MaxSAT Evaluation 2020 - Benchmark:
Identifying Maximum Probability Minimal Cut Sets
in Fault Trees

Martin Barrere and Chris Hankin
Institute for Security Science and Technology, Imperial College London, UK
{m.barrere, c.hankin}@imperial.ac.uk

Abstract—This paper presents a MaxSAT benchmark focused
on the identification of Maximum Probability Minimal Cut Sets
(MPMCSs) in fault trees. We address the MPMCS problem by
transforming the input fault tree into a weighted logical formula
that is then used to build and solve a Weighted Partial MaxSAT
problem. The benchmark includes 80 cases with fault trees of
different size and composition as well as the optimal cost and
solution for each case.

Index Terms—MaxSAT, Benchmark, Fault trees, Fault Tree
Analysis, Reliability, Cyber-Physical Security, Dependability.

I. PROBLEM OVERVIEW

Fault Tree Analysis (FTA) is an analytical tool aimed at
modelling and evaluating how complex systems may fail.
FTA is widely used as a risk assessment tool in safety
and reliability engineering for a broad range of industries
including aerospace, power plants, nuclear plants, and others
high-hazard fields [1]. Essentially, a fault tree is a directed
acyclic graph (DAG) which involves a set of basic events (e.g.
component failures) that are combined using logic operators
(e.g. AND and OR gates) to model how these events may lead
to an undesired state of the system normally represented at the
root of the tree (top level event).

Our work is focused on a novel measure for FTA in the
form of a hybrid analysis technique that involves quantitative
and qualitative aspects of fault trees. From a qualitative
perspective, we focus on Minimal Cut Sets (MCS). An MCS
is a minimal combination of events that together cause the
top level event. As such, MCSs are fundamental for structural
analysis. The problem is that, in large scenarios, computing all
MCSs might be very expensive and there might be hundreds
of MCSs, which makes it hard to handle and prioritise which
MCSs should be attended first. In that context, the goal of
this work is to identify the MCS with maximum probability.
We call this problem the MPMCS. This is an NP-complete
problem and we use a MaxSAT-based approach to address it.

II. SIMPLE EXAMPLE

The fault tree shown in Fig. 1 illustrates the different combi-
nations of events that may lead to the failure of an hypothetical
Fire Protection System (FPS) based on [2]. The FPS can

This work has been supported by the European Union’s Horizon 2020
research and innovation programme under grant No 739551 (KIOS CoE).
To appear in Proceedings of the MaxSAT Evaluation 2020 (MSE’20),
https://maxsat-evaluations.github.io/2020/.

fail if either the fire detection system or the fire suppression
mechanism fails. In turn, the detection system can fail if
both sensors fail simultaneously (events x; and x3), while the
suppression mechanism may fail if there is no water (x3), the
sprinkler nozzles are blocked (z4), or the triggering system
does not work. The latter can fail if neither of its operation
modes (automatic (x5) or remotely operated) works properly.
The remote control can fail if the communications channel
fails (zg) or the channel is not available due to a cyber attack,
e.g. DDoS attack (x7). Each basic event has an associated
value that indicates its probability of occurrence p(zx;).

Failure of Fire

! (Top event t
Protection System P)

\ % \
Fire detection Fire suppression
system fails system fails

A A

’% AND ‘ OR l

P ~_ x3,0.001— A *_ - T
/ Failure of smoke ™ 7~ Nowaterto Triggering (/‘Sprinkler nozzles™

“_detector sensor_/ }a\sprinklersystem,,,r' system fails . blocked)
Ixy02] —— A x4, 0.002

/~ Failure of heat ™ AND
‘\gjetector sensor_/ - Vf’ 4—‘
x2, 0.1 X5,0.05 " Automatic Remote
\.mechanism fails / control fails

x6,0.1 L[~ $ ﬁ x7, 0.05
/ Communications™ <

; (" DDoS attack)
failure . /

Fig. 1. Fault tree of a cyber-physical fire protection system (simplified)

A fault tree F' can be represented as a Boolean equation
f(t) that expresses the different ways in which the top event
t can be satisfied [3]. In our example, f(t) is as follows:

f(t) = (171 A IQ) vV (Ig \ T4 vV ($5 A (1176 V SC7)))
The objective is to find the minimal set of logical variables
that makes the equation f(¢) true and whose joint probability

is maximal among all minimal sets. In our example, the
MPMCS is {z1, 22} with a joint probability of 0.02.

