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Abstract—This paper presents a MaxSAT benchmark focused
on the identification of Maximum Probability Minimal Cut Sets
(MPMCSs) in fault trees. We address the MPMCS problem by
transforming the input fault tree into a weighted logical formula
that is then used to build and solve a Weighted Partial MaxSAT
problem. The benchmark includes 80 cases with fault trees of
different size and composition as well as the optimal cost and
solution for each case.

Index Terms—MaxSAT, Benchmark, Fault trees, Fault Tree
Analysis, Reliability, Cyber-Physical Security, Dependability.

I. PROBLEM OVERVIEW

Fault Tree Analysis (FTA) is an analytical tool aimed at
modelling and evaluating how complex systems may fail.
FTA is widely used as a risk assessment tool in safety
and reliability engineering for a broad range of industries
including aerospace, power plants, nuclear plants, and others
high-hazard fields [1]. Essentially, a fault tree is a directed
acyclic graph (DAG) which involves a set of basic events (e.g.
component failures) that are combined using logic operators
(e.g. AND and OR gates) to model how these events may lead
to an undesired state of the system normally represented at the
root of the tree (top level event).

Our work is focused on a novel measure for FTA in the
form of a hybrid analysis technique that involves quantitative
and qualitative aspects of fault trees. From a qualitative
perspective, we focus on Minimal Cut Sets (MCS). An MCS
is a minimal combination of events that together cause the
top level event. As such, MCSs are fundamental for structural
analysis. The problem is that, in large scenarios, computing all
MCSs might be very expensive and there might be hundreds
of MCSs, which makes it hard to handle and prioritise which
MCSs should be attended first. In that context, the goal of
this work is to identify the MCS with maximum probability.
We call this problem the MPMCS. This is an NP-complete
problem and we use a MaxSAT-based approach to address it.

II. SIMPLE EXAMPLE

The fault tree shown in Fig. 1 illustrates the different combi-
nations of events that may lead to the failure of an hypothetical
Fire Protection System (FPS) based on [2]. The FPS can
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fail if either the fire detection system or the fire suppression
mechanism fails. In turn, the detection system can fail if
both sensors fail simultaneously (events x1 and x2), while the
suppression mechanism may fail if there is no water (x3), the
sprinkler nozzles are blocked (x4), or the triggering system
does not work. The latter can fail if neither of its operation
modes (automatic (x5) or remotely operated) works properly.
The remote control can fail if the communications channel
fails (x6) or the channel is not available due to a cyber attack,
e.g. DDoS attack (x7). Each basic event has an associated
value that indicates its probability of occurrence p(xi).

Fig. 1. Fault tree of a cyber-physical fire protection system (simplified)

A fault tree F can be represented as a Boolean equation
f(t) that expresses the different ways in which the top event
t can be satisfied [3]. In our example, f(t) is as follows:

f(t) = (x1 ∧ x2) ∨ (x3 ∨ x4 ∨ (x5 ∧ (x6 ∨ x7)))

The objective is to find the minimal set of logical variables
that makes the equation f(t) true and whose joint probability
is maximal among all minimal sets. In our example, the
MPMCS is {x1, x2} with a joint probability of 0.02.

III. MAXSAT FORMULATION STRATEGY

Given a fault tree and its logical formulation f(t), we carry
out a series of steps to compute the MPMCS as follows.

1. Logical transformation. Since we are interested in
minimising the number of satisfied clauses, which is opposed
to what MaxSAT does (maximisation), we flip all logic gates
but keep all events in their positive form. In our example, we
obtain: g(t) = (x1 ∨ x2) ∧ (x3 ∧ x4 ∧ (x5 ∨ (x6 ∧ x7))).
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Then, the objective is to satisfy ¬g(t) where the falsified
variables will indicate the minimum set of events that must
simultaneously occur to trigger the top level event. A more
detailed explanation of this transformation can be found in
[4]. We then use the Tseitin transformation to produce in
polynomial time an equisatisfiable CNF formula [5].

2. MaxSAT weights. Due to the fact that MaxSAT is addi-
tive in nature and the MPMCS problem involves the multipli-
cation of decision variables, we transform the probabilities into
a negative log-space so the multiplication becomes a sum. In
addition, many SAT solvers only support integer weights so we
perform a second transformation by right shifting (multiplying
by 10) every value until the smallest value is covered with an
acceptable level of precision. For example, 0.001 and 0.00007
would become 100 and 7 (right shift 5 times). Additional
variables introduced by the Tseitin transformation have weight
0. We then specify the problem as a Partial Weighted MaxSAT
instance by assigning the transformed probability values as a
penalty score for each decision variable.

