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Abstract

This thesis is a collection of collaborative research work which uses field-theoretic techniques to
approach three different areas of stochastic dynamics: Branching Processes, First-passage times
of processes with are subject to both white and coloured noise, and numerical and analytical
aspects of first-passage times in fractional Brownian Motion.

Chapter 1 (joint work with Rosalba Garcia Millan, Johannes Pausch, and Gunnar Pruessner,
appeared in Phys. Rev. E 98 (6):062107) contains an analysis of non-spatial branching processes
with arbitrary offspring distribution. Here our focus lies on the statistics of the number of
particles in the system at any given time. We calculate a host of observables using Doi-Peliti
field theory and find that close to criticality these observables no longer depend on the details
of the offspring distribution, and are thus universal.

In Chapter 2 (joint work with Ignacio Bordeu, Saoirse Amarteifio, Rosalba Garcia Millan,
Nanxin Wei, and Gunnar Pruessner, appeared in Sci. Rep. 9:15590) we study the number of
sites visited by a branching random walk on general graphs. To do so, we introduce a field-
theoretic tracing mechanism which keeps track of all already visited sites. We find the scaling
laws of the moments of the distribution near the critical point.

Chapter 3 (joint work with Gunnar Pruessner and Guillaume Salbreux, submitted, arXiv:
2006.00116) provides an analysis of the first-passage time problem for stochastic processes
subject to white and coloured noise. By way of a perturbation theory, I give a systematic and
controlled expansion of the moment generating function of first-passage times.

In Chapter 4, we revise the tracing mechanism found earlier and use it to characterise three
different extreme values, first-passage times, running maxima, and mean volume explored. By
formulating these in field-theoretic language, we are able to derive new results for a class of
non-Markovian stochastic processes.

Chapter 5 and 6 are concerned with the first-passage time distribution of fractional Brownian
Motion. Chapter 5 (joint work with Kay Wiese, appeared in Phys. Rev. E 101 (4):043312)
introduces a new algorithm to sample them efficiently. Chapter 6 (joint work with Maxence
Arutkin and Kay Wiese, submitted, arXiv:1908.10801) gives a field-theoretically obtained per-
turbative result of the first-passage time distribution in the presence of linear and non-linear
drift.
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3.1. A particle in a potential (orange parabola) subject to both white and
coloured noise (see Eq. (3.1)). While the white noise models a thermal en-
vironment whose timescale of correlation is negligibly small, the driving term
models hidden degrees of freedom which are correlated over timescales compa-
rable to those of the particle’s stochastic dynamics. Those driving forces induce
correlations (pink correlation kernel) in the particle’s increments and there-
fore break its Markovianity. In this work, we study first-passage times τx0,x1 ; the
time such a random walker (blue rough path) takes to first reach x1 starting
from x0 (dashed lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2. First order corrections to the moment-generating function of first-passage times
as found by the framework presented in this work for two example processes. . . 85
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5.1. The continuous stochastic path (grey rough line) crosses the barrier (blue horizon-
tal line) for the first time at τ∞ (black leftmost square mark). The discretization
with N points (red line passing through rightmost square) over-estimates this
time as τN (red rightmost square mark). The numerical estimate is improved
to τ4N (green middle square mark) when refining the discretization (green line
passing through middle square mark). This systematic error worsens for dimin-
ishing values of Hurst parameter H. This figure is accepted for publication as
[242]. See App. A.4 for approval of co-authors. . . . . . . . . . . . . . . . . . . . 139

5.1. Illustration of the adaptive bisection routine. The grid T (bottom) contains
points in time, here detail shown of initial bridge tl = i2−g, tr = (i + 1)2−g

(labelled bullets) and successively introduced midpoints (bullets on time axis);
The path X (above) samples values at times (dashed lines) which approximate
path by linear interpolations (grey and black thick lines). The threshold m (red
uppermost horizontal line) is crossed by the path and bisections are generated
for every bridge whose endpoints lie in the critical strip corresponding to its level
(blue vertical lines underneath). The horizontal arrows on top of the path indicate
the bridges in between the grid points. The mapping from bridges to binary tree
(top) is indicated with dotted lines. The top node (1) corresponds to the widest
bridge (i2−g, (i + 1)2−g), and children correspond to sub-intervals generated by
midpoint. The bridges are explored in order as given by numbers above nodes
and chosen by the bridge-selection routine (see text for details). Bridges that
are critical (blue filled nodes) are bisected, and their children checked from left
to right, until a first-passage event has been identified at maximum bisection
level L (red filled node ‘7’). This event terminates the algorithm. In contrast to
Node 1 which belongs to the initial grid T (0), Nodes 2 to 7 stem from adaptive
bisections and contribute to the total count of bisections M . The maximum
number of nodes which could theoretically be spawned off this particular sub-
interval is 2L−g−1. This figure is accepted for publication as [242]. See App. A.4
for approval of co-authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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for L = 16 (dashed gray line). Note that the prefactor is much smaller than the
number of points, which can read off from Fig. 5.3. Error rates were averaged
over 105 to 106 iterations. This figure is accepted for publication as [242]. See
App. A.4 for approval of co-authors. . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.2. Average number of new midpoints generated at bridge level `, for various values
of H (solid, dashed, dash-dotted, and dotted lines) as a function of `H. For
equal values of `H, lower Hurst parameter implies a larger number of average
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publication as [242]. See App. A.4 for approval of co-authors. . . . . . . . . . . . 154

5.3. Average number of bisections M as a function of the maximum bisection level
L (i.e. Neff = 2L) for different values of H (diamond, circle, upright and upside
down triangle marks). Inset shows M versus LH. As long as H ≥ 0.33 growth
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5.4. Average user time required to find first-passage time in a grid of effective dis-
cretization precision 2−LH . The dashed lines indicate user time for Davies-Harte
method, solid lines for the adaptive bisection method. The three different colours
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5.5. User time for ABSec (solid lines) compared to DH (dashed line) for two different
initial grid sizes and two different values of error tolerance ε′. For a hundred times
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5.6. (tuser/iteration)1/3 plotted versus effective discretization NH for various values of
H (blue circle marks H = 0.33, green square marks H = 0.5, red diamond marks
H = 0.67, cf. Fig. 5.4). They corroborate the estimate of CABSec ∼ (lnNeff)3.
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(
(lnNeff)2

)
. This is in agreement with the complexity

estimate in Eq. (5.36). The inset shows the ratio between data points and the
fit. This figure is accepted for publication as [242]. See App. A.4 for approval of
co-authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.7. Memory usage for DH (dashed line) and ABSec (solid line) for two different initial
subgrid sizes. DH scales linearly in N , while ABSec grows only slowly (see text
for estimate). For system of size Neff = 228, ABSec needs only 10−2 to 10−3 of the
memory for DH. For larger systems or smaller H, the advantage of ABSec is even
bigger. Measurements were taken after 104 iterations. This figure is accepted for
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5.8. Ratio between sampled variance and no-neighbour-estimate of variance (cf. Eq. (5.18))
of an inserted midpoint Xm versus the level of the bisected bridge. For H = 0.5
(green diamond marks), the ratio equals 1, as BM is Markovian. For H 6= 0.5
(red square marks H = 0.67, blue circle lines H = 0.33), the variance fluctuates,
as shown by the error bars for one standard deviation. Numerical errors due to a
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6.1. Graphical representation of the path-integral for diagram G1(m, t) (left,
expectation of S1, Eq. (6.52)), Gα(m, t) (middle, expectation of Sα, Eq. (6.53)),
and Gβ(m, t) (right, expectation of Sβ, Eq. (6.54)). The wiggly line in the first
diagram represents the interaction proportional to 1/(t2 − t1). The red lines in
the second and third diagram contain a log of the corresponding time difference,
ln(t/T ) for the first, and ln

(
(T − t)/T

)
for the second. This figure has been

submitted for publication to Phys. Rev. E. See App. A.5 for approval of co-authors.174
6.2. Left: The function F1(y) (blue, solid), with its asymptotic expansions

(red and green dashed). Middle: ibid. for Fµ(y). Right: ibid. for Fν(y).
Numerical measurements are presented on Figs. 6.2, 6.3 and 6.5. This figure has
been submitted for publication to Phys. Rev. E. See App. A.5 for approval of
co-authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
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6.3. Example for the absorption probability as a function of µ at ν = 0 (left),
and ν at µ = 0 (right). In all cases m = 0.1. The blue solid line represents
the result obtained by a direct numerical integration of Eq. (6.89), and adjusting
the overall normalisation at µ = ν = 0 to 1; this has the advantage that the
combination µm

1
H
−1 appears naturally. The green dashed curve is the same,

without adjustment of normalisation. The red dotted curve (visible only on
the left plot) is obtained using Eq. (6.119). The magenta curve is obtained
using Eq. (6.120). The cyan curve is from Eq. (6.121), and is identical to the
magenta one on the right plot. This figure has been submitted for publication to
Phys. Rev. E. See App. A.5 for approval of co-authors. . . . . . . . . . . . . . . . 187

6.1. Left: First-passage time density Pfirst(m, t) = P(y) plotted as a function of
y as given in Eq. (6.9). In order to increase the resolution of the plot, we use
overlapping bins with binsize 5 × 105, with y increasing by 105 points for each
bin; (Averages taken over 2.5 × 107 samples per curve, m = 0.1). For various
values of H and µ, numerical simulations are compared to the theory. As can be
seen on this plot, and on the ratio between simulations and theory to the
right, the relative error is about 3% at the extreme points. Note that neglecting
F1(y) would lead for H = 0.4/0.6 to an error of 15%, and for H = 0.33/0.67 to
an error of 25%. This figure has been submitted for publication to Phys. Rev. E.
See App. A.5 for approval of co-authors. . . . . . . . . . . . . . . . . . . . . . . . 190

6.2. Numerical estimate of F1. The black curve is the theoretical estimate (6.93),
followed by a number of estimates using Eq. (6.145). Solid lines are for m = 0.1
(ca. 2.5×107 samples per curve), dashed ones for m = 1 (ca. 5×107 samples per
curve). The symmetrised estimates (6.146) are in olive/cyan. The latter has min-
imal deviations from the theory. The inset shows a numerical estimate for F2(y),
as given by Eqs. (6.147) and (6.148). All curves are consistent, and let appear
even the next-to-leading corrections. (Remind that changing the normalization
is equivalent to adding a constant to F1(y) or F2(y)). The strong curve-down for
small and large y are due to numerical problems. This figure has been submitted
for publication to Phys. Rev. E. See App. A.5 for approval of co-authors. . . . . 191

6.3. Numerical estimate of Fµ. The black curve is the theoretical result (6.99).
The colored curves are obtained using Eq. (6.152) with µ = ±1 for H = 0.6
and H = 0.67, and µ = ±3 for H = 0.33 and H = 0.4. Solid lines are for
m = 0.1 (ca. 2.5 × 107 samples per curve), dashed ones for m = 1 (ca. 5 ×
107 samples per curve). The symmetrised estimates (6.146) are in olive/cyan.
The cyan curve using the equivalent of Eq. (6.146) with H = 0.4/0.6 is our
best numerical estimate of Fµ(y). The inset shows the estimated second-order
correction, analogous to Eqs. (6.147)-(6.148). This figure has been submitted for
publication to Phys. Rev. E. See App. A.5 for approval of co-authors. . . . . . . 193
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6.4. Left: first-passage-time density plotted with overlapping bins as in Fig. 6.1
for various values of H and non-linear drift ν compared to the theory given in
Eq. (6.89). Right: Ratio of simulation and theoretical values. This figure
has been submitted for publication to Phys. Rev. E. See App. A.5 for approval
of co-authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.5. Left: Numerical estimate of Fν , using Eq. (6.153). The black curve is the
theoretical prediction (6.103). The colored curves are simulation results using
Eq. (6.153). Solid lines are for m = 0.1, dashed ones for m = 1. The cyan
and olive curves are the symmetrised results using the equivalent of Eq. (6.146)
for H = 0.4/0.6 (cyan) and H = 0.33/0.67 (olive). The former one is the best
numerical estimate of the theory, and very close to the latter. The inset shows
the estimated second-order corrections, analogous to Eqs. (6.147)-(6.148).
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Chapter 0

Introduction

Stochastic processes are indispensable for the study of biological processes, chemical reaction
kinetics, or complex systems. But why?

When studying systems comprised of many interacting agents, it is helpful to distinguish a
single degree of freedom, the particle, and to observe its evolution in time. In doing so, all of
the remaining degrees of freedom are subsumed into the bath. The ambition of this approach is
to infer from observation of the particle the properties of the entire system. Methodically, this
isn’t unlike a biologist counting dragon flies to gauge the health of a pond.

Creating the potentially arbitrary distinction between the particle and the bath reduces the
enormous number of interactions that are hidden to two: the forcing with which the bath acts
on the particle, and the feedback with which the particle influences the dynamics of the bath. It
is customary in physics to ignore the feedback entirely and to assume that the bath evolves fully
independently of the particle. This then sets the stage for the great conceptual leap, brought
about amidst the late 19th century, which is that the evolution of the bath no longer needs to
be deterministically understood but is assumed to be random. The substitution of the bath’s
very many deterministic degrees of freedom by a single random force, however, is a delicate
issue and I shall avoid expanding on it.

Instead, I would like to elaborate on the transition between deterministic and random evolu-
tion. I consider this transition to be the domain of memory. Memory stands at the centre of
this thesis, and features in each chapter, in some more visibly than in others. How to think of
it? Suppose, I use a microscope to measure the forcing exerted by a bath onto a particle over
a large number of subsequent, very short time intervals. Within each of these very short time
intervals, the forcing may still wildly fluctuate; this is no concern since I simply take note of,
say, the average forcing within each of these very short time intervals. Through this procedure,
I obtain a time series for the values of the forcing along every time interval. This time series
is unpredictable in the deterministic sense, but empirically one may construct an a posteriori
random distribution from which the values are drawn. In itself such a distribution may already
illuminate some of the internal physics. To progress, however, it is worthwhile to analyse the
data for correlations between different values of the time series. The usual paradigm in this
case is white noise which declares that no two distinct points of the series are correlated to each
other – a bold assumption! If such correlations exist, however, they are physically interpreted
as memory of the bath. The emergence of memory is a sign that the width of the time interval
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has been chosen small enough to be comparable to the timescale along which the bath evolves
according to its hidden microscopic, and therefore deterministic, rules. The bath then retains
some information about its internal state as it evolves from one time interval to the next. Mem-
ory in complex environments is therefore most of all a statement of time scales, and a feature of
the interpolation between the deterministic and the random picture we make of it. As we zoom
in, the gas is replaced by a spring, so to speak, and the different time intervals hang together
more and more causally.

The question of how to address a potentially infinite number of interacting degrees of freedom
acting on a particle is not reserved to stochastic dynamics. To the contrary: it caused the
emergence of a second great conceptual advance in theoretical physics, field theory. Historically
developed for the study of high energy particle physics, (quantum) field theory deals with the
effective large scale behvaiour of theories described at the microscopic level. At its core it
operates with path integrals which generate every possible future (and past) evolution of a
quantum field and assign to it a probabilistic weight. In constructing this weight, all possible
interactions of the field (including with itself) are taken into account. Its fundamental structure
therefore lends itself to the study of statistical mechanics, to which it was soon adapted in the
form of statistical field theory. The renormalisation group method, oen of the most impressive
machineries of theoretical physics, soon led to rapid advances in the study of universality and
critical phenomena in many-body systems in and out of thermodynamic equilibirum.

In this tradition, I suggest to consider field theory as a precious tool for the study of stochastic
processes. Field theory, re-interpreted, is a sophisticated way to calculate correlation functions
of nearly Gaussian random variables. In its language, certain connections between stochastic
processes and theoretical physics become very transparent. Examples are the link between a
free particle and Brownian Motion, between particle interactions and correlations, or between
thermodynamic equilibirum and the central limit theorem, to name but a few. Field theory is
therefore a very capable tool to study stochastic evolutions in complex systems. Much of its
power is derived from the many decades that physicists have improved and explored its abilities
in its various domains of applications. To bring field theory and stochastic processes together
therefore also means to build bridges of understanding to other areas of physics.

