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Abstract

The challenge of class imbalance arises in classification problem when the

minority class is observed much less than the majority class. This character-

istic is endemic in many domains. Work by Owen [2007] has shown that, in

a theoretical context related to infinite imbalance, logistic regression behaves

such that all data in the rare class can be replaced by their mean vector

to achieve the same coefficient estimates. Such results suggest that cluster

structure among the minority class may be a specific problem in highly im-

balanced logistic regression. In this thesis, we focus on highly imbalanced

logistic regression and develop mitigation methods and diagnostic tools.

Theoretically, we extend the Owen [2007] results to show the phenomenon

remains true for both weighted and penalized likelihood methods in the in-

finitely imbalanced regime, which suggests these alternative choices to logistic

regression are not enough for highly imbalanced logistic regression.

For mitigation methods, we propose a novel relabeling solution based on

relabeling the minority class to handle imbalance problem when using lo-

gistic regression, which essentially assigns new labels to the minority class

observations. Two algorithms (the Genetic algorithm and the Expectation

Maximization algorithm) are formalized to serve as tools for computing this

relabeling. In simulation and real data experiments, we show that logistic

regression is not able to provide the best out-of-sample predictive perfor-

mance, and our relabeling approach that can capture underlying structure

in the minority class is often superior.

For diagnostic tools to detect highly imbalanced logistic regression, different

hypothesis testing methods, along with a graphical tool are proposed, based

on the mathematical insights about highly imbalanced logistic regression.

Simulation studies provide evidence that combining our diagnostic tools with

mitigation methods as a systematic strategy has the potential to alleviate the

class imbalance problem among logistic regression.
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List of Notations

N . . . . . . . . . . . . . the number of the majority class observations

n . . . . . . . . . . . . . . the number of the minority class observations

M . . . . . . . . . . . . . refers to the size of a data set, usually M = N + n

β0 . . . . . . . . . . . . . the intercept term of logistic regression

β̂0 . . . . . . . . . . . . . the estimate of β0

β . . . . . . . . . . . . . . the slope vector of logistic regression

β̂ . . . . . . . . . . . . . . the estimate of β

µ, µ . . . . . . . . . . . the mean or the mean vector

σ, Σ . . . . . . . . . . the variance or the covariance matrix

X . . . . . . . . . . . . . a random variable

x, x . . . . . . . . . . . a realization of X, scalar or vector

List of Acronyms
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AUC . . . . . . . . . Area Under receiver operating characteristic Curve
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1
Introduction

Classification problems can be defined as identifying the class which a new

observation belongs to, based on learning from the data where the class

information is known. High class imbalance refers to one or some classes

that are extremely rare in the classification problem. Modeling imbalanced

data is a challenging problem, which is the primary concern of this thesis. In

the real world, the rare (minority) class usually links to a concept with higher

interest; for example, the conflict between countries in political science [King

and Zeng, 2001a], credit card transaction fraud [Brause et al., 1999] and

default in the consumer credit risk industry (as we discuss below).

Credit providers use statistical models to evaluate the credit risk of lending to

consumers, typically by constructing a classification rule to distinguish good

and bad risk customers. Customers’ classes are defined by their propensity

to default, that is, to fail in satisfying their repayment obligations. This

process is known as credit scoring. The most popular approach for consumer

credit risk modeling is logistic regression [Thomas, 2009, p. 79], which is

regarded as a benchmark in the financial industry. There are several unsolved

problems in retail credit scoring, including reject inference [Hand, 1998],

handling variation over time, and class imbalance. The latter is a common
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problem in credit scoring in which one of the two credit-risk classes is much

less frequent. Because logistic regression is the main tool for credit scoring;

it motivates us to concentrate on the application of logistic regression and

its related methods in highly imbalanced data sets.

Owen [2007] provides a striking asymptotic result, which suggests that, in

cases of extreme class imbalance, the minority class only contributes to the

logistic regression estimation via its sample mean vector. This deep mathe-

matical insight raises concerns about the utility of such models, and potential

unwanted consequences, especially when cluster structure emerges among the

minority class. Throughout the thesis, we break down the highly imbalanced

logistic regression problem into three sub-problems:

1. How widely used modifications to logistic regression (e.g. weighted or

penalized logistic regression) perform in the highly imbalanced data?

2. Based on the theoretical results, can we propose some mitigation methods

for highly imbalanced logistic regression?

3. How to identify that a problem exhibits high class imbalance with respect

to logistic regression?

We propose a systematic approach (theory, detection, and alleviation) to

handle highly imbalanced logistic regression by addressing these problems.

1.1 Research Contributions

This thesis aims to contribute towards the theory of highly imbalanced lo-

gistic regression and corresponding mitigation methodology. The main con-

tributions of this thesis can be summarized as follows:

• Two natural choices to alleviate the class imbalance problem are penal-

izing and weighting the likelihood [Wang et al., 2015, King and Zeng,

2001b]. However, we show, by extending Owen [2007] result, that pe-

nalizing and weighting the likelihood are insufficient for handling the

class imbalance problem. In fact, penalized logistic regression makes

matters worse. This is part of our published paper [Li et al., 2019].
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• We present two relabeling procedures that attempt to handle the class

imbalance problem. Essentially, these procedures seek to partition the

minority class into several new pseudo-classes and relabel them to im-

prove the predictive performance of the model. They have different

computational efficiency. A cross validation procedure is proposed for

selecting the unobservable number of the pseudo-classes. These pro-

cedures are shown to be effective in a simulation study and real data.

This material is collected in a paper under review [Li et al., 2020].

• Several diagnostic tools are proposed to detect highly imbalanced logis-

tic regression problems. They focus on different aspects of the model,

i.e. parameters, likelihood, and prediction. We explore their perfor-

mance in different sample sizes by simulation and with real data.

1.2 Thesis Structure

Chapter 2 reviews the basics of some statistical concepts and methods, in-

cluding probability theory, classification methods, performance assessment,

and clustering methods. We also briefly review the high class imbalance

problem with its mitigation methods.

In Chapter 3, for a binary classification problem, we explore the limit behav-

ior of logistic regression as the number of the majority class cases tends to

infinity while the number of minority class cases remains fixed (i.e. infinitely

imbalanced logistic regression [Owen, 2007]). We provide the background

to infinitely imbalanced logistic regression. Then we consider methods that

extend logistic regression in the highly imbalanced data. New theorems are

given for infinitely imbalanced weighted logistic regression and penalized lo-

gistic regression. These results explain why they are not attractive as mit-

igation methods for highly imbalanced logistic regression. We also give the

theory of infinitely imbalanced multinomial logistic regression as a prepa-

ration for the mitigation methods proposed in the Chapter 4. Part of this

chapter is from our paper [Li et al., 2019].

In Chapter 4, we introduce our relabeling approach. A brute force method
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(Genetic Algorithm) and a computationally efficient method (Expectation

Maximization Algorithm) are proposed, which seeks to relabel the minority

class into several new distinct pseudo-classes. These algorithms are inspired

by the theoretical results from the previous chapter. We demonstrate the

performance of our methods with a simulation study and multiple real data

sets. Some contents in this chapter are from a paper which is currently under

review.

In Chapter 5, three hypothesis testing methods, along with a visualization

tool, are proposed for detecting highly imbalanced logistic regression prob-

lems in light of the deeper mathematical insights from Owen [2007]. Again,

we demonstrate our diagnostic tools through a simulation study and multi-

ple real data sets. The results provide evidence that combing the diagnostic

tools and our relabeling approach as a systematic strategy may alleviate the

class imbalance for logistic regression.

We conclude our research and present the possible future work directions in

Chapter 6.
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2
Background

In this chapter, we outline some important statistical concepts and meth-

ods which are frequently used throughout the thesis. This background is

essential for the high class imbalance theory we developed in Chapter 3 and

the proposed relabeling approach in Chapter 4. In Section 2.1, we introduce

the basic concepts of probability theory and address the Gaussian distribu-

tion, which will be used in Chapter 3. Four frequently used classification

methods are discussed in Section 2.2. The high class imbalance problem and

cutting edge mitigation methods are reviewed in Section 2.3. The topics

in Sections 2.2 and 2.3 are the key concerns of this thesis, which will be

further developed in Chapters 3, 4 and 5. Then, Section 2.4 defines some

performance criteria for classification and introduces the relevant measure-

ment methods. In addition, we introduce some findings of the area under

receiver operating characteristic curve’s (AUC) characteristics in the highly

imbalanced data. In Section 2.5, a clustering method is discussed which will

be used in Chapter 4.
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2.1 Probability Theory

This section describes some basic concepts and definitions in probability the-

ory. Section 2.1.1 describes the definition of the probability distribution

function, expectation and variance, which are frequently used in the proofs

in Chapter 3. The Gaussian distribution is introduced in Section 2.1.2, which

is widely used in Section 3.3 for the illustration. The standard definitions in

this section follow those in DeGroot and Schervish [2012].

2.1.1 Probability Distribution, Expectation, Variance and Co-

variance

For a continuous random variable X, if there is a non-negative function f ,

such that for every interval I, the probability of X drawn from I equals to

the integration of f over I, i.e.

Pr(X ∈ I) =

∫
x∈I

f(x)dx, (2.1)

then the function f is called the probability density function (pdf).

The expectation and the variance of the distribution f are defined as follow:

• the expectation (mean) is

E(X) =

∫ ∞
−∞

xf(x)dx, (2.2)

which is usually denoted by µ,

• the variance is

Var(X) = E[(X − µ)2] =

∫ ∞
−∞

(x− µ)2f(x)dx, (2.3)

which is usually denoted by σ2.

When we consider a joint distribution of multivariate variables X1, . . . , Xp,
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the variance-covariance matrix is defined as

Σ =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xp)

Cov(X2, X1) Var(X2) . . . Cov(X2, Xp)
...

...
. . .

...

Cov(Xp, X1) Cov(Xp, X2) · · · Var(Xp)

 , (2.4)

where Cov(Xi, Xj) represents the covariance between random variable Xi

and Xj

Cov(Xi, Xj) = E
(
[Xi − E(Xi)][Xj − E(Xj)]

)
. (2.5)

Note that Σ is a symmetric and positive-semidefinite matrix [DeGroot and

Schervish, 2012, p. 741].

2.1.2 Gaussian Distribution

The Gaussian distribution, also known as the normal distribution, is by far

the most widely used distribution in statistics. The density function for a

univariate normal distribution with expectation µ and variance σ2 is

f(x|µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 , (2.6)

which is usually denoted by X ∼ N(µ, σ2).

For the p-dimensional multivariate Gaussian distribution with the expecta-

tion vector µ and the variance covariance matrix Σ, the density function

is

f(x|µ,Σ) =
1

|Σ|(2π)p/2
e−

1
2

(x−µ)TΣ−1(x−µ), (2.7)

where |Σ| is the determinant of Σ and x is a p-dimensional vector.

2.2 Classification Methods

In this section, we introduce several commonly used classification methods

and the framework for modeling a classifier. Section 2.2.1 gives the con-
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cepts of training, validation and test set as well as the misclassification cost

in the binary classification problem. Logistic regression, introduced in Sec-

tion 2.2.2, is a well-established classification algorithm, which remains a ref-

erence benchmark in many domains, like consumer credit risk, due to the

regulatory requirement of interpretability. Deploying logistic regression in

highly imbalanced data is the primary concern of this thesis. The limit be-

havior of logistic regression in highly imbalanced data and corresponding

mitigation methods will be discussed in Chapters 3 and 4. Three classifica-

tion methods will be introduced in Section 2.2.3 and Section 2.2.4, namely

linear/quadratic discriminant analysis and k-nearest neighbors. They will be

used later in Chapter 4 to expand our relabeling idea.

2.2.1 Framework

In this section, we briefly describe the concept of training, test, and validation

sets, which are frequently used among the model training and test process.

The concept of the misclassification cost for the binary classification task is

also discussed in this section.

Training, Test, and Validation Sets

A training set is a data set used for fitting the model (e.g. fit the parameters

of a classifier). A test set is independent from the training set but shares the

same distribution with the training set, which is usually used to assess the

model performance. The validation set is a sample set hold back from the

training set, usually used to estimate the prediction error for model selection.

It is hard to provide a general rule on how to split a data set into training,

test and validation set, but usually a three phrase process is frequently used

for model evaluation [Hastie et al., 2009, p. 222]: 1. use the training set to

train models; 2. use the validation set to estimate the prediction error for

model selection; 3. use the test set to assess the performance of the selected

model.
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Misclassification Cost

Consider a binary classification task; denote the binary response as Y ∈
{0, 1}, Pr(Y = 1|X = x) denotes the conditional probability that the object

belongs to class 1 given its feature vector X = x, and Pr(Y = 0|X = x) has

similar definition. Then the cost for misclassifying an particular observation

x can be defined as [Domingos, 1999]

R(x) = Pr(Y = 1|X = x)C(0→ 1) + Pr(Y = 0|X = x)C(1→ 0) (2.8)

where C(1→ 0) represents the misclassification cost of misclassifying a class

1 observation to class 0 and C(0 → 1) vice versa. The optimal prediction

for a particular x is the class 0 or 1 that minimize Equation (2.8) [Elkan,

2001]. This will be further discussed in Section 2.3 for high class imbalance

problem.

2.2.2 Logistic Regression

Logistic regression is used to estimate the posterior probabilities of each class.

We still denote the binary response as Y ∈ {0, 1}, then, for an observation

x, binary logistic regression has the form:

Pr(Y = 1|X = x) =
e(β0+βTx)

1 + e(β0+βTx)
, (2.9)

where β0 is an intercept, and βT = {β1, · · · , βp} is a slope parameter vector,

to be estimated. Suppose we have M observations, then the log-likelihood

function for independent observations can be written as:

l(β) =
M∑
i=1

{yi log(Pr(Y = 1|X = xi)) + (1− yi) log(Pr(Y = 0|X = xi))}

=
M∑
i=1

{yi(β0 + βTxi)− log(1 + eβ0+βTxi)}.

(2.10)
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For convenience, we introduce another form of the log-likelihood function

which is equivalent to Equation (2.10): consider n observations from class

Y = 1, denoted by x11, . . . ,x1n, and N observations from class Y = 0, de-

noted by x01, . . . ,x0N , thus M = N +n. Equation (2.10) can be transformed

to

l(β) =
n∑
i=1

log
eβ0+βTx1i

1 + eβ0+βTx1i
+

N∑
i=1

log
1

1 + eβ0+βTx0i
. (2.11)

Equation (2.11) is frequently used in Chapters 3 and 4.

If the conditional distributions of X given Y = y is N(µy,Σ) (multivariate

normal with equal covariance matrices in both classes), then the coefficient

estimates of the logistic regression model are simply Σ−1(µ1 − µ0) [Ander-

son and Blair, 1982]. Otherwise, to maximize Equation (2.10), we set its

derivatives to zero:

∂l

∂β
=

M∑
i=1

xi(yi −
e(β0+βTxi)

1 + e(β0+βTxi)
) = 0. (2.12)

Equation (2.12) can be solved numerically (e.g. Newton methods) to get the

maximum likelihood estimator (MLE) β̂0 and β̂.

We can also calculate the variance of β̂j, j ∈ {0, · · · , p} from the maximum

likelihood estimator. We can consider

∂l

∂βu∂βv
= −

M∑
i=1

xiue
β0+βTxixiv

(1 + eβ0+βTxi)2
= −XT

·uWX·v. (2.13)

Here, xiu and xiv refer to the uth and vth elements of the vector xi, X·u

and X·v refer to the uth and vth column in the design matrix X and W is a

diagonal matrix

W = diag

(
eβ0+βTx1

(1 + eβ0+βTx1)2
, · · · , eβ0+βTxM

(1 + eβ0+βTxM )2

)
M×M

= diag(p1(1− p1), · · · , pM(1− pM)),

(2.14)

where pi is the posterior probability Pr(Y = 1|X = xi). Thus, the Fisher

information IY (β) = −Eβ(52l(β)) = XTWX. Then, the central limit the-
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orem shows that the distribution of β̂ converges to a multivariate normal

distribution N(β, (XTWX)−1) [Hastie et al., 2009, p. 125]. Here we can use

a plugin approximation

Wβ̂ = diag

(
eβ̂0+β̂Tx1

(1 + eβ̂0+β̂Tx1)2
, · · · , eβ̂0+β̂TxM

(1 + eβ̂0+β̂TxM )2

)
M×M

= diag(p̂1(1− p̂1), · · · , p̂M(1− p̂M))

as an estimate of W when M is large. The fact that the coefficient estimates

β̂ follows a multivariate normal distribution will be used in Chapter 5.

Penalized Logistic Regression

Maximum likelihood estimation may become unstable if the dimension of

data is high or several variables are highly correlated [Lessmann et al., 2015].

In order to perform parameter shrinkage and variable selection, penalized

logistic regression is designed by adding penalty terms to the likelihood func-

tion (Equation 2.10). These penalties include l1 (lasso [Tibshirani, 1996]), l2

(ridge [Hoerl and Kennard, 1970]) and mixtures of the two (elastic-net [Zou

and Hastie, 2005]). The general form for penalized logistic regression is

l(β) =
N∑
i=1

[
yi(β

Txi)− log(1+eβ
Txi)

]
−λ
[
(1−α)

1

2
‖β‖2

2 +α‖β‖1

]
where λ > 0.

(2.15)

The penalty term
[
(1− α)1

2
‖β‖2

2 + α‖β‖1

]
uses two types of penalties, with

‖β‖1 and ‖β‖2
2 denoting the l1 and the squared l2 norms of β (α = 1 is lasso,

α = 0 is ridge, 0 < α < 1 is elastic-net). When solving the penalized logistic

regression, we usually do not penalize the intercept term and implement

a standardization process before the penalty in order to make the penalty

meaningful.

The effect of lasso is variable selection by exactly penalizing some parameters

to zero as λ increases [Hastie et al., 2009, page 68]. However, the ridge

penalty only makes parameters shrink toward to zero (but not equal to zero)

with λ increasing [Hastie et al., 2009, page 61]. The parameter λ allows the
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user to control the trade-off between the model complexity and the goodness

of fit [Hastie et al., 2009], and we usually use cross-validation (discussed

in Section 2.4.4) to choose the optimal penalty parameter λ. The highly

imbalanced penalized logistic regression will be discussed in Section 3.3.

Multinomial Logistic Regression

Binary logistic regression can be easily extended to K class multinomial

logistic regression by reorganize Equation (2.9) to

log
Pr(Y = 1|X = x)

Pr(Y = K|X = x)
= β10 + βT1 x,

log
Pr(Y = 2|X = x)

Pr(Y = K|X = x)
= β20 + βT2 x,

...

log
Pr(Y = K − 1|X = x)

Pr(Y = K|X = x)
= β(K−1)0 + βTK−1x,

(2.16)

where βk0 is the intercept term and βk is the slope vector (k ∈ {1, 2, . . . , K−
1}). The highly imbalanced multinomial logistic regression will be discussed

in Section 3.4.

2.2.3 Linear Discriminant Analysis and Quadratic Discriminant

Analysis

Linear discriminant analysis (LDA [Lachenbruch and Goldstein, 1979]) and

quadratic discriminant analysis (QDA [Klecka et al., 1980]) are two widely

used classification methods. In a K class classification problem, assume fk(x)

is the probability density distribution function of each class k and the prior

class proportions are φk; then the posterior probability for an observation x

comes from class k is

Pr(Y = k|X = x) =
φkfk(x)∑K
k=1 φkfk(x)

. (2.17)
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LDA considers a special case when fk(x) ∼ N(µk,Σ), i.e. each class is

normally distributed with mean µk and shares a common covariance matrix

Σ. Then the log-ratio between Pr(Y = k1|X = x) and Pr(Y = k2|X = x) is

log
Pr(Y = k1|X = x)

Pr(Y = k2|X = x)
=log

φk1

φk2

+ xTΣ−1(µk1 − µk2)

− 1

2
(µk1

TΣ−1µk1 + µk2
TΣ−1µk2),

(2.18)

which is a linear function of x. Thus we can define the linear discriminant

function as

LDAk(x) = xTΣ−1µk + logφk−
1

2
µk

TΣ−1µk,where k ∈ {1, . . . , K}. (2.19)

We find that the discriminant rule: “ find an optimal k for particular x to

minimize the classification error” is equivalent to “k = arg max
k

LDAk(x)”.

The “equal covariance” assumption leads to the cancellation of the quadratic

part in the normal distribution (Equation 2.7) when we are calculating the

log-ratio (Equation 2.18) for LDA. QDA further considers each class has

different covariance matrix Σk. Then the quadratic part will remain in the

quadratic discriminant function:

QDAk(x) = logφk−
1

2
(x−µk)TΣ−1

k (x−µk)− 1

2
|Σk|,where k ∈ {1, . . . , K}.

(2.20)

The discriminant rule for QDA is “k = arg max
k

QDAk(x)”.

2.2.4 k-Nearest Neighbors

Given labeled data (xi, yi), perhaps the simplest prediction rule is predicting

an input x according its nearest neighbor:

f̂(x) = yi such that ‖xi − x‖ is the smallest.

This is usually called the 1-nearest neighbor model. A natural extension is

to consider the k-nearest neighbors (kNN [Cover and Hart, 1967]) of x, call
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them x(1), . . . ,x(k), and then classify according to a majority vote:

f̂(x) = j such that
k∑
i=1

1(x(i) = j) is the largest,

where 1 is an identification function. Typically, we standardize each features

to mean 0 and variance 1, because they may be measured in different units.

The only parameter for kNN is the number of the nearest neighbors k, which

can be selected by cross validation (introduced in Section 2.4.4). The concept

of k-nearest neighbors is used in Section 2.3 for an oversampling algorithm.

2.3 Class Imbalance Problem

This section briefly describes the class imbalance problem, which is a com-

mon problem in the field of classification and is the main concern of our

research. Strictly speaking, any data that has an unequal class proportion

can be considered as imbalanced data. The common understanding in the

community of high class imbalance usually refers to the situation when

some classes are significantly under-populated among the data set like 20:1,

100:1 or 1000:1 [He and Garcia, 2008, Krawczyk, 2016]. Dealing with class

imbalance is a challenging technical problem which is important in a variety

of applications, including image classification [Buda et al., 2018], medical

science [Mac Namee et al., 2002, Li et al., 2010], fraud detection [Guo et al.,

2008], and political science [King and Zeng, 2001b]. In the real world, the

minority class usually related to a concept of higher interest than the major-

ity class like the loan default in the credit risk industry [Brown and Mues,

2012] and oil spills in satellite radar images [Kubat et al., 1998].

The performance of standard classification algorithms is restricted when

learning from imbalanced data [Visa and Ralescu, 2005]. Addressing this

challenge, various authors proposed different approaches to handle it. These

approaches can be divided into three groups, based on their mechanisms [He

and Garcia, 2008, Garćıa and Herrera, 2009]:

1. Data level: construct a balanced data set via sampling,
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2. Algorithm level: modify algorithms for learning imbalanced data (e.g.

cost-sensitive learning, active learning),

3. Combined data level and algorithm level approach.

The novel approach developed in Chapter 4, built around logistic regression,

falls most naturally in the “algorithm level” category.

2.3.1 Data level

The data level approach seeks to produce a balanced data set by modify-

ing the collection of the examples, e.g. “sampling” [Krawczyk, 2016]. Sev-

eral studies have shown that some basic classification algorithms can benefit

from learning on balanced data, which justifies the use of the sampling meth-

ods [Laurikkala, 2001, Estabrooks et al., 2004].

Random undersampling and random oversampling are two natural methods

that randomly remove samples from the majority class or randomly replicate

the minority class samples. Both of these methods can modify the class pro-

portion to any level, providing the chance that modeling can benefit from a

more balanced data set, but they bring their own problems, which may in-

fluence model performance. Random undersampling can lead to information

loss in the majority class. For random oversampling, the duplicated obser-

vations in the minority class may change the data structure hence leading

to overfitting [He and Garcia, 2008]. This is because the duplicated observa-

tions may result in a too specific decision boundary for a classifier; although

performing well on the training set, the performance on the test set may

undesirable [Mease et al., 2007].

Several informed undersampling methods are proposed to overcome the draw-

back of random undersampling. For example, Mani and Zhang [2003] pro-

posed to use k nearest neighbor (kNN) approach for informed undersampling.

Essentially, it will select a given number of the majority class observations

which is nearest to each minority class observation. Thus it will guaran-

tee the minority class is surrounded by the majority class. Similarly, Kubat

et al. [1997] proposed a “one-sided selection procedure” aiming at removing
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the “noisy” majority class observations to construct a representative subset

of the majority class observations. Here, “noisy” majority class observa-

tion means those observations from the majority class occurring far away

from the minority class. Liu et al. [2009] also proposed two informed un-

dersampling methods to overcome the drawback of random undersampling,

i.e., EasyEnsemble and BalanceCascade. EasyEnsemble method trains sev-

eral classifiers on several subsets from the majority class, then ensemble the

outputs of those classifiers. BalanceCascade method iteratively trains the

classifiers; in each iteration, the correctly classified majority class observa-

tions are removed, hence forming an undersampled data set for the next

iteration.

For informed oversampling, a widely used method is SMOTE (Synthetic Mi-

nority Over-Sampling technique), which shows good performance in applica-

tion [Chawla et al., 2002]. Different to random oversampling, SMOTE adds

artificially generated data that has the same distribution character as the

minority class, rather than by oversampling with replacement like random

oversampling. For continuous variables, the generated synthetic minority

class samples are located on the line between one minority class observa-

tion and one of its k nearest neighbors, where the k nearest neighbors are

considered within the minority class observations. We will compare the per-

formance of our approach with SMOTE when handling the class imbalance

problem.

SMOTE generates the same number of synthetic samples for each origi-

nal minority class observation, without consideration of increasing the oc-

currence of overlapping between classes [López et al., 2013]. To this end,

adaptive sampling further considers the overlap between the majority class

and the minority class, like borderline-SMOTE method [Han et al., 2005]

and adaptive synthetic sampling method [He et al., 2008], which increases

the occurrence of overlapping between classes by selectively generating syn-

thetic samples [Wang and Japkowicz, 2004]. The borderline-SMOTE method

first selects “danger” minority class observations. Here, a “danger” minority

class observation refers to a minority class observation which, in its k-nearest

neighbors, the number of the majority class observations is greater than the
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number of the minority class observations. Then, borderline-SMOTE deploy

SMOTE method on “danger” minority class observations. The adaptive

synthetic sampling method uses a density distribution Γ to automatically

decide how many synthetic samples should be generated for each minority

class observations. The distribution Γ is determined by the proportion of the

majority class observations that appeared among the k-nearest neighbors of

each minority class observation, thus, a higher proportion will lead to more

synthetic samples for that minority class observation.

Cluster-based sampling [Jo and Japkowicz, 2004] also appears in the liter-

ature. Nickerson et al. [2001] argue that balancing the class proportion is

not an effective approach when the small disjuncts appear among the minor-

ity class. Jo and Japkowicz [2004] proposed an oversampling method with

the consideration of the small disjuncts. They suggest using unsupervised

clustering methods, like K-means (see Section 2.5), to cluster both the ma-

jority class and the minority class into several small disjuncts; then randomly

oversample all of these small disjuncts to the size of the largest disjunct.

2.3.2 Algorithm level

While the data level approach advocates editing data to alleviate the im-

balance problem, the algorithm level approach seeks to modify the classifier

to learn imbalanced data. One popular approach is cost-sensitive learning,

which considering the misclassification cost between different classes. As we

described in Section 2.2.1, let C(1 → 0) represent the misclassification cost

of misclassifying a class 1 observation to class 0 and C(0 → 1) vice versa.

In a binary classification problem, the cost for misclassifying x is defined

as R(x) (Equation 2.8). We usually assume that there is no cost when an

observation is correctly classified i.e.

C(0→ 0) = C(1→ 1) = 0,

and

C(1→ 0) > C(0→ 1) > 0
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when an observation is misclassified to the wrong class in the highly im-

balanced scenario. The objective of cost-sensitive learning is to produce a

classifier that minimizes the overall cost on the training set [Elkan, 2001].

For application, there are two approaches to conduct cost-sensitive learning.

The first approach is introducing classifiers that are cost-sensitive. Because

these techniques are specific to a particular classifier, there is no uniform

framework for this type of cost-sensitive learning. We consider an example

here for cost sensitive logistic regression [Bahnsen et al., 2014]. Let

pi = Pr(Y = 1|X = xi) =
e(β0+βTxi)

1 + e(β0+βTxi)
,

where xi is an observation, then the overall cost function for M observations

is
1

M

M∑
i=1

[
yi(1− pi)C(1→ 0) + (1− yi)piC(0→ 1)

]
. (2.21)

The objective of cost sensitive logistic regression is solving (β̂0, β̂) to minimize

the cost function (2.21), which can be achieved using numerical methods.

Another way to conduct cost sensitive learning is by designing a general

method to modify a cost insensitive classifier to become cost sensitive. For

example, for a given threshold t (see Section 2.4.1 for definition), the total

misclassification cost for a set of observations can be calculated, and it is

a function of t. The researcher can obtain this misclassification cost curve

by calculating each possible threshold (i.e. the predicted probability of each

observation). The threshold adjusting method [Sheng and Ling, 2006] simply

chooses the best threshold, which minimizes this curve.

We can also achieve cost-sensitive learning by rebalancing the data set. Elkan

[2001] proves that the number of class 0 observations in the training set should

be rebalanced to

the number of the class 0 observations× pπ1

(1− p)π0

,

in order to make a classifier cost-sensitive, where π0, π1 are the prior propor-
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tions of class 0 and class 1, and

p =
C(0→ 1)

C(0→ 1) + C(1→ 0)
.

If a classification algorithm can use weights on training set, the weight for

observations in class 0 can be directly set to pπ1/((1 − p)π0), otherwise we

can use undersampling method.

In addition to cost-sensitive learning, there are several modified classifiers

targeting learning imbalanced data, which are algorithm level methods. Per-

haps the most famous is balanced random forest [Chen et al., 2004]. Bal-

anced random forest modifies the random forest as follows: for each tree in

a random forest [Breiman, 2001], it will draw a bootstrap sample from the

minority class and a bootstrap sample from the majority class with equal

size to the size of the minority class. This technique may avoid the disap-

pearance of the minority class when generating a bootstrap sample from the

whole training set, hence provide a good predictive performance [Fitzpatrick

and Mues, 2016].

2.3.3 Mitigation Methods for Highly Imbalanced Logistic Re-

gression

Apart from general mitigation methods to handle the class imbalance prob-

lem (e.g. sampling and cost-sensitive learning introduced in the previous sec-

tion), particular attention has been paid to mitigation methods for highly im-

balanced logistic regression by several authors. As mentioned in Section 2.2.2,

maximum likelihood estimation (MLE) is a widely used parameter estimation

method for logistic regression. King and Zeng [2001b] investigate the bias of

the intercept term in maximum likelihood estimates of logistic regression for

highly imbalanced data. Assuming Pr(Y = 1|X = x) = eβ0+βT x

1+eβ0+βT x
, they find

the bias of the MLE β̂0 is

E(β̂0 − β0) ≈ p̄− 0.5

Mp̄(1− p̄)
, (2.22)
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where p̄ is the proportion of the minority class (Y = 1) in the sample set and

M is the sample size. For imbalanced data, p̄ can be very small, resulting

in large E(β̂0 − β0). They proposed two correction methods based on prior

information about the proportion of the minority class (which is denoted by

τ):

• prior correction: the corrected intercept term is

β̂0 − log

[
1− τ
τ

p̄

1− p̄

]
, (2.23)

• weighting correction: find the MLE through a weighted log-likelihood

function, where the weight for each minority class observation is τ/p̄

and for each majority class observation is (1− τ)/(1− p̄)∗.

