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Abstract—This paper presents a MaxSAT benchmark focused
on the identification of Maximum Probability Minimal Cut Sets
(MPMCSs) in fault trees. We address the MPMCS problem by
transforming the input fault tree into a weighted logical formula
that is then used to build and solve a Weighted Partial MaxSAT
problem. The benchmark includes 80 cases with fault trees of
different size and composition as well as the optimal cost and
solution for each case.

Index Terms—MaxSAT, Benchmark, Fault trees, Fault Tree
Analysis, Reliability, Cyber-Physical Security, Dependability.

I. PROBLEM OVERVIEW

Fault Tree Analysis (FTA) is an analytical tool aimed at
modelling and evaluating how complex systems may fail.
FTA is widely used as a risk assessment tool in safety
and reliability engineering for a broad range of industries
including aerospace, power plants, nuclear plants, and others
high-hazard fields [1]. Essentially, a fault tree is a directed
acyclic graph (DAG) which involves a set of basic events (e.g.
component failures) that are combined using logic operators
(e.g. AND and OR gates) to model how these events may lead
to an undesired state of the system normally represented at the
root of the tree (top level event).

Our work is focused on a novel measure for FTA in the
form of a hybrid analysis technique that involves quantitative
and qualitative aspects of fault trees. From a qualitative
perspective, we focus on Minimal Cut Sets (MCS). An MCS
is a minimal combination of events that together cause the
top level event. As such, MCSs are fundamental for structural
analysis. The problem is that, in large scenarios, computing all
MCSs might be very expensive and there might be hundreds
of MCSs, which makes it hard to handle and prioritise which
MCSs should be attended first. In that context, the goal of
this work is to identify the MCS with maximum probability.
We call this problem the MPMCS. This is an NP-complete
problem and we use a MaxSAT-based approach to address it.

II. SIMPLE EXAMPLE

The fault tree shown in Fig. 1 illustrates the different combi-
nations of events that may lead to the failure of an hypothetical
Fire Protection System (FPS) based on [2]. The FPS can
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fail if either the fire detection system or the fire suppression
mechanism fails. In turn, the detection system can fail if
both sensors fail simultaneously (events x; and x3), while the
suppression mechanism may fail if there is no water (x3), the
sprinkler nozzles are blocked (z4), or the triggering system
does not work. The latter can fail if neither of its operation
modes (automatic (x5) or remotely operated) works properly.
The remote control can fail if the communications channel
fails (zg) or the channel is not available due to a cyber attack,
e.g. DDoS attack (x7). Each basic event has an associated
value that indicates its probability of occurrence p(zx;).
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Fig. 1. Fault tree of a cyber-physical fire protection system (simplified)

A fault tree F' can be represented as a Boolean equation
f(t) that expresses the different ways in which the top event
t can be satisfied [3]. In our example, f(t) is as follows:

f(t) = (171 A IQ) vV (Ig \ T4 vV ($5 A (1176 V SC7)))
The objective is to find the minimal set of logical variables
that makes the equation f(¢) true and whose joint probability

is maximal among all minimal sets. In our example, the
MPMCS is {z1, 22} with a joint probability of 0.02.

III. MAXSAT FORMULATION STRATEGY

Given a fault tree and its logical formulation f(t), we carry
out a series of steps to compute the MPMCS as follows.

1. Logical transformation. Since we are interested in
minimising the number of satisfied clauses, which is opposed
to what MaxSAT does (maximisation), we flip all logic gates
but keep all events in their positive form. In our example, we
obtain: g(t) = (x1 V x2) A (x3 A x4 A (25 V (T6 A 27))).
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Then, the objective is to satisfy —g(t) where the falsified
variables will indicate the minimum set of events that must
simultaneously occur to trigger the top level event. A more
detailed explanation of this transformation can be found in
[4]. We then use the Tseitin transformation to produce in
polynomial time an equisatisfiable CNF formula [5].