In this thesis, I will provide an overview on ways how to use field theory to study stochastic
processes. In most of the chapters, the field-theory is employed to perturbatively compute
certain observables for processes with memory (Chps. 3, 4, and 6). In two more chapters
(Chps. 1 and 2), I demonstrate how branching processes can be considered field-theoretically.
Chp. 5 is the exception to the rule in that it presents a purely numerical research project with
no immediate connection to field theory. The work presented in this thesis is the result of
many collaborative research projects that I had the pleasure to work on during my PhD at
Imperial College (October 2016 to March 2020), including my six-month visit at École Normale
Superiéure from October 2018 to March 2019.

Structure

This thesis is a collective thesis – every chapter is either a near verbatim copy of a peer-
reviewed journal article, or a manuscript eventually intended for publication. Depending on the
particular chapter, I have either been co-author or main author. The precise correspondence
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between chapters and publications is outlined in Tab. 0.1. At the beginning of every chapter I
explain my individual contribution and what parts of the research I did or did not do. Where
applicable, I have sought, and found, my co-authors’ and publishers’ permission to cite our joint
work in full length. Throughout the thesis I have taken utmost care to highlight all citations
as such. Every figure and table is credited properly, where appropriate.

In presenting this thesis as a collection of manuscripts and articles, I also follow the advice of
my supervisor (cf. Gunnar Pruessner’s response stated in A.1). The format of a collective thesis
best represents the way in which this research took place: in collaborations, in projects, with
different senior PIs and at two different institutions. All six chapters are independent works, yet
still connected by common themes: field theory, stochastic processes, memory, extreme values
etc. In their respective overviews, I point out the links to other chapters and how they influence
each other. Finally, a conclusion shows future research directions which follow from this work.

This thesis is divided into three parts each covering a different aspect of my work: Branching
processes, First-passage times, and fractional Brownian Motion.

In the first part, Branching Processes, I present two peer-reviewed journal articles of which
I am a co-author. These two chapters were each the result of collaborations with fellow PhD
students in my group under joint supervision of Gunnar Pruessner. In both projects, we develop
a field theory that models branching processes, with and without spatial embedding, and use it
to study certain characteristics with field-theoretic tools.

In the first chapter, Field theory of Branching Processes, we focus on a branching process
with no spatial embedding. The system is initiated with one particle. Every particle has
an exponentially distributed lifetime after which it either dies out or branches into k new
indistinguishable particles with probability pk. Each offspring undergoes the same rule ad
infinitum. If, on average, the particle creates more than one offspring upon expiring, the
expected total number of particles in the system grows exponentially. If the average number
of offspring is less than one, it is certain that the system will die out within a finite amount
of time. Once no particle is alive, no new ones can be created. This empty state is therefore
called an absorbing phase. If the average number of offspring per particle is one, the system is
referred to be at the critical point. We investigate the behaviour of the branching process at,
or in the vicinity of, the critical point. By calculating various different observables, we show
that at or close to criticality the precise details of the offspring distribution {pk} do not matter.
Instead, we find that these observables can be expressed universally, i.e. with no recurrence to
the precise offspring distribution.

The second chapter, Branching Random Walks on General Graphs, deals with a spatially
embedded branching random walk. As in the previous chapter, a particle placed on a lattice
undergoes branching or extinction events after an exponentially distributed life time but, con-
current to these, further hops onto neighboured lattice sites. Each particle therefore performs
a random walk on the lattice connecting the site at which it was created to the one at which it
expired. If one marked every site which is visited by any of these random walks up to a given
time t, one obtains the so-called “trace” of the branching random walk. It is of great interest,
in particular in times of a pandemic, to understand how the number of such sites grows with
time. In this chapter, we answer this question for a branching random walk at criticality, i.e.
when the expected number of offspring per particle is one.
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The second part, First-passage times, contains research I have worked on in collaboration with
Guillaume Salbreux at the Francis Crick Institute and together with Gunnar Pruessner. This
work has been developed over almost four years and has not yet been published. Both chapters
in this part address the question of first-passage time distributions (and related extreme values)
for stochastic processes whose increments are weakly short-range correlated.

In the third chapter, Fist passage time distribution of active thermal particles, I present a
framework with which one can compute perturbative corrections to the moment generating
function of first-passage times. Based on a renewal type equation for Markovian processes, I
introduce its perturbative expansion and compute the first-order correction explicitly for two
systems in order to illustrate its validity. The class of processes this framework is capable to
handle are particles which are subject to an external potential, some white noise, and, mediated
by a small coupling constant in which the perturbation takes place, a second driving noise term
with non-vanishing self-correlation. The additional driving by a second self-correlated noise
induces correlations in the particles stochastic increments, therefore breaking its Markovianity.

The fourth chapter, Field Theory for Extreme Values in Stochastic Processes, is less technical
and acts as a summary bringing together different pieces of work I have been involved in. It
acts as a hinge between Chp. 2 and Chp. 3 in that it takes the field-theoretic trace-mechanism
from Chp. 2 and re-interprets it in a way that makes it useful to study extreme values of
stochastic processes. The field-theoretic formulation further allows for an additional driving
noise, equivalent to the one introduced in the previous chapter, and leads to a diagrammatic
correction of the moment-generating function of first-passage times, for instance, which is fully
equivalent to the one obtained previously with different means. In fact, it retraces the “history”
of the project in that we initially derived the key result in this field-theoretic manner. At a later
stage of the project, I then developed the interpretation and new derivation that is presented
in Chp. 3. The use of inverse functionals and functional expansions that is new to this chapter,
and the linking of different extreme values to one “trace” function introduced in 4 were both
inspired by the collaboration with Kay Wiese, thus linking both chapters of this part to the
third part of my thesis.

In the third part, Fractional Brownian Motion, I present the outcomes of my collaboration
with Kay Wiese which occurred during and after my visit at École Normale Supérieure in Paris
from October 2018 to March 2019. At the time I joined Kay Wiese, he and his former PhD
student Maxence Arutkin had already worked on calculating the first-passage time distribution
of fractional Brownian Motion using perturbative field theory. Their work therefore perfectly
complemented my earlier interests, outlined in the second part. Fractional Brownian Motion is
characterised by its long-range correlated increments, and the type of perturbative expansion
I have been working on previously does not apply to such cases. I therefore had the chance
to learn about the field-theoretic machinery developed by them and collaborators over the last
decade.

One of the obstacles met at the time of my visit was the numerical validation of the field-
theoretic predictions of certain scaling functions of first-passage times in fractional Brownian
Motion. This is due to the computational complexity associated with generating large sequences
of correlated random variables. In order to sample large numbers of first-passage times with
great numerical accuracy, we developed a new kind of algorithm which we refer to as “adaptive
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Chapter Publication Status Arxiv preprint Main author?
1 Published in Phys. Rev. E. 98(6):062107 1808.08418 No
2 Published in Sci. Rep. 9:15590 1909.00471 No
3 Submitted for publication 2006.00116 Yes
4 In preparation Yes
5 Published in Phys. Rev. E 101(4):043312 1908.11634 Yes
6 In review (Phys. Rev. E) 1908.10801 No

Table 0.1.: Overview of chapters and publications

bisection” and which is outlined in the chapter Adaptive Bisections, a verbatim citation of the
journal article which has been recently accepted for publication.

Equipped with this algorithm, we were able to confirm the predictions made earlier, which
led to a second manuscript which is at the time of writing still under peer-review and presented
in the chapter Extreme values of Fractional Brownian Motion. This chapter uses a field-theory
of fractional Brownian Motion to calculate the first-passage time density in the presence of a
linear and/or a non-linear drift.

The three parts together showcase three different ways in which field theory, or closely related
perturbative techniques, can be applied to the study of stochastic processes. They can be
used to describe global observables, such as first-passage times, or avalanche shapes, which
require knowledge of the full path. They are capable of encapsulating memory, here defined as
correlation between the stochastic increments of a path. Using different flavours of field theory,
these correlations can either be short-ranged or long-ranged and enter as a perturbation around
a free field theory which is associated to Brownian motion. Many of the technologies developed
in this thesis are new, and will certainly benefit further work which is necessary to strengthen
the connection between field theory and stochastic processes.

List of peer-reviewed publications resulting from this thesis

• I. Bordeu, S. Amarteifio, R. Garcia-Millan, B. Walter, N. Wei, and G. Pruess-
ner. Volume explored by a branching random walk on general graphs. Sci. Rep. 9(1):15590,
2019. arXiv:1909.00471

• R. Garcia-Millan, J. Pausch, B. Walter, and G. Pruessner. Field-theoretic
approach to the universality of branching processes. Phys. Rev. E 98(6):062107, 2018.
arXiv:1808.08418

• B. Walter and K. J. Wiese. Sampling first-passage times of fractional brownian motion
using adaptive bisections. Phys. Rev. E 101:043312, 2020. arXiv:1908.11634

Further, the implementation of the algorithm discussed in Chp. 5 has been published as

• B. Walter and K. Wiese. Monte Carlo sampler of first passage times for fractional
Brownian motion using adaptive bisections: Source code, 2019. HAL:02270046
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Kleiner Baum im Spätherbst, Egon Schiele (1911), Leopold Museum Wien.
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Chapter 1

Field-theoretic approach to the uni-
versality of branching processes

Abstract

“Branching processes are widely used to model phenomena from networks to neuronal avalanch-
ing. In a large class of continuous-time branching processes, we study the temporal scaling of the
moments of the instant population size, the survival probability, expected avalanche duration,
the so-called avalanche shape, the n-point correlation function and the probability density func-
tion of the total avalanche size. Previous studies have shown universality in certain observables
of branching processes using probabilistic arguments, however, a comprehensive description is
lacking. We derive the field theory that describes the process and demonstrate how to use
it to calculate the relevant observables and their scaling to leading order in time, revealing
the universality of the moments of the population size. Our results explain why the first and
second moment of the offspring distribution are sufficient to fully characterise the process in
the vicinity of criticality, regardless of the underlying offspring distribution. This finding im-
plies that branching processes are universal. We illustrate our analytical results with computer
simulations.”

Cited from
R. Garcia-Millan, J. Pausch, B. Walter, and G. Pruessner. Field-theoretic approach

to the universality of branching processes. Phys. Rev. E 98(6):062107, 2018. arXiv:1808.08418
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1. Field theory of Branching Processes

Overview

In this chapter, I present a near verbatim copy of the peer-reviewed journal
article

R. Garcia-Millan, J. Pausch, B. Walter, and G. Pruessner. Field-theoretic approach
to the universality of branching processes. Phys. Rev. E 98(6):062107, 2018. arXiv:1808.08418.
DOI: https://doi.org/10.1103/PhysRevE.98.062107

This paper was the outcome of a reading group led by Gunnar Pruessner and attended by
Rosalba Garcia-Millan, Johannes Pausch and myself. Its initial motivation was to better un-
derstand the Doi-shift, a fundamental step in the derivation of a Doi-Peliti field theory (see
main text below), and how it simplifies certain calculations. For the toy model we studied,
a simple branching process, we found ways to express a wide-ranging variety of observables
as field-theoretic expectation values which are represented diagrammatically. Near criticality,
certain terms, or diagrams, can be neglected and the calculations simplify; the observables
become universal, i.e. they no longer depend on the details of the underlying offspring distri-
bution. The field-theory and its diagrammatics provide a very intuitive understanding of how
the universality is attained. Not all of the observables are new in the literature, but the way
field-theory allows for their computation is new and intuitive. Further, this chapter provides
an hands-on introduction into the way Doi-Peliti field theories can be set up for non-spatial
stochastic processes.

For a clearly written and very instructive guidance to Doi-Peliti field theory, not only in the
context of branching processes, I refer the interested reader to Johannes Pausch’ PhD thesis
[181]. For a more mathematical take, I further recommend [3].

Statement of Contribution

I contributed to the construction and derivation of the field theory. I also wrote, ran, and eval-
uated the numerical simulations. The calculations concerning the moments, avalanche shape,
and expected avalanche duration were not performed by me. The manuscript was written by
Rosalba Garcia-Millan. It was further read, commented and approved by all the co-authors.
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I would like to thank my collaborators very much for their permission to present our joint
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1. Field theory of Branching Processes

1.1 Introduction

“Branching processes [116] are widely used for modelling phenomena in many different subject
areas, such as avalanches [257, 148, 99], networks [98, 99, 148, 78], earthquakes [163, 45], family
names [198], populations of bacteria and cells [129, 79], nuclear reactions [253, 185], cultural
evolution [201] and neuronal avalanches [211, 13]. Because of their mathematical simplicity they
play an important role in statistical mechanics [231] and the theory of complex systems [45].

Branching processes are a paradigmatic example of a system displaying a second-order phase
transition between extinction (absorbing state) with probability one and non-zero probability
of survival (non-absorbing state) in the infinite time limit. The critical point in the parameter
region at which this transition occurs is where branching and extinction rates exactly balance,
namely when the expected number of offspring per particle is exactly unity [116, 45].

In the present work we study the continuous-time version of the Galton-Watson branching
process [116], which is a generalisation of the birth-death process [95, 104]. In the continuous-
time branching process, particles go extinct or replicate into a number of identical offspring at
random and with constant Poissonian rates. Each of the new particles follows the same pro-
cess. The difference between the original Galton-Watson branching process and the continuous-
time branching process we consider here, lies in the waiting times between events. In the
original Galton-Watson branching process, updates occur in discrete time steps, while in the
continuous-time process we consider, waiting times follow a Poisson process [95, 104]. However,
both processes share many asymptotics [116, 231], and therefore we regard the continuous-time
branching process as the continuum limit of the Galton-Watson branching process.

By using field-theoretic methods, we provide a general framework to determine universal,
finite-time scaling properties of a wide range of branching processes close to the critical point.
The main advantages of this versatile approach are, on the one hand, the ease with which
observables are calculated and, on the other hand, the use of diagrammatic language, which
allows us to manipulate the sometimes cumbersome expressions in a neat and compact way.
Other methods in the literature developed to study problems related to branching processes,
in particular relating branching processes to different forms of motion, include the formalism
based on the Pal-Bell equation [175, 14, 130].

Moreover, our framework allows us to determine systematically observables that are otherwise
complicated to manipulate if possible at all. To illustrate this point, we have calculated in closed
form a number of observables that describe different aspects of the process in the vicinity of the
critical point: we have calculated the moments of the population size as a function of time, the
probability distribution of the population size as a function of time, the avalanche shape, the
two-time and n-time correlation functions, and the total avalanche size and its moments.

Our results show that branching processes are universal in the vicinity of the critical point
[144, 2] in the sense that exactly three quantities (the Poissonian rate and the first and second
moments of the offspring distribution) are sufficient to describe the asymptotics of the process
regardless of the underlying offspring distribution.

The contents of this paper are organised as follows. In Sec. 1.2 we derive the field theory of
the continuous-time branching process. In Sec. 1.3 we use our formalism to calculate a number
of observables in closed form, and in Sec. 1.4 we discuss our results and our conclusions. Further
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1. Field theory of Branching Processes

details of the calculations can be found in the appendices.

1.2 Field Theory of the continuous-time branching process

The continuous-time branching process is defined as follows. We consider a population of N(t)
identical particles at time t ≥ 0 with initial condition N(0) = 1. Each particle is allowed to
branch independently into κ offspring with Poissonian rate s > 0, where κ ∈ {0}∪N is a random
variable with probability distribution P (κ = k) = pk ∈ [0, 1] [95], Fig. 1.1. In the language of
chemical reactions, this can be written as the reaction A→ κA.