III. MAXSAT FORMULATION STRATEGY

Given a fault tree and its logical formulation f(t), we carry
out a series of steps to compute the MPMCS as follows.

1. Logical transformation. Since we are interested in
minimising the number of satisfied clauses, which is opposed
to what MaxSAT does (maximisation), we flip all logic gates
but keep all events in their positive form. In our example, we
obtain: g(t) = (x1 V x2) A (x3 A x4 A (25 V (T6 A 27))).

https://maxsat-evaluations.github.io/2020/

Then, the objective is to satisfy —g(t) where the falsified
variables will indicate the minimum set of events that must
simultaneously occur to trigger the top level event. A more
detailed explanation of this transformation can be found in
[4]. We then use the Tseitin transformation to produce in
polynomial time an equisatisfiable CNF formula [5].

2. MaxSAT weights. Due to the fact that MaxSAT is addi-
tive in nature and the MPMCS problem involves the multipli-
cation of decision variables, we transform the probabilities into
a negative log-space so the multiplication becomes a sum. In
addition, many SAT solvers only support integer weights so we
perform a second transformation by right shifting (multiplying
by 10) every value until the smallest value is covered with an
acceptable level of precision. For example, 0.001 and 0.00007
would become 100 and 7 (right shift 5 times). Additional
variables introduced by the Tseitin transformation have weight
0. We then specify the problem as a Partial Weighted MaxSAT
instance by assigning the transformed probability values as a
penalty score for each decision variable.

3. Parallel SAT-solving architecture. Since different SAT
solvers normally use different resolution techniques, some of
them are very good at some instances and not that good at
others. To address this issue, we run multiple SAT-solvers
in parallel and pick the solution of the solver that finishes
first. We have experimentally observed that the combination of
different solvers provides good results in terms of performance
and scalability. Once the solution has been found, we translate
back the transformed values into their stochastic domain and
output the MCS with maximum probability.

I'V. FAULT TREE GENERATION

The benchmark presented in this paper relies on our open
source tool MPMCS4FTA [6]. We have used MPMCS4FTA to
generate and analyse synthetic pseudo-random fault trees of
different size and composition. We use AND/OR graphs as the
underlying structure to represent fault trees. The benchmark
presented in [7] also considers AND/OR graphs as a means to
represent operational dependencies between components in in-
dustrial control systems [8]. However, the instances presented
in this paper differ in that: 1) they are restricted to directed
acyclic graphs (DAGs), 2) only the basic events represented
at the leaves of the fault tree involve a probability of failure,
and 3) leaves can have more than one parent in order to relax
the definition of strict logical trees.

We control the size and composition of a random
fault tree of size n according to a configuration R =
(Rar, Ranp,Ror). Rar € [0,1] indicates the proportion
of atomic nodes (basic events) with respect to size n (e.g. 0.2
means 20%) whereas Ranp and Rog indicate the proportion
of AND and OR nodes respectively. To create a fault tree
of size n, we first create two lists: L = {l1,...,l»} and
A ={a1,...,as}. L is a random sequence of AND and OR
nodes with the specified proportions for each operator where
m =nx*(Ranp + Ror). A is a list of atomic nodes where
s =nx* Ryr, thus n = m + s. In addition, each atomic node
has a random probability of failure p(a;) € [0, 1].