2. MaxSAT weights. Due to the fact that MaxSAT is addi-
tive in nature and the MPMCS problem involves the multipli-
cation of decision variables, we transform the probabilities into
a negative log-space so the multiplication becomes a sum. In
addition, many SAT solvers only support integer weights so we
perform a second transformation by right shifting (multiplying
by 10) every value until the smallest value is covered with an
acceptable level of precision. For example, 0.001 and 0.00007
would become 100 and 7 (right shift 5 times). Additional
variables introduced by the Tseitin transformation have weight
0. We then specify the problem as a Partial Weighted MaxSAT
instance by assigning the transformed probability values as a
penalty score for each decision variable.

3. Parallel SAT-solving architecture. Since different SAT
solvers normally use different resolution techniques, some of
them are very good at some instances and not that good at
others. To address this issue, we run multiple SAT-solvers
in parallel and pick the solution of the solver that finishes
first. We have experimentally observed that the combination of
different solvers provides good results in terms of performance
and scalability. Once the solution has been found, we translate
back the transformed values into their stochastic domain and
output the MCS with maximum probability.

I'V. FAULT TREE GENERATION

The benchmark presented in this paper relies on our open
source tool MPMCS4FTA [6]. We have used MPMCS4FTA to
generate and analyse synthetic pseudo-random fault trees of
different size and composition. We use AND/OR graphs as the
underlying structure to represent fault trees. The benchmark
presented in [7] also considers AND/OR graphs as a means to
represent operational dependencies between components in in-
dustrial control systems [8]. However, the instances presented
in this paper differ in that: 1) they are restricted to directed
acyclic graphs (DAGs), 2) only the basic events represented
at the leaves of the fault tree involve a probability of failure,
and 3) leaves can have more than one parent in order to relax
the definition of strict logical trees.

We control the size and composition of a random
fault tree of size n according to a configuration R =
(Rar, Ranp,Ror). Rar € [0,1] indicates the proportion
of atomic nodes (basic events) with respect to size n (e.g. 0.2
means 20%) whereas Ranp and Rog indicate the proportion
of AND and OR nodes respectively. To create a fault tree
of size n, we first create two lists: L = {l1,...,l»} and
A ={a1,...,as}. L is a random sequence of AND and OR
nodes with the specified proportions for each operator where
m =nx*(Ranp + Ror). A is a list of atomic nodes where
s =nx* Ryr, thus n = m + s. In addition, each atomic node
has a random probability of failure p(a;) € [0, 1].

To ensure connectivity, we first create the root node ¢ and
connect [ to t (I; — t). Then, for each logic node I; in
the sequence L, we randomly choose k nodes [; ahead (thus
j > 1) and create k edges (I; — [;) in the tree. When the
remaining nodes in L are not enough to cover k nodes, we
use random atomic nodes from A. At this point, we also make
sure that [; points to at least one previous node in the sequence
L. If that is not the case, we choose a random node [;, (with
h < 1) and create an edge (I; — [j). Once the sequence L
has been processed, we traverse the list A and connect each
atomic node a; as follows. First, we draw a random value £’
between 1 and k. Then, we add random edges (a; — [;) from
a; to logic nodes [; until we cover k' connections.

V. BENCHMARK DESCRIPTION

Out dataset includes 80 cases in total, and can be obtained
at [6]. It contains fault trees with four different sizes: 2500,
5000, 7500, and 10000 nodes (20 cases each). For each tree
size, we consider two different graph configurations, Ry =
(0.8,0.1,0.1) and Ry = (0.6,0.2,0.2), which determine the
composition of the fault trees (10 cases each). Table I shows
the identifiers of the cases within each one of these categories.

