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Abstract

Thin film dynamics over spinning disks is of central importance to a number of scientific re-

search and industrial applications, such as heat/mass transfer, chemical reactions and chip

devices. Although they have received a lot of attention in different applications, the key un-

derlying dynamics governing the flow are not thoroughly understood, especially in terms of

highly non-linear behaviour in free surface flows, in the presence of other physical forces or

chemical reactions. The elucidation of the underlying mechanisms driving the flow is of utmost

importance to both scientific research and industrial applications.

In this research the dynamics of a thin film flowing over a rapidly spinning, horizontal disk, in

presence of first-order chemical reactions is considered. A set of non-axisymmetric evolution

equations for the film thickness, radial and azimuthal flow rates is derived using a boundary-

layer (IBL) approximation in conjunction with the Karman-Polhausen approximation for the

velocity distribution in the film. Numerical solutions of these highly nonlinear partial dif-

ferential equations are obtained from finite difference scheme which reveals the formation of

large-amplitude waves that travel from the disk inlet to its periphery. The equations with non-

axisymmetric condition were investigated where elimination of azimuthal dependence presents

different wave regimes across the disk radius, and three dimensional wave structures over the

entire disk. Apart from hydrodynamics, the influence of these waves on the concentration and

temperature profiles is analysed for a wide range of system parameters. It is shown that these

waves lead to significant enhancement of the rates of heat and mass transfer, as well as chemical

reaction due to the mixing associated with the flow.

Additionally, due to the time-consuming implementation of the IBL model, the Neural Network

(NN) technique is applied based on existing Finite Difference (FD) results, in order to predict

the wave dynamics after initial times.The NN is trained on a dataset from various data points

in space and time from IBL model, and then used to simulate the evolution of any wave

characteristics of interest. Overall, the resulting NN model predicts the evolution of waves

reasonably well when compared with the time-consuming finite difference scheme, and reduces

the computation time significantly.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Thin liquid films are accompanied by large-amplitude waves and complex interfacial dynamics,

whether they are falling under gravity [1] or flowing over a spinning disk [2]. Due to the features

of thin liquid films, a substantial enhancement of mass and heat transfer can be achieved, which

is commonly referred as “process intensification”. Thus it is not surprising that such flows can

have wide industrial applications, ranging from atomization [3] to spinning disk reactor (SDR)

[4] to produce pharmaceuticals and fine chemicals.

The above-mentioned applications lead to immense motivation for experimental, theoretical

and numerical studies on the thin film dynamics. And the subject of this thesis was originally

motivated by the gap between theoretical research and the experimental studies: while many

early experiential research [5, 6, 7] has been conducted on the hydrodynamics and the heat/mass

transfer increase due to the mixing effect in the spinning disk reactor, most the the theoretical

research focuses on the one-dimensional film thickness and associated heat/mass transfer and

chemical reactions [8, 4, 9, 10], instead of non-axisymmetric transient wave evolution profile.

This is a surprising absence for a number of reasons. First of all, it is not, mathematically

difficult to derive the non-axisymmetric evolution equations as the same geometry and same

analytical method (Integral Boundary Layer) are applied. More importantly, this approach

1



gives us more comprehensive measure of intensification due to the waves generated and also

produces results which are then directly used to compare with existing experimental findings

e.g. flow structure over the entire disk [6, 7, 11] and measurement of film thickness across the

disk [5].

In addition, it is clear that the incorporation of chemical reactions in the theoretical analy-

sis is desirable given that one of the most widely used applications is Spinning Disk Reactor

(SDR) and fewer theoretical studies have accounted for the presence of chemical reactions in

the flow [12]. Falling film dynamics has drawn attention to most of the researchers: Trevelyan

and Kalliadasis [13, 14] show that heat generated from chemical reaction exert influences on

the development of thermocapillary stresses. More specifically, an exothermic reaction is sta-

bilizing and dampens the disturbances on the free surface while an endothermic reaction has

destabilizing effect. Prieling and Steiner [15, 16] studied the thermal characteristics of thin

films over a spinning disk applying the integral boundary layer method. In this research, a

comprehensive mathematical model is built for the dynamics of thin film flow over a spin-

ning disk, taking into account the hydrodynamics, mass and heat transfer, chemical reactions

(Chapter 5) using integral boundary layer method for coupled differential equations, as well

as the extension to non-axisymmetric model with azimuthal dependence (Chapter 4), which

are naturally extensions for existing literature, as no researchers have investigated the full

three-dimensional Navier-Stokes equation in the spinning disk model and few studies [12] have

focused on the modelling the chemical reaction in SDR. Numerical solutions are obtained us-

ing the finite difference method in space and time, demonstrating the evolutionary profile of

the film thickness, concentration and temperature, indicating the enhancement of heat/mass

transfer due to the large-amplitude waves. However, a more comprehensive understanding of

chemical reaction within the thin film over spinning disks is desirable, especially taking into ac-

count of azimuthal dependency via developing and solving the three-dimensional Navier Stokes,

diffusion-convection and energy equations.

Finally, one of the interesting applications is using artificial neural network (ANN) technique

to obtain the results from the evolution model. Artificial Neural Network has been used in

early literature to solve ordinary and partial differential equations [17] and recently widely
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used in assistance with Direct Numerical Simulation result as a much computational cheaper

alternative. However, it has not been applied to the IBL model even if the three-dimensional

version of IBL model still consumes significant computational resources. Thus, it is of great

interest to apply the feedforward neural network to obtain the wave profile using the results

from a finite difference numerical scheme, which takes days to compute.

1.2 Outline of Thesis

The thesis is organised as follows:

• Chapter 2 gives a comprehensive overview of existing studies on the subject of thin film

dynamics which lays the basis of this thesis.

• Chapter 3 outlines fundamental concepts on lubrication theory and integral boundary

layer (IBL) methods followed by the derivation of typical evolution equations of non-

axisymmetric thin film flow with chemical reactions.

• Chapter 4 demonstrates the special case when we consider the hydrodynamics of non-

axisymmetric thin film flow and associate it with the waves regimes and interfacial wavi-

ness studied in earlier literature.

• Chapter 5 studies the one-dimensional dynamics of heat/mass transfer, with the presence

of gas-liquid chemical reaction at the interface. This framework is different from previous

research, in that the source term in the convection-diffusion equation is exploited with a

new set of parametrisation applied where physical impacts are studied.

• In Chapter 6, a modern neural network approach is applied in order to obtain the wave

profiles, using the solutions of the coupled partial differential equations which were ini-

tially generated by IBL model. Compared to the traditional finite difference numerical

approach, neural network provides reliable and less computationally expensive results.
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• Finally, in Chapter 7 some concluding remarks and discussions over potential future work

are given.
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Chapter 2

Background

Thin film flow has drawn huge attention in industry and been studied in a number of theoretical,

numerical and experimental researches. This chapter aims to provide background knowledge

of thin liquid films and applications, as well as relevant previous studies and research findings,

including lower order modelling using lubrication theory (§2.1), thin film over spinning disks

(§2.2), and neural network technique (§2.3).

2.1 Thin Film Flows

Thin liquid film flows are accompanied by large-amplitude waves and complex interfacial dy-

namics whether they are falling under gravity[1] or flowing over a spinning disk[2]. Due to

these features of thin liquid films, a substantial enhancement of heat and mass transfer can be

achieved, which can be exploited for “process intensification”. Thus it is not surprising that

such flows can have wide industrial applications [8], ranging from atomization to spinning disk

reactors (SDR) used in the production of pharmaceuticals and fine chemicals [4, 10, 18].

In our research, the interest is confined to single-layer, free-surface thin film flow, instead of

multi-phase flows. Such systems are a subject of numerous researcher and major reviews papers

[19, 20, 21] because of their fascinating behaviour and a wide range of industrial applications.
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For example, it is of huge interest to many physicists, mathematicians and engineers to study

complex dynamics of thin films, such as formation of regular waves, periodic waves, shocks and

fronts, “fingering” behaviour with surfactants [22]. These systems are key to understand many

of the physical process, from large-scale avalanches [23] and ice sheets [24], to something as

trivial as the blink of eye involving corneal fluid film [25]. Also, they are important in many

industrial applications, such as heat and mass transfer enhancement [26], and emerging areas

of microfluids [27] and nanofluids [28] technology.

2.1.1 Gravitational effects

One of the main well-studied category of thin film dynamics is the flow of thin films down an

inclined plane with gravitational force, which has been widely examined in many experimental

and theoretical researches [29, 30, 31, 32]. Inertia effect is a very important factor to take

into consideration with regards to the dynamics of falling film. In the region of low Reynolds

number, i.e. Re < 1, corresponding to weak inertia effects, a flow is predominately driven by

viscous forces. At moderate range of Reynolds numbers, 1 < Re < 300, long interfacial waves

emerges due to the combination of capillary and gravitational effects. Within slightly higher

range of Reynolds numbers, 300 < Re < 1000, we observe non-decaying short waves led by long

interfacial waves due to vortex shedding mechanism [33]. At higher region of Reynolds number,

Re > 1000, we find the transition from laminar to turbulent where external pertubations are

transformed into internal disturbances due to Tollmien-Schichting waves [20].

The spatial structure of characteristic waves and the effect of inducing disturbance are of

particular interest. The pioneering work on falling films was carried out by Kapitza [34] who

studied the flow of viscous fluids experimentally. Such flows are associated with the formation

of surface waves (as in Fig. 2.1) and can be classified into two categories according to the

structures and shape: one includes short-wavelength waves with sinusoidal shapes, the other

includes small-amplitude capillary waves.
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Figure 2.1: Waves formation of water-ethanol mixture falling down an inclined plane, with
increasing inertia effect; the Reynolds number is 16 and 45 on the left and right, respectively
reproduced from Alekseenko et al. [35]

Liu et al. [36] demonstrate that the transition between two-dimensional (2-D) structures to

three-dimensional (3-D) patterns due to an increased Reynolds number in an experimental

study of falling films down an inclined plane. The 2-D waves structures initially emerges and

then because the instability of 2D effects grow faster than 3-D, 3-D patterns begin to form.

Park et al. [37] studied the effect of Reynolds number on the 3-D instabilities: with higher

Reynolds number Re > 1000, a more rapid onset of such 3D disturbances. Periodical forcing

plays an important role in the wave formation downstream, as studied by Alekseenko et al.

[35], who elucidate that large forcing amplitudes give rise to the formation of large-amplitude

waves at the onset, and the wavelength corresponds to the frequency of induced forcing.

From a mathematical point of view, the falling film dynamics have been well studied in the

past few decades. Linear stability analysis are often used to predict the system regarding

infinitesimal perturbations to base-state flow. For example, consider a differential equation of
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the form:

∂x

∂t
= f(x) (2.1)

The linearlisation of the system at fixed point x0 where x = x0 + δx, leading to the matrix

system

∂(δx)

∂t
= A (δx) (2.2)

And this will be translated into an eigenvalue problem: if the spectrum matrix A has any

eigenvalue with positive real part, the system is considered linearly unstable; if A contains

eigenvalue with negative real part, we consider the system linearly stable. Otherwise, the

system is neutrally stable.

In the case of Navier-Stokes equation in fluid dynamics, the fixed point x0 corresponds to

the base state while the disturbance δx corresponds to perturbation which will grow in time,

leading to Orr-Summorfeld (OS) equation [38, 32]. The growth rate is associated with system

parameters, such as Reynolds number and wavenumber.

The problem of instability of liquid films flowing down an inclined plane under gravity, has

been the focus of the work conducted by Yih [167, 168] and Benjamin [10] who carried out a

stability analysis of the waveless solution of the Navier-Stokes equations for a laminar viscous

liquid layer. Yih and Benjamin studied the stability of surface waves on liquid films and found

that the perturbed base state (obtained from the waveless solution) admits flow instability in the

long-wave limit (small wavenumbers). Their analysis also showed that there exists a Reynolds

number above which disturbances to the flow are amplified, given by Re = (5/6) cot(θ) where

θ is the angle of inclination to the horizontal.

The nonlinear behaviour of the thin film system cannot be explained by the linear stability

analysis. Therefore, it is desirable to investigate the mechanisms of thin film flow since it is

challenging to resolve the full Navier-Stokes equations due to the intractability. A common and

useful method towards the analysis of this system, of which we make extensive use in the thesis

and on which most of our results are based, is called low order modelling. The essence of this

approach is to reduce the dimension of the system, by eliminating the cross-stream co-ordinate,
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which leads to significant simplification of original Navier-Stokes equations. Generally, we make

use of the disparity between the length scales and come up with a small parameter ε, known

as aspect ratio or lubrication parameter. In the system of falling film down a plane, ε = H/L,

where H is the characteristic length in the cross-stream direction (film thickness) and L is the

characteristic length scale in the streamwise direction (wavelength). Under the assumption of

long-wave or thin film, the characteristic length scale in streamwise direction is much greater

than the thickness, i.e. the system has a small (negligible) aspect ratio ε.

Having achieved the long wave equation from the original Navier-Stokes, they can be solved

in gradient expansion approach [9], which is one way of regular perturbation. This leads to

a uncoupled single evolution equation accounting for interfacial film thickness. For example,

Benny [39] started with the leading order equations in ε for the dynamics of thin film down an

inclined plane in 2-D rectangular coordinate, and applied the appropriate boundary conditions

both at wall (no-slip and no-penetration) and interface (kinematic, normal and tangential stress

balance), which lead to the final single partial differential equation accounting for the interfacial

film thickness h, referred to as the Benny equation:

ht +

[
h3

3
+ ε

(
16Re

15
h6hx − 2

3
cot θh3hx +

h3hxxx

3Ĉa

)]
x

= 0 (2.3)

where Ca is the Capillary number representing the relative significance of viscous forces versus

surface tension across two fluids. Equations of this form are usually referred as Benny Equa-

tions. Although it is a decent model to capture the wave dynamics via relatively simple PDE,

it suffers finite time “blow-up”: the interfacial film thickness will become infinite in finite time.

We note that, through the normal stress balance at the interface, capillary effects, parametrised

by Ca, enter the equation in the order of ε2 and it follows that this term would be omitted from

the leading order equations implying that mean surface tension effects are small. However, as

is often not the case, it is essential to re-scale the capillary number such that it can be retained

in the O(ε) equations; the aforementioned boundary conditions and appropriate re-scalings are

discussed in further detail in Chapter 3.
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In the follow-up study, the approach is to apply the Karman-Poulsman method to the leading

order long-wave equations. Under the assumption that velocity profile is assumed parabolic

in the film, Shakdov [40] derived a system of partial differential equations accounting for film

thickness and volumetric flow rate, by employing the similarity parameter δ. This leads to a

coupled partial differential equation in terms of interfacial height h and the volumetric flow

rate q

ht + qx = 0, (2.4)

qt +
6

5

(
q2

h

)
x

− 1

5δ

(
hhxxx + h− q

h2

)
= 0, (2.5)

where all the subscripts denote partial derivatives, specifically ’x ’ and ’t ’ represent differen-

tiation with respect to spatial and temporal coordinate. The similarity parameter defined as

δ = (ρhNg
4/σ)

1/3
/(45ν2) was introduced on the basis that in thin films, viscous, capillary and

gravitational forces are of the same order [41], hN is the equilibrium (Nusselt) film thickness,

the flow rate q is defined as: q =
∫ h

0
u(z)dz, i.e. integration of stream-wise velocity (u) with

respect to the wall normal coordinate (z). Equations (2.4) and (2.5) are a result of bound-

ary layer method and integral theories, with semi-analytical z-dependent streamwise velocity

profile, u(z), assumed.