Some literature also proposes “algorithm level” approaches to mitigate the

class imbalance problem for logistic regression. For example, Dong et al.

[2014] proposed a modified logistic regression by combining the recall metric.

Consider the log-likelihood function (2.11) for logistic regression

l(β) =
n∑
i=1

log
eβ0+βTx1i

1 + eβ0+βTx1i
+

N∑
i=1

log
1

1 + eβ0+βTx1i
,

where x1i are the minority class observations and x0i are the majority class

observations; we can further define R1 =
∑n

i=1 Pr(Y = 1|X = x1i)/n and

R0 =
∑N

i=1 Pr(Y = 1|X = x0i)/N as the recall ratio for class 1 and class 0

respectively. The objective function they propose is

lmodified(β) = l(β) + CM(R1 +R0), (2.24)

where C ∈ [0, 1] to control the trade-off between the l(β) and the recall.

Equation (2.24) attempts to enhance the recall of the majority class and

the minority class simultaneously for better predictive performance on both

classes.
∗This method works for the bias of the intercept term in MLE; however, as we will

discuss in Section 3.2, the slope vector obtained by weighted likelihood method still suffer
from highly imbalanced data.
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Table 2.1: Confusion Matrix for Binary Classification.

Predicted

Class 1 Class 0

A
ct

u
al Class 1 True Positive (TP) False Negative (FN)

Class 0 False Positive (FP) True Negative (TN)

2.4 Performance Assessment for Classification

For the purpose of assessing the prediction performance of classifiers in this

thesis, in this section, we introduce several commonly used performance met-

rics and the corresponding measurement procedures. We will also derive some

theoretical results for a widely used performance metric, namely area under

the receiver operating characteristic curve (AUC), when applied in the high

imbalance scenario. This is our original work.

2.4.1 Confusion Matrix

A binary classifier will predict the posterior probability or assign a class

label (positive/negative) for each sample in the test set. Let the positive

class be denoted by Y = 1 and the negative class denoted by Y = 0; in

cases when the posterior probability is calculated, the threshold t, as a cutoff

point, will be used for assigning an observation to positive class 1 when

Pr(Y = 1|X = x) > t. Table 2.1 is a 2 × 2 confusion matrix for binary

classifiers. Here, FP (false positive) is the fraction of negative samples that

are classified as positive. FN (false negative), TP (true positive), and TN

(true negative) have similar meaning.

For a binary classification problem, many performance metrics can be cal-

culated from the confusion matrix. A list of common performance metrics,

derived from this confusion matrix, is displayed in Table 2.2.
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Table 2.2: Performance Metrics; P = TP + FN ; N = FP + TN .

Performance Metric Equation

Accuracy (TP + TN)/(P +N)
Error rate 1− (TP + TN)/(P +N)
False positive rate or False alarm rate FP/N
Precision TP/(TP + FP )
True positive rate or Recall or Sensitivity TP/P
Specificity TN/N
F measure 2/ 1

Precision
+ 1

Recall

2.4.2 Area Under Receiver Operating Characteristic Curve

The receiver operating characteristic (ROC) curve [Fawcett, 2006] displays

true positive rate (TPR on the vertical axis) against false positive rate (FPR

on the horizontal axis) in a plot simultaneously as the threshold t varies.

The area under the ROC curve (AUC) can be used to summarize the overall

performance of a model. AUC can be interpreted in various ways, one in-

terpretation is: the AUC is the probability of the event “when a randomly

selected class 1 sample has a higher predicted probability than that for a ran-

domly selected class 0 sample” [Thomas, 2009, p. 115]. Thus, higher AUC is

preferred.

For the calculation of the AUC, we can define the “score of an observation x”

as s(x) = Pr(Y = 1|X = x). Then, we can further define f0(s) and f1(s) as

the probability density function of the scores for the negative class and the

positive class respectively, with the cumulative distribution function F0(s)

and F1(s). In this setting, for a certain threshold t, we have TPR = 1−F1(t)

and FPR = 1− F0(t). Then the ROC curve is the plot of 1 − F1(t) against

1− F0(t) and

AUC =

∫ ∞
−∞

(1− F1(t))f0(t)dt. (2.25)

In this section, for simplicity, let us use A to denote the AUC. In application,

to obtain the estimate of A (denoted by Â), we need the true label and the

predicted probability of the observations in a test set. The simplest way is

to produce a plot of the ROC curve, and calculate Â by using quadrature.
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Hand and Till [2001] also give a way to calculate Â by ranking the scores

s(xi) on the test set to replace the theoretical function F1 and f0 by the

observed values. We will discuss the variance of Â in the highly imbalanced

data later.

The AUC is a commonly used model performance metric since the AUC

transforms the ROC curve to a single numeric value, does not require error

cost information, and summaries the performance across all thresholds [Wu

et al., 2007, He and Garcia, 2009]. It is objective, and easy for calculation and

interpretation. Researchers can get the same AUC given the same trained

classifier and an identical test set, which let different classification models’

performance can be easily compared by naturally ranking their AUC for a

given data set [Kaymak et al., 2012]. As it can be seen in some benchmark

comparison studies of classification algorithms performance for credit scor-

ing [Baesens et al., 2003, Lessmann et al., 2015], for the consumer credit risk

industry, using the AUC as a performance metric is a consistent standard

practice and also explicitly mentioned in the Basel II capital accord [Less-

mann et al., 2015]. Given the importance of the AUC, we use it as an

important performance metric in our experiments.

However, the AUC has its pitfalls as well. The incoherency of the AUC

has been investigated by Hand and Anagnostopoulos [2013], as we explain

now. Let the cost ratio between the misclassification cost be defined by

C(0→ 1)/C(1→ 0), where C(1→ 0) represents the misclassification cost of

misclassifying a class 1 observation to class 0 and C(0→ 1) vice versa. Once

this cost ratio is determined, it will correspond to a optimal classification

threshold t, which can minimize the overall misclassification cost on a given

data set. Hand and Anagnostopoulos [2013] show that one can obtain the

AUC for a classifier on a given data set by integrating the overall misclassifi-

cation loss on a chosen distribution of threshold t. In particular, for calculat-

ing the AUC, this distribution of t is determined by the posterior probability

calculated from the classifier itself. Putting it in different words, considering

the link between the threshold t and the cost ratio between C(0 → 1) and

C(1 → 0), using the AUC means assuming using different misclassification

costs for different classifiers (i.e. misclassification cost depend on classifiers),
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which is questionable since we usually believe these misclassification costs

are problem domain dependent [Kaymak et al., 2012]. A new measure called

the H-measure [Hand, 2009], which is a remedy to this problem, will be

introduced in Section 2.4.3.

The variance of the AUC for High Class Imbalance Data

The AUC is calculated from the predicted probability Pr(Y = 1|X = x) and

the true label on a test set, which does not require specifying a threshold.

This makes it one of the most popular performance metrics when assessing

classifiers. In this section, we focus on the variance of the estimated Â in

highly imbalanced data. This section is original work.

Hanley and McNeil [1982] derived the variance of an empirical AUC as,

s2(Â) =
1

nNnP

[
A(1− A) + (np − 1)(Q1 − A2) + (nN − 1)(Q2 − A2)

]
,

(2.26)

where 0.5 < A < 1, nN denotes the number of the negative class observations,

nP denotes the number of the positive observations, Q1 is the probability that

the predicted probability of two randomly selected positive observations ex-

ceeds the predicted probability of a randomly selected negative observation

and Q2 is the probability that the classification score of two randomly se-

lected negative observations exceeds the predicted probability of a randomly

selected positive observation. Q1 and Q2 are two complex functions based on

the populations, but Hanley and McNeil [1982] give a good approximation of

Q1 and Q2 which are A
2−A and 2A2

1+A
respectively (see [Krzanowski and Hand,

2009, p. 79]). Without loss of generality, let nN > nP , which means the

positive class is our minority class.

For simplicity, we use x ∈ Z+ to represent the number of the positive (mi-

nority) class observations nP in this section. If M denotes the number of the

25



total observations, then we can rewrite Equation (2.26) as a function of x,

f(x) =
1

x(M − x)

[
A(1− A) + (x− 1)

(
A

2− A
− A2

)
+ (M − x− 1)

(
2A2

1 + A
− A2

)]
,

(2.27)

and with a bit of foresight we require 2x < M + 1, which is obviously true

in the high imbalance scenario. Here, we want to show:

Proposition 1. Formula (2.27) f(x) is a decreasing function for fixed M

when 0.5 < A < 1.

The decreasing function (2.27) means the variance of the AUC, s2(Â), will

increase when the data is more imbalanced.

Proof. For simplicity, now we consider the log transform of f(x),

g(x) = log(f(x))

= log

[
A(1− A) + (x− 1)

(
A

2− A
− A2

)
+ (M − x− 1)

(
2A2

1 + A
− A2

)]
− log(x)− log(M − x).

(2.28)

Here, we seek to show g(x)−g(x−1) < 0 when x is a positive integer between

1 and M+1
2

:

g(x)−g(x− 1) = log(x− 1) + log(M − x+ 1)− log(x)− log(M − x)

+ log

(
(A(1− A) + (x− 1)( A

2−A − A
2) + (M − x− 1)( 2A2

1+A
− A2))

(A(1− A) + (x− 2)( A
2−A − A2) + (M − x)( 2A2

1+A
− A2))

)
.

(2.29)

We consider the first line of Equation (2.29)

log(x− 1) + log(M − x+ 1)− log(x)− log(M − x)

=log

(
−x2 + (M + 2)x− (M + 1)

−x2 +Mx

)
.

(2.30)
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Because 2x < M + 1, we know(
−x2 + (M + 2)x− (M + 1)

)
−
(
−x2 +Mx

)
= 2x− (M + 1) < 0,

so we have
−x2 + (M + 2)x− (M + 1)

−x2 +Mx
< 1;

The above results show that Equation (2.30) must be smaller than 0. Now,

we consider the second line of Equation (2.29), let

q(x) = A(1−A)+(x−1)

(
A

2− A
− A2

)
+(M−x−1)

(
2A2

1 + A
− A2

)
, (2.31)

and with some simple calculation we can simplify q(x) to

q(x) =

((
A

2− A
− A2

)
−
(

2A2

1 + A
− A2

))
x

+

(
A(1− A)−

(
A

2− A
− A2

)
+ (M − 1)

(
2A2

1 + A
− A2

))
=
A(1− A)(1− 2A)

(2− A)(1 + A)
x

+

(
A(1− A)−

(
A

2− A
− A2

)
+ (M − 1)

(
2A2

1 + A
− A2

))
.

(2.32)

Since 0.5 < A < 1, we can show that

q(x)− q(x− 1) =
A(1− A)(1− 2A)

(2− A)(1 + A)
< 0,

which means that we have q(x) < q(x−1) for the positive integer x. Consider

the second line of Equation (2.29), we have

log
q(x)

q(x− 1)
< log(1) = 0.

Thus we have the result g(x)− g(x− 1) < 0.

We have shown that s2(Â) is increasing when the imbalance level increases.

This means that the variance of the empirical AUC is larger in the highly
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imbalanced scenario, which makes the marginal AUC difference between dif-

ferent classifiers on the highly imbalanced data difficult to interpret.

Further considering the proportion of the minority class denoted by ρ = x/M ,

we can rewrite Equation (2.26) as

s2(Â) =
1

Mρ(M −Mρ)

[
A(1− A) + (Mρ− 1)

(
A

2− A
− A2

)
+ (M −Mρ− 1)

(
2A2

1 + A
− A2

)]
=

1

M2ρ(1− ρ)

[
A(1− A)−

(
A

2− A
− A2

)
−
(

2A2

1 + A
− A2

)
+Mρ

(
A

2− A
− A2

)
+M(1− ρ)

(
2A2

1 + A
− A2

)]
.

(2.33)

As the imbalance level increases, ρ→ 1/M , we will have

s2(Â) =

(
2

1 + A
− 1

)
A2 + A

1− A
1 + A

1

M − 1
. (2.34)

Equation (2.34) shows that the variance of the empirical AUC in extremely

imbalanced scenario can be separated into two fractions: an unavoidable part(
2

1+A
− 1
)
A2 (shows in Figure (2.1) with A varying between 0.5 and 1) and

a term A(1−A)
(1+A)(M−1)

which can be reduced by increasing M .

2.4.3 H-measure

The H-measure is a coherent alternative to the AUC [Hand, 2009]. As dis-

cussed in [Hand, 2009], using the AUC assumes the misclassification cost is

classifier dependent, thus, a remedy is incorporating a universal standard dis-

tribution to specify the relative severities of different misclassification errors.

Hand [2009] proposes to use the Beta function

uα,β(c) =
cα−1(1− c)β−1

B(1;α, β)
,where B(1;α, β) =

∫ 1

0

c(α−1)(1− c)(β−1)dc,
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Figure 2.1: the Curve of the Function
(

2
1+A − 1

)
A2 between 0.5 and 1

as a simple solution and the choice of parameters α, β depends on the cost

of misclassifying each class (setting α = β leads to a symmetric Beta distri-

bution). The general form of H-measure is

H = 1−
∫
Q(T (c); b, c)uα,β(c)dc

π0

∫ π1

0
cuα,β(c)dc+ π1

∫ 1

π1
(1− c)uα,β(c)dc

, (2.35)

where F0 and F1 are the cumulative distribution function of scores for the

class 0 and 1 (the same definition in the previous section), b and c are the

misclassification costs, π0 and π1 are the prior proportions of class 0 and 1,

the loss function

Q(T (c); b, c) = {cπ0(1− F0(T (c)) + (1− c)π1F1(T (c))}b
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and

T (c) = arg min
t
{cπ0(1− F0(t)) + (1− c)π1F1(t)}.

Without more information about the misclassification costs in the appli-

cations studied throughout this thesis, we use the default setting {α =

π1 + 1, β = π0 + 1, b = π0, c = π1} proposed by its creators [Hand, 2009,

Hand and Anagnostopoulos, 2014] to calculate the H-measure.

As an alternative to the AUC, the H-measure is not problem-free. The H-

measure can face the risk of losing the fundamental requirement for a perfor-

mance metric, which is objectiveness, because the choice of {α, β}, and the

assumption of the Beta function itself can be replaced by others. This may

bring concern that different researchers will have different H-measure values

under different assumptions.

2.4.4 Measurement Methods

In this section, we discuss two measurement methods: cross-validation and

the bootstrap. These are resampling methods that iteratively fitting the

model on the resampled data, which can give the additional information of

the fitted model. For example, they provide the estimates of the test-set

AUC and H-measure with their corresponding standard deviation. Both of

them will be used in experiments in Chapter 4.

K Fold Cross Validation

The idea of K fold cross validation is to randomly divide the data into K

equal sized folds. In each iteration, the kth fold is left out as a validation fold,

where k ∈ 1, . . . , K. We fit the model to the other K − 1 folds (combined)

and then obtain the performance measure (e.g. error rate, the AUC, and area

under the PR-curve) on the left out kth fold. This is done iteratively for each

fold k and then the results are averaged. In each iteration, the validation

fold is distinct from the other K − 1 folds for training, which is important

since it generally results in a less biased and less optimistic estimate of the

model performance [James et al., 2013, p. 181]. Setting K to the sample
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size yields to the leave one out cross validation. Choosing K = 5 or K = 10

is a standard practice and generally be a good trade-off between bias and

variance [Breiman and Spector, 1992].

Bootstrap

The bootstrap [Efron and Tibshirani, 1986] is a flexible statistical tool that

can be used to quantify the uncertainty associated with a given estimator

or a statistical learning method. The bootstrap obtains B distinct data

sets by repeatedly sampling observations B times from the original data set

with replacement. The sample size of these “bootstrap sample sets” are the

same size as the original data (both sample size are M). As a result, some

observations may appear multiple times in a given bootstrap data set and

some may disappear. Those observations not appearing in a given bootstrap

sample can form a “out of bootstrap sample set”. From B different bootstrap

data sets, we can refit the model of interest B times. This can be used to

estimate the mean and the standard deviation of the parameters of the model.

The split between K − 1 training folds and kth validation fold is important

for estimating the error rate, the AUC, or the area under the PR-curve in

K fold cross validation. To estimate the performance measure by using the

bootstrap method, we can think about using each “bootstrap sample set” as

our training set, and the “out of bootstrap sample set” as our validation set.

The B error rates, the AUCs, or the areas under the PR-curve on the out of

bootstrap validation set can be used to estimate the mean and the standard

deviation of those corresponding statistics. This process usually being called

“out of bag (OOB) estimate”. Actually, for a large enough data set, since

Pr(observation i ∈ a “boostrap sample set” ) = 1− (1− 1

M
)M

≈ 1− e−1 = 0.632,
(2.36)

where M is the number of the observations, roughly 63.2% observations will

be used as training data and 36.8% observations will be used as validation

data in each “OOB estimate” iteration.
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2.5 Clustering Methods

Clustering methods are a type of learning algorithm used to discover data

structures [Hastie et al., 2009, p. 485]. Clustering aims at learning the under-

lying structure of a data set based on the resemblance between observations,

without a supervisor providing the correct answer. To be specific, clustering

splits data into several clusters such that points in the same cluster are “more

similar” than points in different clusters. In this section, we will briefly in-

troduce two clustering methods: K-means and hierarchical clustering. They

will be used to support relabeling idea in Chapter Four.

2.5.1 K-means

The K-means algorithm [Hartigan and Wong, 1979] classifies a given data

set into a pre-specified number (K) of clusters. Given p-dimensional obser-

vations x1, · · · ,xM , and dissimilarity measure d(xi,xj), we use C(xi) = k

to denote a clustering function C which assigns observation xi to group

k ∈ {1, · · · , K}. When focusing on Euclidean space (dissimilarities are

d(xi,xj) = ‖xi − xj‖2
2), the within-point scatter can be written as

W =
1

2

K∑
k=1

1

nk

∑
C(xi)=k

∑
C(x′i)=k

‖xi − xi′‖2

=
K∑
k=1

∑
C(xi)=k

‖xi − xk‖2,

(2.37)

where xk is the mean vector of group k, and nk is the number of vectors in

group k. Thus, we want to choose C to minimize the following equation

min
C

K∑
k=1

∑
C(xi)=k

‖xi − xk‖2. (2.38)
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Another fact is that
∑

C(xi)=k
‖xi − ck‖2 is minimized by ck = xk. Thus, the

problem is the same as minimizing the following equation

min
C,c1,··· ,ck

K∑
k=1

∑
C(xi)=k

‖xi − ck‖2. (2.39)

Algorithm 1: K-means Clustering

1: Pick K points at random from x1, · · · ,xM as the initial cluster centers

c1, · · · , ck, then repeat:

• 1 Minimize over C: for i ∈ {1, · · · ,M}, classify xi based on the

closest ck (i.e. C(xi) = k).

• 2 Minimize over c1, · · · , cK : for k ∈ {1, · · · , K}, let the average

vector of cluster k be the new cluster center (ck = xk).

2: End the iteration until within-cluster variation∑K
k=1

∑
C(xi)=k

‖xi − ck‖2 doesn’t change.

The K-means clustering algorithm minimizes Equation (2.38) by alternately

minimizing over C, c1, · · · , cK . In words, K-means classifies each vector based

on the closest center, then calculates the new average vector in each cluster

as each cluster’s new center. One of the disadvantages of K-means is that

there is a need to choose the number of clusters, which is usually an unknown

prior.

2.6 Programming Language and Computational Package

Here, we list the programming language and the computational packages we

continuously used through the thesis:

• logistic regression: we use glm function in R,

• penalized logistic regression: we use glmnet package in R,

• multinomial logistic regression: we use mnlogit package in R,
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• AUC and H-measure: we use hmeasure package in R with the default

setting for calculating the H-measure, i.e. {α = π1 + 1, β = π0 + 1, b =

π0, c = π1} in Equation (2.35),

• the genetic algorithm: we use GA package in R,

• SMOTE oversampling: we use SMOTE function in DMwR package in R.

2.7 Summary

This chapter introduces the relevant background material on the probability

theory, classification methods and the corresponding performance metric,

clustering algorithms, and high class imbalance problem. These form the

foundation of the main contents of the thesis.

As introduced in Section 2.3, modeling imbalanced data is a challenging

problem, fraught with difficulties. The literature suggests that class imbal-

ance is not well understood, and no single method is apparently superior to

the others, in general. The exception is logistic regression, for which deeper

mathematical insights are available, as we will discuss in the next chapter.
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3
Highly Imbalanced Logistic

Regression

Logistic regression is designed for modeling the posterior probability of each

class (Section 2.2.2) and widely used in a wide range of fields by reason of

its strong theoretical underpinning and high interpretability. As discussed in

Section 2.3, the class imbalance is a common problem in the real world and

becoming more widespread because of the increasing availability of data. In

this chapter, we concentrate on logistic regression and related methods in

highly imbalanced data sets.

Owen [2007] provides a striking asymptotic result which suggests that, in

cases of extreme class imbalance, the minority class only contributes to the

logistic regression estimation via its sample mean vector. This raises con-

cerns about the utility of such models, and potential unwanted consequences.

Two natural choices to alleviate these problems are penalizing and weighting

the likelihood [Wang et al., 2015, King and Zeng, 2001b]. However, by ex-

tending Owen’s result, we show that penalizing and weighting the likelihood

are insufficient for handling the class imbalance problem. In fact, penalized

logistic regression makes matters worse. A similar result for multinomial lo-
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gistic regression with a specific defined highly imbalanced multi-class setting

also being discussed. This result is a preliminary for our proposed relabeling

approach in Chapter 4.

The outline of this chapter is as follows. The first section provides the back-

ground to highly imbalanced logistic regression. Section 3.2 and Section 3.3

consider methods that extend logistic regression. New theorems are given for

infinitely imbalanced weighted logistic regression and penalized logistic re-

gression. Infinitely imbalanced multinomial logistic regression theory is given

in Section 3.4. Part of this chapter are from our published paper [Li et al.,

2019].

3.1 Introduction to Infinitely Imbalanced Logistic Regres-

sion

In this section, we introduce the boundary behavior of logistic regression in

the infinitely imbalanced data set [Owen, 2007] and a result about the exis-

tence of the maximum likelihood estimate (MLE) for logistic regression [Sil-

vapulle, 1981]. They are the preparation needed for further investigation of

highly imbalanced logistic regression in Sections 3.2 and 3.3.

3.1.1 Silvapulle’s Results about Existence of MLE for Logis-

tic Regression

Here, and when convenient in the sequel, we use the following notation:

consider n p-dimensional feature vectors from class Y = 1 (the minority

class), denoted by x11, · · · ,x1n, and N feature vectors from class Y = 0,

x01, · · · ,x0N . In order to accommodate the intercept term in the regres-

sion parameters, let z0i = (1,x0i) for i = (1, · · · , N) and z1i = (1,x1i)

for i = (1, · · · , n). Let S, F be the two relative interiors of the convex

cones [Rockafellar, 2015, p. 10] generated by x11, · · · ,x1n and x01, · · · ,x0N

36



respectively,

S =

{
n∑
i=1

kiz1i|ki > 0

}
and F =

{
N∑
i=1

kiz0i|ki > 0

}
. (3.1)

When S∩F 6= Ø, then an unique MLE for logistic regression exists. However,

if S∩F = Ø then no MLE exists [Silvapulle, 1981]. Put differently, the MLE

for logistic regression only exists if the classes are not linearly separable. This

result is required for the arguments of the following sections.

3.1.2 Owen’s Results about Infinitely Imbalanced Logistic Re-

gression

Here, we introduce the Owen [2007] result about the limit behavior of logistic

regression in infinitely imbalanced problems. Following the notation in the

previous section, we focus on the case when n � N . To demonstrate the

result, Owen centers logistic regression around the minority class mean vector

x =
∑n

i=1 x1i/n. Since in the infinitely imbalanced case N →∞, Owen also

supposes that there is a good approximation for the conditional distribution

of x given Y = 0 (majority class); denoted by F0. Thus, it is shown that the

log-likelihood function (2.10), can be written as

l(β0, β) = nβ0 −
n∑
i=1

log(1 + eβ0+(xi−x)T β)−N
∫

log(1 + eβ0+(x−x)T β)dF0(x).

(3.2)

It is convenient to separate the intercept and slope terms in the parameter

vector, thus β0 denotes the intercept term, β denotes the slope terms, and

xi denotes minority class data only. Note that from here on, in this chapter,

{xi, i ∈ [1, 2, · · · , n]} denotes only minority class data. Owen proposes the

following definition to express the overlap condition (Section 3.1.1) in the

case of infinitely imbalanced logistic regression.

Definition 1. (Definition 3 in [Owen, 2007]) The distribution F on Rp has
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a point x? surrounded if ∫
(x−x?)Tψ≥ε

dF (x) > δ (3.3)

holds for some ε > 0, some δ > 0 and all ψ ∈ Ψ. Here Ψ = {ψ ∈ Rd|ψψT =

1}.

An interesting example of the majority class distribution F0 fails to satisfy

this surrounded condition can be described with the following categorical

variable example. Assume we have a univariate predictor variable X ∈ {0, 1};

• for the minority class Y = 1 cases, X will always be 0 and never be 1,

• for the majority class Y = 0 cases, X will take 0 or 1.

Then the minority class mean x̄ = 1, stands on the boundary of the support

of the distribution F0. In this particular case, ψ should be either 1 or −1.

When ψ = −1, for any ε > 0, the integration (3.3) will either not exist or be

0, thus it will never greater than δ for some δ > 0, which indicates F0 fails

to satisfy the surrounded condition.

Owen also assumes that∫
exT β(1 + ‖x‖)dF0(x) <∞ (3.4)

for all β ∈ Rp, to ensure that the F0 does not have tails that are so heavy

that a degenerate logistic regression will arise. Then the main result is

Theorem 2. (Theorem 8 in [Owen, 2007]) Let n ≥ 1, and x1, · · · ,xn ∈
Rp be fixed. Suppose that F0 satisfies the tail condition (Equation 3.4) and

surrounds the class mean vector x =
∑n

i=1 xi/n as described in Definition 1.

Then the maximizer β̂ of l(β0, β) given by Equation (3.2) satisfies

lim
N→∞

∫
exT β̂xdF0(x)∫
exT β̂dF0(x)

= x. (3.5)

An immediate consequence of Theorem 2 is:
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Corollary 3. When N →∞, under the same conditions in Theorem 2, logis-

tic regression only depends on the minority class data {x1, · · · ,xn} through

the minority class mean vector x

Proof. As N → ∞, the maximizer β̂ of the log-likelihood function (3.2)

satisfy

g(β̂) =

∫
exT β̂xdF0(x)∫
exT β̂dF0(x)

− x = 0.

Function g(β̂) is specified by F0(x) and x̄, thus the solution of g(β̂) = 0 only

depends on F0(x) and x̄.

This theorem can be further understand as we could replace {x1, · · · ,xn}
by one vector, the mean vector of the minority class, and obtain the same

coefficient estimates of β in the limit N → ∞. Theorem 2 is an asymptotic

theoretical result and Owen’s simulation [Owen, 2007, p.763 Table 1] shows

that the convergence phenomena happens quickly when N/n > 100.

3.1.3 Does Owen’s Results Really Matter?

Theorem 2 is a potentially worrying finding since it suggests the broader

distributional structure in the minority class is not taken into account by

highly imbalanced logistic regression. Owen [2007] also mentions the issues

particularly related to the presence of cluster structure in the minority class,

of which the overall minority class mean vector would be a poor representa-

tion. In this section, we demonstrate this problem with different simulations.

To be specific, we want to compare the logistic regression performance with

different number of the majority class observations N when the minority

class has

1. no cluster structure, Gaussian distributed with the same variance as

the majority class,

2. no cluster structure, Gaussian distributed with smaller variance than

the majority class,
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3. two close clusters, and each cluster is Gaussian distributed with the

same variance as the majority class,

4. two close clusters, and each cluster is Gaussian distributed with smaller

variance than the majority class,

5. two well separated clusters, and each cluster is Gaussian distributed

with the same variance as the majority class,

6. two well separated clusters, and each cluster is Gaussian distributed

with smaller variance than the majority class,

to answer the question “does Owen’s results really matter”. We fix the

number of the minority class observations n = 100 and increase the number

of the majority class observations N from 100 to 10000, for making the data

more imbalanced; this follows the statement in Theorem 2. We simulate the

above six scenarios in a two dimensional space; where

• for no cluster structure scenario: the minority class mean locates at

(1, 1),

• for two close clusters scenario: two cluster means locate at (1.3, 0.7)

and (0.7, 1.3),

• for two well separated clusters scenario: two cluster means locate at

(0, 2) and (2, 0).

We report the the average H-measure and AUC with its corresponding stan-

dard deviation in each simulation (each simulation is repeated 1000 times).
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Simulation 1: no cluster structure, same variance between the

majority and the minority class

In this simulation, we generate N points X ∼ N(µ0,Σ0) as the majority class

Y = 0. Then n = 100 points are generated following X ∼ N(µ1,Σ1) as the

minority class Y = 1. Here

µ0 = [0, 0], µ1 = [1, 1],

Σ0 =

[
1 0

0 1

]
, and Σ1 =

[
1 0

0 1

]
.

The number of the majority class observations N varies in {100, 500, 1000,

5000, 10000}, and for each combination of (n,N), we repeat the simulation

1000 times by training a logistic regression on the training set and apply it

on the test set. Table 3.1 gives the results.

Table 3.1: Simulation 1: the average H-measure and AUC with their corresponding stan-
dard deviation on the test set (1000 iterations).

N H-measure AUC
100 0.4259 (0.0558) 0.8524 (0.0251)
500 0.4012 (0.0442) 0.8526 (0.0199)

1000 0.3923 (0.0422) 0.8522 (0.0195)
5000 0.3841 (0.0400) 0.8527 (0.0185)

10000 0.3825 (0.0393) 0.8524 (0.0184)
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Simulation 2: no cluster structure, the minority class has

smaller variance than the majority class

In this simulation, we generate N points X ∼ N(µ0,Σ0) as the majority class

Y = 0. Then n = 100 points are generated following X ∼ N(µ1,Σ1) as the

minority class Y = 0. Here

µ0 = [0, 0], µ1 = [1, 1],

Σ0 =

[
1 0

0 1

]
, and Σ1 =

[
0.25 0

0 0.25

]
.

The number of the majority class observations N varies in {100, 500, 1000,

5000,10000}, and for each combination of (n,N), we repeat the simulation

1000 times by training a logistic regression on the training set and apply it

on the test set.

Table 3.2: Simulation 2: the average H-measure and AUC with their corresponding stan-
dard deviation on the test set (1000 iterations).

N H-measure AUC
100 0.5983 (0.0548) 0.9049 (0.0207)
500 0.5362 (0.0376) 0.9043 (0.0117)

1000 0.5159 (0.0353) 0.9048 (0.0106)
5000 0.4981 (0.0316) 0.9041 (0.0087)

10000 0.4946 (0.0299) 0.9041 (0.0081)

Simulation 1 and 2 show that, in this contrived setting, as the number of the

majority class N increases, there is no downward trend in the AUC value.

However, we can observe a decline regarding the H-measure.
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Simulation 3: the minority class has close cluster structure,

same variance between each minority class cluster and the ma-

jority class

In this simulation, we generate N points X ∼ N(µ0,Σ0) as the majority

class Y = 0. Then n1 = 50 points are generated following X ∼ N(µ1,Σ1)

and n2 = 50 points are generated following X ∼ N(µ2,Σ2). n1 and n2 are

combined as the minority class Y = 0 (i.e. n = n1 + n2 = 100 minority class

observations). Here

µ0 = [0, 0], µ1 = [1.3, 0.7], µ2 = [0.7, 1.3]

Σ0 =

[
1 0

0 1

]
, and Σ1 = Σ2 =

[
1 0

0 1

]
.