Rz = (0.6,0.2,0.2)

| #Nodes/Configurations | R; = (0.8,0.1,0.1) | |

| 2500 | 10 10 | 11 t0 20 |

| 5000 | 21 10 30 | 31 t0 40 |

| 7500 | 41 10 50 | 51 t0 60 |

| 10000 | 61 to 70 | 71 to 80 |
TABLE I

BENCHMARK CASES AND CONFIGURATIONS

Each case is specified in an individual .wenf (DIMACS-like,
weighted CNF) file named with the case id and the number
of nodes involved. The weight for hard clauses (top value)
has been set to 2.0 x 10°. The weight of each soft constraint
is an integer value that corresponds to the transformation
(right shifting) of the probability value in —log space. Tables
IT and IIT detail each case as well as the results obtained
with our tool. The field id identifies each case. gNodes and
gEdges indicate the total number of nodes and edges in the
fault tree. gAT, gAND, and gOR, indicate the approximate
composition of the graph in terms of atomic (basic events),
AND, and OR nodes. tsVars and tsClauses show the number
of variables and clauses involved in the MaxSAT formulation
after applying the Tseitin transformation. time shows the
resolution time reported by MPMCS4FTA in milliseconds.
Currently, the MaxSAT solvers used in MPMCS4FTA are
SAT4J [9] and a Python-based linear programming approach
using Gurobi [10]. size indicates the number of nodes identi-
fied in the MPMCS solution. intLogCost indicates the cost
of the solution in —log space as an integer value (right
shifted). logCost indicates the cost of the solution in —log
space. MPMCS probability indicates the joint probability of
the MPMCS. These experiments have been performed on a
MacBook Pro (16-inch, 2019), 2.4 GHz 8-core Intel Core 19,
32 GB 2666 MHz DDRA4.