This approach is an improvement because, unlike Eqn. (2.3), the set of PDEs does not exhibit

finite time “blow-up” behaviour due to the existence of higher-order terms [42]. Chang [20]

concludes that the inclusion of the higher order terms in the reduced equations proves to

predict correctly the wave evolution in the film under low Renoalds number Re < 300 and can

therefore be considered a good approximation to the solution of the full Navier-Stokes equations.

However, the theory is subject to the assumption of velocity profile, which is reasonable but

not always consistent. This will be discussed in Chapter 4 as we apply similar IBL method

to develop the model. An improvement over the IBL model is called Weight Residual Integral

Boundary Layer (WRIBL) model by Ruyer-Quil et al. [30]. This approach is basically carefully

weighing procedure in terms of computation of requisite integrals, together with a separate of

variables, leading to a set of evolution equations for interfacial height h, flow rate q, and two

subsidiary fields s1 and s2 as a measure for deviation of flow profile from parabolic Nusselt
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solution. This model proves successful even when extended to three-dimensional model in

that: no numerical finite time “blow-up” is exhibited; and the profile speed of solitary wave

propagation is in agreement with numerical simulation in the drag-inertia regime (Fig. 2.2).

Figure 2.2: Wave speed c (left) and amplitude hm(right) of the principal orbits as a function
of reduced Reynolds number δ (reproduced from Schied et al. [9])

Numerical Simulations of the 2D Shkadov equations(2.4) (2.5) describing thin film falling down

an inclined plane have also been carried out by Schied et al. [9]. They examined the 3D model

from 2D and compared with experimental observations carried out by Park and Nosoko [37].

As can be seen from Fig. 2.3, horseshoe-like wave structures due to the interactions between

waves were found from the numerical simulations, corresponding to the experimental setup in

the study by Park and Nosoko [37].
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Figure 2.3: A comparison of wave structure between experimental observation (a) and numerical
simulation (b) of falling film flow at different times (reproduced from Schied et al. [9])

Other dimensionless numbered were studied in the thin film flow. Apart from the inertial effect,

viscous forces play an important role in the dynamics of thin film flows. In the cases where

viscous forces are dominant, generally in slow-propagating flows, Reynolds numbers may be

insignificant and negligible. For Re << 1, the governing mass and momentum conservation

equations can be simplified significantly to Stokes equation. The viscous fluid flow is subject

to the span-wise instabilities, leading to the film break-up into fingers and rivulets. This

is an unattractive phenomena in industrial applications, such as coating, since it breaks the

continuous and consistent film flow. The theoretical research of this dynamics can also be

conducted by applying the long-wave approximation in the leading order equations from the

original continuity and Navier-Stokes equations. A simple example in 2-D case (without span-

wise dependency) is presented by Kondic et al. [43]:

ht + (h3)x +∇ · [h3∇∇2h]−D∇ · [h3∇h] = 0 (2.6)
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where the t and x represent partial derivative with respect to temporal and spatial coordinates,

D = (3Ca)1/3 cot ι is a system parameter dependent on Capillary number Ca and incline angle

ι of substrate. The 1-D solutions to the equation (2.6) show the formation of a capillary

ridge.i.e. travelling wave with a constant velocity as in Fig. 2.4. The amplitude of the waves is

dependent on parameter D, which measures the significance of hydrostatic effect. The absence

of hydrostatics produces more pronounced waves, where D = 0 in panel (a).

Figure 2.4: 1-D Spatial-temporal evolution of interface a time inteval of 2 dimensionless units,
with system paratemer (a) D = 0 and (b) D = 1 on the capillary ridge, reproduced from [43]

In the engineering applications of thin film under gravity, the fluids of interest often exhibit

complex thermal-physical properties, especially the non-Newtonian fluids. The behaviour of

these fluids includes flow of lava in geophysical research, shear-thickening, thinning or visco-

plastic pattern in coating flow technology [44]. Fingering patterns associated with the flow of

visco-plastic fluids exhibit stabilizing effects with higher yield strength, as shown in experiment

conducted by Balmforth et al. [45]. As can be seen in Fig. 2.5, with increasing concentration of

kaolin (visco-plastic fluid) in silicon oil (Newtonian fluid) from top to bottom panels, the wave

formation is suppressed and more stable flow is formed by spreading towards the span-wise

direction.
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Figure 2.5: Fingering patterns of fluids flowing down an inclined plane(25 degree angle). The
topmost fluid is pure silicon oil (Newtonian fluid) and the lower pictures show a mixture of
kaolin and silicon oil, with increasing concentration of kaolin from top to bottom (reproduced
from Balmforth et al. [45])

2.1.2 Thin film over spinning disks

Compared with dynamics of thin film under gravitational force, understanding of the related

problem, thin film over spinning disks, and validation of the models against experimental

observations have fallen behind, in spite of its widespread applications in industry. This sub-

chapter lays the foundation of our theoretical work in this thesis (Chapters 4,5) as it specifically

focuses on the flow characteristics over spinning disks.

Similar to falling film dynamics, the film thickness and wave structures have been investigated

by early researchers [5, 46, 47, 48]. Espig et al. [46] is the first researcher to study the dynamics

of thin film flow over a spinning disk experimentally, where they measured the film thickness

by applying needles on the waves. Charwat et al. [6] have determined the structure of flow field

and the existence of several flow regimes. They also studied the wave patterns were related

to operating conditions of spinning disk (flow rate of the inlet and rotating speed of the disk)

and fluid physical properties (surface tension and viscosity). According to Charwat et al. [6]

concentric waves were formed under high flow rate and low rotational speed while spiral waves

tend to occur under higher rotational speed and low flow rate for the same type of fluid (same
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surface tension and viscosity), as seen in Fig. 2.6, which also shows that the transition between

wave types is also dependent on the surface tension of fluids (methyl alcohol, iso-proppyl alcohol

and water with wetting agent).

Figure 2.6: Wave regimes of fluids corresponding to different operation conditions: flow rate Q
from inlet jet and rotational speed ω (reproduced from Charwat et al. [6] )

Previous experimental studies involving thin film flows over a spinning disk [5, 46, 47, 48] have

determined the structure of flow field and the existence of several flow regimes. Concentric,

helical and spiral waves are apparent in the experiments according to [6, 7]. Butuzov and

Puhovoi [7] have observed four flow regions across the disk: an inlet region having a smooth

film surface (Inlet Region), followed by a region with axisymmetric waves (Region A), which

was followed by a turbulent region exhibiting three dimensional travelling waves (Region B);

and finally a region of laminar wave where the amplitude of waves decay (Region C), as shown

in the schematic (Fig. 2.7)

Figure 2.7: Schematic of flow regions from the centre of the disk to its edge [11]
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Charwat et al. [6] also studied the wave patterns corresponding to different operating conditions

and discovered that smooth film tends to occur with low rotating speed and flow rate while

higher rotational speed leads to concentric waves and higher flow rate causes spiral waves.

Woods [5] investigated extensively the wave formation over a spinning disk by photo-graphic

evidence and studied the wave shapes associated with different parameters, as in Fig. 2.8.

(a) Spiral waves
(b) Concentric waves

Figure 2.8: Wave propagation of thin film over a spinning disk, where the flow rate is 19ml/s
and the rotational speed increases from (a) 100 rpm leading to spiral waves to (b) 200 rpm
leading to concentric waves in inner region and rivulets at the edge of disk, reproduced from
Woods et al. [5]

Recent work [11] use high speed camera to show flow characterisations and flow regime classi-

fication and discovered a different type of wave pattern: criss-cross under low rotating speed

and flow rate, as in Fig. 2.9.
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(a) Irregular waves (b) Criss-cross

Figure 2.9: Wave propagation of thin film over a spinning disk, where the flow rate is 19ml/s
and the rotational speed increases from 100 rpm(a) to 200 rpm (b), reproduced from Boiarkina
[11]

Apart from the observation of wave structures, many researchers focus on one of the most

significant applications: the Spinning Disk Reactor (SDR), which exploits the centrifugal force

to spread the liquid film onto a horizontal spinning disk, leading to higher heat and mass transfer

rates [4, 10, 49, 50]. Boodhoo and Jachuck [4] and Vicevic et al. [51] studied the SDR (as seen

in Fig. 2.10) for styrene polymerisation process, where conventional batch reactor runs into

issues with wide Molecular Weights (MW), leading to the poor quality of polymer produced.

The application of SDR showed an improvement of polydispersity index associated with the

MW broadening, significant reduction in reaction time and one order of magnitude increase

in the polymerisation rate. The improvement in the polymerisation rates and MW due to

introduction of SDR was also discovered in the photo-polymerisation process by Boodhoo et al.

[52] using n-butyl acrylate homo-polymer. Vicevic et al. [53] also investigated the performance

of SDR compared with batch reactor, on the reaction rearranging the α-pinene oxide where two

kinds of catalysts have been immobilised on the SDR as supporter. They concluded that the

advantages of SDR include achievement of higher shear rate, more controllable selectivity of

the process via changing the residence time on the disk, and elimination of the need for further

purifications with catalyst staying longer time of activity.
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Figure 2.10: Surface waves observed on a rotating grooved disk [4]

The mathematical modelling of thin film flow driven by centrifugal force is analogous to that

of falling films, where the concepts of approximation solutions are similar and based on same

methodologies. Integral boundary layer (IBL) approximation was introduced by Shkadov [31]

in the falling film model and provides a less computational costly alternative to Volume-of-Fluid

(VOF) based computational fluid dynamics (CFD) simulations. This approximation is proved

successful in various research [30], including the extension to spinning disk model [54, 55].

Shkadov analysed the nonlinear finite-amplitude wave regimes of thin film over a spinning disk

by applying Karman-Polhausen method in the case of moderate Reynolds number and large

Ekman number [31, 56], which is a measure of relative importance of viscosity compared to

the Coriolis force. Investigations of Shkadov models [56] used extensive numerical methods to

convert well-studied falling films under gravity into thin film over a spinning disk and obtained

solutions of nonlinear PDE with thin layer approximation, which reveal the “wave families”

that corresponds to non-unique wave solutions under the same disk parameters for a given

frequency. Sisoev and Shkadov [57] observed the “dominating waves”, with greatest wave

velocity and largest peak height, which remain unaltered for initial conditions. Sisoev [2, 58]

subsequently extended the work in concert with bifurcation theory, computed nonlinear waves

of the second family of Shakdov model at large Ekman number, and validated the result against

the experimental observations from Woods [5].

Matar et al. [26] applied the IBL method and obtained a set of non-linear PDEs, derived from
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continuity and Navier-Stokes. The corresponding transient numerical simulations of the non-

linear evolution equations were conducted for travelling waves over the disk surface (Fig. 2.11),

as well as their interaction leading to coarsening and the emergence of long-wave, coherent

structures. Matar el al. [59] also discovered the coincidence of maxima of averaged radial flow

rate and the minima of averaged azimuthal flow rate, so that the Coriolis force exerts stabilizing

effect on the flow. Sisoev and Matar [26] also carried out research on the intensifying effect

of large-amplitude waves on the gas absorption into the thin liquid film over a spinning disk

with measures of enhanced mass transfer coefficient. Following studies have been carried out in

terms of additional conditions attached to the thin film over a spinning disk, including adding

surfactants, electric field and wall topography [55, 60], which are motivated by intensification

of transport rates and mixing. It is shown that electric fields are particular effective in desta-

bilising the interface, including the normally waveless “spin-up” region near the inlet, surface

topography can enhance the interfacial waviness and inlet forcing can be applied to control the

wave evolution on the disk surface.
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(a)

(b)

Figure 2.11: Evolution of interfacial height (a) and concentration (b) at different dimensionless
time intervals [26]

Added complexity is brought with the presence of chemical reactions associated with the thin

film flow, whether in the falling film flow [13, 14] or the thin film over a spinning disk [12], due

to the instantaneous change in the concentration and temperature profile of the flow, which in

turn affect interfacial conditions. In the context of thin film flow over a spinning disk, Prieling

and Steiner [12, 16] also applied the Integral boundary layer method in the spinning disk model,
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with the inclusion of chemical reactions and wall mass transfer in the associated coupled PDEs.

It is found that the surface etching process (with potential industrial application silicon wafer

manufacture) in the outer region in the radial direction increases with rotational speed as

the film thickness decreases with increasing rotational speed, which in turn leads to thinner

concentration boundary layers and increases the wall gradient and mass fluxes, resulting in the

increase of etching rate.

Modelling work of non-axisymmetric waves include the characterisation of spiral waves [61]

and inclination angle relative to the direction perpendicular to the radius was applied in order

to characterise the spirals and they proposed that generation of spiral waves was due to an

entrance effect and the surface waves generated by entrance perturbations acted as a periodic

forcing on the liquid film and initiated a cascade of instability mechanisms. Sisoev et al. [62]

came up with coupled PDEs of film thickness and volumetric flow rate using integral boundary

layer method and assumption of parabolic velocity profiles under stationary conditions and

was able to compare the spiral waves from the model to Archimedian spirals. In the regime

of spiral waves, these waves were characterised by the deviation angle from the Archimedean

spiral denoted by r = α(θ − θ0) + r0, where the angle β characterising spiral deviation from a

circle is:

β = arctan

(
1

r

dr

dθ

)
= arctan

(α
r

)
(2.7)

According to Eqn. (2.7) above, a single parameter α is calculated by analytically approximating

the deviation angle at different radial position for spiral waves. They also associated the α with

Ekman number for each sprial waves, as seen in Fig. 2.12.
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(a) (b)

Figure 2.12: Deviation angle vs Ekman number, (a), and examples of spiral wave at different
Ekman numbers, (b), reproduced from Sisoev et al. [62]

The previous study of thin film over spinning disks mostly assume that the flow is axisymmet-

ric over the entire disk or steady state solutions with non-axisymmetric condition, while the

experimental observation of various waves regime indicates that we need a more robust model

accounting for non-axisymmetric, unsteady waves evolution. The present work attempts to

extend the scope of these previous studies by covering the full radial and azimuthal extension

of the rotating disk, and focus is on flow regimes and the effect of waves on the intensification.

Due to the complexity of developing and implementing a numerical model with custom code,

commercial CFD packages are used to solve a variety of problems by implementing user-defined

geometry and specifying the corresponding boundary conditions. Bhatelia et al. [63] were the

first to investigate the CFD modelling of thin film across rotating disks using commercial CFD

software, Fluent. Their CFD research was compared against experimental results by Burns et

al. [48], and included a 2D axisymmetric model on a structured mesh and a 3D model on a

rotating reference frame (instead of a moving disk). The flow was considered incompressible

and laminar, with a uniform mesh size of 50 m for both two and three dimensional models.

They found out that the 2D model produced adequate results compared with experimental

data from Burns et al. [48]. However, in the 3D model, dry spots appeared on the disk and
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the full constant film was not generated accordingly. The film thickness results predicted by

the 3D model do not agree well with experiment data from Burns et al. [48].

Caprariis et al. [64] also applied the CFD package Fluent to model the thin film flow over a

rotating disk. They considered a Large Eddy Simulation (LES) model to simulate the flow over

a rotating disk. The simulation results were validated against experimental data from Burns

et al. [48], and showed good agreement. However, the validation was limited to one set of

experimental data and the CFD results also agreed well with analytical Nusselt solution, with

no major improvement from the simple analytical model.

More recent CFD study by Majnis et al. [65] focused on the mixing effects of thin film flow over a

rotating disk, where hexahedral structured mesh with 24560 total mesh volumes were applied in

the computational domain. In order to determine whether the flow was mesh independent, they

carried out simulations with finer mesh and they compared well with courser mesh solutions.