The number of the majority class observations N varies in {100, 500, 1000,

5000, 10000}, and for each combination of (n,N), we repeat the simulation

1000 times by training a logistic regression on the training set and apply it

on the test set.

Table 3.3: Simulation 3: the average H-measure and AUC with their corresponding stan-
dard deviation on the test set (1000 iterations).

N H-measure AUC
100 0.6566 (0.0536) 0.9432 (0.0154)
500 0.6326 (0.0406) 0.9396 (0.0120)

1000 0.6251 (0.0380) 0.9391 (0.0112)
5000 0.6189 (0.0373) 0.9392 (0.0111)

10000 0.6192 (0.0371) 0.9390 (0.0110)
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Simulation 4: the minority class has close cluster structure,

and each minority class cluster has smaller variance than the

majority class

In this simulation, we generate N points X ∼ N(µ0,Σ0) as the majority

class Y = 0. Then n1 = 50 points are generated following X ∼ N(µ1,Σ1)

and n2 = 50 points are generated following X ∼ N(µ2,Σ2). n1 and n2 are

combined as the minority class Y = 0 (i.e. n = n1 + n2 = 100 minority class

observations). Here

µ0 = [0, 0], µ1 = [1.3, 0.7], µ2 = [0.7, 1.3]

Σ0 =

[
1 0

0 1

]
, and Σ1 = Σ2 =

[
0.25 0

0 0.25

]
.

The number of the majority class observations N varies in {100, 500, 1000,

5000, 10000}, and for each combination of (n,N), we repeat the simulation

1000 times by training a logistic regression on the training set and apply it

on the test set.

Table 3.4: Simulation 4: the average H-measure and AUC with their corresponding stan-
dard deviation on the test set (1000 iterations).

N H-measure AUC
100 0.8209 (0.0447) 0.9763 (0.0103)
500 0.7895 (0.0306) 0.9741 (0.0057)

1000 0.7836 (0.0266) 0.9740 (0.0045)
5000 0.7749 (0.0241) 0.9734 (0.0035)

10000 0.7716 (0.0230) 0.9731 (0.0033)

Simulation 3 and 4 show that, in this contrived setting, as the number of the

majority class N increases, there is a downward trend in AUC. For example,

the difference of the AUC value between N = 100 and N = 1000 is greater

than one times their corresponding standard deviation in Table 3.4. The

H-measure value also decreases when N increases.
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Simulation 5: the minority class has well separated cluster

structure, same variance between each minority class cluster

and the majority class

In this simulation, we generate N points X ∼ N(µ0,Σ0) as the majority

class Y = 0. Then n1 = 50 points are generated following X ∼ N(µ1,Σ1)

and n2 = 50 points are generated following X ∼ N(µ2,Σ2). n1 and n2 are

combined as the minority class Y = 0 (i.e. n = n1 + n2 = 100 minority class

observations). Here

µ0 = [0, 0], µ1 = [0, 2], µ = [2, 0]

Σ0 =

[
1 0

0 1

]
, and Σ1 = Σ2 =

[
1 0

0 1

]
.

The number of the majority class observations N varies in {100, 500, 1000,

5000, 10000}, and for each combination of (n,N), we repeat the simulation

1000 times by training a logistic regression on the training set and apply it

on the test set.

Table 3.5: Simulation 5: the average H-measure and AUC with their corresponding stan-
dard deviation on the test set (1000 iterations).

N H-measure AUC
100 0.4290 (0.0575) 0.8578 (0.0257)
500 0.4025 (0.0458) 0.8534 (0.0207)

1000 0.3942 (0.0418) 0.8532 (0.0192)
5000 0.3810 (0.0399) 0.8515 (0.0187)

10000 0.3820 (0.0397) 0.8511 (0.0183)
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Simulation 6: the minority class has has well separated clus-

ters, and each minority class cluster has smaller variance

than the majority class

In this simulation, we generate N points X ∼ N(µ0,Σ0) as the majority

class Y = 0. Then n1 = 50 points are generated following X ∼ N(µ1,Σ1)

and n2 = 50 points are generated following X ∼ N(µ2,Σ2). n1 and n2 are

combined as the minority class Y = 0 (i.e. n = n1 + n2 = 100 minority class

observations). Here

µ0 = [0, 0], µ1 = [0, 2], µ = [2, 0]

Σ0 =

[
1 0

0 1

]
, and Σ1 = Σ2 =

[
0.25 0

0 0.25

]
.

The number of the majority class observations N varies in {100, 500, 1000,

5000, 10000}, and for each combination of (n,N), we repeat the simulation

1000 times by training a logistic regression on the training set and apply it

on the test set.

Table 3.6: Simulation 6: the average H-measure and AUC with their corresponding stan-
dard deviation on the test set (1000 iterations)

N H-measure AUC
100 0.6007 (0.0568) 0.9107 (0.0216)
500 0.5326 (0.0377) 0.9054 (0.0119)

1000 0.5156 (0.0332) 0.9048 (0.0099)
5000 0.4971 (0.0306) 0.9039 (0.0085)

10000 0.4934 (0.0305) 0.9035 (0.0084)

Simulation 5 and 6 show that, in this contrived setting, as the number of the

majority class N increases, there is a downward trend in the AUC. The same

as Simulations 3 and 4, the difference of the AUC value between N = 100 and

N = 1000 is greater than one times their corresponding standard deviation.

The H-measure also decreases when N increases. In fact, we see the H-

measure always decreases as N increases from Simulation 1 to Simulation

6.
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We conclude the results from Simulation 1 to 6 in Figure 3.1. In conclusion,

by considering all simulations together, we can find that:

• when using the AUC as our performance metric, there is a downward

trend when cluster structure is present in the minority class as N in-

creases,

• when using the H-measure as our performance metric, a downward

trend always exists, as N increases.

This evidence show that Theorem 2 does have the influence on the predictive

performance of logistic regression. Actually, as pointed out in Owen [2007],

it is reasonable to expect better results from logistic regression when we can

detect pronounced cluster structure among the minority class, and further

using a multi-class model. This point will be explored in the next chapter.

It is worth noting that the H-measure decreases in all simulations. This is

suspicious. Without knowing more information about the misclassification

costs, we use the default setting of {b = π0, c = π1} (see Equation 2.35)

proposed by Hand [2009], which are the prior proportion of both classes in a

binary data set. Thus, as N increases, {π0, π1} will be different, which brings

the doubt on the utility of comparing the H-measure between balanced and

imbalanced cases. Of course, we need to point out that, when comparing the

model performance on the same highly imbalanced data, using the H-measure

is still trustworthy.

3.2 Infinitely Imbalanced Weighted Logistic Regression

As mentioned in Section 2.3, a natural idea to address the imbalance problem

would be to reweight the likelihood, leading to weighted logistic regression.

Zeng [2017] proved that the MLE for weighted logistic regression exists and is

unique when there is an overlap between the data points of the two classes,

which extends the result in Silvapulle [1981], described in Section 3.1.1.

Next, we identify the characteristics of infinitely imbalanced weighted logistic

regression for a specific weighting strategy.
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Figure 3.1: The results of the AUC and the H-measure in Similation 1 to Simulation 6.

Here, we consider a particular weighting scheme; retaining a weight of one

for the majority class, as in Equation (3.2), and increasing the weight of

observations in the minority class, with weights Ω = {ωi > 1, i = 1, · · · , n}.
Thus, the log-likelihood function for weighted logistic regression is

l(β0, β; Ω) =
n∑
i=1

ωiβ0 −
n∑
i=1

ωilog(1 + eβ0+(xi−x)T β)

−N
∫

log(1 + eβ0+(x−x)T β)dF0(x),

(3.6)

where x̄ is a weighted minority class mean vector x̄ =
∑n

i=1 ωixi/
∑n

i=1 ωi.

We investigate the characteristics of infinite imbalance for this form of weighted

logistic regression and sketch the whole proof before expanding on the rel-

evant lemmas and theorems. We follow the lemmas and theorems given

by Owen [2007]. Lemma 2 and Lemma 4 in Owen [2007] are numerical facts

which also hold for this weighted logistic regression. Lemma 5 in Owen [2007]

is used to prove the existence of a finite MLE when the surrounded condition

(Definition 1) is satisfied. Lemma 6 and Lemma 7 in Owen [2007] are used

to establish a boundary of
∥∥∥β̂∥∥∥ when N → ∞. The following lemmas and

theorem are our original work.
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Lemma 4. (Lemma 5 in [Owen, 2007]) Suppose that weights Ω are fixed,

{x1,x2, · · · ,xn} are given and F0 satisfies the surrounded condition (i.e.

Equation 3.3) at the weighted minority class mean vector x̄. Then the log-

likelihood function l(β0, β; Ω) has a unique finite maximizer (β̂0, β̂), when

0 < N <∞.

Proof. The key point is to show that, for some direction vector, λ > 0,

“ ∂
∂λ
l(λβ0, λβ; Ω) is always strictly negative” [Owen, 2007], which excludes

the situation that l(β0, β; Ω) will increase infinitely along some ray.

If β = 0, we assume that 0 < |β0| < ε/2, ε comes from Definition 1. Thus,

lim
λ→∞

∂

∂λ
l(λβ0, λβ; Ω) =

 −Nβ0, if β0 > 0∑n
i=1 ωiβ0, if β0 < 0

,

which means limλ→∞
∂
∂λ
l(λβ0, λβ; Ω) < 0 when β = 0.

If β 6= 0, without loss of generality we may take βTβ = 1 and 0 ≤ |β0| < ε/2,

ε comes from Definition 1, by following the ray back to the origin. Using∑n
i=1 ωiβ0 =

∑n
i=1 ωi[β0 + (xi − x̄)Tβ], we have

lim
λ→∞

∂

∂λ
l(λβ0, λβ; Ω) =

∑
i:β0+(xi−x̄)T β<0

ωi[β0 + (xi − x̄)Tβ]

−N
∫
β0+(x−x̄)T β>0

β0 + (x− x̄)TβdF0(x).

(3.7)

The term involving a sum in this equation is smaller than or equal to 0, and

the integral term is greater than 0 (equal to 0 is excluded by the surrounded

condition).

Lemma 5. (Lemma 6 in [Owen, 2007]) Let β̂0 and β̂ be the maximizer of

the likelihood function, F0 satisfies the surrounded condition at the weighted

minority class mean vector x̄ and η is the infimum of δ. Then for any

N ≥ 2
∑
ωi/η, we have eβ̂0 ≤ 2

∑
ωi/(Nη).
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Proof. Let eβ0 = A/N , 0 < A <∞.

∂l

∂β0

=
n∑
i=1

ωi −
n∑
i=1

ωi
eβ0+(xi−x̄)T β

1 + eβ0+(xi−x̄)T β
−N

∫
eβ0+(x−x̄)T β

1 + eβ0+(x−x̄)T β
dF0(x)

=
n∑
i=1

ωi −
n∑
i=1

ωi
AN−1e(xi−x̄)T β

1 + AN−1e(xi−x̄)T β
−
∫

Ae(x−x̄)T β

1 + AN−1e(x−x̄)T β
dF0(x)

≤
n∑
i=1

ωi − A
∫

(x−x̄)T β>0

e(x−x̄)T β

1 + AN−1e(x−x̄)T β
dF0(x)

≤
n∑
i=1

ωi −
Aη

1 + A/N
.

(3.8)

Because η ≤ δ and δ <
∫

(x−x?)Tψ≥ε dF (x) ≤ 1 (see Definition 1), thus η is

bounded in 0 < η ≤ δ < 1. Since N ≥ 2
∑
ωi/η, if we let eβ0 > 2

∑
ωi/(Nη),

we will have A > 2
∑
ωi/η. Then, ∂l/∂β0 < 0. For the concave likelihood

function, the negative partial derivative means that the maximizer β̂0 <

log(2
∑
ωi/ηN).

Lemma 6. (Lemma 7 in [Owen, 2007]) Under the same conditions as Lemma 5,

we will have lim supN→∞

∥∥∥β̂∥∥∥ <∞.

Proof. Under the surrounded condition (Equation 3.3), there exists a γ such

that

inf
ψ∈Ψ

∫
[(x− x̄)Tψ]+dF0(x) ≥ γ > 0, (3.9)

where ψTψ = 1 and [(x− x̄)Tψ]+ means the positive part of [(x− x̄)Tψ]. We
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still let eβ0 = A/N , then we have

l(β0, 0; Ω)− l(β0, β; Ω) = −(
n∑
i=1

ωi +N)log(1 + eβ0) +
n∑
i=1

ωilog(1 + eβ0+(xi−x̄)T β)

+N

∫
log(1 + eβ0+(x−x̄)T β)dF0(x)

> −(
n∑
i=1

ωi +N)eβ0 +
eβ0N

1 + eβ0

∫
(x−x̄)T β≥0

(x− x̄)TβdF0(x)

≥ −(
n∑
i=1

ωi +N)
A

N
+

AN

N + A
‖β‖γ.

(3.10)

The first inequality above is taken from Lemma 4 in Owen [2007].

Equation (3.10) implies that when ‖β‖ > 1
γ
(1 +A/N)(1 +

∑
ωi/N), we have

l(β0, β; Ω) < l(β0, 0; Ω). Thus, maximizing likelihood function l(β0, β; Ω) will

obviously let
∥∥∥β̂∥∥∥ ≤ 2/γ, with large enough N .

Now, we prove the main theorem for infinitely weighted logistic regression:

Theorem 7. Let x1, · · · ,xn and the weights Ω be fixed. If F0 satisfies the

surrounding condition at x̄ and the tail conditions, then the maximizer (β̂0, β̂)

of l(β0, β; Ω) satisfies

lim
N→∞

∫
xexT β̂dF0(x)∫
exT β̂dF0(x)

= x̄. (3.11)

Proof. Set ∂l
∂β

= 0 we have,

−
n∑
i=1

ωi
(xi − x̄)eβ̂0+(xi−x̄)T β̂

1 + eβ̂0+(xi−x̄)T β̂
−N

∫
(x− x̄)eβ̂0+(x−x̄)T β̂

1 + eβ̂0+(x−x̄)T β̂
dF0(x) = 0. (3.12)

Divide Equation (3.12) by Neβ̂0−x̄T β̂ to yield∫
(x− x̄)exT β̂

1 + eβ̂0+(x−x̄)T β̂
dF0(x) = − 1

N

n∑
i=1

ωi
(xi − x̄)exTi β̂

1 + eβ̂0+(xi−x̄)T β̂
. (3.13)
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Although the introduction of weights ωi will lead to slower convergence than

the unweighted logistic regression, the right side of Equation (3.13) still van-

ishes as N → ∞ (because
∥∥∥β̂∥∥∥ is bounded by Lemma 6). In the left side of

Equation (3.13),
∫
exT β̂[1 + eβ̂0+(x−x̄)β̂]−1dF0(x) is at most

∫
exT β̂dF0(x) and

is at least ∫
exT β̂[1 + eβ̂0+(x−x̄)β̂]−1dF0(x)→

∫
exT β̂dF0(x),

as N → ∞ because β̂0 → −∞ (see Lemma 5) and
∫
e2xT β̂dF0(x) < ∞ by

the tail condition. Similarly we have∫
xexT β̂[1 + eβ̂0+(x−x̄)β̂]−1dF0(x)→

∫
xexT β̂dF0(x).

Thus, Equation (3.13) simplifies to

x̄

∫
exT β̂dF0(x)−

∫
xexT β̂dF0(x) = 0, as N →∞. (3.14)

Thus, Equation (3.11) holds.

Theorem 7 shows that this specific weighted logistic regression still only de-

pends on the weighted minority mean vector in the class imbalance limit,

N → ∞. This finding has interesting implications for methods based on

resampling the minority class.

3.3 Infinitely Imbalanced Penalized Logistic Regression

The previous section shows that resampling the minority class is insufficient

for handling the class imbalance problem. Penalized logistic regression is

another widely used method to handle imbalanced logistic regression prob-

lem [Wang et al., 2015, Ahmed et al., 2018]. It is known that maximum

likelihood estimation may fail with high dimensional data or multiple highly-

correlated variables [Efron and Hastie, 2016, p.303]. In order to perform

parameter shrinkage and variable selection, penalized logistic regression is
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designed to add penalty terms to the likelihood function of logistic regres-

sion. We might propose them as solutions to alleviate the imbalance problem.

In this section, we consider the two common forms of penalty: the ridge and

the lasso. For data as described in Section 3.1.2, we can give the objective

function for ridge penalized logistic regression [Hoerl and Kennard, 1970] as:

l(β0, β) =
1

n+N

[ n∑
i=1

log
eβ0+xT1iβ

1 + eβ0+xT1iβ
+

N∑
i=1

log
1

1 + eβ0+xT0iβ

]
− 1

2
λ‖β‖2

2, where λ > 0.

(3.15)

Lasso penalized logistic regression has the same form except the penalty term

at the end of the expression is given as λ‖β‖1.

We first describe two simulations to explore the characteristics of penalized

logistic regression in highly imbalanced data. In Simulation A, we consider

samples of different size and different levels of imbalance, where P (X|Y =

0) ∼ N(0, 1) (the majority class), and we have 100 replicates from the Y = 1

class, all with X = 1. The role of the replicates is to handle computational

issues∗. As N (the number of majority class samples) increases, the problem

becomes more imbalanced. The coefficient estimates of standard logistic

regression and ridge penalized logistic regression (penalty parameter λ = 0.1)

are given in Table 3.7. The table suggests that, as N →∞,

• Neβ0 converges to n,

• β converges to 0,

in ridge penalized logistic regression, with this particular and arbitrary choice

of penalty parameter. Actually, this is the behavior we want to prove in the

next section.

However, in Simulation B, we consider X ∼ Uniform(0, 1) when Y = 0 (the

majority class). We use n = 100 points for Y = 1; 50 points are X = 0.5

∗We use the glmnet package in R programming language to implement penalized logis-
tic regression. This package requires at least 8 points in each class. The replication of the
single minority class observation can resolve this problem and not influence the coefficient
estimates of the slope vector β.
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Table 3.7: Simulation A for infinitely imbalanced penalized logistic regression. N observa-
tions in majority class (Y = 0) following X ∼ N(0, 1) and 100 observations in minority class
with Y = 1, X = 1. As N (the number of the majority class samples) increases, the problem
becomes more imbalanced, we can find Neβ0 converges to n and β converges to 0 in ridge
penalized logistic regression.

Logistic Regression Logistic Regression + Ridge
N β Neβ0 β Neβ0

100 1.1215 41.7805 0.6879 59.1750
1000 0.5656 65.3495 0.2454 85.5127

10000 0.5013 68.3830 0.0450 97.6581
100000 0.5007 68.6940 0.0049 99.7516

1000000 0.5001 68.7254 0.0005 99.9750

converge to
certain value

k1

certain value
k2

0 n = 100

and the others are X = 2. This setting fails the surrounded condition in

Theorem 2, because the minority class mean x̄ = 1.25 is located outside

the support of the majority class distribution. Table 3.8 shows the coeffi-

cient estimates of this simulation. We see that penalized logistic regression

demonstrates shrinkage behavior, despite failing to satisfy the surrounded

condition.†

3.3.1 Theoretical Results

In this section, we give results, following Owen, for penalized logistic regres-

sion in the infinitely imbalanced case. Considering the existence of a unique

solution in penalized logistic regression, we follow the previous argument for

logistic regression considered by Silvapulle [1981].

Theorem 8. For data as described in Section 3.1.1, let x1i, i ∈ {1, · · · , n} de-

note p-dimensional feature vectors from class Y = 1, and x0i, i ∈ {1, · · · , N}
denote p-dimensional feature vectors from class Y = 0. Assume that the

n+N by p+ 1 data matrix (including the constant vector 1 to accommodate

the intercept) has rank p + 1, then a unique finite ridge or lasso penalized

logistic regression solution exists.

†The convergence effect does not become apparent until N/n > 10 (see line 1 and line
2 in Table 3.8)
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Table 3.8: Simulation B for infinitely imbalanced penalized logistic regression. N observa-
tions in majority class (Y = 0) following X ∼ Uniform(0, 1) and 100 observations in minority
class (half of them with Y = 1, X = 0.5, the others with Y = 1, X = 2). As N (the number
of the majority class samples) increases, the problem becomes more imbalanced, we can find
Neβ0 converges to n and β converges to 0 in ridge penalized logistic regression.

Logistic Regression Logistic Regression + Ridge
N β Neβ0 β Neβ0

100 2.2347 16.2756 1.2598 34.6374
1000 3.2033 8.4214 1.6478 31.6947

10000 4.6591 2.8035 0.7112 68.0441
100000 6.3475 0.7238 0.0878 95.6659

1000000 8.1866 0.1524 0.0090 99.5517

converge to
no

converge
no

converge
0 n = 100

Proof. We first consider the case of the ridge penalty, then give adjustments

for lasso. In proof, we use B denotes p + 1 dimensional vector (β0, β). In

order to accommodate the intercept term in the regression parameters, let

z1i = (1,x1i) and z0i = (1,x0i). We consider situations S ∩ F 6= ∅ and

S ∩ F = ∅ separately.

If there is no separation between two convex cones S and F (S ∩ F 6= ∅),
we cannot find a hyperplane which separates S and F properly [Rockafellar,

2015, Theorem 11.3]. Therefore, there exists a unit p+ 1 dimensional vector

e, such that zT1ie is negative for some 1 ≤ i ≤ n and zT0ie is positive for some

1 ≤ i ≤ N (z is an observation in the design matrix). Let A1 = {i|1 ≤ i ≤
n, zT1ie < 0}, A2 = {i|1 ≤ i ≤ n, zT1ie ≥ 0}, A3 = {i|1 ≤ i ≤ N, zT0ie < 0} and

A4 = {i|1 ≤ i ≤ N, zT0ie ≥ 0}. Thus, considering k →∞,

l(B + (k + 1)e)− l(B + ke) =
1

n+N

∑
i∈A1

log
ezT1i(B+(k+1)e)

1 + ezT1i(B+(k+1)e)
× 1 + ezT1i(B+ke)

ezT1i(B+ke)

+
1

n+N

∑
i∈A4

log
1 + ezT0i(B+ke)

1 + ezT0i(B+(k+1)e)

− 1

2
λ(‖β + (k + 1)ẽ‖2

2 − ‖β + kẽ‖2
2),

(3.16)
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(where ẽ is e excluding the first component) since the summation parts of

i ∈ A2 and i ∈ A3 will vanish as k →∞. We also notice that when k goes to

infinity, the first term in Equation (3.16) will shrink to
∑

i∈A1
zT1ie < 0, the

second term will shrink to −
∑

i∈A4
zT0ie < 0 and the third term is positive.

Thus l(B + (k + 1)e) − l(B + ke) will be negative for large k, so l(B + ke)

is a decreasing function in k. Therefore, l(β0, β) for fixed x does not have a

direction of recession and the existence of the solution follows from Theorem

27.1(d) in Rockafellar [2015].

Assuming S ∩ F = ∅, we could find a unit p + 1 dimensional vector e, such

that {zT1ie ≥ 0; 1 ≥ i ≥ n} and {zT0ie < 0; 1 ≥ i ≥ N} [Rockafellar, 2015,

Theorem 11.3 and Theorem 11.7]. Rewrite the likelihood function (3.15) as:

l(B + ke) =
1

n+N

[ n∑
i=1

log
ezT1i(B+ke)

1 + ezT1i(B+ke)
+

N∑
i=1

log
1

1 + ezT0i(B+ke)

]
− 1

2
λ‖β + kẽ‖2

2.

(3.17)

Considering two numerical facts:

• f1(x) = log ex

1+ex
is a increasing function and lim

x→∞
f1(x) = 0,

• f2(x) = log 1
1+ex

is a decreasing function and lim
x→−∞

f2(x) = 0,

we know that the summation part in Equation (3.17) is increasing and

approaching 0, as k → ∞. Thus, term −1
2
λ‖β + kẽ‖2

2 dominates Equa-

tion (3.17) as k → ∞, leading to the result that l(B + ke) is a decreasing

function for large enough k. Therefore, l(β0, β) for fixed x does not have

a direction of recession and the existence of the solution still follows from

Theorem 27.1(d) in Rockafellar [2015]. This proof shows the existence of the

solution for ridge penalized logistic regression. Following [Tibshirani, 2013,

Lemma 5] and [van Wieringen, 2015, p.45], we know the extant solution for

ridge penalized logistic regression is unique.

Through a similar proof process, Theorem 8 also holds with the lasso penalty.

56



Table 3.9: Infinitely imbalanced logistic regression shrinkage law.

Fixture Logistic Regression Ridge Lasso
β0 −∞ −∞ −∞
β certain value, k1 0 0
Neβ0 certain value, k2 n n

The only change is for handling the penalty term in Equation (3.16):

λ

p∑
j=1

|βj + k + 1| − λ
p∑
j=1

|βj + k| = λ

p∑
j=1

[
|βj + k + 1| − |βj + k|

]
= λp,

when k →∞, and βj is the jth element of β,

(3.18)

which is still a positive number.

By repeating the previous numerical simulation (Table 3.7 and Table 3.8) in

lasso penalized logistic regression, we obtain the shrinkage law (Table 3.9)

when N → ∞. The simulation results suggest that the intercept term β0

shrinks to n/N and β shrinks to 0, when N → ∞. We now prove this

shrinkage law and further prove that the estimated parameter vector β only

depends on the distribution F0, the minority mean vector x̄ and the imbalance

level N/n. The lasso penalty will be demonstrated in our proof process,

because it is the more complex case than ridge penalty. The proof for ridge

will be given in Appendix D.

We again use the notation of Section 3.1.2. In order to directly show the

result, we center lasso penalized logistic regression around the minority class

mean vector x =
∑n

i=1 xi/n. Since in the infinitely imbalanced case N →
∞, we also suppose that there is a good approximation for the conditional

distribution of x given Y = 0; denoted by F0. Thus, the objective function
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for lasso penalized logistic regression [Tibshirani, 1996] is written as

l(β0, β) =
1

n+N

[
nβ0 −

n∑
i=1

log(1 + eβ0+(xi−x̄)T β)

−N
∫

log(1 + eβ0+(x−x̄)T β)dF0(x)

]
− λ

p∑
j=1

|βj|, λ > 0,

(3.19)

where βj is the jth element of β. We follow Owen’s proof again: Lemma 4

and Lemma 5 in Owen [2007] still hold for penalized logistic regression. The

three changes in the proof process are for Lemma 6, Lemma 7 and the main

theorem in Owen [2007] (corresponding to our Lemma 9, Lemma 10 and

Theorem 12 here).

Our Lemma 9 gives eβ̂0 ≤ n/(N − n) and Lemma 10 gives
∑p

j=1 |β̂j| ≤
n/((N −n)λ). Note that in Lemma 9 and Lemma 10, we do not require the

surrounded condition, which makes the proof significantly different from

Owen’s proof.

Lemma 9. Let β̂0 and β̂ be the maximizers of the objective function (3.19).

Then eβ̂0 ≤ n/(N − n).

Proof. Calculate the partial derivative with respect to β0:

∂l(β0, β)

∂β0

=
n

n+N
− 1

n+N

n∑
i=1

eβ0+(xi−x̄)T β

1 + eβ0+(xi−x̄)T β

− N

n+N

∫
eβ0+(x−x̄)T β

1 + eβ0+(x−x̄)T β
dF0(x)

≤ n

n+N
− N

n+N

∫
eβ0+(x−x̄)T β

1 + eβ0+(x−x̄)T β
dF0(x)

≤ n

n+N
− N

n+N

∫
(x−x̄)T β>0

eβ0+(x−x̄)T β

1 + eβ0+(x−x̄)T β
dF0(x)

≤ n

n+N
− N

n+N

eβ0

1 + eβ0

∫
(x−x̄)T β>0

dF0(x)

≤ n

n+N
− N

n+N

eβ0

1 + eβ0
.

(3.20)
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We applied the fact that eβ0+(x−x̄)T β

1+eβ0+(x−x̄)T β
≤ eβ0

1+eβ0
, when(x − x̄)Tβ > 0, in the

above inequality. Then, let eβ0 > n/(N − n), the above equation leads to
∂l(β0,β)
∂β0

< 0. For the concave likelihood function, the negative derivative

means that the maximizer β̂0 ≤ log( n
N−n).

Lemma 10. Let β̂0 and β̂ be the maximizers of the log-likelihood func-

tion (3.19). Then lim supN→∞

∥∥∥β̂∥∥∥ <∞.

Proof. Take arbitrary coefficient estimates (β̂0, 0), we know l(β̂0, β̂)−l(β̂0, 0) ≥
0. Then

l(β̂0, β̂)− l(β̂0, 0) =

[
1

n+N

[
(n+N)log(1 + eβ̂0)−

n∑
i=1

log(1 + eβ̂0+(xi−x̄)T β̂)

−N
∫

log(1 + eβ̂0+(x−x̄)T β̂)dF0(x)
]]
− λ

p∑
j=1

|β̂j| ≥ 0.

(3.21)

Since log(1 + eβ̂0+(xi−x̄)T β̂) ≥ 0 and
∫

log(1 + eβ̂0+(x−x̄)T β̂)dF0(x) ≥ 0, Equa-

tion (3.21) leads to:

λ

p∑
j=1

|β̂j| ≤
1

n+N

[
(n+N)log(1 + eβ̂0)−

n∑
i=1

log(1 + eβ̂0+(xi−x̄)T β̂)

−N
∫

log(1 + eβ̂0+(x−x̄)T β̂)dF0(x)

]
≤ log(1 + eβ̂0) ≤ eβ̂0 ≤ n

N − n
.

(3.22)

Thus, we have
∑p

j=1 |β̂j| ≤
n

(N−n)λ
, by considering the triangle inequality, we

know
∥∥∥β̂∥∥∥ is bounded as N →∞.

The following theorem demonstrates the behavior of β̂0 and β̂ in infinitely

imbalanced penalized logistic regression.

Theorem 11. Let n > 1 and minority class vectors {x1,x2. · · · ,xn} be

fixed. Then the maximizer (β̂0, β̂) of l given by Equation (3.19) have following

shrinkage rules, eβ̂0 → n
N

and β̂ → 0, when N →∞.
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Proof. From Lemma 9 and Lemma 10, we know eβ̂0 ≤ n
N−n and

∥∥∥β̂∥∥∥ is

bounded when N →∞.

Further considering Lemma 10, we have

∥∥∥β̂∥∥∥ ≤ p∑
j=1

|β̂j| ≤
n

(N − n)λ
when N →∞. (3.23)

Inequality (3.23) shows as N → ∞, we have β̂ = 0. Thus l(β̂0, β̂) simplifies

to

l(β̂0, β̂) =
n

n+N
β̂0 − log(1 + eβ̂0). (3.24)

Let the partial derivative of Equation (3.24) equal to 0 when N →∞,

∂l(β̂0, β̂)

∂β̂0

=
n

n+N
− eβ̂0

1 + eβ̂0
= 0, (3.25)

then we have eβ̂0 = n/N .

Since Neβ̂0 → n and β̂ → 0 in penalized logistic regression when N → ∞
(regardless of the data set), the shrinkage properties of penalized methods

means that the data ceases to be involved. In this case, the estimated prob-

ability for the minority and the majority class will simply approach their

marginal frequencies:

Pr(Y=1|x = x)
N→∞−−−→ n

n+N
,

Pr(Y=0|x = x)
N→∞−−−→ N

n+N
.

