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Abstract

Consider a Hamiltonian flow on R4 with a hyperbolic equilibrium O and a transverse homoclinic
orbit Γ. In this thesis, we study the dynamics near Γ in its energy level when it leaves and enters O
along strong unstable and strong stable directions, respectively. In particular, we provide necessary
and sufficient conditions for the existence of the local stable and unstable invariant manifolds of Γ.
We then consider the case in which both of these manifolds exist. We globalize them and assume they
intersect transversely. We prove that near any orbit of this intersection, called super-homoclinic, there
exist infinitely many multi-pulse homoclinic loops.
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Chapter 1

Introduction

1.1. Background

Consider a C∞-smooth Hamiltonian system

ẋ = X (x)

defined on R2n (n ≥ 2) with a Hamiltonian H, and a hyperbolic equilibrium O at the origin. An
orbit Γ = {x (t) : t ∈ R} of this system is said to be ’homoclinic to O’ or simply ’homoclinic’ if it
belongs to both stable and unstable invariant manifolds of O, or equivalently, it is bi-asymptotic to the
equilibrium O (i.e. x (t)→ O as t→ ±∞). Existence of homoclinic orbits for Hamiltonian systems is
known to be a robust phenomenon. This is due to the fact that the n-dimensional stable and unstable
invariant manifolds of O lie in the same (2n− 1)-dimensional energy level of the Hamiltonian H, and
they may intersect transversely in that level along the homoclinic orbits. Therefore, a natural question
which arises here is the possible dynamics near homoclinic orbits in their energy level.

Let
R2n = Ess ⊕ EsL ⊕ EuL ⊕ Euu

be the dX (O) invariant splitting of R2n into strong stable, leading stable, leading unstable and
strong unstable subspaces. Since X is Hamiltonian, we have dim

(
EsL

)
= dim

(
EuL

)
and dim (Ess) =

dim (Euu). Correspondingly, the equilibriumO possesses strong stableW ss (O), leading stableW sL (O),
leading unstable W uL (O) and strong unstable W uu (O) invariant manifolds which are tangent to Ess,
EsL, EuL and Euu at O, respectively. Then, a homoclinic orbit Γ can be classified as one of the
following four types:

Type 1. Γ 6⊂W uu (O) and Γ 6⊂W ss (O),

Type 2. Γ ⊂W uu (O) and Γ 6⊂W ss (O),

Type 3. Γ 6⊂W uu (O) and Γ ⊂W ss (O),

Type 4. Γ ⊂W uu (O) and Γ ⊂W ss (O).

What generically happens for a homoclinic orbit is the first scenario. This is simply because
if Γ is of any other types, then it must lie in either W uu (O) or W ss (O) which are submanifolds
with positive codimension of W u (O) or W s (O), respectively. This generic case has been studied by
different authors. Turaev and Shilnikov [TS89] (see also [Tur14]) considered the case dim

(
EsL

)
=

dim
(
EuL

)
= 1, i.e. the leading eigenvalues are real with multiplicity 1, and assumed that the system

has finitely many homoclinic orbits of the first type. They proved that except for this bunch of
homoclinics and the equilibrium O, any other orbit leaves a small neighborhood of these homoclinic
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1.1. BACKGROUND 9

orbits inside their energy level for both forward and backward times. In [Dev76], Devaney studied a
case of dim

(
EsL

)
= dim

(
EuL

)
= 2. He considered a 4-dimensional Hamiltonian system (n = 2) with

a saddle focus equilibrium O, i.e. the eigenvalues of dX (O) are ± (α± iω) for some α, ω > 0. He
showed that the set of the orbits which entirely lie in a small neighborhood of a homoclinic orbit of
the first type in the energy level of O can be described in terms of symbolic dynamics with countably
many symbols. Further results on the homoclinics to saddle-foci have been obtained by other authors
too (see [BS90], [Ler91], [Ler00], [Ler97] and [BS96]). In [ST97], Shilnikov and Turaev studied the
case dim

(
EsL

)
= dim

(
EuL

)
= 2 in which the leading eigenvalues are real with multiplicity 2. They

considered a 4-dimensional symmetric Hamiltonian system (n = 2) with a saddle equilibrium O, i.e.
the spectrum of dX (O) is {−λ,−λ, λ, λ} for λ ∈ R+, which has a pair of homoclinic figure-eights
(four homoclinic orbits). To state their result, we first define:

Definition 1.1. Let A = Γ1 ∪ Γ2 ∪ · · · ∪ Γm, where Γi are homoclinic to an equilibrium O, and
m ≥ 1. Consider a sufficiently small open neighborhood U of A ∪ {O} in the energy level of O. The
local stable (resp. unstable) set of A, denoted by W s

loc(A,U) (resp. W u
loc(A,U)), is the union of A

itself and the set of the points in U whose forward (resp. backward) orbits lie in U and their ω-limit
sets (resp. α-limit sets) coincide with A ∪ {O}. We may use the notations W s

loc(A) and W u
loc(A) for

the stable and unstable sets of A when the neighborhood U is clear form the context.

It was proved in [ST97] that, under certain assumptions, the local stable and unstable sets of the
pair of homoclinic figure-eights (the union of four homoclinic orbits) considered in that paper are
2-dimensional smooth invariant manifolds. Moreover, any orbit outside of these two manifolds, except
the equilibrium O, leaves a small neighborhood of the homoclinic orbits in the level set of O for both
forward and backward times.

The cases of homoclinic orbits of the second and the third types were studied by Turaev [Tur01]. He
considered the case where the spectrum of dX (O) is {λi,−λ2,−λ1, λ1, λ2, λj}i,j=3···n for λ1, λ2 ∈ R+

and Re (λi) < −λ2 < −λ1 < λ1 < λ2 < Re (λj). Let Γ be a homoclinic orbit which enters O along
the leading direction and leaves O along the direction corresponding to the eigenvalue λ2. It is proved
in [Tur01] that the unstable set of Γ is an n-dimensional invariant manifold. On the other hand, the
stable set of this orbit is trivial (coincides with Γ itself). Moreover, any orbit outside of this manifold,
except the equilibrium O, leaves a small neighborhood of Γ in its level for both forward and backward
times. The homoclinic orbits studied in [Tur01] are of the second type, however, one can get the
analogous results for the third type homoclinics from [Tur01] by a time reversion.

In this thesis, we focus on the dynamics near homoclinic orbits of the last type, i.e. those which
leave and enter O along strong directions. With the setting provided latter, we describe the dynamics
near (a single or a pair of) these homoclinic orbits and provide necessary and sufficient conditions for
the existence of non-trivial stable and unstable sets.

A distinguishing feature of the paper of Shilnikov and Turaev [ST97] is the coexistence of both
local stable and unstable manifolds of a bunch of homoclinic orbits. This feature allowed them to
consider the scenario in which both these manifolds are globalized by the flow of the system and
intersect each other transversely. They referred to the orbits which lie in this intersection as ’super-
homoclinic’. They studied the dynamics near the super-homoclinic orbits and in particular showed
that the existence of such orbits implies the existence of infinitely many multi-pulse homoclinic loops.

Apart from the work of Shilnikov and Turaev, super-homoclinic orbits as the orbits whose ω-
and α-limit sets have nonempty intersection have been taken into account in other literature as well.
Turaev [Tur01] studied the case of a super-homoclinic orbit whose ω-limit set is an equilibrium O
and the α-limit set coincides with the union of a homoclinic orbit and the equilibrium O. The
existence of multi-pulse homoclinics, as a result of the presence of super-homoclinic orbits, was also
established in that paper. While the work of Turaev is in Hamiltonian context, Homburg [Hom96]
studied the same type of super-homoclinics for general systems. Eleonsky et al. [EKTS89] spotted
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a super-homoclinic orbit in their numerical investigation of an electromagnetic field in a nonlinear
medium. Barrientos et al. [BRR19] studied the super-homoclinics as the orbits that are homoclinic
to a network of homoclinic orbits in the context of reversible systems. Chawanya and Ashwin [CA10]
built an example of a heteroclinic network that possesses a super-homoclinic in the sense of an orbit
which connects sub-networks. In a broader sense, as [BRR19] and [CA10] suggest, super-homoclinic
orbits may potentially appear in heteroclinic networks, especially if the network undergoes a chaotic
behavior (see e.g. [NADP20]).

In the setting that we provide here, the non-trivial local stable and unstable invariant manifolds of
a single homoclinic orbit (as well as homoclinic figure-eight) may coexist. This enables us to consider
the case in which a transverse super-homoclinic orbit exists. We prove that in such a scenario, we
have infinitely many multi-pulse homoclinic loops near the super-homoclinic orbit.

1.2. Problem setting and results

Consider a C∞-smooth 4-dimensional system of differential equations

(1.2.1) ẋ = X(x), x ∈ R4,

with a C∞-smooth first integral H : R4 → R, i.e.

(1.2.2) H ′(x)X(x) ≡ 0.

We assume that

Assumption 1. X has a hyperbolic equilibrium state O at the origin.

By (1.2.2), we have H ′(0)X ′(0) ≡ 0. Since X ′(0) is nonsingular by Assumption 1, the linear part
of H at O vanishes. Assume that

Assumption 2. The quadratic part of H at O is a nondegenerate quadratic form.

Assumptions 1 and 2 imply that system (1.2.1) near O can be brought to the following form by a
linear transformation:

(1.2.3) u̇ = −Au+ o (|u|, |v|) , v̇ = AT v + o (|u|, |v|) ,

where u = (u1, u2) ∈ R2, v = (v1, v2) ∈ R2 and A is a matrix whose eigenvalues have positive real
parts. Moreover, the first integral takes the form:

(1.2.4) H = 〈v,Au〉+ o
(
u2 + v2

)
,

where 〈·, ·〉 is the standard inner product on R2 (see Appendix A). We also assume that

Assumption 3. System (1.2.3) is invariant with respect to the symmetry

(1.2.5) (u1, v1)↔ (−u1,−v1).

Assumption 3 implies that the plane {u1 = v1 = 0} is invariant with respect to the flow of system
(1.2.3). Since the action of this symmetry commutes with the linear part of system (1.2.3), the matrix
A is diagonal and takes the form

A =

(
λ1 0
0 λ2

)
,

for some positive real numbers λ1 and λ2. Without loss of generality, let λ1 ≤ λ2. We further assume
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Assumption 4. λ2 6= 2λ1.

This is not a technical assumption. Indeed, we will see that the cases λ2 < 2λ1 and 2λ1 < λ2 are
dynamically different.

We can always assume that H is invariant with respect to symmetry (1.2.5), i.e.

(1.2.6) H (−u1, u2,−v1, v2) = H (u1, u2, v1, v2) .

Otherwise, H̃ (u1, u2, v1, v2) := 1
2 [H (u1, u2, v1, v2) +H (−u1, u2,−v1, v2)] can be taken as the first

integral.
The equilibrium state O is a saddle with 2-dimensional stable and unstable invariant manifolds

W s (O) and W u (O) which are tangent at O to the u-plane and v-plane respectively. Both the invariant
manifolds lie in the 3-dimensional level {H = 0} and may intersect transversely in that level, producing
a number of homoclinic loops. We consider the following specific case:

Assumption 5. There exists a homoclinic loop Γ of the transverse intersection of W s (O) and
W u (O) in the invariant plane {u1 = v1 = 0} (see Figure 1.1).

Figure 1.1: Existence of the transverse homoclinic loop Γ in the invariant plane {u1 = v1 = 0}.

Let U be a sufficiently small neighborhood of Γ∪{O} in the zero level-set {H = 0}. The main issue
which is addressed in this thesis is giving a complete description of dynamics in U . Recall Definition
1.1. By this definition, the local stable and unstable sets of Γ always contain Γ. Note that since H is
continuous, these sets lie in the zero-level set {H = 0}. Denote by W s

U (O) (resp. W u
U (O)) the set of

the points in W s
glo(O) (resp. W u

glo(O)) whose forward (backward) orbits lie entirely in U . Obviously,

W s
U ∩W s

loc (Γ) = W u
U ∩W u

loc (Γ) = Γ.

1.2.1. Dynamics near a single homoclinic orbit

Our first result is the following:

Theorem A1. Under Assumptions 1-5, there exists an open neighborhood U of Γ ∪ {O} in the
energy level of O such that if the forward (or backward) orbit of a point in U lies entirely in U , then
it must converge either to the equilibrium O or to the set Γ ∪ {O}. In other words, the forward (resp.
backward) orbit of a point in U lies entirely in U if and only if it belongs to W s

U (O) ∪W s
loc (Γ) (resp.

W u
U (O) ∪W u

loc (Γ)).

The next theorem concerns the dynamics near the homoclinic orbit Γ when λ2 < 2λ1.
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Theorem A2. If λ2 < 2λ1 and Assumptions 1-5 hold, then there exists an open neighborhood U
of Γ ∪ {O} in the energy level of O such that every point in U whose forward orbit (resp. backward
orbit) lies in U belongs to W s

U (O) (resp. W u
U (O)).

In other words, according to Theorem A1, Theorem A2 states that when λ2 < 2λ1, we have
W s

loc (Γ) = W u
loc (Γ) = Γ.

The next theorem describes the shapes of the local stable and local unstable sets of Γ when
2λ1 < λ2. The formulation of this theorem is based on a specific choice of coordinates near the
equilibrium O. We introduce this coordinate system in Chapter 3 (see normal form (3.2.9)). For now,
keep in mind that in this choice of coordinates, system (1.2.3) keeps its form and its invariance with
respect to symmetry (1.2.5). Moreover, the first integral takes the form

(1.2.7) H (u1, u2, v1, v2) = λ1u1v1 − λ2u2v2 + o
(
u2 + v2

)
,

and still satisfies (1.2.6) (note that, by (1.2.4), the quadratic part of H must be λ1u1v1 + λ2u2v2,
however, by changing the signs of some of the coordinates, we can always write it as in (1.2.7)). The
local stable and unstable as well as local strong stable and strong unstable invariant manifolds of O
are straightened (i.e. W s

loc (O) = {v1 = v2 = 0}, W u
loc (O) = {u1 = u2 = 0}, W ss

loc (O) = {u1 = v1 =
v2 = 0}, W uu

loc (O) = {u1 = u2 = v1 = 0}), and the loop Γ leaves O along v2-axis toward positive v2

and enters O along u2-axis toward positive u2 (see Figure 1.2).

Take a small δ > 0 and consider the following two small 2-dimensional cross-sections to the loop
Γ inside the level {H = 0}:

Πs = {u2 = δ} ∩ {H = 0} and Πu = {v2 = δ} ∩ {H = 0}

(see Figure 1.2). On each of the cross-sections Πs and Πu, the variables u2 and v2 are uniquely
determined by (u1, v1) (see Corollary 3.15). This allows us to choose (u1, v1)-coordinates on each of
Πs and Πu.

Figure 1.2: This figure shows the positions of cross-sections Πs and Πu on the homoclinic loop Γ. The green
and blue curves correspond to T loc and T glo, respectively. Namely, T loc maps the green point on Πs to the blue
point on Πu and then T glo maps the blue point to the red point on Πs. The Poincaré map T maps the green
point to the red one.

Orbits which lie in U define a Poincaré map T from a subset of Πs to Πs. This map can be written
as a composition of a local map T loc from a subset of Πs to Πu which corresponds to the flow inside
the δ-neighborhood of O, and a global map T glo from Πu to Πs which corresponds to the flow near
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the global piece of Γ outside the δ-neighborhood of O, i.e. T = T glo ◦ T loc (see Figure 1.2). Since the
flight time from Πu to Πs is bounded, the global map T glo is a diffeomorphism. Define M s,u = Γ∩Πs,u

(note that both points correspond to (0, 0) in Πs,u). The Taylor expansion of T glo at M s has the form

(1.2.8) T glo (u1, v1) = (au1 + bv1 + o (u1, v1) , cu1 + dv1 + o (u1, v1)) ,

for some a, b, c, d ∈ R. We have

Theorem A3. Let 2λ1 < λ2 and Assumptions 1-5 hold. Suppose that system (1.2.3) near the
equilibrium O is brought to form (3.2.9) and let a, b, c and d in (1.2.8) be all non-zero. Then there
exists an open neighborhood U of Γ ∪ {O} in the energy level of O such that

I. If 0 < cd, then W s
loc(Γ) = Γ. If cd < 0, then W s

loc (Γ) is a C1-smooth 2-dimensional invariant
manifold which is tangent to W s

glo (O) at every point of Γ.

II. If bd < 0, then W u
loc(Γ) = Γ. If 0 < bd, then W u

loc (Γ) is a C1-smooth 2-dimensional invariant
manifold which is tangent to W u

glo (O) at every point of Γ.

It follows from the above theorems that the sets W s
loc(Γ,U) and W u

loc(Γ,U) (or simply W s
loc(Γ) and

W u
loc(Γ)) are smooth manifolds.

Definition 1.2. We call the sets W s
loc(Γ) and W u

loc(Γ) local stable and local unstable invariant
manifolds of Γ, respectively.

1.2.2. Dynamics near a homoclinic figure-eight

A counterpart scenario of the existence of a single homoclinic loop is the existence of a pair of it,
i.e. a homoclinic figure-8, in the invariant plane {u1 = v1 = 0}:

Assumption 6. There exist two homoclinic loops Γ1 and Γ2 of transverse intersection of W s (O)
and W u (O) in the invariant plane {u1 = v1 = 0} such that they leave and enter O along opposite
directions (see Figure 1.3).

Figure 1.3: Existence of a pair of transverse homoclinic loops Γ1 and Γ2 in the invariant plane {u1 = v1 = 0}.

Such scenario happens generically, when the level-set {H = 0} is compact. Let V be a small
neighborhood of Γ1 ∪ {O} ∪Γ2 in the level-set {H = 0} and denote by W s

V (W u
V ) the set of the points

in W s
glo(O) (W u

glo(O)) whose forward (backward) orbits lie entirely in V. Then
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Theorem B1. Under Assumptions 1-4 and Assumption 6, there exists an open neighborhood V
of Γ1 ∪ {O} ∪ Γ2 in the energy level of O such that if the forward (or backward) orbit of a point in
V lies entirely in V, then it must converge to one (and exactly one) of the following four objects:
Γ1, Γ2, O, and Γ1 ∪ {O} ∪ Γ2. In other words, the forward (resp. backward) orbit of a point in V
lies entirely in V if and only if it belongs to W s

V (O) ∪ W s
loc (Γ1) ∪ W s

loc (Γ1 ∪ Γ2) ∪ W s
loc (Γ2) (resp.

W u
V (O) ∪W u

loc (Γ1) ∪W u
loc (Γ1 ∪ Γ2) ∪W u

loc (Γ2)).

The next two theorems are analogous to Theorems A2 and A3 for the case of homoclinic figure-
eight.

Theorem B2. If λ2 < 2λ1, and Assumptions 1-4 and 6 hold, then there exists an open neighborhood
V of Γ1 ∪ {O} ∪ Γ2 in the energy level of O such that every point in V whose forward orbit (resp.
backward orbit) lies in V belongs to W s

V (O) (resp. W u
U (O)).

This theorem together with Theorems B1 and A2 implies

W s
loc (Γ1 ∪ Γ2) = W u

loc (Γ1 ∪ Γ2) = Γ1 ∪ Γ2.

Suppose that the coordinate system discussed above (see (3.2.9)) is chosen near the equilibrium
O. Consider the cross-sections Πs

1 = {u2 = δ} ∩ {H = 0} and Πu
1 = {v2 = δ} ∩ {H = 0} on Γ1,

and Πs
2 = {u2 = −δ} ∩ {H = 0} and Πu

2 = {v2 = −δ} ∩ {H = 0} on Γ2 (see Figure 3.3). We can

choose (u1, v1)-coordinates on each of these cross-sections (see Corollary 3.15). Let Ti, T
loc
i and T glo

i

be the associated maps along Γi, and set M s,u
i = Γi ∩ Πs,u

i for i = 1, 2, and ai, bi, ci and di be the
corresponding coefficients in (1.2.8).

Theorem B3. Assume 2λ1 < λ2 and Assumptions 1-4 and 6. Suppose that system (1.2.3) near
the equilibrium O is brought to form (3.2.9) and let ai, bi, ci and di (i = 1, 2) be all non-zero. Then
there exists an open neighborhood V of Γ1 ∪ {O} ∪ Γ2 in the energy level of O such that

(i) If c1d1 > 0 and c2d2 > 0, then W s
loc (Γ1 ∪ Γ2) is a C1-smooth 2-dimensional invariant manifold

which is tangent to W s
glo (O) at every point of Γ1 ∪ Γ2.

(ii) If b1d1 < 0 and b2d2 < 0, then W u
loc (Γ1 ∪ Γ2) is a C1-smooth 2-dimensional invariant manifold

which is tangent to W u
glo (O) at every point of Γ1 ∪ Γ2.

(iii) Otherwise, we have W s
loc (Γ1 ∪ Γ2) = W u

loc (Γ1 ∪ Γ2) = Γ1 ∪ Γ2.

It follows from the above theorems that the sets W s
loc(Γ1 ∪ Γ2,V) and W u

loc(Γ1 ∪ Γ2,V) (or simply
W s

loc(Γ1 ∪ Γ2) and W u
loc(Γ1 ∪ Γ2)) are smooth manifolds.

Definition 1.3. We call the sets W s
loc(Γ1 ∪ Γ2) and W u

loc(Γ1 ∪ Γ2) local stable and local unstable
invariant manifolds of the homoclinic figure-eight Γ1 ∪ Γ2, respectively.

1.2.3. Dynamics near a super-homoclinic orbit

Coming back to the case of the single homoclinic loop Γ, we consider the case in which both W s
loc (Γ)

and W u
loc (Γ) exist. Continuing these two local manifolds by the flow of the system gives the global

stable and unstable invariant manifolds of Γ, denoted by W s
glo (Γ) and W u

glo (Γ), respectively. These
manifolds lie in the 3-dimensional level {H = 0} which means that it would be quite reasonable if we
assume that they intersect transversely in that level. Any orbit at this intersection is bi-asymptotic, or
in other words, homoclinic to the union of homoclinic orbit Γ and the equilibrium O, i.e. it converges
to Γ ∪ {O} as t→ ±∞. We refer to such an orbit as ’homoclinic to homoclinic’ or ’super-homoclinic’
orbit.
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Figure 1.4: The homoclinic orbit Γ is shown by brown color. It is homoclinic to the saddle equilibrium O. The
super-homoclinic orbit S is shown by blue color. This orbit is homoclinic to Γ ∪ {O}.



1.3. MOTIVATIONS AND APPLICATIONS 16

Assumption 7. There exists a super-homoclinic orbit S of the transverse intersection of W s
glo (Γ)

and W u
glo (Γ).

Theorem C1. Under Assumptions 1-5 and 7, there exist infinitely many multi-pulse homoclinic
loops in a small neighborhood of the closure of S.

According to Theorem B3, the stable and unstable invariant manifolds of the homoclinic figure-
eight may coexist. This leads us to consider the scenario of the existence of homoclinic to homoclinic
figure-eight:

Assumption 8. There exists a super-homoclinic orbit S of the transverse intersection of W s
glo (Γ1 ∪ Γ2)

and W u
glo (Γ1 ∪ Γ2).

Theorem C2. Under Assumptions 1-4, 6 and 8, there exist infinitely many multi-pulse homoclinic
loops in a small neighborhood of the closure of S.

The multi-pulse homoclinic orbits in Theorem C1 (resp. Theorem C2) refer to homoclinic orbits
Ω = {x (t) : t ∈ R}, where x = (u, v) and limt→±∞ x (t) = O, for which there exist t1, t2 ∈ R (t1 < t2)
such that the connected pieces {x (t) : t ∈ (−∞, t1]} and {x (t) : t ∈ [t2,+∞)} of Ω lie entirely in U
(resp. V), where U (resp. V) is the neighborhood given by Theorem A3 (resp. B3), and intersect the
cross-section Πs (resp. Πs

1) at n1 and n2 points (n1, n2 ∈ N), respectively, such that n1 + n2 > 2. We
call such orbits (n1 + n2 − 1)-pulse homoclinic or simply multi-pulse homoclinic. We prove that the
existence of super-homoclinic orbits implies the existence of n-pulse homoclinic orbits for unboundedly
large n.

1.3. Motivations and applications

1.3.1. Coupled nonlinear Schrödinger equations

The coupled nonlinear Schrödinger equations (CNLSE) is a system of coupled nonlinear PDEs
which is one of the basic models for light propagation. This equation has also various applica-
tions in engineering and different branches of physics including optics, quantum physics, biophysics,
plasma physics and hydrodynamics (see e.g. [Tod18], [Waz20], [Nak00], [NPF89], [RKL99], [ZMX+07],
[SGY+09] and the references there). Apart from these applications that CNLSE has, it is also an inter-
esting equation from mathematical point of view since it appears in the study of systems near a thresh-
old of instability (see e.g. [KSM91], [Sch98], [FP98], [Wei85], [FRW09], [Wri95], [DM08] and [Sch97]).

Consider the following formulation of the CNLSE

(1.3.1)
iΨt + Ψxx + 2

(
α |Ψ|2 + |Φ|2

)
Ψ = 0,

iΦt + Φxx + 2
(
|Ψ|2 + β |Φ|2

)
Φ = 0,

where α and β are some complex constants, i =
√
−1 and Ψ and Φ are complex-valued functions of

(t, x). We consider the steady-state solutions of (1.3.1) which are of the form

Ψ (t, x) = eiω
2
1tψ (x) , Φ (t, x) = eiω

2
2tφ (x) ,

for some real valued functions ψ and φ. By a rescaling, we can assume ω1 = 1 and ω2 = ω (ω > 0).
Thus, the stationary solutions of CNLSE satisfy

ψxx = ψ − 2
(
αψ2 + φ2

)
ψ,

φxx = ω2φ− 2
(
ψ2 + βφ2

)
φ.
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Let ν = ω2 and define ψ1 (x) = ψ, ψ2 (x) = ψx, φ1 (x) = φ and φ2 (x) = φx. We have

(1.3.2)
ψ̇1 = ψ2, ψ̇2 = ψ1 − 2

(
αψ2

1 + φ2
1

)
ψ1,

φ̇1 = φ2, φ̇2 = νφ1 − 2
(
ψ2

1 + βφ2
1

)
φ1.

This system is Hamiltonian with two degrees of freedom, i.e.

ψ̇1 =
∂H

∂ψ2
, φ̇1 =

∂H

∂φ2
, ψ̇2 = − ∂H

∂ψ1
, φ̇2 = − ∂H

∂φ1
,

where H = 1
2

[
ψ2

2 + φ2
2 − ψ2

1 − νφ2
1 + αψ4

1 + 2ψ2
1φ

2
1 + βφ4

1

]
. Making a linear change of coordinates of

the form

u1 = ψ2 − ψ1, u2 = φ1 −
1

ω
φ2,

v1 =
1

2
(ψ2 + ψ1) , v2 =

1

2
(ωφ1 + φ2) ,

reduces system (1.3.2) to

(1.3.3)

u̇1 = −u1 + E1 (u1, u2, v1, v2) ,

u̇2 = −ωu2 + E2 (u1, u2, v1, v2) ,

v̇1 = +v1 +
1

2
E1 (u1, u2, v1, v2) ,

v̇2 = +ωv2 −
ω

2
E2 (u1, u2, v1, v2) ,

where

E1 =
α

4

(
u3

1 − 6u2
1v1 + 12u1v

2
1 − 8v3

1

)
+
u1u

2
2

4
− u2

2v1

2
+
u2v2u1

ω
− 2u2v2v1

ω
+
u1v

2
2

ν
− 2v2

2v1

ν
,

E2 =
1

ω

[
β

4

(
u3

2 +
6u2

2v2

ω
+

12u2v
2
2

ν
+

8v3
2

ω3

)
+
u2

1u2

4
+
u2

1v2

2ω
− u1v1u2 −

2u1v1v2

ω
+ v2

1u2 +
2v2

1v2

ω

]
.

Moreover, this change of coordinates transforms Hamiltonian H to

H = u1v1 − ωu2v2 +
α

2

(
v1 −

u1

2

)4
+
(
v1 −

u1

2

)2 (u2

2
+
v2

ω

)2
+
β

2

(u2

2
+
v2

ω

)4
.

System (1.3.3) meets all Assumptions 1-4. In addition, this system possesses a pair of homoclinic
solutions (homoclinic figure-eight):

(1.3.4) u1 (x) = 0, u2 (x) =
κωeωx

√
β cosh2 (ωx)

, v1 (x) = 0, v2 (x) =
κνe−ωx

2
√
β cosh2 (ωx)

,

for κ = ±1. These solutions correspond to the following solutions of the original system (1.3.1):

Ψ (t, x) = 0, Φ (t, x) = ±
√
νβ−1eiνt

cosh (
√
νx)

.

Existence of homoclinic figure-eight (1.3.4) means that Assumption 6 is met too when ω ≥ 1.
Therefore, the dynamics near this homoclinic figure-eight in the level {H = 0} can be analyzed by
Theorems B2 and B3. For ω < 2, Theorem B2 guarantees that both forward and backward orbits of
any point close to the homoclinic figure-eight leave a small neighborhood of it (in the level {H = 0})
unless it lies on the stable or unstable invariant manifolds of O. For the case of ω > 2, in order
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to apply Theorem B3, one needs to reduce system (1.3.3) to normal form (3.2.9) and compute the
coefficients ai, bi, ci and di (i = 1, 2).

System (1.3.3) is reversible with respect to the linear involution

(1.3.5) (u1, u2, v1, v2) 7→
(

2v1,
2

ω
v2,

1

2
u1,

ω

2
u2

)
.

In general, a system ẋ = f (x) on Rn is said to be reversible with respect to an involution R, i.e. a
diffeomorphism on Rn with the property R2 = id, if dR ◦ f = −f ◦R. It is easily seen that when x (t)
is a solution, so does R ◦ x (−t). The reversibility feature of system (1.3.3) implies

Proposition 1.4. For A = Γ1,Γ2,Γ1 ∪ Γ2, the manifold W s
loc (A) is non-trivial if and only if

W u
loc (A) is non-trivial.

In addition to symmetry (1.2.5), system (1.3.3) is invariant with respect to the symmetry (u2, v2)↔
(−u2,−v2) too. Reducing this system to normal form (3.2.9) also preserves this symmetry. This implies
that the loops Γ1 and Γ2 are symmetric, and a1 = a2, b1 = b2, c1 = c2 and d1 = d2. This symmetric
structure together with Proposition 1.4 imply

Proposition 1.5. Simultaneously, all the manifolds W u
loc (Γ1), W s

loc (Γ1), W u
loc (Γ2) and W s

loc (Γ2)
are either non-trivial or trivial.

It follows from Theorem B3 that if b1d1 > 0, then the local unstable invariant manifold of each
of the loops Γ1 and Γ2 is non-trivial, while the local unstable invariant manifold of the homoclinic
figure-eight Γ1 ∪ Γ2 is trivial (i.e. coincides with Γ1 ∪ {O} ∪ Γ2). In contrast, when b1d1 < 0, the
local unstable invariant manifold of the homoclinic figure-eight is non-trivial, while the local unstable
invariant manifold of each of the loops Γ1 and Γ2 is trivial. The same conclusion holds for the
corresponding stable manifolds. This analysis together with Propositions 1.4 and 1.5 give

Proposition 1.6. Let ω > 2 and suppose all the coefficients b1, c1 and d1 are non-zero. Then,
one (and only one) of the following two scenarios holds:

(i) The manifolds W u
loc (Γ1 ∪ Γ2) and W s

loc (Γ1 ∪ Γ2) are non-trivial, i.e. b1d1 = b2d2 < 0 and
c1d1 = c2d2 > 0.

(ii) All the manifolds W u
loc (Γ1), W s

loc (Γ1), W u
loc (Γ2) and W s

loc (Γ2) are non-trivial, i.e. b1d1 = b2d2 >
0 and c1d1 = c2d2 < 0.

To figure out which of the scenarios above happens for CNLSE, one needs to find the corresponding
coefficients a1, b1, c1 and d1. This can be done numerically for any particular values of α, β and ω.
Regardless of what these coefficients are (provided they are non-zero), Proposition 1.6 states that
there are always non-trivial local stable and unstable invariant manifolds of homoclinic orbits in the
CLNSE. Globalizing these manifolds, we conjecture that they intersect transversely along some super-
homoclinic orbits:

Conjecture 1.7. The coupled nonlinear Schrödinger equations given by (1.3.1) possesses trans-
verse super-homoclinic orbits.

Intuitively, one would expect this conjecture to be true since the stable and unstable mani-
folds of the homoclinic loops are 2-dimensional lying in the same 3-dimensional energy level, and
hence they may intersect transversely along super-homoclinic orbits. Moreover, numerical evidence
(see [EKKS93], [EK96], [Yan97] and [Yan98]) points to the existence of infinitely many multi-pulse
homoclinic orbits in the CNLSE. This supports our conjecture since, by Theorems C1 and C2, the
existence of these multi-pulse homoclinics might be a bi-product of the existence of transverse super-
homoclinic orbits.



1.3. MOTIVATIONS AND APPLICATIONS 19

Figure 1.5: (Left) Classical Liesegang experiment with diffusing silver ions in silicagel, 24 hours after application
of solution. (Right) double Liesegang experiment. Both figures are taken from [Jac].

Figure 1.6: (Left) Liesegang patterns grown in gels, for a number of sparingly soluble salts [SAR+13]. (Right)
Liesegang patterns appearing in the reaction of NaOH and MgCl2 in polyvinylalcohol gel [Rác99].

1.3.2. Liesegang rings

Liesegang rings, also known as Liesegang patterns or Liesegang bands, refer to repeating patterns
of two types of zones (rings) in which one of the zones grows (see Figures 1.5 and 1.6). These patterns
appear commonly in chemical systems undergoing a precipitation reaction. This phenomenon was first
observed in 1896 by German chemist Raphael E. Liesegang [Lie96] when he dropped a solution of silver
nitrate on a glass plate covered by a thin layer of gel containing potassium dichromate. He noticed
that after a few hours, some patterns of concentric rings were formed by insoluble silver dichromate.
These patterns are now named after him. Since then, both theoretical and experimental aspects of
these patterns have been studied widely (see e.g. [Rác99], [PM94], [KR81], [Hen05], [Ste54], [Ste67],
[DFMO17], [RCS+19], [DFMO19], [NPS+19] and [Die19]). However, the mechanism of the formation
of these patterns is still unclear.

It was pointed out by Scheel [Sch09] that these patterns can be seen in systems with homoclinic
solutions when there exist initial points converging to the homoclinic loops. To clarify this further,
consider a system ẋ = f (x) with an equilibrium O of saddle type at the origin, and let Γ = {x (t) :
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t ∈ R} be a homoclinic orbit of this system. The graph of ‖x (t) ‖ as a function of t is shown in Figure
1.7. Since x (t)→ O as t→ ±∞, the tails of this graph decay.

Figure 1.7: The graph of ‖x (t) ‖ as a function of t for a typical homoclinic orbit Γ = {x (t) : t ∈ R} which is
homoclinic to a saddle equilibrium.

Now, suppose that there exists an orbit Γ∗ = {x∗ (t) : t ∈ R} close to Γ which converges to Γ∪{O}
as a set. Let B be a sufficiently small closed ball centered at O. The orbit Γ∗ goes along Γ, enters B,
and after a finite time T1, it leaves B. Then, it keeps going along Γ until it enters and leaves B again.
Let T2 be the time that Γ∗ spends in B for the second time. This pattern continues and gives the
sequence T3, T4, . . . of the times that Γ∗ spends in B. Since Γ∗ converges to Γ ∪ {O} as a set, we have

T1 < T2 < T3 < · · · .

The period of time from when Γ∗ leaves B until it enters B again is more or less the same as the time
that Γ spends outside of B. Denote this time by T . Tracking the forward orbit of a point of Γ∗ leads
to the following sequence

(1.3.6) T1, T, T2, T, T3, T, T4, T, T5, T, · · ·

However, this sequence resembles a Liesegang pattern: it consists of a repeating patterns of numbers
T and Ti (i = 1 . . .∞), where Tis grow. We can visualize this pattern by plotting ‖x∗ (t) ‖ as a
function of t (see Figure 1.8). In Figure 1.8, the spikes correspond to time period that Γ∗ spends near
Γ outside of B (corresponding to T s in the above sequence) and the decaying parts correspond to the
time periods that Γ∗ spends in B (corresponding to Tis in the above sequence).

Figure 1.8: The graph of ‖x∗ (t) ‖ as a function of t. Here, Γ∗ = {x∗ (t) : t ∈ R} is an orbit which converges to
Γ ∪ {O} as a set for a homoclinic orbit Γ. The spikes and decaying parts correspond to the time periods that
Γ∗ spends outside of or in a small neighborhood of the origin O, respectively

Following the above discussion, orbits on the non-trivial local stable invariant manifolds of homo-
clinics to saddle equilibria produce Liesegang rings. Therefore, Theorem A3 which provides necessary
and sufficient conditions for the existence of these manifolds suggests a mechanism for detecting
Liesegang rings in those phenomena which are modelled by 4-dimensional conservative ODEs.

1.4. Organization of the thesis

Our approach for investigating the dynamics near a homoclinic orbit Γ is to study the Poincaré
map along this orbit. In contrast to the case of a periodic orbit in which the corresponding Poincaré
map is a diffeomorphism defined on an open subset of some cross-section, the Poincaré map along the
homoclinic orbit Γ is a singular map defined on a non-trivial subset of some cross-section. Denote this
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cross-section by Σ. The domain of this map is non-trivial because not every orbit starting from Σ
comes back to it. Such an orbit may deviate and go along other branches of the unstable manifold of
the equilibrium when it gets close to the equilibrium state (e.g. in Figure 1.2, not every orbit starting
from Πs goes along Γ and intersects Πu, some of them may go along the negative branch of v2-axis).
The singularity of the Poincaré map comes from the fact that for an orbit starting from Σ, the closer
it is to the homoclinic orbit, the longer it takes to pass a small neighborhood of the equilibrium and
come back to Σ. These observations suggest that to understand the behavior of a Poincaré map along
a homoclinic orbit, we first need to understand the local dynamics near the equilibrium state. In other
words, if we consider two cross-sections Πs and Πu on Γ (as in Section 1.2) and write the Poincaré
map T as the composition of a global map T glo and a local map T loc (e.g. see Figure 1.2), then our
first step to study the Poincare map T would be the understanding the map T loc.