3. Parallel SAT-solving architecture. Since different SAT
solvers normally use different resolution techniques, some of
them are very good at some instances and not that good at
others. To address this issue, we run multiple SAT-solvers
in parallel and pick the solution of the solver that finishes
first. We have experimentally observed that the combination of
different solvers provides good results in terms of performance
and scalability. Once the solution has been found, we translate
back the transformed values into their stochastic domain and
output the MCS with maximum probability.

IV. FAULT TREE GENERATION

The benchmark presented in this paper relies on our open
source tool MPMCS4FTA [6]. We have used MPMCS4FTA to
generate and analyse synthetic pseudo-random fault trees of
different size and composition. We use AND/OR graphs as the
underlying structure to represent fault trees. The benchmark
presented in [7] also considers AND/OR graphs as a means to
represent operational dependencies between components in in-
dustrial control systems [8]. However, the instances presented
in this paper differ in that: 1) they are restricted to directed
acyclic graphs (DAGs), 2) only the basic events represented
at the leaves of the fault tree involve a probability of failure,
and 3) leaves can have more than one parent in order to relax
the definition of strict logical trees.

We control the size and composition of a random
fault tree of size n according to a configuration R =
(RAT , RAND, ROR). RAT ∈ [0, 1] indicates the proportion
of atomic nodes (basic events) with respect to size n (e.g. 0.2
means 20%) whereas RAND and ROR indicate the proportion
of AND and OR nodes respectively. To create a fault tree
of size n, we first create two lists: L = {l1, . . . , lm} and
A = {a1, . . . , as}. L is a random sequence of AND and OR
nodes with the specified proportions for each operator where
m = n ∗ (RAND + ROR). A is a list of atomic nodes where
s = n ∗RAT , thus n = m+ s. In addition, each atomic node
has a random probability of failure p(ai) ∈ [0, 1].

To ensure connectivity, we first create the root node t and
connect l1 to t (l1 → t). Then, for each logic node li in
the sequence L, we randomly choose k nodes lj ahead (thus
j > i) and create k edges (lj → li) in the tree. When the
remaining nodes in L are not enough to cover k nodes, we
use random atomic nodes from A. At this point, we also make
sure that li points to at least one previous node in the sequence
L. If that is not the case, we choose a random node lh (with
h < i) and create an edge (li → lh). Once the sequence L
has been processed, we traverse the list A and connect each
atomic node ai as follows. First, we draw a random value k′

between 1 and k. Then, we add random edges (ai → lj) from
ai to logic nodes lj until we cover k′ connections.

V. BENCHMARK DESCRIPTION

Out dataset includes 80 cases in total, and can be obtained
at [6]. It contains fault trees with four different sizes: 2500,
5000, 7500, and 10000 nodes (20 cases each). For each tree
size, we consider two different graph configurations, R1 =
(0.8, 0.1, 0.1) and R2 = (0.6, 0.2, 0.2), which determine the
composition of the fault trees (10 cases each). Table I shows
the identifiers of the cases within each one of these categories.

#Nodes/Configurations R1 = (0.8, 0.1, 0.1) R2 = (0.6, 0.2, 0.2)

2500 1 to 10 11 to 20

5000 21 to 30 31 to 40

7500 41 to 50 51 to 60

10000 61 to 70 71 to 80

TABLE I
BENCHMARK CASES AND CONFIGURATIONS

Each case is specified in an individual .wcnf (DIMACS-like,
weighted CNF) file named with the case id and the number
of nodes involved. The weight for hard clauses (top value)
has been set to 2.0× 109. The weight of each soft constraint
is an integer value that corresponds to the transformation
(right shifting) of the probability value in −log space. Tables
II and III detail each case as well as the results obtained
with our tool. The field id identifies each case. gNodes and
gEdges indicate the total number of nodes and edges in the
fault tree. gAT, gAND, and gOR, indicate the approximate
composition of the graph in terms of atomic (basic events),
AND, and OR nodes. tsVars and tsClauses show the number
of variables and clauses involved in the MaxSAT formulation
after applying the Tseitin transformation. time shows the
resolution time reported by MPMCS4FTA in milliseconds.
Currently, the MaxSAT solvers used in MPMCS4FTA are
SAT4J [9] and a Python-based linear programming approach
using Gurobi [10]. size indicates the number of nodes identi-
fied in the MPMCS solution. intLogCost indicates the cost
of the solution in −log space as an integer value (right
shifted). logCost indicates the cost of the solution in −log
space. MPMCS probability indicates the joint probability of
the MPMCS. These experiments have been performed on a
MacBook Pro (16-inch, 2019), 2.4 GHz 8-core Intel Core i9,
32 GB 2666 MHz DDR4.
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id gNodes gEdges gAT gAND gOR tsVars tsClauses time size intLogCost logCost MPMCS probability