Note that Theorem 11 is a strong result that demonstrates β̂ = 0 in infinitely

imbalanced penalized logistic regression. We are also interested in how β̂

shrinks to the limit when N approaches infinity. Therefore, we prove an-

other theorem to demonstrate the behavior of β̂ when approaching infinitely

imbalanced penalized logistic regression. Here we will utilize eβ̂0 → n/N as

N →∞ from Theorem 11.

Since the lasso penalized log-likelihood function is nondifferentiable at β =

0, we alternatively use the subgradient [Nesterov, 2013, p. 126] of convex
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Equation (3.19) with respect to β. Setting the subgradient of Equation (3.19)

to 0, we have

− 1

n+N

[ n∑
i=1

(xi − x̄)eβ̂0+(xi−x̄)T β̂

1 + eβ̂0+(xi−x̄)T β̂
+N

∫
(x− x̄)eβ̂0+(x−x̄)T β̂

1 + eβ̂0+(x−x̄)T β̂
dF0(x)

]
−λs = 0,

where s is a p dimensional vector

sj =

 Sign(β̂j), if β̂j 6= 0

any number in [−1, 1], if β̂j = 0
where j ∈ {1, · · · , p}.

We take advantage of a specific characteristic of the subgradient method; a

convex function f attains its optimal value at a vector v if the zero vector

is a subgradient of f at v [Nesterov, 2013, Theorem 3.1.15]. Thus, because

Equation (3.19) is a convex function, we have the following main theorem:

Theorem 12. Let n ≥ 1 and minority class vectors {x1, · · · ,xn} be fixed and

suppose that F0 surrounds x̄ =
∑n

i=1 xi/n as described. Then the maximizer

(β̂0, β̂)of l given by Equation (3.19) satisfies

−
∫

(x− x̄)e(x−x̄)T β̂dF0(x) =
n+N

n
λs (3.26)

as N →∞.

Proof. Setting the subgradient of Equation (3.19) to 0, we have

−
n∑
i=1

(xi − x̄)eβ̂0+(xi−x̄)T β̂

1 + eβ̂0+(xi−x̄)T β̂
−N

∫
(x− x̄)eβ̂0+(x−x̄)T β̂

1 + eβ̂0+(x−x̄)T β̂
dF0(x)−(n+N)λs = 0.

Dividing by N gives

−
∫

(x− x̄)eβ̂0+(x−x̄)T β̂

1 + eβ̂0+(x−x̄)T β̂
dF0(x)− n+N

N
λs =

1

N

n∑
i=1

(xi − x̄)eβ̂0+(xi−x̄)T β̂

1 + eβ̂0+(xi−x̄)T β̂
.

(3.27)

As N → ∞, the right side of Equation (3.27) vanishes because
∥∥∥β̂∥∥∥ is

bounded as N →∞ by Lemma 10.
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If we considerN →∞, we have eβ̂0 → n
N

and β̂ → 0, yielding to eβ̂0+(xi−x̄)T β̂ →
n
N
e0 → 0. Thus Equation (3.27) yields

−
∫

(x− x̄) n
N
e(x−x̄)T β̂

1
dF0(x) =

n+N

N
λs (3.28)

After simplification, Equation (3.26) holds. Notice that, s must converge to

0 due to the established Equation (3.26) when N →∞.

Equation (3.26) shows the solution of β depends only on {x̄, F0(x), N
n
} when

approaching infinite imbalance. We give some context and illustration of

Theorem 12 with respect to the solution of penalized logistic regression with

large finite N in the next section.

3.3.2 Numerical Explanations for Highly Imbalanced Lasso Pe-

nalized Logistic Regression

For application purposes, we are interested in investigating the solution of

penalized logistic regression with large finite N . The following calculation

and simulation provides some context and illustration of Theorem 12.

Assume the probability density function of the majority class, f0(x), is

N(0, I) where 0 is a p dimensional zero vector and I is the p× p identity co-

variance matrix. By taking advantage of independence between variables, we

vectorise Equation (3.26) in dimension r (here x·r refers to the rth column
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in the observation matrix):∫
(x·r − x·r)e

∑p
k=1(x·k−x·k)β·kdF0(x)

=

∫
(x·r − x·r)e

∑p
k=1(x·k−x·k)β·kf0(x·1) · · · f0(x·p)dx·1 · · · dx·p

=

∫
(x·r − x·r)e

(x·r−x·r)β·rf0(x·r)dx·r ×
∏
k 6=r

∫
e(x·k−x·k)β·kf0(x·k)dx·k

=

∫
(x·r − x·r)e

−x2
·r
x ex·rβ·r

√
2πex·rβ·r

dx·r ×
∏
k 6=r

∫
e−

x2
·k
2 ex·kβ·k

√
2πex·kβ·k

dx·k

= (β·r − x·r)

p∏
k=1

e
β2
·k
2

ex·kβ·k
.

(3.29)

Consider that all β·r, r ∈ {1, · · · , p} are shrunk to 0, thus all s·r ∈ [−1, 1].

For all r ∈ {1, · · · , p}, we have

(0− x·r) = −n+N

n
λs·r

( p∏
k=1

e
β2
k
2

exkβk

)−1

= −n+N

n
λsr, (3.30)

so x·r must be located in the interval [−λ(1+ N
n

), λ(1+ N
n

)]. This interval will

enlarge as the imbalance level N
n

increases, such that it will easily include all

x·r.

Alternatively, if λ > n
n+N

max
r
{x·r}, all β·r will be shrunk to 0. When the

imbalance level N/n is great, this condition is easily satisfied with respect to

a fixed λ.

Following is a simple simulation to demonstrate the consequence of Equa-

tion (3.30). We generate 100, 000 five dimensional majority class data (Y =

0) following N(µ0,Σ0), where

µ0 = [0, 0, 0, 0, 0],Σ0 = I

and I is the identity matrix. 1, 000 minority class data (Y = 1) are generated
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Table 3.10: Coefficient estimates of lasso penalized logistic regression with different penalty
parameter λ.

λ β·1 β·2 β·3 β·4 β·5
0.0190 0 0 0 0 0
0.0168 0.1650 0 0 0 0
0.0153 0.3106 0.1148 0 0 0
0.0139 0.4388 0.2416 0.0377 0 0
0.0116 0.6435 0.4445 0.2392 0.0471 0
0.0087 0.8621 0.6581 0.4525 0.2547 0.0516

which follows N(µ1,Σ1), where

µ1 = [1.9, 1.7, 1.5, 1.3, 1.1],Σ1 = 0.01I.

The numbers in vector µ1 are artificially set in a decreasing order, this is

for later showing that how λ influences the coefficient estimates in different

dimension. In this scenario, n
n+N

max
r
{x·r} equals 0.0188, and in our simula-

tion, the simulated vector n
n+N

x̄·r is [0.0188, 0.0168, 0.0149, 0.0129, 0.0109].

Table 3.10 shows the coefficient estimates of lasso penalized logistic regres-

sion for different values of λ. These λ are set in gaps between the numbers

in vector n
n+N

x̄·r. We find that the relationship between x̄·r and λ deter-

mines whether the coefficient estimate β·r will be shrunk to 0 (all coefficient

estimates shrink to 0 when λ > n
n+N

max
r
{x·r}, see Table 3.10 Line 1).

Without the assumption of the majority class distribution F0(x), if β̂ = 0,

Equation (3.26) simplifies to

x−
∫

xdF0(x) =
n+N

n
λs, where s ∈ [−1, 1]. (3.31)

∫
xdF0(x) is the population mean µx of the majority class distribution, which

is determined by data set. Thus we need x ∈ [µx− n+N
n
λ, µx + n+N

n
λ] to force

all β̂ shrink to 0, which is easy to satisfy with highly imbalanced data set.
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3.4 Infinitely Imbalanced Multinomial Logistic Regression

We have briefly described infinitely imbalanced logistic regression. In this

section, we give a similar result for multinomial logistic regression with a

specific highly imbalanced multi-minority setting. This section is a prelimi-

nary for our proposed relabeling approach in Chapter 4; we are going to use

this result for the calculation of our EM algorithm.

Multinomial logistic regression can be set up as a one vs rest model [Ander-

son, 1972], which we will consider a base vs interest classes model. Here, we

use x0i, i ∈ {1, · · · , N} to denote the base class data. There are K inter-

est classes, and each class has nk, k ∈ {1, · · · , K} observations, denoted by

xki, i ∈ {1, · · · , nk}. We are particularly interested in the n� N case as an

extention of Owen [2007], where n =
∑K

k=1 nk (the number of the observa-

tions in rest classes). The main result we seek is Theorem 15: each minority

class k only contribute to multinomial logistic regression via its mean vector

x̄k =
∑nk

i=1 xki, where k ∈ {1, · · · , K}.

We still assume there is a good approximation of the base (majority) class

distribution F , which does not have a heavy tail (Equation 3.4) and surrounds

x̄k where k ∈ {1, . . . , K}. It is important to notice that Begg and Gray

[1984] show that using a series of separate logistic regression asymptotically

gives the same coefficient estimates as solving multinomial logistic regression.

Howerer, directly combining [Owen, 2007] and [Begg and Gray, 1984] does

not lead to the following Theorem 15, because the [Begg and Gray, 1984]

result asymptotically requires (N +
∑K

k=1 nk) → ∞ but at the same time

nk/N, k ∈ {1, . . . , K} are nonnegligible, i.e. min(n1, . . . , nk, N) → ∞, but

Theorem 15 only requires N →∞.

Without loss of generality, we only investigate the limit behavior in class

k = 1 when N → ∞. We center multinomial logistic regression around x̄1,
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then the log-likelihood function is:

l(β01, . . . ,β0K , β1, . . . , βK) = n1β01 −
n1∑
i=1

{log(1 +
K∑
k=1

eβ0k+(x1i−x̄1)T βk)}

+ n2β02 +

n2∑
i=1

(x2i − x̄1)Tβ2 −
n2∑
i=1

{log(1 +
K∑
k=1

eβ0k+(x2i−x̄1)T βk)}

+ · · ·

+ nKβ0K +

nK∑
i=1

(xKi − x̄1)TβK −
nK∑
i=1

{log(1 +
K∑
k=1

eβ0k+(xKi−x̄1)T βk)}

−N
∫

log(1 +
K∑
k=1

eβ0k+(x−x̄1)T βk)dF (x),

(3.32)

where β0k is the intercept term, and βk is the slope vector of each class

k ∈ {1, · · · , K}.

We sketch the proof of Theorem 15 first. We follow Owen [2007] proof:

Lemma 4 and Lemma 5 in Owen [2007] still hold for multinomial logistic

regression. Albert and Anderson [1984] which shows the surrounded condi-

tion is still essential for the existence and uniqueness of MLE in multinomial

logistic regression. We illustrate three changes in Lemma 6, Lemma 7 and

the main theorem of Owen [2007] (corresponding to Lemma 13, Lemma 14,

and Theorem 15).

Lemma 13. Let β̂01 and β̂1 be the maximizer of the likelihood function (3.32),

F satisfies the surrounded condition at x̄k, k ∈ {1, · · · , K} and η1 is the

infimum of δ1. Then for any N ≥ 2n1

η1
, we have eβ̂01 ≤ 2n1

Nη1
.
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Proof. Let eβ0k = Ak
N

, where 0 < Ak <∞.

∂l

∂β01

=n1 −
n∑
i=1

eβ01+(xi−x̄1)T β1

1 +
∑K

k=1 e
β0k+(xki−x̄1)T βk

−N
∫

eβ01+(x−x̄1)T β1

1 +
∑K

k=1 e
β0k+(x−x̄1)T βk

dF (x)

≤n1 −N
∫

eβ01+(x−x̄1)T β1

1 +
∑K

k=1 e
β0k+(x−x̄1)T βk

dF (x)

=n1 − A1

∫
e(x−x̄1)T β1

1 +
∑K

k=1Ake
(x−x̄1)T βk/N

dF (x)

=n1 − A1

∫
e(x−x̄1)T β1

1 + A1e(x−x̄1)T β1/N +
∑K

k=2Ake
(x−x̄1)T βk/N

dF (x)

≤n1 − A1

∫
x∈Ω

e(x−x̄1)T β1

1 + A1N−1e(x−x̄1)T β1 +N−1
∑K

k=2Ake
(x−x̄1)T βk

dF (x)

≤n1 − A1
1

1 + A1N−1 +N−1
∑K

k=2 Ak

∫
x∈Ω

dF (x)

≤n1 −
A1η1

1 +N−1
∑K

k=1Ak
,

(3.33)

where, Ω = {x|(x− x̄1)Tβ1 ≥ 0, (x− x̄1)Tβk ≤ 0 for any k}.

Because η1 ≤ δ1 and δ1 <
∫

(x−x?)Tψ≥ε dF (x) ≤ 1 (see Definition 1), thus η1

is bounded in 0 < η1 ≤ δ1 < 1. Since N ≥ 2n1/η1, if we let eβ01 > 2n1/Nη1,

we will have A1 > 2n1/η1. Then, we have

∂l

∂β01

< n1 −
η1

η1

n1
+

∑K
k=2 e

β0k−β01

N

. (3.34)

When N large enough, from above equation, we will have ∂l/∂β01 ≤ 0. For

the concave likelihood function, the negative partial derivative means that

the maximizer eα̂1 ≤ 2n1/(Nη1).

Lemma 14. Under the same condition as Lemma 13, we will have

lim supN→∞

∥∥∥β̂1

∥∥∥ <∞.
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Proof. Under the surrounded condition, a γ exists such that

inf
ψ∈Ψ

∫
[(x− x̄1)Tψ]+dF (x) ≥ γ > 0, (3.35)

where ψTψ = 1 and [(x − x̄1)Tψ]+ means the positive part of [(x − x̄1)Tψ].

We still let eβ01 = A1/N , then we have

l(β01, 0)− l(β01, β1) =−
n∑
i=1

log(1 + eβ01 +
K∑
k=2

eβ0k+(xi−x̄1)T βk)

−N
∫

log(1 + eβ01 +
K∑
k=2

eβ0k+(x−x̄1)T βk)dF (x)

+
n∑
i=1

log(1 +
K∑
k=1

eβ0k+(xi−x̄1)T βk)

+N

∫
log(1 +

K∑
k=1

eβ0k+(x−x̄1)T βk)dF (x).

(3.36)

Because

n∑
i=1

log(1 +
K∑
k=1

eβ0k+(xi−x̄1)T βk) +N

∫
log(1 +

K∑
k=1

eβ0k+(x−x̄1)T βk)dF (x)

≥
n∑
i=1

log(1 + eβ01+(xi−x̄1)T β1) +N

∫
log(1 + eβ01+(x−x̄1)T β1)dF (x)

≥
n∑
i=1

log(1 + eβ01+(xi−x̄1)T β1),

(3.37)
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and when x > 0, x > log(x), we have following inequation when N > 2n1/η1,

−
n∑
i=1

log(1 + eβ01 +
K∑
k=2

eβ0k+(xi−x̄1)T βk)−N
∫

log(1 + eβ01 +
K∑
k=2

eβ0k+(x−x̄1)T βk)dF (x)

>− (n+N)eβ01 −
n∑
i=1

K∑
k=2

eβ0k+(xi−x̄1)T βk −N
∫ K∑

k=2

eβ0k+(x−x̄1)T βkdF (x)

>− (n+N)eβ01 −
n∑
i=1

K∑
k=2

2n1

Nη1

e(xi−x̄1)βk −
∫ K∑

k=2

2nk
ηk

e(x−x̄1)T βkdF (x).

(3.38)

From the tail condition we know∫ K∑
k=2

2nk
ηk

e(x−x̄1)T βkdF (x)

is a finite number (say q1) and

n∑
i=1

K∑
k=2

2n1

Nη1

e(xi−x̄1)βk

is smaller than a fixed number q2 when N is big enough. Let q = q1 + q2,

thus we have

l(β01, 0)− l(β01, β1) > −
n∑
i=1

log(1 + eβ01 +
n∑
i=1

log(1 + eβ01+(xi−x̄1)T β1)− q

≥ −(n+N)
A

N
+
A+N

N + A
‖β1‖γ − q.

(3.39)

Equation (3.39) shows that when ‖β1‖ > 1
qγ

(1 + A/N)(1 + n/N), we have

l(β01, 0) > l(β01, β1). Thus, maximizing likelihood function will obviously let∥∥∥β̂1

∥∥∥ < 2/qγ, when N large enough.

Theorem 15. Let n ≥ 1, and xki, k ∈ {1, · · · , K}, i ∈ {1, · · · , nk} be fixed

and suppose F satisfies the tail condition (Equation 3.4) and surrounded at x̄k

as describe in Definition 1. Then the maximizer (β̂0k, β̂k) of Equation (3.32)
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satisfies

x̄k = lim
N→∞

∫
xexT β̂kdF (x)∫
exT β̂kdF (x)

, where k ∈ {1, · · · , K}. (3.40)

Proof. Setting ∂l
∂β1

= 0, we have

0 =
∂l

∂β1

=−
n∑
i=1

(xi − x̄1)eβ01+(xi−x̄1)T β1

1 +
∑K

k=1 e
β0k+(xi−x̄1)T βk

−N
∫

(x− x̄1)eβ01+(x−x̄1)T β1

1 +
∑K

k=1 e
β0k+(x−x̄1)T βk

dF (x).

(3.41)

Dividing by Neβ01+x̄T1 β1 , we have∫
(x− x̄1)exT β1

1 +
∑K

k=1 e
β0k+(x−x̄1)T βk

dF (x) = − 1

N

n∑
i=1

(xi − x̄1)exTi β1

1 +
∑K

k=1 e
β0k+(xi−x̄1)T βk

.

(3.42)

Because β̂1 is bounded, the right side will vanish as N →∞. Thus we have

x̄1

∫
exT β1

1 +
∑K

k=1 e
β0k+(x−x̄k)T βk

dF (x) =

∫
xexT β1

1 +
∑K

k=1 e
β0k+(x−x̄k)T βk

dF (x)

(3.43)

Because β̂0k → −∞ and the tail condition, the results hold.

This proof can be generalized to any k ∈ {1, · · · , K}, which shows that each

minority class only contribute to the multinomial logistic regression via their

mean vector.

3.5 Summary

We have explored the impact of class imbalance for the logistic regression.

Owen’s results show that, in some limit, unwanted estimation artifacts arise

when classes are highly imbalanced. We extend these results to show that

some candidate approaches for mitigating these effects, namely weighted and

penalized likelihood approaches, suffer from the same problem. This limiting

70



behavior is a characteristic of logistic regression, regardless of any partic-

ular imbalanced data. This tells us that the infinite imbalance problem is

fundamental for logistic regression. We also extend Owen [2007] result to a

multiclass scenario as a theoretical preparation for the next chapter.

Since logistic regression remains the workhorse of many applications [King

and Zeng, 2001b, Zhu et al., 2006], the issue of imbalance certainly demands

more attention, and the development of enhanced tools. In the following

chapters, we sketch our mitigation methods and diagnostic tools to the highly

imbalance logistic regression.
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4
Relabeling Approach

Logistic regression is a well established classification algorithm, which re-

mains a reference benchmark in many domains like consumer credit risk

[Thomas, 2009], due to the regulatory requirement of interpretability [Basel

II Accords, 2004]. Owen [2007] provides an asymptotic result which suggests

that the minority class data contributes to logistic regression estimation only

via its mean vector. In the previous chapter, we show that two alternative

methods to logistic regression, namely weighted and penalized logistic re-

gression, still suffer the same problem. These results suggest an obvious

concern about unwanted consequences when cluster structure is present in

the minority class. In this chapter, we propose a new approach to handle

highly imbalanced classification problems when using logistic regression. Es-

sentially, this approach seeks to relabel the minority class into several new

pseudo-classes to circumvent the imbalance problem by exploiting cluster

structure, then modeling on the new pseudo-classes for a multiclass model,

hence improving predictive performance.

A binary classification problem involves training data labeled in the set {0, 1}.
Assuming class 1 is the minority class, the relabeling concept seeks to con-

struct a new pseudo-label in {1, 2, . . . , K} for the class 1 objects, which cap-
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Figure 4.1: Illustration to the relabeling idea.

tures the cluster structure (i.e. generate some well separated pseudo-classes

if cluster structure exists among the minority class). A classifier capable of

handling multiple classes is then trained. Subsequently, in deployment on

unlabeled data, the task is treated as a binary problem, by classifying to

class 0 or otherwise (e.g. {1, 2, . . . , K}). Figure 4.1 is an illustrative example

of our relabeling idea: the left side is a binary classification problem, the

relabeling idea seeks to grasp the unobserved cluster structure among the

minority class by relabeling them into two new pseudo-classes (the right side

in Figure 4.1). How to generate new pseudo-classes label will be introduced

in this chapter. This relabeling concept is generic and pragmatic, but the

known properties of logistic regression with imbalanced data will provide a

clear demonstration; in this chapter, we will use logistic regression to derive

an efficient algorithm to implement this relabeling idea.

There are two issues to resolve with the relabeling concept: selecting the

number of pseudo-classes, K, and identifying the mapping of minority class

instances to the K pseudo-classes. The latter problem is combinatorial, and

hence computationally challenging even for small data sets. While brute-

force attack method (i.e. checking all the possible relabeling solution, like

using the genetic algorithm [Haupt and Ellen Haupt, 2004]) is possible, we

have found it to be computationally demanding.

Expectation Maximization (EM algorithm) [Hastie et al., 2009, page 272]

algorithm is an iterative optimization method for maximizing the posterior
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likelihood with latent variables in the likelihood function. Generally, EM

algorithm contains two steps in each iteration:

1. E-step: Given the maximum likelihood estimates or initial guess of the

parameters, calculate the expectations of the latent variables.

2. M-step: Given the expectations of the latent variables, maximize the

likelihood function to obtain new parameter estimates.

This chapter develops a new formulation of multiple logistic regression, which

allows the identification of a given number of pseudo-classes and supports

estimation via Expectation Maximization algorithm, which in turn reduces

the computational burden significantly by efficiently searching the optimized

relabeling solution among all possible solutions. The latter problem, selecting

K, is resolved with a cross-validation approach.

To summarize the approach, we first define notation. Let x1i, i ∈ {1, . . . , n}
denote the minority class observations, which are labeled as class 1, Y = 1,

in the training data. Here we are seeking to selectively relabel the minority

class into K pseudo-classes, which means assigning each minority observation

x1i a new tag zi = k, where i ∈ {1, . . . , n}, k ∈ {1, . . . , K}. Then, the core

problem is estimating Pr(zi = k|x1i), the probability of a minority class

observation belonging to pseudo-class k. If we think about the likelihood

function of multinomial logistic regression when using Y = 0 as base class

(for the observation x1i part):

(Likelihood for all x1i) =
n∏
i=1

(
K∑
k=1

I(zi = k)× Pr(zi = k|x1i)),

where I(zi = k) = 0 or 1 is an indicator function. In our study, because

zi = k are unobservable, we do not know the result of I(zi = k). Thus,

we assume zi arises from a mixture of K proportions with prior weights

Φ = {φ1, . . . , φK}, i.e. zi ∼ multinomial(Φ), where
∑K

k=1 φk = 1, then, for

any minority class observation x1i, we can write the case wise contributions
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to the likelihood function with pseudo-classes as

K∑
k=1

φkPr(zi = k|x1i). (4.1)

By plugging Equation (4.1) into the log-likelihood function of multinomial lo-

gistic regression, we can use the EM algorithm to maximize the log-likelihood

function and evaluate Pr(zi = k|x1i) simultaneously (details of this EM algo-

rithm will be given in Section 4.3). On completion of this joint maximization,

we relabel each minority class observation x1i by assigning a label zi = k,

such that leads to the highest probability Pr(zi = k|x1i),

k = arg max
k

(
Pr(zi = k|x1i)

)
. (4.2)

Constructing a multinomial logistic regression on this relabeled minority class

data has the potential to alleviate the problem of highly imbalanced logistic

regression, via utilizing each pseudo-classes’ mean vector, especially when

the cluster structure in the minority class do exist.

It is worth noting that our relabeling approach is motivated by finite mixture

models, but it is different from finite mixture regression model, because the

mixture model is designed to represent the unobserved population among the

overall population, but we particularly interested in the minority class. Also,

one can has a distributional assumption for the minority class data, then

using EM algorithm purely on the minority class (e.g. solving a Gaussian

mixture model in the minority class via using EM). This is different from

our EM algorithm, because we deliberately let the majority class affects the

relabeling of the minority class cases to reflect different aspects of discrimi-

nation of the new pseudo-class from the majority class. We will further show

this point in Section 4.3.

We demonstrate that this relabeling method can bring two key advantages:

improved prediction performance and very efficient computation compared

to brute force method (i.e. checking all the possible relabeling solutions,

like using genetic algorithm). Moreover, the method has the ability to find

meaningful structure in the minority class. This point is demonstrated in
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our credit scoring example later.

The outline of this chapter is: Section 4.1 gives the motivation to our ap-

proaches. Section 4.2 introduces a brute force method (genetic algorithm) to

solve the relabel problem. This approach is time consuming but can always

produces some relabeled minority classes. Our novel relabeling approach

(EM algorithm) and corresponding algorithmic and deployment procedures

are introduced in Section 4.3. We also provides the results of experiments

with this relabeling approach on several imbalanced data sets to demonstrate

its effectiveness.

4.1 Motivation

In this section, we illustrate the motivation to our relabeling approaches

regarding the Owen [2007] results and the minority class’s cluster structure.

As far as we know, the roughly analogous concept to the relabeling in the

high class imbalance problem is the small disjuncts among the minority class.

Nickerson et al. [2001] argue that balancing the class proportion is not an

effective approach when the small disjuncts appear among the minority class.

Jo and Japkowicz [2004] proposed an oversample method with the consid-

eration of the small disjuncts. They suggest using unsupervised clustering

methods, like K-means (see Section 2.5), to cluster both the majority class

and the minority class into several small disjuncts; then random oversample

all of these small disjuncts to the size of the largest disjunct.

In light of the results given in Chapter 3, if we suppose the minority class has

some underlying structure, this could be problematic in the infinitely imbal-

anced regime, simply because the mean vector of clustered data is unlikely to

be a good representation. Our relabeling approaches focus on the unwanted

consequences when the cluster structure appears among the minority class.

To explore this problem we first relabel the minority class into several new

pseudo-classes using a clustering algorithm∗, then use multinomial logistic

regression to model the two pseudo-classes along with the majority class. In

∗how to choose the number of the pseudo-classes are discussed in Section 4.3.3
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the simplest case, this can be achieved by using standard clustering methods.

This suggestion, to split the minority class into pseudo-classes, is familiar in

credit scoring where different types of bad debt are considered†, such as the

“can’t pay” and “won’t pay” behavioural distinction [Bravo et al., 2015].

Here, it is still possible to reason about the good/bad dichotomy, simply by

considering the predictions Pr(Y = 0|X = x).

We consider a contrived example here. To illustrate the issue of cluster

structure in the minority class, we simulate a bivariate normal distribu-

tion example (see Figure 4.2). We generate 10,000 sample points following

X ∼ N(µ1,Σ1) from the majority class (Y = 0). Then 50 points following

X ∼ N(µ2,Σ2) and 50 points following X ∼ N(µ3,Σ3) are generated and

combined as the single minority class. Here

µ1 = [0, 0],µ2 = [0, 2],µ3 = [2, 0],Σ1 =

[
1 0

0 1

]
and Σ2 = Σ3 =

[
0.2 0

0 0.2

]
.

In Figure 4.2, dark blue points represent the majority class, red points repre-

sent the minority class. The two red contour lines indicate that the minority

class data are in two well-separated clusters.

We train two models on this data set. The first is a standard logistic regres-

sion model, the second is a multinomial logistic regression model which has

one majority class (c1, Y = 0) and two separate minority pseudo-classes (c2

and c3, Y = 1) which are separated using K-means clustering (with K = 2).

By construction, the minority class is well-separated. Finally, we generate

test data following the distribution described above, to assess out-of-sample

predictive performance. The prediction AUC of logistic regression is 0.918

which is lower than the AUC of multinomial logistic regression (0.954). These

results suggest that logistic regression under-performs multinomial logistic

regression when cluster structure is taken into account.

†Happy families are all alike; every unhappy family is unhappy in its own way. -Leo
Tolstoy
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Figure 4.2: Scatter plot of Simulations Samples. Green points represent the majority class
and red points represent the minority class
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4.2 Genetic Algorithm

Relabeling can be implemented in various ways. Unsupervised clustering

methods (e.g. K-means [Hartigan and Wong, 1979] and hierarchical clus-

tering [Johnson, 1967]) could be used to segment data into distinct pseudo-

classes. However, the generated pseudo-classes may not lead to a better

multinomial logistic regression performance because the objective functions

of K-means and hierarchical clustering are not linked to the objective of

optimizing discrimination between the majority and rare classes. In this sec-

tion, we propose a brute force method, Genetic algorithm (GA) [Haupt and

Ellen Haupt, 2004], to relabel the minority class data. The objective is search-

ing over the possible mappings to the pseudo-classes for some well separated

clusters among the minority class. Different from the unsupervised clustering

methods, what GA is searching for is relabeled pseudo-classes which max-

imizes the objective of improving classification performance on the original

Y ∈ {0, 1} binary problem.

GA is an optimization method which is suitable for solving a variety of op-

timization problems. GA consist of five phases:

1. GA starts with a set of initial individuals (i.e. several guesses of the

answer to the problem need to be solved), which is called the initial

population. Each individual is made up with a set of character strings

(e.g. 0/1 coding), named genes.

2. Fitness function is an objective function to be optimized. The output

of the fitness function is a fitness score, which reflects how good the

solution is. Fitness score decides the probability of each individual will

be selected for next reproduction.

3. A portion of the fittest pairs of individuals will be selected as parents

to pass their genes to the next generation.

4. Offspring are created by crossover genes between parents and replace

current parents to form a new population.
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5. In order to keep the diversity of the population, some genes in the

offspring can be changed with a very low random probability. This

process is known as mutation.

GA terminates when the population has converged, i.e. new offspring do not

give a better fitness score. Although, GA is computationally slow and has

no guaranteed convergence to an optimal solution [Kumar et al., 2010], in

general, GA can provide solutions to a variety kinds of problems. We use

the AUC on the training set as our objective function. By deploying GA, we

attempt to split the minority class into several very separated pseudo-classes,

which leads to a better multi-class logistic regression performance, i.e. higher

AUC for classifying Y ∈ {0, 1}.

4.2.1 Algorithm Description

Next, we illustrate how to deploy GA to relabel the minority class. Figure 4.3

illustrates the relabeling process (Y = 0 represents the majority class and

Y = 1 represents the minority class):

1. Classify the minority class data into K clusters {Z1, · · · , ZK} by K-

means, as an initial population for GA to optimize.

2. Modify the minority clusters by deploying GA, the fitness function is

the training set AUC.

A. In each iteration, we train multi-class logistic regression based on

the current clusters.

B. Calculate the predicted probability of (Y = 1) in training set,

Pr(yi = 1|x) =
∑K

k=1 Pr(zi = k|x); i ∈ {1, · · · , n}.

C. Calculate the training set AUC, and modify minority clusters based

on current clusters.

3. Relabel the minority class into several pseudo-classes based on the the

final cluster provided by GA.
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Figure 4.3: Illustration of the relabeling approach by GA.

We conduct a simple simulation still based on the simulation example (see

Figure 4.2); GA successfully split the minority class into two designed pseudo-

classes.

4.2.2 Experiment

In this section, we investigate this relabeling approach on the Freddie Mac

mortgage credit data.