Chapter 3 is dedicated to the study of the local map T loc. In Section 3.1, we define this map and
its domain precisely. Then, in Section 3.2, we bring our system near the equilibrium state O to a
normal form. Notice that our system is not necessarily linearizable. Indeed, since the spectrum of
the linear part of the system is {−λ2,−λ1, λ1, λ2}, for some 0 < λ1 ≤ λ2, there are always resonant
terms appearing in the nonlinear part of the system. Once the system is brought to a normal form,
we need to investigate the behavior of the orbits near the equilibrium state O. This is done in Section
3.3 by solving some boundary value problems. Finally, in Section 3.4, we use this result to analyze
the domain and the behavior of the local map.

In Chapter 4, we use the results of Chapter 3 to study the dynamics near homoclinic orbits. In
Section 4.1, we introduce some notations. In Section 4.2, we study the dynamics near the homoclinic
orbit Γ when λ2 < 2λ1. Theorems A2 is proved in this section. The dynamics near Γ when 2λ1 < λ2

is studied in Section 4.3. We prove Theorem A3 in this section. Theorem A1 is also proved in these
two sections (case λ2 < 2λ1 in Section 4.2 and case 2λ1 < λ2 in Section 4.3). The case of homoclinic
figure-eight is studied in Section 4.4. The proofs of Theorems B1, B2 and B3 are provided in this
section. Finally, we discuss the case of superhomoclinics in Section 4.5. We prove Theorems C1 and
C2 in this section.



Chapter 2

Preliminaries

2.1. Basic concepts and definitions

Consider a Cr-smooth (r ≥ 1) system of differential equations

(2.1.1) ẋ = f (x) ,

defined on Rn (n ≥ 2). Denote the flow of this system by φ (t, x).

Definition 2.1. (first integral) A scalar-valued function H : Rn → R is called a first integral for
system (2.1.1) if

(i) the restriction of H to any open subset of Rn is a non-constant function, and

(ii) H is constant along any orbit of system (2.1.1), i.e. For any x0 ∈ Rn we have H (φ (t, x0)) =
H (x0) for all t ∈ R.

Definition 2.2. (symmetry) Let S : Rn → Rn be a diffeomorphism. We say S is a symmetry of
system (2.1.1) if for any arbitrary solution x (t) of system (2.1.1), we have

(2.1.2)
d

dt
S (x (t)) = f (S (x (t))) .

We say S is a linear symmetry of system (2.1.1) if it is a linear map and satisfies (2.1.2). Moreover, if
system (2.1.1) has a first integral H, we say H is invariant with respect to symmetry S if H (S (x)) =
H (x).

A change of coordinates of the form x̃ = h (x) reduces system (2.1.1) to

(2.1.3) ˙̃x = h′
(
h−1 (x̃)

)
f
(
h−1 (x̃)

)
.

Assuming system (2.1.1) has a first integral H, this change of coordinates transforms H to H̃ (x̃) =
H
(
h−1 (x̃)

)
. It is easy to see that

Proposition 2.3. If S is a symmetry of system (2.1.1), and the diffeomorphism h commutes with
S, i.e. h (S (x)) = S (h (x)), then S is a symmetry of system (2.1.3) as well. Moreover, if system
(2.1.1) has a first integral H that is invariant with respect to S, then first integral H̃ is invariant with
respect to S too.

Definition 2.4. (ω- and α-limit points and sets) Consider the orbit Λ = {φ (t, x0) : t ∈ R} of
system (2.1.1) for some x0 ∈ Rn.

22
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(i) A point p ∈ Rn is an ω-limit point of Λ if there exists a sequence {tk}∞k=1 ⊂ R such that tk →∞
as k →∞ and lim

k→∞
φ (tk, x0) = p.

(ii) A point p ∈ Rn is an α-limit point of Λ if there exists a sequence {tk}∞k=1 ⊂ R such that tk → −∞
as k →∞ and lim

k→∞
φ (tk, x0) = p.

(iii) The set of all ω-limit points of Λ is called ω-limit set of Λ and is denoted by ω (Γ).

(iv) The set of all α-limit points of Λ is called α-limit set of Λ and is denoted by α (Γ).

Definition 2.5. (homoclinic orbit) Let O be an equilibrium point of system (2.1.1) and suppose
Γ = {φ (t, x0) : t ∈ R} for some x0 ∈ Rn is an orbit of this system. The orbit Γ is called ’homoclonic
to O’ or simply ’homoclinic’ if lim

t→∞
φ (t, x0) = lim

t→−∞
φ (t, x0) = O.

We can think of the concept of homoclinic orbits in a more general context:

Definition 2.6. (homoclinic to a non-empty set) Let A be a non-empty closed subset of Rn.
We say the orbit Γ = {x (t) : t ∈ R} of system (2.1.1) is ’homoclinic to A’ if it converges to the set A
as t→ ±∞.

Replacing the set A in the above definition by the union of a homoclinic orbit and its associated
equilibrium (or a homoclinic figure-eight with its associated equilibrium) gives an alternative definition
for super-homoclinic orbits which were introduced earlier.

2.2. Boundary value problems

Consider a Cr (r ≥ 1) system of differential equations

(2.2.1)
ẋ = Ax+ f (x, y)

ẏ = By + g (x, y)
, x ∈ Rn, y ∈ Rm (n,m ≥ 1),

where f and g as well as their first derivatives vanish at the origin, and the eigenvalues of A and B
have negative and positive real parts, respectively. In this section, we address the following boundary
value problem:

for given τ ≥ 0, x0 ∈ Rn and y1 ∈ Rm, does there exist any solution
(x (t) , y (t)) of system (2.2.1) such that

(2.2.2) x (0) = x0 and y (τ) = y1?

The following theorem gives an affirmative answer to this boundary value problem:

Theorem 2.7 ( [SSTC98], Theorems 2.9 and 2.10). Let ε > 0 be sufficiently small and assume
max{‖x0‖, ‖y1‖} < ε. Then, there exists a unique solution ϕ (t, τ, x0, y1) to the above boundary value
problem. Moreover, this solution depends Cr-smoothly on (x0, y1, t, τ).

Here, we only provide a sketch of the proof of this theorem and refer the reader to [SSTC98] for
further detail.

Sketch of proof. Observe that ϕ (t, τ, x0, y1) = (x (t) , y (t)) is a solution to the boundary value problem
if and only if it satisfies the following integral equations:

(2.2.3)

x (t) = eAtx0 +

∫ t

0
eA(t−s)f (x (s) , y (s)) ds,

y (t) = e−B(τ−t)y1 −
∫ τ

t
e−B(s−t)g (x (s) , y (s)) ds.
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Consider the sequence {
(
x(n) (t) , y(n) (t)

)
}n≥1 defined for t ∈ [0, τ ], where

(2.2.4)
(
x(1) (t) , y(1) (t)

)
=
(
eAtx0, e

−B(τ−t)y1

)
and

(2.2.5)

x(n+1) (t) = eAtx0 +

∫ t

0
eA(t−s)f

(
x(n) (s) , y(n) (s)

)
ds,

y(n+1) (t) = e−B(τ−t)y1 −
∫ τ

t
e−B(s−t)g

(
x(n) (s) , y(n) (s)

)
ds.

It is shown in [SSTC98] that this sequence converges uniformly to some limit function (x∗ (t) , y∗ (t)).
The main idea here is to show that
(2.2.6)

max
0≤t≤τ

∥∥∥x(n+1)(t)− x(n)(t), y(n+1)(t)− y(n)(t)
∥∥∥ ≤ 1

2
max

0≤s≤τ

∥∥∥x(n)(s)− x(n−1)(s), y(n)(s)− y(n−1)(s)
∥∥∥ ,

where ‖x, y‖ denotes max{‖x‖, ‖y‖}, holds for any n ≥ 2. By virtue of this relation, we have that the
series

(2.2.7)

∞∑
n=1

(
x(n+1)(t)− x(n)(t), y(n+1)(t)− y(n)(t)

)
is majorized by a geometric progression with the coefficient 1

2 . This proves the uniform convergence

of the sequence
(
x(n) (t) , y(n) (t)

)
.

By taking the limit n → ∞ in (2.2.5), it is seen that (x∗ (t) , y∗ (t)) is a solution of (2.2.3), i.e. a
solution of the boundary value problem. Moreover, since the convergence is uniform, the dependence
of (x∗ (t) , y∗ (t)) on (x0, y1, τ) is continuous. To prove the uniqueness of this solution, it is remarked
in [SSTC98] that if (x∗∗ (t) , y∗∗ (t)) is another solution of (2.2.3), then the same procedure which yields
(2.2.6) also gives

(2.2.8) max
0≤t≤τ

‖x∗∗(t)− x∗(t), y∗∗(t)− y∗(t)‖ ≤ 1

2
max

0≤s≤τ
‖x∗∗(s)− x∗(s), y∗∗(s)− y∗(s)‖ .

However, this immediately implies x∗∗ = x∗ and y∗∗ = y∗, as desired.
To finish the proof, one needs to show that (x∗ (t) , y∗ (t)) depends Cr-smoothly on (x0, y1, t, τ).

Let y0 = y∗ (0). The orbit (x∗, y∗) depends Cr-smoothly on (x0, y0, t, τ). Therefore, we are done once
we show that y0 depends Cr-smoothly on (x0, y1, t, τ). Since y1 = y∗ (t = τ) is a Cr-smooth function
of (x0, y0, t, τ), it is sufficient to prove that ∂y1

∂y0
= ∂y∗

∂y0

∣∣
t=τ

is invertible.

Define X = ∂x∗

∂y0
and Y = ∂y∗

∂y0
. Then, (X (t) , Y (t)) is the solution of the variational equations

(2.2.9)
Ẋ = AX + fx (x∗ (t) , y∗ (t))X + fy (x∗ (t) , y∗ (t))Y,

Ẏ = BY + gx (x∗ (t) , y∗ (t))X + gy (x∗ (t) , y∗ (t))Y,

with the initial conditions X (0) = 0 and Y (0) = Im. The invertibility of ∂y1
∂y0

= Y (τ) is equivalent

to the existence of a matrix Q such that Y (τ)Q = Im. It is easily seen that X̃ = XQ and Ỹ = Y Q
satisfy (2.2.9) with the boundary conditions

(2.2.10) X̃ (0) = 0, Ỹ (τ) = Im.

Thus, ∂y1∂y0
= Y (τ) is invertible if and only if this boundary value problem has a solution. However, as

it is remarked in [SSTC98], the same proof for the existence of the solution of boundary value problem
(2.2.2) also shows that boundary value problem (2.2.10) has a unique solution. This ends the sketch
of proof of Theorem 2.7.
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2.3. Theory of invariant manifolds

In this section, we briefly discuss some materials from the theory of invariant manifolds that we
need throughout this thesis. Most of the statements in this section are either without any proof or
only a sketch of proof is provided, and instead we refer the reader to [KH95], [SSTC98] for further
details.

We start with definitions of different notions of the invariance of a set. Let A be a non-empty
subset of Rn. Then

Definition 2.8. (positively invariance) We say A is positively (or forward) invariant with respect
to the flow of system (2.1.1) if φ (t,A) ⊂ A for all t ≥ 0.

Definition 2.9. (negatively invariance) We say A is negatively (or backward) invariant with
respect to the flow of system (2.1.1) if φ (t,A) ⊂ A for all t ≤ 0.

Definition 2.10. (invariance) We say A is invariant with respect to the flow of system (2.1.1) if
it is both positively and negatively invariant, i.e. φ (t,A) ⊂ A for all t ∈ R.

Definition 2.11. (local invariance) We say A is locally invariant with respect to the flow of system
(2.1.1) if there exists an open neighborhood E of A such that for any x0 ∈ A the property φ (t, x0) ∈ E
implies φ (t, x0) ∈ A.

In this thesis, we are mainly interested in the case which the set A has the structure of a smooth
manifold.

A useful procedure that we use several times in this thesis to simplify our systems is straightening
an invariant manifold. Consider the system

(2.3.1)
ẋ = f (x, y) ,

ẏ = g (x, y) ,

where x ∈ Rm, y ∈ Rn and f (0, 0) = g (0, 0) = 0. Let ϕ : Rm → Rn be a smooth mapping such that
ϕ (0) = 0 and ϕ′ (0) = 0. Assume the manifold M = {(x, y) : y = ϕ (x)} is invariant with respect to
the flow of system (2.3.1).

Definition 2.12. (straightening an invariant manifold) By straightening the invariant manifold
M, we mean applying a change of coordinates of the form

(2.3.2) x̃ = x, ỹ = y − ϕ (x) .

Making this change of coordinates reduces system (2.3.1) to

(2.3.3)
ẋ = f (x, y + ϕ (x)) ,

ẏ = g (x, y + ϕ (x))− ϕ′ (x) f (x, y + ϕ (x)) ,

and transforms the manifold M to the linear subspace {(x, y) : y = 0}. Straightening an invariant
manifold of the type {(x, y) : x = ϕ (y)}, where ϕ : Rn → Rm is a smooth mapping such that ϕ (0) = 0
and ϕ′ (0) = 0, is defined analogously.

2.3.1. Condition of the invariance of a manifold

Consider system (2.3.1) and let ϕ : Rm → Rn be a smooth mapping such that ϕ (0) = 0. Then

Proposition 2.13. The manifold M = {(x, y) : y = ϕ (x)} is invariant with respect to the flow of
system (2.3.1) if and only if

(2.3.4) g (x, ϕ (x)) = ϕ′ (x) · f (x, ϕ (x)) .
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Proof. LetM be invariant with respect to the flow of system (2.3.1). Consider a point (x, y) ∈M and
let (x (t) , y (t)) be an orbit of system (2.3.1) such that (x (0) , y (0)) = (x, y). SinceM is invariant, we
have y (t) = ϕ (x (t)) for all t. Differentiating this relation with respect to t, gives

(2.3.5) g (x (t) , ϕ (x (t))) =
d y (t)

dt
= ϕ′ (x (t)) · d x (t)

dt
= ϕ′ (x (t)) · f (x (t) , ϕ (x (t))) ,

which holds for any t ∈ R. Thus, we can get (2.3.4) by evaluating (2.3.5) at t = 0.
Regarding the other direction, suppose (2.3.4) holds and let V be the vector field defined by the

right-hand side of (2.3.1). Consider (x, y) ∈ M. The tangent space of M at (x, y) is the set of the
vectors (u, v) ∈ Rm × Rn that satisfy

v − y = ϕ′ (x) · (u− x) .

By (2.3.4), the vector (x+ f (x, y) , y + g (x, y)) is tangent to M at the point (x, y). Therefore, we
can restrict the vector field V to the manifold M. Denote this restricted vector field by V |M. The
vector field V |M generates a unique flow on M (see e.g. fundamental theorem on flows in [Lee13]).
Any integral curve of V |M starting at a point p ∈ M lies in M and due to the uniqueness property,
must coincide with the integral curve of V which starts at p. This means that M is invariant with
respect to the flow generated by V , i.e. the flow of system (2.3.1).

A similar statement holds for manifolds of the form x = ψ (y), i.e. the manifold N = {(x, y) : x =
ψ (y)} is invariant with respect to the flow of system (2.3.1) if and only if

(2.3.6) f (ψ (y) , y) = ψ′ (y) · g (ψ (y) , y) .

Definition 2.14. (condition of the invariance of a manifold) We refer to relation (2.3.4)
(relation (2.3.6)) as the condition of the invariance of the manifold M (the manifold N ) with respect
to the flow of system (2.3.1).

2.3.2. A family of invariant manifolds

In this section, we briefly discuss an important family of invariant manifolds and their relations
with symmetries. Consider the system

(2.3.7)
ẋ = Ax+ f(x, y),

ẏ = By + g(x, y),
f, g ∈ Cr (r ≥ 1),

where f and g as well as their first derivatives vanish at the origin, and

(i) the system is defined globally on whole Rn (x ∈ Rk and y ∈ Rn−k), and

(ii) there exists γ ∈ R such that, in the complex plane, all the eigenvalues of A lie at the left side of
the line Re(·) = γ and all the eigenvalues of B lie at the right side of this line, and

(iii) all of the derivatives of f and g are bounded uniformly for all (x, y) ∈ Rn. In particular,

(2.3.8)

∥∥∥∥∂ (f, g)

∂ (x, y)

∥∥∥∥ < ξ

for some sufficiently small constant ξ.

Definition 2.15. (globally dichotomic systems) Any system of form (2.3.7) that satisfies the
three conditions above is called globally dichotomic.
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The second condition of this definition simply states that there is a gap between the real parts of
the eigenvalues of the matrices A and B. More precisely, define

(2.3.9) α = max {Re(λ) : λ ∈ spect(A)}

and

(2.3.10) β = min {Re(λ) : λ ∈ spect(B)}.

Then α < γ < β.

Let φ (t, x, y) be the flow of system (2.3.7). Fix γ ∈ R and let W s
γ be the set of all points

(x0, y0) ∈ Rk × Rn−k for which there exists a constant C > 0 such that

‖φ (t, x0, y0)‖ ≤ Ceγt, ∀t ≥ 0.

Theorem 2.16. Let α ≤ γ < β, and q be the largest integer such that qα < β and q ≤ r. The set
W s
γ is a Cq-smooth manifold. In particular, it is the graph of some Cq-smooth map ϕ : Rk → Rn−k,

i.e. W s
γ = {(x, y) : y = ϕ(x)}.

Remark 2.17. The map ϕ in the above theorem is independent of γ. In other words, W s
γ1 = W s

γ2
for any two arbitrary α ≤ γ1, γ2 < β.

Analogously, for any γ ∈ R, we define W u
γ to be the set of all points (x0, y0) ∈ Rk×Rn−k for which

there exists a constant C > 0 such that

‖φ (t, x0, y0)‖ ≤ Ceγt, ∀t ≤ 0.

By applying Theorems 2.16 to the system which is derived from system (2.3.7) by a reversion of time,
we obtain

Theorem 2.18. Let α < γ ≤ β, and q be the largest integer such that α < qβ and q ≤ r. The set
W u
γ is a Cq-smooth manifold. In particular, it is the graph of some Cq-smooth map ψ : Rn−k → Rk,

i.e. W u
γ = {(x, y) : x = ψ(y)}. Moreover, W u

γ1 = W u
γ2 for any two arbitrary α < γ1, γ2 ≤ β.

A restrictive feature of the globally dichotomic systems is that they are defined globally on whole
Rn. However, most of the systems studied in the literature are defined locally on an open neighborhood
of Rn (usually near equilibria). The following lemma is a simple method for extending a local system
to the global version:

Lemma 2.19. Consider the Cr-system

(2.3.11)
ẋ = Ax+ f(x, y),

ẏ = By + g(x, y),

where f and g are defined on a neighborhood U of the origin O such that f , g and ∂(f,g)
∂(x,y) all vanish

at O. Then for some open ball Bρ (O) ⊂ U around the origin, there exist functions f̃ and g̃ such that
they coincide with f and g, respectively, on B ρ

2
(O) and the system

(2.3.12)
ẋ = Ax+ f̃(x, y),

ẏ = By + g̃(x, y),

is globally dichotomic.



2.3. THEORY OF INVARIANT MANIFOLDS 28

Proof. Let χ : [0,∞]→ [0, 1] be a C∞-smooth bump function such that

χ (z) =

{
1 for z ≤ 1

2 ,
0 for z ≥ 1,

and − 3 ≤ χ′ ≤ 0.

The existence of such a function is a well-known fact (see e.g. [Lee13]). Then, for a sufficiently small
ρ,

f̃(x, y) = f

(
xχ

(
‖(x, y)‖

ρ

)
, yχ

(
‖(x, y)‖

ρ

))
and g̃(x, y) = g

(
xχ

(
‖(x, y)‖

ρ

)
, yχ

(
‖(x, y)‖

ρ

))
are the desired functions.

By virtue of the preceding lemma, any locally defined system coincides with a globally dichotomic
system on a neighborhood of the equilibrium O. Therefore, restricting the invariant manifolds W s

γ and
W u
γ to that neighborhood gives invariant manifolds for the local system. The following two theorems

from [SSTC98] give more information on these manifolds:

Theorem 2.20. If α < 0, system (2.3.11) has a uniquely defined Cr-smooth invariant manifold
which is tangent to {y = 0} at O and contains all the trajectories that tend to O as t → ∞ at a rate
faster than eγt for any α < γ < 0. We call this manifold ’strong stable’ and denote it by W ss.

Theorem 2.21. If α > 0, system (2.3.11) has a Cq-smooth invariant manifold (q is the largest
integer that qα < β and q ≤ r) which is tangent to {y = 0} at O and contains the set N+ of
all trajectories which stay in a small neighborhood of O for all positive times. This manifold is not
necessarily unique, however, any two of them have the same tangent at each point of N+. Moreover,
when this manifold is written as {y = ϕ (x)}, all derivatives of ϕ (up to order q) are uniquely defined
at all points of N+. We call such a manifold ’extended stable’ and denote it by W sE.

Remark 2.22. Strong unstable invariant manifolds, denoted by W uu, and extended unstable invari-
ant manifolds, denoted by W uE, are defined analogously.

Remark 2.23. The non-uniqueness of extended stable (and extended unstable) is a bi-product of the
extension process. Indeed, regardless of how we extend a local system to a global one, the strong stable
invariant manifold is the set of all orbits which converge to O faster than the rate eγt and hence is
unique by definition. However, the extended stable manifold, i.e. the set of the orbits which diverge
from O (and possibly leave a small neighborhood of O) slower than the rate eγt, depends on how we
extend the local system outside a small neighborhood of O.

Let J be a linear symmetry of the locally defined system (2.3.11). Suppose W is an invariant
manifold of this system of one of the four types introduced above (strong stable, strong unstable,
extended stable or extended unstable). Thus, W is described by {y = ϕ (x)} (stable case) or {x =
ψ (y)} (unstable case) for some functions ϕ or ψ. Then

Proposition 2.24. The maps (x, y) 7→ (x, ϕ (x)) and (x, y) 7→ (ψ (y) , y) commute with J .

Proof. Suppose that system (2.3.11) is extended to a globally dichotomic system andW is extended to
an invariant manifold W s

γ of this system (the proof of the unstable case W u
γ is the same). Thus, W s

γ =

{(x, y) : y = ϕ† (x)}, where ϕ† is a smooth mapping that coincides with ϕ on a small neighborhood of
O. It follows from the proof of Lemma 2.19 (by choosing an appropriate norm) that the global system
has the symmetry J too. Let z(t) = (x(t), y(t)) be an orbit which belongs to W s

γ . Since Jz(t) is also
an orbit of the system, we have

(2.3.13) ‖Jz(t)‖ ≤ ‖J‖‖z(t)‖ ≤ ‖J‖Ceγt, ∀t ≥ 0.
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Due to the uniqueness of W s
γ , this implies Jz(t) ∈W s

γ . Write J =
(
J1 J2
J3 J4

)
. For any x, we have

(
J1 J2

J3 J4

)(
x

ϕ† (x)

)
=

(
J1x+ J2ϕ

† (x)
J3x+ J4ϕ

† (x)

)
∈W s

γ =⇒ J3x+ J4ϕ
† (x) = ϕ†

(
J1x+ J2ϕ

† (x)
)
.

Therefore, (x, y) 7→
(
x, ϕ† (x)

)
commutes with J and so does (x, y) 7→ (x, ϕ (x)).

Corollary 2.25. It follows from this proposition and Proposition 2.3 that J is a symmetry of
the system which derives from system (2.3.11) by straightening the invariant manifold W. Moreover,
if system (2.3.11) has a first integral H which is invariant with respect to J , then straightening W
transforms H to a first integral which is invariant with respect to J as well.

2.3.3. Cross-forms and a theorem on the existence of invariant manifolds

Definition 2.26. Let (X∗, ‖·‖X∗) and (Y ∗, ‖·‖Y ∗) be two Banach spaces, and U be a subset of
X∗ × Y ∗. Let

(2.3.14)
T : U → T (U)

(x, y) 7→ (x, y)
,

be a map. We say T can be written in cross-form if and only if

(2.3.15)
x = F (x, y) ,

y = G (x, y)

holds for some functions F and G. The map defined by (2.3.15) (which maps (x, y) to (x, y)), is called
the cross-map of T and denoted by T×.

In general, the composition of two maps which each of them can be written in cross-form cannot
necessarily be written in cross-form. Here we provide a specific setting in which the property of
’being written in cross-form’ can transfer to the composition map: let (B, ‖·‖) be a Banach space,
and X1, X2, Y1 and Y2 be convex subsets of B. Consider the maps T1 : X1 × Y1 → X2 × Y2 and
T2 : X2 × Y2 → X1 × Y1 and suppose that both of them can be written in cross-form in the following
way:

(2.3.16) (x, y) = T1 (x, y) if and only if x = p1 (x, y) and y = q1 (x, y) ,

and

(2.3.17) (x̂, ŷ) = T2 (x, y) if and only if x̂ = p2 (x, ŷ) and y = q2 (x, ŷ) ,

where p1 : X1 × Y2 → X2, q1 : X1 × Y2 → Y1, p2 : X2 × Y1 → X1 and q2 : X2 × Y1 → Y2 are some
smooth functions. Let

(2.3.18)

max

{∥∥∥∥∂p1

∂x

∥∥∥∥ ,∥∥∥∥∂p1

∂y

∥∥∥∥ , ∥∥∥∥∂q1

∂x

∥∥∥∥ , ∥∥∥∥∂q1

∂y

∥∥∥∥} ≤ K1,

max

{∥∥∥∥∂p2

∂x

∥∥∥∥ ,∥∥∥∥∂p2

∂ŷ

∥∥∥∥ , ∥∥∥∥∂q2

∂x

∥∥∥∥ , ∥∥∥∥∂q2

∂ŷ

∥∥∥∥} ≤ K2

for some constants K1 and K2.

Lemma 2.27. ( [Tur14], Lemma 4) Define T := T2 ◦ T1 : X1 × Y1 → X1 × Y1. If K1K2 < 1, then
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(i) the map T can be written in cross-form, i.e. there exist functions p and q such that

(2.3.19) (x̂, ŷ) = T (x, y) if and only if x̂ = p (x, ŷ) and y = q (x, ŷ) .

Moreover, the functions p and q are smooth and defined everywhere on X1 × Y1.

(ii) Equip X1 × Y1 with the norm ‖(x, y)‖∗ = max{
√
K1‖x‖,

√
K2‖y‖}. We have

(2.3.20)

∥∥∥∥∂ (p, q)

∂(x, ŷ)

∥∥∥∥
∗
≤

√
K1K2

1−
√
K1K2

.

The next theorem provides a setting in which if a map T possesses a cross-map T× which satisfies
certain properties, then it has an invariant manifold that contains ω-limit points of every forward orbit
of the domain. This proposition becomes powerful when one is looking for the invariant manifolds
of a non-smooth map whose cross-map is smooth. This result was first obtained by Afraimovich and
Shilnikov in [AS77] for maps defined on an annulus (Cartesian product of a n-dimensional cube and a
m-dimensional torus Tm). The following formulation of this result which holds for arbitrary Banach
spaces is stated in [SSTC98].

Theorem 2.28. ( [SSTC98], Theorem 4.3) With the setting in Definition 2.26, let X and Y be
two convex closed subsets of X∗ and Y ∗, respectively, such that R = X × Y ⊂ U , T× is defined on R
and T× (R) ⊂ R. Let F and G in (2.3.15) be C1-smooth and satisfy√√√√ sup

(x,y)∈X×Y

{∥∥∥∥∂F∂x
∥∥∥∥ · ∥∥∥∥∂G∂y

∥∥∥∥
}

+

√∥∥∥∥∂F∂y
∥∥∥∥
◦
·
∥∥∥∥∂G∂x

∥∥∥∥
◦
< 1

and ∥∥∥∥∂F∂x
∥∥∥∥
◦

+

√∥∥∥∥∂F∂y
∥∥∥∥
◦
·
∥∥∥∥∂G∂x

∥∥∥∥
◦
< 1,

where ‖ϕ (x, y)‖◦ = sup(x,y)∈X×Y ‖ϕ (x, y)‖ for any vector-valued or matrix valued function ϕ. Then

(i) the map T has a C1-smooth invariant manifold M∗ = {(x, y) ∈ R : x = h∗ (y)}, where h∗ : Y →
X is a Lipschitz function with the Lipschitz constant

L =

√∥∥∥∥∂F∂y
∥∥∥∥
◦

(∥∥∥∥∂G∂x
∥∥∥∥
◦

)−1

.

(ii) for any x = (x, y) ∈ R and any arbitrary ε > 0, there exists an integer N x
ε ∈ N such that for any

n > N x
ε if {T i (x)}i=ni=0 ⊂ R, then dist (Tn (x) ,M∗) < ε. In particular, M∗ contains the ω-limit

set of any point of R whose forward orbit lies entirely in R.

(iii) if R is bounded, then the integer N ε
x given above can be chosen independent of x, i.e. for any

arbitrary ε > 0, there exists an integer Nε ∈ N such that for any n > Nε and any x ∈ R if
{T i (x)}i=ni=0 ⊂ R, then dist (Tn (x) ,M∗) < ε.

(iv) let M be a L-surface (i.e. M is the graph of some L-Lipschitz function h : Y → X). Then
T (M) |X×Y is a L-surface as well. Moreover, the sequence {Tn (M) |X×Y } converges to M∗.

Proof. See [SSTC98], Theorem 4.3 as well as Theorem 4.2 and its proof.

Proposition 2.29. With the setting of Theorem 2.28, if R is bounded, T−1 exists and the backward
orbit of a point x ∈ R lies entirely in R then x ∈M∗.
Proof. The proof is by contradiction. Assume x /∈ M∗. This implies dist (x,M∗) > 0. Choose an
0 < ε < dist (x,M∗) and consider Nε given by Theorem 2.28. We have dist

(
M∗, TNε

(
T−Nε (x)

))
< ε

and therefore dist (M∗, x) < ε, which is a contradiction.



Chapter 3

Analysis near the equilibrium state O

3.1. Set-up and notations

Our approach for studying the dynamics near the homoclinic loop Γ (and homoclinic figure-eight
Γ1∪Γ2) is based on the studying the behavior of the corresponding Poincaré map(s). As was mentioned
earlier, the Poincaré map T along the homoclinic loop Γ can be written as the composition of a global
and a local map. This section is dedicated to the study of the behavior of the local map T loc. To do
this, we first need to choose appropriate coordinates near the equilibrium state O of system (1.2.3).
This is done in Section 3.2 below. We consider three different cases of λ1 = λ2, λ1 < λ2 < 2λ1 and
2λ1 < λ2 and introduce a specific normal form for each case. In Section 3.3, we employ the Shilnikov
technique for solving boundary value problems to compute the flow near the equilibrium O. This
allows us to find an approximation for the local map. Finally, in Section 3.4, we study the behavior
of this map and investigate some of its properties.

In comparison to the global map, the local map has more complicated behavior. Indeed, T glo is
a diffeomorphism and can be approximated by its Taylor polynomial while the local map T loc is a
singular map with a non-trivial domain.

Let us now give a more precise meaning to the above terminologies. Recall the cross-sections Πs

and Πu. In all of the normal forms considered in Section 3.2, the local stable and local unstable as
well as the local strong stable and local strong unstable invariant manifolds of O are straightened.
Therefore, the homoclinic loop Γ intersects Πs and Πu at M s = (0, δ, 0, 0) and Mu = (0, 0, 0, δ),
respectively. As it is proved later (see Section 3.2.1), we can choose a (u1, v1) coordinate-system on
each of these cross-sections. Both M s and Mu correspond to (0, 0) in this coordinate-system.

Consider a point (u10, v10) on Πs close to M s (e.g. the green point in Figure 1.2) whose forward
orbit goes along the homoclinic loop Γ, after a certain time τ it crosses Πu at a point (u1τ , v1τ ) (e.g.
the blue point in Figure 1.2), and after a finite time it comes back to Πs at a point (u10, v10) (e.g. the
red point in Figure 1.2). Obviously, τ → ∞ as (u10, v10) → M s. Let D ⊂ Πs be the set of all such
points (u10, v10) that satisfy

(3.1.1) ‖(u10, v10)‖ < ε and ‖(u1τ , v1τ )‖ < εu,

for some sufficiently small constants 0 < ε ≤ εu < δ (see Figure 3.1). It is trivial that M s /∈ D. When
D 6= ∅, we define the Poincaré map T : D → Πs by

(u10, v10) 7−→ (u10, v10) .

The local map T loc : D → Πu is defined by

(3.1.2) (u10, v10) 7−→ (u1τ , v1τ ) .

31
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The global map is defined on the εu-ball Bεu in Πu centered at Mu, i.e. T glo : Bεu → Πs, and its
restriction to T loc (D) ⊂ Bεu is

(3.1.3) (u1τ , v1τ ) 7−→ (u10, v10) .

Obviously, T = T glo ◦ T loc.

Figure 3.1: These two figures are derived from Figure 1.2 by zooming in on a small neighborhood of O. The
ε-ball around Ms in Πs and the εu-ball around Mu in Πu are shown by green and red colors, respectively.
The domain D of the Poincaré map T is the set of the points (u10, v10) in the green ball whose forward orbits
intersect Πu at (u1τ , v1τ ) in the red ball (see relation (3.1.1)).

Not every orbit starting from Πs goes along Γ and intersects the cross-section Πu. Trivial examples
are the orbits that start at W s

loc (O) ∩ Πs. Other examples are the orbits that go along the other
branch of W u

loc (O) (negative side of v2-axis). Consider a cross-section Σ = {v2 = −δ} ∩ {H = 0}
to the negative branch of W u

loc (O). It will be shown that (u1, v1)-coordinates can be chosen on this
cross-section. Then

Definition 3.1. We denote by D the set of the points (u10, v10) on Πs close to M s whose forward
orbits go along the negative branch of W u

loc (O), and after a certain time τ they cross Σ at (u1τ , v1τ )
such that (3.1.1) holds (see Figure 3.2).

For the case of homoclinic figure-eight, we define the domains D and D for each loop. Namely,

Notation 3.2. For i = 1, 2, we denote by Di and Di the corresponding domains D ⊂ Πs
i and D ⊂ Πs

i

of the loop Γi, respectively.

An orbit staring from D1 ⊂ Πs
1 (D2 ⊂ Πs

2) goes along Γ1 (Γ2) and intersects Πu
1 (Πu

2), while an
orbit which starts from D1 ⊂ Πs

1 (D2 ⊂ Πs
2) goes along the negative (positive) side of v2-axis and

intersects Πu
2 (Πu

1).
We introduced the Poincaré, local and global maps along a single homoclinic loop above. For the

case of homoclinic figure eight, we also define these maps for each loop:

Notation 3.3. We denote by Ti, T
loc
i and T glo

i the Poincaré, local and global maps along Γi (i = 1, 2),
respectively (see Figure 3.3).

In order to analyze the dynamics near a homoclinic figure-eight, we need to consider two extra
local maps:

Definition 3.4. We define the map T loc
12 : D1 ⊂ Πs

1 → Πu
2 (T loc

21 : D2 ⊂ Πs
2 → Πu

1) by (u10, v10) 7→
(u1τ , v1τ ) where (u10, v10) ∈ D1 (∈ D2) and (u1τ , v1τ ) ∈ Πu

2 (∈ Πu
1) (see Figure 3.3).
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Figure 3.2: We defined the domain D of the Poincaré map as the set of the points on Πs close to Ms that
go along the homoclinic loop Γ and intersect Πu = {v2 = δ} ∩ {H = 0} at points close to Mu. For instance,
the blue point on Πs belongs to D. Similarly, we define D as the set of the points on Πs close to Ms that go
along Γ until they get close to O and then go along the negative side of v2-axis and intersect the cross-section
Σ = {v2 = −δ} ∩ {H = 0} at points close to the point of the intersection of Σ and v2-axis. For example, the
pink point on Πs belongs to D.

3.2. Choice of coordinates near the equilibrium state O

This section is dedicated to finding suitable coordinate systems near the equilibrium state O. As
it was mentioned above, we consider three different cases of λ1 = λ2, λ1 < λ2 < 2λ1 and 2λ1 < λ2,
and for each case we bring system (1.2.3) into a particular normal form. The proofs of the results
stated below are postponed to Section 3.2.2. We start with the following:

Lemma 3.5. Consider system (1.2.3) and first integral (1.2.4). There exists a C∞-smooth change
of coordinates which brings system (1.2.3) to the form

(3.2.1)

u̇1 = −λ1u1 + f11(u1, u2, v1, v2)u1 + f12(u1, u2, v1, v2)u2,

u̇2 = −λ2u2 + f21(u1, u2, v1, v2)u1 + f22(u1, u2, v1, v2)u2,

v̇1 = +λ1v1 + g11(u1, u2, v1, v2)v1 + g12(u1, u2, v1, v2)v2,

v̇2 = +λ2v2 + g21(u1, u2, v1, v2)v1 + g22(u1, u2, v1, v2)v2,

where the functions fij, gij are C∞-smooth and vanish at the origin, i.e.

(3.2.2) fij (0, 0, 0, 0) = gij (0, 0, 0, 0) = 0,

and transforms first integral (1.2.4) to

(3.2.3) H = λ1u1v1 − λ2u2v2.

Moreover, system (3.2.1) remains invariant with respect to symmetry (1.2.5). In particular, we have

(3.2.4) f12(0, u2, 0, v2) ≡ 0, g12(0, u2, 0, v2) ≡ 0.
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Figure 3.3: The blue, brown, green, yellow, red and pink curves correspond to the maps T glo
1 , T loc

12 , T glo
2 , T loc

21 ,
T loc
1 and T loc

2 , respectively. The Poincaré maps T1 (along the homoclinic orbit Γ1) and T2 (along the homoclinic

orbit Γ2) are defined by T1 = T glo
1 ◦ T loc

1 and T2 = T glo
2 ◦ T loc

2 , respectively.

The statement of Lemma 3.5 holds for arbitrary λ1 and λ2. However, we will particularly use this
for analyzing the case λ1 = λ2.