1 2500 7151 2002 250 250 1978 6258 618 1 246 2.46E-4 0.999754

2 2500 7192 2002 250 250 4268 15026 850 447 464771733 464.771733 1.42239870668983E-202

3 2500 7196 2002 250 250 1207 3763 290 1 27591 0.027591 0.972787

4 2500 7140 2002 250 250 4211 14673 833 1 238 2.38E-4 0.999763

5 2500 7107 2002 250 250 3907 13325 821 1 7879 0.007879 0.992153

6 2500 7202 2002 250 250 3410 11350 749 70 81474531 81.474531 4.147681160335815E-36

7 2500 7126 2002 250 250 3304 10922 711 1 315 3.15E-4 0.999685

8 2500 7181 2002 250 250 3752 12713 826 1 2576 0.002576 0.997428

9 2500 7157 2002 250 250 3011 9847 625 1 4301 0.004301 0.995709

10 2500 7156 2002 250 250 642 1982 211 19 12423488 12.423488 4.0231156723921624E-6

11 2500 6831 1502 500 500 3873 14170 912 1 28842 0.028842 0.971571

12 2500 6782 1502 500 500 2377 7941 550 1 32680 0.03268 0.96785

13 2500 6814 1502 500 500 3216 11235 700 13 10769787 10.769787 2.1025796252653052E-5

14 2500 6700 1502 500 500 3268 11376 728 197 207945092 207.945092 4.9088521396478804E-91

15 2500 6897 1502 500 500 3063 10555 817 1 3262 0.003262 0.996744

16 2500 6849 1502 500 500 2044 6765 470 1 191116 0.191116 0.826037

17 2500 6787 1502 500 500 3158 10955 723 1 284520 0.28452 0.752376

18 2500 6872 1502 500 500 3433 12147 773 139 130484455 130.484455 2.1453798325228181E-57

19 2500 6821 1502 500 500 2506 8439 534 17 9662887 9.662887 6.36019885647539E-5

20 2500 6831 1502 500 500 3848 14095 821 1 3507 0.003507 0.996501

21 5000 14324 4002 500 500 4149 13224 932 229 217397271 217.397271 3.8565352927569054E-95

22 5000 14313 4002 500 500 8532 29961 925 614 641968767 641.968767 1.5912873405576694E-279

23 5000 14329 4002 500 500 6971 23338 842 240 251915559 251.915559 3.9351584673463555E-110

24 5000 14361 4002 500 500 8020 27645 843 1 793 7.93E-4 0.999209

25 5000 14370 4002 500 500 8965 32190 843 1 1858 0.001858 0.998144

26 5000 14317 4002 500 500 5443 17581 827 1 3615 0.003615 0.996391

27 5000 14407 4002 500 500 8113 28023 842 277 253971185 253.971185 5.035082961027143E-111

28 5000 14365 4002 500 500 8952 32153 837 1041 994658460 994.65846 0.0

29 5000 14321 4002 500 500 8859 31477 833 379 378308687 378.308687 5.051735441001231E-165

30 5000 14316 4002 500 500 7948 27315 830 1 970 9.7E-4 0.999032

31 5000 13607 3002 1000 1000 6384 22218 938 1 2530 0.00253 0.997474

32 5000 13730 3002 1000 1000 7330 26390 863 65 63984958 63.984958 1.62844121698006E-28

33 5000 13687 3002 1000 1000 3181 10354 683 1 25289 0.025289 0.975029

34 5000 13600 3002 1000 1000 6293 21870 834 407 424495269 424.495269 4.413071223454673E-185

35 5000 13712 3002 1000 1000 7361 26650 895 179 171277203 171.277203 4.1251154050451916E-75

36 5000 13709 3002 1000 1000 6231 21647 831 22 19249301 19.249301 4.366753474609794E-9

37 5000 13612 3002 1000 1000 6202 21523 931 257 273826234 273.826234 1.2035873310274229E-119

38 5000 13664 3002 1000 1000 4482 14952 824 1 4317 0.004317 0.995693

39 5000 13631 3002 1000 1000 7395 26641 827 83 89562456 89.562456 1.2695246380697898E-39

40 5000 13641 3002 1000 1000 7825 28775 831 1 5974 0.005974 0.994045

TABLE II
BENCHMARK DESCRIPTION - CASES 1 TO 40
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id gNodes gEdges gAT gAND gOR tsVars tsClauses time size intLogCost logCost MPMCS probability