Data Description

Freddie Mac is a U.S. government-sponsored enterprise that purchases mort-

gage loans for later sale as part of mortgage-backed securities. Freddie Mac

provides their “Single Family Loan-Level Data Set” including the fixed-rate

mortgages they purchased from 1999 to 2015.‡ Here, we define default as a

‡Data and detail available at:
http://www.freddiemac.com/news/finance/sf loanlevel dataset.html
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mortgage that is 180 days or more overdue in making a repayment on the

home loan. This is a standard definition of default in U.S. financial insti-

tutions [OCC, US Department of the Treasury, 2000, page. 1; US Federal

Reserve Bank, 2007, page. 20]. The target variable we use is whether a mort-

gage moved to default status in the two years immediately following the first

repayment date. The choice of two years was a balance between having a too

long window and having too few defaults. In particular having a one year

window would give some quarters with too few defaults for statistical mod-

eling purposes (the default rate is very low, even in two years perspective).

The upper plot of Figure 4.4 shows the number of new mortgages booked in

each originating quarter from 2003 to 2013; the lower plot shows the default

rate from 2003 to 2013. The number of applications fluctuates over this long

time frame. We find a pronounced peak in default rate during the financial

crisis period (2007-2008) with a peak of 6.8% in 2007 Q3; however, the de-

fault rate is extremely low in other quarters. Table 4.1 provides a description

of the variables in this data set.
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Table 4.1: Description of variables in the Freddie Mac data set

Variable Type Description

Default Categorical Dependent variable: 1 if borrower greater than 180 days
past due on monthly installments;0 otherwise.

Score Continuous A number, prepared by third parties, summarizing the
borrower’s creditworthiness, which may be indicative of
the likelihood that the borrower will timely repay future
obligations.

DTI Continuous Original Debt-To-Income Ratio.
UPB Continuous Unpaid Principal Balance.
LTV Continuous Original Loan-To-Value.
OIR Continuous Original Interest Rate.

Number of Borrowers Categorical The number of borrower(s) who are obligated to repay
the mortgage note secured by the mortgaged property.
1 = one borrower; 2 = more than one borrower.

Seller Categorical The entity acting in its capacity as a seller of mortgages
to Freddie Mac at the time of acquisition.

Servicer Categorical The entity acting in its capacity as the servicer of mort-
gages to Freddie Mac as of the last period for which loan
activity is reported in the Dataset.

First Time Homebuyer Categorical Y =yes; N = no.
Number of Units Categorical Denotes whether the mortgage is a one-, two-, three-, or

four-unit property.
Occupancy Status Categorical O = Owner Occupied; I = Investment Property; S =

Second Home; Space = Unknown.
Channel Categorical R = Retail; B = Broker; C = Correspondent; T = TPO

Not Specified; Space = Unknown.
PPM Categorical Denotes whether the mortgage is a Prepayment Penalty

Mortgage. Y = PPM; N = Not PPM.
Property Type Categorical CO = Condo; LH = Leasehold; PU = PUD; MH =

Manufactured Housing; SF = 1-4 Fee Simple; CP = Co-
op; Space = Unknown.

Channel Categorical R = Retail; B = Broker; C = Correspondent; T = TPO
Not Specified; Space = Unknown.

Loan Purpose Categorical P = Purchase; C = Cash-out Refinance; N = No Cash-
out Refinance; Space = Unknown.
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Data Preparation

We use variables in Table 4.1, which give the information of each mort-

gage application (i.e. mortgage origination data). In the financial industry,

the log transformation is frequently used to make highly skewed data less

skewed and reduce the influence of outliers [Altman and Sabato, 2007]. We

deploy the log transformation on the variable “UPB”, since “UPB” is left

skewed in the Freddie Mac data. “Seller” and “Servicer” are transformed

from categorical variables to numerical variables using the weight of evidence

approach [Thomas, 2009, p. 25], because “Seller” and “Servicer” contain

many category levels. All other categorical variables are dummy coded to

binary variables.

After dummy coding categorical variables into binary variables we delete the

variables which are constant in the minority class, because linear separation

appear in some dummy variables (this will make MLE not exist as we ex-

plained in Section 3.1.1). For example, the categorical variable “number of

units” is dummy coded into several indicator variables (“number.units2 ”,

“number.units3 ”, “number.units4 ”) (e.g. “number.units4 ” ∈ {0, 1} means

whether “number of units” equal to 4 for an observation). However, in 2005

for example, some of these categories are barely populated. Thus, after

dummy coding the variable“number of units” into binary variables, the new

dummy variable “number.units4 ” has constant value 0 in the minority (de-

fault) class, which makes the coefficient estimate of “number.units4 ” in lo-

gistic regression fail to be finite.

Model Building Procedure Description

Table 4.2 explains the experimental procedure. After data preparation, we

use data from an individual year (e.g. 2000) as a training set to train five dif-

ferent models: “logistic” and “GA-K” (K ∈ {2, 3, 4}). Here, “logistic” refers

to modeling a logistic regression based on the prepared data. Model output

is the estimated posterior probability of a mortgage account defaulting, given

its feature vector.
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Table 4.2: Experiment Procedure Times

Training set year 2000 2001 . . .

Default collection year 2001 2002 2002 2003 . . .

Testing set year 2003 2004 . . .

In “GA-K” procedure, we use GA to split the minority class into K pseudo-

classes. These K pseudo-classes provide K new default classes, which, along

with the non-default class data, made up a new relabeled data. Then this

relabeled data are analyzed by multinomial logistic regression. The model

output is still the posterior probability of defaulting by summing the posterior

probability of K new default classes. Figure 4.5 is an example running GA-2

100 times in training set 2003. The green line represents the best fitness

score (training set AUC) among populations in each iteration, and blue line

represents the mean fitness score. We observe GA-2 enhance the best fitness

score among population from 0.89 to 0.9, and converge after iterating 80

times.

A two-year gap (e.g. 2001-2002) is used for collecting default status infor-

mation. Using contiguous windows for training is common practice in the

credit risk industry. There are two main factors which influence the choice

of the time gap:

• On one hand, we need to keep the observation time for default long

enough to capture adequate default information.

• On the other hand, we also need to keep the model up-to-date, which

requires short observation time. For example, if we increase the two-

year gap to four years, the model is unlikely to be up-to-date. This

means, for example, a model built on training set 2000 will be used to

predict the data of each quarter in 2005 rather than 2003.

The “Two-year gap” is a reasonable choice to balance between having a

too long window and having too few defaults. In particular having a one

year window would give some quarters with too few defaults for statistical

modeling purposes.
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Figure 4.5: Training set AUC (vertical axis) in 2003. Horizontal axis is the number of the
generation, green line represents the best fitness score among population in each iteration.

Finally, the obtained models (i.e. “logistic” and “ GA-K”) are used to fore-

cast the data for the four quarters in the following third testing set year.

The performance assessment metric is the AUC. To explore modeling and

performance issues over a long time horizon, this procedure is repeated over

a ten-year period.

Result and Discussion

The upper plot of Figure 4.6 displays the test-set AUC for each of the meth-

ods, over the observation period. We also plot the AUC difference with

respect to the benchmark method logistic regression in the lower part of Fig-

ure 4.6. Overall, the results indicate that over a long time frame, different

model’s efficacy varies. We notice that relabeling methods (GA-K) do a good

job to enhance the performance in most years, if we can correctly choose the
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number of clusters K in advance. We defer how to choose the right number

by using cross validation procedure to Section 4.3.3.

In application, it is also meaningful to investigate the microeconomics mean-

ing of different default group. We choose 2007 and 2009 for a further inves-

tigation.

• 2007: GA-4 > GA-3 > Logistic Regression > GA-2.

Training set year 2004,

• 2009: GA-2 > Logistic Regression > GA-3 > GA-4

Training set year 2006.

Figure 4.7-4.10 illustrate five important variables [Campbell and Cocco, 2015,

Bagherpour, 2017] (score, DTI, UPB, LTV and OIR) with two or three mi-

nority classes in the year 2007 and 2009, which correspond to the training

set in the year 2004 and 2006. We find in 2004, there is no significant dif-

ference between LTV and DTI when split minority class into two. However,

the significant separation appears in three clusters. The “Default 2” group

in three clusters of 2004 (Figure 4.8) shows high credit score, high DTI with

high LTV group has a higher risk of default. This may explain why the three

cluster relabeling solution works well in this case, by finding different kind

of defaults that were not picked up in the basic logistic regression model. In

2006, three clusters produced by GA does not give a clear separation between

clusters, but two clusters give a clear separation between the two groups may

explain why K = 2 works well in 2006.
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Figure 4.7: Five important variables in 2004, with two minority clusters.

Figure 4.8: Five important variables in 2004, with three minority clusters.
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Figure 4.9: Five important variables in 2006, with two minority clusters.

Figure 4.10: Five important variables in 2006, with three minority clusters.
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4.3 Expectation Maximization Algorithm

Our GA approach provides promising potential to enhance the logistic re-

gression performance in highly imbalanced data set by relabeling. However,

we notice that using the GA to solve the relabeling problem is computation-

ally expensive and time consuming; actually in our Freddie Mac experiment,

it takes around two days to relabel a single year on a standard laptop in R.

This is because it is an optimization over discrete subsets and hence faces

a combinatorial explosion. For example, relabeling n minority observations

to K pseudo-classes brings Kn potential solutions. Searching this space of

relabeling using brute force method like GA is obviously computationally

expensive.

To manage the computational burden and the objective of optimizing dis-

crimination, we propose a novel relabeling procedure using the EM algorithm

with multinomial logistic regression in this section.

4.3.1 Model Framework Description

The fundamental problem here is relabeling the minority class data into sev-

eral new pseudo-classes. However, the pseudo-labels of the minority class

data {x1i; i ∈ (1, . . . , n)} are unobserved. In order to demonstrate this

problem as an incomplete-data problem, we introduce latent variable {zi =

k; i ∈ (1, . . . , n), k ∈ (1, . . . , K)} to represent the pseudo-class label. For

now, we assume K is known. If we assume zi arises from a mixture of

a finite number of subpopulations in proportions Φ = {φ1, . . . , φK}, i.e.

zi ∼ mulitinomial(Φ), where
∑K

k=1 φk = 1, then for a fixed observation i,

we have case-wise contribution to the likelihood function with pseudo-classes

as
∑K

k=1 φkPr(zi = k|x1i) (Equation 4.1). More specifically, the underly-

ing population of the minority class is modeled as consisting of K distinct

pseudo-classes with unknown populations Φ.
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Writing down the log-likelihood function of the complete data:

L =
n∑
i=1

(
log

K∑
k=1

φk
(
Pr(zi = k|x1i)

))
+

N∑
i=1

log(Pr(yi = 0|x0i)). (4.3)

The probability function in Equation (4.3), Pr(zi = k|x1i) and Pr(yi = 0|x0i),

can be modeled by various classification methods (Logistic Regression, Naive

Bayes etc). If we consider the majority class as a base class (by simply

relabeling yi = 0 to zi = 0), we can use multinomial logistic regression where

logit(Pr(zi = k|x1i)) = β0k + xT1iβk, where k ∈ {1, . . . , K}. (4.4)

Henceforth, we use β0 and β to denote the parameter set of scalar β0k and

vector βk where k ∈ {1, . . . , K} respectively.

Finally, we make two remarks about this model. First, it is possible to

reason about a binary classification output by considering Pr(Y = 0|X =

x) = 1−
∑K

k=1 Pr(Z = k|X = x). Second, this relabeling approach is useful

to explore the latent subclasses in many application domains.

4.3.2 EM Algorithm

The parameters Φ, β0, and β in Equations (4.3) and (4.4) are estimated in

the proposed multinomial model. We use the EM algorithm to perform the

optimization of this model in the highly imbalanced scenario n� N .

First, we write the log-likelihood function of the minority class, where p̂ik
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denotes the estimated posterior probability Pr{zi = k}:

n∑
i=1

log

(
K∑
k=1

φkPr(zi = k|x1i; β0k, βk)

)

=
n∑
i=1

log
K∑
k=1

(
p̂ikφkPr(zi = k|x1i; β0k, βk)

p̂ik

)

≥
n∑
i=1

K∑
k=1

p̂iklog

(
φkPr(zi = k|x1i; β0k, βk)

p̂ik

)
[by Jensen’s Inequality]

=
n∑
i=1

K∑
k=1

p̂iklog(φk) +
n∑
i=1

K∑
k=1

p̂iklog

(
Pr(zi = k|x1i; β0k, βk)

p̂ik

)

=
n∑
i=1

K∑
k=1

p̂iklog(φk) +
n∑
i=1

K∑
k=1

p̂iklog (Pr(zi = k|x1i; β0k, βk))︸ ︷︷ ︸
to be optimized

−
n∑
i=1

K∑
k=1

p̂iklog(p̂ik).

(4.5)

Formula (4.5) provides a lower bound for the part in the log-likelihood func-

tion (4.3) related to the minority class.

In the EM algorithm, the E-step is used to construct a local lower-bound to

the likelihood function, by conducting a soft assignment of each observation

to each class; the lower-bound here is referred to as the Q function. Then,

the M-step optimizes this lower bound by improving the coefficient estimates

in the Q function. In general, the EM algorithm iteratively repeats E-step

and M-step, to enhance the lower boundary of the likelihood, and ultimately

reach the maximum likelihood solution. Notice that only the underlined part

in Equation (4.5) involves the parameters we seek to estimate; thus, the Q
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function for EM to optimize is

Q(φ, β0, β) =
n∑
i=1

K∑
k=1

p̂iklog(φk) +
n∑
i=1

K∑
k=1

p̂iklog
(
Pr(zi = k|x1i; β0k, βk)

)
+

N∑
i=1

log(Pr(yi = 0|x0i; β0, β)),

(4.6)

with the additional constraint that the φk’s sum to one. For convenience,

let θ denote all the model coefficients in the multinomial logistic regression

and Θ denotes all parameters for optimization (model coefficients and latent

class probabilities). Since the pseudo label zi = k is unknown, we start

with randomly generated numbers between 0 and 1 as the initial guesses of

p̂
(1)
ik , k ∈ {1, . . . , K}, i ∈ {1, . . . , n}. Here, p̂

(1)
ik denotes p̂ik in the first iteration

and
∑K

k=1 p̂
(1)
ik is constrained to be one for each i. Then, we iterate following

the E - step and the M - step, until convergence:
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• E - step:

In the (u+1)th iteration, given the current parameter estimates Θ(u), the

posterior probability of the minority observation i belonging to pseudo-

class k is:

p̂
(u+1)
ik =

φ
(u)
k Pr{zi = k|x1i; θ

(u)}∑K
k=1 φ

(u)
k Pr{zi = k|x1i; θ(u)}

; i ∈ {1, . . . , n}, k ∈ {1, . . . , K}.

(4.7)

Hence, we have new weighted pseudo-class ‘center’,

µ
(u+1)
k =

n∑
i=1

p̂
(u+1)
ik x1i; i ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , K}. (4.8)

• M - step:

Given the estimated posterior probability p̂
(u+1)
ik in the E - step, calculate

Θ(u+1) by maximizing

Q(Θ(u+1)|Θ(u)) = Q1(θ(u+1)|Θ(u)) +Q2(φ(u+1)|Θ(u)), (4.9)

where

Q1(θ(u+1)|Θ(u)) =
n∑
i=1

K∑
k=1

p̂
(u+1)
ik log(Pr(zi = k|x1i; θ

(u+1)
k ))

+
N∑
i=1

log(Pr(yi = 0|x0i; θ
(u+1))),

(4.10)

and

Q2(φ(u+1)|Θ(u)) =
n∑
i=1

K∑
k=1

p̂
(u+1)
ik log(φ

(u+1)
k ). (4.11)

In the M - step, Q1 and Q2 can be maximized separately, hence giving the

maximizer of θ(u+1) and φ(u+1) respectively. Specifically, Q1 is a weighted

likelihood function for multinomial logistic regression, which means we could

replace each group’s minority class data with their weighted group centers
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µk =
∑n

i=1 p̂ikx1i and get the same coefficient estimates. The maximizer of

Q2 with constraint
∑K

k=1 φ
(u+1)
k = 1 is given by

φ
(u+1)
k =

1

n

n∑
i=1

p̂
(u+1)
ik . (4.12)

The pseudo code for this EM algorithm has been provided in Appendix C.

The time complexity for our EM algorithm isO(KnI) (see [Zhong and Ghosh,

2003]), where I is the number of the iterations needed to solve the multino-

mial logistic regression Q1. Typically, the EM algorithm is not as popular as

other clustering algorithms when the data set is large [Meilijson, 1989]. In

practice, due to the nature of highly imbalanced data, n may be very small,

making our algorithm viable for large problems (i.e. when N is large).

The algorithm terminates when relative changes in the likelihood function (4.6)

are deemed sufficiently small. In our experience, terminating the process

when the change is less the 0.01% is sufficient, usually resulting in conver-

gence within 50 iterations. Upon convergence, we construct a relabeled data

set by assigning each minority class observation x1i a label zi = k, where

k = arg max
k

(
Pr(zi = k|x1i)

)
. This relabeled data set is then amenable to

standard multinomial logistic regression.

A general proof for the monotonicity of the EM algorithm is given by [Tanner,

2012, p. 34, Theorem 1], and we also provide a proof of monotonicity for the

proposed algorithm.

Theorem 16. Assume when Q(Θ|Θ(u)) ≥ Q(Θ(u)|Θ(u)), we have l(Θ) ≥
l(Θ(u)).

Proof. Let Equation (4.5) beQ(Θ|Θ(u))+h(Z|X; Θ(u)), where h(Z|X; Θ(u)) =

−p̂iklog(p̂ik). Now we have l(Θ) ≥ Q(Θ|Θ(u)) + h(Z|X; Θ(u)).

Consider a special case when Θ = Θ(u), let C
(u)
i =

∑K
k=1 φ

(u)
k Pr(zi = k|x1i; θ

(u)),
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we notice that

n∑
i=1

K∑
k=1

p̂iklog

(
φ

(u)
k Pr(Zi = k|x1i; θ

(u))

p̂ik

)
=

n∑
i=1

K∑
k=1

φ
(u)
k Pr(zi = k|x1i; θ

(u))

C
(u)
i

× log

(
φ

(u)
k Pr(zi = k|x1i; θ

(u))
C

(u)
i

φ
(u)
k Pr(zi = k|x1i; θ(u))

)

=
n∑
i=1

∑K
k=1 φ

(u)
k Pr(zi = k|x1i; θ

(u)
k )

C
(u)
i

log(C
(u)
i )

=
n∑
i=1

log(C
(u)
i ),

(4.13)

thus, after simplification, we have l(Θ(u)) = Q(Θ(u)|Θ(u)) + h(Z|X; Θ(u)).

By combining the assumption in the theorem, we have

l(Θ) ≥ Q(Θ|Θ(u)) + h(Z|X; Θ(u))

≥ Q(Θ(u)|Θ(u)) + h(Z|X; Θ(u))

= l(Θ(u)),

(4.14)

which states that improving the Q-function will at least not make the log-

likelihood worse.

We conclude our EM algorithm description by conducting a simple exper-

iment on a contrived example which similar to the example we mentioned

in Section 3.1.2, but with different pseudo-classes proportion. 2,000 sample

points are generated following X ∼ N(µ0,Σ0) as the majority class Y = 0.

Then 50 points following X ∼ N(µ1,Σ1) and 100 points X ∼ N(µ2,Σ2) as

two minority class pseudo-classes. Here

µ0 = [0, 0], µ1 = [1, 1.8], µ2 = [1,−1.8],

Σ0 =

[
1 0

0 1

]
and Σ1 = Σ2 =

[
0.2 0

0 0.2

]
.

We deliberately make the number of the observations in two minority class

98



Figure 4.11: Scatter plots of simulation samples, including 2,000 majority observations and
150 minority observations.

pseudo-classes different, in order to check our EM algorithm performance

(see Figure 4.11).

We iterate our EM algorithm 50 times with the setting K = 2 (how to

select K will be discussed in Section 4.3.3). Figure 4.12 tracks φ̂1 and φ̂2

(proportions of the minority class) in each iteration. Figure 4.13 tracks the

iteration of p̂i1, i ∈ {1, · · · , n} (the probability that minority class observation

i belongs to pseudo-class 1). We find our EM algorithm successfully converges

to the target proportions (50:100, which are the number of observations in

two minority class clusters). Figure 4.14 gives the relabeling result by relabel

each minority class observation into pseudo-class k based on

k = arg max
k

p̂ik, k ∈ {1, 2}
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Figure 4.12: Proportions (φ̂1 and φ̂2) in 50 times iteration.

after 50 times iteration (blue and brown in Figure 4.14); we see our EM

algorithm generate two well separated pseudo-classes.
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Figure 4.13: p̂i1 (the probability of observations belong to cluster 1) in 50 times iteration.
p̂i1 converge to 1 or 0 means observation i belongs to cluster 1 or 2 respectively.

Figure 4.14: Scatter plots of simulation samples after relabeling, including one pseudo-class
in blue and another one in brown.
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Simulation Comparison between EM Relabeling Method and

SMOTE

In this section, we use a simulation study to demonstrate the performance of

our EM relabeling method and the SMOTE oversampling method (described

in Section 2.3.1), when there are {two close clusters, two well separated

clusters, or three clusters} in the minority class.

In our simulation, for the majority class Y = 1 (green points in Figure 4.15),

we generate 2000 samples X ∼ N(µ0,Σ0), where

µ0 = [0, 0],Σ0 =

[
1 0

0 1

]
.

For the minority class (red points in Figure 4.15), we investigate three dif-

ferent scenarios:

• Scenario 1, two close clusters structure in the minority class

Y = 0: we generate 75 samples for each cluster, which follows X ∼
N(µ1,Σ1) and X ∼ N(µ2,Σ2) respectively, where

µ1 = [1.5, 1], µ2 = [1.5,−1],Σ1 = Σ2 =

[
0.16 0

0 0.16

]
.

• Scenario 2, two well separated clusters structure in the minority

class Y = 0: we generate 75 samples for each cluster, which follows

X ∼ N(µ1,Σ1) and X ∼ N(µ2,Σ2) respectively, where

µ1 = [1.5, 2], µ2 = [1.5,−2],Σ1 = Σ2 =

[
0.16 0

0 0.16

]
.

• Scenario 3, three clusters structure in the minority class Y = 0:

we generate 50 samples for each cluster, which follows X ∼ N(µ1,Σ1),
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X ∼ N(µ2,Σ2), and X ∼ N(µ3,Σ3) respectively, where

µ1 = [1.5, 2], µ2 = [1.5, 0], µ2 = [1.5,−2],Σ1 = Σ2 = Σ3 =

[
0.16 0

0 0.16

]
.

For the relabeling method, we use our EM algorithm to relabel the minor-

ity class (Y = 0) into two pseudo-classes in Scenarios 1 and 2, and three

pseudo-classes in Scenario 3; these pseudo-classes together with the majority

class constitute a relabeled training set. A multinomial logistic regression is

trained on the relabeled data and the model output is the summation of the

posterior probability of pseudo-classes. How to select the correct number of

the pseudo-classes among the minority will be discussed in the next section.

For SMOTE, we oversample the minority class 10 times greater, i.e. generate

1350 synthetic minority class observations, which makes the size of the mi-

nority class increase to 1500. SMOTE has a hyperparameter k (the number

indicating the number of nearest neighbors that are used to generate the syn-

thetic examples of the minority class), where we will try k = 5 (the default

setting from its creators [Chawla et al., 2002]) and a large k = 50. After

SMOTE oversampling, we train a vanilla logistic regression on the oversam-

pling data set. Figure 4.15 shows the scatter plots of the original data and

the SMOTE oversampling data, where the left most plots in each row are

the original data in each scenario, and the right two plots in each row are

the scatter plots of the SMOTE oversampling data sets (k = 5 and k = 50).

In each scenario, we replicate our simulation 1000 times by modeling on the

training set and deploy them on the corresponding test set which has the

same distribution as the training set. Table 4.3 gives the average AUC and

H-measure with their corresponding standard deviation on the test sets in

different scenarios. We find that:

• regarding the AUC, the relabeling method gives a significant better

performance in scenarios 2 and 3 (note the differences are higher than

two times standard deviation). The relabeling method also provides

some improvement in scenario 1.
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Figure 4.15: Scatter plots of Scenario 1 to 3, green points represent the majority class
Y = 1 and red points represent the minority class Y = 0. The left most plots in each row
are the original data in each scenario, and the right two plots in each row are the scatter
plots of the SMOTE oversampling data sets (k = 5 and k = 50).
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• regarding the H-measure, the relabeling method gives a better perfor-

mance in scenario 2 (note the differences are higher than two times

standard deviation). The relabeling method also provides some im-

provement in scenarios 1 and 3.

Overall, when the cluster structure is present among the minority class, our

relabeling method will outperform SMOTE in this simulation study. We

also try to deploy the EM relabeling method on the imbalanced data set

where no cluster structure exists in the minority class. The EM algorithm

will generate an empty pseudo-class hence still give a vanilla logistic after

running EM. The reasons for this phenomenon along with how to choose the

correct number of pseudo-classes K are given in the next section.

Table 4.3: Average AUC and H-measure with their corresponding standard deviation on the
test sets in different scenarios.

Scenario 1: two close structures
Relabeling SMOTE k=5 SMOTE k=50

AUC 0.9211 (0.0060) 0.9177 (0.0067) 0.9177 (0.0067)
H-measure 0.5923 (0.0257) 0.5899 (0.0252) 0.5900 (0.0251)

Scenario 2: two well separated structures
Relabeling SMOTE k=5 SMOTE k=50

AUC 0.9430 (0.0054) 0.9171 (0.0069) 0.9172 (0.0069)
H-measure 0.6330 (0.0230) 0.5811 (0.0257) 0.5829 (0.0256)

Scenario 3: three clusters
Relabeling SMOTE k=5 SMOTE k=50

AUC 0.9317 (0.0061) 0.9178 (0.0069) 0.9178 (0.0069)
H-measure 0.6279 (0.0252) 0.5906 (0.0263) 0.5906 (0.0254)
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4.3.3 Identification of the Number of Clusters

In this section, we briefly touch the problem of identifying the number of

pseudo-classes K. In general, selecting the unknown number of latent groups

is a challenging [Ketchen and Shook, 1996]. Among various proposed meth-

ods to select the “right” number of groups, information criteria are widely

used due to their simplicity. The two most popular information criteria are

the Akaike information criterion (AIC) [Akaike, 1974] and the Bayesian in-

formation criterion (BIC) [Burnham and Anderson, 2004]. However, these

are known to have problems; for example, they may overestimate or underes-

timate the number of groups for model based clustering [Zhong and Ghosh,

2003]. Besides the information criteria approach, statistical hypothesis test-

ing is another popular procedure, often framed as testing the null hypothesis

that there are K pseudo-classes in the minority class against the alternative

hypothesis that there are K + 1 pseudo-classes in the minority class. Unfor-

tunately, the standard likelihood ratio test is not appropriate here, because

the test statistic is not asymptotically chi-square distributed [Li et al., 1988,

Titterington, 1990]. Bootstrap likelihood ratio test [McLachlan, 1987, Feng

and McCulloch, 1996] and Monte Carlo methods [Smyth, 1997] are more pre-

cise, however they are computationally expensive. Compared to the above

methods, cross validation is effective and fast when the sample size is ade-

quate, and this approach is widely used in model based clustering [Smyth,

2000].

Here we use cross validation on the training set to estimate a performance

measure for each choice of K. Motivated by problems in retail finance and

its insensitivity to class prior distribution, we use the Area Under the ROC

Curve (AUC) as a performance measure, though many other choices are valid

and reasonable. In each iteration (fold) of cross validation, the procedure

described above is used, namely: relabel the data to K pseudo-classes, fit a

multinomial logistic regression, and estimate the posterior probability of each

test set observation belonging to the base class. The latter stage provides

the means to evaluate the AUC, which is then averaged over cross validation

folds. The number of pseudo-classes, K, is searched in increasing order, and

the process terminates when the estimated AUC decreases.
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It is worth to note that the average AUC value from cross validation proce-

dure when we relabel the minority class to K pseudo-classes may equal to

the AUC when we relabel to K+1 pseudo-classes (and we will select K when

this happen). There are two reasons for this phenomenon:

• the estimated mixture has an empty pseudo-class k̃ (i.e. φk̃ ≈ 0 for a

k̃ ∈ {1, . . . , K}), because p̂ik̃ ≈ 0 for all i ∈ {1, 2, . . . , n} may happen,

and this leads to φk̃ =
∑n

i=1 p̂ik̃ ≈ 0,

• the estimated mixture has several identical pseudo-classes ({β0k, βk} =

{β0k′ , βk′} for some k, k′ ∈ {1, . . . , K}, k 6= k′).

These could be investigated by comparing {φ, β0, β} after running EM.

A Simulation Study for Cross Validation Procedure

In this section, we use a simulation study to show our cross validation method

correctly selects K when there are {no clusters, close clusters, well separated

clusters} in the minority class.

For the majority class Y = 1 (green points in Figure 4.16), we generate 10000

samples X ∼ N(µ0,Σ0), where

µ0 = [0, 0],Σ0 =

[
1 0

0 1

]
.

For the minority class (red points in Figure 4.16), we investigate four different

scenarios:

• Scenario 1, no cluster structure in the minority class Y = 0: we

generate 150 samples X ∼ N(µ1,Σ1), where

µ1 = [1.5, 0],Σ1 =

[
0.16 0

0 0.16

]
.
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• Scenario 2, two close clusters structure in the minority class Y = 0:

we generate 75 samples for each cluster, which follows X ∼ N(µ1,Σ1)

and X ∼ N(µ2,Σ2), where

µ1 = [1.5, 1], µ2 = [1.5,−1],Σ1 = Σ2 =

[
0.16 0

0 0.16

]
.

• Scenario 3, two well separated clusters structure in the minority

class Y = 0: we generate 75 samples for each cluster, which follows

X ∼ N(µ1,Σ1) and X ∼ N(µ2,Σ2), where

µ1 = [1.5, 2], µ2 = [1.5,−2],Σ1 = Σ2 =

[
0.16 0

0 0.16

]
.

• Scenario 4, three clusters structure in the minority class Y = 0:

we generate 50 samples for each cluster, which follows X ∼ N(µ1,Σ1),

X ∼ N(µ2,Σ2) and X ∼ N(µ3,Σ3), where

µ1 = [1.5, 2], µ2 = [1.5, 0], µ3 = [1.5,−2],Σ1 = Σ2 = Σ3 =

[
0.16 0

0 0.16

]
.
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Figure 4.16: Scatter plot for Scenario 1 to 4, green points represent the majority class
Y = 1, red points represent the minority class Y = 0.
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We deploy our cross validation procedure with K = 1, 2, 3 in these scenarios;

the average AUC are displayed in Figure 4.17. In Scenario 1, there is no

difference regarding the AUC, and we select K = 1. In Scenarios 2 and

3, we select K = 2, and we can see that, when there well separated cluster

structure among the minority class, K = 2 gives a more observable difference

in AUC comparing to K = 1 and 3. In Scenarios 4, we select K = 3. Overall,

the cross validation procedure selects the correct K which we set in different

scenarios.

Figure 4.17: The average AUC obtained by cross validation procedure in Scenarios 1 to 4.
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4.3.4 Experiment 1: Nested Cross Validation

We have proposed an EM algorithm for relabeling the minority class data

into several distinct pseudo-classes. In this section and the next section,

we illustrate some experiments to demonstrate our algorithm’s effectiveness.

Five binary classification data sets are used in this section. Nested cross

validation experiments are conducted on five data sets.

Data Description

Five binary classification data sets are introduced in this section which will be

used in our experiments. We report the number of variables, the proportion

of the minority class and the source in Table 4.4. All data sets include some

independent variables. Furthermore, each data set has a binary variable

which indicates whether a target event happens. Details of these data are

available at the source mentioned in Table 4.4.