They measured the mixing performances of the flow by visualisation of the dye particle spatial

distribution from both experiment and CFD simulation, and found out a good agreement was

achieved. Also, quantitative measure of mass transfer coefficients under different rotational

speeds from CFD simulation was compared well against the figures in the model by Tsibranska

et al. [66].

2.2 Artificial Neural Network in Fluid Dynamics

Apart from traditional mathematical approximation and numerical simulation (reduced or full)

investigation, Artificial neural network (ANN) has been applied in order to determine the profile

of underlying velocity or stress condition associated with the flow, by integrating training data

from existing numerical simulation, e.g. Computational Fluid Dynamics (CFD). In this way, we

can obtain a faster solution to this problem since ANN can “learn” the behaviour from external

data associated with the problem and predict reasonable results after the learning process is

complete.
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2.2.1 Neural Network Structure

Artificial Neural Network consists of a small number of elements, called neurons, which is

inspired by our biological nervous systems. As in nature, the objective of a neural network is to

determine the function through connections amongst all the neuron units. The neural network is

trained to perform complex functions by adjusting the values of connections (weights) between

various neurons, as shown in the schematic below Fig.2.13.

Input Target

Neural Network

Output

Compare

adjust

weights

Figure 2.13: Sketch of neural network structure

Typically, a neural network is trained in a way so that a specific output (target) is obtained after

an input is fed into the system. The system is continuously adjusted, based on the comparison

between the target and the output from the network, until a small margin of error is accepted,

as depicted in Fig. 2.14.
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Figure 2.14: Feedforward neural network architecture [67]

The most commonly used framework in ANN is feed-forward network, consisting of three layers

of neurons: an input layer, at least one intermediate hidden layer and an output layer. Back-

propagation is the traditional optimization method to train the neuron network during which

the neurons adapt their weight to acquire new knowledge, in order to minimise the cost function.

2.2.2 Applications in Fluid Dynamics

Due to the significance of neural network, it has been applied in various industries and the

discussion of neural network in a broad environment is beyond the scope of this thesis. This

study mainly focuses on the applications of ANN in the fluid dynamics related review.

Lagaris and Likas [17] presented a method using artificial neural network to solve ordinary and

partial differential equations, where the trial solution is divided into two parts: the first part

satisfies the initial/boundary conditions but contains only fixed parameters; the second part is

constructed so as not to intervene with initial/boundary conditions but involves a feedforward

neural network with adjustable weights. Thus, the neural network can be trained to satisfy the

differential equations while the initial/boundary conditions are satisfied by construction.
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Modern applications of ANN include the integration Direct Numerical Simulations (DNS),

which can reveal the dynamics of complex geometry or flows of interest, e.g. multiphase flow

[68, 69, 70], however, requires fine resolution and significant computational power. In many

cases, the small scales can be modelled instead of fully resolved since their behaviour exhibits

universality. Thus, it remains an emerging challenge to exploit existing DNS results and develop

a reliable reduced model for industrial purposes, bypassing the large scale time-consuming DNS.

ANN has been applied in order to tackle the aforementioned challenge. For single phase tur-

bulent modelling, Milano et al. [71] reconstruct near-wall turbulent flows with neural network

technique ,and Rajabi and Kavianpour [72] used neural networks to interpolate DNS data for a

backward facing step. Other examples includes the development of a subgrid model for Large

Eddy Simulation (LES) by [73] Sarghini et al., the optimal estimation of subgrid models for

LES by Moreau et al. [74], the parametrization of surface features in coarse LES by Esau and

Rieber [75], and the use of neural networks to optimize the model constants of the k turbu-

lence model applied to simulations of data centers by [76]. Tracey et al. [77] used statistical

learning to determine the functional dependency of the closure terms for data generated by

Spalart-Allmaras turbulence model, rather than full DNS. On the other hand, Duraisamy et al.

and Parish and Duraisamy [78] used inverse modelling to obtain spatially distributed functional

terms to aid closure modelling, instead of inferring model parameters directly, and later Singh

[79] have used the similar method for turbulent flows over airfoils involving flow separation,

showing much improved predictions in lift and surface pressure.

Recently, due to the rapid development of machine learning techniques, increasingly efforts are

focused on how to combine machine learning with turbulent modeling and how to generalize

the RANS model with machine learning, Ling et al. [80] specifically addressed physical systems

that possess symmetry or invariance properties by comparing two different methods for teaching

a machine learning model an invariance property, and shows that embedding the invariance

property into the input features yields higher performance with less computational cost. They

present a method of using deep neural networks to train a model for the Reynolds stress

anisotropy tensor from high-fidelity simulation data, demonstrating significant improvement

over baseline RANS linear eddy viscosity and nonlinear eddy viscosity models, based on two
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test cases. Gamahara [81] used neural network as a tool for exploring a new subgrid model

of the subgrid-scale (SGS) stress for LES based on turbulent channel flow DNS database, and

later applied the ANN approximation in the area of urban surface morphology, which behaves

poorly in the LES due to the limitation of computer facilities.

For multiphase flows, Lu et al. [82] computed the response of fully-resolved particles to a

shock and used a neural network to develop closure laws for macroscopic simulations of the

gas-particle mixture. Sen et al. [83] discussed various techniques to bridge the scales between

detailed microscopic simulations and macroscopic models, focusing on the convergence rate for

various model problems. Ma et al. [84] trained a neural network to obtain the closure terms

in the multiphase flow in a simple spherical bubble rising vertically in a periodic domain. The

training data from existing DNS data can be used to construct a network that can be further

applied to simulation of the system with other initial conditions, with good agreement with

DNS data (Fig. 2.15 ). The specific implementation is via Matlab Toolbox that applied feed-

forward back-propagation neural network and the Levenberg-Marquardt method to optimize

the weight coefficients attached to the inputs, which connects the three inputs, ten neurons,

and one output for each closure relation, as in Fig. 2.14
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(a)

(b)

Figure 2.15: Profile of vertical velocity and void fraction from averaged DNS (solid line) data
and neural network (dash line) prediction at different times (0.02s, 1.25s, 2.50s); and Mean
Squared Error of streamwise stress, reproduced from Ma et al. [85]

What we want to achieve in the thesis is similar to the work in Ma et al. [85] following the

feedforward neural network approach, implemented by Matlab Neural Network Toolbox. It is

a lighter work load for computers and less time-consuming compared with the huge amount of

DNS training data since our data is originated from the numerical solutions of PDEs (lower-
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order modelling). However, our hypothesis is this will still improve our current numerical

capabilities and allow us to extend to wide regions of parameter space without the expensive

computation of the multi-dimensional PDE solver.
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Chapter 3

Formulation

This thesis involves the mathematical modelling of single-layer thin liquid flow driven by cen-

trifugal force, with the presence of first-order chemical reaction. In this chapter, we present

an overview of the governing equations and boundary conditions which describe the dynam-

ics of the aforementioned flow and explain the significance accordingly. Also, the choice of

non-dimensionalisation and application of lubrication assumption are discussed. In subsequent

chapters, equations derived in the following sections are referred in order to identify the distinct

features of the various flows of interest.

3.1 Governing Equations

In Chapter 4, we consider the dynamics of single-layer thin liquid film flow over spinning disks,

assuming non-axisymmetric everywhere over the entire disk. In Chapter 5, the addition of first-

order chemical reaction is considered. In this chapter, we derive the leading order mathematical

equations and boundary conditions for a single-layer thin films over spinning disks, where the

fluids are assumed Newtonian, incompressible and immiscible. The aforementioned configura-

tion is applied in both Chapter 4 and Chapter 5, and here we give fundamental concepts of

mathematical modelling as a general case, which can be specified in Chapter 4 and 5.
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We intend to describe the flow of thin liquid film over a spinning disk, with the presence of first-

order chemical reaction at the gas-liquid interface. In particular, the schematic of the geometry

is given in a three-dimensional (3D) cylindrical coordinate system, (r, θ, z), as shown in Figure

3.1. r,θ,z denote the stream-wise, span-wise and normal directions to the flow respectively.

The disk is considered to be a rigid impermeable wall, with a rotational speed ω and the

Newtonian incompressible fluid is injected onto the disk from a distributor at the disk centre.

The ambient gas is saturated with reactant A which turns into product B at the interface,

located at z = h(r, θ, t). Both reactant A and product B are assumed to have no effect on the

flow field.

Figure 3.1: Schematic diagram of thin films flow over a spinning disk with a chemical reaction
[86]

The equations governing the flow dynamics are 3D continuity, momentum, convection-diffusion

and energy conservation equations; the momentum equations reduce to the well-known Navier-

Stokes equations for incompressible Newtonian fluid in the cylindrical system:

∇ · u = 0 (3.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ μ∇2u+ ρg (3.2)

∂c

∂t
+ u · ∇c = Di∇2c+RS (3.3)
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ρcp

(
∂T

∂t
+ u · ∇T

)
= k∇2T +

1

2
μe : e+ q (3.4)

where u = (ur, uθ, uz) and ur,uθ,uz denote the radial, azimuthal and axial component of the

velocity field, respectively; k represents thermal conductivity, RS is the source term due to

chemical reactions, q is associated with the heat generation (deduction) in the chemical reaction,

p is the pressure in the fluid, and g is gravity vector which is negligible in this geometry.

Solutions to Eqs. (3.1) and (3.4) are functions of both space and time, and subject to a

suitable set of initial and boundary conditions.

Boundary conditions are an important factor in the solution of this problem and involve both

wall condition and gas-liquid interaction at interface. It is noted that at the substrate z = 0, no-

slip and no-penetration boundary conditions apply, which assumes that the radial and normal

components of the fluid velocity are zero, the azimuthal component is associated with disk

rotation. Also, no flux and perfect conducting solid wall assumptions are applied at the disk

surface z = 0. These are the basic assumptions in the IBL model, widely used by researchers

[2, 12, 26].

ur = 0, uz = 0, uθ = Ωr,

∂c

∂z
= 0, T = T0 (3.5)

At the interface z = h(r, θ, t), we assume the tangential and normal stress balance, along

with conditions of constant concentration and no heat flux, assuming the interface is a poor

conductor since the thermal conductivity of surrounding gas is much smaller than that of the

liquid:

n · τ · n = σκ (3.6)

n · τ · t = t · ∇σ (3.7)

c = c0 (3.8)

∇T · n = 0 (3.9)

where σ is the surface tension, T = −pI+ μ(∇u+∇uT ) is the total stress tensor in which I is

identity tensor; κ = ∇s · n is the curvature with ∇s = (I− nn) · ∇ ; n and t are normal and
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tangential component of stress which are defined as follows in the cylindrical coordinates:

n =
∇F

|∇F | =
z − hrr − 1

r
hθθ(

1 + h2
r +

1
r2
h2
θ

)1/2 (3.10)

where F = z − h(r, θ) is a function that vanishes on the surface. Finally, at the interface,

kinematic boundary condition in which the motion of the fluid is associated with the velocity

at interface. It can be expressed as F (r, θ, z, t) = z − h(r, θ, t) = 0 for the interface and the

kinematic boundary condition can be expressed as follows:

D

Dt
(z − h(r, θ, t)) = 0 (3.11)

where D/Dt is a material derivative.

3.2 Non-dimensionalisation

We next use a set of scalings in order to non-dimensionalise our problem, which is considered

to be a effective tool to transform the dimensional dependence of the problem into a series of

dimensionless numbers governing the flow. These characteristic dimensionless groups represent

physical forces, for example, the Reynolds number Re = ρUDo/μ, defined as the ratio of inertia

to viscous forces. Also, simplification of the system of equations can be achieved. In this case,

the linear momentum equations, convection-diffusion and energy equations can be simplified

with the applications of lubrication theory. In the geometry of this research, the film thickness

is significantly smaller than the length scale, and the disparity between the length scales H and

R introduces a small parameter ε, defined as ε ≡ H
R
. It can be seen in the chapter that using

order-of-magnitude analysis for the system leads to simplification of the equations.

In particular, the following scalings, which are used to render the system of equations dimen-

sionless, are consistent with in the subsequent investigations in the study:

r = R(r̃), (z, h) = H(z̃, h̃)
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ur = U(ũ), uθ = U(r + ṽ), uz = Uεw̃

t = (R/U)t̃, p = P p̃, σ = σ0σ̃, c = C0c̃, T = T0T̃ (3.12)

where the quantities with a tilde are dimensionless temporarily. In order to make use of the

disparity in length scales, r ∼ R while (z, h) ∼ H, with R = (QC

2π
)1/2( ν

Ω
)−1/4 and H =

√
ν/Ω,

same as in [26]. Here QC denotes the inlet flow rate and Ω represents the rotational speed

of the disk. A characteristic velocity scale U is selected here in order to non-dimensionalise

the velocity component, defined as U = ΩR, which is a characteristic velocity appropriate

in the cylindrical coordinates. It is noted that the radial, azimuthal and axial component of

velocity field scale differently due to the fact that from the continuity equation ∂ur

∂r
, 1

r
∂uθ

∂θ
and

∂uz

∂z
are of the same order. Next, we apply appropriate scalings for pressure term. From the

Eqn (3.2), a balance between deviatoric stress and pressure terms leads to P = σε
R

which is

appropriate when the gravitational forces are neglected in the spinning disk geometry. For

additional concentration and temperature terms arisen from chemical reaction, they are scaled

against reference concentration and temperature, i.e. c = C0c̃, T = T0T̃ . Substitution of Eqn

(3.12) into Eqns (3.1) - (3.11) leads to the set of leading order equations:

u

r
+ ur +

1

r
vθ + wz = 0 (3.13)

ut + uur + wuz +
r + v

r
uθ − (r + v)2

r
= −λ2κr + uzz + ε2

[(
1

r
(ru)r

)
r

+
1

r2
uθθ +

2

r2
(r + v)θθ

]
(3.14)

vt+u(r+v)r+
u(r + v)

r
+wvz+

r + v

r
vθ = −λ21

r
κθ+vzz+ε2

[(
1

r
(rv)r

)
r

+
1

r2
(r + v)θθ +

2

r2
uθθ

]
(3.15)

ct + ucr +
r + v

r
cθ + wcz = Sc−1czz −Dac+ ε2 [...] (3.16)

Tt + uTr +
r + v

r
Tθ + wTz = Pe−1

(
Tzz +Daνe

c
RT0

T−1
T c

)
+ ε2 [...] (3.17)

where the dimensionless numbers in the equations are defined below:

λ2 =
σH

ρΩ2R4
, ε2 =

H2

R2
, Sc =

ν

Di

, Da = k0e
− E

RT0 , P e =
ρνCp

k
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The parameter λ2 is modified Weber number which measures relative importance of surface

tension compared with inertia, Da represents Damkohler number for chemical reaction rate

compared with mass/heat transfer, Sc is Schmidt number measuring the ratio of viscous diffu-

sion over molecular diffusion, Pe is the Peclet number defining a ratio of advection of physical

quantity to diffusion. [...] stands for the term to be neglected due to the scalings with ε2. The

boundary conditions are given, at the wall z = 0 :

u = v = w = 0, cz = 0, T = 1 (3.18)

and at the interface z = h(r, θ, t):

uz = 0, vz = 0 (3.19)

ht + uhr +
v

r
hθ = w (3.20)

c = 1, Tz = 0 (3.21)

In terms of the pressure term, due to the simplification of vertical component of Eqn. (3.2) for

thin films, i.e. ∂p
∂z

= 0, together with the normal stress balance at interface, it can be concluded

that:

p = −σ

(
1

r
(rhr)r +

1

r2
∂2h

∂θ2

)
(3.22)

Next, the dimensionless numbers are examined in order to derive the evolution equations. The

dimensionless numbers above are all small, but we retain the inverse Schmidt number Sc−1,

inverse Peclet number Pe−1 and the square of wavelength λ2, which neglecting the square of

aspect ratio ε2, which is common practice under lubrication theory. This means that we keep

the capillary and cross-stream (azimuthal direction in cylindrical coordinates) diffusion terms

while neglecting stream-wise (radial direction in cylindrical coordinates) diffusion terms, i.e.