Lemma 3.6. Consider system (1.2.3) and first integral (1.2.4), and assume λ1 < λ2. There exists
a C∞-smooth change of coordinates which brings system (1.2.3) to the form

(3.2.5)

u̇1 = −λ1u1 + f11 (u1, v)u1 + f12 (u1, u2, v)u2,

u̇2 = −λ2u2 + f21 (u1, v)u1 + f22 (u1, u2, v)u2,

v̇1 = +λ1v1 + g11 (u, v1) v1 + g12 (u, v1, v2) v2,

v̇2 = +λ2v2 + g21 (u, v1) v1 + g22 (u, v1, v2) v2,

where the functions fij, gij are C∞-smooth and satisfy the identities

(3.2.6)

f11(0, v) ≡ 0, f11(u1, 0) ≡ 0, f12(u, 0) ≡ 0,

f21(0, v) ≡ 0, f22(0, v) ≡ 0,

g11(u, 0) ≡ 0, g11(0, v1) ≡ 0, g12(0, v) ≡ 0,

g21(u, 0) ≡ 0, g22 (u, 0) ≡ 0.

This change of coordinates transforms first integral (1.2.4) to

(3.2.7) H = λ1u1v1 [1 +H1 (u, v)]− λ2u2v2 [1 +H2 (u, v)] ,

where H1 and H2 are C∞-smooth functions such that H1 (O) = H2 (O) = 0. Moreover, normal form
(3.2.5) and first integral (3.2.7) remain invariant with respect to symmetry (1.2.5). In particular,
(3.2.4) holds.

The statement of Lemma 3.6 holds for arbitrary λ1 < λ2. However, we will particularly use this
to analyze the local dynamics near O in the case of λ1 < λ2 < 2λ1.

Remark 3.7. For simplicity, we can write (3.2.7) as

(3.2.8) H = λ1u1v1 [1 + o (1)]− λ2u2v2 [1 + o (1)] .
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The normal form that we will use later to analyze the case 2λ1 < λ2 is given by the following
lemma:

Lemma 3.8. Consider system (1.2.3) and first integral (1.2.4) and assume 2λ1 < λ2. Let q be
the largest integer such that qλ1 < λ2. There exists a Cq-smooth change of coordinates which brings
system (1.2.3) to the form

(3.2.9)

u̇1 = −λ1u1 + f11 (u1, v)u1 + f12 (u1, u2, v)u2,

u̇2 = −λ2u2 + f22 (u1, u2, v)u2,

v̇1 = +λ1v1 + g11 (u, v1) v1 + g12 (u, v1, v2) v2,

v̇2 = +λ2v2 + g22 (u, v1, v2) v2,

where fij and gij are Cq−1-smooth and satisfy identities (3.2.6). This change of coordinates transforms
first integral (1.2.4) to

(3.2.10) H = λ1u1v1 [1 +H1 (u, v)]− λ2u2v2 [1 +H2 (u, v)] + u2v
2
1H3 (u, v) + v2u

2
1H4 (u, v) ,

where H is Cq-smooth, and H1, H2, H3 and H4 are some Cq−1, Cq, Cq−2 and Cq−2 functions, respec-
tively, such that H1(O) = H2(O) = 0. Moreover, system (3.2.9) and first integral (3.2.10) remain
invariant with respect to symmetry (1.2.5). In particular, f12 and g12 satisfy (3.2.4).

Remark 3.9. For simplicity, we can write (3.2.10) as

H = λ1u1v1 [1 + o (1)]− λ2u2v2 [1 + o (1)] + u2v
2
1O (1) + v2u

2
1O (1) .

A common structure of all of normal forms (3.2.1), (3.2.5) and (3.2.9) is that the local stable and
unstable as well as the local strong stable and strong unstable invariant manifolds of the equilibrium
O are straightened, i.e. W s

loc = {v = 0}, W u
loc = {u = 0}, W ss

loc = {u1 = v1 = v2 = 0} and
W uu

loc = {u1 = u2 = v1 = 0}. For the particular case of normal form (3.2.9), the local extended
stable and extended unstable invariant manifolds of O are straightened too, i.e. W sE

loc = {v2 = 0} and
W uE

loc = {u2 = 0}.

3.2.1. Choice of coordinates on the cross-sections

Our goal here is to show that in any of the cases λ1 = λ2, λ2 < 2λ1 and 2λ1 < λ2, we can always
choose (u1, v1)- coordinate system on each of the cross-sections Πs, Πu, Πs

1, Πu
1 , Πs

2 and Πu
2 . This is

done by showing that on each of these cross-sections, the variables u2 and v2 are uniquely determined
by (u1, v1).

As a direct consequence of Lemma 3.5, we have

Corollary 3.10. Consider system (3.2.1) and let (u10, δ, v10, v20) and (u1τ , u2τ , v1τ , δ) be two
points on Πs and Πu, respectively. According to Lemma 3.5, the variable v20 is uniquely determined
by u10 and v10. Analogously, the variable u2τ is uniquely determined by u1τ and v1τ . More precisely,

(3.2.11) v20 =
λ1

λ2δ
· u10v10 and u2τ =

λ1

λ2δ
· u1τv1τ .

With Lemma 3.6, we can prove the following proposition:

Proposition 3.11. Consider first integral (3.2.7). We have

(3.2.12) Hv2 (0, δ, 0, 0) 6= 0 and Hu2 (0, 0, 0, δ) 6= 0.
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Figure 3.4: We can always choose (u1, v1)-coordinate system on each of the cross-sections Πs, Πu, Πs
1, Πu

1 , Πs
2,

Πu
2 and Σ. This figure shows (u1, v1)-coordinate system on Πs

1, Πu
1 , Πs

2 and Πu
2 .

Proof. Differentiating (3.2.7) with respect to v2 gives

Hv2 = λ1u1v1H1v2 (u, v)− λ2u2 [1 +H2 (u, v)]− λ2u2v2H2v2 (u, v) .

Note that H1v2(u, v) = O(1), H2(u, v) = o(1) and H2v2(u, v) = O(1). Thus,

(3.2.13) Hv2 = u1v1O (1)− λ2u2 [1 + o (1)] .

Evaluating this relation at (0, δ, 0, 0) gives Hv2 (0, δ, 0, 0) = −λ2δ [1 + o (1)] 6= 0. Similarly, one can
easily show that

(3.2.14) Hu2 = u1v1O (1)− λ2v2 [1 + o (1)] ,

which implies Hu2 (0, 0, 0, δ) = −λ2δ [1 + o (1)] 6= 0. This ends the proof.

Remark 3.12. Together with the implicit function theorem, this proposition implies that when system
(3.2.5) is given, locally, the variables v2 on Πs and u2 on Πu can be written as functions of (u1, v1).

With Lemma 3.8, we can prove the following proposition:

Proposition 3.13. Consider first integral (3.2.10). We have

(3.2.15) Hv2 (0, 0, δ, 0) 6= 0 and Hu2 (0, 0, 0, δ) 6= 0.

Proof. Denote first integral (3.2.7) by H◦ and let x := v2+φsE (u1, u2, v1) and y := u2+φuE (u1, v1, x).
We have H = H◦ (u1, y, v1, x). Differentiating this relation with respect to v2 gives

Hv2 =
∂H◦

∂u2

∣∣∣∣
(u1,y,v1,x)

· ∂φ
uE

∂v2

∣∣∣∣
(u1,v1,x)

+
∂H◦

∂v2

∣∣∣∣
(u1,y,v1,x)

.
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By (3.2.13), (3.2.14) and Corollary 3.18 (this corollary is stated later), at u2 = δ, we have

∂H◦

∂u2

∣∣∣∣
(u1,y,v1,x)

=u1v1O (1) +O
(
v2

1

)
− λ2v2 [1 + o (1)] ,

∂φuE

∂v2

∣∣∣∣
(u1,v1,x)

=O (u1) ,

∂H◦

∂v2

∣∣∣∣
(u1,y,v1,x)

=u1v1O (1) +O
(
u2

1

)
− λ2δ [1 + o (1)] .

Thus,
Hv2 = u1v1O (1) +O (u1v2) +O

(
u2

1

)
− λ2δ [1 + o (1)] = −λ2δ [1 +O (δ)] ,

and therefore Hv2 (0, 0, δ, 0) = −λ2δ [1 +O (δ)] 6= 0. The proof of the other relation in (3.2.15) is the
same. This ends the proof.

Remark 3.14. Together with the implicit function theorem, this proposition implies that when system
(3.2.5) is given, locally, the variables v2 on Πs and u2 on Πu can be written as Cq-smooth functions
of (u1, v1).

In all the cases λ1 = λ2, λ1 < λ2 < 2λ1 and 2λ1 < λ2, the same statements hold for the cross-
sections over Γ1 and Γ2 (as well as the auxiliary cross-section Σ introduced in Chapter 3). This leads
to the following:

Corollary 3.15. We can always choose (u1, v1)-coordinate system on each of the cross-sections
Πs, Πu, Πs

1, Πu
1 , Πs

2 and Πu
2 .

3.2.2. Proofs of Lemmas 3.5, 3.6 and 3.8

Proof of Lemma 3.5. To reduce system (1.2.3) to the form (3.2.1), we straighten the local stable and
local unstable invariant manifolds of the equilibrium state O, i.e. we apply a change of coordinates

(3.2.16)
ũ1 = u1 − ϕ1s(v1, v2), ũ2 = u2 − ϕ2s(v1, v2),

ṽ1 = v1 − ψ1u(u1, u2), ṽ2 = v2 − ψ2u(u1, u2),

where {u1 = ϕ1s(v1, v2), u2 = ϕ2s(v1, v2)} and {v1 = ψ1u(u1, u2), v2 = ψ2u(u1, u2)} are the equations
of the local stable and the local unstable invariant manifolds of O, respectively. Thus, after applying
(3.2.16), the equations of the local stable and the local unstable manifolds of O become {v1 = v2 = 0}
and {u1 = u2 = 0}, respectively. This implies that system (1.2.3) can be written in the form (3.2.1)
such that (3.2.2) is satisfied. Notice that change of coordinates (3.2.16) does not affect the quadratic
part of (1.2.4). Therefore, the updated first integral H keeps the form (1.2.4).

Since H vanishes at every point of the local unstable invariant manifold {u1 = u2 = 0}, it can be
written as

(3.2.17) H (u1, u2, v1, v2) = λ1u1 [v1 +H1 (u1, u2, v1, v2)]− λ2u2 [v2 +H2 (u1, u2, v1, v2)] ,

for some C∞-smooth H1, H2 : R4 → R such that H1 and H2 and their first derivatives vanish at O.
On the other hand, H vanishes at every point of the local stable invariant manifold {v1 = v2 = 0}.
This implies

(3.2.18) 0 = H (u1, u2, 0, 0) = λ1u1H1 (u1, u2, 0, 0)− λ2u2H2 (u1, u2, 0, 0) .

This yields
H (u1, u2, v1, v2) =λ1u1 [v1 +H1 (u1, u2, v1, v2)−H1 (u1, u2, 0, 0)]

− λ2u2 [v2 +H2 (u1, u2, v1, v2)−H2 (u1, u2, 0, 0)] .
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This suggests that, without loss of generality, we can assume that H1 and H2 vanish at {v1 = v2 = 0}.
Now, consider the change of coordinates

(3.2.19)
ũ1 = u1, ũ2 = u2,

ṽ1 = v1 +H1 (u1, u2, v1, v2) , ṽ2 = v2 +H2 (u1, u2, v1, v2) .

Since H1 (u1, u2, 0, 0) = H2 (u1, u2, 0, 0) = 0, applying this change of coordinates on system (3.2.1)
keeps the local stable and local unstable invariant manifolds straightened and therefore keeps the
form (3.2.1) of the system such that (3.2.2) still holds. However, this change of coordinates reduces
the first integral H to the form (3.2.3).

It is a direct consequence of Corollary 2.25 that change of coordinates (3.2.16) preserves the
symmetric structure of the system and the first integral. Concerning the change of coordinates (3.2.19),
note that since H in (3.2.17) satisfies (1.2.6), we have

H1 (−u1, u2,−v1, v2) = −H1 (u1, u2, v1, v2) and H2 (−u1, u2,−v1, v2) = H2 (u1, u2, v1, v2) .

This implies that the change of coordinates (3.2.19) commutes with symmetry (1.2.5). Therefore,
by Proposition 2.3, this change of coordinates preserves the invariance of the system with respect to
symmetry (1.2.5). This ends the proof of Lemma 3.5.

Our proof of Lemma 3.6 is based on a theorem in [SSTC98] (Theorem A.1). A special case of this
theorem that we need for the proof of that lemma is stated below:

Lemma 3.16. ( [SSTC98], Theorem A.1) Consider system (3.2.1) and assume λ1 < λ2. There
exists a C∞-smooth change of coordinates which brings system (3.2.1) to the form

(3.2.20)

u̇1 = −λ1u1 + f11(u1, u2, v1, v2)u1 + f12(u1, u2, v1, v2)u2,

u̇2 = −λ2u2 + f21(u1, u2, v1, v2)u1 + f22(u1, u2, v1, v2)u2,

v̇1 = +λ1v1 + g11(u1, u2, v1, v2)v1 + g12(u1, u2, v1, v2)v2,

v̇2 = +λ2v2 + g21(u1, u2, v1, v2)v1 + g22(u1, u2, v1, v2)v2,

where the functions fij, gij are C∞-smooth and

(3.2.21)

fij (0, 0, 0, 0) = 0, gij (0, 0, 0, 0) = 0,

f1i (u1, u2, 0, 0) ≡ 0, g1i (0, 0, v1, v2) ≡ 0,

fj1 (0, 0, v1, v2) ≡ 0, gj1 (u1, u2, 0, 0) ≡ 0, (i, j = 1, 2).

As a matter of comparison between this lemma and Lemma 3.6, the functions fi1 and gi1 (i = 1, 2)
in (3.2.5) do not depend on u2 and v2, respectively, and (3.2.6) includes all conditions (3.2.21) as well
as two extra constraints

(3.2.22) f22(0, v) ≡ 0,

and

(3.2.23) g22(u, 0) ≡ 0.

To obtain the statement of Lemma 3.16 from Theorem A.1 in [SSTC98], it is sufficient to ignore
the dependence of the system in that theorem on the parameter µ and put m1 = m2 = n1 = n2 = 1,
x = u1, u = u2, y = v1, v = v2, A1 = −λ1, A2 = −λ2, B1 = λ1 and B2 = λ2. Here, we sketch a proof
of this lemma (mainly those parts of the proof that we need later in this thesis) and refer the reader
for further details to Appendix A in [SSTC98].
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Sketch of proof of Lemma 3.16. We can recast system (3.2.1) into the form

(3.2.24)

u̇1 = −λ1u1 +R1 (u1, u2) + ϕ1 (v1, v2)u1 + ϕ2 (v1, v2)u2 + . . .

u̇2 = −λ2u2 +R2 (u1, u2) + ϕ3 (v1, v2)u1 + ϕ4 (v1, v2)u2 + . . .

v̇1 = +λ1v1 + P1 (v1, v2) + ψ1 (u1, u2) v1 + ψ2 (u1, u2) v2 + . . .

v̇2 = +λ2v2 + P2 (v1, v2) + ψ3 (u1, u2) v1 + ψ4 (u1, u2) v2 + . . . ,

where

(3.2.25)

Ri = fi1(u1, u2, 0, 0)u1 + fi2(u1, u2, 0, 0)u2,

Pi = gi1(0, 0, v1, v2)v1 + gi2(0, 0, v1, v2)v2,

ϕ1 = f11(0, 0, v1, v2), ϕ2 = f12(0, 0, v1, v2),

ϕ3 = f21(0, 0, v1, v2), ϕ4 = f22(0, 0, v1, v2),

ψ1 = g11(u1, u2, 0, 0), ψ2 = g12(u1, u2, 0, 0),

ψ3 = g21(u1, u2, 0, 0), ψ4 = g22(u1, u2, 0, 0),

and

(3.2.26)

Ri(u1, u2) = R̃i1(u1, u2)u1 + R̃i2(u1, u2)u2,

Pi(v1, v2) = P̃i1(v1, v2)v1 + P̃i2(v1, v2)v2,

R̃ij(0, 0) ≡ 0, P̃ij(0, 0) ≡ 0,

ϕj(0, 0) ≡ 0, ψj(0, 0) ≡ 0,

and the dots stand for some terms which we will hereafter call negligible: in the first two equations
these are the terms of the form f̃(u1, u2, v1, v2)u1 and f̃(u1, u2, v1, v2)u2 such that

(3.2.27) f̃(0, 0, v1, v2) ≡ 0, f̃(u1, u2, 0, 0) ≡ 0,

and in the last two equations these are the terms of the form g̃(u1, u2, v1, v2)v1 and g̃(u1, u2, v1, v2)v2

such that

(3.2.28) g̃(0, 0, v1, v2) ≡ 0, g̃(u1, u2, 0, 0) ≡ 0.

The proof of this lemma is reduced to eliminating the underlined terms in (3.2.24). To kill these
terms we will carry out a series of consecutive changes of variables

(3.2.29)
ξ1 = u1 + h1(v1, v2)u1, ξ2 = u2 + h2(v1, v2)u1,
η1 = v1, η2 = v2,

where hi(0, 0) = 0;

(3.2.30)
ξ1 = u1, ξ2 = u2,
η1 = v1 + s1(u1, u2)v1, η2 = v2 + s2(u1, u2)v1,

where si(0, 0) = 0;

(3.2.31)
ξ1 = u1 + r1(u1, u2)u1 + r2(u1, u2)u2, ξ2 = u2,
η1 = v1, η2 = v2,

where ri(0, 0) = 0; and

(3.2.32)
ξ1 = u1, ξ2 = u2,
η1 = v1 + p1(v1, v2)v1 + p2(v1, v2)v2, η2 = v2,
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where pi(0, 0) = 0.
The change of variables (3.2.29) removes terms ϕ1 and ϕ3 in system (3.2.24). By a change of

variables (3.2.30) we eliminate the terms ψ1 and ψ3. By a change of variables (3.2.31) we eliminate
the terms R1. Finally, by a change of variables (3.2.32) we eliminate the terms P1, thereby reducing
the original system to the desired form.

Consider the system

(3.2.33)

U̇1 = −ϕ1 + ϕ2U2 − ϕ1U1 + ϕ2U1U2,

U̇2 = (λ1 − λ2)U2 − ϕ3 + (ϕ4 − ϕ1)U2 + ϕ2U
2
2 ,

v̇1 = λ1v1 + P1,

v̇2 = λ2v2 + P2,

where (U1, U2, v1, v2) ∈ R4. This system possesses a two dimensional strongly unstable invariant
manifold defined by the equation {U1 = h1 (v1, v2) , U2 = h2 (v1, v2)} for some functions h1 and h2.
As it is shown in [SSTC98], these h1 and h2 can be chosen as the desired h1 and h2 in change of
coordinates (3.2.29). After making this change of coordinates, our system takes the form (3.2.24),
where ϕ1 ≡ 0 and ϕ3 ≡ 0.

To show that s1 and s2 in (3.2.30) exists, consider the system

(3.2.34)

u̇1 = −λ1u1 +R1,

u̇2 = −λ2u2 +R2,

V̇1 = −ψ1 + ψ2V2 − V1ψ1 + ψ2V1V2,

V̇2 = (λ2 − λ1)V2 − ψ3 + (ψ4 − ψ1)V2 + ψ2V
2

2 ,

where (u1, u2, V1, V2) ∈ R4. This system possesses a two dimensional strongly stable invariant manifold
defined by the equation {V1 = s1 (u1, u2) , V2 = s2 (u1, u2)}. As it is shown in [SSTC98], the functions
s1 and s2 in this equation can be chosen as the desired s1 and s2 in change of coordinates (3.2.30).

After making changes of coordinates (3.2.29) and (3.2.30), system (3.2.1) takes the form (3.2.24),
where ϕ1 ≡ 0, ϕ3 ≡ 0, ψ1 ≡ 0 and ψ3 ≡ 0.

Now, consider the system

(3.2.35)

u̇1 = −λ1u1 +R1 (u1, u2) ,

u̇2 = −λ2u2 +R2 (u1, u2) ,

V̇1 = − (1 + V1) R̃11 − V2R̃21,

V̇2 = (λ2 − λ1)V2 − (1 + V1) R̃12 − R̃22V2,

where (u1, u2, V1, V2) ∈ R4. This system possesses a two dimensional strongly stable invariant manifold
defined by the equation {V1 = r1 (u1, u2) , V2 = r2 (u1, u2)} for some functions r1 and r2. As it is shown
in [SSTC98], these r1 and r2 can be chosen as the desired r1 and r2 in change of coordinates (3.2.31).

So far, changes of coordinates (3.2.29), (3.2.30) and (3.2.31) have reduced system (3.2.1) to the
form (3.2.24), where ϕ1 ≡ 0, ϕ3 ≡ 0, ψ1 ≡ 0, ψ3 ≡ 0 and R1 ≡ 0. Now, consider the system

(3.2.36)

U̇1 = − (1 + U1) P̃11 − P̃21U2,

U̇2 = (λ1 − λ2)U2 − (1 + U1) P̃12 − P̃22U2,

v̇1 = λ1u1 + P1 (v1, v2) ,

v̇2 = λ2u2 + P2 (v1, v2) ,

where (U1, U2, v1, v2) ∈ R4. This system possesses a two dimensional strongly unstable invariant
manifold defined by the equation {U1 = p1 (v1, v2) , U2 = p2 (v1, v2)} for some functions p1 and p2.
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As it is shown in [SSTC98], these p1 and p2 can be chosen as the desired p1 and p2 in change of
coordinates (3.2.32).

Applying changes of coordinates (3.2.29), (3.2.30), (3.2.31) and (3.2.30) reduces system (3.2.1) to
the form (3.2.24), where ϕ1 ≡ 0, ϕ3 ≡ 0, ψ1 ≡ 0, ψ3 ≡ 0, R1 ≡ 0 and P1 ≡ 0. This ends the sketch of
proof of Lemma 3.16.

As it was mentioned above, the desired change of coordinates in Lemma 3.16 is in fact a composition
of several changes of coordinates, each describing some invariant manifolds. We do not explain it in
detail and refer the reader to [SSTC98] for further information. However, the technique which is used
in [SSTC98] to derive these changes of coordinates is also used here explicitly in the proof of Lemma
3.6 (specifically, changes of coordinates (3.2.39) and (3.2.40)).

Proof of Lemma 3.6. According to Lemmas 3.5 and 3.16, there exists a change of coordinates which
brings system (1.2.3) to system (3.2.20) where the functions fij , gij are C∞-smooth and satisfy (3.2.21).
We show that there exists a change of coordinates which brings system (3.2.20) into the form (3.2.5),
where fij , gij are C∞-smooth and satisfy (3.2.6).

Consider system (3.2.20) and let

fnew
i1 (u1, v) = fi1(u1, 0, v1, v2),

fnew
i2 (u1, u2, v) =

[
fi1(u1, u2, v1, v2)− fi1(u1, 0, v1, v2)

u2

]
u1 + fi2(u1, u2, v1, v2),

gnew
i1 (u, v1) = gi1(u1, u2, v1, 0),

gnew
i2 (u, v1, v2) =

[
gi1(u1, u2, v1, v2)− gi1(u1, u2, v1, 0)

v2

]
v1 + gi2(u1, u2, v1, v2),

for i = 1, 2. It is easily seen that {fnew
ij } and {gnew

ij } satisfy (3.2.21). Thus, by rewriting system
(3.2.20) with {fnew

ij } and {gnew
ij }, this system takes the form (3.2.5) such that (3.2.21) holds.

From now on, we assume that system (3.2.5) is given such that fij and gij satisfy (3.2.21). Recast
this system in the form

(3.2.37)

u̇1 = −λ1u1 + f11(u1, v)u1 + f12(u1, u2, v)u2,

u̇2 = −λ2u2 + f21(u1, v)u1 + J1(u, v)u2 + J2(v)u2,

v̇1 = +λ1v1 + g11(u, v1)v1 + g12(u, v1, v2)v2,

v̇2 = +λ2v2 + g21(u, v1)v1 + J3(u, v)v2 + J4(u)v2,

where

(3.2.38)
J1(u, v) = f22(u, v)− f22(0, v), J2(v) = f22(0, v),

J3(u, v) = g22(u, v)− g22(u, 0), J4(u) = g22(u, 0).

In order to obtain conditions (3.2.22) and (3.2.23), we need to find a change of coordinates which
eliminates the underlined terms in (3.2.37). We claim that this is possible by applying two consecutive
C∞-smooth changes of coordinates of the form

(3.2.39)
ũ1 = u1, ũ2 = u2 + q1(v1, v2)u2,
ṽ1 = v1, ṽ2 = v2,

and

(3.2.40)
ũ1 = u1, ũ2 = u2,
ṽ1 = v1, ṽ2 = v2 + q2(u1, u2)v2,
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where q1 and q2 are some functions such that q1 (0) = q2 (0) = 0. We show that the underlined terms
J2(v)u2 and J4(u)v2 can be eliminated by applying a change of coordinates of forms (3.2.39) and
(3.2.40), respectively.

Applying the change of coordinates (3.2.39) brings system (3.2.37) to the form

(3.2.41)

u̇1 = −λ1u1 + [f11(u1, v)]u1 +

f12

(
u1,

u2
1+q1(v) , v

)
1 + q1(v)

u2,

u̇2 = −λ2u2 +
[

(1 + q1(v)) f21 (u1, v)
]
u1 +Q1(u, v)u2 +Q2(v)u2

v̇1 = λ1v1 +

[
g11

(
u1,

u2

1 + q1(v)
, v1

)]
v1 +

[
g12

(
u1,

u2

1 + q1(v)
, v1, v2

)]
v2,

v̇2 = λ2v2 +

[
g21

(
u1,

u2

1 + q1(v)
, v1

)]
v1 +

[
g22

(
u1,

u2

1 + q1(v)
, v

)
v2

]
v2,

where

Q1(u, v) =J1

(
u1,

u2

1 + q1 (v)
, v

)
+

q1v1 (v)

1 + q1(v)
·

[
g11

(
u1,

u2

1 + q1(v)
, v1

)
v1

+ g12

(
u1,

u2

1 + q1(v)
, v

)
v2

]
+

q1v2 (v)

1 + q1(v)
·

[
g21

(
u1,

u2

1 + q1(v)
, v1

)
v1

+ g22

(
u1,

u2

1 + q1(v)
, v

)
v2 − g21 (0, v1) v1 − g22 (0, v) v2

]
,

and

(3.2.42) Q2(v) = J2(v) +
λ1q1v1(v)v1 + q1v2(v)

(
λ2v2 + g21(0, v1)v1 + g22(0, v)v2

)
1 + q1(v)

.

It is easy to see that Q1 vanishes at u = 0 and also the updated fij and gij in system (3.2.41) satisfy
all the conditions (3.2.6) except for (3.2.22) and (3.2.23). In order to get (3.2.22), it is sufficient to
find q1(v) such that Q2(v) ≡ 0, i.e. q1(v) satisfies the relation

(3.2.43) − (1 + q1(v)) J2(v) = q1v1(v) ·
[
λ1v1

]
+ q1v2(v) ·

[
λ2v2 + g21(0, v1)v1 + g22(0, v)v2

]
.

Consider the C∞-smooth system

(3.2.44)

U̇ = − (1 + U) J2(v),

v̇1 = λ1v1,

v̇2 = λ2v2 + g21(0, v1)v1 + g22(0, v)v2,

where (U, v1, v2) ∈ R3. The linear part of this system at the origin is 0 ∂J2
∂v1

(0) ∂J2
∂v2

(0)

0 λ1 0
0 0 λ2

 ,

with the spectrum {0, λ1, λ2}. Therefore, this system has a C∞-smooth 2-dimensional local unstable
invariant manifold defined by the equation {U = q1 (v1, v2)} for some function q1. Moreover, this
function satisfies (3.2.43) because this relation is nothing but the condition of the invariance of the
local unstable invariant manifold with respect to the flow of system (3.2.44) (see Definition 2.14).
Thereby, as we required, a C∞-smooth function q1(v1, v2) that fulfills (3.2.43) exists.
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Now, consider system (3.2.37) such that J2 ≡ 0. Applying change of coordinates (3.2.40) reduces
this system to

(3.2.45)

u̇1 = −λ1u1 +

[
f11

(
u1, v1,

v2

1 + q2 (u)

)]
u1 +

[
f12

(
u, v1,

v2

1 + q2 (u)

)]
u2,

u̇2 = −λ2u2 +

[
f21

(
u1, v1,

v2

1 + q2 (u)

)]
u1 +

[
J1

(
u, v1,

v2

1 + q2 (u)

)]
u2,

v̇1 = +λ1v1 + [g11(u, v1)] v1 +

[
g12

(
u, v1,

v2

1 + q2 (u)

)]
v2,

v̇2 = +λ2v2 +
[

(1 + q2 (u)) g21(u, v1)
]
v1 +Q3(u, v)v2 +Q4(u)v2,

where,

Q3 (u, v) =J3

(
u, v1,

v2

1 + q2 (u)

)
+

q2u1 (u)

1 + q2 (u)
·

[
f11

(
u1, v1,

v2

1 + q2 (u)

)
u1

+ f12

(
u1, u2, v1,

v2

1 + q2 (u)

)
u2

]
+

q2u2 (u)

1 + q2 (u)
·

[
f21

(
u1, v1,

v2

1 + q2 (u)

)
u1

+ J1

(
u, v1,

v2

1 + q2 (u)

)
u2 − f21 (u1, 0)u1 − f22 (u, 0)u2

]
,

and

(3.2.46) Q4 (u) = J4 (u) +
−λ1q2u1 (u)u1 + q2u2 (u) (−λ2u2 + f21 (u1, 0)u1 + J1 (u, 0)u2)

1 + q2 (u)
.

It is easy to see that Q3 vanishes at v = 0 and also the updated fij and gij in system (3.2.45) satisfy
all the conditions in (3.2.6) except identity (3.2.23). In order to get (3.2.23), it is sufficient to find
q2(u) such that Q4(v) ≡ 0, i.e. q2(u) satisfies the relation

(3.2.47) − (1 + q2 (u)) J4 (u) = q2u1 (u) · [−λ1u1] + q2u2 (u) · [−λ2u2 + f21 (u1, 0)u1 + J1 (u, 0)u2] .

Consider the C∞-smooth system

(3.2.48)

u̇1 = −λ1u1,

u̇2 = −λ2u2 + f21 (u1, 0)u1 + J1 (u, 0)u2,

V̇ = − (1 + V ) J4 (u) ,

where (u1, u2, V ) ∈ R3. The linear part of this system at the origin is −λ1 0 0
0 −λ2 0

∂J4
∂u1

(0) ∂J4
∂u2

(0) 0

 ,

with the spectrum {−λ2,−λ1, 0}. Therefore, this system has a C∞-smooth two dimensional local
stable invariant manifold defined by the equation {V = q2 (u1, u2)} for some function q2. Moreover,
this function satisfies (3.2.47) because this relation is nothing but the condition of the invariance of
the local stable invariant manifold with respect to the flow of system (3.2.48) (see Definition 2.14).
Thereby, as we required, a C∞-smooth function q2(u1, u2) that fulfills (3.2.47) exists.

So far, we have shown that applying the series of consecutive changes of coordinates (3.2.29),
(3.2.30), (3.2.31), (3.2.32), (3.2.39) and (3.2.40) reduces system (3.2.1) to system (3.2.5) such that
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(3.2.6) holds. Let us now prove that each of theses changes of coordinates commutes with symmetry
(1.2.5). According to Proposition 2.3, this implies that system (3.2.5) and the corresponding first
integral H are invariant with respect to this symmetry.

The invariance of system (3.2.1) with respect to symmetry (1.2.5) implies

f11 (u1, u2, v1, v2) = f11 (−u1, u2,−v1, v2) ,

f12 (u1, u2, v1, v2) = −f12 (−u1, u2,−v1, v2) ,

f21 (u1, u2, v1, v2) = −f21 (−u1, u2,−v1, v2) ,

f22 (u1, u2, v1, v2) = f22 (−u1, u2,−v1, v2) ,

and similarly
g11 (u1, u2, v1, v2) = g11 (−u1, u2,−v1, v2) ,

g12 (u1, u2, v1, v2) = −g12 (−u1, u2,−v1, v2) ,

g21 (u1, u2, v1, v2) = −g21 (−u1, u2,−v1, v2) ,

g22 (u1, u2, v1, v2) = g22 (−u1, u2,−v1, v2) .

Therefore, we have

(3.2.49)

R1 (u1, u2) = −R1 (−u1, u2) , R2 (u1, u2) = R2 (−u1, u2) ,

P1 (v1, v2) = −P1 (−v1, v2) , P2 (v1, v2) = P2 (−v1, v2) ,

ϕi (v1, v2) = ϕi (−v1, v2) , ϕj (v1, v2) = −ϕj (−v1, v2) ,

ψi (u1, u2) = ψi (−u1, u2) , ψj (u1, u2) = −ψj (−u1, u2) ,

for i = 1, 4 and j = 2, 3, and

(3.2.50)

R̃11(u1, u2) = R̃11(−u1, u2), R̃12(u1, u2) = −R̃12(−u1, u2),

R̃21(u1, u2) = −R̃21(−u1, u2), R̃22(u1, u2) = R̃22(−u1, u2),

P̃11(v1, v2) = P̃11(−v1, v2), P̃12(v1, v2) = −P̃12(−v1, v2),

P̃21(v1, v2) = −P̃21(−v1, v2), P̃22(v1, v2) = P̃22(−v1, v2).

According to (3.2.49), system (3.2.33) is invariant with respect to the symmetry (U2, v1)↔ (−U2,−v1).
Therefore, by Proposition 2.24, we have

(3.2.51) h1 (v1, v2) = h1 (−v1, v2) , h2 (v1, v2) = −h2 (−v1, v2) .

This implies that the change of coordinates (3.2.29) commutes with symmetry (1.2.5).
According to (3.2.49), system (3.2.34) is invariant with respect to the symmetry (u1, V2) ↔

(−u1,−V2). Therefore, by Proposition 2.24, we have

(3.2.52) s1 (u1, u2) = s1 (−u1, u2) , s2 (u1, u2) = −s2 (−u1, u2) .

This implies that change of coordinates (3.2.30) commutes with symmetry (1.2.5).
According to (3.2.49) and (3.2.50), system (3.2.35) is invariant with respect to the symmetry

(u1, V2)↔ (−u1,−V2). Therefore, by Proposition 2.24, we have

(3.2.53) r1 (u1, u2) = r1 (−u1, u2) , r2 (u1, u2) = −r2 (−u1, u2) .

This implies that change of coordinates (3.2.31) commutes with symmetry (1.2.5).
According to (3.2.49) and (3.2.50), system (3.2.36) is invariant with respect to the symmetry

(U2, v1)↔ (−U2,−v1). Therefore, by Proposition 2.24, we have

(3.2.54) p1 (v1, v2) = p1 (−v1, v2) , p2 (v1, v2) = −p2 (−v1, v2) .
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This implies that change of coordinates (3.2.32) commutes with symmetry (1.2.5).
Since the changes of coordinates listed above commute with symmetry (1.2.5), we have that system

(3.2.37) is invariant with respect to this symmetry. This yields

(3.2.55)

f11 (u1, v1, v2) = f11 (−u1,−v1, v2) , f12 (u1, u2, v1, v2) = −f12 (−u1, u2,−v1, v2) ,

f21 (u1, v1, v2) = −f21 (−u1,−v1, v2) , f22 (u1, u2, v1, v2) = f22 (−u1, u2,−v1, v2) ,

g11 (u1, u2, v1) = g11 (−u1, u2,−v1) , g12 (u1, u2, v1, v2) = −g12 (−u1, u2,−v1, v2) ,

g21 (u1, u2, v1) = −g21 (−u1, u2,−v1) , g22 (u1, u2, v1, v2) = g22 (−u1, u2,−v1, v2) ,

J1 (u1, u2, v1, v2) = J1 (−u1, u2,−v1, v2) , J3 (u1, u2, v1, v2) = J3 (−u1, u2,−v1, v2) ,

J2 (v1, v2) = J2 (−v1, v2) , J4 (u1, u2) = J4 (−u1, u2) .

This implies that system (3.2.44) is invariant with respect to symmetry v1 ↔ −v1. Therefore, by
Proposition 2.24, we have q1 (v1, v2) = q1 (−v1, v2). This means that change of coordinates (3.2.39)
commutes with symmetry (1.2.5).

According to (3.2.55), system (3.2.48) is invariant with respect to the symmetry u1 ↔ −u1.
Therefore, Proposition 2.24 implies q2 (u1, u2) = q2 (−u1, u2). Consequently, change of coordinates
(3.2.40) commutes with symmetry (1.2.5).

Note that by (3.2.51), (3.2.52), (3.2.53) and (3.2.54), we have

(3.2.56) h2(0, v2) = 0, s2(0, u2) = 0, r2(0, u2) = 0, p2(0, v2) = 0.

We have proved that each of the changes of coordinates we made to obtain system (3.2.5) from
system (1.2.3) commutes with symmetry (1.2.5). This implies that system (3.2.5) and its corresponding
first integral H are invariant with respect to that symmetry. To finish the proof of Lemma 3.6, we
need to show that making changes of coordinates (3.2.29), (3.2.30), (3.2.31), (3.2.32), (3.2.39) and
(3.2.40) transforms first integral (3.2.3) to the form (3.2.7). To do this, first, observe that according
to (3.2.56), each of these changes of coordinates can be written in the form

(3.2.57)
ũ1 = u1 [1 + o (1)] , ũ2 = u2 [1 + o (1)] + u1v1O (1) ,
ṽ1 = v1 [1 + o (1)] , ṽ2 = v2 [1 + o (1)] + u1v1O (1) ,

where o (1) and O (1) stand for C∞-smooth functions of (u, v) which converge to zero and are bounded
above by a constant, respectively, as (u, v) → O. On the other hand, the form (3.2.3) of the first
integral H is already of the form (3.2.7). Thus, we will be done once we show that making a change of
coordinates of the form (3.2.57) preserves the form (3.2.7) of the first integral. According to (3.2.57),

(3.2.58)
u1 = ũ1 [1 + o(1)] , u2 = ũ2 [1 + o(1)] + ũ1ṽ1O(1),
v1 = ṽ1 [1 + o(1)] , v2 = ṽ2 [1 + o(1)] + ũ1ṽ1O(1).