To ensure connectivity, we first create the root node ¢ and
connect [to t (I; — t). Then, for each logic node I; in
the sequence L, we randomly choose k nodes [; ahead (thus
j > 1) and create k edges (I; — [;) in the tree. When the
remaining nodes in L are not enough to cover k nodes, we
use random atomic nodes from A. At this point, we also make
sure that [; points to at least one previous node in the sequence
L. If that is not the case, we choose a random node [;, (with
h < 1) and create an edge (I; — [j). Once the sequence L
has been processed, we traverse the list A and connect each
atomic node a; as follows. First, we draw a random value £’
between 1 and k. Then, we add random edges (a; — [;) from
a; to logic nodes [; until we cover k' connections.

V. BENCHMARK DESCRIPTION

Out dataset includes 80 cases in total, and can be obtained
at [6]. It contains fault trees with four different sizes: 2500,
5000, 7500, and 10000 nodes (20 cases each). For each tree
size, we consider two different graph configurations, Ry =
(0.8,0.1,0.1) and Ry = (0.6,0.2,0.2), which determine the
composition of the fault trees (10 cases each). Table I shows
the identifiers of the cases within each one of these categories.

Rz = (0.6,0.2,0.2)

| #Nodes/Configurations | R; = (0.8,0.1,0.1) | |

| 2500 | 10 10 | 11 t0 20 |

| 5000 | 21 10 30 | 31 t0 40 |

| 7500 | 41 10 50 | 51 t0 60 |

| 10000 | 61 to 70 | 71 to 80 |
TABLE I

BENCHMARK CASES AND CONFIGURATIONS

Each case is specified in an individual .wenf (DIMACS-like,
weighted CNF) file named with the case id and the number
of nodes involved. The weight for hard clauses (top value)
has been set to 2.0 x 10°. The weight of each soft constraint
is an integer value that corresponds to the transformation
(right shifting) of the probability value in —log space. Tables
IT and IIT detail each case as well as the results obtained
with our tool. The field id identifies each case. gNodes and
gEdges indicate the total number of nodes and edges in the
fault tree. gAT, gAND, and gOR, indicate the approximate
composition of the graph in terms of atomic (basic events),
AND, and OR nodes. tsVars and tsClauses show the number
of variables and clauses involved in the MaxSAT formulation
after applying the Tseitin transformation. time shows the
resolution time reported by MPMCS4FTA in milliseconds.
Currently, the MaxSAT solvers used in MPMCS4FTA are
SAT4J [9] and a Python-based linear programming approach
using Gurobi [10]. size indicates the number of nodes identi-
fied in the MPMCS solution. intLogCost indicates the cost
of the solution in —log space as an integer value (right
shifted). logCost indicates the cost of the solution in —log
space. MPMCS probability indicates the joint probability of
the MPMCS. These experiments have been performed on a
MacBook Pro (16-inch, 2019), 2.4 GHz 8-core Intel Core 19,
32 GB 2666 MHz DDRA4.