Table 4.4: Summary of the experimental data sets

Data Variables Proportion
minority

Number of
observation

Source Target vari-
able

Taiwan
credit card

23 22.12% 30000 [Yeh and
Lien, 2009]

credit card
default

European
credit card
transaction

29 0.17% 284807 [Dal Pozzolo
et al., 2015]

fraudulent
transaction

Bank tele-
marketing

20 11.26% 41188 [Moro et al.,
2014]

successful
telemarket-
ing

Lending
Club loan

33 11.95% 157085 [Wendy,
2004]

loan default

Loan recov-
ery data

21 2.17% 8237 Confidential
[Ye and
Bellotti,
2019]

full recov-
ery
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Experimental Procedure

We randomly split each data set into ten folds. In each iteration, nine folds

of data serve as the training set and one fold as the test set. Among the

training data, we use the cross validation strategy described in Section 4.3.3,

to identify the number of pseudo-classes K. To summarize, the inner cross

validation loop is used for identifying the K, and the outer cross validation

loop is used to measure the performance in the inner loop.

Results

Tables 4.5 to 4.8 give the mean of the AUC and the H-measure with their

corresponding standard deviation in the ten-fold cross validation procedure

and the test set respectively. The boldface text shows the number of pseudo-

classes K selected by cross validation. For comparison, the relabeled model

and standard logistic regression are deployed on the test set. The latter

corresponds to K = 1 in the tables.

With respect to the AUC value, we find that relabeling the minority class

into two pseudo-classes does enhance the performance on the Taiwan credit

card data, European credit card fraud transaction data, and loan recovery

data. In each case, K = 2 was the preferred choice. Especially for the Taiwan

credit card data and loan full recovery data, we see the difference of the AUC

from K = 1 to K = 2 are greater than twice of their corresponding standard

deviation, which are significant improvements. Through the improvement

in European credit card fraud transaction data are small; they are substan-

tive in a big population of credit card transactions; a 2% increases in AUC

may have substantial financial value. With the bank telemarketing data and

Lending Club data, although relabeling the minority class data into two or

three pseudo-classes did not enhance the predictive ability of the model, the

cross validation procedure does correctly choose K = 1; hence the proce-

dure does not reduce prediction performance. The reason of why K = 1

was the preferred choice in these two data set is that possibly there are no

sharp cluster structure among the pseudo-classes. For an ad hoc analysis,
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Figure 4.18 gives the boxplot and pie chart of some significant risk factors,

which has been highlighted in [Janio, 2017] for Lending Club data, when

we relabel the minority class into K = 2 new pseudo-classes. As we can

seen in Figure 4.18, there are no significant difference between new pseudo-

classes “Default 1” and “Default 2”, and our cross validation procedure do

choose K = 1 here. For the H-measure, we see similar results to the AUC;

significant improvements still exist in Taiwan credit card data and loan full

recovery data. Once pseudo-classes are estimated using the EM algorithm,

we anticipate that they may express useful information regarding the minor-

ity class in the application domain. For some analysis of the characteristics

between different pseudo-classes, see Appendix B.1.

We also provide indicative computation times in Tables 4.5 and 4.6. All of

these experiments are conducted on the same computer§. It is interesting to

notice that the computation time for K = 2 and K = 3 on the Taiwan credit

card data and Lending Club data do not strictly follow the time complexity

rule mentioned in Section 4.3.2. This is due to the EM algorithm terminating

early when one of the φk = 0 (a possibility desired above). This also explains

why K = 3 gives identical AUC to K = 1 for the Taiwan credit card data

and Lending Club data.

For the fraud detection problem, another important measure for model as-

sessment is the fraud detection rate with a fixed alarm rate [Olszewski, 2014].

For example, if the bank pre-defines the alarm rate at 0.5%, we require to

know how many fraud transactions could be detected. This performance met-

ric is meaningful and vital in real application [Hand et al., 2008]. We provide

the detected fraud rate (with alarm rate 0.5%) of the European credit card

transaction data in Table 4.9. A notable enhancement from K = 1 to K = 2

is observed.

§Apple iMac with 4.2 GHz Intel Core i7 processor and 32 GB 2400 MHz DDR4 memory
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Table 4.5: Mean and standard deviation of the AUC from the cross validation experi-
ment. The computation times are presented in brackets. Note that K refers to the number
of pseudo-classes in the minority class and K = 1 refers to standard logistic regression.

Taiwan Credit Card K (computation
time)

Mean AUC Standard
deviation

Cross validation AUC 1 0.7242 0.0022
2 (270.4 mins) 0.7545 0.0030
3 (351.7 mins) 0.7242 0.0022

Credit Fraud K (computation
time)

Mean AUC Standard
deviation

Cross validation AUC 1 0.9740 0.0027
2 (570.3 mins) 0.9747 0.0024
3 (834.2 mins) 0.9746 0.0025

Bank Telemarketing K (computation
time)

Mean AUC Standard
deviation

Cross validation AUC 1 0.7913 0.0018
2 (26.9 mins) 0.7829 0.0018
3 (28.8 mins) 0.7897 0.0020

Lending Club K (computation
time)

Mean AUC Standard
deviation

Cross validation AUC 1 0.6879 0.0005
2 (2606.6 mins) 0.6730 0.0012
3 (1116.7 mins) 0.6879 0.0005

Loan Full Recovery Data K (computation
time)

Mean AUC Standard
deviation

Cross validation AUC 1 0.8142 0.0070
2 (12.5 mins) 0.8497 0.0074
3 (23.8 mins) 0.8224 0.0068
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Table 4.6: Mean and standard deviation of the AUC from the test set experiment. The
computation times are presented in brackets. Note that K refers to the number of pseudo-
classes in the minority class and K = 1 refers to standard logistic regression.

Taiwan Credit Card K (computation
time)

Mean AUC Standard
deviation

Test set AUC 1 0.7270 0.0062
2 (27.4 mins) 0.7562 0.0096
3 (36.8 mins) 0.7270 0.0062

Credit Fraud K (computation
time)

Mean AUC Standard
deviation

Test set AUC 1 0.9742 0.0151
2 (54.0 mins) 0.9753 0.0148
3 (88.4 mins) 0.9748 0.0142

Bank Telemarketing K (computation
time)

Mean AUC Standard
deviation

Test set AUC 1 0.7913 0.0163
2 (3.6 mins) 0.7841 0.0169
3 (3.8 mins) 0.7899 0.0161

Lending Club K (computation
time)

Mean AUC Standard
deviation

Test set AUC 1 0.6882 0.0046
2 (272.5 mins) 0.6730 0.0049
3 (139.9 mins) 0.6882 0.0046

Loan Full Recovery Data K (computation
time)

Mean AUC Standard
deviation

Test set AUC 1 0.8168 0.0101
2 (1.5 mins) 0.8576 0.0049
3 (2.1 mins) 0.8272 0.0044
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Table 4.7: Mean and standard deviation of the H-measure from the cross validation ex-
periment. The computation times are presented in brackets. Note that K refers to the num-
ber of pseudo-classes in the minority class and K = 1 refers to standard logistic regression.

Taiwan Credit Card K (computation
time)

Mean H-measure Standard
deviation

Cross validation 1 0.2488 0.0045
H-measure 2 (270.4 mins) 0.2537 0.0030

3 (351.7 mins) 0.2488 0.0045

Credit Fraud K (computation
time)

Mean H-measure Standard
deviation

Cross validation 1 0.8690 0.0050
H-measure 2 (570.3 mins) 0.8698 0.0045

3 (834.2 mins) 0.8691 0.0051

Bank Telemarketing K (computation
time)

Mean H-measure Standard
deviation

Cross validation 1 0.3549 0.0026
H-measure 2 (26.9 mins) 0.3389 0.0024

3 (28.8 mins) 0.3438 0.0026

Lending Club K (computation
time)

Mean H-measure Standard
deviation

Cross validation 1 0.1115 0.0058
H-measure 2 (2606.6 mins) 0.1112 0.0061

3 (1116.7 mins) 0.1115 0.0058

Loan Full Recovery Data K (computation
time)

Mean H-measure Standard
deviation

Cross validation 1 0.3830 0.0046
H-measure 2 (12.5 mins) 0.4595 0.0043

3 (23.8 mins) 0.4034 0.0046

116



Table 4.8: Mean and standard deviation of the H-measure from the test set experiment.
The computation times are presented in brackets. Note that K refers to the number of
pseudo-classes in the minority class and K = 1 refers to standard logistic regression.

Taiwan Credit Card K (computation
time)

Mean H-measure Standard
deviation

Test set 1 0.2434 0.0157
H-measure 2 (27.4 mins) 0.2546 0.0146

3 (36.8 mins) 0.2434 0.0157

Credit Fraud K (computation
time)

Mean H-measure Standard
deviation

Test set 1 0.8660 0.0198
H-measure 2 (54.0 mins) 0.8691 0.0160

3 (88.4 mins) 0.8674 0.0230

Bank Telemarketing K (computation
time)

Mean H-measure Standard
deviation

Test set 1 0.3547 0.0161
H-measure 2 (3.6 mins) 0.3406 0.0165

3 (3.8 mins) 0.3507 0.0159

Lending Club K (computation
time)

Mean H-measure Standard
deviation

Test set 1 0.1115 0.0059
H-measure 2 (272.5 mins) 0.1112 0.0061

3 (139.9 mins) 0.1115 0.0059

Loan Full Recovery Data K (computation
time)

Mean H-measure Standard
deviation

Test set 1 0.3779 0.0390
H-measure 2 (1.5 mins) 0.4603 0.0303

3 (2.1 mins) 0.4064 0.0351

Table 4.9: Fraud detection rate with fixed fraud alarm rate at 0.5% in Credit Fraud data

Number of pseudo-classes K Cross validation
detection rate

Test set
detection rate

K=1 91.12% 88.20%
K=2 91.20% 95.64%
K=3 91.17% 95.58%
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Figure 4.18: The boxplot of log(Loan Amount), Interest Rate (%), log(Annual Income),
Credit Grade (1 = best, 7 = worst) and the pie chart of the proportion of different loan
purpose for relabeled Lending Club data.
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Additional Comparison to SMOTE Oversampling

As introduced in Section 2.3.1, the SMOTE method [Chawla et al., 2002]

adds artificially generated data that has the same distribution character as

the minority class, which is a widely used data level method to handle class

imbalance problem. Here, we use SMOTE to oversample the minority class

data among the training set, then build a logistic regression model and apply

on the test set. The minority class is over-sampled at 100%, 200%, 300%,

400% and 500% of its original size for trails, which are the default setting

by its creators [Chawla et al., 2002]. One of the drawbacks of SMOTE is

that the user needs to predetermine k, the number of nearest neighbors that

are used to generate the synthetic examples of the minority class. Here, we

try k = 5 (default setting in [Chawla et al., 2002]) and a large k = 50. For

comparison, the best SMOTE performance of each k along with relabeling

procedure results are presented in Table 4.10.

We find that, when the relabeling procedure does relabel the minority class

into new pseudo-classes, our relabeling method will outperform the SMOTE

method in both the AUC value and the H-measure value (see Taiwan credit

card and loan full recovery data). When the relabeling procedure choose not

to relabel the minority class (i.e. a vanilla logistic regression is used), two

procedure have similar performance. Actually, our results agree with a recent

research from Maldonado et al. [2019], which shows that the performance

of SMOTE may be restricted when incorporating with a linear model, like

logistic regression, in high dimensional data.
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Table 4.10: The AUC and the H-measure with their corresponding standard deviation by
using relabeling method and SMOTE. Standard deviation are obtained by 10 fold cross val-
idation. For relabeling procedure, capital K represents the number of the pseudo-classes
selected by cross validation procedure; for SMOTE, small k represents the number of nearest
neighbors that are used to generate the synthetic examples of the minority class.

Taiwan Credit Card
Relabeling
K = 2

SMOTE
k = 5

SMOTE
k = 50

AUC 0.7562 (0.0062) 0.6993 (0.0073) 0.7205 (0.0095)
H-measure 0.2546 (0.0146) 0.1975 (0.0151) 0.2470 (0.0149)

Credit Fraud
Relabeling
K = 2

SMOTE
k = 5

SMOTE
k = 50

AUC 0.9753 (0.0148) 0.9747 (0.0140) 0.9750 (0.0147)
H-measure 0.8691 (0.0160) 0.8618 (0.0148) 0.8670 (0.0172)

Bank Telemarketing
Relabeling
K = 1

SMOTE
k = 5

SMOTE
k = 50

AUC 0.7913 (0.0163) 0.7913 (0.0203) 0.7895 (0.0191)
H-measure 0.3547 (0.0161) 0.3544 (0.0154) 0.3476 (0.0155)

Lending Club
Relabeling
K = 1

SMOTE
k = 5

SMOTE
k = 50

AUC 0.6882 (0.0046) 0.6841 (0.0059) 0.6829 (0.0050)
H-measure 0.1115 (0.0059) 0.1111 (0.0068) 0.1097 (0.0059)

Loan Full Recovery Data
Relabeling
K = 2

SMOTE
k = 5

SMOTE
k = 50

AUC 0.8576 (0.0049) 0.8248 (0.0066) 0.8262 (0.0662)
H-measure 0.4603 (0.0303) 0.4227 (0.0313) 0.4313 (0.0345)
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4.3.5 Experiment 2: Mortgage Default Forecasting

In this section, we conduct a mortgage default forecasting experiment on the

US mortgage data set (see Section 4.2.2 for detailed description to the data).

The same data preparation process, as mentioned in Section 4.2.2, will

be used again here.

Experiment Procedure

We use data from a single year for training two different models “with relabel-

ing” and “without relabeling”. Here, “without relabeling” refers to logistic

regression. The “with relabeling” procedure splits the minority class into

K pseudo-classes; K is obtained by ten fold cross validation on the training

set (see Section 4.3.3). These K pseudo-classes together with the majority

class constitute a relabeled training set. A multinomial logistic regression is

trained based on the relabeled data (non-default as base class) and the model

output is the probability of default by summing the posterior probability of

each pseudo-class. In the cross validation process we substantially explored

K = 2 or K = 3. The “with relabeling” and “without relabeling” models are

deployed on four quarters in the following third year (see Table 4.2). The two

year gap between training and testing is used to measure and collect default

status.

Results

Figures 4.19 and 4.20 give the test set AUC and H-measure with their stan-

dard error bar for each method over the observation period. Here, standard

error are estimated via bootstrapping each test set 1000 times. Points where

the curves for the two methods, logistic regression and relabeling, coincide

(year 2003, 2004, 2008, 2010, 2011, 2013) are due to the cross validation

procedure selecting K = 1 on the corresponding training set. Note that

this data is subject to appreciable concept or population drift [Krempl and

Hofer, 2011], not least due to the 2008 financial crash. This makes detailed

performance analysis more challenging.
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For the AUC (Figure 4.19), over this decade, we observe that the relabeling

procedure outperform logistic regression in 2005, 2006, 2007, 2009 and 2012,

and the error bars in these years are not overlapping (i.e. the difference

between the AUC for different methods is at least larger than one times their

corresponding standard deviation). Even when the relabeling procedure does

not suggest performance improvement, the cross validation on the training set

will choose logistic regression (K = 1), hence preventing a drop in forecasting

performance. The similar results can be observed in the H-measure plot

(Figure 4.20); a better performance in 2005, 2006, 2007, 2009 and 2012.

Table A.1 in Appendix A gives the mean AUC on the training set by cross

validation procedure for choosing K. The relabeling approach also provides

insights regarding different pseudo-classes of default; refer to Appendix B for

a brief discussion.

Additional Comparison to SMOTE Oversampling

We conduct a comparison between the performance of the SMOTE method

and our relabeling method on the Freddie Mac data. This comparison is

similar to the comparison we conduct in the previous section. Here, in each

training set, the minority class is over-sampled at 100%, 200%, 300%, 400%

and 500% of its original size for trails, which are the default setting by its

creators [Chawla et al., 2002]. For the number of nearest neighbors that

are used to generate the synthetic examples of the minority class, we try

k = 5 (default setting in [Chawla et al., 2002]) and a large k = 50. For

comparison, the best SMOTE performance of each k along with relabeling

procedure results are presented in Tables 4.11 and 4.12.

We find that, over this decade, only in 2005 Q1, SMOTE has significantly

better performance than the relabeling method regarding both the AUC

and the H-measure. In the other quarters, the relabeling procedure either

performs better than SMOTE or has a similar performance to SMOTE (k = 5

or k = 10), regarding both the AUC and the H-measure. When relabeling

outperforms SMOTE with more than one times the standard deviation, the

corresponding quarters are labeled blue in Tables 4.11 and 4.12.
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Table 4.11: The AUC with its corresponding standard deviation by using relabeling method
and SMOTE from 2003 to 2013. Standard deviation are obtained by bootstrapping the test
set 1000 times. When relabeling outperform SMOTE with more than one times standard
deviation, it is blue labeled.

Test set Relabelling SMOTE k = 5 SMOTE k = 50
time AUC SD AUC SD AUC SD

2003 Q1 0.8792 0.0114 0.8305 0.0171 0.8667 0.0140
2003 Q2 0.8818 0.0098 0.8305 0.0123 0.8718 0.0114
2003 Q3 0.8226 0.0160 0.7815 0.0159 0.7966 0.0182
2003 Q4 0.8759 0.0101 0.8296 0.0142 0.8578 0.0106
2004 Q1 0.8046 0.0151 0.7710 0.0156 0.7646 0.0165
2004 Q2 0.7899 0.0226 0.7838 0.0134 0.7711 0.0111
2004 Q3 0.6369 0.0261 0.6361 0.0155 0.6350 0.0156
2004 Q4 0.8027 0.0225 0.8077 0.0144 0.7461 0.0126
2005 Q1 0.7519 0.0150 0.7805 0.0115 0.7842 0.0135
2005 Q2 0.7890 0.0171 0.7899 0.0125 0.7600 0.0118
2005 Q3 0.8212 0.0141 0.7604 0.0108 0.7301 0.0085
2005 Q4 0.7926 0.0105 0.7735 0.0094 0.6736 0.0079
2006 Q1 0.8425 0.0074 0.7899 0.0079 0.8003 0.0095
2006 Q2 0.8350 0.0066 0.7654 0.0076 0.7885 0.0074
2006 Q3 0.8223 0.0065 0.7572 0.0061 0.7778 0.0078
2006 Q4 0.8177 0.0051 0.7445 0.0052 0.7664 0.0049
2007 Q1 0.7564 0.0055 0.6409 0.0056 0.6971 0.0044
2007 Q2 0.7529 0.0040 0.6481 0.0042 0.7135 0.0042
2007 Q3 0.7806 0.0035 0.6536 0.0039 0.7153 0.0035
2007 Q4 0.7787 0.0028 0.6655 0.0025 0.7329 0.0025
2008 Q1 0.8378 0.0016 0.8360 0.0016 0.8364 0.0018
2008 Q2 0.8332 0.0021 0.8321 0.0022 0.8328 0.0018
2008 Q3 0.8316 0.0024 0.8291 0.0027 0.8320 0.0027
2008 Q4 0.8559 0.0040 0.8572 0.0033 0.8571 0.0031
2009 Q1 0.8089 0.0102 0.8060 0.0114 0.8075 0.0089
2009 Q2 0.8213 0.0075 0.7987 0.0079 0.8013 0.0082
2009 Q3 0.7751 0.0047 0.7430 0.0056 0.7338 0.0062
2009 Q4 0.7649 0.0089 0.7349 0.0095 0.7310 0.0104
2010 Q1 0.8296 0.0118 0.8097 0.0126 0.7239 0.0139
2010 Q2 0.7964 0.0143 0.7979 0.0131 0.7952 0.0122
2010 Q3 0.8311 0.0113 0.8253 0.0149 0.8199 0.0119
2010 Q4 0.7769 0.0150 0.7778 0.0160 0.7814 0.0143
2011 Q1 0.8155 0.0135 0.7735 0.0166 0.7654 0.0152
2011 Q2 0.8197 0.0124 0.8089 0.0192 0.7582 0.0168
2011 Q3 0.7677 0.0161 0.7684 0.0202 0.7242 0.0204
2011 Q4 0.8284 0.0143 0.8271 0.0204 0.7825 0.0209
2012 Q1 0.8623 0.0127 0.8691 0.0137 0.8684 0.0132
2012 Q2 0.8192 0.0167 0.7836 0.0148 0.7895 0.0180
2012 Q3 0.8177 0.0183 0.7905 0.0179 0.7852 0.0163
2012 Q4 0.7800 0.0159 0.7778 0.0153 0.7735 0.0139
2013 Q1 0.7737 0.0154 0.7710 0.0156 0.7646 0.0165
2013 Q2 0.7384 0.0122 0.7138 0.0134 0.7211 0.0111
2013 Q3 0.7353 0.0160 0.7291 0.0155 0.7321 0.0156
2013 Q4 0.7488 0.0136 0.7377 0.0144 0.7461 0.0126



Table 4.12: The H-measure with its corresponding standard deviation by using relabeling
method and SMOTE from 2003 to 2013. Standard deviation are obtained by bootstrapping
the test set 1000 times. When relabeling outperform SMOTE with more than one times
standard deviation, it is blue labeled.

Test set Relabelling SMOTE k = 5 SMOTE k = 50
time H-measure SD H-measure SD H-measure SD

2003 Q1 0.5197 0.0297 0.4637 0.0348 0.4907 0.0291
2003 Q2 0.5013 0.0302 0.4735 0.0260 0.4604 0.0241
2003 Q3 0.4131 0.0349 0.3853 0.0266 0.3811 0.0322
2003 Q4 0.4796 0.0312 0.4112 0.0283 0.4577 0.0221
2004 Q1 0.3515 0.0318 0.2810 0.0232 0.2808 0.0252
2004 Q2 0.3592 0.0475 0.3550 0.0162 0.3520 0.0134
2004 Q3 0.1581 0.0315 0.1586 0.0246 0.1515 0.0233
2004 Q4 0.3937 0.0559 0.3918 0.0203 0.2655 0.0198
2005 Q1 0.3289 0.0187 0.3503 0.0227 0.3583 0.0153
2005 Q2 0.3777 0.0214 0.3138 0.0221 0.1360 0.0120
2005 Q3 0.3870 0.0176 0.2881 0.0210 0.2038 0.0129
2005 Q4 0.4004 0.0131 0.2821 0.0162 0.1246 0.0088
2006 Q1 0.3140 0.0092 0.2865 0.0120 0.2857 0.0165
2006 Q2 0.3006 0.0083 0.2518 0.0118 0.2679 0.0136
2006 Q3 0.2573 0.0081 0.2231 0.0095 0.2201 0.0129
2006 Q4 0.2273 0.0064 0.1925 0.0075 0.1918 0.0080
2007 Q1 0.2363 0.0071 0.0650 0.0043 0.1173 0.0051
2007 Q2 0.2328 0.0050 0.0675 0.0035 0.1315 0.0051
2007 Q3 0.2708 0.0053 0.0745 0.0034 0.1382 0.0042
2007 Q4 0.2797 0.0044 0.0860 0.0025 0.1598 0.0034
2008 Q1 0.3303 0.0046 0.3243 0.0035 0.3285 0.0040
2008 Q2 0.3309 0.0054 0.3247 0.0049 0.3322 0.0040
2008 Q3 0.3225 0.0066 0.3183 0.0058 0.3263 0.0059
2008 Q4 0.3839 0.0111 0.3874 0.0078 0.3992 0.0074
2009 Q1 0.3776 0.0217 0.3757 0.0191 0.3717 0.0159
2009 Q2 0.3595 0.0167 0.2812 0.0145 0.2901 0.0141
2009 Q3 0.2725 0.0086 0.2070 0.0077 0.2071 0.0079
2009 Q4 0.2801 0.0167 0.2072 0.0146 0.2053 0.0141
2010 Q1 0.3876 0.0260 0.3812 0.0212 0.3468 0.0221
2010 Q2 0.3659 0.0310 0.3545 0.0242 0.3386 0.0240
2010 Q3 0.4054 0.0308 0.4017 0.0271 0.3937 0.0226
2010 Q4 0.3160 0.0333 0.3133 0.0299 0.3152 0.0269
2011 Q1 0.3166 0.0298 0.3042 0.0256 0.2918 0.0235
2011 Q2 0.3101 0.0315 0.2667 0.0318 0.2913 0.0300
2011 Q3 0.2479 0.0323 0.2483 0.0314 0.2318 0.0252
2011 Q4 0.3722 0.0430 0.3751 0.0350 0.3784 0.0374
2012 Q1 0.4707 0.0396 0.5072 0.0356 0.5073 0.0307
2012 Q2 0.4407 0.0344 0.3709 0.0275 0.3762 0.0297
2012 Q3 0.4953 0.0415 0.3931 0.0360 0.3770 0.0316
2012 Q4 0.4088 0.0296 0.3271 0.0261 0.3365 0.0259
2013 Q1 0.3031 0.0325 0.2910 0.0232 0.2808 0.0252
2013 Q2 0.2023 0.0215 0.2050 0.0162 0.2020 0.0134
2013 Q3 0.2404 0.0291 0.2406 0.0246 0.2405 0.0233
2013 Q4 0.2650 0.0258 0.2618 0.0203 0.2605 0.0198



4.4 Summary

In this chapter, two relabeling procedure are proposed as mitigation methods

for highly imbalanced logistic regression. Both of them use the likelihood

function of logistic regression as the objective function to optimize, which

is distinct from traditional unsupervised clustering methods (e.g. K-means

and Hierarchical clustering).

Especially, we use the EM algorithm as the tool to obtain the underlying

pseudo-class structure among the minority class in the presence of highly

imbalanced data. Experiments show our EM algorithm can divide the mi-

nority class data into several distinct pseudo-classes on highly imbalanced

data, and modeling on such relabeled data can enhance logistic regression

performance when cluster structure is present among the minority class. Our

cross validation procedure for selecting K, ensures that performance is not

worse than using basic logistic regression in most cases.

As a generalized linear model, logistic regression is still widely used in many

application and the theoretical limit behavior of logistic regression for highly

imbalanced data is clear. In this thesis, our focus is a comprehensive study

of highly imbalanced logistic regression. For a more balanced classification

task, without the restriction to the choice of modeling methods, many more

advanced nonlinear machine learning methods are available in the literature.

Indeed, if we put aside computational details for a moment, the concept of

the relabeling idea may also have value for balanced classification problems,

and this is an area for further research.

Our relabeling approach also inspires us to think “when to use it?”; it is

equivalent to ask whether our logistic regression has moved into the imbal-

anced regime? In the next chapter, we propose some diagnostic tools to this

problem.
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5
Diagnostic tools for Highly

Imbalanced Logistic

Regression

Being aware of an asymptotic result is one thing, but knowing that a given

data set is moving into the asymptotic imbalance regime (with potential

consequences) is another. As introduced in Section 2.3, technically, any

data set has an imbalanced class proportion that can be recognized as an

imbalanced data set [He and Garcia, 2009]. Researchers generally consider a

data set as highly imbalanced if the class proportion displays a notable bias

(e.g. 1:100, 1:1000) [Krawczyk, 2016]. We proposed a relabeling approach

to mitigate the consequences of the highly imbalanced logistic regression

in the previous chapter. With further consideration, from the user’s point

of view, any mitigation method to high class imbalance problem should be

based on critically diagnostic to the high class imbalance problem itself (i.e.

asking “have we moved into the imbalance regime?”). This kind of diagnostic

is rarely considered in practice, due to the vague definition of high class

imbalance and the absence of comprehensive diagnostic tools. In this chapter,
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we propose some diagnostic tools for assessing whether a data set is in the

high imbalance regime regarding logistic regression build upon the known

asymptotic results of highly imbalanced logistic regression in Owen [2007].

On the one hand, the deeper mathematical insights from Owen [2007] present

the characteristics of logistic regression in highly imbalanced data, which

provides the opportunity to build diagnostic tools; on the other hand, trying

to detect the evidence of an asymptotic behavior is hard. Thus, we propose

different tools to investigate this problem from different aspects.

From Section 3.1.2, we know that the coefficient estimates β̂ of infinitely im-

balanced logistic regression converges to a limit, i.e. the coefficient estimates

obtained by replacing the minority class with its mean. Generally speaking,

comparing how similar or different the model is against one where the limit

condition is artificially induced will indicate how near or far the model is

from the imbalance regime. This idea leads to several potential tools:

• hypothesis tests between this limit and the real coefficient estimates,

• measuring the distance between this limit and the real coefficient esti-

mates.

We now start with hypothesis testing tools.

5.1 Hypothesis Testing

In this section, we provide three different tools, focusing on the coefficient es-

timates, the likelihood, and the predictive probability of a logistic regression.

We investigate the high class imbalance from different aspects and can be

applied to different data sets. A simulation study will be used to investigate

their behavior with different sample sizes.

5.1.1 Hotelling’s T 2 Test

The two sample Hotelling’s T 2 test [Hotelling, 1992] is a multivariate test

(an equivalent to the Student’s T test in the univariate case), which is used
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Figure 5.1: The notation in the hypothesis testing for highly imbalanced logistic regression,
logistic regression M1 and M2 are modeled on the original data set and manipulated data
set respectively, the coefficient estimates of Model M1 and Model M2 are denoted by β̂M1

and β̂M2
.

to test whether the population means of two p-dimensional random vectors

are equal or not. If we assume population one and population two are in-

dependently sampled from two multivariate normal distributions N(µ1,Σ1)

and N(µ2,Σ2) (Σ1 is not necessarily equal to Σ2), the null hypothesis of

Hotelling’s T 2 test [Hotelling, 1992] is H0 : µ1 = µ2, and the test statistic is

T 2 = (x̄1 − x̄2)T
[(

1

n1

+
1

n2

)
(n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2

]−1

(x̄1 − x̄2), (5.1)

where x̄1 and x̄2 are the p-dimensional sample mean vectors of population one

and two respectively, S1 and S2 are the sample variance-covariance matrices

of population one and two respectively, n1 and n2 are the sample sizes of

population one and two respectively. Under the null hypothesis, T 2 follows

a F distribution with (p, n1 + n2 − p− 1) degrees of freedom. We will reject

H0 at level α when T 2 > Fp,n1+n2−p−1,α.

We know that replacing the minority class by its mean vector leads to the

same coefficient estimates of the slope vector in the limit N → ∞. Here

we use β̂M2 to denote the coefficient estimates after replacing the minority
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class with its mean vector, and use β̂M1 to denote the coefficient estimates

estimated from the original data (see Figure 5.1). The replication of the

minority class mean vector is to handle the computation issues of the inter-

cept term. Equation (2.14) in Section 2.2.2 shows the coefficient estimates

of logistic regression follows a multivariate normal distribution, thus we can

use Hotelling T 2 test to test whether βM1 = βM2 . The diagnostic procedure

as follow:

Diagnostic tool: Hotelling’s T 2 test

1. Build a logistic regression (denoted by M1) on the original data set,

get the coefficient estimates β̂M1 and corresponding covariance matrix

Σ̂M1

2. Replace the minority class data with its mean vector and repeat the

mean vector n times; build a logistic regression (denoted by M2) on

the manipulated data set. Then, get the coefficient estimates β̂M2 and

corresponding covariance matrix Σ̂M2 . Here, n is the number of the

minority class observations, and the role of the replicates is to handle

the computational issues.

3. Calculate T 2 by plug x̄k = β̂Mk
, Sk = Σ̂Mk

, nk = (n + N) into Equa-

tion (5.1), where k ∈ {1, 2}. Please note that we can omit the intercept

term and only compare the slope vectors.