Substituting (3.2.58) into H (u, v) = λ1u1v1 [1 + o(1)]− λ2u2v2 [1 + o(1)] gives

H (ũ, ṽ) = λ1ũ1ṽ1 [1 + o(1)]− λ2ũ2ṽ2 [1 + o(1)] + ũ1ṽ1O (|ũ2|+ |ṽ2|) + ũ2
1ṽ

2
1O (1)

= λ1ũ1ṽ1 [1 + o(1)]− λ2ũ2ṽ2 [1 + o(1)] ,

which is of the form (3.2.7). This ends the proof of Lemma 3.6.

Proof of Lemma 3.8. By Lemma 3.6, there exists a change of coordinates which commutes with sym-
metry (1.2.5) and brings system (1.2.3) and first integral (1.2.4) to (3.2.5) and (3.2.7), respectively.
According to Section 2.3 (see Theorem 2.16), system (3.2.5) possesses a Cq-smooth three dimensional
extended unstable invariant manifold W uE defined by

(3.2.59) {(u, v) : u2 = φuE (u1, v1, v2)},
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and a Cq-smooth extended stable invariant manifold W sE defined by

(3.2.60) {(u, v) : v2 = φsE (u1, u2, v1)}.

We claim that, straightening W uE , i.e. applying the Cq-smooth change of coordinates

(3.2.61)
ũ1 = u1, ũ2 = u2 − φuE (u1, v1, v2) ,
ṽ1 = v1, ṽ2 = v2,

and straightening W sE , i.e. applying the Cq-smooth change of coordinates

(3.2.62)
ũ1 = u1, ũ2 = u2,
ṽ1 = v1, ṽ2 = v2 − φsE (u1, u2, v1) ,

reduce system (3.2.5) to system (3.2.9), where (3.2.6) is satisfied, and transforms first integral (3.2.7)
to (3.2.10). On the other hand, thanks to Corollary 2.25, straightening these manifolds keeps the
invariance of system (3.2.5) and first integral (3.2.7) with respect to symmetry (1.2.5). Thus, we will
be done as soon as we prove this claim. To this end, we use the following lemma

Lemma 3.17. The following hold for the Cq-smooth functions φuE and φsE:

(i) φuE (0, v1, v2) ≡ φuEu1 (0, v1, v2) ≡ 0,

(ii) φsE (u1, u2, 0) ≡ φsEv1 (u1, u2, 0) ≡ 0.

The following are immediate consequences of this lemma:

Corollary 3.18. We can write φuE and φsE as

φuE (u1, v1, v2) = u1p
uE
1 (u1, v1, v2) = u2

1p
uE
2 (u1, v1, v2),

φsE (u1, u2, v1) = v1p
sE
1 (u1, u2, v1) = v2

1p
sE
2 (u1, u2, v1),

where psE1 and puE1 are some Cq−1-smooth functions and psE2 and puE2 are some Cq−2-smooth functions
such that puE1 = u1p

uE
2 and psE1 = v1p

sE
2 .

Corollary 3.19. We have

(i) φuEv1 (0, v1, v2) ≡ φuEv2 (0, v1, v2) ≡ 0,

(ii) φsEu1 (u1, u2, 0) ≡ φsEu2 (u1, u2, 0) ≡ 0.

We prove Lemma 3.17 later. For now, let us see how change of coordinates (3.2.61) affects system
(3.2.5): this change of coordinates reduces system (3.2.5) to
(3.2.63)

u̇1 =− λ1u1 + f11(u1, v)u1 + f12

(
u1, u2 + φuE (u1, v) , v

) (
u2 + φuE (u1, v)

)
,

u̇2 =− λ2

(
u2 + φuE (u1, v)

)
+ f21(u1, v)u1 + f22(u1, u2 + φuE (u1, v) , v)

(
u2 + φuE (u1, v)

)
− φuEu1 (u1, v) ·

[
−λ1u1 + f11(u1, v)u1 + f12

(
u1, u2 + φuE (u1, v) , v

) (
u2 + φuE (u1, v)

)]
− φuEv1 (u1, v) ·

[
λ1v1 + g11(u1, u2 + φuE (u1, v) , v1)v1 + g12

(
u1, u2 + φuE (u1, v) , v

)
v2

]
− φuEv2 (u1, v) ·

[
λ2v2 + g21(u1, u2 + φuE (u1, v) , v1)v1 + g22

(
u1, u2 + φuE (u1, v) , v

)
v2

]
,

v̇1 = + λ1v1 + g11

(
u1, u2 + φuE (u1, v) , v1

)
v1 + g12

(
u1, u2 + φuE (u1, v) , v1, v2

)
v2,

v̇2 = + λ2v2 + g21

(
u1, u2 + φuE (u1, v) , v1

)
v1 + g22

(
u1, u2 + φuE (u1, v) , v1, v2

)
v2,

where, fij and gij are as in (3.2.5).
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Denote the right-hand side of the second equation of (3.2.63) by Q(u1, u2, v1, v2). Since Q vanishes
at {u2 = 0}, we can rewrite

u̇2 = Q(u1, u2, v1, v2)−Q(u1, 0, v1, v2).

We recast system (3.2.63) in the form

(3.2.64)

u̇1 = −λ1u1 + f̃11 (u1, v)u1 + f̃12 (u1, u2, v)u2,

u̇2 = −λ2u2 + f̃22 (u1, u2, v)u2,

v̇1 = +λ1v1 + g̃11 (u, v1) v1 + g̃12 (u, v1, v2) v2,

v̇2 = +λ2v2 + g̃21 (u, v1) v1 + g̃22 (u, v1, v2) v2,

where
f̃11 (u1, v) =f11 (u1, v) + f12

(
u1, φ

uE (u1, v) , v
)
puE1 (u1, v) ,

f̃12 (u, v) =f12

(
u1, u2 + φuE (u1, v) , v

)
+ P1 (u, v)φuE (u1, v) ,

f̃22 (u, v) =f22

(
u1, u2 + φuE (u1, v) , v

)
+ P2 (u, v)φuE (u1, v)

− φuEu1 (u1, v)
[
f12

(
u1, u2 + φuE (u1, v) , v

)
+ P3 (u, v)φuE (u1, v)

]
− φuEv1 (u1, v)

[
P4 (u, v) v1 + P5 (u, v) v2

]
− φuEv2 (u1, v)

[
P6 (u, v) v1 + P7 (u, v) v2

]
,

g̃i1 (u, v1) =gi1
(
u1, u2 + φuE (u1, v) , v1

)
, (i = 1, 2),

g̃i2 (u, v) =gi2
(
u1, u2 + φuE (u1, v) , v

)
, (i = 1, 2),

and
u2P1 (u, v) = f12

(
u1, u2 + φuE (u1, v) , v

)
− f12

(
u1, φ

uE (u1, v) , v
)
,

u2P2 (u, v) = f22

(
u1, u2 + φuE (u1, v) , v

)
− f22

(
u1, φ

uE (u1, v) , v
)
,

u2P3 (u, v) = f12

(
u1, u2 + φuE (u1, v) , v

)
− f12

(
u1, φ

uE (u1, v) , v
)
,

u2P4 (u, v) = g11

(
u1, u2 + φuE (u1, v) , v1

)
− g11

(
u1, φ

uE (u1, v) , v1

)
,

u2P5 (u, v) = g12

(
u1, u2 + φuE (u1, v) , v

)
− g12

(
u1, φ

uE (u1, v) , v
)
,

u2P6 (u, v) = g21

(
u1, u2 + φuE (u1, v) , v1

)
− g21

(
u1, φ

uE (u1, v) , v1

)
,

u2P7 (u, v) = g22

(
u1, u2 + φuE (u1, v) , v

)
− g22

(
u1, φ

uE (u1, v) , v
)
.

Here f̃ij are Cq−1-smooth and g̃ij are Cq-smooth. Using Lemma 3.17 and Corollaries 3.18 and 3.19
and taking into account that the expression u2 + φuE (u1, v) vanish at u = 0 and also the functions
fij and gij satisfy (3.2.6), one can easily show that f̃ij and g̃ij satisfy (3.2.6) as well.

System (3.2.64) is of the form (3.2.5) where f21 (u1, v) ≡ 0. Similar to the case of straightening
the extended unstable manifold, one can use Lemma 3.17 and Corollaries 3.18 and 3.19 and show that
making change of coordinates (3.2.62) reduces system (3.2.64) to system (3.2.9) where the correspond-
ing fij and gij are Cq−1-smooth and satisfy (3.2.6). This ends the proof of the first part of Lemma
3.8.

Denote the H1 and H2 in (3.2.7) by H◦1 and H◦2 , respectively, and let x := (u1, u2, v1), y :=(
u1, v1, v2 + φsE (x)

)
and z :=

(
u1, u2 + φuE (y) , v1, v2 + φsE (x)

)
. Applying changes of coordinates

(3.2.61) and (3.2.62) brings (3.2.7) to

H =λ1u1v1 [1 +H◦1 (z)]− λ2

(
u2 + φuE (y)

) (
v2 + φsE (x)

)
[1 +H◦2 (z)] ,
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which by Corollary 3.18, can be written in the form (3.2.10), for

H1 = H◦1 (z) + λ2λ
−1
1 puE1 (y) psE1 (x) [1 +H◦2 (z)] , H2 = H◦2 ,

H3 = psE2 (x) [1 +H◦2 (z)] , H4 = puE2 (y) [1 +H◦2 (z)] .

This proves the second part of Lemma 3.8.
All that remains to finish the proof of Lemma 3.8 is proving Lemma 3.17. We only prove part (i)

of this lemma; the proof of part (ii) is the same. The first identity

(3.2.65) φuE (0, v1, v2) ≡ 0,

is an immediate consequence of the fact that the extended unstable invariant manifold W uE contains
the unstable invariant manifold {u1 = u2 = 0} (see Section 2.3.2). Indeed,

∀v1, v2, (0, 0, v1, v2) ∈
{

(u, v) : u2 = φuE (u1, v1, v2)
}

=⇒∀v1, v2, φuE (0, v1, v2) = 0 =⇒ φuE (0, v1, v2) ≡ 0.

It is important to notice that relation (3.2.65) is sufficient to obtain the statement of part I of
Corollary 3.19. In other words, (3.2.65) implies part I of Corollary 3.19.

To prove the identity

(3.2.66) φuEu1 (0, v1, v2) ≡ 0,

we consider the condition of the invariance of the manifold W uE with respect to the flow of system
(3.2.5) (see Definition 2.14), i.e.

−λ2φ
uE (u1, v) + f21 (u1, v)u1 + f22

(
u1, φ

uE (u1, v) , v
)
φuE (u1, v) =

φuEu1 (u1, v)
[
− λ1u1 + f11 (u1, v)u1 + f12

(
u1, φ

uE (u1, v) , v
)
φuE (u1, v)

]
+ φuEv1 (u1, v)

[
λ1v1 + g11

(
u1, φ

uE (u1, v) , v1

)
v1 + g12

(
u1, φ

uE (u1, v) , v
)
v2

]
+ φuEv2 (u1, v)

[
λ2v2 + g21

(
u1, φ

uE (u1, v) , v1

)
v1 + g22

(
u1, φ

uE (u1, v) , v
)
v2

]
.

Both sides of this relation are Cq−1-smooth (q ≥ 2 because 2λ1 < λ2) functions of u1, v1 and v2.
Taking (3.2.65) as well as conditions (3.2.6) and Corollary 3.19 into account, we can differentiate this
relation with respect to u1 at u1 = 0 and obtain

(3.2.67)
0 =

[
(λ2 − λ1)φuEu1 (0, v) + f12(0, v)

(
φuEu1 (0, v)

)2]
+
[
λ1v1

]
φuEu1v1 (0, v)

+
[
λ2v2 + g21(0, v1)v1 + g22(0, v)v2

]
φuEu1v2 (0, v) .

We introduce the notation z = z(v) = φuEu1 (0, v). Using this notation, (3.2.67) can be written as

(3.2.68)

0 =
[
(λ2 − λ1) z + f12(0, v)z2

]
+
[
λ1v1

]
· ∂

∂v1
z(v)

+
[
λ2v2 + g21(0, v1)v1 + g22(0, v)v2

]
· ∂

∂v2
z(v),

where z(0) = 0 (note that φuEu1 (0, 0, 0) = 0).
To get (3.2.66), we need to show z (v) ≡ 0. First, note that z (v) ≡ 0 satisfies (3.2.68). Thus,

(3.2.66) holds if we show that z ≡ 0 is the unique solution of (3.2.68). Note that, according to
Proposition 2.13, z (v) satisfies (3.2.68) if and only if the two dimensional manifold

(3.2.69)
{

(v, z) : z = z (v) and z (0) = 0
}
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be invariant with respect to the flow of the Cq−1-smooth system

(3.2.70)

v̇1 = −λ1v1,

v̇2 = −λ2v2 − g21(0, v1)v1 − g22(0, v)v2,

ż = (λ2 − λ1) z + f12(0, v)z2,

which is defined on a small neighborhood of the origin in R3. (Indeed, relation (3.2.68) is the condition
of the invariance of (3.2.69) with respect to the flow of system (3.2.70).) Therefore, the uniqueness of
the solution of (3.2.68) can be proved by showing that system (3.2.70) has a unique invariant manifold
of the form (3.2.69). To do this, first, notice that this system possesses a unique two dimensional
stable invariant manifold of the form (3.2.69). Second, we observe that any orbit on manifold (3.2.69)
converges to the origin of system (3.2.70): the first two equations in (3.2.70) are independent of z
and have (v1, v2) = (0, 0) as an asymptotically stable equilibrium. Therefore, as t → ∞, an orbit
(v(t), z(v(t))) of system (3.2.70) which belongs to invariant manifold (3.2.69) converges to (0, z (0)).
Since z (0) = 0, this means that any invariant manifold of the form (3.2.70) must be a subset of the
stable manifold of system (3.2.70). However, since both manifolds are 2-dimensional, they must be
the same. Therefore, system (3.2.70) has a unique invariant manifold of the form (3.2.69) which is in
fact its stable invariant manifold. This ends the proof of Lemma 3.17 and hence the proof of Lemma
3.8.

3.3. Trajectories near the equilibrium state O

In this section, we will estimate solutions of systems (3.2.1), (3.2.5) and (3.2.9) near the equilibrium
state O by using the technique of successive approximations (see Section 2.2). Consider the system

(3.3.1)

u̇1 = −λ1u1 + F1 (u1, u2, v1, v2) ,

u̇2 = −λ2u2 + F2 (u1, u2, v1, v2) ,

v̇1 = +λ1v1 +G1 (u1, u2, v1, v2) ,

v̇2 = +λ2v2 +G2 (u1, u2, v1, v2) ,

where F1, F2, G1 and G2 and their first derivatives vanish at the origin. According to Theorem
2.7, for given τ ≥ 0 and sufficiently small u10, u20, v1τ and v2τ there exists a unique solution
(u1 (t) , u2 (t) , v1 (t) , v2 (t)) of system (3.3.1) such that

(3.3.2) u1 (0) = u10, u2 (0) = u20, v1 (τ) = v1τ , v2 (τ) = v2τ .

The dependence of this solution on each of the variables τ , u10, u20, v1τ and v2τ is as smooth as the
original system (3.3.1).

The following lemmas estimate solutions of systems (3.2.1), (3.2.5) and (3.2.9) that satisfy bound-
ary condition (3.3.2).

Lemma 3.20. Let λ = λ1 = λ2. There exists M > 0 such that for any sufficiently small δ > 0, and
any u10, u20, v1τ and v2τ , where max{|u10|, |u20|, |v1τ |, |v2τ |} ≤ δ, the solution (u (t) , v (t)) of system
(3.2.1) that satisfies boundary condition (3.3.2) can be written as

(3.3.3)

u1(t) =e−λtu10 + ξ1 (t, τ, u10, u20, v1τ , v2τ ) ,

u2(t) =e−λtu20 + ξ2 (t, τ, u10, u20, v1τ , v2τ ) ,

v1(t) =e−λ(τ−t)v1τ + ζ1 (t, τ, u10, u20, v1τ , v2τ ) ,

v2(t) =e−λ(τ−t)v2τ + ζ2 (t, τ, u10, u20, v1τ , v2τ ) ,

where t ∈ [0, τ ], max{|ξ1|, |ξ2|} ≤Me−λtδ2 and max{|ζ1|, |ζ2|} ≤Me−λ(τ−t)δ2.
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Remark 3.21. For simplicity, we can write (3.3.3) as

(3.3.4)
u1(t) =e−λt

[
u10 +O

(
δ2
)]
, u2(t) = e−λt

[
u20 +O

(
δ2
)]
,

v1(t) =e−λ(τ−t) [v1τ +O
(
δ2
)]
, v2(t) = e−λ(τ−t) [v2τ +O

(
δ2
)]
.

Lemma 3.22. There exists M > 0 such that for any sufficiently small δ > 0, and any u10, u20,
v1τ and v2τ , where max{|u10|, |u20|, |v1τ |, |v2τ |} ≤ δ, the solution (u (t) , v (t)) of system (3.2.5) that
satisfies boundary condition (3.3.2) can be written as

(3.3.5)

u1(t) =e−λ1tu10 + ξ1 (t, τ, u10, u20, v1τ , v2τ ) ,

u2(t) =e−λ2tu20 + ξ2 (t, τ, u10, u20, v1τ , v2τ ) ,

v1(t) =e−λ1(τ−t)v1τ + ζ1 (t, τ, u10, u20, v1τ , v2τ ) ,

v2(t) =e−λ2(τ−t)v2τ + ζ2 (t, τ, u10, u20, v1τ , v2τ ) ,

where t ∈ [0, τ ] and

|ξ1| ≤M
[
e−λ1tδ|u10|+ e−λ1(τ−t)−λ2tδ|v1τ |

]
, |ξ2| ≤Me−λ2tδ2,

|ζ1| ≤M
[
e−λ1(τ−t)δ|v1τ |+ e−λ2(τ−t)−λ1tδ|u10|

]
, |ζ2| ≤Me−λ2(τ−t)δ2.

Remark 3.23. For simplicity, we can write (3.3.5) as

(3.3.6)
u1(t) =e−λ1tu10 [1 +O (δ)] + e−λ1(τ−t)−λ2tO (δv1τ ) , u2(t) = e−λ2t

[
u20 +O

(
δ2
)]
,

v1(t) =e−λ1(τ−t)v1τ [1 +O (δ)] + e−λ2(τ−t)−λ1tO (δu10) , v2(t) = e−λ2(τ−t)
[
v2τ +O

(
δ2
)]
.

Lemma 3.24. There exists M > 0 such that for any sufficiently small δ > 0, and any u10, u20,
v1τ and v2τ , where max{|u10|, |u20|, |v1τ |, |v2τ |} ≤ δ, the solution (u (t) , v (t)) of system (3.2.9) that
satisfies boundary condition (3.3.2) can be written in the form (3.3.5), where t ∈ [0, τ ] and

|ξ1| ≤M
[
e−λ1tδ|u10|+ e−λ1(τ+t)δ|v1τ |

]
, |ξ2| ≤Me−λ2tδ2,

|ζ1| ≤M
[
e−λ1(τ−t)δ|v1τ |+ e−λ1(2τ+t)δ|u10|

]
, |ζ2| ≤Me−λ2(τ−t)δ2.

Remark 3.25. For simplicity, we can write the solution given by Lemma 3.24 as

(3.3.7)
u1 (t) = e−λ1tu10 [1 +O (δ)] + e−λ1(τ+t)O (δv1τ ) , u2 (t) = e−λ2t

[
u20 +O

(
δ2
)]
,

v1 (t) = e−λ1(τ−t)v1τ [1 +O (δ)] + e−λ1(2τ−t)O (δu10) , v2 (t) = e−λ2(τ−t)
[
v2τ +O

(
δ2
)]
.

3.3.1. Our computational scheme

Here, we present the technique which is used in the proofs of preceding lemmas and Lemma 3.34
which is stated later. Consider system (3.3.1) and denote its unique solution that satisfies boundary
condition (3.3.2) by (u∗, v∗), where u∗ = (u∗1, u

∗
2) and v∗ = (v∗1, v

∗
2). We may also write this as

(3.3.8) (u∗, v∗) =
(
u∗ (t) , v∗ (t)

)
=
(
u∗ (t, τ, u10, u20, v1τ , v2τ ) , v∗ (t, τ, u10, u20, v1τ , v2τ )

)
,

to emphasise that in addition to time variable t, this solution explicitly depends on τ and the boundary
conditions u10, u20, v1τ and v2τ as well. Following the proof of Theorem 2.7, (u∗(t), v∗(t)) is a solution
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of this system with boundary conditions (3.3.2) if and only if

(3.3.9)

u∗1(t) =e−λ1tu10 +

∫ t

0
eλ1(s−t)F1 (u∗ (s) , v∗ (s)) ds,

u∗2(t) =e−λ2tu20 +

∫ t

0
eλ2(s−t)F2 (u∗ (s) , v∗ (s)) ds,

v∗1(t) =e−λ1(τ−t)v1τ −
∫ τ

t
e−λ1(s−t)G1 (u∗ (s) , v∗ (s)) ds,

v∗2(t) =e−λ2(τ−t)v2τ −
∫ τ

t
e−λ2(s−t)G2 (u∗ (s) , v∗ (s)) ds.

For a given τ , we denote by I the set of all vector valued functions (u1 (t) , u2 (t) , v1 (t) , v2 (t)) defined
for t ∈ [0, τ ] on some small neighborhood of the origin in R4. Then, the right-hand side of (3.3.9)
defines an integral operator on I, denote it by T, as follows:

T : (u1 (t) , u2 (t) , v1 (t) , v2 (t)) 7→ (u1 (t) , u2 (t) , v1 (t) , v2 (t)) ,

where

u1 (t) = e−λ1tu10 +

∫ t

0
eλ1(s−t)F1 (u (s) , v (s)) ds,

u2 (t) = e−λ2tu20 +

∫ t

0
eλ2(s−t)F2 (u (s) , v (s)) ds,

v1 (t) = e−λ1(τ−t)v1τ −
∫ τ

t
e−λ1(s−t)G1 (u (s) , v (s)) ds,

v2 (t) = e−λ2(τ−t)v2τ −
∫ τ

t
e−λ2(s−t)G2 (u (s) , v (s)) ds.

The solution (u∗(t), v∗(t)) is in fact the fixed point of this integral operator. It follows from the
proof of Theorem 2.7 that this integral operator is a contraction and its fixed point is the limit of the
sequence of successive approximations{(

u(n)(t), v(n)(t)
)

=
(
u

(n)
1 (t), u

(n)
2 (t), v

(n)
1 (t), v

(n)
2 (t)

)}n=∞

n=0
,

where
(
u(0), v(0)

)
≡ (0, 0) and(

u(n+1)(t), v(n+1)(t)
)

= T
(
u(n) (t) , v(n) (t)

)
, ∀n ≥ 0.

LetA be a closed subset of I such that (u (t) , v (t)) ≡ (0, 0) ∈ A and T (A) ⊂ A. Since
(
u(0), v(0)

)
≡

(0, 0) ∈ A, the invariance of A implies that
(
u(n)(t), v(n)(t)

)
belongs to A for all n > 0, and so does

the solution (u∗(t), v∗(t)).

Remark 3.26. Assume that there exists a ’certain estimate’ which for any arbitrary (u (t) , v (t)) ∈
A, its image T (u (t) , v (t)) satisfies. Therefore, since T (u∗, v∗) = (u∗, v∗), the solution (u∗, v∗) itself
satisfies that certain estimate as well.

Our approach for proving Lemmas 3.20, 3.22 and 3.24 (and Lemma 3.34) is based on this remark.
We construct the integral operator, introduce the invariant set A and find an estimate for the image
of the elements of this set under T. Then, this estimate holds for the solution (u∗, v∗) too.
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3.3.2. Proofs of Lemmas 3.20, 3.22 and 3.24

Proof of Lemma 3.20. We recast system (3.2.1) into the form (3.3.1), where

(3.3.10)

F1 (u, v) =f11 (u, v)u2
1 + f12 (u, v)u1u2 + f13 (u, v)u1v1 + f14 (u, v)u1v2

+ f15 (u, v)u2
2 + f16 (u, v)u2v1 + f17 (u, v)u2v2,

F2 (u, v) =f21 (u, v)u2
1 + f22 (u, v)u1u2 + f23 (u, v)u1v1 + f24 (u, v)u1v2

+ f25 (u, v)u2
2 + f26 (u, v)u2v1 + f27 (u, v)u2v2,

G1 (u, v) =g11 (u, v) v2
1 + g12 (u, v) v1v2 + g13 (u, v) v1u1 + g14 (u, v) v1u2

+ g15 (u, v) v2
2 + g16 (u, v) v2u1 + g17 (u, v) v2u2,

G2 (u, v) =g21 (u, v) v2
1 + g22 (u, v) v1v2 + g23 (u, v) v1u1 + g24 (u, v) v1u2

+ g25 (u, v) v2
2 + g26 (u, v) v2u1 + g27 (u, v) v2u2,

for some continuous functions fij and gij . Let Ω be a small compact neighborhood of O and define

(3.3.11) M∗ := sup
(u,v)∈Ω

{
|fij (u, v)|, |gij (u, v)|

}
.

Let δ > 0 be small and consider the set

(3.3.12)
A =

{(
u1(t), u2(t), v1(t), v2(t)

)
: |u1(t)|, |u2(t)| ≤ 2e−λtδ,

|v1(t)|, |v2(t)| ≤ 2e−λ(τ−t)δ
}
,

where (u1(t), u2(t), v1(t), v2(t)) is any continuous function defined on Ω for t ∈ [0, τ ].
We will first show that A is invariant with respect to the integral operator T, i.e. T (A) ⊆ A. By

(3.3.10), (3.3.11) and (3.3.12), for any (u1(t), u2(t), v1(t), v2(t)) in A, we have

(3.3.13)
max

{
|F1 (u (t) , v (t))| , |F2 (u (t) , v (t))|

}
≤M∗

(
12e−2λtδ2 + 16e−λτδ2

)
,

max
{
|G1 (u (t) , v (t))| , |G2 (u (t) , v (t))|

}
≤M∗

(
12e−2λ(τ−t)δ2 + 16e−λτδ2

)
.

Therefore ∣∣∣u1 (t)− e−λtu10

∣∣∣ =

∣∣∣∣ ∫ t

0
eλ(s−t)F1 (u (s) , v (s)) ds

∣∣∣∣ ≤ ∫ t

0
eλ(s−t)

∣∣∣F1 (u (s) , v (s))
∣∣∣ds

≤16M∗δ2

∫ t

0
eλ(s−t)

(
e−2λs + e−λτ

)
ds

=16M∗δ2λ−1
[
e−λt

(
1− e−λt

)
+ e−λ(t+τ)

(
eλt − 1

)]
≤16M∗δ2λ−1

(
e−λt + e−λτ

)
≤ 32M∗λ−1e−λtδ2.

The same holds for u2 (t), i.e.
∣∣u2 (t)− e−λtu20

∣∣ ≤ 32M∗λ−1e−λtδ2.
Concerning v1 (t), we have∣∣∣v1 (t)− e−λ(τ−t)v1τ

∣∣∣ =

∣∣∣∣ ∫ τ

t
eλ(t−s)G1 (u (s) , v (s)) ds

∣∣∣∣ ≤ ∫ τ

t
eλ(t−s)

∣∣∣G1 (u (s) , v (s))
∣∣∣ds

≤16M∗δ2

∫ τ

t
eλ(t−s)

(
e−2λ(τ−s) + e−λτ

)
=16M∗δ2λ−1

[
eλ(t−2τ)

(
eλτ − eλt

)
+ e−λ(τ−t)

(
e−λt − e−λτ

)]
≤16M∗δ2λ−1

(
e−λ(τ−t) + e−λτ

)
≤ 32M∗λ−1e−λ(τ−t)δ2,
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and the same holds for v2 (t), i.e.
∣∣v2 (t)− e−λ(τ−t)v2τ

∣∣ ≤ 32M∗λ−1e−λ(τ−t)δ2.

Let M = 32M∗λ−1 and choose δ sufficiently small such that Mδ < 1. Taking into account that
max{|u10|, |u20|, |v1τ |, |v2τ |} ≤ δ, we have

|u1 (t)| ≤ e−λtu10 +Me−λtδ2 ≤ 2e−λtδ,

|u2 (t)| ≤ e−λtu20 +Me−λtδ2 ≤ 2e−λtδ,

|v1 (t)| ≤ e−λ(τ−t)v1τ +Me−λ(τ−t)δ2 ≤ 2e−λ(τ−t)δ,

|v2 (t)| ≤ e−λ(τ−t)v2τ +Me−λ(τ−t)δ2 ≤ 2e−λ(τ−t)δ.

This implies (u1 (t) , u2 (t) , v1 (t) , v2 (t)) ∈ A as desired.

Meanwhile, we have shown that the image of any element of A under T can be written in the form
(3.3.3) such that the corresponding ξ1, ξ2, ζ1 and ζ2 satisfy the estimates given in the statement of
the lemma. However, since

(
u(0), v(0)

)
= (0, 0) ∈ A, it follows from Remark 3.26 that the same holds

for the solution (u (t) , v (t)) that satisfies boundary condition (3.3.2). This ends the proof of Lemma
3.20.

Proof of Lemma 3.22. By (3.2.6) and (3.2.4), we can write system (3.2.5) in the form (3.3.1), where

(3.3.14)

F1 (u, v) = f11 (u, v)u2
1 + f12 (u, v)u1u2 + f13 (u, v) v1u2,

F2 (u, v) = f21 (u, v)u2
1 + f22 (u, v)u1u2 + f23 (u, v)u2

2,

G1 (u, v) = g11 (u, v) v2
1 + g12 (u, v) v1v2 + g13 (u, v)u1v2,

G2 (u, v) = g21 (u, v) v2
1 + g22 (u, v) v1v2 + g23 (u, v) v2

2,

for some continuous functions fij and gij . Let Ω be a small compact neighborhood of O and define
M∗ as in (3.3.11). Let δ > 0 be small and consider the set

(3.3.15)

A =
{(
u1(t), u2(t), v1(t), v2(t)

)
:|u1(t)| ≤ 2e−λ1t|u10|+ e−λ1(τ−t)−λ2t|v1τ |,

|u2(t)| ≤ 2e−λ2tδ,

|v1(t)| ≤ 2e−λ1(τ−t)|v1τ |+ e−λ2(τ−t)−λ1t|u10|,

|v2(t)| ≤ 2e−λ2(τ−t)δ
}
,

where (u1(t), u2(t), v1(t), v2(t)) is any continuous function defined on Ω for t ∈ [0, τ ].

We first show that A is invariant with respect to the integral operator T, i.e. T (A) ⊆ A. By
(3.3.14), (3.3.11) and (3.3.15) and taking into account that λ2 < 2λ1 and max{|u10|, |u20|, |v1τ |, |v2τ |} ≤
δ, we have∣∣∣F1 (u (t) , v (t))

∣∣∣ ≤M∗δ[4e−2λ1t|u10|+ 4e−λ1τ−λ2t|u10|+ e−2λ1(τ−t)−2λ2t|v1τ |+ 4e−(λ1+λ2)t|u10|

+ 2e−λ1(τ−t)−2λ2t|v1τ |+ 4e−λ1(τ−t)−λ2t|v1τ |+ 2e−λ2τ−λ1t|u10|
]

≤M∗δ
[
14e−2λ1t|u10|+ 7e−λ1(τ−t)−λ2t|v1τ |

]
,∣∣∣F2 (u (t) , v (t))

∣∣∣ ≤M∗[4e−2λ1t + e−2λ1(τ−t)−2λ2t + 4e−λ1τ−λ2t + 4e−(λ1+λ2)t + 2e−λ1(τ−t)−2λ2t

+ 4e−2λ2t
]
δ2 ≤ 19M∗e−2λ1tδ2,
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and concerning G1 and G2, we have∣∣∣G1 (u (t) , v (t))
∣∣∣ ≤M∗δ[4e−2λ1(τ−t)|v1τ |+ 4e−(λ1+λ2)(τ−t)−λ1t|v1τ |+ e−2λ2(τ−t)−2λ1t|u10|

+ 4e−(λ1+λ2)(τ−t)|v1τ |+ 2e−2λ2(τ−t)−λ1t|u10|+ 4e−λ2(τ−t)−λ1t|u10|

+ 2e−(λ1+λ2)(τ−t)−λ2t|v1τ |
]

≤M∗δ
(

14e−2λ1(τ−t)|v1τ |+ 7e−λ2(τ−t)−λ1t|u10|
)
,∣∣∣G2 (u (t) , v (t))

∣∣∣ ≤M∗[4e−2λ1(τ−t) + 4e−(λ1+λ2)(τ−t)−λ1t + e−2λ2(τ−t)−2λ1t + 4e−(λ1+λ2)(τ−t)

+ 2e−2λ2(τ−t)−λ1t + 4e−2λ2(τ−t)
]
δ2 ≤ 19M∗e−2λ1(τ−t)δ2,

which hold for any (u1(t), u2(t), v1(t), v2(t)) ∈ A. Therefore, concerning u1 (t), we have∣∣∣u1 (t)− e−λ1tu10

∣∣∣ =

∣∣∣∣ ∫ t

0
eλ1(s−t)F1 (u (s) , v (s)) ds

∣∣∣∣ ≤ ∫ t

0
eλ1(s−t)

∣∣∣F1 (u (s) , v (s))
∣∣∣ds

≤14M∗δ

∫ t

0
eλ1(s−t)

[
e−2λ1s|u10|+ e−λ1(τ−s)−λ2s|v1τ |

]
ds

=14M∗e−λ1tδ

[
|u10|
λ1
·
(

1− e−λ1t
)

+
e−λ1τ |v1τ |
2λ1 − λ2

·
(
e(2λ1−λ2)t − 1

)]
≤14M∗ (2λ1 − λ2)−1

(
e−λ1tδ|u10|+ e−λ1(τ−t)−λ2tδ|v1τ |

)
,

concerning u2 (t), we have∣∣∣u2 (t)− e−λ2tu20

∣∣∣ =

∣∣∣∣ ∫ t

0
eλ2(s−t)F2 (u (s) , v (s)) ds

∣∣∣∣ ≤ ∫ t

0
eλ2(s−t)

∣∣∣F2 (u (s) , v (s))
∣∣∣ds

≤19M∗e−λ2tδ2

∫ t

0
e−(2λ1−λ2)sds =

19M∗δ2

2λ1 − λ2
· e−λ2t

(
1− e−(2λ1−λ2)t

)
≤19M∗ (2λ1 − λ2)−1 e−λ2tδ2,

concerning v1 (t), we have∣∣∣v1 (t)− e−λ1(τ−t)v1τ

∣∣∣ =

∣∣∣∣ ∫ τ

t

eλ1(t−s)G1 (u (s) , v (s)) ds

∣∣∣∣ ≤ ∫ τ

t

eλ1(t−s)
∣∣∣G1 (u (s) , v (s))

∣∣∣ds
≤14M∗δ

∫ τ

t

eλ1(t−s)
[
e−2λ1(τ−s)|v1τ |+ e−λ2(τ−s)−λ1s|u10|

]
ds

=14M∗eλ1tδ

[
e−2λ1τ |v1τ |

λ1

(
eλ1τ − eλ1t

)
+
e−λ2τ |u10|
2λ1 − λ2

(
e−(2λ1−λ2)t − e−(2λ1−λ2)τ

)]
≤14M∗ (2λ1 − λ2)

−1
(
e−λ1(τ−t)δ|v1τ |+ e−λ2(τ−t)−λ1tδ|u10|

)
,

and concerning v2 (t), we have∣∣∣v2 (t)− e−λ2(τ−t)v2τ

∣∣∣ =

∣∣∣∣ ∫ τ

t

eλ2(t−s)G2 (u (s) , v (s)) ds

∣∣∣∣ ≤ ∫ τ

t

eλ2(t−s)
∣∣∣G2 (u (s) , v (s))

∣∣∣ds
≤19M∗eλ2t−2λ1τδ2

∫ τ

t

e(2λ1−λ2)sds

=19M∗ (2λ1 − λ2)
−1
eλ2t−2λ1τδ2

(
e(2λ1−λ2)τ − e(2λ1−λ2)t

)
≤19M∗ (2λ1 − λ2)

−1
e−λ2(τ−t)δ2.
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Let M = 19M∗ (2λ1 − λ2)−1 and choose δ sufficiently small such that Mδ < 1. Then

|u1 (t)| ≤ (1 +Mδ) e−λ1t|u10|+Mδe−λ1(τ−t)−λ2t|v1τ | ≤ 2e−λ1t|u10|+ e−λ1(τ−t)−λ2t|v1τ |,
|u2 (t)| ≤ (1 +Mδ) e−λ2tδ ≤ 2e−λ2tδ,

|v1 (t)| ≤ (1 +Mδ) e−λ1(τ−t)|v1τ |+Mδe−λ2(τ−t)−λ1t|u10| ≤ 2e−λ1(τ−t)|v1τ |+ e−λ2(τ−t)−λ1t|u10|,
|v2 (t)| ≤ (1 +Mδ) e−λ2(τ−t)δ ≤ 2e−λ2(τ−t)δ,

which implies (u1 (t) , u2 (t) , v1 (t) , v2 (t)) ∈ A as desired.

Meanwhile, we have shown that the image of any element of A under T can be written in the form
(3.3.5) such that the corresponding ξ1, ξ2, ζ1 and ζ2 satisfy the estimates given in the statement of
the lemma. However, since

(
u(0), v(0)

)
= (0, 0) ∈ A, it follows from Remark 3.26 that the same holds

for the solution (u (t) , v (t)) that satisfies boundary condition (3.3.2). This ends the proof of Lemma
3.22.