BENCHMARK DESCRIPTION - CASES 1 TO 40

| id | gNodes | gEdges | gAT | gAND | gOR | tsVars | tsClauses | time | size | intLogCost | logCost | MPMCS probability |
| 1| 2500 | 7151 | 2002 | 250 | 250 | 1978 | 6258 | 618 | 1 | 246 | 246E4 | 0.999754 \
| 2 | 2500 | 7192 | 2002 | 250 | 250 | 4268 | 15026 | 850 | 447 | 464771733 | 464.771733 | 1.42239870668983E-202 |
| 3 | 2500 | 7196 | 2002 | 250 | 250 | 1207 | 3763 | 290 | 1 | 27591 | 0.027591 | 0.972787 \
| 4 | 2500 | 7140 | 2002 | 250 | 250 | 4211 | 14673 | 833 | 1 | 238 | 238B4 | 0.999763 \
| 5 | 2500 | 7107 | 2002 | 250 | 250 | 3907 | 13325 | 81 | 1 | 7879 | 0.007879 | 0.992153 \
| 6 | 2500 | 7202 | 2002 | 250 | 250 | 3410 | 11350 | 749 | 70 | 81474531 | 81474531 | 4.147681160335815E-36 |
| 7 | 2500 | 7126 | 2002 | 250 | 250 | 3304 | 10922 | 711 | 1 | 315 | 3.A5B4 | 0.999685 \
| 8 | 2500 | 7181 | 2002 | 250 | 250 | 3752 | 12713 | 826 | 1 | 2576 | 0.002576 | 0.997428 \
| 9 | 2500 | 7157 | 2002 | 250 | 250 | 3011 | 9847 | 625 | 1 | 4301 | 0.004301 | 0.995709 \
| 10 | 2500 | 7156 | 2002 | 250 | 250 | 642 | 1982 | 211 | 19 | 12423488 | 12423488 | 4.0231156723921624E-6 |
| 11| 2500 | 6831 | 1502 | 500 | 500 | 3873 | 14170 | 912 | 1 | 28842 | 0.028842 | 0.971571 \
| 12| 2500 | 6782 | 1502 | 500 | 500 | 2377 | 7941 | 550 | 1 | 32680 | 0.03268 | 0.96785 \
| 13| 2500 | 6814 | 1502 | 500 | 500 | 3216 | 11235 | 700 | 13 | 10769787 | 10.769787 | 2.1025796252653052E-5 |
| 14| 2500 | 6700 | 1502 | 500 | 500 | 3268 | 11376 | 728 | 197 | 207945092 | 207.945092 | 4.9088521396478804E-91 |
| 15| 2500 | 6897 | 1502 | 500 | 500 | 3063 | 10555 | 817 | 1 | 3262 | 0.003262 | 0.996744 \
| 16 | 2500 | 6849 | 1502 | 500 | 500 | 2044 | 6765 | 470 | 1 | 191116 | 0.191116 | 0.826037 \
| 17 | 2500 | 6787 | 1502 | 500 | 500 | 3158 | 10955 | 723 | 1 | 284520 | 0.28452 | 0.752376 \
| 18 | 2500 | 6872 | 1502 | 500 | 500 | 3433 | 12147 | 773 | 139 | 130484455 | 130.484455 | 2.1453798325228181E-57 |
| 19| 2500 | 6821 | 1502 | 500 | 500 | 2506 | 8439 | 534 | 17 | 9662887 | 9.662887 | 6.36019885647539E-5 |
| 20 | 2500 | 6831 | 1502 | 500 | 500 | 3848 | 14095 | 81 | 1 | 3507 | 0.003507 | 0.996501 \
21	5000	14324	4002	500	500	4149	13224	932	229	217397271	217.397271	3.8565352927569054E-95
22	5000	14313	4002	500	500	8532	29961	925	614	641968767	641.968767	1.5912873405576694E-279
23	5000	14329	4002	500	500	6971	23338	842	240	251915559	251.915559	3.9351584673463555E-110
24	5000	14361	4002	500	500	8020	27645	843	1	793	7.93E4	0.999209 \
25	5000	14370	4002	500	500	8965	32190	843	1	1858	0.001858	0.998144 \
26	5000	14317	4002	500	500	5443	17581	827	1	3615	0.003615	0.996391 \
27	5000	14407	4002	500	500	8113	28023	842	277	253971185	253.971185	5.035082961027143E-111
28	5000	14365	4002	500	S00	8952	32153	837	1041	994658460	994.65846	0.0 \
29	5000	14321	4002	500	500	8859	31477	833	379	378308687	378.308687	5.051735441001231E-165
30	5000	14316	4002	500	500	7948	27315	80	1	970	9.7E4	0.999032 \
31	5000	13607	3002	1000	1000	6384	22218	938	1	2530	0.00253	0.997474 \
32	5000	13730	3002	1000	1000	7330	26390	863	65	63984958	63.984958	1.62844121698006E-28
33	5000	13687	3002	1000	1000	3181	10354	683	1	25289	0.025289	0.975029 \
34	5000	13600	3002	1000	1000	6293	21870	834	407	424495269	424.495269	4.413071223454673E-185
35	5000	13712	3002	1000	1000	7361	26650	895	179	171277203	171.277203	4.1251154050451916E-75
36	5000	13709	3002	1000	1000	6231	21647	831	22	19249301	19.249301	4.366753474609794E-9
37	5000	13612	3002	1000	1000	6202	21523	931	257	273826234	273.826234	1.2035873310274229E-119
38	5000	13664	3002	1000	1000	4482	14952	824	1	4317	0.004317	0.995693 \
39	5000	13631	3002	1000	1000	7395	26641	827	83	89562456	89.562456	1.2695246380697898E-39
40	5000	13641	3002	1000	1000	7825	28775	831	1	5974	0.005974	0.994045 \
TABLE II