ε2 � λ2 � 1
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3.3 Evolution Equations

The scalings introduced above lead to the reduction of the original set of equations describing

the dynamics of thin flow over a spinning disk. The objective of this section is to derive the

evolution equations for film thickness,volumetric flow rates, concentration and temperature,

subject to suitable wall and interfacial boundary conditions. Before proceeding the derivation,

the ε2 terms are neglected in Eqs.(3.13) - (3.17) under the assumption that the characteristic

height is significantly smaller than the length scale.

Integration of the Eqs. (3.13) - (3.17) from z = 0 to z = h(r, θ, t), applying Leibniz integral

rule, taking into account of wall and interfacial boundary conditions, yields

ht +
1

r
fr +

1

r2
gθ = 0 (3.23)

ft+

(
r

∫ h

0

u2dz

)
r

+fθ−rhθu|z=h+

(∫ h

0

uvdz

)
θ

−
∫ h

0

v2dz = λ2hrκr+ruz|z=0+r2h+2g (3.24)

gt + r

(∫ h

0

uvdz

)
r

+ 2

∫ h

0

uvdz + gθ − rhθv|z=h +

(∫ h

0

v2dz

)
θ

= λ2κθ − rvz|z=0 − 2f (3.25)

(
r

∫ h

0

cdz

)
+

(
r

∫ h

0

ucdz

)
r

+

(∫ h

0

vcdz

)
= Sc−1rcz|z=h − rIDa (3.26)

(
r

∫ h

0

Tdz

)
t

+

(
r

∫ h

0

uTdz

)
r

+

(∫ h

0

vT

)
θ

= Pe−1 (hrTz|z=h − Tz|z=0) +DaPeφI (3.27)

where f and g are radial and azimuthal flow rates respectively. I is integral of both concentra-

tion and temperature arising from the Arrhenius equation from chemical reaction:

f = r

∫ h

0

udz, g = r

∫ h

0

vdz, I =

∫ h

0

ce
(T−1)

T dz (3.28)
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In the case of falling films and flows over spinning disks, the inertia plays a significant role.

We employ a von Karman-Polhausen approach in conjunction with Integral Boundary Layer

method to derive evolution equations that can describe the dynamics. In this theory, we assume

the semi-parabolic velocity profile, satisfying wall and interfacial boundary conditions, adopted

by Sisoev et al. [26] and Matar et al. [58, 2]:

u =
3f

rh

(
ζ − 1

2
ζ2
)

(3.29)

From the Eq. (3.2) and by equation the second derivative of azimuthal velocity with radial

velocity vzz = 2u, we have

v =
5g

4rh

(
2ζ − ζ3 +

1

4
ζ4
)

(3.30)

We normalize the height against the film thickness, i.e. ζ = z/h. Substitution of Eq. (3.29)-

(3.30) into the Eq.(3.24)-(3.25) leads to the evolution equation of radial and azimuthal flow

rates.

∂f

∂t
+

(
β11

f 2

rh

)
r

− β13
g2

r2h
+

∂f

∂θ
− 3f

2h
hθ +

17

14

1

r2

(
fg

h

)
θ

= λ2rhκr − 3f

h2
+ r2h+ 2g (3.31)

gt +
1

r

(
β21

fg

h

)
r

+ gθ +
25

16

g

h
hθ +

155

126

1

r2

(
g2

h

)
θ

= λ2hκθ − 5

2

g

h2
− 2f (3.32)

where the non-axisymmetric curvature in the cylindrical coordinates is:

κ =
hr + rhrr(h

2
θ + r2) + rhθθ(h

2
r + 1)

[r2(h2
r + 1) + h2

θθ]
3/2

(3.33)

According to the long wave theory, Eqn. (3.33) above is reduced to:

κ =
1

r
(rhr)r +

1

r2
hθθ (3.34)

Similarly, in order to derive the evolution equation for concentration and temperature, we

assume the semi-parabolic profile for concentration and temperature, satisfying both the wall
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and interfacial conditions in Eq. (3.21):

c = Cb(1− ζ2) (3.35)

T = (2ζ − ζ2)Θ (3.36)

Substitution of the concentration and temperature profiles in Eq.(3.35)-(3.36) into the integral

equations (3.26)-(3.27), yields:

Cbt +
3β41

2rh
+ Cbr +

3β41 − 2

2rh
Cbfr +

(
β41

g

rh
Cb

)
θ
= −3Sc−1Cb

h2
− 3

2
DaI (3.37)

Θt +
3

2rh
β51fΘr +

3β51 − 2

2rh
Θfr +

(
β51

fg

rh
Θ

)
θ

= −Pe−13Θ

h2
+

3

2

DaΘ

Pe
I (3.38)

where Cb and Θ denote the dimensionless concentration and temperature profile respectively.

Note here the upper-case Θ denotes the temperature while the lower-case θ indicates the angle

in the spinning disk geometry. All the coefficients are defined as follows:

β11 =
6

5

(
1 +

α1

24
+

α2
1

144

)
, β13 =

155

126

(
1− 13

5952
α2 +

47

3571200
α2
2

)
, β14 = 3− α1/2, β15 = α1

β21 =
17

14

(
1 +

19

816
α1 − 1

1020
α2 +

29

97920
α1α2

)
, β23 =

5

2
+

α2

48

β41 =
11

20
− α1

40
, β51 =

4

5
+

α1

60

α1 = −λ2h2r

f
MDaφ (Θr − BiΘhr) , α2 = −λ2h4r

g
MDaφ (Θr − BiΘhr)

where Bi = Hη
k

represents the Biot number, which defines heat transfer resistance inside a

body and at the surface of a body, where η is the thermal diffusivity ; M = γT0H
μη

. stands for

the Marangoni number measuring thermal energy transported versus diffused, where γ is the

rate of change of surface tension w.r.t temperature. We focus in the following chapter on the

hydrodynamic associated with the flow.
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Chapter 4

Three-dimensional Hydrodynamics

In this chapter, we discuss only the hydrodynamics associated with the flow, dropping the

axisymmetric system assumption in the IBL solutions. Also, CFD simulations are performed,

by courtesy of Dr Junfeng Yang, as references to validate the IBL solutions.

4.1 Governing Equations

Here, we focus on the hydrodynamic only and neglect all mass transfer related effects. Equations

(3.37) and (3.38) are excluded and the evolution equations for the volumetric flow rates are

reduced to a simpler form without the effect of chemical reactions:

∇ · u = 0 (4.1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ μ∇2u (4.2)

subject to no-slip and no-penetration conditions on the substrate, and stress conditions at

interface:

n · τ · n = σκ,n · τ · t = 0 (4.3)

After applying the same IBL method, we can obtain the following set of PDEs with dimension-
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less dependent (and independent) variables:

ht +
1

r
fr +

1

r2
gθ = 0 (4.4)

ft +
6

5

(
f 2

rh

)
r

− 155

126

g2

r2h
+ fθ − 3f

2h
hθ +

17

14

1

r

(
fg

h

)
θ

= λ2rhκr − 3f

h2
+ r2h+ 2g (4.5)

gt +
17

14

1

r

(
fg

h

)
r

+ gθ +
25

16

g

h
hθ +

155

126

1

r2

(
g2

h

)
θ

= λ2hκθ − 5

2

g

h2
− 2f (4.6)

In practice, there is a limit on the dimensionless λ and rdisk values, in which the three-

dimensional IBL solution are valid. The typical range of λ is 0.008 - 0.05, higher λ values

typically produce smooth films without any waves and lower λ values lead to instability issues

numerically when resolving higher order of derivatives. Here rin and rdisk are the dimensionless

radius boundaries defined as rin = Rin/R and rdisk = Rdisk/R respectively according to the

scaling, where RC and Rdisk are physical radius of the inlet region and the whole disk. Typical

range of rdisk is 2 - 14, as in similar modelling research [26], with higher rdisk resulting in wave

break ups due to the implied viscous force. This limit of IBL model motivates the use of CFD

simulation.

4.2 Numerical Solutions

4.2.1 Numerical Procedure - Alternating Direction Implicit

In this section, the numerical procedure used to carry out the computation is discussed, after

which the numerical results and analysis are presented. The numerical procedure, based on

finite difference analysis in both space and time, was used to solve the coupled equations (4.4)-

(4.6), which govern the film thickness, volumetric flow rate in radial and azimuthal directions.

These equations are solved using finite difference method, with a second-order centred scheme

in space and Runge-Kutta third order in time. The ADI method is applied here in order to
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reduce the computational cost incurred by the multidimensional independent variables:

ht = Lx(h, ∂x) + Ly(h, ∂y) + Le(h, ∂x, ∂y)

hn+1 − hn

dt
= Lx(h

n+1) + Ly(h
n+1)− Le(h

n)

(1− dtLx − dtLy)h
n+1 = (1 + dtLe)h

n

(1− dtLx)(1− dtLy)h
n+1 = (1 + dtLe)h

n

These solutions are subjected to the following boundary conditions at the inlet region r = rin:

h = 31/3r
−2/3
in , f = 1, g = 0 (4.7)

and decay conditions at the periphery of the disk r = rdisk. Periodic boundary conditions are

applied in the azimuthal direction in the finite difference scheme. The number of grid points

used to carry out the computations is 1500. Details of convergence test carried out are in

Appendix B.

Numerical solutions of h, f, g are obtained after assigning a set of initial conditions, applying

the solutions of steady-state equations as seen below:

f = 1 (4.8)

6

5

d

dr

(
1

rh

)
− 155

126

g2

r2h
= λ2rh

[
1

r

d

dr

(
r
dh

dr

)]
− 3

1

h2
+ r2h+ 2g (4.9)
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(
β21

fg

h

)
= −5

2

g

h2
− 2f (4.10)

These equations are obtained by essentially removing transient terms and azimuthally-dependent

terms from Eqn. (4.4) to (4.6), by assuming the flow starts axisymmetrically everywhere.

4.2.2 Computational Fluids Dynamics

We perform the CFD simulations for this type of flow, in order to cross validate the use of

Integral Boundary Layer (IBL) theory and use of parabolic velocity closure.In this section, a

CFD simulation has been setup as a comparative study with the IBL solution. To this end,

the governing equations consisting of two continuity equations for the gas and liquid phases,

and a single set of momentum equation have been discretized and solved simultaneously within

the Finite Volume Method framework using the commercial code ANSYS Fluent ver. 17.0.

To capture the gas-liquid interfaces evolving dynamically, a Volume-of-Fluid (VOF) approach

is employed in this work. The pressure-velocity coupling was handled by the Semi-implicit

Method for Pressure-linked Equation (SIMPLE) algorithm. A bounded central differencing

scheme and a second order upwind scheme were used for the momentum equation and energy

equations, respectively. The High Resolution Interface Capturing (HRIC) scheme was chosen

for VOF and the second-order implicit method was used to advance the solution in time.

A 3D computational domain of a quarter spinning disk, consisting of 3 million unstructured

hexadedral cells, was constructed using the commercial mesh generator ICEM CFD. To resolve

the thin liquid layer adjacent to the wall surface, mesh gradients (fine grids near the wall, and

coarse grids for the above region) were applied in the axial direction. A uniform grid size was

used in the radial direction. The liquid flow is from the top to down (against the gravity vector)

through a nozzle with a constant velocity inlet boundary condition. The boundary conditions

for the top and the radial outer surface were imposed as pressure outlets. In the azimuthal

direction, simulating the entire liquid annulus would yield very high computational costs. Thus,

noting that the flow is statistically axisymmetric, only a 90◦ sector domain of the 3D spinning
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disk and flow above the disk surface was adopted herein and the front and back surfaces on the

boundary are taken as to be periodic planes accordingly. A no-slip wall boundary condition

was imposed on the rotating disk surface with a constant angular velocity, which are the same

as in the IBL model. Further details are provided in Appendix A.

4.3 Comparison of IBL and CFD Predictions

Direct comparison of the profile film thickness across the disk from IBL model is performed

with the CFD simulation and experimental results from Woods [5] under the same conditions

(rotational speed and inlet flow rate). As seen from Fig. 4.1, the film thickness from the three

sources are directly compared at the same chosen time and the same radial region. In the region

near the inlet where no waves start to emerge, all the sources simply produce analytical decay

profile of film thickness (Nusselt solution hN). Thus, our focus is the comparison at the region

where large-amplitude waves emerge, usually from mid to end of the disk radius. As shown in

Fig. 4.1 (a), full comparison of film thickness across the disk from IBL, CFD and experiment

observations in three regions (loc1, loc2 and loc3 in the legends) are conducted, under the

condition of Qc = 13 ml/s and Ω = 400 rpm. Generally, good agreement of h is found among

three sources, and both IBL and CFD capture the waves observed in the experiment in those

three regions.However, a discrepancy between film thickness observed in experimental results

and that predicted by the IBL and CFD models occurs, in the mid radial range (i.e. location

2), possibly due to the inlet perturbations that arise naturally in the experiments for which

there is no analogue in the models. Fig. 4.1 (b)-(d) depict specific regions of interest in the

radial direction where the wave from experiment observation is directly compared with those

generated by IBL and CFD. A good agreement can be found for the large-amplitude wave

from different sources at these wave regions, and the differences in the values of thickness

from the three sources are small compared with the initial inlet height of 1 mm. However, a

small discrepancy exists in terms of the accompanied small-amplitude capillary waves. For the

case of 19 ml/s and 100 rpm depicted in Fig. 4.1 (c)-(d), the IBL model captures the small

capillary waves between 0.15 m and 0.154 m, in agreement with the experimental observations
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from Woods [5], whereas they are absent in CFD simulation, possibly due to the insufficient

resolution in the simulation setup.

(a) Qc = 13 ml/s, Ω = 400 rpm
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Figure 4.1: Comparison of film thickness (in metres) obtained from the IBL model, CFD
simulations, and experimental observations [5]: (a) film thickness across the disk radius, with
Ω = 400 rpm , Qc = 13 ml/s (λ = 0.008, rdisk = 8.0) (b) film thickness at r = 0.062 − 0.066
m where a specific wave is observed, with the same operation conditions (c) film thickness at
r = 0.144− 0.16 m, with Ω = 100 rpm , Qc = 13 ml/s (λ = 0.02, rdisk = 8.0) (d) film thickness
at r = 0.144− 0.155 m, with Ω = 100 rpm , Qc = 19 ml/s (λ = 0.015, rdisk = 8.0)

In order to quantify the deviation of film thickness values between IBL model and CFD sim-

ulation, interfacial waviness W is adopted here, which is defined below in one dimensional

form:

W =

√∫ tend

0

∫ rdisk

rin

r(h− hN)2drdt

where hN = 31/3r−2/3 is derived from approximation of steady solution at large value of r
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(Nusselt solution) and the original form is W (t) =
√∫ rdisk

rin
r(h− hN)2dr used by Matar [55].

As shown in Table 4.1, W from both CFD and IBL solutions is presented, with varying op-

erating conditions i.e. rotational speed and inlet flow rate. Also, these W are computed by

numerical integration of W (t) with the last dimensionless time step tend = 10. It can be seen

here that CFD result is generally aligned with IBL solutions, however, it produces a higher

level of waviness W than IBL model, as CFD simulation shows larger-amplitude waves in early

stages of wave-propagation. Also, W increases with decreasing λ, due to generation of more

large-amplitude waves from higher inertia terms incurred by lower λ value.