4. We will reject the null hypotheses H0 : βM1 = βM2 at level α (typically

α = 0.05) when T 2 > Fp,n1+n2−p−1,α, where p is the dimension of the

data.

Here, “reject the null hypotheses” means we have evidence to reject that

logistic regression M1 is in the highly imbalanced regime. Some issues remain

for the Hotelling’s T 2 test; here we use the assumption of the normality of βM1

and βM2 , however, the variable in the real data may not follow the normal

distribution (for example, the categorical variable in the credit data).
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5.1.2 Vuong’s Non-nested Likelihood Ratio Test

Hotelling’s T 2 test can be used to directly test whether βM1 = βM2 or not, i.e.

testing whether the coefficient estimates are “close enough” to the theoretical

limits. In this section, we alternatively test the likelihood ratio between

logistic regression models M1 and M2.

The likelihood ratio test compares the goodness-of-fit between the two mod-

els. The widely known likelihood ratio test introduced by Wilks [1938] re-

quires one model is nested in another competing model on the same data

set, i.e. the parameter space of one model should be a subspace of the com-

peting model. However, in our case, due to the data manipulation process,

we can not use this test, because β̂M1 , β̂M2 are estimated on different data

sets and they have the same parameter space. Vuong [1989] provides a like-

lihood ratio test by using the Kullback-Leibler information criterion to test

the hypothesis that two models are equally close to the real data generating

process, which does not require model nesting condition. Here, we give an

introduction to Vuong’s likelihood ratio test.

Consider the equivalence between model M1 and model M2 (Figure 5.1)

with respect to their likelihood on the p dimensional original data set with n

observations in the minority class and N observations in the majority class.

The likelihood function for model M1 and M2 in the original data set is

l(M1) =
n+N∏
i=1

f(β̂M1 ,xi, yi) and l(M2) =
n+N∏
i=1

f(β̂M2 ,xi, yi),

where f(β̂M1 ,xi, yi) and f(β̂M2 ,xi, yi) are the case wise contributions to the

likelihood function of the logistic regression, with parameters β̂M1 and β̂M2

respectively:

f(β̂M1 ,xi, yi) = yi
eβ̂

T
M1

xi

1 + eβ̂
T
M1

xi
+ (1− yi)

1

1 + eβ̂
T
M1

xi
,

f(β̂M2 ,xi, yi) = yi
eβ̂

T
M2

xi

1 + eβ̂
T
M2

xi
+ (1− yi)

1

1 + eβ̂
T
M2

xi
.
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Then the test statistics of Vuong’s likelihood ratio test is the variance of the

case wise log-likelihood ratio,

ω2
? = Var

(
log

(
f(β̂M1 ,xi, yi)

f(β̂M2 ,xi, yi)

))
, i ∈ {1, · · · , n+N}. (5.2)

A natural estimate of ω2
? is the sample analog:

ω̂2
? =

1

n+N

n+N∑
i=1

[
log

f(β̂M1 ,xi, yi)

f(β̂M2 ,xi, yi)

]2

−

[
1

n+N

n+N∑
i=1

log
f(β̂M1 ,xi, yi)

f(β̂M2 ,xi, yi)

]2

.

(5.3)

Vuong [1989] proves that model M1 and model M2 are equivalent, if and

only if ω2
? = 0. Thus, the hypotheses for Vuong’s test is H0 : ω2

? = 0. Vuong

[1989] also proves that under several conditions∗, (n + N)ω̂2
? asymptotically

follows a weighted sum of χ2 distributions (denoted by
∑
λ2
?χ

2, where λ2
?

is a weights vector), when the null hypotheses H0 is true. The weights of

this summation can be calculated via the squared eigenvalues of a particular

matrix W.

To obtain W, we need to calculate the following matrices

AM1(β̂M1) = E

[
∂logf(β̂M1 ,xi, yi)

∂β̂M1 β̂
′
M1

]
, (5.4)

BM1(β̂M1) = E

[
∂logf(β̂M1 ,xi, yi)

∂β̂M1

∂logf(β̂M1 ,xi, yi)

∂β̂′M1

]
. (5.5)

The matrices AM2 and BM2 can be calculated similarly. Further, we also

need to calculate

BM1M2(β̂M1 β̂M2) = E

[
∂logf(β̂M1 ,xi, yi)

∂β̂M1

∂logf(β̂M2 ,xi, yi)

∂β̂′M2

]
. (5.6)

∗observations are i.i.d, first and second derivative of the likelihood function exist and
maximum likelihood estimates are unique.
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Then, the matrix W is defined as:

W =

(
−BM1A

−1
M1

−BM1M2A
−1
M2

BT
M1M2

A−1
M1

BM2A
−1
M2

)
, (5.7)

and the squared eigenvalues of W are λ2
?. For a detailed review to Vuong’s

likelihood ratio test, please refer to Golden [2000]. Here we use Vuong’s

likelihood ratio test as a diagnostic tool:

Diagnostic tool: non nested likelihood ratio test

1. Build logistic regression model M1 on the original data set.

2. Replace the minority class with its mean vector and repeat the mean

vector n times, build a logistic regression M2 on the manipulated data

set.

3. Deploy both M1 and M2 on the original data set, calculate ω̂2
? and λ2

?.

4. We will reject the null hypotheses H0 : ω2
? = 0 at level α (typically

α = 0.05), when (n+N)ω̂2
? >

∑
λ2
?χ

2
α.

Here, “reject the null hypotheses” means we have the evidence to reject that

logistic regression M1 is in the highly imbalanced regime. It is very important

to deploy model M2 on the original full data set to obtain ω̂2
?; in order to

ensure the same data set is used for calculating case wise log-likelihood ratio

(see Equation 5.2). The implementation of Vuong’s likelihood ratio test with

R is given in Appendix C.

5.1.3 Brier Score z Test

Separate from the coefficient estimates and the likelihood, model predictions

provide another view to assess whether two models are different or not. The

Brier score (BS) [Brier, 1950] is an accuracy measure of the posterior prob-
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ability prediction, which is defined as:

BS =
1

M

M∑
i=1

(yi − p̂i)2, (5.8)

where M = n+N is the total number of the observations, yi ∈ {0, 1} is the

true binary label of the data, and p̂i is the predicted probability of Y = 1

given observation xi (estimates of Pr(Y = 1|X = xi)).

For simplicity, let πi denote the true but unknown probability of Pr(Y =

1|X = xi). Then, Spiegelhalter [1986] proves, by central limit theorem, if

πi = p̂i, then, BS follows a normal distribution with the expectation (E(BS))

E(BS) =
1

M

M∑
i=1

(p̂i(1− p̂i)), (5.9)

and the variance of the Brier score (σ2(BS)) is

σ2(BS) =
1

M2
p̂i(1− 2p̂i)

2(1− p̂i). (5.10)

Following Spiegelhalter [1986], Redelmeier et al. [1991] provide a z statistics

test to compare two Brier scores of model M1 and model M2. Here, we use

d =
1

M
((yi − p̂i)2 − (πi − p̂i)2) =

1

M

M∑
i=1

(yi − π2
i − 2p̂i(yi − πi))

to denote the difference between the BS and the correspondent expectation.

Assuming models M1 and M2 assign estimated probability p̂M1i and p̂M2i to

each observations i respectively, then for model M1, the estimation of dM1

can be write as:

d̂M1 =
1

M

M∑
i=1

(yi − π2
i − 2p̂M1i(yi − πi))

and similar d̂M2 for model M2. We want to test whether dM1 is significantly

different from dM2 , i.e. the null hypothesis is H0 : dM1 = dM2 .
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The difference between d̂M1 and d̂M2 is

d̂M1−M2 = d̂M1 − d̂M2

=
2

M

M∑
i=1

(p̂M1i − p̂M2i)(πi − yi),
(5.11)

and the variance of d̂M1−M2 is

σ2(d̂M1−M2) =
4

M

M∑
i=1

πi(1− πi)(p̂M1i − p̂M2i)
2. (5.12)

Hence the test statistics z is

z =
d̂M1−M2√
σ2(d̂M1−M2)

, (5.13)

and it follows a standard normal distribution when the null hypothesis is

true. Equations (5.11, 5.12) depend on πi which are some unknown true

probability. Redelmeier et al. [1991] propose two options, one is set πi equal

to the class proportion among the observations, another one is πi = (p̂M1i +

p̂M2i)/2. Here, we choose to use πi = (p̂M1i + p̂M2i)/2. Because our target

is comparing the difference between two Brier scores, essentially, we seek to

compare the difference between p̂M1i and p̂M2i, thus it can be more reasonable

to set πi equal to the average between p̂M1i and p̂M2i than using the prior

class proportion.

Here we use the Brier score z test as a diagnostic tool:
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Diagnostic tool: Brier score z test

1. Build a logistic regression (M1) on the original data set.

2. Replace the minority class with its mean vector and repeat the mean

vector n times, build a logistic regression M2 on the manipulated data

set.

3. Deploy both M1 and M2 on the original data set, calculate p̂M1i and

p̂M2i, i ∈ {1, · · · ,M}.

4. Assume πi = (p̂M1i + p̂M2i)/2, calculate dM1−M2 and the z statistics by

Equations (5.11, 5.12).

5. We will not reject the null hypotheses H0 : dM1−M2 = 0 at level α

(typically α = 0.05), when z < zα.

5.1.4 Simulation Results

In this section, we simulate a bivariate normal distribution example to assess

the performance of our diagnostic tools. We generate M binary observations

where

M ∈ {500, 1000, 5000, 10000, 50000, 100000},

and vary the imbalance level γ in

γ ∈ {0.1%, 0.5%, 1%, 5%, 10%, 20%, 30%, 40%}.

The majority class (Y = 0) follows X ∼ N(µ1,Σ1) which has (1 − γ)M

observations and the minority class (Y = 1) follows X ∼ N(µ2,Σ2) which

has γM observations. Here

µ1 =

(
0

0

)
,µ2 =

(
1.5

1.5

)
,Σ1 =

(
1 0

0 1

)
, and Σ2 =

(
0.64 0

0 0.64

)
.

In each generated simulation data, we deploy our diagnostic tools. Monte

Carlo replication are conducted 1000 times.
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Tables (5.1, 5.2, 5.3) give the results. We could claim that our logistic regres-

sion is in the high imbalance regime when the p-value is greater than 0.05†.

Highlighted in Tables (5.1, 5.2, 5.3) are p-value higher than 0.05. We find

that:

• When the sample size M ≥ 50000, the Hotelling T 2 test’s p-value

will always be smaller than 0.05, no matter how the imbalance level

varies. Particularly, we find that when M ∈ {5000, 10000} and the

imbalance level γ = 1%, Hotelling T 2 test does not indicate that our

logistic regression has moved into the imbalanced regime; but Vuong’s

likelihood ratio test and Brier score z test do provide this indication in

the same setting.

• Most of the test results from Vuong’s likelihood ratio test are consistent

with the Brier score z test; the only exception occurs when M = 500

and imbalance rate γ at 10%.

In summary, all of these diagnostic tests can effectively detect highly imbal-

anced logistic regression on a small sample set. However, in large samples,

we find that the Hotelling’s T 2 test does not provide the indication of highly

imbalanced logistic regression, when comparing to the results obtained from

the other two tests in the same setting; this is reasonable by considering the

sample size terms in Equation (5.1). We recommend to use Vuong’s likeli-

hood ratio test and the Brier score z test when the sample size is large (for

example when M > 10000 in our simulation experiment).

†This is because “p-value > 0.05” means that there is no evidence to reject the null
hypothesis: “logistic regression is in the high imbalance regime”.
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Table 5.1: p-value table - Hotellling T 2 test, NA comes from the low proportion of the
minority class.

Imbalance γ 0.1% 0.5% 1% 5% 10% 20% 30% 40%
M

500 NA 0.5718 0.2159 0.0440 0.0374 0.0228 0.0200 0.0234
1000 NA 0.2037 0.0857 0.0259 0.0257 0.0167 0.0144 0.0110
5000 0.3137 0.0576 0.0373 0.0094 0.0094 0.0030 0.0031 0.0039

10000 0.1544 0.0315 0.0182 0.0033 0.0017 0.0003 0.0010 0.0007
50000 0.0282 0.0023 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000

100000 0.0119 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.2: p-value table - Vuong’s likelihood ratio test, NA comes from the low proportion
of the minority class.

Imbalance γ 0.1% 0.5% 1% 5% 10% 20% 30% 40%
M

500 NA 0.7106 0.6650 0.2308 0.0300 0.0009 0.0017 0.0028
1000 NA 0.6847 0.5684 0.0888 0.0020 0.0000 0.0000 0.0000
5000 0.6660 0.3595 0.1825 0.0002 0.0000 0.0000 0.0000 0.0000

10000 0.5503 0.1900 0.0574 0.0000 0.0000 0.0000 0.0000 0.0000
50000 0.2242 0.0031 0.0000 0.0000 0.0000 0.0008 0.0064 0.0093

100000 0.0974 0.0000 0.0000 0.0000 0.0006 0.0087 0.0277 0.0364

Table 5.3: p-value table - Brier Score z test, NA comes from the low proportion of the
minority class.

Imbalance γ 0.1% 0.5% 1% 5% 10% 20% 30% 40%
M

500 NA 0.6573 0.6067 0.2285 0.0893 0.0045 0.0001 0.0000
1000 NA 0.6286 0.5181 0.1101 0.0150 0.0000 0.0000 0.0000
5000 0.6088 0.3925 0.1724 0.0003 0.0000 0.0000 0.0000 0.0000

10000 0.5535 0.2369 0.0553 0.0000 0.0000 0.0000 0.0000 0.0000
50000 0.3012 0.0081 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

100000 0.1500 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 5.4: Diagnostic tool table. D is the original data set, Ds is a data set for which all
the minority class data are replaced by their mean vector, Di is a resampled data set with
i× n observations in the majority class.

Data set D (original data set) Ds D1 D2 · · ·
Number of observa-
tions in majority class

N N n 2n · · ·

Number of observa-
tions in minority class

n 1 n n · · ·

Logistic regression
model

M Ms M1 M2 · · ·

5.2 Mahalanobis Distance

Our simulation results show that the extremely large sample size always

results in a statistical significance in hypothesis testing. Essentially, the p-

value can be as small as you want by increasing the sample size [Demidenko,

2016]. In this section, we propose a visualization method to alleviate the

influence of the extremely large sample size. The core idea is to artificially

tune the imbalance rate by undersampling the majority class and use the

Mahalanobis distance [McLachlan, 1999] to measure the distance between

the coefficient estimates of these logistic regression and the limit coefficient

estimates of the logistic regression when replace the whole minority class

with its mean.

Mahalanobis distance is a measure of the distance between a single point

and a distribution. If we use µ and Σ to denote the mean vector and the

covariance matrix of a population, then the Mahalanobis distance between a

point x and this population is defined as

MD(x) =
√

(x− µ)TΣ−1(x− µ). (5.14)

Considering the limit coefficient estimate β̂ and its corresponding covariance

matrix Σ̂ (obtained by replacing the minority class with its mean vector),

we can calculate the Mahalanobis distance between this limit and any other

coefficient estimates via Equation (5.14).

For a clear illustration, a sequence of data sets is constructed as in Table 5.4.
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Figure 5.2: The Mahalanobis distance between βMs
and βMk

, k ∈ {1, · · · , 100}, the 5%
and 95% quantile bar and mean from Monte Carlo replication are presented.

Here Ds is obtained by replacing the minority class with its mean vector, and

{D1, D2, . . .} are obtained by random undersampling the majority class to

{1n, 2n, . . .} observations. For each constructed data set, a logistic regression

model is computed, and the parameter estimates retained. Then, the Maha-

lanobis distance between the parameter vector for MS and {M,M1,M2, · · · }
are computed. The corresponding covariance matrices are computed from

the logistic regression procedure to support the construction of the distance

metric. We expect the Mahalanobis distance will approach 0 as class im-

balance increases, consistent with the Owen [2007] theoretical result. This

diagnostic method is illustrated in the following simulation, where Monte

Carlo replicates over the Di are considered.

We generate 10000 sample points following X ∼ N(µ1,Σ1) from the majority

class (Y = 0). The 100 points following X ∼ N(µ2,Σ2) are generated as the

minority class. Here

µ1 =

(
0

0

)
,µ2 =

(
1

−1

)
,Σ1 =

(
1 0

0 1

)
, and Σ2 =

(
0.16 0.08

0.08 0.16

)
.
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Figure 5.3: The scatter plot of βMk
, k ∈ {1, · · · , 100} (blue) and βMs

(black) and a two-
dimensional ellipse that traces the bivariate normal density contour for βMs

at 95%.

The imbalance ratio between the majority class and the minority class is 100.

We construct Ds, D1, · · · , D100 as illustrated in Table 5.4. Figure 5.2 gives

the results. The 5% and 95% quantile bar and mean in the plot results from

undersampling the majority class data 100 times in each ratio level N/n. The

plots show that when N/n > 10, the Mahalanobis distance drops towards 0

very quickly.

For this bivariate simulation, we can present the coefficient estimates β̂Mk
, k ∈

{1, · · · , 100} and β̂Ms in a scatter plot. The covariance matrix of β̂Ms can

also let us draw a 95% contour, which traces this bivariate normal distribu-

tion. Figure 5.3 gives the result, the black contour is the 95% ellipse of the

bivariate normal distribution of β̂Ms . It shows that as the imbalance ratio

N/n increasing, the coefficient estimates β̂Mk
will approach β̂Ms very quickly.

We note the link between this visualization tool and the Hotelling’s T 2 test,

since MD(x) is χ2 distributed when the population is drawn from a multi-
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variate normal distribution and Hotelling’s T 2 statistic is asymptotically χ2

distributed. However, this visualization method can serve as a supplement

tool, especially when the sample size N + n is extremely large.

Figure 5.2 also shows that the curve of the Mahalanobis distance exhibits a

“L” shape or “Knee” shape, which brings a famous problem in many domains:

“searching a knee point (also named as the indication point), based on recent

trends” [Salvador and Chan, 2004]. We seek to use some automatic indication

point searching algorithm, which could help us find an indication point in

the Mahalanobis distance plot. This method can make users aware of the

highly imbalanced logistic regression. Satopaa et al. [2011] provide a knee

point detection algorithm named “Kneedle”‡. We use it as a tool to search

a knee point in the Mahalanobis distance plot. This algorithm will select

an imbalance ratio N/n = 27 as knee the point, which is displayed as the

vertical blue line in Figure 5.2.

‡Generally, we prefer an algorithm which does not require parameter tuning for differ-
ent “Knee” shape curves and suitable for both online and offline operating. The algorithm
Satopaa et al. [2011] proposed satisfy these requirements.
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Diagnostic tool: Mahalanobis distance plot

1. Generate a sequence of data sets (Ds, D1, D2, · · · ), which artificially

varied the imbalance ratio k.

2. For each constructed data set, build a logistic regression

(Ms,M1,M2, · · · ).

3. Calculate the Mahalanobis distance between the coefficient estimates

of Ms and Mk, k ∈ {1, 2, · · · }.

4. Repeat step 1, 2, and 3 multiple times to have the average of the

Mahalanobis distance between coefficient estimates of Ms and M1, Ms

and M2, · · · .

5. Plot the average Mahalanobis distance with the corresponding imbal-

ance ratio k.

6. We could further consider “Kneedle” algorithm to detect a indication

point. If the true imbalance ratio is higher than the indication point, we

aware that logistic regression already moved into imbalanced regime.

5.3 Discussion of the Diagnostic Tools and Relabeling

We have proposed several diagnostic tools for detecting highly imbalanced

logistic regression. In this section, we deploy our diagnostic tools on two

simulation data sets where cluster structure is present the minority class.

Simulation A, two clusters among the minority class: Here, we gen-

erate N points X ∼ N(µ0,Σ0) as the majority class Y = 0. Then n1 = 25

points are generated following X ∼ N(µ1,Σ1) and n2 = 25 points are gener-

ated following X ∼ N(µ2,Σ2). n1 and n2 are combined as the minority class

Y = 0 (i.e. n = n1 + n2 = 50 minority class observations). Here

µ0 = [0, 0], µ1 = [1.5, 1], µ2 = [1.5,−1]
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Σ0 =

[
1 0

0 1

]
, and Σ1 = Σ2 =

[
0.16 0

0 0.16

]
.

The number of the majority class observations N varies in {50, 100, 200,

. . . , 1000}. As N increases, data become more imbalanced; this follows the

approach in Owen’s Theorem to construct imbalance. For each combination

of (n,N), we repeat the simulation 1000 times by deploying the relabeling

approach and a vanilla logistic regression on the training set then apply them

on the test set. We also apply two diagnostic tools (Vuong’s likelihood ratio

test and Brier score z test) on the training set. Figure 5.4 gives the average

AUC and H-measure with their corresponding error bars (standard errors)

on the test set. The vertical blue lines represent the moment when diagnostic

tools indicate us that logistic regression has moved into the imbalance regime

(i.e. p-value > 0.05) in all 1000 replications.

For the AUC, we can find that the overlap part of the error bars between

vanilla logistic regression and the relabeling approach shrinks as N increases;

and a relatively noticeable difference of the AUC between two methods can

be found when N > 800. At the same time, the Brier score z test and

Vuong’s likelihood ratio test will give indications of “has moved into imbal-

ance regime” at N = 500 and N = 600 respectively. This means that, in

this contrived scenario, we can get a significant performance improvement by

using the relabeling approach when these diagnostic tools indicate us. For

the H-measure, we see a similar phenomenon to the AUC, which also justifies

the effectiveness of diagnostic tools and its collaboration with the relabeling

approach.

Simulation B, three clusters among the minority class: Here, the

minority class is modified to have a three clusters structure. We generate N

points X ∼ N(µ0,Σ0) as the majority class Y = 0 (the same as Simulation 1).

Then n1 = 16 points are generated following X ∼ N(µ1,Σ1), n2 = 16 points

are generated following X ∼ N(µ2,Σ2) and n3 = 16 points are generated

following X ∼ N(µ3,Σ3). n1, n2 and n3 are combined as the minority class

Y = 0 (i.e. n = n1 + n2 + n3 = 48 minority class observations). Here

µ0 = [0, 0], µ1 = [1.5, 1], µ2 = [1.5, 0], µ3 = [1.5,−1]
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Figure 5.4: Simulation A: The average AUC and H-measure with their corresponding error
bars (standard errors) on the test set. The vertical blue lines represent the moment when
diagnostic tools indicate us that logistic regression has moved into the imbalance regime (i.e.
p-value > 0.05) in all 1000 replications.
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Σ0 =

[
1 0

0 1

]
, and Σ1 = Σ2 = Σ3 =

[
0.16 0

0 0.16

]
.

The number of the majority class observations N varies in {50, 100, 200,

. . . , 1000}. For each combination of (n,N), we repeat the simulation 1000

times by deploying the relabeling approach and a vanilla logistic regression

on the training set then apply them on the test set. We also apply two

diagnostic tools (Vuong’s likelihood ratio test and Brier score z test) on the

training set. Figure 5.5 gives the average AUC and H-measure with their

corresponding error bars (standard errors) on the test set. The vertical blue

lines represent the moment when diagnostic tools indicate us that logistic

regression has moved into the imbalance regime (i.e. p-value > 0.05) in all

1000 replications.

In this simulation, for the AUC, a relatively noticeable difference of the AUC

between two methods can be found when N > 500. At the same time, the

Brier score z test and Vuong’s likelihood ratio test will give indications of

“has moved into imbalance regime” at N = 400 and N = 600 respectively.

This means that, in this contrived scenario, the Brier score z test does a

better job than Vuong’s likelihood ratio test to give us an indication to use

relabeling approach. We also applied Hotelling T 2 test in Simulation A and

Simulation B, however, it will not give us any indication of the “imbalanced

regime”. The results from Simulations A and B show that we should con-

sider the results from all proposed diagnostic tools carefully. It is worth to

try relabeling methods mentioned in the previous chapter when any hint of

highly imbalanced logistic regression emerges. The diagnostic methods do

not provide definitive answers except for somewhat trivial cases, because we

are trying to detect an asymptotic phenomenon. While a diagnostic check is

worthwhile, as a matter of standard practice, the EM relabeling method is

recommended as generally preferable.
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Figure 5.5: Simulation B: The average AUC and H-measure with their corresponding error
bars (standard errors) on the test set. The vertical blue lines represent the moment when
diagnostic tools indicate us that logistic regression has moved into the imbalance regime (i.e.
p-value > 0.05) in all 1000 replications.
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5.4 Real Data Application

In this section, we deploy our diagnostic tools on two real data sets. These

data are from the credit risk industry, which mentioned in the previous chap-

ter.

5.4.1 Loan Recovery Data

For Loan Recovery Data, the proportion of the minority class data is 2.17%

and the total number of the observations is 8237. The Hotelling T 2 test, the

Vuong’s likelihood ratio test and the Brier score z test give p-value 2.3675×
10−4, 0.1479, and 0.8692 respectively, which means Vuong’s likelihood ratio

test and Brier score z test will suggest logistic regression is in the highly

imbalanced regime. The Mahalanobis distance plot is given in Figure 5.6.

The “Kneedle” algorithm will select an imbalance ratio N/n = 9 as the

indication point.

It is clear that Hotelling T 2 test suffers from the large sample size here, and

considering the outputs from these diagnostic tools, we suggest that this data

set is in the highly imbalanced regime.

5.4.2 Freddie Mac Mortgage Data

The target variable in Freddie Mac mortgage data is whether a mortgage

moves into default status in the following two years after the first payment.

In the previous chapter, we use the data from a single year (between 2000

and 2010) as a training set. Figure 4.4 shows the number of applications

fluctuates over this long time frame. We find a pronounced peak in default

rate during the financial crisis period (2007-2008) with a peak of 6.8% in

2007 Q3; however, the default rate is extremely low in other quarters. For

our diagnostic tools, Table 5.5 gives the p-value of the Vuong’s likelihood

ratio test and Brier score z test in each year. Due to the large sample size,

the Hotelling’s T 2 test will return a p-value uniformly equal to 0 in all years.

We find both these tests will indicate highly imbalanced logistic regression
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Figure 5.6: Mahalanobis Distance Plot for Recovery Data, the 5% and 95% quantile bar
and mean from Monte Carlo replication are presented, and the vertical blue line is the knee
point detected by “Kneedle” algorithm.

in the years 2000, 2001, 2002, 2003, 2004, 2005, 2006, and 2010. Figure 5.7

gives the Mahalanobis distance plot; the red dot line is the indication points

detected by the “Kneedle” algorithm. The visualization plots tend to show

that logistic regression moves into a highly imbalanced regime in all years;

actually, all indication points in Figure 5.7 are smaller than 10. The conflict

results in the years 2007, 2008, and 2009 are reasonable considering the large

sample size of the Freddie Mac data. We can also find the confidence bands

in Figure 5.7 usually shrink with the imbalance ratio increase; this is caused

by the effect of the sample size.
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Table 5.5: p-value Table for the diagnostic to the Freddie Mac data in each year, the fifth
and sixth columns are the p-value of the Vuong’s likelihood ratio test and the Brier score z
test respectively.

Year Proportion
of the
Minority
Class

Number of
the
Minority
Class

Total
Number of
the Obser-
vations

p-value
Vuong

p-value
Brier

2000 0.4112% 308 74902 0.3857 0.0747
2001 0.2014% 465 230840 0.2190 0.0606
2002 0.1015% 234 230330 0.0640 0.0638
2003 0.0582% 137 235391 0.3196 0.5715
2004 0.0677% 76 112247 0.6663 0.1158
2005 0.1690% 252 149041 0.2576 0.0712
2006 0.8915% 755 84680 0.4001 0.3905
2007 4.2679% 3690 86458 0.0000 0.0000
2008 3.1580% 4101 129857 0.0000 0.0000
2009 0.3049% 688 225600 0.0000 0.0000
2010 0.0915% 152 166046 0.6380 0.2980

Figure 5.7: Mahalanobis Distance Plot for Freddie Mac Data, the 5% and 95% quantile bar
and mean from Monte Carlo replication are presented, and the vertical red line is the knee
point detected by “Kneedle” algorithm.
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5.5 Summary and Recommendations

As stated at the beginning of this chapter, knowing that a given data set is

moving into the asymptotic imbalance regime is vital from the user’s point of

view. The diagnostic tools proposed in this chapter are focusing on detect-

ing highly imbalanced logistic regression in light of Owen [2007] theoretical

results. From different angles of view, we propose to measure the difference

of coefficient estimates, likelihood, or predicted probability between the the-

oretical limit and the real model as diagnostic tools. We also proposed a

visualization tool to observe the imbalance.

It is important to note that the calibration between these diagnostic tools is

essential since we find the conflict diagnostic results on the real data. The

simulation results show that the sample size becomes a key concern when

deploying these tools. Hotelling T 2 test tends to be more sensitive than

Vuong’s likelihood ratio test and Brier score z test when the sample size

is large, which resulting in the omitting of the highly imbalanced logistic

regression. Thus, we recommend that the Hotelling T 2 test is only suitable

for the small sample set. Vuong’s likelihood ratio test and Brier score z test

are more stable, but still suffer from the extremely large sample size, which

suggests that the user should not state any probabilistic conclusion, especially

when diagnosing on the big data. The visualization of the Mahalanobis

distance for more massive data sets move away from statistical tests, that

may alleviate the unwanted effect of the large sample size. We suggest that

users consider the results from all proposed diagnostic tools carefully. It is

worth to try relabeling methods mentioned in the previous chapter when any

hint of highly imbalanced logistic regression emerges.
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6
Conclusion

This chapter concludes this thesis by summarizing our research contributions

and possible future work directions. The target of this thesis towards a solid

theoretical understanding of highly imbalanced logistic regression and its

corresponding mitigation and diagnostic methods. With these in mind, we

conduct our research focusing on answering the questions we proposed in

Chapter 1:

In the theory part, we extend Owen [2007] results of the infinitely imbal-

anced logistic regression to its two natural alternative choices (weighted and

penalized logistic regression). We prove that:

• the minority class only contributes to the infinitely imbalanced weighted

logistic regression via its weighted mean vector,

• the slope vector of the infinitely imbalanced penalized logistic always

converges to zero, which makes the predicted probability uniformly

equal to the prior class proportion without considering the input x.

The main message from these theories is that weighting or penalizing the

likelihood function is not enough for highly imbalanced logistic regression.
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Especially in the presence of cluster structure among the minority class; the

mean vector of the minority class can be a poor representation.

For mitigation methods, we propose to relabel the minority class into sev-

eral new pseudo-classes to circumvent the imbalance problem by exploiting

the cluster structure. This relabeling idea is achieved by solving two sub-

problems:

• the Genetic algorithm and the Expectation Maximization algorithm

are proposed to establish the mapping between the minority class and

the K pseudo-classes.

• the cross validation procedure is proposed to identify the number of

pseudo-classes K.

Simulation studies and real data experiments show that modeling multino-

mial logistic regression on the relabeled data can enhance logistic regression

performance, especially when cluster structure is present.

For diagnostic tools, we propose to use different hypothesis testing meth-

ods for detecting highly imbalanced logistic regression. These methods, es-

sentially build on the more in-depth mathematical insight of the infinitely

imbalanced logistic regression, emphasize different ways to detect highly im-

balanced logistic regression, i.e. the coefficient estimates, the likelihood,

or the predicted probability. Considering the huge data sets we often deal

with in real life, a graphical method is designed as a supplementary tool to

hypothesis testing methods. From our simulation studies and real data ex-

periments, we recommend the user to try all diagnostic tools before reaching

any conclusion regarding class imbalance.