BENCHMARK DESCRIPTION - CASES 41 TO 80

| id | gNodes | gEdges | gAT | gAND | gOR | tsVars | tsClauses | time | size | intLogCost | logCost | MPMCS probability |
| 41 | 7500 | 21502 | 6002 | 750 | 750 | 8871 | 28951 | 965 | I | 160 | 1.6E4 | 0.999841 \
| 42 | 7500 | 21515 | 6002 | 750 | 750 | 7191 | 23069 | 852 | I | 393 | 393E4 | 0.999607 \
| 43 | 7500 | 21497 | 6002 | 750 | 750 | 5716 | 18114 | 843 | I | 1095 | 0.001095 | 0.998906 \
44	7500	21536	6002	750	750	6476	20645	849	600	607247314	607.247314	1.8912103369207186E-264
45	7500	21472	6002	750	750	10277	34266	859	251	235979386	235.979386	3.279829621872166E-103
46	7500	21607	6002	750	750	10235	34064	849	31	27638401	27.638401	9.927826703704467E-13
47	7500	21609	6002	750	750	11377	38597	920	689	644477962	644.477962	1.2810988897753624E-280
48	7500	21397	6002	750	750	4488	14083	815	1	18442	0.018442	0.981728 \
49	7500	21410	6002	750	750	12792	44789	1031	668	672741572	672.741572	6.81228495760467E-293
50	7500	21566	6002	750	750	13253	47290	851	1	9154	0.009154	0.990888 \
51	7500	20454	4502	1500	1500	11031	39763	972	1	2151	0.002151	0.997852 \
52	7500	20450	4502	1500	1500	8927	30739	855	1	738	738E4	0.999263 \
53	7500	20616	4502	1500	1500	11843	43792	894	1	37	37E5	0.999964 \
54	7500	20530	4502	1500	1500	9961	35071	1053	502	480184105	480.184105	2.8797108920892045E-209
55	7500	20563	4502	1500	1500	9462	32930	1368	769	739302414	739.302414	8.45E-322
56	7500	20493	4502	1500	1500	9084	31398	833	I	7545	0.007545	0.992484 \
57	7500	20491	4502	1500	1500	4922	16088	817	1	104472	0.104472	0.9008 \
58	7500	20594	4502	1500	1500	5943	19507	987	267	256660486	256.660486	3.4340775952647096E-112
59	7500	20406	4502	1500	1500	9340	32356	898	158	148111431	148.111431	4.74472781242486E-65
60	7500	20445	4502	1500	1500	8882	30572	827	1	14066	0.014066	0.986033 \
61	10000	28613	8002	1000	1000	16234	56222	1087	1	1904	0.001904	0.998099 \
62	10000	28675	8002	1000	1000	14261	47804	914	197	185985480	185.98548	1.6901841317920728E-81
63	10000	28558	8002	1000	1000	13755	45717	893	1	43	43E5	0.999957 \
64	10000	28738	8002	1000	1000	13370	44343	882	1	127	127E4	0.999874 \
65	10000	28752	8002	1000	1000	15537	53105	917	643	606121928	606.121928	5.826520007473361E-264
66	10000	28803	8002	1000	1000	9981	32065	852	1	796	7.96E4	0.999205 \
67	10000	28632	8002	1000	1000	13418	44550	861	448	439405919	439.405919	1.4772121624185204E-191
68	10000	28830	8002	1000	1000	17774	63650	874	1	3047	0.003047	0.996959 \
69	10000	28717	8002	1000	1000	14505	48831	861	1	1691	0.001691	0.998311 \
70	10000	28604	8002	1000	1000	16032	55089	855	1	436	436E4	0.999564 \
71	10000	27114	6002	2000	2000	15244	55476	2286	652	652324945	652.324945	5.016628484164324E-284
72	10000	27515	6002	2000	2000	10588	36029	867	1	15974	0.015974	0.984154 \
73	10000	27411	6002	2000	2000	9596	32332	862	422	440653751	440.653751	4.240514855635819E-192
74	10000	27271	6002	2000	2000	15985	59167	873	1	2033	0.002033	0.997969 \
75	10000	27228	6002	2000	2000	13506	47651	2223	621	639112478	639.112478	2.7423451190246526E-278
76	10000	27345	6002	2000	2000	12066	41598	1253	326	307525901	307.525901	2.779537506735469E-134
77	10000	27310	6002	2000	2000	10310	34812	835	1	10970	0.01097	0.989091 \
78	10000	27306	6002	2000	2000	12092	41711	1004	228	218680041	218.680041	1.0684631282749114E-95
79	10000	27315	6002	2000	2000	14069	50130	848	1	1447	0001447	0.998555 \
80	10000	27375	6002	2000	2000	14851	53699	859	1	180	18E4	0.999821 \
TABLE III