Table 4.1: W from CFD and IBL under different operating conditions

λ = 0.022 (13 ml/s 100 rpm ) λ = 0.015 (19 ml/s 100 rpm) λ = 0.009 (19 ml/s 200rpm)

IBL 3.36 5.20 6.50

CFD 3.57 5.31 6.78

In order to validate our IBL model assuming the semi-parabolic profile of velocity in the radial

direction, a comparison between the velocity profile under the waves from IBL model and that

of CFD model was performed at different radial locations near the wave, for a rotational speed

100 rpm and inlet flow rate 19 ml/s, as seen in Fig. 4.2. Good agreement between the velocity

profiles under the waves is found under the radial locations (r = 0.148, 0.149, 0.150, 0.151 m)

from Fig. 4.3. The red line shows the analytical parabolic velocity profile, in accordance with

the assumption (e.g. du/dz = 0 at interface) in the integral boundary layer (IBL) model while

the black line reveals the actual velocity profile from CFD simulation after resolving the full

Navier-Stokes equation. In most of the regions, velocity profile from CFD simulations is very

close to parabolic as assumed in the IBL model, especially in the smooth region and some

degree of discrepancy occurs when the velocity is investigated right under the travelling waves.

For example, in Fig. 4.3 at the same operation conditions (Qc = 19 ml/s, Ω = 100 rpm) at the

disk radius r = 0.148 m and r = 0.149 m before the peak of waves the velocity profile from IBL

and CFD almost overlaps, however, the CFD velocity profile starts to marginally deviate from

analytic parabolic solution from r = 0.150 m right under the peak of wave, as shown in Fig.

4.1 due to the formation and propagation of large amplitude waves towards the disk periphery.
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Figure 4.2: The locations where velocity profiles are taken, with Ω = 100 rpm , Qc = 19 ml/s
(λ = 0.015, rdisk = 8.0)
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(c) r = 0.150 m
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Figure 4.3: Comparison of radial velocity profile u under the waves from CFD (black line) and
IBL model (red line) when flow rate is 19 ml/s and rotational speed is 100 rpm at different
radial locations: (a) r = 0.148 m (b) r = 0.149 m (c) r = 0.150 m(d) r = 0.151 m
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4.4 Parametric Study

4.4.1 Flow Structure over the Disk

According to earlier experimental studies [6, 5], several flow regimes can be observed: smooth,

spiral, concentric, and break-up. The particular regimes can also be observed with the help

of three-dimensional evolutionary model. We have produced a phase diagram to visualise the

different regimes and the corresponding operation conditions for fluids with different properties.

As can be seen from Fig. 4.4, the wave regimes can be determined by the dimensionless numbers

in the IBL model i.e. λ and rdisk, which are characterised by rotational speed, fluid density,

viscosity, and surface tension. An increase in λ value will tend to make the waves smooth, while

a decrease in λ will further steepen the surface waves, eventually leading to wave breakup over

the disk. The parameter λ is associated with relative significance of inertia and increasing λ

corresponds to decreasing the effect of inertia, leading to smaller-amplitude waves and, for a

sufficiently large value, even a smooth film.

Also, rdisk implicitly affects the wave evolution as it is proportional to the Ekman number due

to the scaling presented in this paper, as can been seen in Siesoev et al [2] and Matar et al [26],

where the Ekman number is defined as Ek = ν
ΩH2

c
, with a scaling based on Nusselt solution

Hc =
(

QCν
2πΩ2R2

C

)1/3

. If RC is chosen to be the disk radius Rdisk, then rdisk = Ek3/4. Increasing

the rdisk tends to produce concentric waves instead of spiral waves due to the increased effect

of the Coriolis force.
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Figure 4.4: Phase diagram of flow patterns with varying dimensionless parameters: λ and rdisk

As in Fig. 4.4, different types of waves (and the corresponding operating condition) are ob-

served: smooth films represented by purple squares, spiral waves by red vertical crosses circles,

concentric waves by yellow circles and wave break-ups by blue crosses. Subject to the limita-

tion of the model, the highest rotational speed is 600 rpm as higher rotational speed leads to

numerical stability issues, resulting in difficulties in resolving high spatial derivatives associ-

ated with very low λ values. Typical waves observed are shown in Fig. 4.5 , with operation

conditions corresponding to the phase diagram Fig. 4.4. More wave structures observed in the

CFD simulations are presented in Appendix A.

Here the CFD results are referenced in order to present the three-dimensional wave structure

in this section. The same wave structures are observed from numerical solutions of IBL model,

as shown in Fig. 4.6 and 4.7, which is the focus of the analysis in this chapter.
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Figure 4.5: Examples of wave structures produced by CFD simulations, with λ = 0.02 and
rdisk = 7

Spiral waves are one typical type of waves in experimental research and are observed in the

numerical simulation of the non-axisymmetric model. As can be seen in this diagram, under

certain operating conditions spiral waves are observed in numerical solutions e.g. flow rate of 12

ml/s and rotational speed of 160 rpm. The evolution of three-dimensional spiral wave is shown

in Fig. 4.6: at earlier times, small-amplitude waves emerge and travel radially towards the

disk periphery. These waves gradually steepen and become non-linear before forming spirals

during the transit. These large-amplitude waves are followed by smaller capillary ripples and

separated by flat films. Similar to the one-dimensional model [26], two distinct regions appear

within the disk: a relatively smooth region near the inlet, and a steep wavy region further

downstream near the periphery.
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(a) t = 2 (b) t=4

(c) t = 6 (d) t = 8

Figure 4.6: Evolution of 3D spiral waves under the operating condition: 13 ml/s and 200
rpm at different dimensionless time steps, produced by IBL model solutions, for λ = 0.02 and
rdisk = 7.5

Under certain operating conditions, usually moderate rotational speed and low initial flow rate,

e.g. if the same combination of 7 ml/s and 150 rpm is applied in this model as in the paper

Charwat et al. [6], which leads to λ = 0.05 and rdisk = 9.0, concentric waves are observed in

Figure 4.7. The evolution of concentric waves is similar to that of spiral waves, in that they

start from small-amplitude waves near the inlet region and gradually travel towards the disk

periphery, and large amplitude-waves are accompanied by small-amplitude capillary ripples.

However, instead of forming spirals, concentric rings emerge over the disk surface, separated

by flat film in between. Also, compared to spiral waves, concentric waves tend to have smaller
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amplitude, especially in the periphery of the disk.

(a) t = 2 (b) t = 4

(c) t=6 (d) t = 8

Figure 4.7: Evolution of 3D concentric waves under the operating condition: 7 ml/s and 150
rpm at different dimensionless time steps, produced by IBL model solutions, for λ = 0.05 and
rdisk = 9

4.4.2 Direct Comparison of Waves

Both numerical solutions of the IBL model (Eqn. (4.4)-(4.6)) and the CFD simulation predic-

tions give a good qualitative agreement with the experiments in terms of wave structures. In Fig

4.8, the left panel shows concentric waves that were observed experimentally [6] for a rotational

speed of 60 rpm and an inlet flow rate of 12 ml/s. The right panel depicts the concentric wave

structure over the disk produced from the IBL model with dimensionless parameter λ = 0.05,
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which characterises the experimental conditions. As found in the experiment and numerical

solutions, gradually increasing the inlet flow rate leads to the transition from smooth films to

concentric wave structure with small-amplitude waves.

(a) (b)

Figure 4.8: Comparison of concentric waves from experimental result [6] (a) where rotational
speed Ω = 60 rpm and inlet flow rate Qc = 12 ml/s and numerical solutions of Eqn. (4.4)-(4.6)
(b) with λ = 0.05, rdisk = 12 translated from the same rotational speed and flow rate

In more recent research [11], irregular waves are observed with similar flow rate of 10.8 ml/s

but a higher rotational speed of 600 rpm, which corresponds to λ = 0.006 and rdisk = 10.

Due to the limitations of λ values in the three-dimensional IBL model, the IBL solutions are

not valid under this experimental condition, which naturally leads to the application of CFD

simulation. As shown in Fig 4.9, this irregular wave structure are also captured in the CFD

simulation under the same experimental conditions. Spiral-like waves emerge close to the inlet

region and the irregular waves begin to form near the disk periphery due to the interactions

between waves induced by relatively high rotational speed.
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(a) (b)

Figure 4.9: Comparison of irregular waves from experiment [11] (left) with rotational speed
Ω = 600 rpm and inlet flow rate Qc = 10.8 ml/s , and CFD simulation (b) under the same
condition

4.4.3 Interfacial Waviness

In order to quantify the effect of different waves regimes on the flow dynamics, we apply the

dimensionless, integral measure of three-dimensional interfacial waviness, extending from one-

dimensional model of a thin film over spinning disks from Matar [55] :

W =

√∫ tend

0

∫ 2π

0

∫ rdisk

rin

r(h− hN)2drdθdt (4.11)

where hN = 31/3r−2/3 is derived from an approximation of the steady solution at large value of

r (Nusselt solution) and the original one-dimensional formula is W (t) =
√∫ rdisk

rin
r(h− hN)2dr.

In the regime of spiral waves, these wave shapes do not vary with radius in the steady-state

solution, similar to the finding in the work of Sisoev et al.[62]. Thus, we consider the wave

hump’s projections onto the plane (r, θ) which are characterised by the Archimedean spiral

equation r = α(θ−θ0)+r0, where r0 represents the centrepoint of the spiral from the origin and

the parameter α controls the distance between the loops in the spiral (the spiral waves converge

into concentric waves with α = 0). In this case, the deviation angle β which characterises the

spiral deviation from a circle is deduced from the Archimeadean equation and shown below:

β = arctan

(
1

r

dr

dθ

)
= arctan

(α
r

)
(4.12)
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Fig. 4.10 shows the dependence of spiral angle β on the disk radius, based on numerical

simulations of the PDEs leading to spiral wave structures, with the λ and rdisk values in the

spiral wave region in the phase map Fig. 4.4. More specifically, Fig. 4.10 (a)-(d) corresponds

to the computations with λ = 0.05, λ = 0.02, λ = 0.01, λ = 0.005 respectively and rdisk = 7.5

in all cases. As seen Fig. 4.10, with fixed rdisk and decreasing λ values, the spiral deviation

β increases, indicating that the wave regime transitions from concentric-like waves to spiral

waves. Each spiral wave structure can be characterised by one single parameter α, which we

use to associate the interfacial waviness W with one particular spiral wave structure.

Table 4.2: Three-dimensional interfacial waviness W of different spiral waves

α 0.1 0.8 1.2 1.5

W 1 1.33 1.53 1.7

As can be seen from the Table 4.2, different interfacial waviness are obtained under the spiral

wave regime, and these figures are normalized against that of concentric-like wave regime (where

α = 0.1). The figure α from the top row of Table 4.2 is obtained by approximating the numerical

solution of spiral shape with Archimedean spiral, using the formula in Eqn (4.12), while the

correspondingW in each case is calculated via the integral in Eqn (4.11), based on the numerical

solution h(r, θ, t) i.e. film thickness of spiral waves over the entire disk corresponding to the

particular α, where the dimensionless parameters are: rin = 0.5, rdisk = 7.5 and tend = 10.

Increased interfacial waviness is achieved during the transition from concentric waves to spiral

waves, due to their being large-amplitude waves and increased interaction of neighbouring waves

near the edge of the disk.
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(d) α = 1.5
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Figure 4.10: Spiral deviation from a circle, β, as a function of the radial coordinate for α =
0.1, 0.8, 1.2, 1.5 from (a) to (d) in Eqn. 4.12, shown by the solid blue line, and β values measured
directly from the projections of wave humps based on the numerical solution h(r, θ), shown by
the open red circle, for rdisk = 7.5, λ = 0.05, 0.02, 0.01, 0.005 from (a) to (d)

4.5 Conclusion

The flow and dynamics of three-dimensional unsteady wavy liquid films over spinning disks were

numerically analysed using integral boundary layer (IBL) method, assuming the semi-parabolic

functions for the individual velocity components.

In the inner region in the radial direction, the waves remain smooth and flat due to the stabiliz-

ing effect from Coriolis force, similar to the result from axisymmetric model. As time evolves,

numerical solutions of the three-dimensional IBL model reveal the development of wave regimes:

the initial flat film can be transformed into concentric waves or spiral waves, depending on the
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dimensionless number λ and rdisk, which are related to surface tension and Ekman number,

and can lead to surface breakup under extreme conditions. It is found that reducing the value

of λ leads to formation of wavy films and large-amplitude waves due to the increased relative

importance of inertia, as well as reduced effect of surface tension which stabilises the fluid’s

surface. Also, the interfacial waviness reveals that an intensification during the transition from

smooth films to concentric waves, then to spiral waves. Comparisons between our numerical

predictions for film thickness in the radial direction and CFD and experiential data show a

good agreement, so is the comparison between the velocity profile under the waves from CFD

simulation and that of our assumption.
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Chapter 5

Chemical Reactions

In this section, the dynamics of thin film flow over a spinning disk in the presence of first-order

chemical reaction is studied, under the axisymmetric approximation. Also, comparison with

previous studies is conducted, i.e. mass transport analysis associated with the flow from Matar

et al. [26] and temperature profile induced by chemical reaction in the evolution equations from

Prieling and Steiner [12].

5.1 Evolution Equations

The full set of equations is exactly the same as those in Chapter 3. However, due to the extra

complexity introduced by chemical reactions, the evolution equations are reduced by removing

the azimuthal dependencies, leading to:

ht +
1

r
fr = 0 (5.1)

ft +

(
β11

f 2

rh

)
r

− β13
g2

r2h
= λ2rhκr − 3f

h2
+ r2h+ 2g (5.2)

gt +
1

r

(
β21

fg

h

)
r

= −5

2

g

h2
− 2f (5.3)

Cbt +
3β41

2rh
Cbr +

3β41 − 2

2rh
Cbfr = −3Sc−1 c

h2
− 3

2
DaI (5.4)
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Θt +
3

2rh
β51fΘr +

3β51 − 2

2rh
Θfr = −Pe−13Θ

h2
+

3

2

DaΘ

Pe
I (5.5)

5.2 Results

In this section, we present a discussion of the steady and numerical solutions of the evolution

equations that describe the non-isothermal flow and mass transfer in the film. This is preceded

by a brief description of the numerical procedure used to carry out the computations. Note

that the notation Cb represents concentration, and in order to distinguish from angle θ, we use

the notation Θ for temperature.

5.2.1 Numerical Procedure

The numerical procedure is based on the use of the finite-difference method to discretise the

spatial and temporal derivatives that appear in Eqs. (3.23)-(3.38), which govern the evolution

of the film thickness, volumetric flow rates, concentration and temperature, respectively.

Numerical solutions for h, f , g, C, and θ starting from the following initial conditions:

h = 31/3r−2/3, f = 1, g = 0, Cb = −1,Θ = 0. (5.6)

These solutions are obtained subject to the following boundary conditions at the disc inlet,

r = rin:

h = 31/3r
−2/3
in , f = 1, g = 0, Cb = −1, Θ = 0, (5.7)

and decay conditions at the periphery of the disc, r = rdisk. The set of parameters is within

the typical range: 0 ≤ Da ≤ 10, 1 ≤ Pe ≤ 1000, 1 ≤ Sc ≤ 1000, with fixed λ = 0.01 rin = 0.6

and rdisc = 7.5 for all cases when investigating the effects of the dimensionless numbers. The

Da from 1 to 10 generally corresponds to conversion of reaction from 10% to 90% [87]. The

Sc range is set above as it is the typical range of values for gas-liquid diffusive system. The

Peclet number Pe is the same as Prandtl number Pr in terms of value, due to Re = 1 in our
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scalings. Pr is 0.71 for most common gases at room temperature, and liquids have higher Pr

numbers, with values as high as 105 for some oils [88]. The number of grid points used to carry

out the computations is 1500; convergence was achieved upon mesh refinement, with details in

the Appendix B. The steady solutions of the evolution equations are presented next.