Proof of Lemma 3.24. By (3.2.6) and (3.2.4), we can write system (3.2.9) in the form (3.3.1), where

(3.3.16)

F1 (u, v) = f11 (u, v)u2
1 + f12 (u, v)u1u2 + f13 (u, v) v1u2,

F2 (u, v) = f21 (u, v)u1u2 + f22 (u, v)u2
2,

G1 (u, v) = g11 (u, v) v2
1 + g12 (u, v) v1v2 + g13 (u, v)u1v2,

G2 (u, v) = g21 (u, v) v1v2 + g22 (u, v) v2
2,

for some continuous functions fij and gij . Let Ω be a small compact neighborhood of O and define
M∗ as in (3.3.11). Let δ > 0 be small and consider the set

(3.3.17)

A =
{(
u1(t), u2(t), v1(t), v2(t)

)
:|u1(t)| ≤ 2e−λ1t|u10|+ e−λ1(τ+t)|v1τ |,

|u2(t)| ≤ 2e−λ2tδ,

|v1(t)| ≤ 2e−λ1(τ−t)|v1τ |+ e−λ1(2τ−t)|u10|,

|v2(t)| ≤ 2e−λ2(τ−t)δ
}
,

where (u1(t), u2(t), v1(t), v2(t)) is any continuous function defined on Ω for t ∈ [0, τ ].

We will first show that A is invariant with respect to the integral operator T, i.e. T (A) ⊆ A. By
(3.3.14), (3.3.11) and (3.3.15) and taking into account that 2λ1 < λ2 and max{|u10|, |u20|, |v1τ |, |v2τ |} ≤
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δ, we have

(3.3.18)

∣∣∣F1 (u (t) , v (t))
∣∣∣ ≤M∗[4e−2λ1t|u10|2 + 4e−λ1τ−2λ1t|u10v1τ |+ e−2λ1(τ+t)|v1τ |2

+ 4e−(λ1+λ2)tδ|u10|+ 2e−λ1(τ+t)−λ2tδ|v1τ |+ 4e−λ1(τ−t)−λ2tδ|v1τ |

+ 2e−2λ1τ+(λ1−λ2)tδ|u10|
]

≤M∗
[
4e−2λ1t|u10|2 + 4e−λ1τ−2λ1t|u10v1τ |+ e−2λ1(τ+t)|v1τ |2

+ 6e−(λ1+λ2)tδ|u10|+ 6e−λ1(τ−t)−λ2tδ|v1τ |
]
,∣∣∣F2 (u (t) , v (t))

∣∣∣ ≤M∗[4e−(λ1+λ2)tδ|u10|+ 2e−λ1(τ+t)−λ2tδ|v1τ |+ 4e−2λ2tδ2
]
,∣∣∣G1 (u (t) , v (t))

∣∣∣ ≤M∗[4e−2λ1(τ−t)|v1τ |2 + 4e−2λ1(τ−t)−λ1τ |u10v1τ |+ e−2λ1(τ−t)−2λ1τ |u10|2

+ 4e−(λ1+λ2)(τ−t)δ|v1τ |+ 2e−(λ1+λ2)(τ−t)−λ1τδ|u10|+ 4e−λ2(τ−t)−λ1tδ|u10|

+ 2e−(λ1+λ2)τ+(λ2−λ1)tδ|v1τ |
]

≤M∗
[
4e−2λ1(τ−t)|v1τ |2 + 4e−2λ1(τ−t)−λ1τ |u10v1τ |+ e−2λ1(τ−t)−2λ1τ |u10|2

+ 6e−(λ1+λ2)(τ−t)δ|v1τ |+ 6e−λ2(τ−t)−λ1tδ|u10|
]

∣∣∣G2 (u (t) , v (t))
∣∣∣ ≤M∗[4e−(λ1+λ2)(τ−t)δ|v1τ |+ 2e−(λ1+λ2)(τ−t)−λ1τδ|u10|+ 4e−2λ2(τ−t)δ2

]
,

which holds for any (u1(t), u2(t), v1(t), v2(t)) ∈ A. Therefore, concerning u1 (t), we have

∣∣∣u1 (t)− e−λ1tu10

∣∣∣ =

∣∣∣∣ ∫ t

0

eλ1(s−t)F1 (u (s) , v (s)) ds

∣∣∣∣ ≤ ∫ t

0

eλ1(s−t)
∣∣∣F1 (u (s) , v (s))

∣∣∣ds
≤6M∗

∫ t

0

eλ1(s−t)
[
e−2λ1s|u10|2 + e−λ1τ−2λ1s|u10v1τ |+ e−2λ1(τ+s)|v1τ |2 + e−(λ1+λ2)sδ|u10|

+ e−λ1(τ−s)−λ2sδ|v1τ |
]
ds = 6M∗e−λ1t

[(
|u10|2 + e−λ1τ |u10v1τ |+ e−2λ1τ |v1τ |2

)
λ1
−1
(

1− e−λ1t
)

+ δ|u10|λ2
−1
(

1− e−λ2t
)

+
e−λ1τδ|v1τ |
λ2 − 2λ1

(
1− e(2λ1−λ2)t

)]
≤6M∗

[
λ1
−1
(
e−λ1t|u10|2 + e−λ1(τ+t)|u10v1τ |+ e−λ1(2τ+t)|v1τ |2

)
+
e−λ1tδ|u10|

λ2
+
e−λ1(τ+t)δ|v1τ |

λ2 − 2λ1

]
≤18M∗λ1

−1e−λ1tδ|u10|+ 12M∗ (min{λ1, λ2 − 2λ1})−1 e−λ1(τ+t)δ|v1τ |

≤18M∗ (min{λ1, λ2 − 2λ1})−1
(
e−λ1tδ|u10|+ e−λ1(τ+t)δ|v1τ |

)
,

concerning u2 (t), we have

∣∣∣u2 (t)− e−λ2tu20

∣∣∣ =

∣∣∣∣ ∫ t

0
eλ2(s−t)F2 (u (s) , v (s)) ds

∣∣∣∣ ≤ ∫ t

0
eλ2(s−t)

∣∣∣F2 (u (s) , v (s))
∣∣∣ds

≤4M∗δ

∫ t

0
eλ2(s−t)

[
e−(λ1+λ2)s|u10|+ e−λ1(τ+s)−λ2s|v1τ |+ e−2λ2sδ

]
ds

=4M∗δe−λ2t
[
λ−1

1

(
|u10|+ e−λ1τ |v1τ |

)(
1− e−λ1t

)
+ λ−1

2 δ
(

1− e−λ2t
)]

≤4M∗λ−1
1 δe−λ2t

[
|u10|+ e−λ1τ |v1τ |+ δ

]
≤ 12M∗λ−1

1 e−λ2tδ2,
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concerning v1 (t), we have∣∣∣v1 (t)−e−λ1(τ−t)v1τ

∣∣∣ =

∣∣∣∣ ∫ τ

t

eλ1(t−s)G1 (u (s) , v (s)) ds

∣∣∣∣ ≤ ∫ τ

t

eλ1(t−s)
∣∣∣G1 (u (s) , v (s))

∣∣∣ds
≤6M∗

∫ τ

t

eλ1(t−s)
[
e−2λ1(τ−s)|v1τ |2 + e−2λ1(τ−s)−λ1τ |u10v1τ |+ e−2λ1(τ−s)−2λ1τ |u10|2

+ e−(λ1+λ2)(τ−s)δ|v1τ |+ e−λ2(τ−s)−λ1sδ|u10|
]
ds

=6M∗eλ1t

[(
e−2λ1τ |v1τ |2

λ1
+
e−3λ1τ |u10v1τ |

λ1
+
e−4λ1τ |u10|2

λ1

)(
eλ1τ − eλ1t

)
+
e−(λ1+λ2)τδ|v1τ |

λ2

(
eλ2τ − eλ2t

)
+
e−λ2τδ|u10|
λ2 − 2λ1

(
e(λ2−2λ1)τ − e(λ2−2λ1)t

)]
≤6M∗eλ1t

[
e−λ1τ |v1τ |2

λ1
+
e−2λ1τ |u10v1τ |

λ1
+
e−3λ1τ |u10|2

λ1
+
e−λ1τδ|v1τ |

λ2
+
e−2λ1τδ|u10|
λ2 − 2λ1

]
≤18M∗λ−11 e−λ1(τ−t)δ|v1τ |+ 12M∗ (min{λ1, λ2 − 2λ1})−1 e−2λ1τ+λ1tδ|u10|

≤18M∗ (min{λ1, λ2 − 2λ1})−1
(
e−λ1(τ−t)δ|v1τ |+ e−2λ1τ+λ1tδ|u10|

)
,

and concerning v2 (t), we have∣∣∣v2 (t)−e−λ2(τ−t)v2τ

∣∣∣ =

∣∣∣∣ ∫ τ

t

eλ2(t−s)G2 (u (s) , v (s)) ds

∣∣∣∣ ≤ ∫ τ

t

eλ2(t−s)
∣∣∣G2 (u (s) , v (s))

∣∣∣ds
≤4M∗δ

∫ τ

t

eλ2(t−s)
[
e−(λ1+λ2)(τ−s)|v1τ |+ e−(λ1+λ2)(τ−s)−λ1τ |u10|+ e−2λ2(τ−s)δ

]
ds

=4M∗δeλ2t

[(
e−(λ1+λ2)τ |v1τ |+ e−(2λ1+λ2)τ |u10|

λ1

)(
eλ1τ − eλ1t

)
+
e−2λ2τδ

λ2

(
eλ2τ − eλ2t

)]
≤4M∗δλ−11

[
e−λ2(τ−t)|v1τ |+ e−λ1−λ2(τ−t)|u10|+ e−λ2(τ−t)δ

]
≤ 12M∗λ−11 e−λ2(τ−t)δ2.

Let M = 18M∗ (min{λ1, λ2 − 2λ1})−1 and choose δ sufficiently small such that Mδ < 1. We have

|u1 (t)| ≤ (1 +Mδ) e−λ1t|u10|+Mδe−λ1(τ+t)|v1τ | ≤ 2e−λ1t|u10|+ e−λ1(τ+t)|v1τ |,
|u2 (t)| ≤ (1 +Mδ) e−λ2tδ ≤ 2e−λ2tδ,

|v1 (t)| ≤ (1 +Mδ) e−λ1(τ−t)|v1τ |+Mδe−2λ1τ+λ1t|u10| ≤ 2e−λ1(τ−t)|v1τ |+ e−2λ1τ−λ1t|u10|,
|v2 (t)| ≤ (1 +Mδ) e−λ2(τ−t)δ ≤ 2e−λ2(τ−t)δ,

which implies (u1 (t) , u2 (t) , v1 (t) , v2 (t)) ∈ A as desired.
Meanwhile, we have shown that the image of any element of A under T can be written in the form

(3.3.5) such that the corresponding ξ1, ξ2, ζ1 and ζ2 satisfy the estimates given in the statement of
the lemma. However, since

(
u(0), v(0)

)
= (0, 0) ∈ A, it follows from Remark 3.26 that the same holds

for the solution (u (t) , v (t)) that satisfies boundary condition (3.3.2). This ends the proof of Lemma
3.24.

3.4. Local maps and their properties

In this section, we use the results of the previous two sections to study the local maps for each of
systems (3.2.1), (3.2.5) and (3.2.9). Recall (3.1.2) and write

(3.4.1) T loc (u10, v10) = (u1τ , v1τ ) =
(
η1 (u10, v10) , η2 (u10, v10)

)
,

where η1 and η2 are some functions. In the previous section, for each of systems (3.2.1), (3.2.5) and
(3.2.9), we have approximated the unique solution (u∗, v∗) which satisfies boundary conditions (3.3.2)
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(see Lemmas 3.20, 3.22 and 3.24). We write this solution as

(3.4.2)

u∗1 (t) = u∗1 (t, τ, u10, u20, v1τ , v2τ ) ,

u∗2 (t) = u∗2 (t, τ, u10, u20, v1τ , v2τ ) ,

v∗1 (t) = v∗1 (t, τ, u10, u20, v1τ , v2τ ) ,

v∗2 (t) = v∗2 (t, τ, u10, u20, v1τ , v2τ ) ,

to point out that it explicitly depends on t, τ , u10, u20, v1τ and v2τ . This solution represents an orbit
which at t = 0 is at the point (u10, u20, v10, v20) and at t = τ is at the point (u1τ , u2τ , v1τ , v2τ ).

To study the map T loc, we consider the case in which u20 = v2τ = δ, i.e. (u10, u20, v10, v20) and
(u1τ , u2τ , v1τ , v2τ ) belong to Πs and Πu, respectively. Evaluating the first equation of (3.4.2) at t = τ
and the last two equations of (3.4.2) at t = 0 gives

(3.4.3)

u1τ = u∗1 (τ, τ, u10, δ, v1τ , δ) ,

v10 = v∗1 (0, τ, u10, δ, v1τ , δ) ,

v20 = v∗2 (0, τ, u10, δ, v1τ , δ) ,

which is an implicit relation between u10, v10, v20, u1τ = η1 (u10, v10), v1τ = η2 (u10, v10) and τ . On
the other hand, τ and v20 can be expressed as functions of (u10, v10). This allows us to approximate
the functions η1 and η2.

For our purposes, approximating T loc is enough when λ2 < 2λ1. For the case of 2λ1 < λ2, in
addition to the approximation of the local map, we also need to approximate the derivatives of this
map with respect to u10 and v10. This is given by Lemma 3.34 below.

In the rest of this thesis, we will use the following notation

Notation 3.27. We denote the quantity λ1
λ2

by γ (λ1, λ2) or simply γ, i.e. γ = λ1
λ2

.

3.4.1. Case λ1 = λ2

We prove D = ∅ by showing that (3.1.1) never holds. This implies that the Poincaé map along Γ
cannot be defined when λ1 = λ2. This also proves Theorem A2 for the particular case of λ1 = λ2.

Let λ = λ1 = λ2. Evaluating the first two equations of (3.3.4) at t = τ and the last two equations
at t = 0 gives

(3.4.4)
u1τ =e−λτ

[
u10 +O

(
δ2
)]
, u2τ = e−λτ

[
u20 +O

(
δ2
)]
,

v10 =e−λτ
[
v1τ +O

(
δ2
)]
, v20 = e−λτ

[
v2τ +O

(
δ2
)]
.

For the particular case of u20 = v2τ = δ, we have

(3.4.5)
u1τ =e−λτ

[
u10 +O

(
δ2
)]
, u2τ = e−λτδ [1 +O (δ)] ,

v10 =e−λτ
[
v1τ +O

(
δ2
)]
, v20 = e−λτδ [1 +O (δ)] .

It follows from (3.2.11) that v20 = δ−1u10v10. Substituting this into (3.4.5) gives e−λτ = u10v10
δ2

[1 +O (δ)].
This relation and relation (3.4.5) imply

(3.4.6) v1τ = eλτv10 +O
(
δ2
)

= δ2u10
−1 [1 +O (δ)] +O

(
δ2
)

= u10
−1δ2 [1 +O (δ)] .

For a given sufficiently small δ, we have

(3.4.7) lim
u10→0

‖(u1τ , v1τ )‖ ≥ lim
u10→0

|v1τ | = lim
u10→0

|u10|−1δ2 [1 +O (δ)] =∞.

This means that (3.1.1) does not hold when ε and εu are chosen sufficiently small. On the other hand,
it is easily seen that the same happens for the points (u10, v10) in D. The same also holds for the case
of homoclinic figure-eight. Therefore,

Proposition 3.28. When λ1 = λ2, we have D = D = D1 = D1 = D2 = D2 = ∅.
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3.4.2. Case λ1 < λ2 < 2λ1

Suppose λ < λ2 < 2λ1. Evaluating the first two equations of (3.3.6) at t = τ and the last two
equations at t = 0 gives

u1τ =e−λ1τu10 [1 +O (δ)] + e−λ2τO (δv1τ ) , u2τ = e−λ2τ
[
u20 +O

(
δ2
)]
,

v10 =e−λ1τv1τ [1 +O (δ)] + e−λ2τO (δu10) , v20 = e−λ2τ
[
v2τ +O

(
δ2
)]
.

For the particular case of u20 = v2τ = δ, we have

(3.4.8)
u1τ =e−λ1τu10 [1 +O (δ)] + e−λ2τO (δv1τ ) , u2τ = e−λ2τδ [1 +O (δ)] ,

v10 =e−λ1τv1τ [1 +O (δ)] + e−λ2τO (δu10) , v20 = e−λ2τδ [1 +O (δ)] .

This, in particular, implies

(3.4.9) v1τ = eλ1τv10 [1 +O (δ)] + e(λ1−λ2)τO (δu10) .

Since first integral (3.2.7) vanishes at (u10, δ, v10, v20) ∈ Πs, we have v20 = γ
δ · u10v10 [1 + o(1)]. Thus,

(3.4.8) implies

(3.4.10) e−λ2τ =
γ

δ2
· u10v10 [1 +O (δ)] ,

and therefore

(3.4.11) e−λ1τ =
( γ
δ2
· u10v10

)γ
[1 +O (δ)] .

By these relations, we rewrite (3.4.9) as

(3.4.12) v1τ = eλ1τv10 [1 +O (δ)] .

Substituting this into the equation of u1τ in (3.4.8) gives

(3.4.13) u1τ = e−λ1τu10 [1 +O (δ)] + e(λ1−λ2)τO (δv10) .

Therefore,

(3.4.14)
η1 (u10, v10) = u1τ =

( γ
δ2
· u10v10

)γ
u10 [1 +O (δ)] +

( γ
δ2
· u10v10

)1−γ
O (δ|v10|) ,

η2 (u10, v10) = v1τ =
( γ
δ2
· u10v10

)−γ
v10 [1 +O (δ)] .

Let us now explore the domain D of the map T loc. We have

u1τ

v1τ
= e−2λ1τ u10

v10
[1 +O (δ)] + e−λ2τO (δ) .

Choosing δ sufficiently small such that |O (δ)| ≤ 1 yields∣∣∣u1τ

v1τ

∣∣∣ ≤ 2e−λ2τ
|u10|
|v10|

+ e−λ2τ ≤ 4γ

δ2

(
u2

10 + |u10v10|
)
≤ 8γ

δ2
ε2.

Therefore, for any given (fixed) sufficiently small δ, we have

(3.4.15) u1τ = v1τO
(
ε2
)
.
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Thus,

(3.4.16)
‖(u1τ , v1τ )‖ =

√
u2

1τ + v2
1τ = |v1τ |

√
1 +

∣∣∣u1τ

v1τ

∣∣∣2 = |v1τ |
[
1 +O

(
ε2
)]

=
(
γδ−2

)−γ |u10|−γ |v10|1−γ [1 +O (δ)] .

Therefore, ‖(u1τ , v1τ )‖ < εu if and only if

(3.4.17) |v10| < εu
1

1−γ
(
γδ−2

) γ
1−γ |u10|

γ
1−γ [1 +O (δ)] , (γ = λ1λ

−1
2 > 0.5).

By virtue of (3.4.10), we see that if (u10, v10) ∈ D, then u10v10 > 0. It is also easy to see that analogous
statements hold for the points in D. This gives:

Proposition 3.29. Let λ < λ2 < 2λ1. For a given sufficiently small δ, we can choose ε and εu so
that the domain D (D) becomes the set of all points (u10, v10) in Πs such that 0 < u10v10 (u10v10 < 0),
‖(u10, v10)‖ < ε and (3.4.17) holds (see Figure 3.5).

Figure 3.5: The regions D and D for the case λ1 < λ2 < 2λ1 are shown in green and blue, respectively.
They are surrounded by horizontal axis, ε-ball Bε and the curves characterized by (3.4.17). Note that since
γ = λ1λ2

−1 > 0.5, these curves are tangent to the horizontal axis at (u10, v10) = (0, 0).

Remark 3.30. The case of homoclinic figure-eight is the same. Relation (3.4.15) holds for any
(u10, v10) on Πs

i and the domains Di and Di are given by Proposition 3.29 (i = 1, 2).

3.4.3. Case 2λ1 < λ2

Suppose 2λ1 < λ2. Evaluating the first two equations of (3.3.7) at t = τ and the last two equations
at t = 0 gives

(3.4.18)
u1τ = e−λ1τu10 [1 +O (δ)] + e−2λ1τO (δv1τ ) , u2τ = e−λ2τ

[
u20 +O

(
δ2
)]
,

v10 = e−λ1τv1τ [1 +O (δ)] + e−2λ1τO (δu10) , v20 = e−λ2τ
[
v2τ +O

(
δ2
)]
.

For the particular case of u20 = v2τ = δ, we have

(3.4.19)
u1τ =e−λ1τu10 [1 +O (δ)] + e−2λ1τO (δ|v1τ |) , u2τ = e−λ2τδ [1 +O (δ)] ,

v10 =e−λ1τv1τ [1 +O (δ)] + e−2λ1τO (δ|u10|) , v20 = e−λ2τδ [1 +O (δ)] .
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This, in particular, implies

(3.4.20) v1τ = eλ1τv10 [1 +O (δ)] + e−λ1τO (δ|u10|) .

Substituting this into the equation of u1τ in (3.4.19) gives

(3.4.21) u1τ = e−λ1τu10 [1 +O (δ)] + e−λ1τO (δ|v10|) .

Then, local map (3.4.1) maps (u10, v10) to (u1τ , v1τ ), where u1τ and v1τ are as in (3.4.21) and (3.4.20),
respectively, and τ is a function of (u10, v10). It is not as straightforward as the previous two cases to
express τ as a function of (u10, v10). This is not straightforward either to find the domain D of T loc.
Below, we divide D into three regions (it is shown that D 6= ∅) and study each region separately.

Let Bε be the ε-ball in Πs centered at M s. For a given m > 1 define

(3.4.22)
Y m

1 =
{

(u10, v10) ∈ Bε : |v10| < m−1|u10|
}
,

Y m
2 =

{
(u10, v10) ∈ Bε : m−1|u10| ≤ |v10| ≤ m|u10|

}
and

(3.4.23) Y m
3 := {(u10, v10) ∈ Bε : m|u10| < |v10|}

(see Figure 3.6). Obviously, Bε = Y m
1 ∪ Y m

2 ∪ Y m
3 . We define

(3.4.24) Dε1 := D ∩ Y m
1 , Dε2 := D ∩ Y m

2 , Dε3 := D ∩ Y m
3 .

Analogously, we define

Dε1 := D ∩ Y m
1 , Dε2 := D ∩ Y m

2 , Dε3 := D ∩ Y m
3 .

We may drop the subscript ε and m, when no confusion arises.
For (u10, v10) ∈ Y m

1 ∪ Y m
2 , we have |v10| ≤ m|u10| and therefore

(3.4.25) v10 = O (u10) .

On the other hand, first integral (3.2.10) vanishes at (u10, δ, v10, v20) ∈ Πs. Thus, by (3.4.25), we have

0 =λ1u10v10 [1 + o(1)]− λ2v20δ [1 + o(1)] + v2
10O(δ) + v20u

2
10O(1)

=λ1u10v10 [1 + o(1)]− λ2v20δ [1 + o(1)] + u10v10O(δ) + v20O(ε2)

=λ1u10v10 [1 +O (δ)]− λ2v20δ [1 +O (δ)] ,

which implies

(3.4.26) v20 =
γ

δ
· u10v10 [1 +O (δ)] .

This relation together with (3.4.19) imply that any point (u10, v10) ∈ Y m
1 ∪Y m

2 reaches Πu if u10v10 > 0,
and reaches Σ if u10v10 < 0. Therefore, to find D1 ∪ D2 (D1 ∪ D2) it is sufficient to find the points in
Y m

1 ∪ Y m
2 for which ‖(u1τ , v1τ )‖ < εu.

Like the preceding two cases, relation (3.4.26) yields (3.4.10) and (3.4.11). Let δ be sufficiently
small. By (3.4.20) and (3.4.21), we have

(3.4.27)
|v1τ | ≤2eλ1τ |v10|+ e−λ1τδ|u10| ≤ 4

(
δ2γ−1

)γ |u10|−γ |v10|1−γ + e−λ1τδ|u10|
≤4m1−γ (δ2γ−1

)γ |u10|1−2γ + e−λ1τδ|u10| ≤
[
4m1−γ (δ2γ−1

)γ
+ 1
]
ε1−2γ ,

and

(3.4.28) |u1τ | ≤ 2e−λ1τ |u10|+ e−λ1τδ|v10| ≤ (2 + δ) e−λ1τ ε.
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Proposition 3.31. For given m, sufficiently small δ and sufficiently small εu, we can choose ε
sufficiently small such that for i = 1, 2 we have

Di = {(u10, v10) ∈ Y m
i , u10v10 > 0}, Di = {(u10, v10) ∈ Y m

i , u10v10 < 0}.

Figure 3.6: We divide the ε-ball in Πs centered at Ms into three disjoint regions: Y1, Y2 and Y3. They are
shown by blue, green and pink colors, respectively, in the left figure. To investigate the sets D and D when
λ2 > 2λ1, we consider the intersection of each of these sets with the regions Y1, Y2 and Y3. In this direction,
we define Di = D ∩ Yi and Di = D ∩ Yi. The regions D1, D2, D1 and D2 are shown by blue, green, yellow and
gray, respectively in the right figure. The sets D3 and D3 are subsets of the pink region.

Now, consider (u10, v10) ∈ Y m
2 ∪ Y m

3 . We have |u10| ≤ m|v10| and hence

(3.4.29) u10 = O (v10) .

By virtue of this relation and relation (3.4.18), we write

v10 = e−λ1τv1τ [1 +O (δ)] + e−2λ1τO (δ|u10|) = e−λ1τv1τ [1 +O (δ)] + e−2λ1τO (δ|v10|) ,

which gives

(3.4.30) v10 = e−λ1τv1τ [1 +O (δ)] and v1τ = eλ1τv10 [1 +O (δ)] .

This relation together with (3.4.18) give

(3.4.31)
u1τ

v1τ
=
e−λ1τu10 [1 +O (δ)] + e−2λ1τO (δv1τ )

v1τ
= e−2λ1τ

[
u10

v10
+O (δ)

]
= o (1) ,

which implies u1τ = o(v1τ ). Thus,

∥∥ (u1τ , v1τ )
∥∥ =

√
u2

1τ + v2
1τ = |v1τ |

√
1 +

∣∣∣u1τ

v1τ

∣∣∣2 = |v1τ | [1 + o (1)] .

Note that it was relation (3.4.26) that enabled us to, first, identify the points in Y m
i for which

‖(u1τ , v1τ )‖ < εu holds, and second, distinguish Di from Di for i = 1, 2. For the case of i = 3, we
cannot deduce such a relation from first integral (3.2.10). However, as we see later, the dynamics on
Y m

3 is quite simple and can be analyzed without knowing D3 and D3 precisely.
Meanwhile, we have shown the following
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Corollary 3.32. If (u10, v10) ∈ Y m
2 then (3.4.26), (3.4.10), (3.4.11), (3.4.25), (3.4.29) and

(3.4.30) hold.

Corollary 3.33. If (u10, v10) ∈ Y m
3 then (3.4.31) and therefore u1τ = o(v1τ ) hold.

We now proceed to deal with the differential of the local map at the points in D2:

Lemma 3.34. Let (3.4.1) be the local map of system (3.2.9) and suppose (u10, v10) ∈ D2. We have

(3.4.32)

∂η1

∂u1

∣∣∣∣
(u10,v10)

= (1 + γ) e−λ1τ [1 +O (δ)] ,
∂η1

∂v1

∣∣∣∣
(u10,v10)

= γ
u10

v10
· e−λ1τ [1 +O (δ)] ,

∂η2

∂u1

∣∣∣∣
(u10,v10)

= −γ v10

u10
· eλ1τ [1 +O (δ)] ,

∂η2

∂v1

∣∣∣∣
(u10,v10)

= (1− γ) eλ1τ [1 +O (δ)] .

Proof. Let (3.4.2) be the solution of system (3.2.9) that satisfies boundary conditions (3.3.2), where
u20 = v2τ = δ. When the point (u10, δ, v10, v20) on Πs reaches the cross-section Πu at (u1τ , u2τ , v1τ , δ),
the corresponding flight time τ is uniquely determined by u10 and v10, i.e. τ = τ (u10, v10), for some
function τ . Thus, by (3.4.3), we have

v10 = v∗1 (0, τ (u10, v10) , u10, δ, η2 (u10, v10) , δ) ,(3.4.33)

v20 = v∗2 (0, τ (u10, v10) , u10, δ, η2 (u10, v10) , δ) ,(3.4.34)

η1 (u10, v10) = u∗1 (τ (u10, v10) , τ (u10, v10) , u10, δ, η2 (u10, v10) , δ) .(3.4.35)

Recall that, by Remark 3.14, v20 is a function of u10 and v10 which we denote it by κ (u10, v10). Both
sides of (3.4.33), (3.4.34) and (3.4.35) are functions of u10 and v10. Differentiating (3.4.33) with respect
to u10 and v10 give

(3.4.36) 0 =
∂v∗1
∂τ

∣∣∣∣∣
t=0

· ∂τ
∂u10

+
∂v∗1
∂u10

∣∣∣∣∣
t=0

+
∂v∗1
∂v1τ

∣∣∣∣∣
t=0

· ∂η2

∂u10

and

(3.4.37) 1 =
∂v∗1
∂τ

∣∣∣∣∣
t=0

· ∂τ
∂v10

+
∂v∗1
∂v1τ

∣∣∣∣∣
t=0

· ∂η2

∂v10
.

Differentiating (3.4.34) with respect to u10 and v10 give

(3.4.38)
∂κ

∂u10
=
∂v∗2
∂τ

∣∣∣∣∣
t=0

· ∂τ
∂u10

+
∂v∗2
∂u10

∣∣∣∣∣
t=0

+
∂v∗2
∂v1τ

∣∣∣∣∣
t=0

· ∂η2

∂u10
,

and

(3.4.39)
∂κ

∂v10
=
∂v∗2
∂τ

∣∣∣∣∣
t=0

· ∂τ
∂v10

+
∂v∗2
∂v1τ

∣∣∣∣∣
t=0

· ∂η2

∂v10
.

Differentiating (3.4.35) with respect to u10 and v10 give

(3.4.40)
∂η1

∂u10
=
∂u∗1
∂t

∣∣∣∣∣
t=τ

· ∂τ
∂u10

+
∂u∗1
∂τ

∣∣∣∣∣
t=τ

· ∂τ
∂u10

+
∂u∗1
∂u10

∣∣∣∣∣
t=τ

+
∂u∗1
∂v1τ

∣∣∣∣∣
t=τ

· ∂η2

∂u10
,

and

(3.4.41)
∂η1

∂v10
=
∂u∗1
∂t

∣∣∣∣∣
t=τ

· ∂τ
∂v10

+
∂u∗1
∂τ

∣∣∣∣∣
t=τ

· ∂τ
∂v10

+
∂u∗1
∂v1τ

∣∣∣∣∣
t=τ

· ∂η2

∂v10
.

Here is our strategy to get the estimates in (3.4.32): we first estimate the expressions
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(i)
∂u∗1
∂t

∣∣∣
t=τ

,

(ii) ∂κ
∂u10

, ∂κ
∂v10

(iii)
∂u∗1
∂u10

∣∣∣
t=τ

,
∂v∗1
∂u10

∣∣∣
t=0

,
∂v∗2
∂u10

∣∣∣
t=0

,

(iv)
∂u∗1
∂v1τ

∣∣∣
t=τ

,
∂v∗1
∂v1τ

∣∣∣
t=0

,
∂v∗2
∂v1τ

∣∣∣
t=0

,

(v)
∂u∗1
∂τ

∣∣∣
t=τ

,
∂v∗1
∂τ

∣∣∣
t=0

,
∂v∗2
∂τ

∣∣∣
t=0

.

We then substitute these estimates into (3.4.37) and (3.4.39). This gives us two independent equations
with two unknowns: ∂τ

∂v10
and ∂η2

∂v10
. We will solve these equations and obtain some estimates for

the unknown expressions. With the same method, we will obtain estimates for ∂τ
∂u10

and ∂η2
∂u10

from
equations (3.4.36) and (3.4.38). Finally, substituting these into (3.4.40) and (3.4.41) will give us
estimates for ∂η1

∂u10
and ∂η1

∂v10
.

(i) Estimate for
∂u∗1
∂t

∣∣∣
t=τ

: Recall that we can use (3.2.6) and (3.2.4) to write the first equation of

(3.2.9) as

u̇1 = −λ1u1 + f11 (u, v)u2
1 + f12 (u, v)u1u2 + f13 (u, v) v1u2,

for some continuous functions f1j (see relation (3.3.16)). Thus,

∂u∗1
∂t

∣∣∣
t=τ

= −λ1u1τ +O
(
u2

1τ

)
+O (u1τu2τ ) +O (v1τu2τ ) ,

and by (3.4.19), (3.4.20) and (3.4.21), we have

∂u∗1
∂t

∣∣∣
t=τ

= −λ1e
−λ1τu10 [1 +O (δ)] + e−λ1τO (δv10) .

In particular, for (u10, v10) ∈ D1 ∪ D2, we have

(3.4.42)
∂u∗1
∂t

∣∣∣
t=τ

= −λ1e
−λ1τu10 [1 +O (δ)] .

(ii) Estimates for ∂κ
∂u10

and ∂κ
∂v10

: Following Remark 3.14, κ is a Cq-smooth (q ≥ 2) function of
(u10, v10) which is defined on an open neighborhood of M s ∈ Πs. Since its restriction to D1 ∪D2 is of
the form (3.4.26), we have

κ (0, 0) =
∂κ

∂u10
(0, 0) =

∂κ

∂v10
(0, 0) =

∂2κ

∂u2
10

(0, 0) =
∂2κ

∂v2
10

(0, 0) = 0,
∂2κ

∂u10v10
(0, 0) =

γ

δ
.

Thus, by Taylor theorem, we have

∂κ

∂u10
(u10, v10) =

γ

δ
v10 + o (u10) + o (v10) ,

∂κ

∂v10
(u10, v10) =

γ

δ
u10 + o (u10) + o (v10) .

By (3.4.25) and (3.4.29), for any (u10, v10) ∈ D2, we have

∂κ

∂u10
(u10, v10) =

γ

δ
v10 [1 + o (1)] ,

∂κ

∂v10
(u10, v10) =

γ

δ
u10 [1 + o (1)] .
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In order to get estimates for
∂u∗1
∂θ ,

∂v∗1
∂θ and

∂v∗2
∂θ , where θ = u10, v1τ and τ , we will solve some

boundary value problems. Let (3.4.2) be the solution of system (3.2.9) which satisfies boundary
conditions (3.3.2). By writing system (3.2.9) in the form (3.3.1), i.e.

(3.4.43)

F1 (u, v) = f11 (u1, v)u1 + f12 (u1, u2, v)u2,

F2 (u, v) = f22 (u1, u2, v)u2,

G1 (u, v) = g11 (u, v1) v1 + g12 (u, v1, v2) v2,

G2 (u, v) = g22 (u, v1, v2) v2,

where fij and gij satisfy (3.2.6) and (3.2.4), we have

(3.4.44)

u̇∗1 = −λ1u
∗
1 + F1(u∗1, u

∗
2, v
∗
1, v
∗
2),

u̇∗2 = −λ2u
∗
2 + F2(u∗1, u

∗
2, v
∗
1, v
∗
2),

v̇∗1 = +λ1v
∗
1 +G1(u∗1, u

∗
2, v
∗
1, v
∗
2),

v̇∗2 = +λ2v
∗
2 +G2(u∗1, u

∗
2, v
∗
1, v
∗
2).

Differentiating (3.4.44) with respect to θ, where θ = u10, v1τ and τ , gives

(3.4.45)

(
U̇

V̇

)
= diagonal (−λ1,−λ2, λ1, λ2) ·

(
U
V

)
+ M(t) ·

(
U
V

)
,

where
U = (U1, U2) , V = (V1, V2) ,

M(t) =


F1u1 (u∗, v∗) F1u2 (u∗, v∗) F1v1 (u∗, v∗) F1v2 (u∗, v∗)
F2u1 (u∗, v∗) F2u2 (u∗, v∗) F2v1 (u∗, v∗) F2v2 (u∗, v∗)
G1u1 (u∗, v∗) G1u2 (u∗, v∗) G1v1 (u∗, v∗) G1v2 (u∗, v∗)
G2u1 (u∗, v∗) G2u2 (u∗, v∗) G2v1 (u∗, v∗) G2v2 (u∗, v∗)

 ,

and

(3.4.46)
Ui(t) =

∂u∗i (t, τ, u10, u20, v1τ , v2τ )

∂θ
,

Vi(t) =
∂v∗i (t, τ, u10, u20, v1τ , v2τ )

∂θ
,

for (i = 1, 2). It follows from the proof of Theorem 2.7 that the solution (U (t) , V (t)) of system
(3.4.45) that satisfies boundary conditions

(3.4.47) U1(0) = U10, U2(0) = U20, V1(τ) = V1τ , V2(τ) = V2τ

is in fact the fixed point of the integral operator

(3.4.48) T :
(
U1 (t) , U2 (t) , V1 (t) , V2 (t)

)
7→
(
U1 (t) , U2 (t) , V 1 (t) , V 2 (t)

)
,

such that

U1 (t) =e−λ1tU10 +

∫ t

0
eλ1(s−t)P1 (s) ds,

U2 (t) =e−λ2tU20 +

∫ t

0
eλ2(s−t)P2 (s) ds,

V 1 (t) =e−λ1(τ−t)V1τ +

∫ τ

t
eλ1(t−s)Q1 (s) ds,

V 2 (t) =e−λ2(τ−t)V2τ +

∫ τ

t
eλ2(t−s)Q2 (s) ds,
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where
P1 (t) =F1u1 (u∗ (t) , v∗ (t)) · U1 (t) + F1u2 (u∗ (t) , v∗ (t)) · U2 (t)

+ F1v1 (u∗ (t) , v∗ (t)) · V1 (t) + F1v2 (u∗ (t) , v∗ (t)) · V2 (t) ,

P2 (t) =F2u1 (u∗ (t) , v∗ (t)) · U1 (t) + F2u2 (u∗ (t) , v∗ (t)) · U2 (t)

+ F2v1 (u∗ (t) , v∗ (t)) · V1 (t) + F2v2 (u∗ (t) , v∗ (t)) · V2 (t) ,

Q1 (t) =G1u1 (u∗ (t) , v∗ (t)) · U1 (t) +G1u2 (u∗ (t) , v∗ (t)) · U2 (t)

+G1v1 (u∗ (t) , v∗ (t)) · V1 (t) +G1v2 (u∗ (t) , v∗ (t)) · V2 (t) ,

Q2 (t) =G2u1 (u∗ (t) , v∗ (t)) · U1 (t) +G2u2 (u∗ (t) , v∗ (t)) · U2 (t)

+G2v1 (u∗ (t) , v∗ (t)) · V1 (t) +G2v2 (u∗ (t) , v∗ (t)) · V2 (t) .