BENCHMARK DESCRIPTION - CASES 1 TO 40

| id | gNodes | gEdges | gAT | gAND | gOR | tsVars | tsClauses | time | size | intLogCost | logCost | MPMCS probability |
| 1| 2500 | 7151 | 2002 | 250 | 250 | 1978 | 6258 | 618 | 1 | 246 | 246E4 | 0.999754 \
| 2 | 2500 | 7192 | 2002 | 250 | 250 | 4268 | 15026 | 850 | 447 | 464771733 | 464.771733 | 1.42239870668983E-202 |
| 3 | 2500 | 7196 | 2002 | 250 | 250 | 1207 | 3763 | 290 | 1 | 27591 | 0.027591 | 0.972787 \
| 4 | 2500 | 7140 | 2002 | 250 | 250 | 4211 | 14673 | 833 | 1 | 238 | 238B4 | 0.999763 \
| 5 | 2500 | 7107 | 2002 | 250 | 250 | 3907 | 13325 | 81 | 1 | 7879 | 0.007879 | 0.992153 \
| 6 | 2500 | 7202 | 2002 | 250 | 250 | 3410 | 11350 | 749 | 70 | 81474531 | 81474531 | 4.147681160335815E-36 |
| 7 | 2500 | 7126 | 2002 | 250 | 250 | 3304 | 10922 | 711 | 1 | 315 | 3.A5B4 | 0.999685 \
| 8 | 2500 | 7181 | 2002 | 250 | 250 | 3752 | 12713 | 826 | 1 | 2576 | 0.002576 | 0.997428 \
| 9 | 2500 | 7157 | 2002 | 250 | 250 | 3011 | 9847 | 625 | 1 | 4301 | 0.004301 | 0.995709 \
| 10 | 2500 | 7156 | 2002 | 250 | 250 | 642 | 1982 | 211 | 19 | 12423488 | 12423488 | 4.0231156723921624E-6 |
| 11| 2500 | 6831 | 1502 | 500 | 500 | 3873 | 14170 | 912 | 1 | 28842 | 0.028842 | 0.971571 \
| 12| 2500 | 6782 | 1502 | 500 | 500 | 2377 | 7941 | 550 | 1 | 32680 | 0.03268 | 0.96785 \
| 13| 2500 | 6814 | 1502 | 500 | 500 | 3216 | 11235 | 700 | 13 | 10769787 | 10.769787 | 2.1025796252653052E-5 |
| 14| 2500 | 6700 | 1502 | 500 | 500 | 3268 | 11376 | 728 | 197 | 207945092 | 207.945092 | 4.9088521396478804E-91 |
| 15| 2500 | 6897 | 1502 | 500 | 500 | 3063 | 10555 | 817 | 1 | 3262 | 0.003262 | 0.996744 \
| 16 | 2500 | 6849 | 1502 | 500 | 500 | 2044 | 6765 | 470 | 1 | 191116 | 0.191116 | 0.826037 \
| 17 | 2500 | 6787 | 1502 | 500 | 500 | 3158 | 10955 | 723 | 1 | 284520 | 0.28452 | 0.752376 \
| 18 | 2500 | 6872 | 1502 | 500 | 500 | 3433 | 12147 | 773 | 139 | 130484455 | 130.484455 | 2.1453798325228181E-57 |
| 19| 2500 | 6821 | 1502 | 500 | 500 | 2506 | 8439 | 534 | 17 | 9662887 | 9.662887 |  6.36019885647539E-5 |
| 20 | 2500 | 6831 | 1502 | 500 | 500 | 3848 | 14095 | 81 | 1 | 3507 | 0.003507 | 0.996501 \
| 21 | 5000 | 14324 | 4002 | 500 | 500 | 4149 | 13224 | 932 | 229 | 217397271 | 217.397271 | 3.8565352927569054E-95 |
| 22| 5000 | 14313 | 4002 | 500 | 500 | 8532 | 29961 | 925 | 614 | 641968767 | 641.968767 | 1.5912873405576694E-279 |
| 23 | 5000 | 14329 | 4002 | 500 | 500 | 6971 | 23338 | 842 | 240 | 251915559 | 251.915559 | 3.9351584673463555E-110 |
| 24 | 5000 | 14361 | 4002 | 500 | 500 | 8020 | 27645 | 843 | 1 | 793 | 7.93E4 | 0.999209 \
| 25 | 5000 | 14370 | 4002 | 500 | 500 | 8965 | 32190 | 843 | 1 | 1858 | 0.001858 | 0.998144 \
| 26 | 5000 | 14317 | 4002 | 500 | 500 | 5443 | 17581 | 827 | 1 | 3615 | 0.003615 | 0.996391 \
| 27 | 5000 | 14407 | 4002 | 500 | 500 | 8113 | 28023 | 842 | 277 | 253971185 | 253.971185 | 5.035082961027143E-111 |
| 28 | 5000 | 14365 | 4002 | 500 | S00 | 8952 | 32153 | 837 | 1041 | 994658460 | 994.65846 | 0.0 \
| 29 | 5000 | 14321 | 4002 | 500 | 500 | 8859 | 31477 | 833 | 379 | 378308687 | 378.308687 | 5.051735441001231E-165 |
| 30 | 5000 | 14316 | 4002 | 500 | 500 | 7948 | 27315 | 80 | 1 | 970 | 9.7E4 | 0.999032 \
| 31| 5000 | 13607 | 3002 | 1000 | 1000 | 6384 | 22218 | 938 | 1 | 2530 | 0.00253 | 0.997474 \
| 32| 5000 | 13730 | 3002 | 1000 | 1000 | 7330 | 26390 | 863 | 65 | 63984958 | 63.984958 | 1.62844121698006E-28 |
| 33| 5000 | 13687 | 3002 | 1000 | 1000 | 3181 | 10354 | 683 | 1 | 25289 | 0.025289 | 0.975029 \
| 34| 5000 | 13600 | 3002 | 1000 | 1000 | 6293 | 21870 | 834 | 407 | 424495269 | 424.495269 | 4.413071223454673E-185 |
| 35| 5000 | 13712 | 3002 | 1000 | 1000 | 7361 | 26650 | 895 | 179 | 171277203 | 171.277203 | 4.1251154050451916E-75 |
| 36 | 5000 | 13709 | 3002 | 1000 | 1000 | 6231 | 21647 | 831 | 22 | 19249301 | 19.249301 | 4.366753474609794E-9 |
| 37 | 5000 | 13612 | 3002 | 1000 | 1000 | 6202 | 21523 | 931 | 257 | 273826234 | 273.826234 | 1.2035873310274229E-119 |
| 38 | 5000 | 13664 | 3002 | 1000 | 1000 | 4482 | 14952 | 824 | 1 | 4317 | 0.004317 | 0.995693 \
| 39 | 5000 | 13631 | 3002 | 1000 | 1000 | 7395 | 26641 | 827 | 83 | 89562456 | 89.562456 | 1.2695246380697898E-39 |
| 40 | 5000 | 13641 | 3002 | 1000 | 1000 | 7825 | 28775 | 831 | 1 | 5974 | 0.005974 | 0.994045 \
TABLE II