To derive the field theory of this process following the methods by Doi and Peliti [73, 186, 67,
231], we first write the master equation of the probability P (N, t) to find N particles at time t,

dP (N, t)
dt = s

∑
k

pk(N − k + 1)P (N − k + 1, t)− sNP (N, t), (1.1)

with initial condition P (N, 0) = δN,1. Following work by Doi [73], we cast the master equation
in a second quantised form. A system with N particles is represented by a Fock-space vector
|N〉. We use the ladder operators a† (creation) and a (annihilation), which act on |N〉 such
that a |N〉 = N |N − 1〉 and a† |N〉 = |N + 1〉, and satisfy the commutation relation [a, a†] =
aa† − a†a = 1. The probabilistic state of the system is given by

|Ψ(t)〉 =
∑
N

P (N, t) |N〉 , (1.2)

and its time evolution is determined by Eq. (1.1),

d |Ψ(t)〉
dt = s

(
f
(
a†
)
− a†

)
a |Ψ(t)〉 , (1.3)

using the probability generating function of κ,

f(z) =
∞∑
k=0

pkz
k = 〈zκ〉 , (1.4)

where 〈•〉 denotes expectation. We define the mass r as the difference between the extinction
and the net branching rates,

r = sp0 − s
∑
k≥2

(k − 1)pk = s (1− 〈κ〉) , (1.5)

and the rates qj as

qj = s
∑
k

(
k

j

)
pk = s

〈(
κ

j

)〉
= s

j!f
(j)(1), (1.6)

where f (j)(1) denotes the jth derivative of the probability generating function Eq. (1.4) evalu-
ated at z = 1. We assume that the rates qj are finite. In this notation, the time evolution in
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1. Field theory of Branching Processes
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Figure 1.1.: Typical avalanche profiles N(t) of a binary branching process (blue) and a branch-
ing process with geometric distribution of the number of offspring (orange), both
at criticality r = 0, and with Poissonian rate s = 1. This figure has been published
in [94] and is reproduced here with the permissions of the right holder stated in
App. A.1

Eq. (1.3) can be written as

Ã |Ψ(t)〉 = d
dt |Ψ(t)〉 and thus |Ψ(t)〉 = eÃt |Ψ(0)〉 , (1.7)

where Ã is the operator
Ã =

∑
j≥2

qj ã
ja− rãa, (1.8)

and ã denotes the Doi-shifted creation operator, a† = 1 + ã.
The sign of the mass r, Eq. (1.5), determines in which regime a particular branching process

is in; if r = 0 the process is at the critical point, if r > 0 the process is in the subcritical regime
and if r < 0 the process is in the supercritical regime. Subcritical and critical processes are
bound to go extinct in finite time, whereas supercritical process have a positive probability of
survival [116].

Following the work by Peliti [186], Eq. (1.3) can be cast in path integral form. Here, the
creation and annihilation operators a† and a are transformed to time-dependent creation and
annihilation fields ϕ†(t) and ϕ(t) respectively. Similarly, the Doi-shifted operator ã is trans-
formed to the time-dependent Doi-shifted field ϕ̃(t) = ϕ†(t) − 1. The action functional of the
resulting field theory is given by

A[ϕ̃, ϕ]=
∞̂

−∞

dt

∑
j≥2

qjϕ̃
j(t)ϕ(t)− ϕ̃(t)

(
d

dt
+r
)
ϕ(t)

 . (1.9)
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1. Field theory of Branching Processes

Using the Fourier transform

ϕ(t) =
ˆ

d̄ω ϕ(ω)e−̊ıωt with d̄ω = dω
2π , (1.10a)

ϕ(ω) =
ˆ

dt ϕ(t)e̊ıωt, (1.10b)

and identically for ϕ̃(t), the action Eq. (1.9) becomes local in ω and the bilinear, i.e. the
Gaussian part

A0 [ϕ̃, ϕ] = −
ˆ

d̄ω ϕ̃(−ω)(−̊ıω + r)ϕ(ω) (1.11)

of the path integral can be determined in closed form. The Gaussian path integral is well-defined
only when the mass is positive, r > 0. The non-linear terms, j ≥ 2 in Eq. (1.9) are then treated
as a perturbation about the Gaussian part, as commonly done in field theory [231, 232].

1.3 Observables

We use the field theory described above to calculate a number of observables that have received
attention in the literature in various settings. In Table 1.1 we list all the observables that
we have calculated in closed form and the degree of approximation of our analytical result.
Some results are exact for any kind of branching process and other results are only exact for
binary branching processes. Those results that are an approximation have the exact asymptotic
behaviour.

All observables are constructed on the basis of the probability vector |Ψ(t)〉 which evolves
according to Eq. (1.7). If the initial state, t = 0, consists of a single particle, then |Ψ(0)〉 = a† |0〉
and |Ψ(t)〉 = exp

(
Ãt
)
a† |0〉. Probing the particle number requires the action of the operator

a†a, whose eigenvectors are the pure states |N〉, such that a†a |N〉 = N |N〉. The components of
the vector a†a exp

(
Ãt
)
a† |0〉 are thus the probability that the process has generated N particles

weighted by N . To sum over all states, we further need the projection state

〈☼| =
∞∑
N=0
〈N | =

∞∑
N=0

1
N ! 〈0| a

N = 〈0| ea . (1.12)

The expected particle number at time t may thus be written as

〈N(t)〉 = 〈☼| a†a eÃta† |0〉 . (1.13)

More complicated observables and intermediate temporal evolution can be compiled following
the same pattern [232]. To perform any calculations, the operators need to be normal ordered
and then mapped to fields as suggested above, a† → ϕ†(t) = 1 + ϕ̃(t) and a→ ϕ(t), where the
time t corresponds to the total time the system has evolved for, Eq. (1.7). The expectation in
Eq. (1.13) can thus be written as

〈N(t)〉 =
〈
ϕ†(t)ϕ(t)ϕ†(0)

〉
, (1.14)
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1. Field theory of Branching Processes

where 〈O〉 denotes the path integral

〈O〉 =
ˆ
D [ϕ̃, ϕ]OeA[ϕ̃,ϕ]. (1.15)

The resulting expressions are most elegantly expressed in terms of Feynman diagrams [231].
The bare propagator of the field ϕ is read off from the bilinear part of the action which, in
Fourier space, is 〈

ϕ(ω)ϕ̃(ω′)
〉

= δ̄(ω + ω′)
−̊ıω + r

=̂ , (1.16)

where δ̄(ω+ω′) = 2πδ(ω+ω′) denotes the scaled Dirac-δ function. Diagrammatically, the bare
propagator is represented by a straight directed line. The directedness of the propagator reflects
the causality (see Eq. (1.17)) of the process in the time domain as a particle has to be created
before it can be annihilated but not vice versa. By convention, in our Feynman diagrams time
proceeds from right to left.

Using the fact that the mass r is strictly positive for the Gaussian path integral to converge,
we write the propagator in real time by Fourier transforming,

〈
ϕ(t)ϕ̃(t′)

〉
=
ˆ ∞
−∞

d̄ω δ̄(ω + ω′)
−̊ıω + r

e−̊ıωte−̊ıω
′t′ = Θ(t− t′)e−r(t−t′), (1.17)

where Θ is the Heaviside step function. If r < 0, the integral in Eq. (1.17) is only convergent
for t < t′, which violates causality and therefore yields an unphysical result. For this reason, we
will assume r > 0 and we will take the limit r → 0 where possible. Therefore, in this paper, the
analytical results obtained through this field theory hold for the critical and subcritical regimes
only (r ≥ 0). However, in some cases we may be able to use probabilistic arguments that allow
us to extend our results to the supercritical case (r < 0), see Section 1.3.2. Furthermore, we
will drop the cumbersome Heaviside Θ functions, assuming suitable choices for the times, such
as t > t′ above.

Each of the interaction terms of the form ϕ̃jϕ with j ≥ 2 in the non-linear part of the action
Eq. (1.8) come with individual couplings qj , Eq. (1.6). These are to be expanded perturbatively
in. Following the canonical field theoretic procedure [232, 231, 186], they are represented by
(tree-like) amputated vertices such as

q2
,

q3
,

q4
. (1.18)

These vertices are not to be confused with the underlying branching process, because after
the Doi-shift, lines are not representative of particles, but of their correlations. For example,
the vertex with coupling q2 in Eq. (1.18), accounts for density-density correlations due to any
branching or extinction, just like the propagator Eq. (1.16) accounts for all particle density due
to any branching or extinction. After Fourier transforming, these processes are accounted for
regardless of when they take place.

The directionality of the diagrams allows us to define incoming legs and outgoing legs of
a vertex [231]. In the present branching process, all vertices have one incoming leg and j

outgoing legs. We will refer to diagrams that are constructed solely from q2 vertices as binary
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1. Field theory of Branching Processes

tree diagrams. The most basic such diagram is , which in real time reads

〈
ϕ2(t)ϕ†(0)

〉
=̂ 2

q2

= 2q2

ˆ
d̄ω1d̄ω′1d̄ω2d̄ω′2d̄ω3d̄ω′3 e−̊ıω2te−̊ıω3t

× δ̄
(
ω1+ω′2+ω′3

) δ̄ (ω1 + ω′1)
−̊ıω1 + r

δ̄ (ω2 + ω′2)
−̊ıω2 + r

δ̄ (ω3 + ω′3)
−̊ıω3 + r

= 2q2
r
e−rt

(
1− e−rt

)
, (1.19)

where the pre-factor 2 is the combinatorial factor of this diagram.
The various observables that we calculate in the following are illustrated by numerics for two

different kinds of continuous-time branching processes. Firstly, the binary branching process
with probabilities p0, p2 ≥ 0 such that p0 + p2 = 1, and secondly, the branching process with
geometric offspring distribution pk = p(1 − p)k with p ∈ [0, 1]. The mass r (1.5) and the rates
of the couplings qj (1.6) are, in each case,

(binary) rB = s(1− 2p2), (1.20a)

qB2 = sp2 = s− rB
2 , qBj = 0 for j ≥ 3,

(geometric) rG = s
2p− 1
p

, (1.20b)

qGj = s

(1− p
p

)j
= s

(
1− rG

s

)j
.

Fig. 1.1 shows typical trajectories for each case.

1.3.1 Moments 〈Nn(t)〉 and their universality

In the following we will calculate the moments of the number of particles N(t), which can be
determined using the particle number operator a†a, as introduced above. The nth moment of
N(t) can be expressed as

〈Nn(t)〉 =
〈
☼
∣∣∣(a†a)n∣∣∣Ψ(t)

〉
=

n∑
`=0

{
n

`

}〈
☼
∣∣∣a`∣∣∣Ψ(t)

〉

=
n∑
`=0

{
n

`

}〈
ϕ`(t)ϕ̃(0)

〉
, (1.21)
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where
{
n

`

}
denotes the Stirling number of the second kind for ` out of n 1. We define the

dimensionless function ĝn(t) as the expectation

ĝn(t) = 〈ϕn(t)ϕ̃(0)〉 =̂ ....n , (1.22)

with ĝ0(t) = 〈ϕ̃(0)〉 = 0 and ĝ1(t) = 〈ϕ(t)ϕ̃(0)〉 = e−rt. The black circle in the diagram of
Eq. (1.22) represents the sum of all possible intermediate nodes, allowing for internal lines. For
instance,

ĝ1(t)=̂ = , (1.23a)

ĝ2(t)=̂ = 2 , (1.23b)

ĝ3(t)=̂ = 6 + 12 , (1.23c)

ĝ4(t)=̂ = 24 + 48 (1.23d)

+ 72 + 24 + 96 ,

where the coefficient in front of each diagram is its symmetry factor, which is included in the
representation involving the black circle, Eq. (1.22).

The tree diagrams follow a pattern, whereby ĝn involves all ĝm with m < n. For n ≥ 2 this
can be expressed as the recurrence relation

ĝn(t)=̂
n∑
k=2

∑
m1,...,mk=1

(
n

m1, . . . ,mk

)

.....k

....m2

....m1

....mk

, (1.24)

where
( n
m1,...,mk

)
denotes the multinomial coefficient with the implicit constraint of m1 + . . . +

mk = n. Including ĝ1(t) from Eqs. (1.23a) and (1.17), this may be written as

ĝn(t)

= δn,1e
−rt +

(
n∑
k=2

qk
∑

m1,...,mk

(
n

m1, . . . ,mk

) ˆ t

0
dt′ e−r(t−t′)ĝm1(t′)ĝm2(t′) · · · ĝmk(t′)

)
, (1.25)

where the integral accounts for the propagation up until time t − t′ ∈ [0, t] when a branching
into (at least) k particles takes place, each of which will branch into (at least) mk particles at
some later time within [t− t′, t].

1The Stirling numbers of the second kind can be calculated using the expression{
n
`

}
= 1
`!

`∑
j=0

(−1)`−j
(
`

j

)
jn.
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1. Field theory of Branching Processes

We proceed by determining the leading order behaviour of ĝn in small r, starting with a
dimensional argument. Since

〈Nn(t)〉 =
n∑
`=0

{
n

`

}
ĝ`(t) (1.26)

from Eqs. (1.21) and (1.22), 〈Nn(t)〉 being dimensionless implies the same for ĝn(t). Our
notation for the latter obscures the fact that ĝn(t) is also a function of r and all qj , which, by
virtue of s, are rates and thus have the inverse dimension of t. We may therefore write

ĝn(t) = gn(rt; q2, q3, . . .) (1.27)

where qj = qj/r are dimensionless couplings. Dividing qj by any rate renders the result di-
mensionless, but only the particular choice of dividing by r ensures that all couplings only ever
enter multiplicatively (and never as an inverse), thereby enabling us to extract the asymptote
of ĝn(t) in the limit of small r, as we will see in the following.

Writing Eq. (1.25) as

gn(y; q2, q3, . . .) =

δn,1e
−y +

(
n∑
k=2

qk
∑

m1,...,mk

(
n

m1, . . . ,mk

)ˆ y

0
dy′ e−(y−y′)gm1(y

′; q2, . . .)gm2(y
′; . . .) · · · gmk(y

′; . . .)
)

(1.28)

the dominant terms in small r and fixed y = rt are those that contain products involving the
largest number of factors of qj ∝ r−1. Since each qj corresponds to a branching, diagram-
matically these terms are those that contain the largest number of vertices, i.e. those that are
entirely made up of binary branching vertices q2. This coupling, q2 = 〈κ(κ− 1)〉/2 , cannot
possibly vanish if there is any branching taking place at all. From Eqs. (1.27) and (1.28) it
follows that ĝn(t) ∝ (q2/r)(n−1) to leading order in small r at fixed y = rt. Terms of that order
are due to binary tree diagrams, whose contribution we denote by gn(t) in the following. For
instance, g1(t) = ĝ1(t), g2(t) = ĝ2(t),

g3(t) =̂ 12 , (1.29a)

g4(t) =̂ 24 + 96 . (1.29b)

To summarise, ĝn(t) is dominated by those terms that correspond to binary tree diagrams, which
are the trees gn that have the largest number of vertices for any fixed n, i.e.