Moreover, this integral operator is a contraction and the fixed point (U (t) , V (t)) of this operator is
the limit of the sequence of successive approximations{(

U (n)(t), V (n)(t)
)

=
(
U

(n)
1 (t), U

(n)
2 (t), V

(n)
1 (t), V

(n)
2 (t)

)}n=∞

n=0
,

where
(
U (0), V (0)

)
= (0, 0) and(

U (n+1)(t), V (n+1)(t)
)

= T
(
U (n) (t) , V (n) (t)

)
, ∀n ≥ 0.

Below, we will solve such a boundary value problem for each of the cases θ = u10, v1τ and τ .

(iii) Estimates for
∂u∗1
∂u10

∣∣∣
t=τ

,
∂v∗1
∂u10

∣∣∣
t=0

and
∂v∗2
∂u10

∣∣∣
t=0

: Let (U1, U2, V1, V2) be the solution of system

(3.4.45), i.e. the fixed point of (3.4.48), where

Ui(t) =
∂u∗i (t, τ, u10, u20, v1τ , v2τ )

∂u10
,

Vi(t) =
∂v∗i (t, τ, u10, u20, v1τ , v2τ )

∂u10
, (i = 1, 2) .

Taking into account that (3.3.9) holds for the solution (u∗, v∗) of system (3.2.9), we have

(3.4.49) U1(0) = U10 = 1, U2(0) = U20 = 0, V1(τ) = V1τ = 0, V2(τ) = V2τ = 0.

We claim that the solution (U, V ) that satisfies boundary conditions (3.4.49) is of the form

(3.4.50)
U1(t) = e−λ1t [1 +O (δ)] , U2(t) = e−λ2tO (δ) ,

V1(t) = e−λ1(τ−t)O (δ) , V2(t) = e−λ2(τ−t)O (δ) .

To prove the claim, let us first show that the set

A =
{(
U1 (t) , U2 (t) , V1 (t) , V2 (t)

)
: |U1(t)| ≤ 2e−λ1t, |U2(t)| ≤ e−λ2t,

|V1(t)| ≤ e−λ1(τ−t), |V2(t)| ≤ e−λ2(τ−t)
}
,

where (U1(t), U2(t), V1(t), V2(t)) is any continuous function defined on t ∈ [0, τ ], is invariant with
respect to integral operator (3.4.48). Notice that since fij and gij in (3.2.9) are Cq−1-smooth (q ≥ 2)
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and satisfy (3.2.6) and (3.2.4), we can write the first derivatives of Fi and Gi as

F1u1 (u, v) =f1
11 (u, v)u1 + f1

12 (u, v)u2, F1u2 (u, v) = f2
11 (u, v) v1 + f2

12 (u, v) v2,

F1v1 (u, v) =f3
11 (u, v)u1 + f3

12 (u, v)u2, F1v2 (u, v) = f4
11 (u, v)u1 + f4

12 (u, v)u2,

F2u1 (u, v) =f1
21 (u, v)u2, F2u2 (u, v) = f2

21 (u, v)u1 + f2
22 (u, v)u2,

F2v1 (u, v) =f3
21 (u, v)u2, F2v2 (u, v) = f4

21 (u, v)u2,

G1u1 (u, v) =g1
11 (u, v) v1 + g1

12 (u, v) v2, G1u2 (u, v) = g2
11 (u, v) v1 + g2

12 (u, v) v2,

G1v1 (u, v) =g3
11 (u, v) v1 + g3

12 (u, v) v2, G1v2 (u, v) = g4
11 (u, v)u1 + g4

12 (u, v)u2,

G2u1 (u, v) =g1
21 (u, v) v2, G2u2 (u, v) = g2

21 (u, v) v2, G2v1 (u, v) = g3
21 (u, v) v2,

G2v2 (u, v) =g4
21 (u, v) v1 + g4

22 (u, v) v2,

where fkij and gkij are some continuous functions. Consider the constant M given by Lemma 3.24 and

let M † = max{3, 3M}. For the solution (u∗ (t) , v∗ (t)) of system (3.2.9), we have

|u∗1 (t)| ≤ (1 +Mδ) e−λ1t|u10|+Me−λ1(τ+t)δ|v1τ | ≤M †e−λ1tδ,
|u∗2 (t)| ≤ e−λ2t

(
|u20|+Mδ2

)
≤M †e−λ2tδ

|v∗1 (t)| ≤ (1 +Mδ) e−λ1(τ−t)|v1τ |+Me−2λ1τ+λ1tδ|u10| ≤M †e−λ1(τ−t)δ

|v∗2 (t)| = e−λ2(τ−t) (|v2τ |+Mδ2
)
≤M †e−λ2(τ−t)δ.

Let Ω be a small compact neighborhood of the equilibrium O of system (3.2.9) and define

(3.4.51) M∗ := sup
(u,v)∈Ω

{
|fkij (u, v)|, |gkij (u, v)|

}
,

and M ‡ := M∗M †. We have

(3.4.52)

∣∣F1u1
(u∗, v∗)

∣∣, ∣∣F1v1 (u∗, v∗)
∣∣, ∣∣F1v2 (u∗, v∗)

∣∣, ∣∣F2u2
(u∗, v∗)

∣∣, ∣∣G1v2 (u∗, v∗)
∣∣ ≤M‡e−λ1tδ∣∣F2u1

(u∗, v∗)
∣∣, ∣∣F2v1 (u∗, v∗)

∣∣, ∣∣F2v2 (u∗, v∗)
∣∣ ≤M‡e−λ2tδ∣∣F1u2

(u∗, v∗)
∣∣, ∣∣G1u1

(u∗, v∗)
∣∣, ∣∣G1u2

(u∗, v∗)
∣∣, ∣∣G1v1 (u∗, v∗)

∣∣, ∣∣G2v2 (u∗, v∗)
∣∣ ≤M‡e−λ1(τ−t)δ∣∣G2u1

(u∗, v∗)
∣∣, ∣∣G2u2

(u∗, v∗)
∣∣, ∣∣G2v1 (u∗, v∗)

∣∣ ≤M‡e−λ2(τ−t)δ.

This implies

|P1 (t)| ≤M‡δ
[
2e−2λ1t + e−λ1(τ−t)−λ2t + e−λ1τ + e−λ1t−λ2(τ−t)

]
≤M‡δ

[
3e−2λ1t + 2e−λ1τ

]
,

|P2 (t)| ≤M‡δ
[
3e−(λ1+λ2)t + e−λ2t−λ1(τ−t) + e−λ2τ

]
≤M‡δ

[
3e−(λ1+λ2)t + 2e−λ2t−λ1(τ−t)

]
,

|Q1 (t)| ≤M‡δ
[
2e−λ1τ + e−λ2t−λ1(τ−t) + e−2λ1(τ−t) + e−λ1t−λ2(τ−t)

]
≤M‡δ

[
3e−λ1τ + 2e−2λ1(τ−t)

]
,

|Q2 (t)| ≤M‡δ
[
2e−λ1t−λ2(τ−t) + e−λ2τ + 2e−(λ1+λ2)(τ−t)

]
≤M‡δ

[
3e−λ1t−λ2(τ−t) + 2e−(λ1+λ2)(τ−t)

]
,

Using these relations, we have∣∣∣U1(t)−e−λ1t
∣∣∣ =

∣∣∣∣ ∫ t

0

eλ1(s−t)P1 (s) ds

∣∣∣∣ ≤ ∫ t

0

∣∣∣∣eλ1(s−t)P1 (s)

∣∣∣∣ds
≤3M‡δ

∫ t

0

eλ1(s−t)
[
e−2λ1s + e−λ1τ

]
ds =

3M‡e−λ1tδ

λ1

[(
1− e−λ1t

)
+ e−λ1τ

(
eλ1t − 1

)]
≤3M‡λ1

−1e−λ1tδ
[
1 + e−λ1(τ−t)

]
≤ 6M‡λ1

−1e−λ1tδ.

Concerning U2(t), we have∣∣∣U2(t)
∣∣∣ =

∣∣∣∣ ∫ t

0

eλ2(s−t)P2 (s) ds

∣∣∣∣ ≤ ∫ t

0

∣∣∣∣eλ2(s−t)P2 (s)

∣∣∣∣ds ≤ 3M‡δ

∫ t

0

eλ2(s−t)
[
e−(λ1+λ2)s + e−λ2s−λ1(τ−s)

]
ds

=
3M‡e−λ2tδ

λ1

[(
1− e−λ1t

)
+ e−λ1τ

(
eλ1t − 1

)]
≤ 3M‡e−λ2tδ

λ1

[
1 + e−λ1(τ−t)

]
≤ 6M‡λ−1

1 e−λ2tδ.
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Concerning V 1(t), we have∣∣∣V 1(t)
∣∣∣ =

∣∣∣∣ ∫ τ

t

eλ1(t−s)Q1 (s) ds

∣∣∣∣ ≤ ∫ τ

t

∣∣∣∣eλ1(t−s)Q1 (s)

∣∣∣∣ds ≤ 3M‡δ

∫ τ

t

eλ1(t−s)
[
e−λ1τ + e−2λ1(τ−s)

]
ds

=3M‡eλ1tδλ−1
1

[
e−λ1τ

(
e−λ1t − e−λ1τ

)
+ e−2λ1τ

(
eλ1τ − eλ1t

) ]
≤ 3λ−1

1 M‡e−λ1(τ−t)δ
[
e−λ1t + 1

]
≤6λ−1

1 M‡e−λ1(τ−t)δ,

and concerning V 2(t), we have∣∣∣V 2(t)
∣∣∣ =

∣∣∣∣ ∫ τ

t
eλ2(t−s)Q2 (s) ds

∣∣∣∣ ≤ ∫ τ

t

∣∣∣∣eλ2(t−s)Q2 (s)

∣∣∣∣ds
≤3M ‡δ

∫ τ

t
eλ2(t−s)

[
e−λ1s−λ2(τ−s) + e−(λ1+λ2)(τ−s)

]
ds

=3M ‡eλ2tδλ1
−1
[
e−λ2τ

(
e−λ1t − e−λ1τ

)
+ e−(λ1+λ2)τ

(
eλ1τ − eλ1t

) ]
≤3λ1

−1M ‡e−λ2(τ−t)δ
[
e−λ1t + 1

]
≤ 6λ1

−1M ‡e−λ2(τ−t)δ.

Let M = 6M ‡λ1
−1 and choose δ sufficiently small such that Mδ < 1. We have∣∣∣U1 (t)
∣∣∣ ≤ (1 +Mδ) e−λ1t ≤ 2e−λ1t,

∣∣∣U2 (t)
∣∣∣ ≤Me−λ2tδ ≤ e−λ2t,∣∣∣V 1 (t)

∣∣∣ ≤Me−λ1(τ−t)δ ≤ e−λ1(τ−t),
∣∣∣V 2 (t)

∣∣∣ ≤Me−λ2(τ−t)δ ≤ e−λ2(τ−t),

which implies
(
U1 (t) , U2 (t) , V 1 (t) , V 2 (t)

)
∈ A as desired.

Meanwhile, we have shown that the image of any element of A under T is of the form (3.4.50).
However, since

(
U (0), V (0)

)
≡ (0, 0) ∈ A, it follows from Remark 3.26 that the same holds for the

solution (U (t) , V (t)) that satisfies boundary condition (3.4.47). This proves the claim.
By (3.4.50), we have the following estimates:

∂u∗1
∂u10

∣∣∣∣
t=τ

= e−λ1τ [1 +O (δ)] ,
∂v∗1
∂u10

∣∣∣∣
t=0

= e−λ1τO (δ) ,
∂v∗2
∂u10

∣∣∣∣
t=0

= e−λ2τO (δ) .

(iv) Estimates for
∂u∗1
∂v1τ

∣∣∣
t=τ

,
∂v∗1
∂v1τ

∣∣∣
t=0

and
∂v∗2
∂v1τ

∣∣∣
t=0

: Let (U1, U2, V1, V2) be the solution of system

(3.4.45), i.e. the fixed point of (3.4.48), where

Ui(t) =
∂u∗i (t, τ, u10, u20, v1τ , v2τ )

∂v1τ
,

Vi(t) =
∂v∗i (t, τ, u10, u20, v1τ , v2τ )

∂v1τ
, (i = 1, 2) .

Taking into account that (3.3.9) holds for the solution (u∗, v∗) of system (3.2.9), we have

(3.4.53) U1(0) = U10 = 0, U2(0) = U20 = 0, V1(τ) = V1τ = 1, V2(τ) = V2τ = 0.

We claim that when (u10, v10) ∈ D2, the solution (U, V ) that satisfies boundary conditions (3.4.53) is
of form

(3.4.54)
U1(t) = e−λ1(τ+t)O (δ) , U2(t) = e−λ2tO (δ) ,

V1(t) = e−λ1(τ−t) [1 +O (δ)] , V2(t) = e−λ2(τ−t)O (δ) .

To prove the claim, let us first show that the set

A =
{(
U1(t), U2(t), V1(t), V2(t)

)
: |U1(t)| ≤ e−λ1(τ+t), |U2(t)| ≤ e−λ2t,

|V1(t)| ≤ 2e−λ1(τ−t), |V2(t)| ≤ e−λ2(τ−t)
}
,
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where (U1(t), U2(t), V1(t), V2(t)) is any continuous function defined on t ∈ [0, τ ], is invariant with
respect to integral operator (3.4.48). To show this, we use the upper bounds given by (3.4.52), except
the cases |F1v1 | and |F1v2 | which we use the following:

∣∣F1v1 (u∗, v∗)
∣∣, ∣∣F1v2 (u∗, v∗)

∣∣ ≤M ‡ [e−λ1t|u10|+ e−λ1(τ+t)δ|v1τ |+ e−λ2tδ
]
.

We have

|P1 (t)| ≤M ‡
[
e−λ1(2t+τ)δ + 3e−λ1(τ−t)−λ2tδ + 2e−λ1τ |u10|+ 2e−2λ1τδ|v1τ |

+ e−λ2(τ−t)−λ1t|u10|+ e−λ2(τ−t)−λ1(τ+t)δ|v1τ |+ e−λ2τδ
]

≤M ‡
[
e−λ1(2t+τ)δ + 4e−λ1(τ−t)−λ2tδ + 3e−λ1τ |u10|+ 3e−2λ1τδ|v1τ |

]
,

|P2 (t)| ≤M ‡δ
[
e−(λ1+λ2)t−λ1τ + e−(λ1+λ2)t + 2e−λ2t−λ1(τ−t) + e−λ2τ

]
≤M ‡δ

[
2e−(λ1+λ2)t + 3e−λ2t−λ1(τ−t)

]
,

and concerning Q1 and Q2, we have

|Q1 (t)| ≤M ‡δ
[
e−2λ1τ + e−λ2t−λ1(τ−t) + 2e−2λ1(τ−t) + e−λ1t−λ2(τ−t)

]
≤M ‡δ

[
e−λ2t−λ1(τ−t) + 4e−2λ1(τ−t)

]
,

|Q2 (t)| ≤M ‡δ
[
e−λ1(τ+t)−λ2(τ−t) + e−λ2τ + 3e−(λ1+λ2)(τ−t)

]
≤M ‡δ

[
e−λ2τ + 4e−(λ1+λ2)(τ−t)

]
.

Therefore, concerning U1(t), we have

(3.4.55)

∣∣∣U1(t)
∣∣∣ =

∣∣∣∣ ∫ t

0
eλ1(s−t)P1 (s) ds

∣∣∣∣ ≤ ∫ t

0

∣∣∣∣eλ1(s−t)P1 (s)

∣∣∣∣ds
≤4M ‡

∫ t

0
eλ1(s−t)

[
e−λ1(2s+τ)δ + e−λ1(τ−s)−λ2sδ + e−λ1τ |u10|+ e−2λ1τδ|v1τ |

]
ds

=4M ‡e−λ1(t+τ)

[
δ

λ1

(
1− e−λ1t

)
+

δ

λ2 − 2λ1

(
1− e(2λ1−λ2)t

)
+
|u10|
λ1

(
eλ1t − 1

)
+
e−λ1τδ|v1τ |

λ1

(
eλ1t − 1

)]
≤ 4M ‡e−λ1τ

min{λ1, λ2 − 2λ1}

[
2e−λ1tδ + |u10|+ e−λ1τδ|v1τ |

]
≤4 (min{λ1, λ2 − 2λ1})−1M ‡

[
3e−λ1(τ+t)δ + e−λ1τ |u10|

]
.

Concerning U2(t), we have

∣∣∣U2(t)
∣∣∣ =

∣∣∣∣ ∫ t

0

eλ2(s−t)P2 (s) ds

∣∣∣∣ ≤ ∫ t

0

∣∣∣∣eλ2(s−t)P2 (s)

∣∣∣∣ds
≤3M‡δ

∫ t

0

eλ2(s−t)
[
e−(λ1+λ2)s + e−λ2s−λ1(τ−s)

]
ds = 3M‡e−λ2tδ

[
1

λ1

(
1− e−λ1t

)
+
e−λ1τ

λ1

(
eλ1t − 1

) ]
≤ 3λ1

−1M‡e−λ2tδ
[
1 + e−λ1(τ−t)

]
≤ 6λ1

−1M‡e−λ2tδ,
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concerning V 1(t), we have∣∣∣V 1(t)− e−λ1(τ−t)
∣∣∣ =

∣∣∣∣∫ τ

t

eλ1(t−s)Q1 (s) ds

∣∣∣∣ ≤ ∫ τ

t

∣∣∣eλ1(t−s)Q1 (s)
∣∣∣ ds

≤4M‡δ

∫ τ

t

eλ1(t−s)
[
e−λ2s−λ1(τ−s) + e−2λ1(τ−s)

]
ds = 4M‡eλ1tδ

[e−λ1τ

λ2

(
e−λ2t − e−λ2τ

)
+
e−2λ1τ

λ1

(
eλ1τ − eλ1t

) ]
≤ 4M‡

λ1
e−λ1(τ−t)δ

[
e−λ2t + 1

]
≤ 8λ1

−1M‡e−λ1(τ−t)δ,

and concerning V 2(t), we have∣∣∣V 2(t)
∣∣∣ =

∣∣∣∣ ∫ τ

t

eλ2(t−s)Q2 (s) ds

∣∣∣∣ ≤ ∫ τ

t

∣∣∣eλ2(t−s)Q2 (s)
∣∣∣ ds

≤4M‡δ

∫ τ

t

eλ2(t−s)
[
e−λ2τ + e−(λ1+λ2)(τ−s)

]
ds = 4M‡eλ2tδ

[e−λ2τ

λ2

(
e−λ2t − e−λ2τ

)
+
e−(λ1+λ2)τ

λ1

(
eλ1τ − eλ1t

) ]
≤ 4M‡

λ1
e−λ2(τ−t)δ

[
e−λ2t + 1

]
≤ 8λ1

−1M‡e−λ2(τ−t)δ.

Note that by Corollary 3.32, for (u10, v10) ∈ D2, we have

e−λ1τ |u10| ≤ Ke−λ1τ |v10| ≤ K2e−2λ1τ |v1τ | ≤ K2e−2λ1τδ,

for some constant K > 0. Thus, we can rewrite (3.4.55) as
∣∣U1 (t)

∣∣ ≤ M1e
−λ1(τ+t)δ, for a sufficiently

large constant M1. Let M = max{M1, 8 (min{λ1, λ2 − 2λ1})−1M ‡} and choose δ sufficiently small
such that Mδ < 1. Then∣∣∣U1 (t)

∣∣∣ ≤Me−λ1(τ+t)δ ≤ e−λ1(τ+t),
∣∣∣U2 (t)

∣∣∣ ≤Me−λ2tδ ≤ e−λ2t,∣∣∣V 1 (t)
∣∣∣ ≤ (1 +Mδ) e−λ1(τ−t)δ ≤ 2e−λ1(τ−t),

∣∣∣V 2 (t)
∣∣∣ ≤Me−λ2(τ−t)δ ≤ e−λ2(τ−t),

which implies
(
U1 (t) , U2 (t) , V 1 (t) , V 2 (t)

)
∈ A as desired.

Meanwhile, we have shown that the image of any element of A under T is of the form (3.4.54).
However, since

(
U (0), V (0)

)
≡ (0, 0) ∈ A, it follows from Remark 3.26 that the same holds for the

solution (U (t) , V (t)) that satisfies boundary condition (3.4.53). This proves the claim.
By (3.4.54), we have the following estimates:

∂u∗1
∂v1τ

∣∣∣
t=τ

= e−2λ1τO (δ) ,
∂v∗1
∂v1τ

∣∣∣
t=0

= e−λ1τ [1 +O (δ)] ,
∂v∗2
∂v1τ

∣∣∣
t=0

= e−λ2τO (δ) .

(v) Estimates for
∂u∗1
∂τ

∣∣∣
t=τ

,
∂v∗1
∂τ

∣∣∣
t=0

and
∂v∗2
∂τ

∣∣∣
t=0

: Let (U1, U2, V1, V2) be the solution of system

(3.4.45), i.e. the fixed point of (3.4.48), where

Ui(t) =
∂u∗i (t, τ, u10, u20, v1τ , v2τ )

∂τ
,

Vi(t) =
∂v∗i (t, τ, u10, u20, v1τ , v2τ )

∂τ
, (i = 1, 2) .

Taking into account that (3.3.9) holds for the solution (u∗, v∗) of system (3.2.9), we have

(3.4.56) U1(0) = U10 = 0, U2(0) = U20 = 0.

Differentiating the third and the fourth equations of (3.3.9) with respect to τ (with using the Leibniz
integral rule) give

(3.4.57) V1τ =
∂v∗1
∂τ

∣∣∣
t=τ

= −λ1v1τ +G1 (u1τ , u2τ , v1τ , v2τ )
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and

(3.4.58) V2τ =
∂v∗2
∂τ

∣∣∣
t=τ

= −λ2δ +G2 (u1τ , u2τ , v1τ , v2τ ) .

We claim that, for the case (u10, v10) ∈ D2, the solution (U, V ) that satisfies boundary conditions
(3.4.56), (3.4.57) and (3.4.58) is of form

(3.4.59)
U1(t) = e−λ1tO (δ|u10|) , U2(t) = e−λ2tO

(
δ2
)
,

V1(t) = e−λ1(τ−t)v1τ [−λ1 +O (δ)] , V2(t) = e−λ2(τ−t)δ [−λ2 +O (δ)] .

To prove the claim, let us first show that the set

A =
{(
U1(t), U2(t), V1(t), V2(t)

)
: |U1(t)| ≤ e−λ1t|u10|, |U2(t)| ≤ e−λ2tδ,

|V1(t)| ≤ (1 + λ1) e−λ1(τ−t)|v1τ |,

|V2(t)| ≤ (1 + λ2) e−λ2(τ−t)δ
}
,

where (U1(t), U2(t), V1(t), V2(t)) is any continuous function defined on t ∈ [0, τ ], is invariant with
respect to integral operator (3.4.48). We use the upper bounds given by (3.4.52), except the cases
|F1u2 |, |F1v1 |, |F1v2 |, |G1u1 |, |G1u2 | and |G1v2 | which we use the following:

max
{∣∣F1u2 (u∗, v∗)

∣∣,∣∣G1u1 (u∗, v∗)
∣∣, ∣∣G1u2 (u∗, v∗)

∣∣}
≤M ‡

[
e−λ1(τ−t)|v1τ |+ e−2λ1τ+λ1tδ|u10|+ e−λ2(τ−t)δ

]
,

max
{∣∣F1v1 (u∗, v∗)

∣∣,∣∣F1v2 (u∗, v∗)
∣∣, ∣∣G1v2 (u∗, v∗)

∣∣}
≤M ‡

[
e−λ1t|u10|+ e−λ1(τ+t)δ|v1τ |+ e−λ2tδ

]
.

We have

|P1 (t)| ≤M‡
[
e−2λ1tδ|u10|+ e−λ1(τ−t)−λ2tδ|v1τ |+ e−2λ1τ+(λ1−λ2)tδ2|u10|+ e−λ2τδ2

+ (1 + λ1) e−λ1τ |u10v1τ |+ (1 + λ1) e−2λ1τδ|v1τ |2 + (1 + λ1) e−λ2t−λ1(τ−t)δ|v1τ |

+ (1 + λ2) e−λ1t−λ2(τ−t)δ|u10|+ (1 + λ2) e−λ1(τ+t)−λ2(τ−t)δ2|v1τ |+ (1 + λ2) e−λ2τδ2
]

≤M‡
[
2e−2λ1tδ|u10|+ (2 + λ1) e−λ1(τ−t)−λ2tδ|v1τ |+ (2 + λ2) e−λ2τδ2 + (1 + λ1) e−λ1τ |u10v1τ |

+ (1 + λ1) e−2λ1τδ|v1τ |2 + (1 + λ2) e−λ1t−λ2(τ−t)δ|u10|+ (1 + λ2) e−λ1(τ+t)−λ2(τ−t)δ2|v1τ |
]
,

|P2 (t)| ≤M‡δ
[
e−(λ1+λ2)t|u10|+ e−(λ1+λ2)tδ + (1 + λ1) e−λ2t−λ1(τ−t)|v1τ |+ (1 + λ2) e−λ2τδ

]
≤M‡δ2

[
2e−(λ1+λ2)t + (2 + λ1 + λ2) e−λ2t−λ1(τ−t)

]
,

and concerning Q1 and Q2, we have

|Q1 (t)| ≤M‡
[
e−λ1τ |u10v1τ |+ e−2λ1τδ|u10|2 + e−λ2(τ−t)−λ1tδ|u10|+ e−λ1(τ−t)−λ2tδ|v1τ |

+ e−2λ1τ+(λ1−λ2)tδ2|u10|+ e−λ2τδ2 + (1 + λ1) e−2λ1(τ−t)δ|v1τ |

+ (1 + λ2) e−λ1t−λ2(τ−t)δ|u10|+ (1 + λ2) e−λ1(τ+t)−λ2(τ−t)δ2|v1τ |+ (1 + λ2) e−λ2τδ2
]

≤M‡
[
e−λ1τ |u10v1τ |+ e−2λ1τδ|u10|2 + (2 + λ2) e−λ2(τ−t)−λ1tδ|u10|+ e−λ1(τ−t)−λ2tδ|v1τ |

+ e−2λ1τ+(λ1−λ2)tδ2|u10|+ (2 + λ2) e−λ2τδ2 + (2 + λ1 + λ2) e−2λ1(τ−t)δ|v1τ |
]
,

|Q2 (t)| ≤M‡δ
[
e−λ1t−λ2(τ−t)|u10|+ e−λ2τδ + (2 + λ1 + λ2) e−(λ1+λ2)(τ−t)|v1τ |

]
≤M‡δ2

[
2e−λ1t−λ2(τ−t) + (2 + λ1 + λ2) e−(λ1+λ2)(τ−t)

]
.
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Therefore, concerning U1(t), we have∣∣∣U1(t)
∣∣∣ =

∣∣∣∣ ∫ t

0

eλ1(s−t)P1 (s) ds

∣∣∣∣ ≤ ∫ t

0

∣∣∣∣eλ1(s−t)P1 (s)

∣∣∣∣ds
≤ (2 + λ2)M‡

∫ t

0

eλ1(s−t)
[
e−2λ1sδ|u10|+ e−λ1(τ−s)−λ2sδ|v1τ |+ e−λ2τδ2 + e−λ1τ |u10v1τ |

+ e−2λ1τδ|v1τ |2 + e−λ1s−λ2(τ−s)δ|u10|+ e−λ1(τ+s)−λ2(τ−s)δ2|v1τ |
]
ds

= (2 + λ2)M‡e−λ1t

[
δ|u10|
λ1

(
1− e−λ1t

)
+
e−λ1τδ|v1τ |
λ2 − 2λ1

(
1− e(2λ1−λ2)t

)
+

(
e−λ2τδ2

λ1

+
e−λ1τ |u10v1τ |

λ1
+
e−2λ1τδ|v1τ |2

λ1

)(
eλ1t − 1

)
+

(
e−λ2τδ|u10|

λ2
+
e−(λ1+λ2)τδ2|v1τ |

λ2

)(
eλ2t − 1

) ]
≤ (2 + λ2)M‡

min{λ1, λ2 − 2λ1}

[
e−λ1tδ|u10|+ e−λ1(τ+t)δ|v1τ |+ e−λ2τδ2 + e−λ1τ |u10v1τ |+ e−2λ1τδ|v1τ |2

+ e−λ2(τ−t)−λ1tδ|u10|+ e−λ1(τ+t)−λ2(τ−t)δ2|v1τ |
]

≤ 3 (2 + λ2)M‡δ

min{λ1, λ2 − 2λ1}

[
e−λ1t|u10|+ e−λ1(τ+t)|v1τ |+ e−λ2τδ

]
.

Concerning U2(t), we have∣∣∣U2(t)
∣∣∣ =

∣∣∣∣ ∫ t

0
eλ2(s−t)P2 (s) ds

∣∣∣∣ ≤ ∫ t

0

∣∣∣∣eλ2(s−t)P2 (s)

∣∣∣∣ds
≤2 (1 + λ2)M ‡δ2

∫ t

0
eλ2(s−t)

[
e−(λ1+λ2)s + e−λ2s−λ1(τ−s)

]
ds

=2 (1 + λ2)λ1
−1M ‡e−λ2tδ2

[(
1− e−λ1t

)
+ e−λ1τ

(
eλ1t − 1

)]
≤2λ1

−1 (1 + λ2)M ‡e−λ2tδ2
[
1 + e−λ1(τ−t)

]
≤ 4λ1

−1 (1 + λ2)M ‡e−λ2tδ2.

Concerning V 1(t), we have∣∣∣V 1(t)−e−λ1(τ−t)V1τ

∣∣∣ =

∣∣∣∣ ∫ τ

t

eλ1(t−s)Q1 (s) ds

∣∣∣∣ ≤ ∫ τ

t

∣∣∣∣eλ1(t−s)Q1 (s)

∣∣∣∣ds
≤2 (1 + λ2)M‡

∫ τ

t

eλ1(t−s)
[
e−λ1τ |u10v1τ |+ e−2λ1τδ|u10|2 + e−λ2(τ−s)−λ1sδ|u10|

+ e−λ1(τ−s)−λ2sδ|v1τ |+ e−2λ1τ+(λ1−λ2)sδ2|u10|+ e−λ2τδ2 + e−2λ1(τ−s)δ|v1τ |
]
ds

=2 (1 + λ2)M‡eλ1t

[
e−λ1τ |u10v1τ |

λ1

(
e−λ1t − e−λ1τ

)
+
e−2λ1τδ|u10|2

λ1

(
e−λ1t − e−λ1τ

)
+
e−λ2τδ|u10|
λ2 − 2λ1

(
e(λ2−2λ1)τ − e(λ2−2λ1)t

)
+
e−λ1τδ|v1τ |

λ2

(
e−λ2t − e−λ2τ

)
+
e−2λ1τδ2|u10|

λ2

(
e−λ2t − e−λ2τ

)
+
e−λ2τδ2

λ

(
e−λ1t − e−λ1τ

)
+
e−2λ1τδ|v1τ |

λ1

(
eλ1τ − e−λ1t

) ]
≤ 2 (1 + λ2)M‡

min{λ1, λ2 − 2λ1}

[
e−λ1τ |u10v1τ |+ e−2λ1τδ|u10|2 + e−λ1(2τ−t)δ|u10|

+ e−λ1(τ−t)−λ2tδ|v1τ |+ e−2λ1τ+(λ1−λ2)tδ2|u10|+ e−λ2τδ2 + e−λ1(τ−t)δ|v1τ |
]

≤ 6 (1 + λ2)M‡δ

min{λ1, λ2 − 2λ1}

[
e−λ1(2τ−t)|u10|+ e−λ2τδ + e−λ1(τ−t)|v1τ |

]
,
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and concerning V 2(t), we have∣∣∣V 2(t)− e−λ2(τ−t)V2τ

∣∣∣ =

∣∣∣∣ ∫ τ

t

eλ2(t−s)Q2 (s) ds

∣∣∣∣ ≤ ∫ τ

t

∣∣∣∣eλ2(t−s)Q2 (s)

∣∣∣∣ds
≤2 (1 + λ2)M‡δ2

∫ τ

t

eλ2(t−s)
[
e−λ1s−λ2(τ−s) + 4e−(λ1+λ2)(τ−s)

]
ds

=2 (1 + λ2)M‡eλ2tδ2
[e−λ2τ

λ1

(
e−λ1t − e−λ1τ

)
+
e−(λ1+λ2)τ

λ1

(
eλ1τ − eλ1t

) ]
≤2 (1 + λ2)M‡

λ1
e−λ2(τ−t)δ2

[
e−λ1t + 1

]
≤ 4 (1 + λ2)M‡

λ1
e−λ2(τ−t)δ2.

Evaluating the last two equations of (3.3.18) at t = τ gives∣∣∣G1 (u1τ , u2τ , v1τ , v2τ )
∣∣∣ ≤M∗[4|v1τ |2 + 4e−λ1τ |u10v1τ |+ e−2λ1τ |u10|2 + 4δ|v1τ |+ 6e−λ1τδ|u10|

+ 2e−2λ1τδ|v1τ |
]
≤M∗

[
14δ|v1τ |+ 7e−λ1τδ|u10|

]∣∣∣G2 (u1τ , u2τ , v1τ , v2τ )
∣∣∣ ≤M∗[4δ|v1τ |+ 2e−λ1τδ|u10|+ 4δ2

]
≤ 10M∗δ2

where M∗ is as in (3.4.51). Therefore, by (3.4.57), (3.4.58) and the other relations above, we have∣∣∣U1 (t)
∣∣∣ ≤M0δ

[
e−λ1t|u10|+ e−λ1(τ+t)|v1τ |+ e−λ2τδ

]
,∣∣∣U2 (t)

∣∣∣ ≤M0e
−λ2tδ2,∣∣∣V 1 (t)

∣∣∣ ≤ (λ1 +M0δ) e
−λ1(τ−t)|v1τ |+M0δ

[
e−λ1(2τ−t)|u10|+ e−λ2τδ

]
,∣∣∣V 2 (t)

∣∣∣ ≤ (λ2 +M0δ) e
−λ2(τ−t)δ,

for some sufficiently large M0 > 0. According to Corollary 3.32, we have

e−λ1(τ+t)|v1τ | < Ke−λ1t|v10| < K2e−λ1t|u10|,
e−λ2τδ2 < K|u10v10| < K2e−λ1τ |u10v1τ |,

e−λ1(2τ−t)|u10| < Ke−λ1(2τ−t)|v10| < K2e−λ1(3τ−t)|v1τ |,

for a sufficiently large K. Therefore, for a sufficiently large M > 0, we have∣∣∣U1 (t)
∣∣∣ ≤Me−λ1tδ|u10|,

∣∣∣U2 (t)
∣∣∣ ≤Me−λ2tδ2,∣∣∣V 1 (t)

∣∣∣ ≤ (λ1 +Mδ) e−λ1(τ−t)|v1τ |,
∣∣∣V 2 (t)

∣∣∣ ≤ (λ2 +Mδ) e−λ2(τ−t)δ.

Choose δ sufficiently small such that Mδ < 1. Thus,∣∣∣U1 (t)
∣∣∣ ≤e−λ1t|u10|,

∣∣∣U2 (t)
∣∣∣ ≤ e−λ2tδ,∣∣∣V 1 (t)

∣∣∣ ≤ (λ1 + 1) e−λ1(τ−t)|v1τ |,
∣∣∣V 2 (t)

∣∣∣ ≤ (λ2 + 1) e−λ2(τ−t)δ,

which implies
(
U1 (t) , U2 (t) , V 1 (t) , V 2 (t)

)
∈ A as desired.

Meanwhile, we have shown that the image of any element of A under T is of the form (3.4.59).
However, since

(
U (0), V (0)

)
≡ (0, 0) ∈ A, it follows from Remark 3.26 that the same holds for the

solution (U (t) , V (t)) that satisfies boundary conditions (3.4.56), (3.4.57) and (3.4.58). This proves
the claim.
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By (3.4.59), we have the following estimates:

∂u∗1
∂τ

∣∣∣
t=τ

= e−λ1τO (δ|u10|) ,

∂v∗1
∂τ

∣∣∣
t=0

= −λ1e
−λ1τv1τ [1 +O (δ)] ,

∂v∗2
∂τ

∣∣∣
t=0

= −λ2e
−λ2τδ [1 +O (δ)] .

So far, we have obtained all estimates that we required. Substituting these estimates into the
relations (3.4.37) and (3.4.39) gives

(3.4.60) 1 = −λ1e
−λ1τv1τ [1 +O (δ)] · ∂τ

∂v10
+ e−λ1τ [1 +O (δ)] · ∂η2

∂v10

and

(3.4.61)
γu10

δ
[1 +O (δ)] = −λ2e

−λ2τδ [1 +O (δ)] · ∂τ
∂v10

+ e−λ2τO (δ) · ∂η2

∂v10
.

Relation (3.4.61) implies

(3.4.62)
∂τ

∂v10
=
−1

λ2δ

(
eλ2τ

γu10

δ
+O (δ) · ∂η2

∂v10

)
[1 +O (δ)] .

Substituting this into (3.4.60) gives

1 =
γe−λ1τv1τ

δ
·
(
eλ2τ

γu10

δ
+O (δ) · ∂η2

∂v10

)
[1 +O (δ)] + e−λ1τ [1 +O (δ)] · ∂η2

∂v10
,

and therefore
∂η2

∂v10
=

(
eλ1τ − γ2

δ2
· eλ2τu10v1τ

)
[1 +O (δ)] .

Thus, by Corollary 3.32, we have

(3.4.63)
∂η2

∂v10
= (1− γ) eλ1τ

[
1 +O (δ)

]
,

as desired in (3.4.32). By Corollary 3.32, substituting (3.4.63) into (3.4.62) yields

(3.4.64)
∂τ

∂v10
= − 1

λ2
· 1

v10
[1 +O(v1τ )] = − 1

λ2
· 1

v10
[1 +O(δ)] .