BENCHMARK DESCRIPTION - CASES 41 TO 80

| id | gNodes | gEdges | gAT | gAND | gOR | tsVars | tsClauses | time | size | intLogCost | logCost |  MPMCS probability |
| 41 | 7500 | 21502 | 6002 | 750 | 750 | 8871 | 28951 | 965 | I | 160 | 1.6E4 | 0.999841 \
| 42 | 7500 | 21515 | 6002 | 750 | 750 | 7191 | 23069 | 852 | I | 393 | 393E4 | 0.999607 \
| 43 | 7500 | 21497 | 6002 | 750 | 750 | 5716 | 18114 | 843 | I | 1095 | 0.001095 | 0.998906 \
| 44 | 7500 | 21536 | 6002 | 750 | 750 | 6476 | 20645 | 849 | 600 | 607247314 | 607.247314 | 1.8912103369207186E-264 |
| 45 | 7500 | 21472 | 6002 | 750 | 750 | 10277 | 34266 | 859 | 251 | 235979386 | 235.979386 | 3.279829621872166E-103 |
| 46 | 7500 | 21607 | 6002 | 750 | 750 | 10235 | 34064 | 849 | 31 | 27638401 | 27.638401 | 9.927826703704467E-13 |
| 47 | 7500 | 21609 | 6002 | 750 | 750 | 11377 | 38597 | 920 | 689 | 644477962 | 644.477962 | 1.2810988897753624E-280 |
| 48 | 7500 | 21397 | 6002 | 750 | 750 | 4488 | 14083 | 815 | 1 | 18442 | 0.018442 | 0.981728 \
| 49| 7500 | 21410 | 6002 | 750 | 750 | 12792 | 44789 | 1031 | 668 | 672741572 | 672.741572 | 6.81228495760467E-293 |
| 50 | 7500 | 21566 | 6002 | 750 | 750 | 13253 | 47290 | 851 | 1 | 9154 | 0.009154 | 0.990888 \
| 51| 7500 | 20454 | 4502 | 1500 | 1500 | 11031 | 39763 | 972 | 1 | 2151 | 0.002151 | 0.997852 \
| 52| 7500 | 20450 | 4502 | 1500 | 1500 | 8927 | 30739 | 855 | 1 | 738 | 738E4 | 0.999263 \
| 53 | 7500 | 20616 | 4502 | 1500 | 1500 | 11843 | 43792 | 894 | 1 | 37 | 37E5 | 0.999964 \
| 54 | 7500 | 20530 | 4502 | 1500 | 1500 | 9961 | 35071 | 1053 | 502 | 480184105 | 480.184105 | 2.8797108920892045E-209 |
| 55| 7500 | 20563 | 4502 | 1500 | 1500 | 9462 | 32930 | 1368 | 769 | 739302414 | 739.302414 | 8.45E-322 |
| 56 | 7500 | 20493 | 4502 | 1500 | 1500 | 9084 | 31398 | 833 | I | 7545 | 0.007545 | 0.992484 \
| 57 | 7500 | 20491 | 4502 | 1500 | 1500 | 4922 | 16088 | 817 | 1 | 104472 | 0.104472 | 0.9008 \
| 58 | 7500 | 20594 | 4502 | 1500 | 1500 | 5943 | 19507 | 987 | 267 | 256660486 | 256.660486 | 3.4340775952647096E-112 |
| 59 | 7500 | 20406 | 4502 | 1500 | 1500 | 9340 | 32356 | 898 | 158 | 148111431 | 148.111431 | 4.74472781242486E-65 |
| 60 | 7500 | 20445 | 4502 | 1500 | 1500 | 8882 | 30572 | 827 | 1 | 14066 | 0.014066 | 0.986033 \