〈ϕn(t)ϕ̃(0)〉 = ĝn(t) = gn(t) +O
(
(1− 〈κ〉)−(n−2)

)
, (1.30)

where the correction in fact vanishes for n < 3.
In what follows, we describe the asymptotic behaviour of various averages and densities near
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1. Field theory of Branching Processes

the critical point at r = 0. To simplify the notation, we denote

f(t) ' fasymp(t) (1.31)

if f(t) tends to fasymp(t) in the joint limit

lim
r↓0

lim
t↑∞

f (t) = fasymp(t) (1.32)

where y = rt� 1 is kept constant.
As far as the asymptote in small r is concerned, we may thus replace ĝ` in Eq. (1.26) by

g`. Among the ĝ` ∼ r−(`−1) with ` = 0, 1, , . . . , n, the dominating term is gn so that the nth
moment of the particle number N is, to leading order,

〈Nn(t)〉 ' gn(t), (1.33)

although exact results, as shown in Eq. (1.67), are easily derived using Eqs. (1.21), (1.22), (1.23),
and (1.25). On the basis of (1.25) the recurrence relation of gn is give by

gn(t) = δn,1e
−rt + q2

n−1∑
m=1

(
n

m

)ˆ t

0
dt′e−r(t−t′)gm(t′)gn−m(t′), (1.34)

whose exact solution is
gn(t) = n!e−rt

(
q2
r

(
1− e−rt

))n−1
. (1.35)

We draw two main conclusions from our results. Firstly, that near the critical point r = 0, the
branching process is solely characterised by the two parameters r and q2. We therefore conclude
that this process displays universality, in the sense that its asymptotics are exactly the same
for any given r and q2 regardless of the underlying offspring distribution. In particular, certain
ratios of the moments of the particle number are universal constants (they do not depend on
any parameters nor variables). For k, ` ∈ N and m ∈ 0, . . . , k − 1, we find the constant ratios〈

Nk(t)
〉〈
N `(t)

〉
〈Nk−m(t)〉 〈N `+m〉

= k!`!
(k −m)!(`+m)! . (1.36)

Secondly, our results show that the scaling form of the moments is

〈Nn(t)〉 ' (q2t)n−1Gn(rt), (1.37)

where Gn is the scaling function

Gn(y) = n!e−y
(

1− e−y

y

)n−1

, (1.38)

and the argument y = rt is the rescaled time, Fig. 1.2. The asymptotes of Gn(y) characterise
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Figure 1.2.: Data collapse of the moments 〈N(t)〉,
〈
N2(t)

〉
and

〈
N3(t)

〉
, as a function of

rescaled time rt as of Eq. (1.37). Symbols show results for the binary branching
process (blue) and the branching process with geometric distribution of offspring
(orange), both with r ∈ {10−3, 10−2, 10−1} and s = 1. Solid lines indicate the exact
solution in Eq. (1.67) and dashed lines indicate our approximation in Eq. (1.33).
This figure has been published in [94] and is reproduced here with the permissions
of the right holder stated in App. A.1

the behaviour of the branching process in each regime,

Gn(y) '
{
n! for y = 0,
n! y−(n−1)e−y for y →∞.

(1.39)

Moreover, from Eq. (1.37), we find that the moment generating function MN (z) =
〈
eNz

〉
is

MN (z) ' 1 + ze−rt

1 + z q2
r (e−rt − 1) . (1.40)

1.3.2 Probability distribution of N(t), probability of survival Ps(t) and ex-
pected avalanche duration 〈T 〉

Using Eq. (1.21) and the identity 2 of Stirling numbers of the second kind, we deduce that the
falling factorial moments of N(t) are〈

ϕ`(t)ϕ̃(0)
〉

= 〈N(t)(N(t)− 1) . . . (N(t)− `+ 1)〉 . (1.41)

2 The Stirling numbers of the second kind satisfy the identity

Nn =
n∑
`=0

{
n
`

}
N(N − 1) . . . (N − `+ 1).
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Therefore, the probability generating function of N(t) is

PN(t) (z) =
∞∑
`=0
〈N(t)(N(t)− 1) . . . (N(t)− `+ 1)〉 (z − 1)`

`!

=
∞∑
`=0

〈
ϕ`(t)ϕ̃(0)

〉 (z − 1)`

`! , (1.42)

and the probability distribution of N(t) is, using Eqs. (1.30) and (1.35),

P (N, t) = 1
N !

dN

dzN
(
PN(t) (z)

) ∣∣
z=0 (1.43a)

'
∞∑
`=N

(
`

N

)
(−1)`−N

`! g`(t) (1.43b)

=


1− e−rt

1+ q2
r

(1−e−rt) if N = 0,
e−rt( q2

r (1−e−rt))N−1

(1+ q2
r

(1−e−rt))N+1 if N > 0,
(1.43c)

which satisfies the initial condition P (N, 0) = δN,1 and is an exact result for binary branching
processes, consistent with [185].

It is straightforward to check that Eq. (1.43) satisfies the master equation (1.1) and the
initial condition in the binary branching case. Due to the uniqueness of solutions of a system
of coupled linear ordinary differential equations, the solution in Eq. (1.43) is the only solution.
In particular, this solution holds in the supercritical case, r < 0. Reconstructing back the
path that has lead us here, we find that g`(t) is the `th falling factorial moment of N(t),
〈N(t)(N(t)− 1) . . . (N(t)− `+ 1)〉, for binary branching processes including the supercritical
case and, therefore, most expressions derived from g`(t) can be extended to r < 0. In what
follows, we will specify which expressions hold in the supercritical case.

The probability of survival Ps(t) is the probability that there is at least one particle at time
t, i.e. Ps(t) = P (N(t) ≥ 1). Therefore, from Eq. (1.43),

Ps(t) = 1− P (0, t) = e−rt

1 + q2
r (1− e−rt) , (1.44)

and at the critical point,
lim
r→0

Ps(t) '
1

1 + q2t
, (1.45)

which is consistent with [93, 245, 46], Fig. 1.3.
We define the avalanche duration T as the exact time where an avalanche dies, i.e. the time t

when the process reaches the absorbing state, T = min{t|N(t) = 0}. The probability of survival
Ps(t) gives the probability that T > t. Thus, 1 − Ps(t) is the cumulative distribution function
of the time of death and its probability density function is

PT (t) = −dPs(t)
dt

'
rert

(
1 + q2

r

)( q2
r − ert

(
1 + q2

r

))2 , (1.46)
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Figure 1.3.: Probability of survival as a function of rescaled time rt as of Eq. (1.44).
Symbols show numerical results for the binary branching process (blue) and the
branching process with geometric distribution of offspring (orange), both with r ∈
{10−3, 10−2, 10−1} and s = 1. Lines indicate the result in Eq. (1.44), which is exact
for binary branching (solid lines) and approximate otherwise (dashed lines). As r
gets closer to the critical value, r = 0, the curves Ps(t) flatten and resemble the
power law in Eq. (1.45), which has exponent −1. This figure has been published
in [94] and is reproduced here with the permissions of the right holder stated in
App. A.1

and at the critical point,
lim
r→0
PT (t) ' q2

(1 + q2t)2 , (1.47)

see Fig. 1.4. It follows from (1.46) that the expected avalanche duration is

〈T 〉 ' 1
q2

ln
(

1 + q2
r

)
. (1.48)

Because the derivation of Eq. (1.46) relies on a finite termination time, we cannot assume that
it remains valid in the supercritical case, and similarly for (1.48).

1.3.3 Avalanche shape V (t, T )

The avalanche shape V (t, T ) is defined as the average of the temporal profiles N(t) condi-
tioned to extinction at time T [99, 72, 213, 178, 10, 254, 142]. Closed form expressions of the
avalanche shape have been calculated in other models such as avalanches in elastic interfaces
[72], the Barkhausen noise [178], the discrete-time Ornstein-Uhlenbeck process [10]. An implicit
expression of avalanche shape of branching processes is given in [99].

To produce an explicit expression we first calculate the expected number of particles at time
t of a branching process conditioned to being extinct by time T ,

〈
N(t)

∣∣∣N(T ) = 0
〉

. In terms of
ladder operators, 〈

N(t)
∣∣∣N(T ) = 0

〉
=
〈

0
∣∣∣eÂ(T−t)a†aeÂta†

∣∣∣0〉 , (1.49)

which means that a particle is created from the vacuum, the system is allowed to evolve for time
t, the number of particles is measured, and the system evolves further for time T − t. Finally,
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Figure 1.4.: Probability density function of the avalanche duration PT (t) for the binary
branching process with r ∈ {0, 10−3, 10−2, 10−1} and s = 1. Solid lines represent
our result in Eqs. (1.46) and (1.47), which is exact for binary branching. Symbols
show numerical results. This figure has been published in [94] and is reproduced
here with the permissions of the right holder stated in App. A.1

all possible trajectories are ”sieved” so that only those avalanches are taken into account whose
number of particles is 0 at time T The path integral expression of Eq. (1.49) is〈
N(t)

∣∣∣N(T ) = 0
〉

=
〈
e−ϕ(T )ϕ†(t)ϕ(t)ϕ†(0)

〉
(1.50)

= 〈ϕ(t)ϕ̃(0)〉+
∑
n≥1

(−1)n

n! × (〈ϕn(T )ϕ(t)ϕ̃(0)〉+ 〈ϕn(T )ϕ̃(t)ϕ(t)ϕ̃(0)〉) .

The two terms in the bracket have asymptotes

〈ϕn(T )ϕ(t)ϕ̃(0)〉 '
n∑
k=1

∑
m1,...,mk

(
n

m1, . . . ,mk

)
1
k! gm1(T − t) · · · gmk(T − t)gk+1(t), (1.51)

and

〈ϕn(T )ϕ̃(t)ϕ(t)ϕ̃(0)〉

'
n∑
k=1

∑
m1,...,mk

(
n

m1, . . . ,mk

)
1

(k − 1)! gm1(T − t) · · · gmk(T − t)gk(t), (1.52)

with the constraint m1 + . . . + mk = n in both cases. Both expressions are exact in case of
binary branching. Their diagrammatic representation and closed form expressions can be found
in Appendix 1.B. Using the expression of gn(t) in Eq. (1.35) and the number of combinations
of n legs into k groups, we have

〈
N(t)

∣∣∣N(T ) = 0
〉

= e−rt − Ps(T )
[
1 + q2

r

(
1− e−rt

)(
2− Ps(T )

Ps(t)

)]
, (1.53)
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where Ps(t) is given in Eq. (1.44).
In order to account solely for those instances that become extinct exactly at time T , the

expectation
〈
N(t)

∣∣∣N(T ) = 0
〉

is to be differentiated with respect to T , and in order to account
for the factor due to conditioning to extinction, we need to divide the result by − d

dtPs(t),
yielding,

V (t, T ) =
d

dT

〈
N(t)

∣∣∣N(T ) = 0
〉

− d
dtPs(t)

' 1 + 2q2
r

(
1− e−rt

)(
1− Ps(T )

Ps(t)

)
, (1.54)

Fig. 1.5a. Since the observable V (t, T ) suitably incorporates the condition N(T ) = 0, the result
in Eq. (1.54) holds for the supercritical case as well. At criticality, the avalanche shape is the
parabola [99, 178, 10, 254]

lim
r→0

V (t, T ) ' 1 + 2 (q2T )2

1 + q2T

(
1− t

T

)
t

T
. (1.55)

The avalanche shape V (t, T ) in Eq. (1.54) is a symmetric function with its maximum at t = T/2,
which is bounded [10] by

lim
T→∞

V

(
T

2 , T
)
' 1 + 2q2

r
. (1.56)

1.3.4 Connected correlation function Cov (N(t1), N(t2))

To calculate the expectation 〈N(t1)N(t2)〉 we assume 0 < t1 < t2 without loss of generality,

〈N(t1)N(t2)〉 =
〈
☼
∣∣∣a†ae−Â(t2−t1)a†ae−Ât1a†

∣∣∣0〉 (1.57a)

=
〈
ϕ(t2)ϕ†(t1)ϕ(t1)ϕ†(0)

〉
(1.57b)

= 〈ϕ(t2)ϕ̃(t1)ϕ(t1)ϕ̃(0)〉+〈ϕ(t2)ϕ(t1)ϕ̃(0)〉

=̂ + 2 . (1.57c)

The diagram on the left consists of two separate components. We refer to diagrams of that kind
as disconnected diagrams, in contrast to connected diagrams that only consist of one component
as the one appearing on the right. The connected correlation function is

Cov (N(t1), N(t2)) = 〈N(t1)N(t2)〉 − 〈N(t1)〉 〈N(t2)〉

=
(

2q2
r

+ 1
)
e−r(t1+t2)

(
ert1 − 1

)
(1.58)

which is an exact result independent of the type of branching process, (i.e. irrespective of the
offspring distribution), Fig. 1.6. In particular, the variance is Var (N(t)) = Cov (N(t), N(t))
[231].
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Figure 1.5.: In Fig. 1.5a, avalanche shape V with rescaled time τ = t/T for different times
of extinction T , r = 10−1 and q2 = 0.45 as of Eq. (1.54). The shapes are symmetric
and flatten as T increases with the upper bound given in Eq. (1.56). However, this
observable is numerically inaccessible because it is computationally unfeasible to
obtain a large enough sample of avalanches in the subcritical regime conditioned
to extinction at large times. Instead, in Fig. 1.5b we show an observable that
is accessible both numerically and analytically, the averaged avalanche shape
〈V (τ)〉T , that is for each r, avalanches are rescaled in time to the interval [0, 1],
their shapes are averaged and normalised regardless of their extinction times T .
Numerical results shown as symbols are for the binary branching process with r ∈
{10−4, 10−3, 10−2, 10−1} and s = 1, and are in agreement with Eq. (1.78) (solid
lines), which is an exact expression for binary branching processes. We find that
the shape tends to a parabola as r approaches the critical point. This figure has
been published in [94] and is reproduced here with the permissions of the right
holder stated in App. A.1
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Figure 1.6.: Two-point correlation function Cov (N(ta), N(tb)) of the binary continuous-
time branching process with r = 10−1 and s = 1. Our numerical results shown
as symbols are in perfect agreement with the exact expression in Eq. (1.58) with
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Cov (N(t), N(t)), which is the envelope. This figure has been published in [94] and
is reproduced here with the permissions of the right holder stated in App. A.1
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1.3.5 n-point correlation function

We call ζn(t1, . . . , tn), with 0 < t1, . . . , tn (not necessarily in order), the contribution of all
binary, and therefore connected, diagrams to the n-point correlation function, where the error
term is controlled as

〈N(t1) . . . N(tn)〉 = ζn(t1, . . . , tn) +O
(
(1− 〈κ〉)−(n−2)

)
. (1.59)

The leading order contribution ζn satisfies the following recurrence relation,

ζn(t1, . . . , tn) =
n−1∑
m=1

∑
σ⊂{t1,...,tn}
|σ|=m



....

σ

....σC


(1.60)

= q2

n−1∑
m=1

∑
σ⊂{t1,...,tn}
|σ|=m

tminˆ

0

ζm
(
tσ(1) − t′, . . . , tσ(m) − t′

)
(1.61)

× ζn−m
(
tσc(m+1) − t′, . . . , tσc(n) − t′

)
e−rt

′dt′,

with ζ0 = 0 and ζ1(t) = e−rt, and tmin = min{t1, . . . , tn}. Here, σ is a subset of the set of
times {t1, . . . , tn}, whose size is |σ|, and σ(1), . . . , σ(m) is a list of its distinct elements. Its
complementary set is σc = {t1, . . . , tn}\σ, which contains the elements σc(m + 1), . . . , σc(n).
Eq. (1.61) is symmetric under exchange of any permutation of the times t1, . . . , tn, see the
3-point correlation function in Appendix 1.A.

This approximation is two-fold. First, it neglects higher order branching vertices proportional
to qj≥3, and secondly, it neglects contributions from disconnected diagrams, cf. Eq. (1.57).
Latter contributions are dominant only when tmax = max{t1, . . . , tn} is smaller than s−1. For
times in

(
0, s−1), the branching process has typically not yet undergone a change in the particle

number.

1.3.6 Distribution of the total avalanche size S

We define the total avalanche size as the time-integrated activity S = s
´

dtN(t). Using 〈N(t)〉 =
e−rt and Eq. (1.58), the first and second moments of the total avalanche size [45, 47] read

〈S〉 = s

ˆ
dt 〈N(t)〉 = s

r
= 1

1− 〈κ〉 , (1.62a)

〈
S2
〉

= s2̂ dt1dt2 〈N(t1)N(t2)〉= s2

r2

(
q2
r

+ 1
)
. (1.62b)
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To calculate 〈Sn〉 close to criticality, we use the approximation to the n-point correlation func-
tion defined in Eq. (1.59) and find the following recurrence relation,

〈Sn〉 ' sn
ˆ

dt1 . . . dtn ζn(t1, . . . , tn) (1.63a)

' q2
r

n−1∑
m=1

(
n

m

)
〈Sm〉

〈
Sn−m

〉
(1.63b)

' snqn−1
2

r2n−1 2n−1(2n− 3)!!, (1.63c)

see Appendix 1.D for a proof by induction of Eq. (1.63). Similarly to Eq. (1.36), we find the
universal constant ratios of the moments of S,〈

Sk
〉〈
S`
〉

〈Sk−m〉 〈S`+m〉
= (2k − 3)!!(2`− 3)!!