5.2.2 Steady Solutions

In this section, we present a set of steady solutions for Eqs.(5.1) - (5.5). These solutions are

presented in the Fig. 5.1, obtained by solving the following equations (5.8) - (5.12)

f = 1, (5.8)

d

dr

(
β11

1

rh

)
− β13

g2

r2h
= (β15 − β14)

1

h2
+ r2h+ 2g, (5.9)

1

r

∂

∂r

(
β21

fg

h

)
= −β23

g

h2
− 2, (5.10)

(3β41 − 2)

2rh

dCb

dr
=

−3Cb

Sch2
− 3

2
Da I, (5.11)

(3β51 − 2)

2rh

dΘ

dr
=

−3Θ

Peh2
− 3Daφ

2Pe
Da I. (5.12)
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Figure 5.1: Waveless profile of film thickness, concentration and temperature, for λ = 0.01,
rdisk = 7.5, Da = 1, Pe = 1 and Sc = 556

5.2.3 Parametric Study

We present the results of the film evolution in the presence of the first-order chemical reaction

in the section, by solving the Eqns. (5.1) - (5.5). As shown in Figure 5.2, during the early stages

of the flow small-amplitude waves emerge near the inlet, which travel across the disc towards

its periphery, gaining in amplitude, and becoming nonlinear before reducing the amplitude and

diminishing at later times. There is evidence of wave interaction between large-amplitude waves

and smaller-amplitude waves downstream. Inspection of Fig. 5.3 also reveals the existence of

two distinct regions: a smooth region near the inlet, whose shape remains steady following its

evolution during the earliest stages of the flow; and, a wavy region downstream, near the disc

periphery. Similar observations were made by [26, 60] who studied the film evolution in the

absence of chemical reactions.

As seen in Fig. 5.2, the profile of volumetric flow rates f and g follows the same pattern as in

the film thickness h, where they start with initial conditions (f = 1 and g from steady-state

solutions) and gradually deviate due to the formation of waves, propagating towards the disk

periphery. The amplitude of the flow rates initially start to increase, due to the wave induction,
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and finally decreases and converges to waveless solutions. In Fig. 5.2 (c), the development of

azimuthal volumetric flow rate is shown. Here, it is seen that this flow rate remains negative

over the majority of the disk radius, suggesting that azimuthal flow rates act as retarding effect

on the overall development of thin film flow across the disk. This is in agreement with the

result in Matar et al., who also mentioned decreasing Eckman number will further strengthen

the effect.

The evolution of the concentration and temperature fields appears to follow that of the waves:

large-amplitude waves are generated at an early stage in time near the inlet region, propagating

towards the disc periphery with the accompany of smaller-amplitude waves. As shown in

Fig. 5.3, a smooth profile for concentration and temperature is observed at early times and

the profile exhibits large-amplitude wave structure in response of the formation of h. It is

worth noting that a peak structure is formed relatively close to the inlet region in terms of

temperature. This is due to combined effect of convective terms, which try to decrease the

magnitude of the temperature due to decreased film thickness and conductive terms, which

increase the temperature due to an increase in temperature gradient, in the momentum and

energy conservation equation, accompanied by the source term I in Eqn. 5.5, introduced by

the first order chemical reaction, which exerts a significant influence on the temperature. The

value of I across the disk radius is shown in Fig. 5.4, the value varies significantly near the

inlet region when r < 2, where the peak forms in the temperature profile. This observation

of temperature profile Θ is different from Prieling and Steiner [12], where the temperature is

monotonically growing w.r.t disk radius, as the source term in the heat convection-diffusion

equation is ignored in their study.
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Figure 5.2: Spatio-temporal profile of the film thickness h and volumetric flow rates f and g,
at dimensionless times t = 1, 1.5, 2, 3, 4, 5, 6, 7 respectively, where λ = 0.01, Da = 5, Pe = 1,
Sc = 556
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Figure 5.3: Spatio-temporal evolution of Cb and Θ generated using equations (21)-(24) at
dimensionless time units t = 2, 4, 6, 8 respectively, where λ = 0.01, Da = 5, Pe = 1, Sc = 556
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Figure 5.4: The source term I profile in the steady-state equation across the disk radius, where
λ = 0.01, Da = 5, Pe = 1, Sc = 556

After presentation of the evolution of flow characteristics of interest (film thickness h, concen-

tration Cb and temperature Θ profile ), we examine the individual dimensionless numbers, i.e.

Da, Pe, Sc and their effects on the flow evolution as they govern the chemical reaction, heat

and mass transfer.

First, the effect of Damkohler number Da is examined, which represents a ratio of chemical

reaction rate to convective mass transfer rate. In Fig. 5.5 (a)(c)(e), while increasing the Da,

mean concentration Cb level is decreasing accordingly at different time steps, which means that

due to the relative importance of chemical reaction, the reactant is consumed faster than it

is transferred by convection and this leads to faster depletion of the reactant because of the

reaction undergoing. Also, it is observed that the concentration decrease at a faster rate and

reach the equilibrium at an earlier stage with Da = 5, compared with Da = 1. However, there

is a limit on the decrease of concentration and in later stage with higher Da, which corresponds

to the limited consumption of reactant in the film when concentration approaches its lower

boundary.

Fig. 5.5 (b)(d)(f) shows the evolution profile for mean temperature with increasing Da, with

high Da number the peak of the mean temperature is higher e.g. when Da is 1 the peak reaches
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0.3 and when Da is 5, the temperature increases significantly to the level of 0.6 at a faster rate.

Also, it is noted that the temperature is still higher where the waves occur at later stages when

Da = 5, and the difference in the temperature profile caused by Da is greater than that of

concentration profile where at later stages in time the concentration profiles with different Da

almost overlap.
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Figure 5.5: Evolution of mean concentration and temperature profile of the reactant at t =
2, 4, 6 with varying Da from 1 to 5 and other parameters fixed Sc = 556, Pe = 1
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The effect of Schmidt number is investigated next. As demonstrated in Figure 5.6(a)(b)(c), the

wavy evolutionary profile of concentration Cb formed with decreasing Schmidt number from 556

to 5. With the decrease of Schmidt number, the thickness of boundary layer increases, which

strengthens the relative significance of diffusion, and this leads to an increase in the magnitude

of concentration. Also, this accounts for the increase of concentration after the local minimum

near the inlet region, due to the enhanced effect of diffusion as compared with convection. As

Sc only determines the mass transfer, temperature profile remains insensitive to decreasing Sc

although the momentum conservation and energy conservation equation are coupled, which can

be seen in Figure 5.6(d).
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Figure 5.6: Evolution of mean concentration and temperature profile of the reactant at di-
mensionless time steps t = 2, 4, 6, 8 with varying Sc from 5 to 556 and other parameters fixed
Da = 5, Pe = 1, λ = 0.01

Next, we demonstrate the effect of Peclet number Pe. Analogous to Sc number, Figure 5.7 shows
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the spatio-temporal evolutionary profile of concentration and temperature with increasing Pe.

5.7(a) demonstrates that the concentration is almost unchanged with increasing thermal Pe

number while 5.7(b)-(d)indicates that value of temperature decreases significantly with the

increasing Pe: the peak of temperature decreases from 0.5 to 0.02 when the Pe rises from 1

to 100 because of the decrease of the relative significance of thermal diffusion as well as the

heat source compared with convection, which can be proved by Equation (3.17),resulting in the

decrease of local temperature accordingly.
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Figure 5.7: Evolution of mean concentration and temperature profile of the reactant at t=2,4,6
8 with varying Pe from 1 to 100 and other parameters fixed Da = 5, Sc = 556, λ = 0.01

Afterwards, we compare the time-dependent transient solutions with steady-state solutions,

in terms of evolution of temperature and concentration of reactant across the disk radius, as

shown in Fig. 5.8 below. It can be observed that due to the formation of travelling waves, the

consumption of reactant and the temperature of the film increases compared to the waveless
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solutions.
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Figure 5.8: Evolution of mean concentration and temperature profile of the reactant, compared
with their corresponding steady-steate solutions at dimensionless time units t = 2, 4 and 6, for
λ = 0.01, Sc = 556, Da = 5, Pe = 1
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In order to quantitatively describe the extent of enhancement mass and heat transfer, the

solution of mass and heat transfer coefficient i.e.average Sherwood number (Shavg) and average

Nusselt number (Nuavg) are investigated in presence of first order chemical reaction. Shavg and

Nuavg are defined and derived as below:

The mass flux of solute through the surface is given by

j̃ = KL(C1− C̄) (5.13)

where KL is the local mass transfer coefficient, C1 is the concentration of the solute at equilib-

rium and C̄ is the local average concentration of solute in the liquid film. Within the present

model, the mass flux is also represented by:

j̃ = Di

(
∂C̃

∂z̃

)
z̃=h̃

(5.14)

leading to:

KL =
Di

(C1− C̄)

(
∂C̃

∂z̃

)
z̃=h̃

(5.15)

The mass transfer coefficient can also be presented in dimensionless form, in terms of local

Sherwood number ShL:

ShL =
KLh̃

Di

=
h̃

C1− C̃

(
∂C̃

∂z̃

)
z̃=h̃

=
h

1− C

(
∂C

∂z

)
z=h

(5.16)

The average mass transfer coefficient Shavg over the whole disk is given by:

Shavg =
KavgH0

Di

=
H0

(C1− C)πr̃2

∫ r̃

0

(
∂C̃

∂z̃

)
z̃=h̃

2πs̃ds̃ =
2

r2

[
Shin +

∫ r

rin

(
∂Cb

∂z
sds

)]
(5.17)

where Shin =
∫ rin
0

(
∂C
∂z
sds

)
accounts for the average mass transfer coefficient from disk centre

to inlet region rin = 0.5, which is computed from the steady state solutions of Eqn. 5.8 - 5.12,

while the rest of the terms are from transient solutions of Eqn. 5.1 - 5.5.
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Similar to dimensionless average Sherwood number Shavg, Nuavg is presented to quantify the

average heat transfer coefficient over the whole disk, which is defined as below:

Nuavg =
2

r2

[
Nuin +

∫ r

rin

(
∂Θ

∂z

)
z=0

sds

]
(5.18)

where Nuin is Nusselt number at inlet region r = 0 to rin = 0.5, the detailed derivation of

Nuavg is shown in Appendix C.

According to the definition in Eqn. 5.17 and 5.18 above, Shavg and Nuavg are a function of

disk radius and time, similar to other dependent variables in the evolution equations (e.g.h,

Cb, Θ). These two measures are obtained via additional numerical integration in the finite

difference scheme, using existing variables (r, Cb and Θ) in the evolution equations and stead-

state equations.

Figure 5.9 shows the temporal profile of the ratio of wavy Sh and Nu number to waveless Sh

and Nu at the outlet rdisc = 7.5. Increasing the relative importance of inertia, by decreasing

the λ from 0.01 to 0.005, leads to the formation of larger amplitude waves and more interaction

between waves, as seen in Fig. It is found by earlier researcher stating that the inertia is

destabilising effect of the flow [59, 55, 26], and also visually observed in the Chapter 4 where

the full three-dimensional wave structure is presented. This implies that the rate of heat and

mass transfer increases following the decrease in λ. The dependence of heat/mass transfer

characteristics on λ, with other parameters Da, Pe and Sc fixed, is also shown in Fig. 5.9,

where the normalised heat/mass transfer coefficients when the flow of solute is leaving the disk,

with λ = 0.005 and 0.01 respectively. For each λ, there is some period where the coefficients

are smooth, indicating the waves have not reached the disk periphery and the profile is still

waveless. This period is followed by a period of time in which the Sh and Nu exhibit strong

large-amplitude oscillations, which shows the stage of the flow with large-amplitude waves

passing the disk edge. By comparing the graphs in Fig. 5.9 (a)(b) and 5.9 (c)(d), it can be

seen that decreasing λ from 0.01 to 0.005 leads to larger amplitude of Sh and Nu overall and

more wave-induced temporal variations after initial smooth period.
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Figure 5.10 demonstrates the average Sh and Nu against the steady solution at early, middle

and late stages of travelling waves. The definition of Shavg andNuavg for steady-state solution is

the same as that of transient solution, and the only difference is that the waveless concentration

and temperature profile is applied in Eqn. (5.17) and (5.18) whereas in the transient version

only the contribution from the inlet region is using the waveless concentration and temperature

solution. It can be seen that due to the formation of non-linear travelling waves, mass and

heat transfer coefficient are drastically enhanced due to the large-amplitude waves travelling

towards the disc periphery compared to the waveless solutions. This reveals that simple analysis

of the flow based on the Nusselt theory or steady-state solutions cannot predict the wave-

induced enhancement effect on mass and heat transfer. The enhancement of heat transfer is

also captured by the IBL model in the study of Prieling and Steiner [12], where they find out

that increased waviness means thin liquid layer between surface waves are more easily heated

up/cooled down, leading to the enhancement in heat/mass transfer.
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Figure 5.9: Average Sherwood number (Shavg) and Nusselt number Nuavg with respect to
dimensionless time units at the outlet (rdisk = 7.5), with λ = 0.01 (left panel) and λ = 0.005
(right panel) respectively, where Da = 5, Sc = 556, Pe = 1
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Figure 5.10: Evolution of average Sherwood number Shavg and Nusselt number Nuavg across
the disk radius at different time units t = 2, 4, 6, where Da = 5, Sc = 556, Pe = 1
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5.3 Conclusion

In this chapter we have investigated the hydrodynamics, mass and heat transfer characteristics

of a thin liquid film over a spinning disc, in presence of first order chemical reaction. Integral

boundary layer method was applied to obtain a set of partial differential equations for film

thickness, volumetric flow rate, concentration of the reactant and the temperature across the

film originated from Navier-Stokes, assuming a parabolic profile of velocity, concentration and

temperature in vertical direction. These coupled evolution equations were parametrised by

dimensionless numbers: a Damkolher number, Da, a Schmidt number, Sc and a thermal Peclet

number, Pe which reveal the relative significance of reaction rate, mass diffusion rate and

thermal diffusion rate, respectively. A measure of enhancement of mass and heat transfer

was characterized by dimensionless number Sherwood number,Sh and Nusselt number, Nu,

respectively. Numerical solutions of the coupled partial differential equations were obtained

using finite difference method and a parametric study was carried out on order to test the

dependence of dynamics on the dimensionless group. The results indicate the formation of large

amplitude waves travelling from the inlet region to disk periphery, which gives rise to a drastic

enhancement of the mass and heat transfer. Large Da does not change the hydrodynamics

of the film, but increase the consumption and reactant within the film and result in higher

temperature profile accordingly. Increasing Sc and Pe leads to the decrease of concentration and

temperature respectively, due to the change of relative importance of mass and heat diffusion

rate. Dimensionless numbers Shavg and Nuavg indicates that the intensification of heat and

mass transfer due to the formation of large-amplitude waves, and this enhancement increases

by decreasing the λ, which has a destabilising effect on the flow.

