddies. This research is motivated by the increasing
interest in the transport of floating tracers at the ocean surface.

The flow velocity field governing the tracer evolution is considered to be a combination
of a mesoscale (deterministic) component and a submesoscale (random) one. The determin-
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Figure 10. Accumulated clustering mass and area exceeding the threshold ρ̄ = 2 for EXP3 (solid curves) and EXP4
(dashed curves) velocity cases. The blue curves correspond to the initial deployment region encompassing the cyclonic
eddy C, the red ones correspond to the anticyclone/cyclone pair AC; τ is the time scaled by diffusion time (18).
a) Accumulated clustering mass (top curves) and area (bottom curves). The thick black curves show the theoretical
limit for the purely divergent velocity field without deterministic component, for Dp = 1/τp = γ2D0. The dashed black
line corresponds to Dp = 1/τp = 0.75γ2D0. Exponential clustering rates are deduced from the shapes of the curves. b)
Accumulated clustering area in the logarithmic scale for the same time scaling as in a). c) Accumulated clustering mass
((m0 − m(τ))/m0) normalised by m0. The time scaling is as in a). The thick black curves show the theoretical limit
for the purely divergent velocity field without a deterministic component for Dp = 1/τp = γ2D0. The dashed black line
corresponds to the Dp = 1/τp = 0.75γ2D0, the dash-dot line corresponds the Dp = 1/τp = 0.15γ2D0. d) Accumulated
clustering area in the logarithmic scale depending on the physical time t (in days). The thick black curves show the
theoretical limit (16) for the purely divergent velocity field without a deterministic component for Dp = γ2D0. The
dashed black line corresponds to the Dp = 0.75γ2D0. (Colour online).

istic component, which is an output of a realistic eddy-resolving circulation model for the
Japan/East Sea, features regions of intense mesoscale variability. Then, a kinematic random
divergent velocity field is added to account for submesoscale motions. Statistical topography
characteristics are used to quantify the ensuing clustering in the combined velocity field.

Comparison of the clustering processes in the steady and unsteady mesoscale velocity fields
reveals that at earlier times (∼ 2τp, where τp is the specific diffusion time of the random veloc-
ity, there is ongoing clustering. However, on longer times (∼ 4− 7τp) the steady deterministic
velocity still yields the exponential clustering, whereas the unsteady mesoscale velocity signifi-
cantly inhibits the clustering and eventually caps it. Moreover, at the later times the unsteady
mesoscale velocity reverses the clustering, resulting in negative clustering rates (we see this in
the regions of energetic fluctuations after ∼ 20τp). The statistical topography curves, being
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Figure 11. Tracer density evolution (density is colour-coded) for the C (cyclonic eddy) region from figure 2 for the
nonstationary deterministic velocity case, otherwise, as in EXP1–EXP4. Upper panel: ∼20 days (τ = 1.978930 at
γ = 0.5 and τ = 7.915718 at γ = 1.0); bottom panel: ∼40 days (τ = 3.957860 at γ = 0.5 and τ = 15.831436 at γ = 1.0).
Top row corresponds to ∼ 20 days, bottom row corresponds to ∼ 40 days. (Colour online).

Figure 12. The same as in figure 11, but for the A1 (anticyclonic eddy) region. (Colour online).

integral proxies for clustering, are inconclusive in determining the underlying dynamics that
engenders this salient behaviour. The reason for that may be that the mesoscale dynamics
is too intense in the regions of interest, and, thus, the tracer is noticeably stirred by chaotic
advection. In other words, the characteristic times of clustering are much longer than those of
the mesoscale eddies. The intricacy of the interplay between clustering and chaotic advection
induced by the underlying mesoscale flow is an interesting issue that can be addressed in more
detail by employing simplified vortex models with nonstationary dynamics (e.g., distributed
elliptic or ellipsoid vortices (Zhmur et al. 2011, Koshel et al. 2013, 2015, Koshel and Ryzhov
2016, 2017, Ryzhov 2017).

It is worth mentioning that the full deterministic velocity field governs also processes at
faster time scales ( 7 days), particularly the inertial oscillations, along with meso- and large
scale processes. These faster oscillations were filtered out before clustering analyses. However,
a few experiments were carried out (not presented) for the full deterministic velocity field
and showed very little difference. This is caused by the dominant influence of the mesoscale
processes on the clustering dynamics as compared to the inertial oscillations. However, this
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Figure 13. Clustering mass and area for EXP3 when the threshold ρ̄ = 2. Different colours correspond to the tracer
deployment sites: isolated anticyclones A1, A2; cyclone C, and the anticyclone/anticyclone/cyclone tripole AAC; τ =
t/τp, and τp = 2.526days. a) Mass (top curves) and area (bottom curves). The thick black curve shows the theoretical
limit for the purely divergent velocity field without deterministic component (16), (17). The rates of clustering are
inhibited by stirring due to the unsteadiness of the deterministic mesoscale component. The AAC dynamical pattern,
which favours extremely fast stirring, almost completely inhibits clustering, until the particles are advected out of the
domain. b) Only clustering area in the logarithmic scale. The dashed lines show the theoretical limit for the purely
divergent velocity field without deterministic component (17) for Dp = 1/τP : A1 - 0.35D0; AAC - 0.4D0; C- 0.45D0;
A2 – 0.8D0. c) Only normalised clustering mass (m0 −m(τ))/m0 in the logarithmic scale. The dashed lines show the
theoretical limit for the purely divergent velocity field without deterministic component (16) for Dp = 1/τP ≈: A1,A2 –
0.35D0; AAC - 0.06D0; C- 0.57D0 and 0.1D0. (Colour online).

may be attributed to our specific choice of parameters for the random velocity field, while
the clustering theory may also be pertinent to inertial oscillations in the ocean and will be
addressed elsewhere.

A detailed study of the clustering sensitivities to parameters γ, σU and l (in the vein of
Berloff and McWilliams 2003) is needed for extending the approach. This in turn relates to
a more pressing problem of establishing relative contributions of mesoscale and submesoscale
flows as the main factors for tracer transport in the ocean (McWilliams 2016). Our approach
may prove useful in addressing this problem with kinematically modelled submesoscales, as a
cheaper alternative to expensive submesoscale-resolving simulations, which are unfeasible for
many practical purposes.
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