(2(k −m)− 3)!!(2(`+m)− 3)!! (1.64)

with k, ` ∈ N and m ∈ {0, . . . , k − 1}. The moment generating function of S is

MS(z) ' 1 + r −
√
r2 − 4sq2z

2q2
, (1.65)

and its probability density function PS (x) is the inverse Laplace transform of MS(−z),

PS (x) ' 1
2

√
s

q2π
x−

3
2 e
− r2x

4q2s , (1.66)

which is a power law with exponent −3/2 with exponential decay, Fig. 1.7. At criticality, this
distribution is a pure power law.

The approximation used to derive these results, Eq. (1.59), consists in neglecting contributions
of disconnected diagrams to the n-point correlation function. This approximation is unjustified
for total avalanche sizes corresponding those realisations of branching processes that underwent
no branching but a single extinction event, and whose sizes are therefore typically smaller
than 1, because their n-point correlation functions 〈N(t1) . . . N(tn)〉 vanish for tmax & s−1.
Consequently, the n-point correlation functions are dominated by purely disconnected diagrams
(cf. Sec. 1.3.5). We therefore expect a breakdown of our approximation around x = 1. All three
features of the distribution of the total avalanche size, the power-law behaviour, the exponential
cutoff, and the breakdown of the approximation for x < 1, are in good agreement with numerical
simulations as shown in Fig. 1.7.

1.4 Discussion and conclusions

In this paper we study the continuous-time branching process following a field-theoretic ap-
proach. We build on the wealth of existing results in the literature obtained through other
methods. Here, we demonstrate that the Doi-Peliti field theory provides an elegant, intuitive,
and seemingly natural language for continuous-time branching processes.

We illustrate how to use the field theory to calculate a number of relevant observables, listed
in Table 1.1. Our results are valid for any offspring distribution in the vicinity of the critical
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Figure 1.7.: Probability density function of the total avalanche size PS (x) for the binary
branching process (blue) and the branching process with geometric distribution of
offspring (orange), with r ∈

{
0, 10−3, 10−2, 10−1} and s = 1. Dashed lines indicate

our approximation in Eq. (1.66). This approximation is not valid for small times,
which explains the disagreement between the numerical results and the dashed lines
for small values of x. This figure has been published in [94] and is reproduced here
with the permissions of the right holder stated in App. A.1

point and at large times. However, many of the results are exact for the binary branching
process and others are exact for any branching process. In principle, many observables can be
calculated systematically using the field theory for any offspring distribution, for any time and
any parameter set.

In this paper, we extend the existing results in the literature by finding explicit scaling
functions and universal moment ratios for any offspring distribution. We find that all the
scaling laws derived above depend on two parameters only, namely r and q2. Therefore, one
may argue that the master equation of any branching process close to the critical point and
asymptotically in large times is captured by the action Eq. (1.8) with couplings r and q2 only.

Having established the field-theoretic ground work, in particular the basic formalism and
range of relevant observables, we may now proceed by extending the basic branching process
into more sophisticated models of natural phenomena.
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Appendix

1.A Exact expressions

The continuous-time branching process is exactly solvable, that is, in principle, all moments and
correlation functions can be calculated in exact form if all the terms in the (possibly infinite)
sums are taken into account. Here we show some exact expressions. The exact first three
moments of N(t) are

〈N(t)〉 = e−rt, (1.67)〈
N2(t)

〉
= e−rt

(
1 + 2q2

r

(
1− e−rt

))
, (1.68)〈

N3(t)
〉

= e−3rt
(6q2

2
r2 −

3q3
r

)
− e−2rt

(12q2
2

r2 + 6q2
r

)
+ e−rt

(6q2
2

r2 + 3q3
r

+ 6q2
r

+ 1
)
, (1.69)

and therefore the variance is

Var (N(t)) =
(

1 + 2q2
r

)
e−rt

(
1− e−rt

)
, (1.70)

which is consistent with Eq. (1.58) and [67, 231, 245, 116, 185]. The three-point correlation
function is, assuming 0 ≤ t1 ≤ t2 ≤ t3 and using Eq. (1.61),

〈N(t1)N(t2)N(t3)〉 ' ζ(t1, t2, t3)

= 2
(
q2
r

)2
e−r(t1+t2+t3)

((
ert1 − 1

) (
2ert1 + ert2

)
− 3

2
(
e2rt1 − 1

))
. (1.71)

1.B Diagrammatic representation and closed form expressions
of
Eqs. (1.51) and (1.52)

Defining

a = e−r(T−t) − e−rT

1− e−r(T−t)
, (1.72)
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we have, firstly (1.51),

〈ϕn(T )ϕ(t)ϕ̃(0)〉 =
n∑
k=1

∑
m1,...,mk

(
n

m1, . . . ,mk

)
gm1(T − t) · · · gmk(T − t)gk+1(t) 1

k! (1.73)

=̂
n∑
k=1

∑
m1,...,mk

(
n

m1, . . . ,mk

)


....k....mk

....m1


= n!e−rt

(
q2
r

)n(
1− e−rT

)n[a2(n− 1)
(1 + a)2 + 2a

1 + a

]
, (1.74)

and secondly (1.52),

〈ϕn(T )ϕ̃(t)ϕ(t)ϕ̃(0)〉 =
n∑
k=1

∑
m1,...,mk

(
n

m1, . . . ,mk

)
gm1(T − t) · · · gmk(T − t)gk(t)

1
(k − 1)!

(1.75)

=̂
n∑
k=1

∑
m1,...,mk

(
n

m1, . . . ,mk

)


......k

....m2

....m1

....mk


= n!e−rt

1− e−rt
(
q2
r

)n−1 (
1− e−rT

)n [a2(n− 1)
(1 + a)2 + a

1 + a

]
. (1.76)

1.C Averaged avalanche shape

In Section 1.3.3, we derive analytically the expected avalanche shape V (t, T ) for a specific time
of death T . However, direct comparison with numerics is computationally very expensive as
specific large times of death occur rarely for subcritical branching processes. Here we describe an
observable that is accessible both analytically and numerically: the averaged avalanche shape
〈V (τ)〉T . For a fixed parameter set, we first rescale time τ = t/T and then average all the
avalanche profiles irrespectively of T . Finally, to achieve convergence to a shape comparable
across parameter settings, we normalise the result by area [254],

〈V (τ)〉T = 1
NV

∞̂

0

dTPT (T )V (τT, T ), (1.77a)

NV =
1ˆ

0

∞̂

0

dτdTPT (T )V (τT, T ). (1.77b)
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The result [255] can be expressed with the Gaussian hypergeometric function 2F 1(a, b, c, z),

〈V (τ)〉T = 1
NV

+ τ(τ − 1)q2 F (τ, q2, r)
(q2 + r)NV

, (1.78)

where

F (τ, q2, r) =
2F 1

(
1, 2− τ, 3− τ, q2

q2+r

)
τ − 2

−
2F 1

(
1, 1 + τ, 2 + τ, q2

q2+r

)
τ + 1 . (1.79)

Both F and NV diverge at the critical point with the limit

lim
r→0

F (τ, q2, r)
NV

= 6. (1.80)

1.D Proof of Eq. (1.63)

Eq. (1.63) can be proved by induction. In Eq. (1.62) we see that it applies to 〈S〉. The
approximation of binary tree diagrams of 〈N(t1)N(t2)〉 gives

〈
S2〉 = s2q2/r

3, which also satisfies
Eq. (1.63). The induction step is verified by

〈Sn〉 = q2
r

n−1∑
m=1

(
n

m

)(
smqm−1

2 2m−1(2m− 3)!!
r2m−1

)(
sn−mqn−m−1

2 2n−m−1(2(n−m)− 3)!!
r2(n−m)−1

)

= snqn−1
2

r2n−1 2n−2
n−1∑
m=1

(
n

m

)
(2m− 3)!!(2(n−m)− 3)!!. (1.81)

This sum is equivalent to

n−1∑
m=1

(
n

m

)
(2m− 3)!!(2(n−m)− 3)!! = 1

n− 1

n−1∑
m=1

(
n

m

)
(2m− 3)!!(2(n−m)− 1)!!

= 1
n− 1

n−2∑
k=0

(
n

k + 1

)
(2k − 1)!!(2(n− k)− 3)!!

= 2(2n− 3)!!, (1.82)

where we have used the identity [34],

n−1∑
k=0

(
n

k + 1

)
(2k − 1)!!(2(n− k)− 3)!! = (2n− 1)!!. (1.83)

Using Eq. (1.82) in Eq. (1.81) reproduces Eq. (1.63), thereby completing the proof.”
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Chapter 2

Volume Explored by a Branching Ran-
dom Walk on General Graphs

Abstract

“Branching processes are used to model diverse social and physical scenarios, from extinction
of family names to nuclear fission. However, for a better description of natural phenomena,
such as viral epidemics in cellular tissues, animal populations and social networks, a spatial
embedding—the branching random walk (BRW)—is required. Despite its wide range of ap-
plications, the properties of the volume explored by the BRW so far remained elusive, with
exact results limited to one dimension. Here we present analytical results, supported by nu-
merical simulations, on the scaling of the volume explored by a BRW in the critical regime, the
onset of epidemics, in general environments. Our results characterise the spreading dynamics
on regular lattices and general graphs, such as fractals, random trees and scale-free networks,
revealing the direct relation between the graphs’ dimensionality and the rate of propagation
of the viral process. Furthermore, we use the BRW to determine the spectral properties of
real social and metabolic networks, where we observe that a lack of information of the network
structure can lead to differences in the observed behaviour of the spreading process. Our results
provide observables of broad interest for the characterisation of real world lattices, tissues, and
networks.”

Cited from
I. Bordeu, S. Amarteifio, R. Garcia-Millan, B. Walter, N. Wei, and G. Pruess-

ner. Volume explored by a branching random walk on general graphs. Sci. Rep. 9(1):15590,
2019. arXiv:1909.00471
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2. Branching Random Walks on General Graphs

Overview

In this chapter, I present a near verbatim copy of the peer-reviewed journal
article

I. Bordeu, S. Amarteifio, R. Garcia-Millan, B. Walter, N. Wei, and G. Pruessner.
Volume explored by a branching random walk on general graphs. Sci. Rep. 9(1):15590, 2019.
arXiv:1909.00471.
DOI: https://doi.org/10.1038/s41598-019-51225-6

This paper addresses the question how many sites a branching random walker visits over time
and how this number depends on the properties of the underlying graph, notably its (spectral)
dimension. It is based on a Doi-Peliti field theory of a tracing mechanism, and serves as an
introduction into this method, initially put forward in [171], that will be drawn upon in Chp. 4.
The field-theoretic incorporation of the branching is very similar to the one introduced in Chp. 1,
with the difference that in this chapter the fields are space-dependent since the branching pro-
cess is embedded into space. A further difference to Chp. 1 are the observables studied; Instead
of studying the statistical properties of the particle number of active walkers, the focus here
lies on the ability of a branching random walk to explore its spatial surrounding. Although the
branching random walk evolves by fully local rules only, the scaling of its explored volume over
time reveals global geometric properties of its embedding space, namely the spectral dimension
of the graph.

Statement of Contribution
All of the authors were involved in setting up the field theory, which is presented in the appen-
dices 2.A to 2.C. IB is the main author of this work who, together with GP, wrote the draft and
managed the collaboration. Once the key results, given in Sec. 2.3, were obtained, numerical
validation was necessary. SA wrote the simulation code which generates the branching ran-
dom walkers on regular lattices in arbitrary dimension and some further general graphs such as
Sierpiński carpets, random trees, and preferential-attachment networks. My main involvement
was to run the simulations and to analyse the data, except for the case of d = 1 which was dealt
with separately by RGM. To that end, I wrote several routines which fitted the conjectured
scaling functions to the data on a defined range and which are described in App. 2.F. Further, I
assisted NW in working out the conditions under which this field theory is applicable to general
graphs, as discussed in Appendix 2.4.
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2.1 Introduction

“Modern models of disease propagation incorporate spatial interaction by allowing a pathogen
to be passed on only to the neighbours of an infected host [84, 179]. A virus may multiply at
a host cell and then infect any of the neighbouring ones at random [208]. The total number
of infected cells therefore corresponds to the number of distinct sites visited by a branching
random walk (BRW) [76], also referred to as the Branching Wiener Sausage [171, 19]. In this
process active random walkers spontaneously produce descendants that carry on hopping from
site to site. At the same time, the walkers are subject to spontaneous extinction, for example,
by immune-response, healing or decay. The average number of descendants produced during
any of these events, branching and extinction, is known to control a transition from a subcritical
phase, where the disease ultimately infects only a finite number of sites, to a supercritical phase,
where the exponential growth of the virus eventually engulfs almost all available tissue [116].
The expected fraction of distinct sites visited or the size of the epidemic outbreak can be seen
as the order parameter of the process.

The characterisation of the distribution of distinct sites visited by a BRW is a long-standing
problem of branching processes and random walk theory [209, 76, 195] and is closely related to
the problem of distinct sites visited by a simple random walk (i.e. no branching events). For
simple random walks in regular lattices of general dimension, the problem of distinct visited
sites has been initially studied in [80, 237, 170]. In this case, the critical dimension, above which
the number of distinct sites grows lienarly in time (corresponding to the mean field behaviour),
is dc = 2. Further, fluctuations around the asymptotic result for a simple random walker have
been found in [234]. In [141], the authors consider the distinct sites visited by N independent
random walkers for which three different scaling regimes in time are characterised. This result is
further developed in [157], where the average number of distinct sites visited jointly by all of the
N random walkers is studied. In d = 1, the work of [138] provides the exact distribution of both
the distinct sites visited and the common visited sites of N random walkers. These preceding
articles illustrate the broader interest in distinct sites visited and its study in the context of
indepent simple random walks. In this chapter, however, we study branching random walks
which are qualitatively different to N independent random walkers: the particle number is not
conserved (and wildly fluctuates at the critical point), the walkers are spawned off at random
sites, and the system features two phases (sub- and supercitical branching, cf. Chp. 1) with the
effective reproduction rate r playing the role of the tuning parameter.

For the number of distinct sites visited by a branching random walk, exact results have
been obtained for one-dimensional systems [195]. However, extending such results to higher
dimensional lattices and networks is met with major technical obstacles, some of which have
been addressed over the past decade [76, 145, 146]. In two dimensions [76] derived the properties
of the area and perimeter of the convex hull of the cluster of visited sites, and related it to the
spreading of animal epidemics. In three dimensions and below, results have been obtained for
a related system, the so-called tree-indexed random walk [145, 146].

In the present work, we characterise analytically and, to confirm our findings, numerically
the epidemic spreading in general graphs, including regular lattices, fractal, and artificial and
real complex networks, at the onset of epidemics. At this point fluctuations are of crucial
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a

(a)

b t1 t3

t2

(b)

Figure 2.1.: Tracing the path of a branching random walker. a, The active walkers,
Hänsel and Gretel, leave a trace of breadcrumbs along their way to mark the path
they have taken. Birds slowly remove the breadcrumbs, as if they were subject
to decay (regularisation, see main text). b, Time evolution of branching random
walkers (red) and the cloud of visited sites on a 3d regular lattice at times t1 ∼ 102,
t2 ∼ 103, and t3 ∼ 104. Scale bars are equal for all time points. This figure has
been published in [25] and is reproduced here under the creative commons licence
as stated in App. A.2

importance, dominating the dynamics.

2.2 The model

We model the epidemic as a Poisson process by considering a reaction-diffusion system of a
population of active (mobile, branching, spawning) walkers that hop from their current location
x on a graph to any adjacent site y with rate H, and have occupation numbers nx. Walkers are
further subject to two concurrent Poisson processes, namely extinction with rate e and binary
branching with rate s, thereby producing descendants, which are indistinguishable from their
ancestors.