Similarly, we can estimate derivatives of τ and η2 with respect to u10. We rewrite (3.4.36) and
(3.4.38) as

(3.4.65) 0 = −λ1e
−λ1τv1τ [1 +O (δ)] · ∂τ

∂u10
+ e−λ1τO (δ) + e−λ1τ [1 +O (δ)] · ∂η2

∂u10

and

(3.4.66)
γv10

δ
[1 +O (δ)] = −λ2e

−λ2τδ [1 +O (δ)] · ∂τ
∂u10

+ e−λ2τO (δ) + e−λ2τO (δ) · ∂η2

∂u10
.

From (3.4.66), we have

(3.4.67)
∂τ

∂u10
=
−1

λ2δ

(
γ

δ
eλ2τv10 +O (δ) +O (δ) · ∂η2

∂u10

)
[1 +O (δ)] .
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Substituting this into (3.4.65) gives

0 =
γ

δ
v1τ

(
γ

δ
eλ2τv10 +O (δ) +O (δ) · ∂η2

∂u10

)
[1 +O (δ)] +O (δ) +

∂η2

∂u10
· [1 +O (δ)] ,

and by Corollary 3.32, we have

(3.4.68)
∂η2

∂u10
= −γ v1τ

u10
[1 +O (δ)] = −γeλ1τ v10

u10
[1 +O (δ)] ,

as desired in (3.4.32). By Corollary 3.32, substituting (3.4.68) into (3.4.67) gives

∂τ

∂u10
= − 1

λ2
· 1

u10
[1 +O(δ)] .

It is easily seen that substituting the estimates we have derived so far into (3.4.40) and (3.4.41)
gives the estimates in (3.4.32) for ∂η1

∂u10
and ∂η1

∂v10
. This ends the proof of Lemma 3.34.

Remark 3.35. In the case of homoclinic figure-eight, the estimates given by Lemma 3.34 also hold
for the local maps T loc

1 (on D1
2), T loc

12 (on D1
2), T loc

21 (on D2
2) and T loc

2 (on D2
2). For instance, applying

Lemma 3.34 on the local map T loc on D2 of the system which is derived from system (3.2.9) by applying
the linear change of coordinates (ũ1, ũ2, ṽ1, ṽ2) = (u1, u2,−v1,−v2) gives the estimates in Lemma 3.34
for T loc

12 on D1
2.



Chapter 4

Analysis near homoclinics and
super-homoclinics

The purpose of this chapter is to study the dynamics near (single and figure-eight) homoclinic
and super-homoclinic orbits. In particular, we prove in this chapter, all the theorems stated in the
Introduction. In the first section, we introduce some concepts and notations which are used throughout
the whole chapter. The second section is dedicated to study the dynamics near a single homoclinic
orbit. We prove Theorems A1, A2 and A3 in this section. The ideas and techniques which are used
to prove these theorems are also used in the third and fourth sections of this chapter. In the third
section, we extend the results obtained for a single homoclinic to the case of the homoclinic figure-
eight. The proofs of Theorems B1, B2 and B3 are provided in this section. Finally, we study the
case of a super-homoclinic and prove Theorems C1 and C2 in the fourth, and the last, section of this
chapter.

4.1. Set-up and notations

Choose a sufficiently small δ > 0 such that all the statements of the previous chapters hold. Fix
this δ. According to (3.1.3) and (1.2.8), for (u10, v10) ∈ D ⊂ Πs, we have

(4.1.1)

(
u10

v10

)
= T

(
u10

v10

)
=

(
[a+ o (1)] u1τ + [b+ o (1)] v1τ

[c+ o (1)] u1τ + [d+ o (1)] v1τ

)
,

where a, b, c and d are real constants (in fact, these coefficients are functions of δ but since δ is
assumed to be fixed, we treat these coefficients as constants). Our job is to analyze this map for
different values of a, b, c and d, and for each of the cases λ2 < 2λ1 and 2λ1 < λ2. In this strand, we
first introduce some notations:

Notation 4.1. Let N ⊂M be two arbitrary sets and f : N →M be an injective map. We denote
the set of the points in N whose forward orbits lie entirely in N by ΛsN ,f or ΛsN , when no confusion
arises. Indeed,

ΛsN ,f = ΛsN = {x ∈ N : fn (x) ∈ N , ∀n ≥ 0}.
We denote the set of the points in N whose backward orbits lie entirely in N by ΛuN ,f or ΛuN , when
no confusion arises. Indeed,

ΛuN ,f = ΛuN = {x ∈ N : for all n ≥ 0, f−n (x) exists and belongs to N}.

Notation 4.2. Given a point (u10, v10) on a given cross-section, we denote the quantity v10
u10

(when
u10 6= 0) by w(u10, v10) or w. Consider the case (u10, v10) ∈ D and let (u10, v10) ∈ Πs be its image
under the Poincaré map T . We denote the quantity v10

u10
(when u10 6= 0) by w (u10, v10) or w.

76
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Notation 4.3. We denote the straight line {v10 = d
bu10} in Πs by `∗.

4.2. Dynamics near the homoclinic orbit Γ: case λ2 < 2λ1

Here, we show that when λ2 < 2λ1, any point in the domain D of the Poincaré map T leaves D
by both forward and backward iterations of the Poincaré map. The proof of the case λ1 = λ2 directly
follows from Proposition 3.28 in which we have shown that the domain D of the Poincaré map is
empty. For the case of λ1 < λ2 < 2λ1, we prove that the image of the domain D under the Poincaré
map T has no intersection with D. This is also illustrated in Figure 4.1 where D is shown by green
color, and T (D) is a subset of the region which is shown in gray. We formalize this discussion in the
following lemma:

Lemma 4.4. When λ1 ≤ λ2 < 2λ1, we have ΛsD,T = ΛuD,T = ∅.

Proof. When λ1 = λ2, the statement follows from Proposition 3.28.
Suppose λ1 < λ2 < 2λ1. By Proposition 3.29, the domain D of the Poincaré map is

{(u10, v10) ∈ Πs : u10v10 > 0, ‖(u10, v10)‖ < ε, |v10| < Kεu |u10|
γ

1−γ [1 +O (δ)]},

where 1
2 < γ = λ1

λ2
< 1 and Kεu is some constant (see (3.4.17)). By (3.4.15), i.e. relation u1τ =

v1τO
(
ε2
)
, Poincaré map (4.1.1) can be written as

(u10, v10) =
( [
b+O

(
ε2
)]
v1τ ,

[
d+O

(
ε2
)]
v1τ

)
,

which implies w = d
b + O

(
ε2
)
. This means that the images of the points in the domain D under the

Poincaré map T accumulate near `∗. However, for a fixed δ and a sufficiently small ε, this line has no
intersection with the domain D (see Figure 4.1). This implies ΛsD,T = ΛuD,T = ∅ as desired.

Figure 4.1: Case λ1 < λ2 < 2λ1: the domain D of the Poincaré map T is shown in green. The images of the
points in D under the Poincaré map T accumulate near the straight line `∗ (the line whose slope is d

b ) in the
gray region. As it is seen, the green and the gray regions have no intersection which means D ∩ T (D) = ∅.
This implies that the backward and forward orbits of any point of the domain D leaves D. The figure in the
left shows the case of bd > 0 (`∗ lies in the first and the third quadrants), and the figure in the right shows the
case of bd < 0 (`∗ lies in the second and the fourth quadrants).

Theorem A2 is an immediate consequence of this lemma. We have
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Proof of Theorem A2. Any orbit in W s
loc (Γ) other than Γ must intersect Πs at ΛsD,T . However, by

Lemma 4.4, we have ΛsD,T = ∅. This implies W s
loc (Γ) = Γ. The proof of W u

loc (Γ) = Γ is the same.

The statement of Theorem A1 for the particular case of λ2 < 2λ1 also follows from Lemma 4.4:

Proof of Theorem A1: case λ2 < 2λ1. Consider a point in U \W s
U whose forward orbit lies entirely in

U . The forward orbit of this point must intersect Πs at ΛsD,T . However, by Lemma 4.4, ΛsD,T = ∅. On
the other hand, Theorem A2 implies W s

loc (Γ) = Γ and therefore W s
loc (Γ) ⊂W s

U . Thus, when λ2 < 2λ1,
the forward orbit of a point in U lies entirely in U if and only if it belongs to W s

U (O) ∪W s
loc (Γ). The

proof of the case of backward orbits is the same. This finishes the proof of Theorem A1 for the specific
case of λ2 < 2λ1.

The proof of Theorem A1 for the case of 2λ1 < λ2 is provided in the next section.

4.3. Dynamics near the homoclinic orbit Γ: case 2λ1 < λ2

In this section, we study the dynamics near the homoclinic orbit Γ for the case 2λ1 < λ2, and
prove Theorems A1 (the case 2λ1 < λ2) and A3.

Recall from Section 3.4.3 that when 2λ1 < λ2, we divide the domain D of the Poincaré map T into
three subsets D1, D2 and D3, i.e. D = D1 ∪D2 ∪D3. Namely, for a given sufficiently large m > 0, we
have seen that:

• Dε1 = D1 = {(u10, v10) ∈ Bε, 0 < v10
u10

< 1
m},

• Dε2 = D2 = {(u10, v10) ∈ Bε, 1
m ≤

v10
u10
≤ m}, and

• Dε3 = D3 ⊂ {(u10, v10) ∈ Bε, m < | v10u10
|},

where Bε is the open ε-ball in Πs centered at M s (see Figure 4.2).

Figure 4.2: When 2λ1 < λ2, we write the domain D of the Poincaré map T as the disjoint union of three
subsets D1, D2 and D3, i.e. D = D1 ∪D2 ∪D3. The subset D1 is shown in blue and D2 is shown in green. The
set D3 is a subset of the purple region.

In order to understand the dynamics near the homoclinic loop Γ, we need to investigate the set of
the points on the domain D whose forward or backward orbits (under the iterations of the Poincaré
map T ) lie in D, i.e. the sets ΛsD,T and ΛuD,T (see Notation 4.1). To this end, we take the following
three steps:
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• Step 1: Investigating the set of the points in D2 ∪ D3 whose forward or backward orbits lie
entirely in D2 ∪ D3, i.e. the sets ΛsD2∪D3,T

and ΛuD2∪D3,T
.

• Step 2: Investigating the set of the points in D1 whose forward or backward orbits lie entirely
in D1, i.e. the sets ΛsD1,T

and ΛuD1,T
.

Obviously, ΛsD1,T
and ΛsD2∪D3,T

are subsets of ΛsD,T . In addition, ΛuD1,T
and ΛuD2∪D3,T

are subsets of
ΛuD,T . In the third step, we show that the reverse directions also hold: ΛsD,T ⊂ ΛsD1,T

∪ ΛsD2∪D3,T
and

ΛuD,T ⊂ ΛuD1,T
∪ ΛuD2∪D3,T

. Equivalently,

• Step 3: We show ΛsD,T = ΛsD1,T
∪ ΛsD2∪D3,T

and ΛuD,T = ΛuD1,T
∪ ΛuD2∪D3,T

.

Notice that the statement of Step 3 is not trivial. In fact, at the first stage, one can consider the
possibility of the existence of a point x ∈ D such that its forward orbit lies entirely in D, i.e. x ∈ ΛsD,T ,
but it does not lie entirely in only one of the sets D1 or D2 ∪D3, i.e. x /∈ ΛsD1,T

and x /∈ ΛsD2∪D3,T
. In

other words, the forward orbit of x stays in D but switches between D1 and D2 ∪ D3. In Step 3, we
indeed show that this scenario does not happen.

We take Step 1 in the following lemma. This lemma helps us to understand the dynamics of the
Poincaré map T on the set D2 ∪ D3. We explore in this lemma that how T behaves on this set, with
which rate the orbits of this set grow, and how ΛsD2∪D3,T

and ΛuD2∪D3,T
look like. From technical point

of view, part (vii) of this lemma which shows the existence of the unstable manifold of the Poincaré
map T is the main result of this section. The techniques which are used in the proof of this part
is also used in Section 4.4 for the proof of the existence of the unstable manifold of the homoclinic
figure-eight. We prove this lemma in Section 4.3.1.

Lemma 4.5. Let w and `∗ be as in Notations 4.2 and 4.3, respectively. Assume 2λ1 < λ2 and
bd 6= 0. For (u10, v10) ∈ D2 ∪ D3, we have

(i) w = w (T (u10, v10)) = d
b + o(1), where o (1) stands for a function of (u10, v10) that converges to

zero as (u10, v10)→ (0, 0).

(ii) There exists a constant C > 0 such that ‖(u10, v10)‖1−2γ < C ‖T (u10, v10)‖ holds for arbitrary
(u10, v10) ∈ D2, where γ = λ1λ2

−1 < 0.5.

(iii) if bd > 0, then T (u10, v10) lies in D2 unless it leaves Bε.

(iv) ΛsD2∪D3,T
= ∅.

(v) ΛuD2∪D3,T
= ΛuD2,T

(vi) when bd < 0 we have ΛuD2∪D3,T
= ∅.

(vii) when bd > 0, the set {M s} ∪ ΛuD2∪D3,T
is a one-dimensional C1-manifold which is tangent to `∗

at M s.

It follows from this lemma that the image of D2 ∪ D3 under the Poincaré map T lies near `∗, and
the Poincaré map increases the norm of any point of this set. Informally speaking, for the particular
case of bd > 0, this means that the Poincaré map T preserves and expands the region D2 ∪ D3. A
geometrical picture of this behavior is illustrated in Figure 4.3.

We now take the second step in the next lemma. In this lemma, we study the dynamics of T−1

on the set D1. Most of the statements of the following lemma are analogous to the statements of the
preceding lemma. This is not a coincidence. In fact, we see later in the proof of Lemma 4.6 that the
dynamics of T−1 on D1 can be obtained from the dynamics of T on D2 ∪ D3 by a permutation and
reversion of time. The proof of this lemma is postponed to Section 4.3.2.
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Figure 4.3: The straight line whose slope is d
b is denoted by `∗. The left figure corresponds to the case bd < 0

and the right one corresponds to the case bd > 0. The set D2 is shown in green. The set D3 is a subset of
the purple region. the image of D2 ∪ D3 under the Poincaré map, i.e. T (D2 ∪ D3), is a subset of the wavy
region. Informally speaking, the Poincaré map T preserves and expands the region D2∪D3. We show in Lemma
4.5 that when bd > 0, there exists an unstable invariant manifold for the Poincaré map T in the vawy region,
tangent to `∗ at Ms.

Lemma 4.6. Assume 2λ1 < λ2 and cd 6= 0. For (u10, v10) ∈ D1, we have

(i) if cd > 0, then T (D) ∩ D1 = ∅.

(ii) if cd < 0, then w
(
T−1 (u10, v10)

)
= o (1), where o (1) stands for a function of (u10, v10) that

converges to zero as (u10, v10)→ (0, 0). In other words, T−1 (D1) accumulates near the horizontal
axis.

(iii) if cd < 0, then ‖(u10, v10)‖1−2γ < C
∥∥T−1 (u10, v10)

∥∥ for some constant C > 0.

(iv) if cd < 0, then T−1 (u10, v10) remains in D1 unless it leaves Bε.

(v) ΛsD1,T−1 = ∅. Equivalently, ΛuD1,T
= ∅.

(vi) if cd < 0, then the set {M s}∪ΛuD1,T−1 (equivalently, the set {M s}∪ΛsD1,T
) is a one-dimensional

C1-manifold which is tangent to the horizontal axis at M s.

In the preceding two lemmas, we have shown that the sets ΛsD2∪D3,T
and ΛuD1,T

are always empty.
It was also shown that ΛuD2∪D3,T

= ΛuD2,T
. This allows us to reformulate Step 3 as in the following

lemma:

Lemma 4.7. Assume 2λ1 < λ2 and bcd 6= 0. We have

(i) ΛsD,T = ΛsD1,T
.

(ii) ΛuD,T = ΛuD2,T
.

Proof. Let x ∈ D2 ∪ D3. It follows from parts (i), (ii) and (iii) of Lemma 4.5 that if bd < 0, then
T (x) /∈ D, and if bd > 0, then for some k, T k (x) /∈ Bε. Thus, any point in ΛsD,T must belong to D1.
This proves part (i).

To prove part (ii), notice that if ΛuD,T = ∅, then ΛuD2,T
= ∅ and therefore ΛuD,T = ΛuD2,T

. So we
assume that ΛuD,T is non-empty. Let x ∈ ΛuD,T . We need to show x ∈ D2. To do this, we first prove
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x /∈ D1. Assume the contrary, i.e. x ∈ D1. It follows from parts (i) and (iii) of Lemma 4.5 that if
T−1 (x) ∈ D2 ∪ D3, then x = T

(
T−1 (x)

)
either belongs to D2 or lies outside the domain D which

contradicts the assumption x ∈ D1. Therefore, T−1 (x) /∈ D2 ∪ D3, and so T−1 (x) ∈ D1. By virtue
of part (i) of Lemma 4.6, this relation implies cd < 0. On the other hand, when cd < 0, it follows
from parts (iii) and (iv) of Lemma 4.6 that there exists a k > 0 such that T−k (x) /∈ Bε and hence
T−k (x) /∈ D. This contradicts the preliminary assumption x ∈ ΛuD,T . Therefore, if x ∈ ΛuD,T , then

x /∈ D1, or equivalently, T−n (x) /∈ D1 for all n ≥ 0.

To finish the proof, it is sufficient to show that x /∈ D3. Assume the contrary, i.e. x ∈ D3. Since
x ∈ ΛuD,T implies T−n (x) /∈ D1 for all n ≥ 0, we have T−1 (x) /∈ D1. On the other hand, parts (i) and

(iii) of Lemma 4.5 imply that if T−1 (x) ∈ D2 ∪ D3, then x = T
(
T−1 (x)

)
either belongs to D2 or lies

outside the domain D which contradicts the assumption x ∈ D3. Therefore, x /∈ D3 as desired.

Recall that the local stable (unstable) set of the homoclinic loop Γ, denoted by W s
loc(Γ) (W u

loc(Γ)),
is the union of Γ itself and the set of the points in a sufficiently small neighborhood U of Γ whose
forward (backward) orbits lie in U and their ω-limit sets (α-limit sets) coincide with Γ ∪ {O}. By
this definition, the intersection of W s

loc(Γ) and Πs must belong to {M s} ∪ΛsD, and the intersection of
W u

loc(Γ) and Πs must belong to {M s} ∪ ΛuD. On the other hand, we have shown in the above lemmas
that when ΛsD (ΛuD) is non-empty, any point on this set converges to M s by the forward (backward)
iterations of the Poincaré map T . This leads to the following:

Proposition 4.8. Let φt be the flow of system (3.2.9). Then

W s
loc (Γ) = Γ ∪ φt

(
ΛsD,T

)
for t ≥ 0, and W u

loc (Γ) = Γ ∪ φt
(
ΛuD,T

)
for t ≤ 0.

(a)

(b)

Figure 4.4: The local unstable invariant manifold of the equilibrium O intersects Πu at the v1-axis. Thus, the
blue curve (v1-axis restricted to a small neighborhood of Mu in Πu) lies at the intersection of the local unstable
invariant manifold of O and the cross-section Πu. This curve is mapped to the blue curve on Πs by T glo which
means that the blue curve on Πs lies in Wu

glo (O) ∩ Πs. Since v1-axis on Πu is mapped to `∗ on Πs by dT glo,
the straight line `∗ is tangent to the blue curve on Πs at Ms.
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In system (3.2.9), the local unstable invariant manifold of the equilibrium O is straightened, i.e.
W u
loc (O) = {u = 0}. Thus, the intersection of this manifold and the cross-section Πu = {v2 =

δ} ∩ {H = 0} is the straight line {u1 = 0}, i.e. v1-axis. Consider the restriction of this line to a
small neighborhood of Mu (in Figure 4.4, it is shown by blue color on Πu). The global map T glo

maps this restricted piece to a curve, denote it by γu, on Πs (shown by blue color on Πs in Figure
4.4). This curve is in fact at the intersection of the global unstable invariant manifold of O and the
cross-section Πs. Since T glo is a diffeomorphism and the vector ( 0

1 ) is tangent to v1-axis at Mu, the
vector dT glo ( 0

1 ) =
(
b
d

)
is tangent to γu at M s in Πs, i.e. γu is tangent to `∗ at M s (recall that `∗

is the line in Πs whose slope is d
b ). Therefore, it follows from Lemma 4.7 and part (vii) of Lemma

4.5 that when bd > 0, W u
glo (O) ∩ Πs and {M s} ∪ ΛuD,T are tangent at M s. On the other hand, it

follows from Lemma 4.7 and part (vi) of Lemma 4.6 that when cd < 0 the intersection of the local
stable manifold of O and the cross-section Πs, i.e. the horizontal axis, is tangent to {M s} ∪ ΛsD,T at
M s. Moreover, by Assumption 5, the homoclinic orbit Γ is at the transverse intersection of the global
stable and unstable invariant manifolds of the equilibrium O. Therefore, the intersection of these two
manifolds with the cross-section Πs, i.e. the horizontal axis and the curve γu, intersect transversely
at M s. Since γu is tangent to `∗ at M s, we have that the intersection of W s

glo (O) and W u
glo (O) at

Γ is transverse if and only if the horizontal axis on Πs and the straight line `∗ are distinct. These
statements give

Proposition 4.9. Assume 2λ1 < λ2 and bcd 6= 0. We have

(i) When bd > 0, the 2-dimensional C1-smooth invariant manifold W u
loc (Γ) is tangent to W u

glo (O)
at every point of Γ.

(ii) When cd < 0, the 2-dimensional C1-smooth invariant manifold W s
loc (Γ) is tangent to W s

glo (O)
at every point of Γ.

(iii) The intersection of W s
glo (O) and W u

glo (O) at Γ is transverse if and only if d 6= 0.

By virtue of the above results, we have:

Proof of Theorem A3. By Proposition 4.8 and the preceding Lemmas we have W u
loc (Γ) = Γ when

bd < 0, and W s
loc (Γ) = Γ when cd > 0. The rest of the theorem is already proved (see Proposition

4.9).

We have proved Theorem A1 for the case of λ2 < 2λ1 in the previous section. We now prove this
theorem for the case of 2λ1 < λ2:

Proof of Theorem A1: case 2λ1 < λ2. By definition, the forward orbit of any point on W s
U (O) ∪

W s
loc (Γ) lies in U . Consider a point in U \ W s

U (O) whose forward orbit lies entirely in U . The
forward orbit of this point must intersect Πs at ΛsD,T . Therefore, it follows from Proposition 4.8 that
this point lies on W s

loc (Γ). This finishes the proof for the case of forward orbits. The proof of the case
of backward orbits is the same. This finishes the proof of Theorem A1 for the case 2λ1 < λ2.

4.3.1. Proof of Lemma 4.5

Proof of part (i). By (3.4.31) and Corollary 3.33, (u10, v10) ∈ D2 ∪ D3 implies u1τ = o(v1τ ). Thus,
Poincaré map (4.1.1) takes the form

(4.3.1) (u10, v10) =
(

[b+ o (1)] v1τ , [d+ o (1)] v1τ

)
,

which implies w = d
b + o (1).
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Proof of part (ii). For (u10, v10) ∈ D2, relations (3.4.11) and (4.3.1) imply

‖T (u10, v10)‖ = ‖(u10, v10)‖ =
[
b2 + d2 + o (1)

] 1
2 |v1τ | = K |u10|−γ |v10|1−γ ,

where K = K (u10, v10) = γ−γδ2γ
[
b2 + d2 + o (1)

] 1
2 . Therefore, for C > K−1mγ (1 +m)

1
2 , we have

‖(u10, v10)‖
‖T (u10, v10)‖

=
|v10|

(
1 + u10

v10

) 1
2

K |u10|−γ |v10|1−γ
≤ K−1mγ (1 +m)

1
2 |v10|2γ < C ‖(u10, v10)‖2γ .

Proof of part (iii). By part (i) of Lemma 4.5, T (u10, v10) is somewhere close to the line `∗ and since,
for bd > 0, the restriction of `∗ \ {M s} to Bε lies in D2 we have that if T (u10, v10) lies in Bε, then it
must belong to D2.

Proofs of parts (iv), (v) and (vi). They are easy consequences of the previous parts.

Proof of part (vii). Recall the definition of the set Dε2 from (3.4.24) and consider Dε12 for a sufficiently
small ε1 > 0. Choose ε2 < ε1 such that X ⊂ Dε12 , where X = {(u10, v10) ∈ Πs : m−1 ≤ v10

u10
≤ m, u10 6=

0, |v10| ≤ ε2} and m is as in (3.4.22) (see Figure 4.5). Recall w in Notation 4.2 and define the new
variable z by

(4.3.2) z = z (u10, v10) = sgn (v10) |v10|α, (0 < α will be specefied later).

Figure 4.5: The set X ⊂ Dε12 in (u10, v10)-plane is shown by green color.

Let Y be the set X equipped with (w, z)-coordinates. Thus, Y =
[
m−1,m

]
× ([−ε2α, ε2α] \ {0})

(see Figure 4.6). Consider the restriction of the Poincaré map T to the set X , i.e. T |X , and denote
the representation of this map in (w, z)-coordinates by T . We write

(4.3.3) T : (w, z) 7→ (w, z) = (f (w, z) , g (w, z)) ,
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for some smooth functions f and g defined on Y. Note that by (3.4.11) and the relation z = g (w, z) =
sgn (v10) |v10|α, we can derive

(4.3.4) z = g (w, z) = sgn (dz) |d|α
( γ
δ2

)−γα
wγα|z|1−2γ [1 +O (δ)] = O

(
|z|1−2γ

)
and

(4.3.5) z = O
(
|z|

1
1−2γ

)
.

We now make a statement which is proved later:

Lemma 4.10. gz (w, z) is non-zero for any (w, z) ∈ Y.

Figure 4.6: The set Y (the set X equipped with (w, z)-coordinates) is shown by green color. It contains two
connected components (below and above horizontal axis).

According to this lemma and the implicit function theorem, the variable z is a Cq-smooth (q is as in
Lemma 3.8) function of (w, z) for w ∈

[
m−1,m

]
and z ∈ g (Y). Denote this function by G. Regarding

the domain of this function, note that not every (w, z) necessarily belongs to the domain of G. In
other words, for an arbitrary (w, z), there might not exist z ∈ [−ε2α, ε2α] \ {0} such that z = G (w, z).
However, by (4.3.4), this relation holds if z is chosen sufficiently small, i.e. for a sufficiently small
θ > 0 we have [

m−1,m
]
× ([−θ, θ] \ {0}) ⊂ domain (G) .

Denote this set by R, i.e. R =
[
m−1,m

]
× ([−θ, θ] \ {0}). Without loss of generality, assume θ < ε2

α.
Having the function G in hand means that we can write the Poincaré map T in cross-form: we define
the cross-map T × : (w, z) 7→ (w, z) by

(4.3.6) (w, z) = (F (w, z) , G (w, z)) , where F (w, z) = f (w,G (w, z)) ,

and (w, z) ∈ domain (G). It follows from part (i) of Lemma 4.5 (proved earlier), relation (4.3.5) and
the fact that z = 0 if and only if z = 0 (follows from (4.3.4)) that T × (R) ⊂ R. Hereafter, we focus on
the restriction of T × on R. Our approach to prove the existence of the desired invariant manifold for
the Poincaré map T is to apply Theorem 2.28 on the cross-map T ×. However, to do this, there are
two issues that we need to take care of. The first is that the domain R does not satisfy the assumption
of Theorem 2.28 (in that theorem, the domain must be written as a Cartesian product of two convex
closed sets but R is not of this form since it does not contain the line z = 0). Second, we need to
compute the partial derivatives of the cross-map T ×. The second issue is resolved by the following
lemma:

Lemma 4.11. Let β = α−1 min{4γ, 1− 2γ}. We have

Fw (w, z) = O
(
|z|

β
1−2γ

)
, Fz (w, z) = O

(
|z|

β−1+2γ
1−2γ

)
,

Gw (w, z) = O
(
|z|

1
1−2γ

)
, Gz (w, z) = O

(
|z|

2γ
1−2γ

)
.
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This lemma is proved later. We now extend the domain R to R̃, where R̃ =
[
m−1,m

]
× [−θ, θ].

We also extend the map T × to the map T̃ × defined on R̃ by

T̃ × (w, z) :=

{
T × (w, z) = (F (w, z) , G (w, z)) z 6= 0,(
d
b , 0
)

z = 0,

Lemma 4.11 implies that for a fixed sufficiently small α, the map T̃ × : R̃ → R̃ is a C1-smooth extension
of T × to R̃.

Now, let us come back to the Poincaré map T defined on Y. We extend this map to

T̃ (w, z) :=

{
T (w, z) (w, z) ∈ Y,(
d
b , 0
)

z = 0.

It is clear that the map T̃ × is in fact the cross-map of T̃ on R̃. Note that since θ < ε2
α, we have

R̃ ⊂ Y. Thus, both of the maps T̃ and T̃ × are defined on R̃. Therefore, for a sufficiently small θ, the
map T̃ × satisfies the assumptions of Theorem 2.28 and Proposition 2.29. This implies that the map
T̃ possesses a C1-smooth invariant manifold

M∗ =
{

(w, z) : w = h∗ (z)
}
⊂ R̃,

where h∗ is some C1-smooth function defined on [−θ, θ]. Moreover, by Proposition 2.29, if the backward
orbit of a point in R̃ remains in R̃, then it must belong to M∗. Therefore, Λu

R̃,T̃
⊂ M∗. Removing

the point
(
d
b , 0
)

from M∗, we obtain a set which is invariant under the map T . Moreover, we have

ΛuR,T ⊂M∗ \ {
(
d
b , 0
)
}.

Let us now come back to (u10, v10)-coordinates and the Poincaré map T . Equip R with (u10, v10)-
coordinates and choose 0 < ε < θ. Thus, Dε2 ⊂ R. Consider the manifold M∗ in (u10, v10)-coordinates
and restrict it to Dε2. Denote this restriction by M∗. We have that M∗ \ {M s} is invariant under T ,
and ΛuDε2,T

⊂M∗ \{M s}. Choosing a sufficiently small ε also guarantees thatM∗ is a connected piece

of M∗ and hence is a C1-manifold.

The manifold M∗ is our desired manifold if we show ΛuDε2,T
=M∗ \ {M s}. So far, we have shown

that ΛuDε2,T
⊂ M∗ \ {M s} and so it is sufficient to show M∗ \ {M s} ⊂ ΛuDε2,T

. However, this is just a

direct consequence of part (ii) of this lemma (proved earlier). The fact that M∗ is tangent to `∗ at
M s is also a direct consequence of part (i) of this lemma.

To finish the proof of part (vii), we need to prove Lemmas 4.10 and 4.11. Before we proceed to
the proofs of these two lemmas, we first state and prove two auxiliary propositions that are used in
the proofs of Lemmas 4.10 and 4.11.

Two auxiliary propositions: The absolute values of the terms of the form O (δ) in Lemma 3.22 are
bounded by Kδ, for some constant K > 0. It was mentioned earlier that in this chapter we assume
that δ is fixed. Without loss of generality, suppose δ is chosen sufficiently small such that Kδ � 1.
The first proposition is:

Proposition 4.12. For a sufficiently small ε > 0 and any (u10, v10) ∈ D2, we have

∂u10 (u10, v10)

∂u10
= −bγ v10

u10
· eλ1τ [1 +O(δ)] ,

∂u10 (u10, v10)

∂v10
= b (1− γ) eλ1τ [1 +O(δ)] ,

∂v10 (u10, v10)

∂u10
= −dγ v10

u10
· eλ1τ [1 +O(δ)] ,

∂v10 (u10, v10)

∂v10
= d (1− γ) eλ1τ [1 +O(δ)] .
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The proof is as follows: by the chain rule, we have

(4.3.7)

( ∂u10
∂u10

∂u10
∂v10

∂v10
∂u10

∂v10
∂v10

)
= DT

∣∣∣
(u10,v10)

= DT glo
∣∣∣
(u1τ ,v1τ )

·DT loc
∣∣∣
(u10,v10)

=

(
a+ o (v1τ ) b+ o (v1τ )
c+ o (v1τ ) d+ o (v1τ )

) ∂η1
∂u10

∂η1
∂v10

∂η2
∂u10

∂η2
∂v10

 .

Substituting (3.4.32) into the above relation gives the desired estimates in Proposition 4.12.
As a consequence of Lemma 3.34, for (u10, v10) ∈ D2, we have

∂η1

∂u10
= −1 + γ

γw
· e−2λ1τ [1 +O(δ)] · ∂η2

∂u10
,

∂η1

∂v10
=

γe−2λ1τ

(1− γ)w
[1 +O(δ)] · ∂η2

∂v10
,

and

(4.3.8)
∂η2

∂u10
=
−γw
1− γ

[1 +O(δ)] · ∂η2

∂v10
,

where O (δ) stands for the terms whose absolute values are bounded by K ′δ for some K ′ > 0 such
that K ′δ � 1. Relation (4.3.7) implies

Proposition 4.13. For a sufficiently small ε > 0 and any (u10, v10) ∈ D2, we have

(4.3.9)

∂u10 (u10, v10)

∂u10
=

[
a (1 + γ)

−γw e−2λ1τ [1 +O(δ)] + b+ o (v1τ )

]
∂η2
∂u10

=
[
O
(
e−2λ1τ

)
+ b+ o (v1τ )

] ∂η2
∂u10

,

∂u10 (u10, v10)

∂v10
=

[
aγ

(1− γ)w
e−2λ1τ [1 +O(δ)] + b+ o (v1τ )

]
∂η2
∂v10

=
[
O
(
e−2λ1τ

)
+ b+ o (v1τ )

] ∂η2
∂v10

,

∂v10 (u10, v10)

∂u10
=

[
c (1 + γ)

−γw e−2λ1τ [1 +O(δ)] + d+ o (v1τ )

]
∂η2
∂u10

=
[
O
(
e−2λ1τ

)
+ d+ o (v1τ )

] ∂η2
∂u10

,

∂v10 (u10, v10)

∂v10
=

[
cγ

(1− γ)w
e−2λ1τ [1 +O(δ)] + d+ o (v1τ )

]
∂η2
∂v10

=
[
O
(
e−2λ1τ

)
+ d+ o (v1τ )

] ∂η2
∂v10

.

Proof of Lemma 4.10: Notice that

u10 = u10 (w, z) = sgn (z)w−1|z|
1
α and v10 = v10 (w, z) = sgn (z) |z|

1
α ,

which implies

(4.3.10)
∂u10
∂w

= −sgn (z)w−2|z| 1α , ∂v10
∂w

= 0,
∂u10
∂z

=
1

αw
|z| 1α−1, ∂v10

∂z
=

1

α
|z| 1α−1.

Differentiating z = g (w, z) = sgn (v10) |v10|α with respect to z gives

(4.3.11) gz (w, z) = α|v10|α−1

[
∂v10 (u10, v10)

∂u10
· ∂u10 (w, z)

∂z
+
∂v10 (u10, v10)

∂v10
· ∂v10 (w, z)

∂z

]
.

Relation (4.3.10) and Proposition 4.12 imply

(4.3.12) gz (w, z) = sgn (d) (1− 2γ) |d|αeαλ1τ [1 +O (δ)] ,

which is non-zero for any (w, z) ∈ Y. This finishes the proof of Lemma 4.10.
Proof of Lemma 4.11: By (4.3.12) and (3.4.11), we have

(4.3.13) Gz (w, z) = (gz (w, z))−1 =
sgn (d) |d|−α

1− 2γ
· e−αλ1τ [1 +O (δ)] = O

(
|z|

2γ
1−2γ

)
.
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Relation z = g (w, z) = g (w,G (w, z)) implies Gw (w, z) = (gz (w, z))−1 gw (w, z). By (4.3.10) and
Proposition 4.12, one can differentiate z = g (w, z) = sgn (v10) |v10|α with respect to w and compute

gw (w, z) = α|v10|α−1
[
∂v10 (u10, v10)

∂u10
· ∂u10 (w, z)

∂w

]
=

sgn (dz)αγ|d|α

w
· eαλ1τ |z| [1 +O (δ)] .

Therefore

(4.3.14) Gw (w, z) =
sgn (z)αγ

(1− 2γ)w
· |z| [1 +O (δ)] = O (|z|) = O

(
|z|

1
1−2γ

)
.

Computations of Fw and Fz are slightly tricky in the sense that instead of estimates given by
Proposition 4.12, we use estimates (4.3.8) and (4.3.9). We have

(4.3.15)

fz (w, z) =
1

u10
2

[(
∂v10 (u10, v10)

∂u10
· u10 −

∂u10 (u10, v10)

∂u10
· v10

)
· ∂u10 (w, z)

∂z

+

(
∂v10 (u10, v10)

∂v10
· u10 −

∂u10 (u10, v10)

∂v10
· v10

)
· ∂v10 (w, z)

∂z

]
.

Since T is at least two times differentiable, we can write (4.1.1) as(
u10

v10

)
=

(
a u1τ + b v1τ +O

(
u2

1τ + |u1τv1τ |+ v2
1τ

)
c u1τ + d v1τ +O

(
u2

1τ + |u1τv1τ |+ v2
1τ

) ) .
However, for (u10, v10) ∈ D2, relation (3.4.31) implies u1τ = e−2λ1τw−1v1τ [1 +O (δ)]. Therefore

u10 =
(
ae−2λ1τw−1 [1 +O (δ)] + b+O (v1τ )

)
v1τ =

[
O
(
e−2λ1τ

)
+ b+O (v1τ )

]
v1τ

v10 =
(
ce−2λ1τw−1 [1 +O (δ)] + d+O (v1τ )

)
v1τ =

[
O
(
e−2λ1τ

)
+ d+O (v1τ )

]
v1τ .

This yields

fz (w, z) =
|z|

1
α
−1v1τ

αu10
2

[([
O
(
e−2λ1τ

)
+ d+ o (v1τ )

] [
O
(
e−2λ1τ

)
+ b+O (v1τ )

]
−
[
O
(
e−2λ1τ

)
+ b+ o (v1τ )

] [
O
(
e−2λ1τ

)
+ d+O (v1τ )

])
w−1 ∂η2

∂u10

+

([
O
(
e−2λ1τ

)
+ d+ o (v1τ )

] [
O
(
e−2λ1τ

)
+ b+O (v1τ )

]
−
[
O
(
e−2λ1τ

)
+ b+ o (v1τ )

] [
O
(
e−2λ1τ

)
+ d+O (v1τ )

]) ∂η2

∂v10

]
,

which, by (4.3.8), can be simplified as

fz (w, z) =
|z|

1
α
−1v1τ

αu10
2

[[
O
(
e−2λ1τ

)
+O (v1τ )

] ∂η2

∂u10
+
[
O
(
e−2λ1τ

)
+O (v1τ )

] ∂η2

∂v10

]
=
|z|

1
α
−1v1τ

αu10
2

[
O
(
e−2λ1τ

)
+O (v1τ )

] ∂η2

∂v10
.