| 61 | 10000 | 28613 | 8002 | 1000 | 1000 | 16234 | 56222 | 1087 | 1 | 1904 | 0.001904 | 0.998099 \
| 62 | 10000 | 28675 | 8002 | 1000 | 1000 | 14261 | 47804 | 914 | 197 | 185985480 | 185.98548 | 1.6901841317920728E-81 |
| 63 | 10000 | 28558 | 8002 | 1000 | 1000 | 13755 | 45717 | 893 | 1 | 43 | 43E5 | 0.999957 \
| 64 | 10000 | 28738 | 8002 | 1000 | 1000 | 13370 | 44343 | 882 | 1 | 127 | 127E4 | 0.999874 \
| 65 | 10000 | 28752 | 8002 | 1000 | 1000 | 15537 | 53105 | 917 | 643 | 606121928 | 606.121928 | 5.826520007473361E-264 |
| 66 | 10000 | 28803 | 8002 | 1000 | 1000 | 9981 | 32065 | 852 | 1 | 796 | 7.96E4 | 0.999205 \
| 67 | 10000 | 28632 | 8002 | 1000 | 1000 | 13418 | 44550 | 861 | 448 | 439405919 | 439.405919 | 1.4772121624185204E-191 |
| 68 | 10000 | 28830 | 8002 | 1000 | 1000 | 17774 | 63650 | 874 | 1 | 3047 | 0.003047 | 0.996959 \
| 69 | 10000 | 28717 | 8002 | 1000 | 1000 | 14505 | 48831 | 861 | 1 | 1691 | 0.001691 | 0.998311 \
| 70 | 10000 | 28604 | 8002 | 1000 | 1000 | 16032 | 55089 | 855 | 1 | 436 | 436E4 | 0.999564 \
| 71| 10000 | 27114 | 6002 | 2000 | 2000 | 15244 | 55476 | 2286 | 652 | 652324945 | 652.324945 | 5.016628484164324E-284 |
| 72 | 10000 | 27515 | 6002 | 2000 | 2000 | 10588 | 36029 | 867 | 1 | 15974 | 0.015974 | 0.984154 \
| 73 | 10000 | 27411 | 6002 | 2000 | 2000 | 9596 | 32332 | 862 | 422 | 440653751 | 440.653751 | 4.240514855635819E-192 |
| 74 | 10000 | 27271 | 6002 | 2000 | 2000 | 15985 | 59167 | 873 | 1 | 2033 | 0.002033 | 0.997969 \
| 75 | 10000 | 27228 | 6002 | 2000 | 2000 | 13506 | 47651 | 2223 | 621 | 639112478 | 639.112478 | 2.7423451190246526E-278 |
| 76 | 10000 | 27345 | 6002 | 2000 | 2000 | 12066 | 41598 | 1253 | 326 | 307525901 | 307.525901 | 2.779537506735469E-134 |
| 77 | 10000 | 27310 | 6002 | 2000 | 2000 | 10310 | 34812 | 835 | 1 | 10970 | 0.01097 | 0.989091 \
| 78 | 10000 | 27306 | 6002 | 2000 | 2000 | 12092 | 41711 | 1004 | 228 | 218680041 | 218.680041 | 1.0684631282749114E-95 |
| 79 | 10000 | 27315 | 6002 | 2000 | 2000 | 14069 | 50130 | 848 | 1 | 1447 | 0001447 | 0.998555 \
| 80 | 10000 | 27375 | 6002 | 2000 | 2000 | 14851 | 53699 | 859 | 1 | 180 | 18E4 | 0.999821 \
TABLE III
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