To extract the number of distinct sites visited, we introduce an immobile tracer particle
species with occupation numbers mx. They are spawned as offspring by the active walkers
with rate γ at the sites they are visiting, thereby leaving a trail of tracers behind, similar to
the breadcrumbs left by Hänsel and Gretel [103], Fig. 2.1a. We impose the constraint that at
most a single tracer can reside at any given site, which means that the spawning of a tracer is
suppressed in the presence of another tracer. It is that suppression that generates significant
complications from the point of view of the stochastic process. Yet, only with this restriction in
place is the number of tracers a measure of the number of distinct sites visited by the walkers,
as pictured by the cloud of visited sites in Fig. 2.1b.

There is no interaction between active and tracer particles, other than at the spawning of
immobile tracers by active walkers. In principle, the spawning (attempt) rate γ has to diverge
in order to mark every single site visited by the walkers. However, it turns out that this limit is
irrelevant as far as the asymptotic features of this process at large system sizes and long times
are concerned [171].

By definition, the sets {n} and {m} of occupation numbers nx and mx, respectively, for
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Figure 2.1.: Distinct sites visited on regular lattices. Scaling of the moments of the num-
bers of distinct sites visited in time (left) and system size (right) for a, d = 1, b,
d = 2, c, d = 3, and d, d = 5 regular lattices. Solid black lines represent the
theoretical exponents given by Eq. (2.2) for d < 4, and Eq. (2.3) for d > 4. Sim-
ulations parameters: H = 0.1, s = e = 0.45, ε′ = 0, and γ → ∞. This figure has
been published in [25] and is reproduced here under the creative commons licence
as stated in App. A.2
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each site x of a given graph, are Markovian and a master equation can be written for the joint
probability P({n}, {m}; t) to find the graph in a certain configuration of occupation numbers
at time t

Ṗ = Ṗs + Ṗe + Ṗε′ + ṖH + Ṗγ , (2.1)

where Ṗ corresponds to the time derivative of the (joint) probability P({n}, {m}; t), and the
terms on the right-hand side, Ṗ• = Ṗ•({n}, {m}; t), indicate the contributions from branching
s, extinction of active walkers e and tracer particles ε′, hopping H and deposition γ, respectively
(see Sec. 2.A for details). We constructed a statistical field theory from the master Eq. (2.1)
using the ladder operators introduced by Doi [73] and Peliti [186] (Sec. 2.6.1). To regularise the
propagators of the immobile particles in the field theory, we allow for the extinction of immobile
particles with rate ε′ in Eq. (2.1), not dissimilar to the birds that foiled Hänsel and Gretel’s
plans (Fig. 2.1a). The propagators for active and tracer particles do not renormalise, and the
limit ε′ → 0 is taken before any observable is evaluated. Through field-theoretic renormalisation
in dimensions d = 4 − ε we can then determine the exact scaling behaviour of the number of
distinct sites visited by the walkers.

The branching process described by Eq. (2.1) has three regimes, as becomes evident in the
field-theoretic formulation, where a net extinction rate r = e − s appears. This net extinction
rate is not renormalised in the field-theory and therefore no mass shift appears. The BRW
is subcritical for r > 0, critical for r = 0 (onset of epidemics) and supercritical for r < 0.
Hereafter, we focus on the critical case, where fluctuations dominate the dynamics, and the
behaviour becomes unpredictable and highly volatile. Furthermore, for both analytical and
numerical computations we consider the initial condition of a single walker at t = 0. Extensions
to different initial conditions are straight-forward.

2.3 Results for regular lattices

Following the field theoretic approach (details in Secs. 2.6.1 and 2.B) of the bulk critical be-
haviour in the continuum limit, where hopping is replaced by diffusion by introducing a diffusion
constant D, we find that in the thermodynamic limit at long times t, the expected number of
distinct sites visited or the volume explored, 〈a〉 (t, L), scales like t(d−2)/2 in dimensions d < 4.
In dimensions d < 2 this volume remains finite in large t. The scaling of the p-th moment of
the number of distinct sites visited follows,

〈ap〉 (t, L) ∝ t(pd−2)/2 for Dt� L2 (2.2a)

〈ap〉 (t, L) ∝ L(pd−2) for Dt� L2 (2.2b)

in d < 4 provided that pd − 2 > 0. The gap-exponent [188] of
〈
ap+1〉 / 〈ap〉 for the scaling in

L, which can be thought of as the effective dimension of the cluster of visited sites, is therefore
d in dimensions less than dc = 4. These results describe the numerical observations on regular
lattices in dimensions d = 1, 2, and 3 (see Sec. 2.6.2.A, as shown in Fig. 2.2, where, after an initial
transient, the moments scale according to Eq. (2.2) in time and system size (see Tabs. 2.F.1
and 2.F.2). The process is free beyond dc = 4 dimensions, where the probability of any walker
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Figure 2.1.: Probability distribution of the number of visited sites, a for regular lattices
of dimensions d = 1, 2, 3 and 5, and for b Sierpiński carpet, random tree, and a
preferential attachment (scale-free) networks. The solid black lines represent the
predicted scaling given by Eq. (2.4). Simulations parameters: H = 0.1, s = e =
0.45, ε′ = 0, and γ →∞. This figure has been published in [25] and is reproduced
here under the creative commons licence as stated in App. A.2

or any of its ancestors or descendants ever to return to a previously visited site drops below
unity, and the scaling becomes independent of the dimension,

〈ap〉 (t, L) ∝ t2p−1 for Dt� L2 (2.3a)

〈ap〉 (t, L) ∝ L4p−2 for Dt� L2 (2.3b)

with logarithmic corrections in d = dc = 4. The gap-exponent in dimensions greater than
dc = 4 is thus 4, as confirmed by numerical observations in dimension d = 5 (see Fig. 2.2
and Tab. 2.F.2). As correlations become irrelevant, this is usually referred to as mean-field
behaviour. The set of sites visited may thus be regarded as a four-dimensional object, projected
into the d-dimensional lattice considered. Focusing on dimensions below dc = 4, the distribution
of the number of distinct sites visited, a, follows a power law,

P(a) = Aa−(1+2/d)G(a/ac) (2.4)
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2. Branching Random Walks on General Graphs

Figure 2.2.: Scaling on general graphs on a, the Sierpinski carpet, b, random tree and, c,
preferential attachment networks. The top row shows representative states (full
Sierpinski carpet shown on inset), indicating walkers (red), visited sites (grey) and
non-visited sites (black). The bottom row shows the scaling of moments of the
number of distinct sites visited as a function of time, and linear system size (inset),
or number of nodes, in the case of networks. The solid black lines represent the
predicted scaling from Eqs. (2.5). Simulation parameters: H = 0.1, s = e = 0.45,
ε′ = 0, and γ → ∞. This figure has been published in [25] and is reproduced here
under the creative commons licence as stated in App. A.2

with metric factor A and cutoff ac ∼ (Dt)d/2 for Dt� L2 and ac ∼ Ld otherwise. These results
show how increasing the dimensionality of the lattice promotes the appearance of larger events,
evidencing the relevance of dimension on the spreading.

In dimensions d ≥ dc = 4 the resulting scaling of the distribution is that of Eq. (2.4) at
d = 4, where the probability distribution decays like a−3/2. Numerically, we recorded, for
each realisation, the total number of distinct sites visited by the process in order to construct
the distribution, P(a), of sites visited. The numerical results coincide with our theoretical
predictions, as shown in Fig. 2.1.

The exponents found above for d = 1 are in agreement with the exact solution by Ramola et
al. [195], where P(a) decays as a−3. In two dimensions the power-law tail decays as a−2, which
coincides with the decay of the 2d convex hull area distribution [76].

2.4 Extension to general graphs

In the field theoretic approach followed to find the scaling in Sec. 2.3 the spatial dimension
of the lattice enters only in as far as its spectral dimension is concerned, which characterises
the density of eigenvalues of the Laplace operator on the graph given. Our results extend
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naturally to all translational invariant lattices and graphs, by replacing the dimension d of the
lattice in Eqs. (2.2), (2.3) and (2.4) by the spectral dimension ds of the graph, as detailed in
Sec. 2.E. This holds true more generally as long as the lattice Laplacian itself does not undergo
renormalisation, i.e. in the absence of an anomalous dimension [31]. In the study of networks
the number of nodes N , is a more natural measure of the size of the network than the linear
size L. Using L ∼ N1/ds we can write the scaling of the BRW in time and number of nodes as

〈ap〉 (t,N) ∝ t(pds−2)/2 for Dt� N2/ds (2.5a)

〈ap〉 (t,N) ∝ N (p−2/ds) for Dt� N2/ds . (2.5b)

Here, the gap-exponent for the scaling in number of nodes is always unity. This extension to
graphs allowed us to predict the behavior of the BRW spreading in both artificial networks
relevant for social and biological sciences, and complex systems in general [12, 1, 179, 243],
as well as real networks. To illustrate this, we considered first the Sierpiński carpet (SCs)
(Fig. 2.3, Sec. 2.6.2.B), and random trees (RTs) (Fig. 2.3 and Sec. 2.6.2.C). Both of these
graphs are widely applied in the context of porous media [256] and percolation [151], and have
known spectral dimension: ds ≈ 1.86 for the SC [244], and ds = 4/3 for RTs [65]. Considering
Eq. (2.2) with d = ds, for the SC, and (2.5) for the RT we obtain accurate predictions for the
spreading dynamics as confirmed by numerical simulations, Figs. 2.3 and 2.3. These theoretical
predictions extend also to the distribution of visited sites (see Fig. 2.1), by setting d = ds in
(2.4).

Furthermore, we studied the BRW behaviour on a class of scale free networks [11]. Since their
introduction, scale free graphs have been observed to describe a plethora of natural phenomena,
including the World-Wide-Web [12], transportation [108], and metabolic networks [125], to name
but a few. We considered a preferential attachment scheme [11] (Fig. 2.3, see Sec. 2.6.2.D), to
construct networks with power-law degree distribution (Fig. 2.F.1). The existence of a finite
spectral gap in these networks, which indicates slow decay of return times [205, 165], suggested
that the BRW process is bound to exhibit mean-field behaviour, i.e. ds ≥ 4. This was confirmed
by numerical simulations, where the probability distribution of visited sites (Fig. 2.1) has a
power-law decay with exponent −1.52(2) ≈ −3/2, and the scaling in time and system size
(Fig. 2.3 and Tab. 2.F.1) follow mean-field behaviour as predicted by (2.5) for ds = 4.

The spectral dimension gives information on the behaviour of dynamical processes on graphs.
Here we use the BRW to characterise real-world networks through the power-law decay of the
distribution of visited sites P(a), which according to Eq. (2.4) is a−(1+2/ds) provided ds ≤ 4.
For example, the BRW exhibits near mean field-behaviour on a subset of the Facebook network,
which has been characterised as scale-free [238]. Hence, we derived a large effective (spectral)
dimension, ds = 3.9(1), indicating a fast spreading of the viral process in this network (see
Fig. 2.1).

We should emphasize that the spectral dimension is sensitive to changes in network topology
and connectivity. To exemplify this we have considered two publicly available datasets for the
yeast protein interaction network (see Fig. 2.1). We found that even though both network de-
scribe subsets of the same biochemical network, namely the complete yeast protein interactome,
the spectral dimensions in both cases are significantly different, ds = 3.0(1) for the network with
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Figure 2.1.: Probability distribution of number of distinct sites visited P(a), for the
Facebook network (L = 63730 nodes) [238], and yeast protein interaction networks
with L = 1870 [124], and L = 2559 nodes [92]. The data was obtained from
simulations of the BRW on each graph, with parameters H = 0.1, s = e = 0.45,
ε′ = 0, and γ → ∞. This figure has been published in [25] and is reproduced here
under the creative commons licence as stated in App. A.2

N = 1870 nodes [124], and ds = 3.8(1) for the larger network of N = 2559 nodes [92], leading
to differences in properties of the spreading process among the two. The discrepancy points to
differences in the connectivities of both networks and shows the importance of having access
to the complete network in order provide a reliable analysis of its properties, which may have
biological implications [112, 226].

2.5 Outlook

The results presented above for the binary branching process, where walkers branch into exactly
two new walkers, apply equally to more general branching processes, where the number of
offspring in each birth event is given by a distribution (for details see Sec. 2.D). This can be
seen, for example, in real-world scenarios where a single infected individual or device infects a
whole neighbourhood around them, or in the case of signal propagation in protein networks,
where the activation of one node (or chemical reaction) can in turn activate a whole fraction of
its neighboring nodes.

While the scaling behaviour does not depend on the initial position x0 of a walker, provided
it is located in the bulk and remains there as the thermodynamic limit is taken, the field theory
has to be adjusted to account for more complicated boundary conditions [171] or the walker
starting close to any such boundary. It may also be interesting to consider the case of initialising
each site with an independent Poisson distributions of walkers [39].

The approach followed in the present work provides a quantitative measure to explore and
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determine the spectral dimension of artificial and real networks. This is of particular interest
when the spectral dimension is greater or equal to 2, where the traditional approach of exploring
graphs, based on simple random walks [217, 165], fails. When simulating the BRW we made the
observation that robust scaling is more easily obtained on small lattices if the hopping rate H
is clearly smaller than the rates of branching s and extinction e. For large values of the hopping
rate particles leave the system during the initial transient, as seen in Fig. 2.1, thus boundary
effects appear before any robust scaling can be observed. In graphs such as the PA network
(Fig. 2.2), that does not have any boundaries, these artefacts are much less pronounced. In
summary our results shed new light on the properties of spatial branching processes on general
graphs, and their applicability in the study of real complex networks, and provide observables
of broad interest for the characterisation of real world lattices, tissues, and networks.

2.6 Methods

2.6.1 Field theory of the BRW

In order to derive the main results for the scaling of distinct sites visited by the BRW (Sec. 2.3)
we work along established lines [232], casting the master equation in a field theory of the
annihilation fields ϕ(x, t) and ψ(x, t) for the active and the immobile particles, respectively, and
of the corresponding (Doi-shifted) creation fields ϕ̃(x, t) and ψ̃(x, t). The governing Liouvillian
L = L0 + L1 consists of a harmonic part,

L0(ϕ,ψ, ϕ̃, ψ̃) = −ϕ̃∂tϕ+Dϕ̃∇2ϕ− rϕ̃ϕ− ψ̃∂tψ − ε′ψ̃ψ + τψ̃ϕ, (2.6)

and a non-linear part,

L1(ϕ,ψ, ϕ̃, ψ̃) = sϕ̃2ϕ+ σψ̃ϕ̃ϕ− λψ̃ψϕ− ξψ̃2ψϕ̃ϕ− κψ̃ψϕ̃ϕ− χψ̃2ψϕ, (2.7)

where we have taken the continuum limit. The space and time integrated Liouvillian produces
the field-theoretic action A =

´
ddxdtL, whose exponential eA enters into the path integral

formulation. The couplings in the Liouvillian are related to the rates in the master equation as
follows: D is a diffusion constant D = H∆x2, where ∆x is the lattice spacing, and H ∝ ∆x−2

when the limit ∆x → 0 is taken, in order to maintain finite diffusivity. At bare level the
non-linear couplings, with the exception of the branching rate s, are equal to spawning rate
γ, i.e. τ = σ = λ = ξ = κ = χ = γ. This follows from translating the master Eq. (2.1) into
field-theoretic language (see Sec. 2.A for details).

At the same time the net extinction rate r = e − s, the field-theoretic mass of the walkers,
has to be kept finite. In this parameterisation, there are three regimes, as described in the main
text: a subcritical one for r > 0, a critical for r = 0 and a supercritical for r < 0. In the field
theory, all large scale (infrared) phenomena will be controlled by r → 0+, which corresponds to
the onset of epidemics, the limit studied in this work. The mass of the tracers, ε′, serves merely
as a regularisation, and is removed by taking the limit ε′ → 0. The bare transmutation rate τ ,
corresponding to γ on the lattice, and the bare branching rate s of the active particles (s on the
lattice) are the two processes that we expect will govern all infrared behaviour in all dimensions
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and are therefore assumed to be dimensionless. These two choices determine the engineering
dimension [231] of all other bare couplings, resulting in ξ, κ and χ being infrared irrelevant.
Together with λ, these four couplings are due to the suppression of the spawning of tracers when
a site is occupied already. At the upper critical dimension, dc = 4, the coupling λ is marginally
relevant, being infrared irrelevant above and relevant below. The minimal subtraction scheme
[231] we have used will produce results in terms of ε = 4− d.