[1]

[2]

[3]

[7]

[8]

[9]
(10]

REFERENCES

E. Ruijters and M. Stoelinga, “Fault tree analysis: A survey of the state-
of-the-art in modeling, analysis and tools,” Computer Science Review,
vol. 15-16, pp. 29 — 62, 2015.

S. Kabir, “An overview of Fault Tree Analysis and its application in
model based dependability analysis,” Expert Systems with Applications,
vol. 77, pp. 114 — 135, 2017.

W. Vesely, M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick III,
and J. Railsback, “Fault Tree Handbook with Aerospace Applications,”
Office of Safety and Mission Assurance, NASA Headquarters, US, 2002.
M. Barrére and C. Hankin, “Fault Tree Analysis: Identifying Maximum
Probability Minimal Cut Sets with MaxSAT,” https://arxiv.org/abs/2005.
03003, May 2020.

G. S. Tseitin, “On the Complexity of Derivation in Propositional
Calculus,” in Studies in Constructive Mathematics and Mathematical
Logic, Part 11, A. Slisenko, Ed., 1970, pp. 234-259.

M. Barrere, “MPMCS4FTA - Maximum Probability Minimal Cut Sets
for Fault Tree Analysis,” https://github.com/mbarrere/mpmcs4fta, March
2020.

M. Barreére, C. Hankin, N. Nicolaou, D. Eliades, and T. Parisini,
“MaxSAT Evaluation 2019 - Benchmark: Identifying Security-Critical
Cyber-Physical Components in Weighted AND/OR Graphs. In MaxSAT
Evaluation 2019 (MSE’19),” https://arxiv.org/abs/1911.00516, 2019.
M. Barrére, C. Hankin, N. Nicolaou, D. Eliades, and T. Parisini,
“Measuring cyber-physical security in industrial control systems via
minimum-effort attack strategies,” Journal of Information Security
and Applications, vol. 52, pp. 1-17, June 2020. [Online]. Available:
https://doi.org/10.1016/j.jisa.2020.102471

“SAT4],” http://www.sat4j.org/, Cited June 2020.

Gurobi, “Gurobi Optimizer,” https://www.gurobi.com/, 2020, Cited June
2020.

https://arxiv.org/abs/2005.03003
https://arxiv.org/abs/2005.03003
https://github.com/mbarrere/mpmcs4fta
https://arxiv.org/abs/1911.00516
https://doi.org/10.1016/j.jisa.2020.102471
http://www.sat4j.org/
https://www.gurobi.com/

	Problem overview
	Simple example
	MaxSAT formulation strategy
	Fault tree generation
	Benchmark description
	References