Note that by Corollary 3.32, we can write (3.4.11) as

(4.3.16) e−λ1τ =
( γ
δ2

)γ
w−γ |z|

2γ
α [1 +O (δ)] ,
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and therefore, by (3.4.30), we have v1τ = O
(
|z|

1−2γ
α

)
. Using these relations as well as the estimates

in Lemma 3.34, we obtain

(4.3.17) fz (w, z) = |z|−1
[
O
(
|z|

4γ
α

)
+O

(
|z|

1−2γ
α

)]
= O

(
|z|β−1

)
, β = min

{4γ

α
,
1− 2γ

α

}
.

Substituting this and (4.3.13) into Fz (w, z) = fz (w,G (w, z)) ·Gz (w, z) gives

Fz (w, z) = O
(
|z|

β−1+2γ
1−2γ

)
.

Concerning fw (w, z), we have

fw (w, z) =
1

u10
2 ·
(
∂v10 (u10, v10)

∂u10
· u10 −

∂u10 (u10, v10)

∂u10
· v10

)
· ∂u10 (w, z)

∂w
.

Thus,

fw (w, z) =
−sgn (z) |z| 1α v1τ

w2u10
2

( [
O
(
e−2λ1τ

)
+ d+ o (v1τ )

] [
O
(
e−2λ1τ

)
+ b+O (v1τ )

]
−
[
O
(
e−2λ1τ

)
+ b+ o (v1τ )

] [
O
(
e−2λ1τ

)
+ d+O (v1τ )

] ) ∂η2
∂u10

=
|z| 1α v1τ
u10

2

[
O
(
e−2λ1τ

)
+O (v1τ )

] ∂η2
∂u10

.

By (4.3.16), relation v1τ = O
(
|z|

1−2γ
α

)
and estimates in Lemma 3.34, we have

fw (w, z) = O
(
|z|

4γ
α

)
+O

(
|z|

1−2γ
α

)
= O

(
|z|β

)
,

where β is as in (4.3.17). Substituting this as well as (4.3.17) and (4.3.14) into

Fw (w, z) = fw (w,G (w, z)) + fz (w,G (w, z)) ·Gw (w, z)

gives

Fw (w, z) = O
(
|z|β
)

+O
(
|z|β−1|z|

1
1−2γ

)
= O

(
|z|

β
1−2γ

)
.

This finishes the proof of Lemma 4.11.

Remark 4.14. Lemma 4.5 states that when bd > 0, the set {M s} ∪ ΛuD2∪D3,T
is a C1-smooth curve

which is tangent to `∗ at M s, and any point on this curve converges to M s by the backward iterations
of the Poincaré map T . It follows from part (iii) of Theorem 2.28 and the proof of Lemma 4.5 that,
when bd > 0, if we take a curve ζ in D2 passing through M s, then {Tn (ζ) |D2}∞n=1 converges uniformly
to the curve {M s} ∪ ΛuD2∪D3,T

.

4.3.2. Proof of Lemma 4.6

Reverse the time direction in system (3.2.9) (i.e. t → −t) and exchange the stable and unstable
components, i.e. apply the linear change of coordinates

(4.3.18) (ũ1, ũ2, ṽ1, ṽ2) = (v1, v2, u1, u2)

This gives a system which is of the form of system (3.2.9), where all the assumptions of Lemma 3.8

are satisfied. The global map along Γ for this system is J
(
T glo

)−1
J−1, where J =

(
0 1
1 0

)
and T glo

is the global map of system (3.2.9). Thus, the differential of this map at M s is

J
(
dT glo (M s)

)−1
J−1 = J · 1

ad− bc

(
d −b
−c a

)
· J−1 =

1

ad− bc

(
a −c
−b d

)
.
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This implies that if we replace conditions bd > 0 and bd < 0 in Lemma 4.5 by cd < 0 and cd > 0,
respectively, and the line `∗ by the straight line whose slope is −dc , then all the statements of Lemma 4.5
also hold for this system and the region D2∪D3 ⊂ Πs. Consequently, by applying the inverse of change
of coordinates (4.3.18), all the statements of Lemma 4.5 also hold for the system which is derived from
system (3.2.9) by a reversion of time and the region {(u1, v1) ∈ Bεu ⊂ Πu : 0 < v1

u1
≤ m, u1 6= 0} ⊂ Πu.

In this case, the line `∗ is replaced by the straight line in Πu whose slope is −cd . The homoclinic loop
Γ in this system leaves and enters O along the positive sides of u2 and v2, respectively, and the
corresponding Poincaré map, call it T̃ , is defined on Πu. Therefore, the statements of Lemma 4.5 also
hold for the map

(4.3.19) T glo ◦ T̃ ◦
(
T glo

)−1

and the set

(4.3.20) K = T glo

(
{(u1, v1) ∈ Bεu ⊂ Πu : 0 <

v1

u1
≤ m, u1 6= 0}

)
,

where the line `∗ is replaced by the horizontal axis in Πs. The later one is simply because

dT glo (Mu)

(
d
−c

)
=

(
ad− bc

0

)
.

Notice that map (4.3.19) is conjugate to the inverse of Poincaré map, T−1.
The map (4.3.19) coincides with T−1 on T (D). Note that, for sufficiently large m, the set

T glo
(
{(u1, v1) ∈ Bεu ⊂ Πu : u1 6= 0, m < v1

u1
}
)

has no intersection with D1. Therefore, Lemma 4.6

will be proved once we show that D1 ⊂ K if cd < 0, and K ∩ D1 = ∅ if cd > 0. However, this is an
immediate consequence of the discussion above. In fact, it follows from the above discussion that the
line `∗ passes through D2 ∪D3 if and only if the horizontal axis passes through K. The later case, for
sufficiently large m, is equivalent to the condition D1 ⊂ K and happens if and only if cd < 0. This
ends the proof of Lemma 4.6.

Remark 4.15. Lemma 4.6 states that if cd < 0, then the set {M s} ∪ ΛuD1,T−1 is a C1-smooth curve
which is tangent to the horizontal axis at M s. Moreover, any point on this curve converges to M s by
the forward iterations of the Poincaré map T . It follows from Remark 4.14 and the proof of Lemma
4.6 that if we take a set ζ in K ∩Bε such that ζ ∪{M s} be a curve, then {T−n (ζ) |K∩Bε}∞n=1 converges
uniformly to the curve {M s} ∪ ΛuD1,T−1.

4.4. Dynamics near the homoclinic figure-eight

In this section, we study the dynamics near the homoclinic figure-eight Γ1 ∪ Γ2. In particular, we
prove Theorems B1, B2 and B3 in this section. We start with recalling some definitions and notations
from Section 3.1.

For i = 1, 2, we denote by Di the set of the points (u10, v10) on Πs
i whose forward orbits go along

the homoclinic orbit Γi and intersect Πu
i at (u1τ , v1τ ) such that

(4.4.1) ‖(u10, v10)‖ < ε and ‖(u1τ , v1τ )‖ < εu,

for some sufficiently small constants 0 < ε ≤ εu < δ. We denote by D1 (D2) the set of the points
(u10, v10) on Πs

1 (Πs
2) whose forward orbits go along the negative (positive) side of v2-axis and intersect

Πu
2 (Πu

1) at (u1τ , v1τ ) such that (4.4.1) holds (see Figure 4.7). We also denote by Ti, T
loc
i and T glo

i the

Poincaré, local and global maps along Γi (i = 1, 2), respectively (see Figure 4.8). The maps T glo
1 and
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T glo
2 are defined on the open εu-balls around M s

1 and M s
2 , respectively. Regarding the other maps, we

have domain
(
T loc

1

)
= domain (T1) = D1 and domain

(
T loc

2

)
= domain (T2) = D2. We also define the

map T loc
12 : D1 ⊂ Πs

1 → Πu
2 (T loc

21 : D2 ⊂ Πs
2 → Πu

1) by (u10, v10) 7→ (u1τ , v1τ ), where (u10, v10) ∈ D1

(∈ D2) and (u1τ , v1τ ) ∈ Πu
2 (∈ Πu

1) (see Figure 4.8).

Figure 4.7: This figure illustrates a small neighborhood of the equilibrium O in the presence of the homoclinic figure-
eight (Γ1 ∪ Γ2). Recall that the the cross-sections Πs

1, Πu
1 , Πs

2 and Πu
2 are the intersection of the zero-level of the first

integral H, i.e. {H = 0}, and {u2 = δ}, {v2 = δ}, {u2 = −δ} and {v2 = −δ}, respectively. We consider ε-neighborhoods
of Ms

1 and Ms
2 (green dashed circles) in Πs

1 and Πs
2, respectively, as well as εu-neighborhoods of Mu

1 and Mu
2 (red dashed

circles) in Πu
1 and Πu

2 , respectively. The set D1 (D2) is the set of the points in the ε-neighborhood in Πs
1 (Πs

2) whose
forward orbits go along Γ1 (Γ2) and intersect the εu-neighborhood in Πu

1 (Πu
2 ). The blue point on Πs

1 and the brown
point on Πs

2 belong to D1 and D2, respectively. We denote by D1 (D2) the set of the points in the ε-neighborhood in Πs
1

(Πs
2) whose forward orbits go along the negative (positive) side of v2-axis and intersect the εu-neighborhood in Πu

2 (Πu
1 ).

Let V be a sufficiently small neighborhood of Γ1 ∪ Γ2 and define Ξ = D1 ∪ D1 ∪ D2 ∪ D2. For any
x ∈ Ξ, we correspond a (finite or infinite) sequence {xk} to x in the following way: (i) x0 = x, (ii) if
xk ∈ Ξ (k ≥ 0), we define xk+1 to be the first intersection point of the forward orbit of xk and Πs

1∪Πs
2.

Similarly, if xk ∈ Ξ (k ≤ 0), we define xk−1 to be the first intersection point of the backward orbit of
xk and Πs

1∪Πs
2. In order to understand the dynamics in V, we need to find the set of the points whose

forward or backward orbits lie entirely in V, i.e. the set of the points x ∈ Ξ for which the sequence
{xk} is well-defined for all k ≥ 0 or k ≤ 0.

When λ2 < 2λ1, the dynamics near the homoclinic figure-eight is quite similar to the case of a
single homoclinic loop: the forward and backward orbit of any arbitrary point in V leaves V. When
λ1 = λ2, it follows from Proposition 3.28 that Ξ = ∅ and so there is no dynamics near the homoclinic
figure-eight. For the case of λ1 < λ2 < 2λ1, we show in the next proof that for any x ∈ Ξ whose
corresponding x1 is defined, the point x1 lies close to the straight lines with slope d1

b1
(if x1 lies in

D1 ∪ D1) or d2
b2

(if x1 lies in D2 ∪ D2), and hence, outside of the set Ξ (see Figure 4.9).

Proof of Theorem B2. The proof for the case λ1 = λ2 is an immediate consequence of Proposition
3.28.
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Figure 4.8: The blue, brown, green, yellow, red and pink curves correspond to the maps T glo
1 , T loc

12 , T glo
2 , T loc

21 ,
T loc
1 and T loc

2 , respectively.

Suppose λ1 < λ2 < 2λ1. By Proposition 3.29, we have

(4.4.2) Ξ = {(u10, v10) : ‖ (u10, v10) ‖ < ε and 0 < |v10| < Kεu |u10|
γ

1−γ [1 +O (δ)]},

where Kεu > 0 is some constant and γ = λ1λ
−1
2 > 0.5 (see Figure 4.9). Consider (u10, v10) ∈ Ξ.

According to (3.4.15), i.e. relation u1τ = v1τO
(
ε2
)

(see also Remark 3.30), the forward orbit of this
point intersects one of the cross-sections Πu

1 or Πu
2 at a point close to the vertical axis and then it ends

up either in the cross-section Πs
1 close to the straight line with the slope d1

b1
or in the cross-section Πs

2

close to the straight line with the slope d2
b2

. In both cases, this point is outside of the set Ξ (see Figure
4.9). This proves Theorem B2.

Figure 4.9: This figure corresponds to the case λ1 < λ2 < 2λ1, b1d1 > 0 and b2d2 > 0. The regions D1, D1, D2

and D2 are shown in green, blue, pink and yellow, respectively. We define Ξ as the union of these four regions.
Let x1 be the first intersection point of the forward orbit of x ∈ Ξ and Πs

1 ∪ Πs
2. It is shown in the proof of

Theorem B2 that for any x ∈ Ξ the point x1 lies in one of the gray regions on Πs
1 or Πs

2
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A point in Πs
1 ∪ Πs

2 whose forward orbit lies entirely in V and does not lie on the stable manifold
of O must belong to Ξ. We denote the set of these points by Λs. The same holds for backward
orbits. We also define the set Λu analogously. In order to understand the dynamics in V, we need to
investigate these two sets. For the case of λ2 < 2λ1, Theorem B2 states that both of these sets are
empty. Our approach to investigate Λs and Λu for the case 2λ1 < λ2 is similar to what we have done
in the previous section for the case of a single homoclinic loop. Recall from Section 3.4.3 that when
2λ1 < λ2, we divide each of the sets D1, D1, D2 and D2 into three regions, i.e. for i = 1, 2, we write
Di = Di1 ∪ Di2 ∪ Di3 and Di = Di1 ∪ Di2 ∪ Di3 where

Di1 = {(u10, v10) ∈ Bε (M s
i ) , 0 <

v10

u10
<

1

m
}, Di1 = {(u10, v10) ∈ Bε (M s

i ) , − 1

m
<
v10

u10
< 0},

Di2 = {(u10, v10) ∈ Bε (M s
i ) ,

1

m
≤ v10

u10
≤ m}, Di2 = {(u10, v10) ∈ Bε (M s

i ) , −m ≤ v10

u10
≤ − 1

m
},

Di3 ⊂ {(u10, v10) ∈ Bε (M s
i ) , m < | v10

u10
|} and Di3 ⊂ {(u10, v10) ∈ Bε (M s

i ) , m < | v10

u10
|}

(see Figure 4.10). Here, m > 0 is some sufficiently large constant and Bε (M s
i ) is the open ε-ball in Πs

i

centered at M s
i . It has been mentioned in Section 3.4.3 that for i = 1, 2, we are not able to distinguish

the sets Di3 and Di3. However, as we see below (Lemma 4.17), the dynamics on both of these sets are
quite trivial.

Figure 4.10: The left and right figures show Πs
1 and Πs

2, respectively. When 2λ1 < λ2, we divide Di into three
subsets Di1, Di2 and Di3 (i = 1, 2). Similarly, we divide Di into three subsets Di1, Di2 and Di3 (i = 1, 2). The sets
D1

3 and D1
3 are subsets of the purple region, and the sets D2

3 and D2
3 are subsets of the yellow region (in Section

3.4.3, we have discussed that we are not able to find the exact shapes of D1
3, D1

3, D2
3 and D2

3).

Write Ξ = I ∪ J ⊂ Πs
1 ∪Πs

2, where

(4.4.3) I :=
⋃
i=1,2

(
Di1 ∪ Di1

)
and J :=

⋃
i=1,2
j=2,3

(
Dij ∪ Dij

)
.

Definition 4.16. We define ΛsI (ΛuI) as the set of the points in I whose forward (backward) orbits
intersect Ξ infinitely many times and all the intersection points belong to I. More precisely,

(4.4.4) ΛsI = {x = x0 : xk ∈ I for all k ≥ 0} and ΛuI = {x = x0 : xk ∈ I for all k ≤ 0}

The sets ΛsJ and ΛuJ are defined analogously.
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Similar to the case of a single homoclinic, we take three steps to investigate the sets Λs and Λu.
In the first step, we investigate the sets ΛsJ and ΛuJ . This is done in Lemma 4.17. From technical
point of view, part (viii) of this lemma which proves the existence of an unstable invariant manifold
of the homoclinic figure-eight is the main result of this section. The techniques which are used in the
proof of this part rely on the proof of part (vii) of Lemma 4.5. In the second step, we investigate the
sets ΛsI and ΛuI . This is also done in Lemma 4.18. Finally, in Lemma 4.19, we clarify the relations
between the sets ΛsJ , ΛuJ , ΛsI and ΛuI , and the sets Λs and Λu. This enables us to prove Theorem B2.
We start with Lemma 4.17.

Lemma 4.17. Assume 2λ1 < λ2 and let w be as in Notation 4.2. Then, for x ∈ J , we have

(i) if x ∈ D1
2 ∪ D1

3 ∪ D2
2 ∪ D2

3 (i.e. x ∈ J ∩ Πs
1), then w (x1) = d1

b1
+ o(1). If x ∈ D2

2 ∪ D2
3 ∪ D1

2 ∪ D1
3

(i.e. x ∈ J ∩Πs
2), then w (x1) = d2

b2
+ o(1). Here, o (1) stands for a function of x that converges

to zero as x→M s
1,2.

(ii) There exists a constant C > 0 such that ‖x‖1−2γ < C‖x1‖ holds for arbitrary x (0 < γ = λ1
λ2
<

0.5).

(iii) x1 ∈ Bε implies x1 ∈ J .

(iv) ΛsJ = ∅.

(v) if b1d1 > 0 and b2d2 < 0, then ΛuJ = W u
loc (Γ1) ∩ D1

2.

(vi) if b1d1 < 0 and b2d2 > 0, then ΛuJ = W u
loc (Γ2) ∩ D2

2.

(vii) if b1d1 > 0 and b2d2 > 0, then ΛuJ =
[
W u

loc (Γ1) ∩ D1
2

]⋃ [
W u

loc (Γ2) ∩ D2
2

]
.

(viii) if b1d1 < 0 and b2d2 < 0, then ΛuJ ⊂ D1
2∪D2

2. More precisely, for each i = 1, 2, the union of M s
i

and ΛuJ ∩Di2 is a one-dimensional C1-manifold in Πs
i which at M s

i is tangent to the straight line

with slope di
bi

. Moreover, the backward orbit of any point in ΛuJ intersects these two manifolds
alternately, i.e. for any x ∈ ΛuJ , all the points xk for even and negative ks belong to only one of
the manifolds and all the other xk (odd and negative ks) belong to the other manifold.

Proof. The same techniques that were used in the proof of Lemma 4.5 also prove parts (i), (ii) and
(iii).

Part (iv) is an immediate consequence of (ii) and (iii).
In the rest of the proof, we assume x ∈ ΛuJ . Notice that x = x0 ∈ ΛuJ implies that xk is defined

for all k ≤ 0 and xk ∈ ΛuJ . Since ΛuJ ⊂ J , we have two possibilities for xk:

(4.4.5) xk ∈ D2
2 ∪ D2

3 ∪ D1
2 ∪ D1

3 or xk ∈ D2
2 ∪ D2

3 ∪ D1
2 ∪ D1

3.

Our strategy for proving the rest of this lemma is to consider both of these possibilities and keep
track of the sequence xk, xk+1, · · · , x−1, x0. We analyze the behaviors and patterns of this sequence
for arbitrary x ∈ ΛuJ .

To prove part (v), suppose b1d1 > 0 and b2d2 < 0. By part (i), for x−2, we observe

(i) x−2 ∈ D2
2 ∪ D2

3 ∪ D1
2 ∪ D1

3 =⇒ x−1 ∈ D1
2 =⇒ x ∈ D1

2, and

(ii) x−2 ∈ D2
2 ∪ D2

3 ∪ D1
2 ∪ D1

3 =⇒ x−1 ∈ D2
2 =⇒ x ∈ D1

2.

According to this observation, x ∈ ΛuJ implies x ∈ D1
2. In other words, ΛuJ is in fact the set of all

x ∈ D1
2 whose backward orbits only intersect Πs

1, and not Πs
2, and all the intersection points belong

to D1
2. It follows from Theorem A3 that this set is nothing but W u

loc (Γ1) ∩ D1
2. This proves part (v).

The proof of part (vi) is analogous to the proof of part (v).
To prove part (vii), suppose b1d1 > 0 and b2d2 > 0. By (i), for xk−2 (k ≤ 0) we observe
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(i) xk−2 ∈ D2
2 ∪ D2

3 ∪ D1
2 ∪ D1

3 =⇒ xk−1 ∈ D1
2 =⇒ xk ∈ D1

2 =⇒ · · · =⇒ x ∈ D1
2, and

(ii) xk−2 ∈ D2
2 ∪ D2

3 ∪ D1
2 ∪ D1

3 =⇒ xk−1 ∈ D2
2 =⇒ xk ∈ D2

2 =⇒ · · · =⇒ x ∈ D2
2.

This observation holds for any arbitrary k ≤ 0 which means that the set ΛuJ consists of two disjoint
sets: the first is the set of all x ∈ D1

2 whose backward orbits intersect Ξ infinitely many time and every
time at D1

2, and the second is the set of all x ∈ D2
2 whose backward orbits intersect Ξ infinitely many

time and every time at D2
2. According to Theorem A3, the first set is in fact W u

loc (Γ1) ∩ D1
2 and the

second one is W u
loc (Γ2) ∩ D2

2. This proves part (vii).
To prove part (viii), assume b1d1 < 0 and b2d2 < 0. By (i), for xk−1 (k ≤ −4), we observe

(i) xk−1 ∈ D2
2 ∪ D2

3 ∪ D1
2 ∪ D1

3 =⇒ xk ∈ D1
2 =⇒ xk+1 ∈ D2

2 =⇒ xk+2 ∈ D1
2

=⇒ xk+3 ∈ D2
2 =⇒ · · · =⇒ x ∈ D1

2 (if x−1 ∈ D2
2) or x ∈ D2

2 (if x−1 ∈ D1
2), and

(ii) xk−1 ∈ D2
2 ∪ D2

3 ∪ D1
2 ∪ D1

3 =⇒ xk ∈ D2
2 =⇒ xk+1 ∈ D1

2 =⇒ xk+2 ∈ D2
2

=⇒ xk+3 ∈ D1
2 =⇒ · · · =⇒ x ∈ D1

2 (if x−1 ∈ D2
2) or x ∈ D2

2 (if x−1 ∈ D1
2).

This observation holds for any arbitrary k ≤ −4 and means that the backward orbit of x intersects J
at D1

2 and D2
2 alternately.

Define the maps T12 : D1 → Πs
2 and T21 : D2 → Πs

1 by T12 := T2 ◦ T12 and T21 := T1 ◦ T21. We
then define T : D1 → Πs

1 by T := T21 ◦ T12. According to the above observation, the set ΛuJ is in fact
the set of the points x ∈ D1

2 such that T−n (x) ∈ D1
2 for all integers n > 0.

Recall (w, z) coordinate system and the map T̃ introduced in the proof of Lemma 4.5. Similar to
that proof, we equip D1

2 and D2
2 with (w, z) coordinates and define the maps T̃12 and T̃21 by

T̃12 (w, z) :=

 (w, z) z 6= 0,(
d2
b2
, 0
)

z = 0,
for (w, z) ∈ R̃1,

and

T̃21 (w, z) :=

 (w, z) z 6= 0,(
d1
b1
, 0
)

z = 0,
for (w, z) ∈ R̃2,

where R̃1 and R̃2 are some appropriate rectangles defined analogous to the proof of Lemma 4.5.
According to Remark 3.35, the estimates given by Lemma 3.34 also hold for the local maps T12 and
T21. Therefore, with exactly the same proof as the proof of Lemma 4.5, we see that both of the maps
T̃12 and T̃21 can be written in cross-form and the partial derivatives of the cross-map satisfies the
estimates given by Lemma 4.11. Moreover, as it can be seen from the proof of Lemma 4.5, we can
make the estimates in Lemma 4.11 sufficiently small by choosing θ small enough. This means that
the maps T̃12 and T̃21 satisfy the assumptions of Lemma 2.27 for sufficiently small K1 and K2. Thus,
Lemma 2.27 implies that by choosing an appropriate norm, the map T̃ := T̃21 ◦ T̃12 (which is in fact
the representation of T in (w, z) coordinates) can be written in cross-form and the cross-map has
sufficiently small partial derivatives. Therefore, this cross-map satisfies the assumptions of Theorem
2.28. The rest of the proof follows from the proof of Lemma 4.5.

The following lemma is analogous to Lemma 4.17. The proof of this lemma is a simple modification
of the proof of Lemma 4.6 for the case of homoclinic figure-eight.

Lemma 4.18. Assume 2λ1 < λ2 and let w be as in Notation 4.2. Then, for x ∈ I, we have

(i) w (x−1) = o(1), where o (1) stands for a function of x that converges to zero as x→M s
1,2.

(ii) There exists a constant C > 0 such that ‖x‖1−2γ < C‖x−1‖ holds for any x (0 < γ = λ1
λ2
< 0.5).
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(iii) x−1 ∈ Bε implies x−1 ∈ I.

(iv) ΛuI = ∅.

(v) if c1d1 < 0 and c2d2 > 0, then ΛsI = W s
loc (Γ1) ∩ D1

1.

(vi) if c1d1 > 0 and c2d2 < 0, then ΛsI = W s
loc (Γ2) ∩ D2

1.

(vii) if c1d1 < 0 and c2d2 < 0, then ΛsI =
[
W u

loc (Γ1) ∩ D1
1

]⋃ [
W s

loc (Γ2) ∩ D2
1

]
.

(viii) if c1d1 > 0 and c2d2 > 0, then ΛsI ⊂ D1
1 ∪D2

1. More precisely, for each i = 1, 2, the union of M s
i

and ΛsI ∩ Di1 is a one-dimensional C1-manifold in Πs
i which at M s

i is tangent to the horizontal
axis. Moreover, the forward orbit of any point in ΛsI intersects these two manifolds alternately,
i.e. for any x ∈ ΛsI , all the points xk for even and negative ks belong to only one of the manifolds
and all the other xk (odd and negative ks) belong to the other manifold.

The following Lemma states that the forward (backward) orbit of a point in V lies in V if and only
if it intersects the cross-sections Πs

1 and Πs
2 only at I (J ).

Lemma 4.19. We have Λu = ΛuJ and Λs = ΛsI .

Proof. It follows from parts (ii) and (iii) of Lemma 4.18 that if x ∈ I, then the sequence {xk} is not
defined for all k ≤ 0. Indeed, For some k0 ≤ 0, we have {xk0 , · · · , x−1} ⊂ I such that xk0−1 lies
outside the ε-balls around M s

1 or M s
2 . This means that if x belongs to Λu, then it must belong to J .

Therefore, x ∈ Λu implies x ∈ ΛuJ . On the other hand, we know ΛuJ ⊂ Λu. This proves the first part
of the lemma. The proof of the other part is the same.

By virtue of the preceding lemmas, we are now in a position to prove Theorem B3.

Proof of Theorem B3. The local stable (unstable) set of the homoclinic figure-eight Γ1 ∪ Γ2, denoted
by W s

loc(Γ1∪Γ2) (W u
loc(Γ1∪Γ2)), is the union of Γ1∪Γ2 itself and the set of the points in a sufficiently

small neighborhood V of Γ1 ∪ Γ2 whose forward (backward) orbits lie in V and their ω-limit sets
(α-limit sets) coincide with Γ1 ∪ Γ2 ∪ {O}. By this definition, the intersection of W s

loc(Γ1 ∪ Γ2) and
any of the cross-sections Πs

1 and Πs
2 must belong to {M s

1 ,M
s
2} ∪ Λs. Similarly, the intersection of

W u
loc(Γ1 ∪ Γ2) and the cross-sections Πs

1 and Πs
2 must belong to {M s

1 ,M
s
2} ∪ Λu.

It follows from Lemma 4.18 that in any cases except the case c1d1 > 0 and c2d2 > 0, the ω-limit
set of any orbit in Λs coincides with either Γ1 ∪ {O} or Γ2 ∪ {O}. Therefore, in all of these cases, we
have W s

loc(Γ1 ∪ Γ2) = Γ1 ∪ Γ2.

Denote the flow of system (3.2.9) by φt. When c1d1 > 0 and c2d2 > 0, it follows from parts (ii)
and (viii) of Lemma 4.18 that the set Γ1 ∪ Γ2 ∪ φt (Λs) for t ≥ 0 is a 2-dimensional C1 manifold, and
the forward orbit of any point on this manifold converges to Γ1 ∪ {O} ∪ Γ2 as t → ∞. This means
that this manifold is in fact the local stable set of the homoclinic figure-eight Γ1 ∪ Γ2. The fact that
this manifold is tangent to W s

glo (O) at every point of Γ1 ∪Γ2 is an straightforward consequence of the
discussion before Proposition 4.9.

The proof for the case of W u
loc(Γ1 ∪ Γ2) is the same. This ends the proof of Theorem B3.

Corollary 4.20. Let φt be the flow of system (3.2.9). Then

W s
loc (Γ1 ∪ Γ2) = Γ1 ∪ Γ2 ∪ φt (Λs) , for t ≥ 0,

W u
loc (Γ1 ∪ Γ2) = Γ1 ∪ Γ2 ∪ φt (Λu) , for t ≤ 0.

Finally, we prove
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Proof of Theorem B1. Denote the set W s
loc (Γ1)∪W s

loc (Γ2)∪W s
loc (Γ1 ∪ Γ2) byWs. By definition, the

forward orbit of any point on W s
V (O) ∪Ws lies in V. Consider a point in V \W s

V (O) whose forward
orbit lies entirely in V. The forward orbit of this point must intersect Πs

1 ∪ Πs
2 at Λs. Therefore,

it follows from the proof of Theorem B2 (for the case λ2 < 2λ1) and Corollary 4.20 (for the case
2λ1 < λ2) that this point lies on Ws. This finishes the proof for the case of forward orbits.

The proof of the case of backward orbits is the same. This finishes the proof of Theorem B1.

4.5. Dynamics near super-homoclinic orbits

In this section, we prove Theorem C1. The idea of the proof is to show that there exist sequences
of curves {luk}∞k=1 ⊂W u

glo (O) ∩Πs and {lsk}∞k=1 ⊂W s
glo (O) ∩Πs that accumulate to W u

loc (Γ) ∩Πs and
W s

loc (Γ)∩Πs, respectively (see Figure 4.11). Then, the flow near the super-homoclinic orbit defines a
map which maps the first sequence to a sequence of curves, denoted by {mu

k} in Figure 4.11, such that
each of the curves {mu

k} intersects each of the curves {lsk} at a single point. Each of these intersection
points correspond to a homoclinic orbit. The proof of Theorem C2 is exactly the same.

Proof of Theorem C1. Let Ws = W s
loc (Γ) ∩ D1 and Wu = W u

loc (Γ) ∩ D2. We have shown in Section
4.3 (after Proposition 4.8) that T glo (W u

loc (O) ∩Πu) intersects Πs at a curve which is tangent to `∗ at
M s. For a sufficiently small ε, the restriction of this curve to Bε \ {M s} lies in D2. Denote this curve
by Lu0 , and let Luk (k ≥ 1) be the restriction of T

(
Luk−1

)
to Bε \ {M s}. By Remark 4.14, the sequence

{Luk}∞k=1 converges to Wu uniformly.
Now, consider the restriction of W s

loc (O)∩Πs to Bε \{M s} and denote it by Ls0. We have Ls0 ⊂ K,
where K is as in (4.3.20). Let Lsk (k ≥ 1) be the restriction of T−1

(
Lsk−1

)
to Bε \ {M s}. By Remark

4.15, the sequence {Lsk}∞k=1 converges to Ws uniformly.
The super-homoclinic orbit S intersects Πs at Wu and Ws infinitely many times. Denote the

furthest points of S ∩Wu and S ∩Ws from M s by qu and qs, respectively. Let Bu be a sufficiently
small open ball in D2 centered at qu. The orbits starting from Bu leave the small neighborhood U of
Γ and go along the super-homoclinic orbit S, and after a finite time, they come back and intersect Πs

at some points close to qs. These orbits induce a global map

(4.5.1) TS : Bu ⊂ Πs → Bs ⊂ Πs

along the super-homoclinic orbit S, where Bs = TS (Bu) and TS (qu) = qs. Since Bu is sufficiently
small and the map TS is a diffeomorphism, the neighborhood Bs is small, connected and convex.

Define lu =Wu ∩Bu and ls =Ws ∩Bs. Since the sequence {Luk}∞k=1 converges to Wu uniformly,
there exists a sufficiently large ks such that for all k ≥ ks, the curve Lsk intersects Bs. Let lsk = Lsk∩Bs

for k ≥ ks. This implies that lsk
unif−−→ ls. Similarly, for some sufficiently large ku, all the curves Luk for

k ≥ ku intersect Bu. Let luk = Luk ∩Bu for k ≥ ku. Therefore, luk
unif−−→ lu.

The map TS maps Bu to Bs. Thus, the curves lu and luk in Bu are mapped to some curves in Bs

by TS . Let mu = TS (lu) and mu
k = TS (luk) for k ≥ ku. Since the super-homoclinic orbit S is at the

transverse intersection of the stable and unstable invariant manifolds of the homoclinic orbit Γ, the
curves mu and ls intersect each other transversely. On the other hand, the sequences of the curves
mu
k and lsk converge to mu and ls, respectively. This implies that the curves mu

k intersect the curves
lsk transversely. Moreover, without loss of generality, we can assume that the integers ku and ks are
large enough such that the curves mu

i and lsj intersect each other at a unique point pi,j for any i ≥ ku
and j ≥ ks. The orbits passing through the points pi,j are the desired multi-pulse homoclinic orbits.
This proves Theorem C1.



4.5. DYNAMICS NEAR SUPER-HOMOCLINIC ORBITS 97

Figure 4.11: The blue and green curves belong to the intersection of Πs and the global unstable and stable
invariant manifolds of the equilibrium O, respectively. The blue curves accumulate to Wu and the green curves
accumulate to Ws, where Wu = Wu

loc (Γ) ∩ Πs and Ws = W s
loc (Γ) ∩ Πs. Let qu ∈ Wu and qs ∈ Ws be at the

intersection of the super-homoclinic orbit and the cross-section Πs. The flow near the super-homoclinic orbit
defines a map on a small neighborhood Bu of qu onto a small neighborhood Bs of qs. This map maps the
blue curves restricted to Bu to the blue curves in Bs. The blue and green curves in Bs intersect transversely.
Any point of these intersections belongs to both stable and unstable invariant manifolds of O. Thus, the orbits
passing through these points are homoclinic to O.
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Appendix A

Nondegenerate quadratic forms

A quadratic form in n variables (n ∈ N) over R is a homogeneous polynomial of degree 2 in n
variables with coefficients in R:

q(x1, . . . , xn) =
n∑
i=1

n∑
j=1

aijxixj , aij ∈ R.

For a given quadratic form q(x) there exists a unique symmetric matrix A (A = AT ) such that

q(x) = xTAx,

where x = (x1, . . . , xn) is a column vector. A quadratic form q(x) is called nondegenerate if det(A) 6= 0.
Consider a system of differential equations

ẋ = X(x),

defined on a neighborhood of the origin in Rn+m where the origin is a hyperbolic equilibrium. This
system can be written as

(A.0.1)
ẋ = −Bx+ · · · ,
ẏ = Cy + · · · ,

where B and C are square matrices of dimensions n×n and m×m, respectively, and their eigenvalues
have positive real parts. Assume that this system has a first integral H(x, y) and suppose H(0, 0) = 0.
Due to the hyperbolicity of the origin, we have H ′(0, 0) = 0. Thus, we can write H as

H(x, y) = q(x, y) + · · · ,

where q(x, y) stands for quadratic terms and the dots stand for cubic and higher order terms. Assume
that q is nondegenerate. Then

Lemma A.1. (i) n = m.

(ii) There exists a linear change of coordinates which brings system (A.0.1) to the form

(A.0.2) ẋ = −Bx+ · · · , ẏ = BT y + · · · ,

and the first integral H to the form

(A.0.3) H =< y,Bx > + · · · .

The dots in (A.0.2) stand for quadratic and higher order terms and the dots in (A.0.3) stand for
cubic and higher order terms.
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Proof. The assumptions that we use to prove this lemma are the hyperbolicity of the origin and the
nondegeneracy of q.

Let J be the symmetric matrix that q(x, y) = (x, y)T · J · (x, y). We write J in the block form

J =

(
D1 D
DT D2

)
,

where D1 and D2 are symmetric matrices of dimensions n × n and m ×m, respectively, and D is a
matrix of dimension n×m. We have

q(x, y) = xTD1x+ yTDTx+ xTDy + yTD2y.

Equation (1.2.2) implies that

− ∂

∂x
q(x, y) ·Bx+

∂

∂y
q(x, y) · Cy ≡ 0, ∀x, y,

or equivalently

(A.0.4) −xTD1Bx− yTDTBx+ xTDCy + yTD2Cy ≡ 0, ∀x, y.

Evaluating the above relation at x = 0 gives yTD2Cy ≡ 0 for every y which implies D2C ≡ 0.
The matrix C is invertible because of the hyperbolicity of the origin. Thus D2 = 0m×m. Similarly,
evaluating (A.0.4) at y = 0 implies D1 = 0n×n. Consequently, J takes the form

J =

(
0 D
DT 0

)
,

and relation (A.0.4) will be simplified as yTDTBx = xTDCy for all x and y. Since yTDTBx is scalar
valued, we have yTDTBx = (yTDTBx)T = xTBTDy and therefore BTDy = xTDCy, which is valid
for all x and y. This implies BTD = DC. Since q is nondegenerate, the matrix J is invertible and so
the matrix Dn×m has right and left inverses. It is also easily seen by induction that for every integer
k ≥ 0 and every constant λ we have

D (C − λI)k = (BT − λI)kD.

This equality as well as the fact that D has right and left inverses imply that the matrices C and BT

have the same spectrum and the multiplicity of every eigenvalue of C is the same as its multiplicity
as the eigenvalue of BT . Therefore n = m and D is an invertible square matrix. It is easy to see that(

xnew

ynew

)
=

(
B−1 0

0 D

)(
x
y

)
is the desired change of coordinates.
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