The Liouvillian constructed above is the object that allows the exact calculation of the scaling
exponents of the p-th moment of the volume explored by a branching random walk 〈ap〉 (t, L),
in time t, and linear system size L. Initialising the system at time t0 = 0 with a single active
walker at position x0, field-theoretically implemented by the creation field ϕ̃(x0, 0), the ensemble
average 〈a〉 (t, L) of the volume explored by the BRW is determined by

〈a〉 (t, L) =
ˆ

ddx 〈ψ(x, t)ϕ̃(x0, 0)〉 , (2.8)

where the density of tracers particles at position x and time t > 0 is measured by ψ(x, t) and
integrated over all space. Similarly [171], higher moments are dominated by integrals of the
form

〈ap〉 (t, L) ∼
ˆ

ddxp . . .ddx1 〈ψ(xp, t) . . . ψ(x1, t)ϕ̃(x0, 0)〉 , (2.9)

or equivalently, by evaluating the Fourier transform at spatial momentum k = 0. These are
functions of the couplings introduced above, but to leading order not of the walker’s initial
position x0, provided it is located in the bulk. We implement this numerically by always
placing the walker initially at the centre site of odd-sized regular lattices, see Sec. 2.6.2.A. The
average 〈•〉 introduced on the right hand side of Eq. (2.8) correspond to the path integral

〈ψ(xp, t) . . . ψ(x1, t)ϕ̃(x0, 0)〉 =
ˆ
DΠ

(
ψ(xp, t) . . . ψ(x1, t)ϕ̃(x0, 0)

)
e
´

ddxdtL , (2.10)

which measures the p-point correlation function of tracers at (xi, t), i = 1, 2, . . . , p in response to
the creation of a walker at (x0, t = 0). Here, the integration measure is DΠ = DϕDϕ̃DψDψ̃ .
Field theoretic renormalisation in dimensions d = 4 − ε then allows us to derive the scaling of
the number of distinct sites visited (see Sec. 2.B for more details).

2.6.2 Numerical implementation

In the numerical implementation, an active particle is allowed to diffuse by hopping from the
site it resides on to a nearest neighbouring site with rate H, branch with rate s by placing an
identical offspring at the present site or become extinct with rate e. Each distinct site visited
is recorded, equivalent to taking the limit γ → ∞ in the theory. The instantaneous number
a(t, L) of distinct sites visited up to time t is therefore the number of sites recorded. Parameters
were chosen such that H + s + e = 1, H was set to 0.1, and e = s = 0.45. If M walkers are
present in the system at a given time the waiting time for the next event (hopping, branching or
extinction) is determined by − ln(1−u)/M where [0, 1) 3 u ∼ U(0, 1) is a uniformly distributed
random variable. For every lattice size we performed 106 to 109 realisations of the process.
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2.6.2.A Regular, integer-dimensional lattices

The regular lattices studied here are hypercubic d-dimensional lattices, characterised by their
linear size L = 2m−1, m ≥ 4, which is chosen to be odd so that it contains a well-defined centre
site, on which the single active walker is initially placed. To study finite-size scaling, absorbing
boundary conditions were applied. However, we observed that the boundary conditions have
no effect on the scaling (data not shown). The numerical results were fitted to a power-law as
described in Sec. 2.F, to obtain the values in Tabs. 2.F.1 and 2.F.2.

2.6.2.B Sierpinski carpet

The Sierpinski carpets were constructed from two dimensional lattices of linear dimension 3m,
m ≥ 2. The lattice was divided into 32 equal sub-squares each of size 3m−1, the central square
was removed, leaving 32 − 1 sub-squares. The procedure is iterated over the remaining sub-
squares. The spectral dimension of the Sierpinski carpet has been estimated to be ds = 1.86
[244, 53]. A random point around the central hole of the fractal was used as the initial location
of the walker in every realisation.

2.6.2.C Random trees

The critical random tree networks [64] were constructed as a critical Galton-Watson process,
where every node has either 0, 1, or 2 descendants, such that the mean degree of the network
is 2. We generated networks with 26 to 212 nodes. These graphs have no closed loops. The
spectral dimension of the random tree ensemble is ds = 4/3 [65]. For every realisation of the
process, a new random tree was generated, and a node was selected at random as the starting
location of the initial walker.

2.6.2.D Preferential-attachment network

A preferential attachment (PA) network is a class of scale-free networks, characterised by a
power-law degree distribution. We followed the BarabÃąsiâĂŞAlbert model of preferential
attachment [11] initialised with a single node to generate networks with 212 to 219 nodes. The
networks have power-law degree distribution with exponent −2.9 and mean degree 〈k〉 = 6.3
(see Fig. 2.F.1). For every realisation of the process, a new network was constructed, and a
node was selected at random as the starting location of the initial walker.

61



Appendix

2.A Master equation for the branching random walk

In the following we describe the contributions to the master Eq. (2.1) from each of the processes
the branching random walk comprises. The contribution to the master equation for the joint
probability P({n}, {m}; t) from the spawning of immobile tracer particles by active walkers
must take into account the finite carrying capacity m̄0 of each lattice site. To account for a
finite carrying capacity an effective deposition rate is introduced that decays linearly with the
number of tracer particles already present at the site of interest [171],

γeff = γ
m̄0 −mx

m̄0
.

To study the number of distinct sites visited m̄0 is set to 1. With this constraint in place, each
site visited is marked with a tracer particle at most once, so that their total number is that of
distinct sites visited by the BRW. With these considerations, the contributions to the master
equation from deposition of tracer particles read

Ṗγ({n}, {m}; t)

= γ
∑

x

(
(1− (mx − 1))nxP({n}, {. . . ,mx − 1, . . .}; t)− (1−mx)nxP({n}, {m}; t)

)
, (2.11)

where nx and mx correspond to the number of active and immobile particles at site x. The
sum

∑
x runs over all lattice sites. The contribution from branching of active walkers reads

Ṗs({n}, {m}; t) = s
∑

x

(
(nx − 1)P({. . . , nx − 1, . . .}, {m}; t)− nxP({n}, {m}; t)

)
. (2.12)

The contributions from extinction are

Ṗe({n}, {m}; t) = e
∑

x

(
(nx + 1)P({. . . , nx + 1, . . .}, {m}; t)− nxP({n}, {m}; t)

)
(2.13)

for active particles, and

Ṗε′({n}, {m}; t) = ε′
∑

x

(
(mx + 1)P({n}, {. . . ,mx + 1, . . .}; t)−mxP({n}, {m}; t)

)
(2.14)
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for immobile particles. Finally, the contribution to the joint probability from the hopping of
active walkers reads

ṖH({n}, {m}; t)

= H

q

∑
x

∑
y.nn.x

(
(ny + 1)P({. . . , nx − 1, . . . , ny + 1, . . .}, {m}; t)− nxP({n}, {m}; t)

)
, (2.15)

where the sum
∑

y.nn.x runs over all q nearest neighbouring (nn) sites y of x.
Combining the contributions from all the subprocesses, the master equation for the joint

probability P = P({n}, {m}; t) reads

Ṗ = Ṗs + Ṗe + Ṗε′ + ṖH + Ṗγ . (2.16)

as shown in Eq. (2.1).

2.B Field-theory of the BRW

In the following, we show the details of the field-theoretical calculations performed to obtain the
main results of the article, Eqs. (2.2), (2.3), and (2.4). In Sec. 2.B.1 we describe the dimensional
analysis of the bare couplings. In Sec. 2.B.3, we introduce a diagrammatic representation of
the propagators and couplings, and in Sec. 2.B.4 we determine the relevant interactions. In
Sec. 2.B.5, we perform the renormalisation of the couplings, and finally calculate the higher
order correlations that give rise to the scaling of the moments of the number of distinct sites
visited in Sec. 2.B.7.

2.B.1 Dimensional analysis of the bare couplings

To compute the critical dimension of the process described by the Liouvillian L = L0 + L1,
Eqs. (2.6) and (2.7), and to extract the relevant interactions, i.e the couplings that remain
relevant in every spatial dimension, we study the engineering dimensions (here, represented
by [·]) of every coupling in the action. We expect that the long range physics in time and
space is governed by three processes: diffusion with constant D, branching with rate s, and
transmutation with rate τ . Introducing three independent dimensions, namely A, B and C, we
impose

[τ ] = A, [s] = B, and [D] = C. (2.17)

With [x] = L, [t] = T, and [∂t] = [D∇2] it follows that T = CL2 is not an independent dimension.
As the action, A =

´
ddxdtL, itself must be dimensionless, i.e. [A] = 1, we obtain [r] = T−1 =

CL−2 and

[ϕ̃] = B−1CL−2, [ϕ] = BC−1L2−d,
[
ψ̃
]

= A−1B−1C2T−2, [ψ] = ABC−2L4−d (2.18)

for the fields in real time and space, such that [ϕ̃ϕ] = [ψ̃ψ] = L−d. The engineering dimensions
of the couplings follow:

[λ] = B−1C2Ld−4 [σ] = ABC−1L2 [χ] = ALd (2.19a)
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[κ] = CLd−2 [ξ] = ABC−1Ld+2. (2.19b)

Setting A = B = C = 1, we find a critical dimension dc = 4, above which all of these
interactions become irrelevant. At the critical dimension d = dc = 4 the couplings σ, χ, κ,
and ξ remain irrelevant, while λ becomes marginal. To regularise the ultraviolet we work in
dimensions d = 4− ε < 4.

As a point of discussion, we note that other choices of independent dimensions are possi-
ble, limited only by the symmetries to be preserved. Initially we considered σ, rather than
τ to have an independent dimension. The resulting (very messy) field theory depends on the
non-universal, bare value of s and produces no renormalisation of τ , which, however, must
renormalise as 〈a〉 (t, L) ∼ τeffL

2 (see Section 2.B.5) and cannot scale faster than the volume of
the system, Ld.

A coupling with independent dimension is saved from changing relevance and thus from
possible irrelevance in the infrared limit of large space and long time. The choice of dimensions
is therefore a choice of interactions that ultimately govern the infrared. If the stochastic process
under consideration takes place on the lattice, this may be determined by taking the continuum
limit, provided the process does not possess any competing scales, in which case the continuum
limit coincides with the thermodynamic limit of infinite system size. However, as soon as
different processes and scales compete, such as hopping, branching, spawning and extinction
rates in the present case, the continuum limit is a mere approximation of the original process on
the lattice and the choice of (independent) dimensions becomes a claim about which interactions
govern the infrared. For example, considering a biased random walk, letting space scale linear
in time preserves a drift but removes diffusion, while letting space scale quadratically in time
preserves the latter, while the drift velocity diverges.

2.B.2 Fourier transform

Throughout the manuscript, we denote the Fourier transform F [f(x, t)] of a function f(x, t)
in space x and time t simply as f(k, ω), where the spatial momentum k is the conjugate of
the position x, and the frequency ω is the conjugate of time t. The direct Fourier transform is
defined as

f(k, ω) =
ˆ
e̊ıωt−̊ık·xf(x, t)ddxdt, (2.20)

so that the inverse Fourier transform is

f(x, t) =
ˆ
e−̊ıωt+̊ık·xf(k, ω)d̄dkd̄ω, (2.21)

where d̄dk = (1/2π)ddk, d̄ω = (1/2π)dω, and d is the spatial dimension.

2.B.3 Propagators and couplings

We begin by considering the field-theoretic action A = −
´

ddxdtL, where the terms in the
Liouvillian L = L0 + L1 are given by Eqs. (2.6) and (2.7), respectively. In order to render the
Laplacian term local the action is rewritten in Fourier space, where the momentum k is the
conjugate of position x and the frequency ω is the conjugate of time t (as defined in Sec. 2.B.2).
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The perturbative renormalisation scheme starts by reading off the propagators from the bilinear
part, introducing a diagrammatic language as we proceed. For the walkers the bare propagator
reads 〈

ϕ(k, ω)ϕ̃(k′, ω′)
〉

0 = δ̄(k + k′)δ̄(ω + ω′)
−̊ıω +Dk2 + r

, , (2.22)

where δ̄(k + k′) = (2π)dδ(k + k′) denotes a scaled d-dimensional Dirac-δ function, and corre-
spondingly for δ̄(ω + ω′). Diagrammatically, the bare propagator is shown as a straight line.
For the tracers the bare propagator becomes

〈
ψ(k, ω)ψ̃(k′, ω′)

〉
0

= δ̄(k + k′)δ̄(ω + ω′)
−̊ıω + ε′

, , (2.23)

diagrammatically shown as a wavy line. Both bare propagators carry a positive mass, r = e− s
in Eq. (2.22) and ε′ in Eq. (2.23), which guarantees causality as the inverse Fourier transform
will generate a Heaviside-θ function in time. Both propagators Eqs. (2.22) and (2.23) do not
undergo renormalisation. Finally, the transmutation vertex features in

〈
ψ(k, ω)ϕ̃(k′, ω′)

〉
0 = τ

δ̄(k + k′)δ̄(ω + ω′)
(−̊ıω + ε′)(−̊ıω +Dk2 + r) ,

τ (2.24)

and signals the appearance of a tracer in response to the presence of a walker, as time is to
be read from right to left. The non-linear part of the Liouvillian, L1, contributes with six
interaction vertices, which diagrammatically read

s σ (2.25)

ξ κ (2.26)

χ −λ
. (2.27)

Finally, the observables of the form of Eq. (2.10) have the diagrammatic structure

p .... . (2.28)

Their scaling in time and finite-size can be extracted from the scaling of the vertex generating
function, which is the standard object of field-theoretic renormalisation. In the next section we
describe all possible infrared-relevant interactions.

2.B.4 Relevant interactions

Whether a particular interaction is allowed by the basic process introduces above is a matter of
some topological constraints, which we will discuss in the first part of this section. Whether it is
infrared-relevant is determined by its engineering dimension, which we discuss in the second part
of this section. Combining topological and engineering constraints will then produce a finite
number of interaction vertices to consider. Constraints that avoid certain, otherwise relevant
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vertices from being generated are preserved under renormalisation.
The general proper vertex

Γ[m n
p q ] =

p

....

m ....

q...
.

n....

(2.29)

are the one-particle irreducible graphs of the amputated correlation function

G[m n
p q ] (r,D, τ, s, σ, λ, κ, χ, ξ; {k1, . . . ,km+n+p+q;ω1, . . . , ωm+n+p+q})

=
〈
ϕ(k1, ω1) . . . ϕ(km, ωm)︸ ︷︷ ︸

m terms

ψ . . . ψ︸ ︷︷ ︸
p terms

ϕ̃ . . . ϕ̃︸ ︷︷ ︸
n terms

ψ̃ . . . ψ̃︸ ︷︷ ︸
q terms

〉
(2.30)

Denoting, where applicable, terms of higher order in non-linear couplings by h.o.t., the bare
couplings are the tree-level contributions to the proper vertices:

τ = Γ[ 0 1
1 0 ] + h.o.t. s = Γ[ 2 1

0 0 ] λ = Γ[ 0 1
1 1 ] + h.o.t. (2.31a)

σ = Γ[ 1 1
1 0 ] + h.o.t. χ = Γ[ 0 1

2 1 ] + h.o.t. κ = Γ[ 1 1
1 1 ] + h.o.t. ξ = Γ[ 1 1

2 1 ] + h.o.t. (2.31b)

Every proper vertex has a number of topological constraints, since any such term needs to
arise from the perturbative expansion of the action as a one-particle irreducible (connected,
amputated) diagram made from the bare vertices available in the theory. By inspection, we
found the following constraints, which we will use to determine all relevant, possible couplings
below: Firstly, all non-linear vertices in the field theory (all diagrams except the bare propagator
of the tracer particles) have at least one straight leg coming in, n ≥ 1. Secondly, all vertices
have at least as many wavy legs coming out, as come in, p ≥ q. Thirdly, there are at least as
many outgoing legs (wavy or straight), as there are incoming straight legs, m+ p ≥ n.