41 7500 21502 6002 750 750 8871 28951 965 1 160 1.6E-4 0.999841

42 7500 21515 6002 750 750 7191 23069 852 1 393 3.93E-4 0.999607

43 7500 21497 6002 750 750 5716 18114 843 1 1095 0.001095 0.998906

44 7500 21536 6002 750 750 6476 20645 849 600 607247314 607.247314 1.8912103369207186E-264

45 7500 21472 6002 750 750 10277 34266 859 251 235979386 235.979386 3.279829621872166E-103

46 7500 21607 6002 750 750 10235 34064 849 31 27638401 27.638401 9.927826703704467E-13

47 7500 21609 6002 750 750 11377 38597 920 689 644477962 644.477962 1.2810988897753624E-280

48 7500 21397 6002 750 750 4488 14083 815 1 18442 0.018442 0.981728

49 7500 21410 6002 750 750 12792 44789 1031 668 672741572 672.741572 6.81228495760467E-293

50 7500 21566 6002 750 750 13253 47290 851 1 9154 0.009154 0.990888

51 7500 20454 4502 1500 1500 11031 39763 972 1 2151 0.002151 0.997852

52 7500 20450 4502 1500 1500 8927 30739 855 1 738 7.38E-4 0.999263

53 7500 20616 4502 1500 1500 11843 43792 894 1 37 3.7E-5 0.999964

54 7500 20530 4502 1500 1500 9961 35071 1053 502 480184105 480.184105 2.8797108920892045E-209

55 7500 20563 4502 1500 1500 9462 32930 1368 769 739302414 739.302414 8.45E-322

56 7500 20493 4502 1500 1500 9084 31398 833 1 7545 0.007545 0.992484

57 7500 20491 4502 1500 1500 4922 16088 817 1 104472 0.104472 0.9008

58 7500 20594 4502 1500 1500 5943 19507 987 267 256660486 256.660486 3.4340775952647096E-112

59 7500 20406 4502 1500 1500 9340 32356 898 158 148111431 148.111431 4.74472781242486E-65

60 7500 20445 4502 1500 1500 8882 30572 827 1 14066 0.014066 0.986033

61 10000 28613 8002 1000 1000 16234 56222 1087 1 1904 0.001904 0.998099

62 10000 28675 8002 1000 1000 14261 47804 914 197 185985480 185.98548 1.6901841317920728E-81

63 10000 28558 8002 1000 1000 13755 45717 893 1 43 4.3E-5 0.999957

64 10000 28738 8002 1000 1000 13370 44343 882 1 127 1.27E-4 0.999874

65 10000 28752 8002 1000 1000 15537 53105 917 643 606121928 606.121928 5.826520007473361E-264

66 10000 28803 8002 1000 1000 9981 32065 852 1 796 7.96E-4 0.999205

67 10000 28632 8002 1000 1000 13418 44550 861 448 439405919 439.405919 1.4772121624185204E-191

68 10000 28830 8002 1000 1000 17774 63650 874 1 3047 0.003047 0.996959

69 10000 28717 8002 1000 1000 14505 48831 861 1 1691 0.001691 0.998311

70 10000 28604 8002 1000 1000 16032 55089 855 1 436 4.36E-4 0.999564

71 10000 27114 6002 2000 2000 15244 55476 2286 652 652324945 652.324945 5.016628484164324E-284

72 10000 27515 6002 2000 2000 10588 36029 867 1 15974 0.015974 0.984154

73 10000 27411 6002 2000 2000 9596 32332 862 422 440653751 440.653751 4.240514855635819E-192

74 10000 27271 6002 2000 2000 15985 59167 873 1 2033 0.002033 0.997969

75 10000 27228 6002 2000 2000 13506 47651 2223 621 639112478 639.112478 2.7423451190246526E-278

76 10000 27345 6002 2000 2000 12066 41598 1253 326 307525901 307.525901 2.779537506735469E-134

77 10000 27310 6002 2000 2000 10310 34812 835 1 10970 0.01097 0.989091

78 10000 27306 6002 2000 2000 12092 41711 1004 228 218680041 218.680041 1.0684631282749114E-95

79 10000 27315 6002 2000 2000 14069 50130 848 1 1447 0.001447 0.998555

80 10000 27375 6002 2000 2000 14851 53699 859 1 180 1.8E-4 0.999821

TABLE III
BENCHMARK DESCRIPTION - CASES 41 TO 80
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