The temperature profile within this model is different from Prieling and Steiner [12], in which

the temperature profile is monotonically increasing w.r.t disk radius. This is due to the negli-

gence of the source term in the original heat diffusion convection equation, which acts as the

opposite effect on the temperature, compared with the diffusion term. However, enhancement

of heat/mass transfer due to the wave-induced flow is presented in both places despite the

difference in the temperature profile.
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Chapter 6

Artificial Neural Network

In this chapter, we discuss a short-cut towards the dynamics of the flow, by-passing the time-

consuming implementation of finite-difference (FD) scheme, via performing neural-network sim-

ulation based on the results from existing FD-based runs. In the previous chapters, we discussed

the chemical reactions and three-dimensional hydrodynamics of the flow over spinning disks,

and the computation of numerical solutions (under IBL theory) is, even though a simplification

compared with full Direct Numerical Simulation (DNS), expensive with running time from sev-

eral hours to days, due to the number of dependent variables in the set of evolution equations

(film thickness, flow rate, concentration and temperature), and the nature of multidimensional

analysis, significantly leading to increasing number of grid points. One way to bypass this time-

consuming computations is to train a “smart” neural network fed from existing FD simulation

up to a certain time tmid, and then apply the trained network to predict the evolution of desired

variables from tmid onwards.

6.1 Implementation of Neural Network

First, in order to let the neural network work, we need large amount of training data and these

data are from previous finite-differences solutions under certain conditions, e.g. λ and rdisk.

After training of the data, a trained network will be able to predict the evolution of waves

74



under these conditions. Afterwards, the comparison can be made between the results from

neural network and new finite difference scheme directly for the model validation purpose.

We use the Finite Differences (FD) implementation results. The computational geometry is

three-dimensional cylindrical system as sketched in Fig. 6.1. The boundary condition in az-

imuthal direction is periodic, regardless of the angle θ (0 to 2π) we use. The FD model output

is film thickness h and volumetric flow rates f and g, which are functions of r, θ and time t.

Figure 6.1: A sketch of the computational domain

In the simple case under axisymmetric assumption, the h,f ,g are a function of r and t only.

These functional relationships can be obtained from predictions by many advanced regression

methods [89], and various software packages [90]. In our spinning disk geometry with the pe-

riodic boundary condition in the azimuthal direction, we choose Artificial Neural Network to

tackle this problem. The multilayer Neural Network is a powerful nonlinear regression tech-

nique, typically with a three-layer architecture: an input layer, hidden layer and an output

layer. Each unit in the hidden layer is transformed by a nonlinear function of a linear combi-

nation of all the variables in the input layer. After the hidden units are defined, another layer

of linear combination connects all the hidden units to the output units. Take Neural Network

modelling of function for as an example: suppose there are m input units (samples) and n

hidden units, then from input layer to hidden layer unit Hi:

Hi = s(a0i +
m∑
j=1

rjaji) (6.1)
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and the output O generated from hidden units is:

O = b0 +
n∑

i=1

biHi(r) (6.2)

where the nonlinear transfer function s is smooth and usually between 0 and 1,typical examples

include: the logistic sigmoid function s = 1
1+e−x , hyperbolic tangent function tanh = e2x−1

e2x+1
.

The adjustable coefficients a0i; aji; b0; bi are consistently updated and eventually confirmed

after consistent training of the NN. Software packages to train neural networks are widely

available and we have used the neural network toolbox in Matlab [91] for the spinning disk

geometry. The Matlab toolbox applies a three-layer neural network architecture with feed-

forward back-propagation mechanism with the Levenberg-Marquardt method to optimize the

weight coefficients, which connects the neurons in the input layer. A number of combinations

of optimisation algorithms, number of hidden layers and neuron sizes have been experimented,

we find out that for one single layer with ten neurons with Levenberg-Marquardt optimisation

algorithm produces best results balanced between performance (convergence rate) and robust-

ness.The starting values for the weights are chosen to be normally distributed random numbers

close to zero. Too many hidden layers increase the accuracy of nonlinear fitting, however, leads

to over-fitting problem. Once the training is finished, Matlab returns a network, which works

as functions but doesn’t have close-form analytical expression, with optimal weights that relate

the input variables to the output and here. The final output (desired dependent variable) can

be obtained using the trained network, with suitable inputs inserted.

6.2 Neural Network Training - Chemical Reactions

ht +
1

r
fr = 0 (6.3)
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As can be seen from the equations above, the film thickness, flow rate, concentration, and

temperature are all a function of radial location r and passage of time t under asymmetric

assumption.

In order to prepare the data for Neural Network training, we conduct a number of different

finite difference implementations. The FD results are saved at equal time intervals in time

δt = 0.16 with time running to t = 8 in total, and 1500 intervals in radial direction. Thus,

there are 50*1500 =75000 total sample points available, each containing the information of

velocity, film thickness, flow rate, concentration and temperature. Then, the data set is divided

into three parts by random sampling before the neural network training, usually the most

one for the fitting (60% or 45000 samples), another for validation (30% or 22500 samples),

and the rest for testing (10% or 7500 samples). The fitting starts by iteratively adjusting the

coefficients of the NN to fit the first inputs of the data to the target. Usually the fitting of the

data set improves with the increasing number of iterations(epoch), but too many unnecessary

iterations also result in over-fitting and degrade the ability of this trained network to make new

predictions with new inputs. The validation data are used to detect when this starts to happen

and stop the iterations if needed. Finally, the model is checked by comparing its predictions

with the testing data(10%) of the whole data set. Different ways of splitting the whole data

set have been exploited, including the 70%/15%/15% split by default, and we find out that

the fitting performance is relatively insensitive to the split ratio, compared with the number of

neurons and hidden layers.

To examine the performance of this nonlinear fitting, Fig.6.2 shows the distribution of the error

(Target- Output) for both the concentration and the temperature. As shown in Fig. 6.2, the

training, validation and testing data are labelled blue, green and red respectively. The vertical

yellow line in the centre indicates zero error. The NN training has given good results from the

fact that the level of error (x axis) is very small and most of errors centred around zero. This
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is particularly true for training dataset, but the error distribution for validation and testing

samples are also in agreement with that of the training data, with very few large errors far

away from the centre. Figure 6.3 demonstrates the Mean Squared Error (MSE) with number of

iterations (epochs). Both the MSE for concentration and temperature drop sharply with initial

200 iterations and slowly reach convergence in the end. Compared with the concentration

profile, temperature profile converges faster initially but takes longer time (931 epochs) for

final adjustment in the Neural Network training model, leading to a better fitting result, with

final MSE 10−5, which is around 10 times smaller than that of concentration.
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Figure 6.2: Error for concentration and temperature NN training
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Figure 6.3: Mean Squared Error with increasing number of iterations for optimal profile of
concentration and temperature NN training

If the Neural Network is trained perfectly to mimic the function for hydrodynamics, concentra-

tion and temperature, the NN model would produce exactly the same results as in the Finite

Difference scheme. However, this is not the case and discrepancy between the FD simulation

and NN model, as seen in Fig. 6.4 and Fig.6.5. In order to see the alignment of data, Fig.6.4 is

a typical example of regression analysis of predicted concentration from NN compared with the
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original concentration data from training, validation and test subset and overall performance.

The dashed line is when there is a perfect match between the NN model and IBL model im-

plementation where the concentration is exactly the same from both sources, and the coloured

solid line is the fitting between the output and target. The performance of the fitting is very

accurate, given that: 1). the solid fitting line is very close to the dashed diagonal line for perfect

match 2). the correlation coefficient R is very close to one across all subsets of data.

After the training the NN is complete, this network is applied to predict the evolution of

concentration and temperature up to the FD stopping time tmid and even from tmid onwards.

This is particularly useful since the numerical solution FD takes much longer time in the time-

stepping when forwarding in time, due to a source term present in the evolution equation

of temperature in Eqn.(6.7) which is calculated in each time dt and space dr step in the

finite difference scheme. Fig.6.5 demonstrate the evolution of concentration and temperature

profile from FD implementation and the NN model, at four different times (t = 2,4,6,8). The

concentration profile at different times is shown on the left panel and the temperature on the

right. Since both concentration and temperature are associated with the flow hydrodynamics,

they both are affected by propagation of dominant waves and subsequent smaller-amplitude

waves in the FD implementation. This behaviour is presented in the NN model as well, where

there is good agreement in smooth areas and some discrepancies in the smaller-amplitude region,

induced by the non-linear behaviour of the system. Generally, NN modelling of temperature

is more accurate than that of concentration, which can be found in the evolution profile in

Fig. 6.5 and the level of MSE in Fig. 6.3. However, even for the concentration profile, the

overall difference is small numerically , with MSE = 10−4. As observed in Fig. 6.5, the

differences in the concentration profile between the NN fitting and original IBL approach often

lie in the peaks and troughs of the large-amplitude waves, as well as the accompanying smaller-

amplitude waves, due to oscillation behaviour of the propagating waves and inter-wave mixing

effects. These absolute differences are virtually impossible to avoid completely numerically, and

the NN trained in this model is considered to reach a very good agreement with the original

IBL results, based on the overall order of magnitude of the error.
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Figure 6.4: Regression for concentration NN training on training data, validation data, test
data and overall data
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Figure 6.6: Prediction of concentration and temperature profile at t = 10,12 compared with
the new FD implementation, with the same conditions (λ = 0.01, rdisk = 7.5)

As mentioned earlier in this chapter, one of the most important application of NN training i

s to make predictions based on existing results. In this case, we stopped the FD scheme at

tmid = 8 in order to gather the training data for NN construction. After the NN is completed,

we continue the FD scheme (or start a new instance under the same condition) and compare

the NN predictions with FD scheme results after tmid = 8 up to t = 12, in order to see if the

function(network) has a general validity. Fig. 6.6 shows the prediction from NN compared with

results from separate FD scheme under same operational conditions. We find good agreement

between the NN model output and FD results in terms of both concentration and temperature

profile, with smaller-amplitude waves generated at a very similar location following the domi-

nant waves. The prediction result is particularly accurate for temperature, which is in line with

a better fitting result for the temperature profile and lower level of error, due to more iterations
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experienced.

In order to quantify the differences between the NN model and the conventional FD results, we

apply one statistical measure called Root Mean Squared Error (RMSE) between the FD and

NN results for both concentration (Cb) and temperature(Θ). It is an integral measure of the

difference across the domain, versus time. More specifically, defined as:

RMSb =

√
1

l

∫
(CbNN

− ˆCbFD
)2dr (6.8)

RMSΘ =

√
1

l

∫
(ΘNN − Θ̂NN)2dr (6.9)

where b and Θ denote concentration and temperature respectively, consistent with previous

chapter 5, and l is the length of radial direction r. A hat symbol on the b and Θ indicates

the average value. As in Fig.6.7, the agreement of root mean square is reasonably good for

both concentration and temperature, and the reason of narrow discrepancy is that only small-

amplitude waves account for the differences between NN and FD implementation during the

evolution of waves. Fig. 6.7 also shows that the rms is increasing with time in FD, and NN

model reproduces this result reasonably well.
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t = 12
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6.3 Neural Network Training - 3D Hydrodynamics

ht +
1

r
fr +

1

r2
gθ = 0 (6.10)

ft +
6

5

(
f 2

rh

)
r

− 155

126

g2

r2h
+ fθ − 3f

2h
hθ +

17

14

1

r

(
fg

h

)
θ

= λ2rhκr − 3f

h2
+ r2h+ 2g (6.11)

gt +
17

14

1

r

(
fg

h

)
r

+ gθ +
25

16

g

h
hθ +

155

126

1

r2

(
g2

h

)
θ

= λ2hκθ − 5

2

g

h2
− 2f (6.12)

The same logic can be applied when considering the three-dimensional hydrodynamics for the

film flow, considering that film thickness and flow rates are a function of spatial location r,θ

and time t. These solutions are impossible to solve analytically and time-consuming to solve

numerically, thus NN method is a reasonable approach towards the traditional problem-solving.

In order to gather the training data for this analysis, we firstly run a FD simulation with

the same inputs and operation conditions λ = 0.05 and rdisk = 10. With the stopping time

being t = 8, we choose a time interval that there are totally 150 points in time, also the

interval in radial and azimuthal direction is chosen such that there are 1500 points in r and

100 points in θ. Thus, the total sample number of sample points is 150*100*1500 = 22,500,000

sample points, each containing the information of hydrodynamics and flow rates.In order for

NN training to work, we split the whole dataset into three subsets: 60% (12,500,000) of training

, 30% (6,750,000) of validation and 10% (2,250,000) of testing sets, which is consistent with the

previous case for chemical reactions.

To examine the performance of this nonlinear fitting, Fig. 6.2 shows the distribution of the

error (Target- Output) for both the three dimensional hydrodynamics. The training, validation

and testing data are labelled blue, green and red respectively, same as the previous case. The

vertical yellow line in the centre indicates zero error. The NN training has given good results

from the fact that the level of error (x axis) is very small and the most of errors centred around
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zero. This is particularly true for training dataset, but the error distribution for validation and

testing samples are also in agreement with that of the training data, with very few large errors

far away from the centre. Figure 6.3 demonstrates the Mean Squared Error (MSE) with number

of iterations(epochs). The MSE for film thickness drops sharply with initial 200 iterations and

slowly reaches convergence in the end.
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Figure 6.8: Final error distribution and Mean Squared Error evolution of three dimensional
film thickness with increasing number of iterations(epochs)

The regression analysis is very similar to the NN model for chemical reactions and is shown

in the Appendix D.1, where the regression shows that the NN model output has a very high

correlation coefficient with the perfect diagonal line. After the training the NN is complete, we
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apply this trained network to simulate the evolution of three-dimensional hydrodynamics up to

the FD stopping time tmid and from tmid onwards for prediction, in order to bypassing the large

amount of time for FD scheme implementation for multidimensional . Fig.6.9 demonstrates the

evolution of the three-dimensional film thickness h from NN in comparison with result from

original FD on the left panel; The evolution of film thickness from NN model has a good fit

towards the original FD outcome in terms of the propagation of large-amplitude waves from

disk centre to disk periphery, the following smaller-amplitude waves look similar but not visible

from the three-dimensional h plot and these waves are the cause of discrepancy between the two

model results. In order to further clarify the difference between the NN and FD model, we also

present the difference between those two film thickness results Δh = hFD − hNN on the right

panel in the same figure. The difference Δh is sufficiently small compared with the h itself,

showing that the NN model produces a reasonably accurate fitting and that the Δh is induced

by the smaller-amplitude waves due to the higher-order derivatives terms in the original system

of PDEs.
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Figure 6.9: Evolution of film thickness h and difference of film thickness Δh between the NN
model and original FD results, at time t = 2, 4, 6, 8
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Figure 6.10: Prediction of film thickness h using NN compared with FD(left),and difference of
film thickness Δh between the NN model and original FD results, at time t = 10, 12

Also, we include the prediction of three-dimensional film thickness in future time, compared

with a new FD simulation under the same condition in Fig. 6.10. At the late stage of propaga-

tion t = 10, 12 the waves are mostly approaching disk periphery before returning to the waveless

steady-state, so is the difference Δh. It shows that the trained NN produces a very accurate

prediction of three-dimensional hydrodynamics at future times based on the information up to

a certain time.

In order to further validate the accuracy of the NN model, we test it with radial velocity profile

u extracted from both FD and NN model. As in Fig. 6.11, the radial velocity at r = 3.5,

θ = π/16 and t = 4 from both sources exhibit a parabolic profile in the vertical direction,

which is in line with the formulation section where the radial and azimuthal velocities are

assumed parabolic.
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Figure 6.11: Comparison of radial velocity at a fixed point in time where r = 3.5, θ = π/16
and t = 12

6.4 Conclusion

Following the discussion of three-dimensional hydrodynamics and presence of first-order chem-

ical reaction associated with the flow over spinning disks. However, the computation of finite

difference scheme for both cases consumes a substantial amount of time, even after local code

parallelisation with operator splitting method, due to additional dimensional involved and the

presence of the integral term which needs to be calculated in every time and space step. Neural

network is a modern technique to associate the implicit function(relationships) between the

inputs and targets, and is fit for the purpose of computational simplification and efficiency in

our model as it builds a smart network which can learn from previous existing FD results and

produce optimal fitting and prediction results via consistently updating the weights and bias

linking the inputs and outputs.