As mentioned in Section 2.3, class imbalance is a challenging and important

problem, not only because class imbalance is common in many real-life data

but also due to the concept linked to the rare class can being critical in ap-

plication. The thesis presents a systematic approach for handling the class

imbalance problem with logistic regression, which is tested on multiple sim-

ulation and real data set and has shown improvement regarding prediction.
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Future Work

Some open questions remain to be answered beyond those considered in this

thesis. Some possible directions for future work are listed below:

Understanding the Fundamental Theory :

Currently, most research on the class imbalance problem are focused on case

studies or specific algorithms, without the theoretical understanding. We

see the immediate impact from the consequences of Theorems 2, 7, and 11,

i.e. the cluster structure among the minority class is problematic for highly

imbalanced logistic regression, and weighted or penalized likelihood function

can not alleviate the problem. A deeper understanding of questions like

“How do imbalanced data affect widely used classification algorithms (e.g.

tree based methods, discriminant analysis)?” can help us to propose learning

algorithms for imbalanced data with more targeted approach.

Relabeling with Cluster Structure in Balanced Binary Classification Problem:

The relabeling approaches we proposed in Chapter 4 are designed for imbal-

anced data. A natural question is whether the cluster structure will affect

the balanced binary classification problem. An investigation of this problem,

when using logistic regression with a binary data set, is a subject for further

research. The mixture of experts model [Masoudnia and Ebrahimpour, 2014]

hierarchically divides the problem space into several subspaces, and assign

different inputs to different learners. We cannot use the mixture of experts

model directly, because it does not consider the binary data structure (we

are trying to cluster the data within one class). However, it gives a good

example to capture cluster structure in data.

Relabeling with Other Classifiers :

Considering the proposed EM algorithm in Chapter 4, we iteratively improve

the lower bound of the likelihood function with the latent variable (pseudo-

classes). However, the concept of relabeling may have more general appli-

cability. Indeed, if we put aside computational concerns for a moment, any

classifiers with a clear likelihood expression can fit into this EM framework.

An example is linear or quadratic discriminant analysis, which immediately
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leads to an EM algorithm solving Gaussian mixtures model among the mi-

nority class. Whether this EM procedure can be an effective framework for

relabeling with other classifiers is an interesting problem.

Application:

We have extensively conducted experiments on the credit risk data, due to

its importance in the consumer credit risk industry. The results show that

the cluster structure among the minority class has a direct impact on the

prediction performance of logistic regression. More application experiments

on other domains are also very interesting.
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A
Tables

Table A.1: Mean AUC and its corresponding standard deviation on training set by ten fold
cross validation, boldface indicates the choosen K.

Train year 2000 2001 2002
K = 1 0.8569 (0.0101) 0.8508 (0.0157) 0.8615 (0.0270)
K = 2 0.8475 (0.0135) 0.8450 (0.0147) 0.8629 (0.0230)
K = 3 0.8213 (0.0138) 0.8396 (0.0150) 0.8642 (0.0185)
Train year 2003 2004 2005
K = 1 0.8509 (0.0185) 0.7819 (0.0183) 0.8469 (0.0175)
K = 2 0.8549 (0.0138) 0.7853 (0.0201) 0.8408 (0.0159)
K = 3 0.8697 (0.0141) 0.7631 (0.0196) 0.8356 (0.0180)
Train year 2006 2007 2008
K = 1 0.8484 (0.0075) 0.8660 (0.0026) 0.8708 (0.0031)
K = 2 0.8487 (0.0069) 0.8613 (0.0027) 0.8682 (0.0036)
K = 3 0.7599 (0.0065) 0.8598 (0.0036) 0.8664 (0.0038)
Train year 2009 2010
K = 1 0.8882 (0.0120) 0.8322 (0.0115)
K = 2 0.9217 (0.0118) 0.8253 (0.0126)
K = 3 0.9204 (0.0113) 0.8297 (0.0177)
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B
Analysis to the

Pseudo-classes among the

Minority Class

B.1 Recovery Data-Full Recovery

This section gives a brief analysis to the pseudo-classes among the recov-

ery data set (Section 4.3.4). Table B.1 shows the descriptive statistics for

the two pseudo-classes for full recovery (i.e. recovery rate = 100%). They

show two clearly different groups based on loan amount: C2 are high value

loans, whilst C3 are low value loans, in general. Note that interest payment

due, credit limit and OB (outstanding amount at default) all reflect loan

amount. Amongst other variables we see that the high loan group, C2, in-

cludes generally older people and proportionally less female borrowers than

C3, which is a reflection of lending demographics for this cohort. The C2

pseudo-class has significantly lower average credit score, which is surprising

since lenders would typically want to take less risk with higher value loans.

As we might expect, the pre-purchase recovery rate (RRpre) is higher for C3
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since it is easier to recover smaller outstanding values. Marital status=Other

is strongly associated with C2 (note: in whole data, 14.5% of observation have

Married=O). It is difficult to know exactly what a borrower intends when

recording this status.

Table B.2 shows coefficient estimates on boundaries for the two separate re-

covery pseudo-classes using multinomial logistic regression for the recoveries

data. There are a few variables that stand out. We find that Age behaves

differently for each pseudo-class. So for the large loan value C2 pseudo-

class, older people are more likely to repay, whereas among the low value C3

pseudo-class it is the other way round. Also, although it is less likely for a

female borrower to be in C2, it turns out that if they are, they are less likely

to repay the full amount, whereas they are more likely to repay a small loan,

on average. The total number of outstanding loans (Total.number) is a risk

factor for large loans, but not so much for smaller loans. The total num calls

and total num contacts both relate to how frequently the customer was con-

tacted prior to the debt being sold to the debt collection company. The

context of the contact is unknown, but the coefficients demonstrate that the

more previous contacts, the more probable a larger loan is paid off, whereas

the contrary is true for a smaller loan. We would imagine that the type of

recovery contact associated with a large loan would be quite different than

for a small loan and this may explain the discrepancy. Similar reasoning can

be given for the difference with pre-sale payment frequency. Looking at the

relative difference of coefficient estimates amongst the marital statuses for

each group, just one is striking: the coefficient for widows in C2 is very low;

however, this is because there are no widows in C2 for the training data,

hence this is just a poor estimate.
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Table B.1: Descriptive statistics for in the two clusters of defaults in recover data, the sec-
ond and third columns are the means of each variable the first and third shows the signifi-
cant test and correspond p-value.

Variable Test C2 (N=67) C3 (N=97) p-value
(less than
0.01)

Principal T 2710 (1940) 385 (417) <0.0001
Interest payments due T 649 (407) 179 (177) <0.0001

Credit limit T 5490 (2820) 2460 (1960) <0.0001
Outstanding balance at

default
T 3660 (2220) 824 (465) <0.0001

Age T 36.3 (12.4) 26.9 (11.5) <0.0001
Delphi Score T 149 (183) 251 (179) <0.0001

Total number T 0.851 (1.41) 1.60 (1.78) 0.0031
RRpre T 0.385 (0.351) 0.733 (0.387) <0.0001
Sex=F Fe 16.4% 54.1% <0.0001

Married=O Fe 65.7% 3.1% <0.0001
Bureau information exists Fe 61.1% 34.0% 0.0007753

Principal: original loan amount borrowed.

RRpre: recovery rates prior to debt being purchased.

Total number: total number of loan accounts.

Married: Marital status, O for other.
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Table B.2: Coefficient estimates of multinomial logistic regression for recovery data

Variable C2 C3

(Intercept) -6.21962 1.72086
Principal 0.00213 0.00461

Interest 0.00261 0.00367
Insurance 0.07348 0.11017

Late charges 0.00176 0.00306
Over limit fees -0.00699 -0.00757

Credit limit 0.00022 0.00020
Outstanding balance -0.00248 -0.00723

Age 0.03263 -0.03963
Delphi Score -0.00152 -0.00243

Total number -0.22769 -0.03836
Total net paid amount 0.00016 0.00066

Total numbel of calls 0.00031 -0.00392
Total number of contacts 0.00546 -0.01014

RRpre -0.67422 -0.19672
Product R -16.48621 -0.33173
Product C This is the base category

Sex F -0.72327 0.29184
Sex M This is the base category

Married S 2.19710 -0.26762
Married Blank 3.34404 -1.56225

Married D 0.67555 -0.32375
Married O 2.57717 0.37771
Married W -15.20640 0.41571
Married M This is the base category

Employer No Information -0.61682 -0.33218
Employer Employer Provided This is the base category

Number of Files 2 0.90711 -16.68695
Number of Files 1 This is the base category

Bureau information exists 0.56645 -1.37245
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Principal: Original loan amount borrowed.

Insurance: Insurance fees.

Late charges: Fees for late repayments.

Total number: total number of loan accounts.

Total net paid amount: Total loan amount for an individual in all ac-

counts.

RRpre: recovery rates prior to debt being purchased.

Product: Type of loan, C for credit card, R for mortgage.

Married: Marital status, M for married, S for single, D for divorced, O for

other, W for widow, Blank for unknown.

Employer: Data of the employer, categorical with two levels No Informa-

tion/Employer Provided.

Number of Files: Not sure the meaning, with very little variation.
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B.2 Freddie Mac 2009 Data

Table B.3 shows descriptive statistics for observations found in the two

pseudo-classes of defaults, which are named C2 (119 observations) and C3

(18 observations). Only those variables that exhibit a difference between

pseudo-classes that is statistically significant using either a t-test for con-

tinuous variables or a Fisher exact test for categorical variables at a 0.0001

level are shown. Comparing the smaller pseudo-class C3 with C2, we find it is

characterized broadly as individuals with lower FICO scores, higher principal

balance (UPB) and higher loan-to-value (LTV): all indicators of higher risk.

The exception to this characteristic is debt-to-income (DTI) which is much

lower in C3 than C2, on average. Hence C3 accounts for defaulters who are

generally higher risk, except for a lower DTI. Amongst the other mortgage

characteristics, C3 is less likely to include investment mortgages (note, this

is typically the case when the first time homebuyer indicator is set to blank

as well as when Occupancy.status=I) and less likely to have originated from

a correspondent lender. Indeed, the last line of the table shows that these

variables, together, are strongly associated with pseudo-class C2 rather than

C3. Finally, we see that C3 is more likely to include condominium property

purchases.

Table B.4 shows coefficient estimates on boundaries for the two separate

default pseudo-classes using multinomial logistic regression. Focussing on

the five main risk factors, we see that C2 has relatively high magnitude of

coefficient estimates for DTI, UPB and OIR, whereas C3 has high coefficient

estimates for FICO score and LTV. The differences in coefficient estimates

are quite high. Indeed, surprisingly, FICO score has a negligible association

with default for C2 and also UPB has negative association with default,

which is counter-intuitive, unless we consider UPB a proxy for wealth, when

taken along with DTI. OIR is often a proxy for credit risk, since it would

have been set partly as a function of credit risk, hence in C2 it seems to

be supplanting the FICO score in this role. Given that C2 contains more

investment properties or originate from correspondent lenders, perhaps the

OIR contains more credit risk signal from underwriting decisions than just
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the FICO score, alone. The emphasis of C2 on DTI as a main risk factor

reflects that DTI is much higher in C2, which suggests some threshold effect

of DTI on default risk: ie it only really begins to have an effect above some

level. The emphasis of C3 on FICO score and LTV risk factors is reflective

of C3 being a slightly higher risk group than C2.
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Table B.3: Descriptive statistics for the two pseudo-classes of defaults for US mrotgages in
2009, the second and third columns are the means of each variable the first and forth shows
the significant test and correspond p-value.

Variable Test C2 (N=416) C3 (N=272) p-value
(less than
0.01)

Score T 748 (46) 723 (53) <0.0001
DTI T 59.0 (3.9) 38.3 (10.1) <0.0001

UPB (log) T 12.3 (0.6) 12.5 (0.5) <0.0001
LTV T 65.3 (16.2) 72.2 (14.3) <0.0001

Original loan term T 344 (51) 353 (34) 0.00027
Number of borrowers (1,2)

= 2
Fe 47.1% 30.1% <0.0001

First time
homebuyer=blank (not

applicable)

Fe 43.0% 18.4% <0.0001

Insurance = yes Fe 0% 13.6% <0.0001
Occupancy status=I

(investment)
Fe 33.9% 4.4% <0.0001

Channel=C
(correspondent)

Fe 71.6% 29.4% <0.0001

Property type=CO (condo) Fe 1.2% 9.6% <0.0001
Loan purpose=P

(purchase)
Fe 54.8% 39.3% <0.0001

First time
homebuyer=blank &

Occupancy.status=I &
Channel=C

Fe 22.8% 0.7% <0.0001
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Table B.4: Coefficient estimates for logistic regression between C1 and C2 (single model)
and multinomial logistic regression

Variable Single model C2 coefficients C3 coefficients

(Intercept) -11.70993 -24.99017 1.06121
Score -0.00650 -0.00101 -5.36259
DTI 0.15057 0.34276 -0.01665

UPB (log) 0.00126 -0.09806 0.00522
LTV 0.01007 0.00603 0.27384
OIR 0.92498 0.64968 0.03392

Original loan term -0.00232 -0.00475 1.36464
Number of borrowers -0.55512 -0.24292 0.00116

Seller -0.73125 -1.35303 -1.12875
Servicer -0.19476 -0.25508 0.55009

First time homebuyer=blank -0.01674 0.37475 -0.65135
First time homebuyer=Y -0.02910 0.38030 -0.73761
First time homebuyer=N This is the base category

Insurance 0.92890 -15.42656 -0.20138
Number of units=2 -0.05732 0.53622 0.91431
Number of units=4 0.83219 0.45550 -1.32299
Number of units=3 0.53823 0.41463 1.84850
Number of units=1 This is the base category

Occupancy status=I 0.24243 0.58407 0.68492
Occupancy status=S 0.51913 0.28594 -1.05676
Occupancy status=O This is the base category

Channel=B -0.10472 -0.02674 0.85781
Channel=C 0.58863 0.93971 -0.35180
Channel=R This is the base category

PPM 1.14164 -0.05567 -0.12578
Property type=PU 0.16950 0.34265 0.98686
Property type=CO -0.26160 -0.72814 -0.03873
Property type=SF This is the base category

Loan purpose=C 0.39416 1.15580 -0.07411
Loan purpose=P 0.25857 1.06121 0.03092
Loan purpose=N This is the base category
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First time homebuyer=blank means property is not eligible for first time

home buyer status, which is the case of “Investment Properties, Second

Homes and Refinance”.

Number of units denotes whether the mortgage is a 1-, 2-, 3-, or 4-unit

property.

Occupancy status=I, O, S means Investment, Owner Occupied, and Sec-

ond Home respectively

Channel=R, B, C denotes the channel involved in origination of the mort-

gage loan, R = Retail, B = Broker, C = Correspondent.

PPM denotes whether the mortgage is a Prepayment Penalty Mortgage.

Property type=PU, CO, SF means Planned Unit development, COndo-

minium, and Single Family home.

Loan.purpose=C, P, N means Cash-out Refinance, Purchase, and No

Cash-out refinance.
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C
Codes

C.1 Vuong’s Likelihood Ratio Test in R

In this section, we give the R code for implementing Vuong’s likelihood ra-

tio test [Vuong, 1989] in R. In this process, we need the following func-

tion: the imhof function in the CompQuadForm package for calculating the

p-value of a weighted sum of χ2 distribution and the estfun function in the

sandwich package for calculating the derivative of the likelihood function

with respect to the parameter vector. Some functions are borrowed from the

nonnset2 [Merkle et al., 2016] package with modifications; the modifications

are aiming at ensuring two models are deployed on the original full data

set. We start with building two logistic regression on a simple simulation

example: the majority class (Y = 0) follows X ∼ N(µ1,Σ1) and the mi-

nority class (Y = 1) follows X ∼ N(µ2,Σ2), where µ1 =

(
0

0

)
, µ2 =

(
2

2

)
,

Σ1 =

(
1 0

0 1

)
, and Σ2 =

(
0.64 0

0 0.64

)
.

library(MASS)

# number of the minority class observations
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n = 50

# imbalance ratio

r = 100

# number of the majority class observations

N = n*r

# correlation coefficient

rho <- 0

mu1 <- 0; s1 <- 1

mu2 <- 0; s2 <- 1

mu <- c(mu1 ,mu2)

sigma <- matrix(c(s1^2, s1*s2*rho , s1*s2*rho , s2^2), 2)

bvn1 <- mvrnorm(N, mu = mu , Sigma = sigma )

rho <- 0

mu1 <- 2; s1 <- 0.8

mu2 <- 2; s2 <- 0.8

mu <- c(mu1 ,mu2)

sigma <- matrix(c(s1^2, s1*s2*rho , s1*s2*rho , s2^2), 2)

bvn2 <- mvrnorm(n, mu = mu , Sigma = sigma )

data = cbind(rbind(bvn1 ,bvn2),c(rep(0,N),rep(1,n)))

data = as.data.frame(data)

colnames(data) = c("x1","x2","y")

df = data

default = df[which(df$y == TRUE),]

non_default = df[which(df$y == FALSE),]

temp = as.data.frame(matrix(rep(colMeans(default),

each=nrow(default)),nrow=nrow(default )))

names(temp) = names(non_default)

# this is the manipulated data set

drop_data= rbind( non_default , temp)

# model M_1 in Section 5.1.2

glm.fit = glm(y ~. , data=data ,
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family=binomial(link = "logit"))

# model M_2 in Section 5.1.2

glm.fit.drop = glm(y ~. , data=drop_data ,

family=binomial(link = "logit"))

Now, we have two logistic regression glm.fit and glm.fit.drop. The follow-

ing three functions are used to calculate Equations (5.4, 5.5, 5.6, 5.7).

# Equation (5.7)

calcLambda <- function(object1 , object2 , n,

score1 , score2 , vc1 , vc2){

AB1 <- calcAB(object1 , n, score1 , vc1)

AB2 <- calcAB(object2 , n, score2 , vc2)

Bc <- calcBcross(AB1$sc , AB2$sc , n)

W <- cbind(rbind(-AB1$B %*% chol2inv(chol(AB1$A)),

t(Bc) %*% chol2inv(chol(AB1$A))),

rbind(-Bc %*% chol2inv(chol(AB2$A)),

AB2$B %*% chol2inv(chol(AB2$A))))

lamstar <- eigen(W, only.values=TRUE)$values

Re(lamstar)

}

# A, B as defined in Equations (5.4) and (5.5)

calcAB <- function(object , n, scfun , vc){

scaling <- summary(object)$sigma

if(is.null(scaling )){

scaling <- 1

} else {

scaling <- scaling ^2

}

tmpvc <- n * vc(object)

A <- chol2inv(chol(tmpvc ))

sc <- (1/scaling) * sandwich :: estfun(object)

sc.cp <- crossprod(sc)/n

B <- matrix(sc.cp, nrow(A), nrow(A))
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list(A=A, B=B, sc=sc)

}

# Equation (5.6)

calcBcross <- function(sc1 , sc2 , n){

crossprod(sc1 , sc2)/n

}

We now start to calculate the case wise contributions to the likelihood func-

tion of models glm.fit and glm.fit.drop.

llA = data$y*log(glm.fit$fitted.values)

+(1-data$y)*log(1-glm.fit$fitted.values)

llB = data$y*log(glm.fit.drop$fitted.values)

+(1-data$y)*log(1-glm.fit.drop$fitted.values)

Then we calculate ω̂2
? (Equation 5.3) and the p-value of Vuong’s likelihood

ratio test.

omega.hat.2 <- (n+N-1)/(n+N) * var(llA - llB , na.rm = TRUE)

lr <- sum(llA - llB , na.rm = TRUE)

teststat <- (1/sqrt(n+N)) * lr/sqrt(omega.hat .2)

vcl <- function(obj) vcov(obj , full=TRUE)

lamstar <- calcLambda(glm.fit , glm.fit_drop , n=n+N,

score1=Null , score2=Null , vc1=vcl , vc2=vcl)

pOmega <- CompQuadForm :: imhof((n+N) * omega.hat.2, lamstar ^2)$Qq

pOmega

The final result pOmega is the p-value of Vuong’s likelihood ratio test, which

should be around 9.2791× 10−9 in our simulation.

C.2 Hotelling T 2 test in R

diffhotelling = function(y1, y2, se1 , se2 , df1 , df2){

# y1, se1 , df1 are coefficients estimates , the corresponding

# covariance matrix and number of observations used in model 1

# y2, se2 , df2 are coefficients estimates , the corresponding

171



# covariance matrix and number of observations used in model 2

n1 = df1

n2 = df2

p<-length(y1)

S.pooled = ((n1 -1)*se1 + (n2 -1)*se2) / (n1+n2 -2)

test.statistic <-as.numeric(n1)*as.numeric(n2)/(n1+n2)*t(y1 -y2)%*

%solve(S.pooled)%*%(y1-y2)*((n1+n2-p-1)/(p*(n1+n2 -2)))

df.1<-p

df.2<-n1+n2 -p-1

p.value <-1-pf(test.statistic ,df.1,df.2)

return(list(pvalue=p.value , t2=test.statistic , diff=y1 -y2))

}

C.3 Brier Score z test in R

brier_score_test = function(p_ai,p_bi,pi_i,y_i){

# p_ai , p_bi: posterior probability from two model

# pi_i "true" posterior probability , can use (p_ai+p_bi)/2

# y_i: true label

num = length(p_ai)

d_ab = sum(((p_ai-p_bi)*pi_i-(p_ai-p_bi)*y_i)*2/num)

v_ab = sum((p_ai-p_bi)^2*pi_i*(1-pi_i)*4/(num ^2))

z = d_ab/sqrt(v_ab)

p_value = 2*pnorm(abs(z), lower.tail = F)
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return(c(z,p_value))

}

C.4 EM Algorithm Pseudo Code

The following are the pseudo codes for our EM algorithm:

Algorithm 2: Expectation Maximization Algorithm for Relabeling
Data: minority class x1i, i ∈ {1, · · · , n} and majority class x0i, i ∈ {1, · · · , N}.
Result: p̂ik, where i ∈ {1, · · · , n} and k ∈ {1, · · · ,K}, the posterior probability

of a minority class observation i arises from pseudo-class k.

Initialization: iteration number (u) = 1;

p̂
(u)
ik = a random number between 0 and 1;

φ
(u)
k = 1

n

∑n
i=1 p̂

(u)
ik ;

optimize α
(u)
k and β

(u)
k in multinomial logistic regression

Q
(u)
1 =

∑n
i=1

∑K
k=1 p̂

(u)
ik log(Pr(zi = k | x1i)) +

∑N
i=1 log(Pr(yi = 0 | x0i));

and Q
(u)
2 =

∑n
i=1

∑K
k=1 p̂

(u)
ik log(φ

(u)
k );

then assign Q(u) = Q
(u)
1 +Q

(u)
2 and Q(u−1) = 0.5×Q(u);

while (Q(u) −Q(u−1))/Q(u−1) > 0.01% do

update p̂
(u+1)
ik =

φ
(u)
k Pr{zi=k|x1i}∑K

k=1 φ
(u)
k Pr{zi=k|x1i}

; i ∈ {1, . . . , n}, k ∈ {1, . . . ,K} ;

// E-step

optimize α
(u+1)
k and β

(u+1)
k in multinomial logistic regression

Q
(u+1)
1 =

∑n
i=1

∑K
k=1 p̂

(u+1)
ik log(Pr(zi = k | x1i))+

∑N
i=1 log(Pr(yi = 0 | x0i))

; // M-step

update Q
(u+1)
2 =

∑n
i=1

∑K
k=1 p̂

(u+1)
ik log(φ

(u+1)
k ) by letting

φ
(u+1)
k = 1

n

∑n
i=1 p̂

(u+1)
ik ; // M-step

Q(u+1) = Q
(u+1)
1 +Q

(u+1)
2 ; // new log-likelihood

u = u+ 1;

end

Here (u) is the number of current iteration. In each iteration (u), Q1 is a

weighted multinomial logistic regression with

Pr(zi = k | x1i) =
eα

(u)
k +xT1iβ

(u)
k

1 +
∑K

j=1 e
α

(u)
j +xT1iβ

(u)
j

, i ∈ {1, · · · , n}.
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and

Pr(yi = 0 | x0i) =
1

1 +
∑K

j=1 e
α

(u)
j +xT0iβ

(u)
j

, i ∈ {1, · · · , N}.

Demo R code can be found here: https://github.com/yazheli/code-and-data.
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D
Infinitely Imbalanced Ridge

Penalized Logistic Regression

We again use the notation of Section 3.1.2. In order to directly show the

result, we center ridge penalized logistic regression around the minority class

mean vector x =
∑n

i=1 xi/n. Since in the infinitely imbalanced case N →
∞, we also suppose that there is a good approximation for the conditional

distribution of x given Y = 0; denoted by F0. Thus, the objective function

for ridge penalized logistic regression [Hoerl and Kennard, 1970] is written

as

l(β0, β) =
1

n+N

[
nβ0 −

n∑
i=1

log(1 + eβ0+(xi−x̄)T β)

−N
∫

log(1 + eβ0+(x−x̄)T β)dF0(x)

]
− 1

2
λ‖β‖2, λ > 0,

(D.1)

We follow Owen’s proof again: Lemma 4 and Lemma 5 in Owen [2007] still

hold for penalized logistic regression. The three changes in the proof process

are for Lemma 6, Lemma 7 and the main theorem in Owen [2007] (corre-

sponding to our Lemma 17, Lemma 18 and Theorem 20 here). Our Lemma 17
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gives eβ̂0 ≤ n/(N − n) and Lemma 18 gives
∥∥∥β̂∥∥∥ ≤ √

2n/((N − n)λ) as

N → ∞. Note that in Lemma 17 and Lemma 18, we do not require the

surrounded condition, which makes the proof significantly different from

Owen’s proof.

Lemma 17. Let β̂0 and β̂ be the maximizers of the objective function (D.1).

Then eβ̂0 ≤ n/(N − n).

Proof. Calculate the partial derivative with respect to β0:

∂l(β0, β)

∂β0

=
n

n+N
− 1

n+N

n∑
i=1

eβ0+(xi−x̄)T β

1 + eβ0+(xi−x̄)T β

− N

n+N

∫
eβ0+(x−x̄)T β

1 + eβ0+(x−x̄)T β
dF0(x)

≤ n

n+N
− N

n+N

∫
eβ0+(x−x̄)T β

1 + eβ0+(x−x̄)T β
dF0(x)

≤ n

n+N
− N

n+N

∫
(x−x̄)T β>0

eβ0+(x−x̄)T β

1 + eβ0+(x−x̄)T β
dF0(x)

≤ n

n+N
− N

n+N

eβ0

1 + eβ0

∫
(x−x̄)T β>0

dF0(x)

≤ n

n+N
− N

n+N

eβ0

1 + eβ0
.

(D.2)

We applied the fact that eβ0+(x−x̄)T β

1+eβ0+(x−x̄)T β
≤ eβ0

1+eβ0
, when(x − x̄)Tβ > 0, in the

above inequality. Then, let eβ0 > n/(N − n), the above equation leads to
∂l(β0,β)
∂β0

< 0. For the concave likelihood function, the negative derivative

means that the maximizer β̂0 ≤ log( n
N−n).

Lemma 18. Let β̂0 and β̂ be the maximizers of the log-likelihood func-

tion (D.1). Then lim supN→∞

∥∥∥β̂∥∥∥ <∞.

Proof. Take arbitrary coefficient estimates (β̂0, 0), we know l(β̂0, β̂)−l(β̂0, 0) ≥
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0. Then

l(β̂0, 0)− l(β̂0, β̂) =
1

n+N

[
− (n+N)log(1 + eβ̂0) +

n∑
i=1

log(1 + eβ̂0+(xi−x̄)T β̂)

+N

∫
log(1 + eβ̂0+(x−x̄)T β̂)dF0(x)

]
+

1

2
λ
∥∥∥β̂∥∥∥2

≥ 0.

(D.3)

Since log(1 + eβ̂0+(xi−x̄)T β̂) ≥ 0 and
∫

log(1 + eβ̂0+(x−x̄)T β̂)dF0(x) ≥ 0, Equa-

tion (D.3) leads to:

1

2
λ‖β‖2 ≤ 1

n+N

[
(n+N)log(1 + eβ̂0)−

n∑
i=1

log(1 + eβ̂0+(xi−x̄)T β̂)

−N
∫

log(1 + eβ̂0+(x−x̄)T β̂)dF0(x)

]
≤ log(1 + eβ̂0) ≤ eβ̂0 ≤ n

N − n
.

(D.4)

Thus, we know
∥∥∥β̂∥∥∥ is bounded as N →∞.

The following theorem demonstrates the behavior of β̂0 and β̂ in infinitely

imbalanced ridge penalized logistic regression.

Theorem 19. Let n > 1 and minority class vectors {x1,x2. · · · ,xn} be

fixed. Then the maximizer (β̂0, β̂) of l given by Equation (D.1) have following

shrinkage rules, eβ̂0 → n
N

and β̂ → 0, when N →∞.

Proof. From Lemma 17 and Lemma 18, we know eβ̂0 ≤ n
N−n and

∥∥∥β̂∥∥∥ is

bounded when N →∞.

Further considering Lemma 18, we have

∥∥∥β̂∥∥∥ ≤√ 2n

(N − n)λ
, when N →∞. (D.5)

Inequality (D.5) shows as N → ∞, we have β̂ = 0. Thus l(β̂0, β̂) simplifies
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to

l(β̂0, β̂) =
n

n+N
β̂0 − log(1 + eβ̂0). (D.6)

Let the partial derivative of Equation (D.6) equal to 0 when N →∞,

∂l(β̂0, β̂)

∂β̂0

=
n

n+N
− eβ̂0

1 + eβ̂0
= 0, (D.7)

then we have eβ̂0 = n/N .

In the next theorem, we do not use subgradient method for lasso again be-

cause the derivative of ridge penalty exists.

Theorem 20. Let n ≥ 1 and minority class vectors {x1, · · · ,xn} be fixed and

suppose that F0 surrounds x̄ =
∑n

i=1 xi/n as described. Then the maximizer

(β̂0, β̂)of l given by Equation (D.1) satisfies

−
∫

(x− x̄)e(x−x̄)T β̂dF0(x) =
n+N

n
λβ̂ (D.8)

as N →∞.

Proof. Setting the partial derivative with respect to β of Equation (D.1) to

0, we have:

−
n∑
i=1

(xi − x̄)eβ̂0+(xi−x̄)T β̂

1 + eβ̂0+(xi−x̄)T β̂
−N

∫
(x− x̄)eβ̂0+(x−x̄)T β̂

1 + eβ̂0+(x−x̄)T β̂
dF0(x)−(n+N)λβ̂ = 0.

(D.9)

Dividing by N gives

−
∫

(x− x̄)eβ̂0+(x−x̄)T β̂

1 + eβ̂0+(x−x̄)T β̂
dF0(x)− n+N

N
λβ̂ =

1

N

n∑
i=1

(xi − x̄)eβ̂0+(xi−x̄)T β̂

1 + eβ̂0+(xi−x̄)T β̂
.

(D.10)

As N → ∞, the right side of Equation (D.10) vanishes because
∥∥∥β̂∥∥∥ is

bounded as N →∞ by Lemma 18.

If we considerN →∞, we have eβ̂0 → n
N

and β̂ → 0, yielding to eβ̂0+(xi−x̄)T β̂ →
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n
N
e0 → 0. Thus Equation (3.27) yields

−
∫

(x− x̄) n
N
e(x−x̄)T β̂

1
dF0(x) =

n+N

N
λβ̂ (D.11)

After simplification, Equation (D.8) holds.

Equation (D.8) shows the solution of β depends only on {x̄, F0(x), N
n
} when

approaching infinite imbalance.
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