This chapter demonstrate the accuracy and general validity of NN training for both concentra-

tion and temperature profile, leading to a significantly reduction in time for simulation: mins

to hours compared with hours to days in typical FD scheme implementation, while maintain-

ing highly accurate results very close to original FD simulation. The Mean Square Error can

be reduced to the order of 10−4-10−5 after optimal number of iterations achieved. The NN

model also predicts the evolution of wave and associated concentration and temperature pro-
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file in future time accurately, so it can potentially replace the relatively time-consuming FD

implementation (especially in multidimensional scenario).
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Chapter 7

Conclusions

7.1 Conclusions

This dissertation focuses on the low-order modelling of the dynamics of thin liquid film over

spinning disks, including:

• Derivation of three-dimensional IBL model for non-axisymmetric condition and system

of PDEs in presence of chemical reactions

• CFD Simulation for full Navier-Stokes

• Comparison of film thickness and velocity profile underneath the films with CFD and

experimental results for cross validation

• ANN model based on the FD implementation for computational simplicity

The derivation of the evolution equations for such flows in this geometry is in Chapter 3,

including the hydrodynamics and chemical reactions. This was done by a combination of

application of long-wave theory to the original Navier-Stokes equations and Integral Boundary

Layer approach where the velocities are integrated in axial direction, taking into account of

suitable boundary conditions.
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In Chapter 4, we delve into the three-dimensional waves, dropping the axisymmetric assump-

tions that the majority of literature makes. It can be seen from the model that the whole

structure of waves over the disk can be observed from the solutions of the system of PDEs.

Also the non-axisymmetric model gives us a better insight into the flow of the film, including

the flow regimes corresponding operation conditions and fluid property (λ,rdisk). These flow

regimes and film thickness/velocity are then directly compared with CFD full simulation and

experimental observations, which show good agreement. Due to the full wave structure observed

in the three-dimensional evolution equations, the intensification of mass and heat transfer as-

sociated with the flow can be quantified using interfacial waviness W , which increases during

the transition from smooth film and concentric waves to spiral wave structure.

In Chapter 5, the focus is thin liquid film dynamics over spinning disk, with the presence

of first-order chemical reaction. The most obvious change introduced by chemical reaction is

the additional dependent variables,i.e.concentration and temperature which are affected by the

hydrodynamics. While this area of research is significant, few researchers have included the

reaction in the flow dynamics. Compared with Stein group [12], in the thesis the source term

in the diffusion-convection equations in considered, which is numerically integral of both tem-

perature and concentration profile. We presented the parametrisation following the solution

of PDE, with dimensionless numbers Sc, Pe and Da representing diffusion and chemical reac-

tion. These dimensionless numbers are then discussed in detail regarding the effect on the flow

evolution and corresponding heat/mass transfer:

• Higher Da means higher reaction rate, leading to the faster consumption of the reactant

and release of heat correspondingly, i.e. faster reduction in concentration profile Cb and

overall higher temperature Θ.

• Higher Sc leads to the decrease in the magnitude of concentration, but it has limited

impact on temperature

• High Pe results in the decrease in the temperature profile, but it has limit impact on

concentration profile
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Numerical measure of average Sherwood and Nusselt number was introduced in order to quan-

tify the wave-induced intensification in mass/heat transfer. Comparison between steady-state

solution and time-dependent transient solution proves the increase in Sherwood and Nusselt

due to the mixing effect of the waves, and also this intensification is further strengthened by

the decrease in λ, which is the combination of inertial and surface tension.

Chapter 6 was proposed based on the fact that traditional FD implementation of lower-order

model consumes large amount of computational time (even though it is already an improvement

compared with DNS). We apply the modern NN training in this model based on existing FD

results in order to predict the evolution of hydrodynamic, concentration and temperature in

future time without running the relatively time-consuming FD scheme. By comparison with

existing FD scheme up to its stopping time and new FD in future time, it is shown that

NN model produces results in good agreement with the original FD implementation, both in

uni-dimensional and multidimensional scenarios.

7.2 Limitations and Future Work

The main limitation is the numerical solution of three-dimensional evolution equations, as λ

decreases, the waves become more unstable, which artificially creates numerical instability in

the code. This directly reduces value of λ (0.01 and above) where the numerical results can

be obtained, translating to the reduction in the range of operational conditions (the rotational

speed can only reach 600 rpm with λ = 0.01).

There are naturally many possible extensions to this low-order model, both in the theoretical

model development and implementation of numerical solutions.

From the theoretical viewpoint, the low-order model can be extended to cover non-Newtonian

fluids, with the pursuit of one single parameter characterising the fluid property and inclusion

of this parameter into the original PDEs. In addition, other considerations can be taken in

terms of extension.
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From the implementation viewpoint, efficient algorithms need to be discovered in order to solve

the system of PDEs with multi-dimensional independent variables (Initial Value Problem) ,

including the source term induced by chemical reactions which needs to be calculated at every

grid point in space time, significantly increasing the computation time. Neural Network is a

sensible approach, but it need the original training data feed from FD. Also, under very low

level of λ, the FD scheme is very unstable and a more robust algorithm/code implementation

can be done in the future.
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Appendix A

CFD Simulation

A.1 Setup

The CFD simulation of the dynamics of thin film flow over a spinning disk is conducted using a

uniform mesh size of 30 micron on a rotating reference frame, as shown in Fig. A.1. A no-slip

wall boundary condition was imposed on the rotating disk surface with a constant angular

velocity.

Figure A.1: CFD Geometry of Thin Liquid Film over Spinning Disks
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A.2 CFD Results

Figure A.2: Flow regime and wave structure in CFD simulation, with Qc = 13ml/s and
Ω = 100rpm

Figure A.3: Irregular and spiral waves and their respective velocity and stress from CFD
simulation

Figure A.4: Axial velocity underneath the film across radial direction when Qc = 13ml/s and
Ω = 100rpm

The CFD simulation also investigate:
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1. Flow regime and structure over the entire disk

2. Wave patterns and velocity/stress

3. Axial velocity profile underneath the films across the location.
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Appendix B

Convergence Test

The convergence test has been performed, in order to determine the optimal grid points required

to solve the set of partial differential equations Eqn. (5.1) - (5.5) using finite difference scheme.

The final number grid points used is 1500, given the time consumed and achievement of the

fine mesh. As shown in Fig. B.1 - B.2, further increasing the number grid points beyond 1500

does not have significant impact on the solutions to the equations.
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Figure B.1: Profile of film thickness h, with number of grid points from 1200 to 2000, where
λ = 0.01, rdisk = 7.5
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Figure B.2: Profile of flow rates f (a) and g (b), with varying number of grid points from 1200
to 2000, under the same condition as in Fig.B.1
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Appendix C

Average Nusselt Number

The derivation of average Nusselt number Nuavg is shown in this section, with the tildes indi-

cating dimensional variables. The local heat flux q̃ is represented by the equation:

q̃ = −λL(T1− T̄ ) (C.1)

Similar to mass transfer coefficients, λL is the local heat transfer coefficient, T1 is the temper-

ature of the solute at equilibrium and T̄ is the local average temperature of solute in the liquid

film. Within the present model, the heat flux is also characterised by:

q̃ = −k

(
∂T̃

∂z̃

)
z̃=0

(C.2)

where k is local thermal conductivity, leading to:

λL =
−k

T1− T̄

(
∂T̃

∂z̃

)
z̃=0

(C.3)
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The average heat transfer coefficient over the whole disk can be represented by dimensionless

Nusselt number Nuavg:

Nuavg =
λavgH0

k
=

H0

(T1− T̄ )πr̃2

∫ r̃

0

(
∂T̃

∂z̃

)
z̃=0

2πs̃ds̃ =
2

r2

[
Nuin +

∫ r

rin

(
∂Θ

∂z

)
z=0

sds

]
(C.4)
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Appendix D

Neural Network

D.1 NN Training Regression Analysis

The regression analysis has been performed in the training, as part of the feed-forward NN

structure. Fig. D.1 and D.2 show the NN regression analysis of all partitions of data, for

temperature Θ and film thickness h from IBL solutions respectively.
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Figure D.1: Regression for temperature NN training on training data, validation data, test
data and overall data
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Figure D.2: Regression for three-dimensional film thickness NN training on training data,
validation data, test data and overall data
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D.2 NN Performance in Matlab Toolbox
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Figure D.3: Training State of NN model in terms of concentration
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Figure D.4: Training State of NN model in terms of temperature
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Appendix E

Matlab Code

E.1 Finite Difference Runge-Kutta 3

1 %so l v e hydrodynamic eqns ( system o f PDEs) with f i n i t e d i f f e r e n c e

method

2 c l e a r ; c l c ; c l o s e a l l

3 %r in =0.1 ; r d i s k = 1 ; T=2; M =500; N=200000;

4 r i n =0.2 ;

5 r d i s k = 1 ;

6 T =1.7;

7 M =500; %1000

8 N =80000; %200000

9 dr = ( rd i sk−r i n ) /M;

10 r = l i n s p a c e ( r in , rd i sk ,M+1) ;

11 dt = T/N;

12 t = l i n s p a c e (0 ,T,N+1) ;

13 E=10;

14 We=1e8 ;

15 Sc=556;
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16

17 hin =3.ˆ(1/3)∗ r i n .ˆ(−2/3) ;

18 %i n i t i a l c ond i t i on h = 3ˆ(1/3) .∗ r .ˆ(−2/3) ; f =1;g=0

19 h = 3 .ˆ ( 1/3 ) ∗ r .ˆ(−2/3) ;

20 f = r ∗0 + 1 ;

21 g = r ∗0 ;
22 B = r ∗0 ;
23 Nplot=100;

24 FF=ze ro s (N/Nplot ,M+1) ;

25 GG=ze ro s (N/Nplot ,M+1) ;

26 HH=ze ro s (N/Nplot ,M+1) ;

27 BB=ze ro s (N/Nplot ,M+1) ;

28

29 NRK=3;

30 % i t e r a t i o n o f time

31 f o r jTime = 1 :N

32

33 h o ld = h ;

34 f o l d = f ;

35 g o ld = g ;

36 B old = B;

37 f o r iRK=1:NRK

38 h (1 ) = hin+2∗rand ;

39 f ( 1 ) = 1 ;

40 g (1 ) = 0 ;

41 B(1) = 0 ;

42 f (M)=f (M−1) ;

43 f (M+1)=f (M) ;

44 g (M)=g (M−1) ;
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45 g (M+1)=g (M) ;

46 B(M+1)=B(M) ;

47

48 h(M)=h(M−1) ;

49 h(M+1)=h(M) ;

50

51 f o r i= 2 :M−1
52 h( i ) = h( i )− ( dt/dr ) ∗( f ( i )−f ( i −1) )−dt ∗( f ( i ) / r ( i ) ) ;
53

54 f ( i ) = f ( i )−(dt /(h( i )∗ r ( i ) ) ) ∗(18∗ f ( i ) ˆ2/5−155∗g ( i )
ˆ2/126) . . .

55 −6∗dt∗ r ( i ) ˆ2/(5∗ dr ) . ∗ ( f ( i ) ˆ2/(h( i )∗ r ( i ) ˆ2)−f ( i −1)

ˆ2/(h( i −1)∗ r ( i −1)ˆ2) ) . . .

56 +2∗E∗dt∗g ( i )+Eˆ2∗dt ∗( r ( i )∗h( i ) +1.0/We∗h( i ) ∗ ( ( h( i +2)

−3∗h( i +1)+3∗h( i )−h( i −1) ) /( dr ˆ3) . . .

57 +1/r ( i ) ∗(h( i +1)−2∗h( i )+h( i −1) ) /( dr ˆ2)−1/r ( i ) ˆ2 .∗ ( h( i
)−h( i −1) ) /dr )−3∗ f ( i ) /h( i ) ˆ2) ;

58

59 g ( i ) = g ( i )−34∗dt /7 .∗ ( f ( i )∗g ( i ) /(h( i )∗ r ( i ) ) )−2∗E∗dt∗ f ( i )
. . .

60 −(17/14) ∗( dt/dr ) ∗( r ( i ) . ˆ 2 ) ∗( f ( i )∗g ( i ) /(h( i )∗ r ( i ) . ˆ 2 )
−f ( i −1)∗g ( i −1)/(h( i −1)∗ r ( i −1) . ˆ 2 ) ) . . .

61 −5/2∗Eˆ2∗dt∗g ( i ) /(h( i ) ˆ2) ;
62

63 B( i ) = B( i )−(3∗ f ( i )∗dt ) /(2∗h( i )∗ r ( i )∗dr ) ∗(1−3∗B( i ) ˆ2/10)
∗(B( i )−B( i −1) ) . . .

64 +6∗dt /( Sc∗B( i )∗h( i ) ˆ2)−(B( i )∗dt ) /(2∗ dr∗h( i )∗ r ( i ) ) ∗(1−3∗B
( i ) ˆ2/10) ∗( f ( i )−f ( i −1) ) ;
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65 %−(B( i , j )∗dt ) /(2∗ dr∗h( i , j )∗ r ( i ) ) ∗(1−3∗B( i , j ) ˆ2/10) ∗( f ( i , j )−f

( i −1, j ) )

66 end

67

68 i f iRK==2

69 h =h∗0.25+ h o ld ∗0 . 7 5 ;
70 f =f ∗0.25+ f o l d ∗0 . 7 5 ;
71 g =g∗0.25+ g o ld ∗0 . 2 5 ;
72 B =B∗0.25+B old ∗0 . 2 5 ;
73 e l s e i f ( iRK==3)

74 h =h∗(2/3)+h o ld /3 ;

75 f =f ∗(2/3)+f o l d /3 ;

76 g =g ∗(2/3)+g o ld /3 ;

77 B =B∗(2/3)+B old /3 ;

78 end

79

80 end

81

82 i f (mod( jTime , Nplot )==0)

83 p lo t ( r , h , r , f , r , g∗100 , r ,B) ;
84 t i t l e ( [ ’ jTime=’ num2str ( jTime ) ] )

85 l egend ( ’h ’ , ’ f ’ , ’ g∗1000 ’ , ’B ’ )

86 pause ( 0 . 1 )

87

88 HH( jTime/Nplot , : )=h ;

89 FF( jTime/Nplot , : )=f ;

90 GG( jTime/Nplot , : )=g ;

91 BB( jTime/Nplot , : )=B;

92 end
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93

94 end

95

96

97

98 %FIGURE

99

100 % subplot ( 8 , 1 , 1 ) ;

101 % plo t ( r ,GG( 2 0 , : ) ) ;

102 % subplot ( 8 , 1 , 2 ) ;

103 % plo t ( r ,GG( 4 0 , : ) ) ;

104 % subplot ( 8 , 1 , 3 ) ;

105 % plo t ( r ,GG( 6 0 , : ) ) ;

106 % subplot ( 8 , 1 , 4 ) ;

107 % plo t ( r ,GG( 8 0 , : ) ) ;

108 % subplot ( 8 , 1 , 5 ) ;

109 % plo t ( r ,GG(1 0 0 , : ) ) ;

110 % subplot ( 8 , 1 , 6 ) ;

111 % plo t ( r ,GG(1 2 0 , : ) ) ;

112 % subplot ( 8 , 1 , 7 ) ;

113 % plo t ( r ,GG(1 5 0 , : ) ) ;

114 % subplot ( 8 , 1 , 8 ) ;

115 % plo t ( r ,GG(1 8 0 , : ) ) ;
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