The engineering dimension of the general proper vertex can be determined from the con-
siderations at the beginning of Section 2.B.1, using the fact that each proper vertex may be
seen as an effective coupling, which, after integration over real time and space, gives rise to a
dimensionless contribution to the action, LdT[Γ[m n

p q ]ϕ̃mψ̃pϕnψq] = 1, so that

[Γ[m n
p q ]] = Ld(n+q−1)+2(m−n+2p−2q−1)Ap−qBm−n+p−qCn−m−2p+2q+1. (2.32)

Demanding that (effective) transmutation τ , branching s and diffusion D may remain relevant
at any scale (which amounts to a suitable continuum limit), we set the independent dimensions
A, B and C, respectively, to unity A = B = C = 1. The (marginally) infrared-relevant couplings
are those whose engineering dimension (in L) is non-positive. At the upper critical dimension
d = dc = 4, the inequality d(n+ q − 1) + 2(m− n+ 2p− 2q − 1) ≤ 0 gives

m+ n+ 2p ≤ 3. (2.33)

The field theory needs to include all vertices Γ[m n
p q ] with (non-negative) integers m, n, p and q

that fulfill Eq. (2.33) together with the topological constraints n ≥ 1, p ≥ q and m+ p ≥ n. To
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find them, we distinguish two cases for Eq. (2.33):

• p = 0 p≥q=⇒ q = 0, then m+ n ≤ 3. Under the topological constraint m+ p ≥ n there are
only two viable solutions: m = n = 1, or m = 2 and n = 1, that correspond to

and s
, (2.34)

the bare propagator for active walkers, and branching of active walkers, respectively.

• p = 1 =⇒ m + n ≤ 1. Only the propagator of the immobile particles allows for n = 0.
Otherwise, n ≥ 1 requires m = 0. The constraint p ≥ q leaves only q = 0 and q = 1. As
a result, there are three viable combinations: Firstly, m = n = 0 and q = 1, secondly,
m = q = 0 and n = 1, thirdly, m = 0 and n = q = 1, which correspond to

, τ and
−λ

, (2.35)

the bare propagator of immobile tracer particles, the transmutation vertex and hindrance
of spawning, respectively.

Together with the propagators, the vertices in (2.34) and (2.35) represent all (marginally) rel-
evant couplings at d = dc = 4, consisting of the (bilinear) transmutation, τ , and the interaction
vertices s of branching and −λ of suppression of spawning.

In the following we perform the renormalisation of the couplings τ and −λ.

2.B.5 Renormalisation of the couplings

As far as the observables in the present work are concerned, the only couplings to consider are
τ and λ. Both are renormalised by the same set of loops

τR ,
τR = τ + + + + . . . + . . . (2.36)

and

− λR ,
−λR = −λ+ + + + . . . + . . . (2.37)

where all diagrams are amputated. The subscript R indicates a renormalised quantity, which
may still be dimensionfull as in the expression above. Only the non-crossing loop diagrams,
such as the first three in Eqs. (2.36) and (2.37), are easily calculated (see Sec. 2.C for details).
Of the diagrams in Eqs. (2.36) and (2.37), the non-crossing ones are summed over by virtue of
field-theoretic renormalisation. The last diagram in both Eq. (2.36) and Eq. (2.37), on the other
hand, require further explicit calculation and subsequent summation. The same applies to an
infinite number of further crossing diagrams. And yet, because of the Ward-identity (Sec. 2.B.6)

∂τR
∂τ

= λR
λ

(2.38)

all exponents can be determined without calculating any of the diagrams explicitly.
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As usual in perturbative field theory [231, 143], the governing non-linearity, here λ, becomes
spatially dimensionless by multiplying it by µ−ε, where µ is an arbitrary inverse length scale.
In fact, any dimensionless coupling involving λ, τ , s, D and µ is proportional to a power of
λsD−2µ−ε. Introducing g = λsUµ−εD−2Γ(ε/2) with suitable numerical factor U , both couplings
λ and τ renormalise identically

τR = τZ(g) and λR = λZ(g) (2.39)

with Z(g) governing the renormalisation of both λ and τ . To one loop and with suitable U , the
Z-factor becomes Z(g) = 1 − g, see Eqs. (2.36) and (2.37), and Sec. 2.C. However, there is no
need to determine the precise dependence of Z on g as far as scaling is concerned. It suffices to
know that the renormalised, dimensionless

gR = λRsUµ−εD−2Γ(ε/2) (2.40)

= ZλsUµ−εD−2Γ(ε/2) (2.41)

has β-function
βg = dgR

d lnµ = −εgR + gR
d lnZ
d lnµ (2.42)

which implies d lnZ/d lnµ = ε at the root βg(g = g∗) = 0, irrespective of U and therefore
irrespective of the presence or absence of the crossing diagrams. It follows that Z ∼ µε in d ≤ 4
and therefore the effective transmutation rate is τeff ∼ τZ ∼ µε. In the limit of t → ∞, for
systems of linear size L, the characteristic scale is µ ∼ L−1 and thus τeff ∼ L−ε. With open
boundary conditions, the branching walkers visit ∼ L2 sites during the course of their lifetimes,
leaving behind ∼ τeffL

2 ∼ L2−ε immobile tracer particles in dimensions greater than 2, so that
〈a〉 (t, L) ∼ Ld−2. This average is bounded from below by a constant, as at least one site is
always visited, so that 〈a〉 (t, L) approaches a constant below 2 dimensions. As for the time-
dependence, the characteristic inverse scale µ is proportional to t−1/2 because the dynamical
exponent z = 2 in µ ∼ t−1/z remains unchanged. It follows that 〈a〉 (t, L) ∼ t(d−2)/2.

In the following section, the mean 〈a〉 (t, L) and higher moments are calculated in greater
detail.

To see this, we introduce a dimensionless coupling g = λsUµ−εD−2Γ(ε/2) with suitable
numerical factor U and arbitrary inverse length scale µ. Both couplings therefore renormalise
identically,

τR = τZ and λR = λZ (2.43)

with Z = 1− g governing the renormalisation of both renormalised τ and λ. The β-function of
g,

βg = dg
d lnµ

in d < 4 always produces a root g∗ such that γτ = d lnZ/d lnµ = ε = 4 − d when g = g∗,
irrespective of U and therefore irrespective of the presence or absence of the crossing diagrams.
Because the Z-factor for λ is identical to that of τ , the latter scales in the inverse scale µ like µε.
As the dynamical exponent z = 2 remains unchanged, it follows that in the long time t → ∞,
and large system size L → ∞ limits, the volume visited 〈a〉 (t, L) by a walker by time t scales

68



2. Branching Random Walks on General Graphs

like t(d−2)/2 in dimensions d < 4. It remains finite in dimensions d < 2, as discussed in the main
text.

2.B.6 Ward identity

To identify the Ward-identity, we first state the action

A
(
[ϕ,ψ, ϕ̃, ψ̃];D, r, ε′, τ, s, λ

)
=
ˆ

ddxdt
(
−ϕ̃∂tϕ+Dϕ̃∇2ϕ− rϕ̃ϕ− ψ̃∂tψ − ε′ψ̃ψ + τψ̃ϕ+ sϕ̃2ϕ− λψ̃ψϕ

)
(2.44)

after having removed the irrelevant couplings from the Liouvillian L = L0 +L1, Eqs. (2.6) and
(2.7). The Ward-identity Eq. (2.38) is rooted in a symmetry of the action under shifting ψ(x, t)
by a constant Σ,

A
(
[ϕ,ψ + Σ, ϕ̃, ψ̃];D, r, ε′, τ, s, λ

)
= A

(
[ϕ,ψ, ϕ̃, ψ̃];D, r, ε′, τ − λΣ, s, λ

)
+ Σ
ˆ

ddxdt (−ε′)ψ̃(x, t) , (2.45)

where the last term amounts to a source term, which maintains a density of Σ of immobile
particles throughout time and space, as they are subject to continuous decay with (matching)
rate ε′. To ease notation we write

A = A
(
[ϕ,ψ, ϕ̃, ψ̃];D, r, ε′, τ, s, λ

)
(2.46)

A′ = A
(
[ϕ,ψ + Σ, ϕ̃, ψ̃];D, r, ε′, τ, s, λ

)
(2.47)

A′′ = A
(
[ϕ,ψ, ϕ̃, ψ̃];D, r, ε′, τ − λΣ, s, λ

)
(2.48)

so that
A′ = A′′ − ε′Σ

ˆ
ddxdt ψ̃(x, t) , (2.49)

as well as

〈•〉A =
ˆ
DΠ • eA , (2.50)

and similarly for the actions A′ and A′′. Since ψ is only a dummy variable in this path integral,
any expectation over the action A of an observable involving the field ψ, is identical to the
expectation of an observable involving the shifted field ψ + Σ over the action A′, for example〈
ψ(x3, t3)ψ(x2, t2)ψ̃(x1, t1)ϕ̃(x0, t0)

〉
A

=
〈(
ψ(x3, t3) + Σ

)(
ψ(x2, t2) + Σ

)
ψ̃(x1, t1)ϕ̃(x0, t0)

〉
A′
.

(2.51)
To derive the Ward-identity (2.38), we consider

〈ψ(x, t)ϕ̃(x0, t0)〉A =
〈(
ψ(x, t) + Σ

)
ϕ̃(x0, t0)

〉
A′ = 〈ψ(x, t)ϕ̃(x0, t0)〉A′ + Σ 〈ϕ̃(x0, t0)〉A′

=
〈
ψ(x, t)ϕ̃(x0, t0)e−ε′Σ

´
ddxdt ψ̃(x,t)

〉
A′′

(2.52)
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using 〈ϕ̃(x0, t0)〉A′ = 0 and Eq. (2.49) in the last line. Differentiation with respect to Σ and
evaluating at Σ = 0 then gives

0 = −λ∂τ 〈ψ(x, t)ϕ̃(x0, t0)〉A − ε
′
ˆ

ddx′dt′
〈
ψ(x, t)ϕ̃(x0, t0)ψ̃(x′, t′)

〉
(2.53)

as A′′ = A at Σ = 0 and the left-hand side of Eq. (2.52) is independent of Σ. The integral
is most efficiently evaluated after Fourier-transforming, as

´
ddx′dt′ ψ̃(x′, t′) = ψ̃(k = 0, ω = 0)

and noting that 〈
ψ(k′, ω′)ψ̃(k = 0, ω = 0)

〉
= 1
ε′
δ̄(ω′)δ̄(k′) (2.54)

whenever ψ̃(k = 0, ω = 0) is paired up with any internal field ψ(k′, ω′). Dividing out two bare
propagators, the right-hand side of Eq. (2.53) consists of the amputated diagrams shown in
Eq. (2.36) and Eq. (2.37), so that

0 = −λ∂ττR + ε′

ε′
λR , (2.55)

the desired identity Eq. (2.38).

2.B.7 Calculating scaling of higher-order correlation functions

The scaling of higher-order correlation functions is derived, within the field theory, from the
solution of theallanâĂŞSymanzik equation [231] for the general proper vertex Eq. (2.29), from
which the scaling of the moments of the total number of distinct sites visited follow, Eq. (2.2).
From dimensional analysis (Sec. 2.B.1), and by introducing a bare scale µ0, related to µ by
µ = µ0`, the general proper vertex, Eq. (2.29), then satisfies

Γ[m n
p q ](r,D, τ, s, σ, λ, κ, χ, ξ; {k;ω})

= `−d(n+q−1)−2(m−n+2p−2q−1)+(p−q)γτΓ[m n
p q ]

(
r

`2
, D, τ, s, σ, λ, κ, χ, ξ;

{k
`

; ω
`2

})
, (2.56)

asymptotically in small ` and provided that r is close enough to the critical point, rc = 0. For
the transmutation vertex, where p = n = 1 and q = m = 0, we find

Γ[ 0 1
1 0 ](r,D, τ, s, σ, λ, κ, χ, ξ; {k;ω}) = `γτΓ[ 0 1

1 0 ]
(
r

`2
, D, τ, s, σ, λ, κ, χ, ξ;

{k
`

; ω
`2

})
, (2.57)

with γτ = ε = 4 − d. Generally, for observables of the form Eq. (2.28), where n = 1 and
q = m = 0 we have

Γ
[

0 1
p 0
]
(r,D, τ, s, σ, λ, κ, χ, ξ; {k;ω}) = `4(1−p)+pγτΓ

[
0 1
p 0
] (

r

`2
, D, τ, s, σ, λ, κ, χ, ξ;

{k
`

; ω
`2

})
.

(2.58)
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The scaling of the first moment of the number of distinct sites visited, 〈a(t)〉, as function of
time, t, can be obtained by analysing the scaling of

〈a(t)〉 =
ˆ

ddx 〈ψ(x, t)ϕ̃(x0, 0)〉 (2.59)

,
ˆ

d̄ωd̄ω0e
−̊ıωt

∣∣∣∣
k=0

(2.60)

=
ˆ

d̄ωe−̊ıωt 1
−̊ıω + ε′

Γ[ 0 1
1 0 ] 1
−̊ıω + r

. (2.61)

According to Eq. (2.57), Γ[ 0 1
1 0 ] scales like

Γ[ 0 1
1 0 ](L−2, D, τ, s, σ, λ, κ, χ, ξ; {k;ω}) = L−γτΓ[ 0 1

1 0 ] (1, D, τ, s, σ, λ, κ, χ, ξ;
{
kL;ωL2

})
,

(2.62)
if we identify r ∼ L−2 and ` ∼ L−1, which means that the effective transmutation rate scales
like L−ε in large linear system size L, as γτ = ε = 4− d. In long time t, the integral over ω in
Eq. (2.61) has the effect of evaluating Γ[ 0 1

1 0 ] 1
ı̊ω+r at ω = 0, because

lim
t→∞

lim
ε′→0

ˆ ∞
−∞

e−̊ıωt
1

−̊ıω + ε′
f(ω) = f(0) (2.63)

provided f(ω) has no pole at 0.
It follows that

lim
t→∞
〈a(t)〉 ∝ L2−ε. (2.64)

For higher moments, on the basis of Eq. (2.58) we find

lim
t→∞
〈ap(t)〉 ∝ L2Lpd−4Γ

[
0 1
p 0
]
(1, D, τ, s, σ, λ, κ, χ, ξ; {0, 0}). (2.65)

We thus recover the finite-size scaling results Eqs. (2.2b) and (2.3b) of Section 2.3 for the p-th
moment of the volume explored by a branching random walk

lim
t→∞
〈ap(t)〉 ∝

L
dp−2 if ε > 0

L4p−2 if ε < 0
(2.66)

where ε > 0 and ε < 0 separate regions below and above the upper critical dimension, dc = 4,
respectively. The dimensionality of the embedding space enters only below the upper critical
dimension. Above the upper critical dimension, fluctuations and interactions become asymp-
totically irrelevant and the process can be considered as free.

The above analysis is easily extended to scaling in time, using t ∝ µ−z with z = 2 as the
relevant scale, thereby reproducing Eqs. (2.2a) and (2.3a).

2.C Loop integrals

The non-crossing diagrams, such as the first three in Eqs. (2.36) and (2.37), are calculated
through the integral
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Iτ = s−λ

τ

=
ˆ

d̄dkd̄ω τ

−̊ıω + ε′
1

ω2 + (Dk2 + r)2 = τ
1
2

r−ε/2

(4πD)d/2
Γ(ε/2) , (2.67)

and (essentially identical)

I−λ = s−λ

−λ

=
ˆ

d̄dkd̄ω −λ
−̊ıω + ε′

1
ω2 + (Dk2 + r)2 = −λ1

2
r−ε/2

(4πD)d/2
Γ(ε/2) , (2.68)

where the lower part of the loop carries the coupling τ in case of contributing to τ or the
coupling −λ and an incoming wavy leg in case of contributing to λ. The integration measure is
d̄dkd̄ω =ddkdω /(2π)d+1.

2.D Generalisation to k offspring

In this section we extend the field-theoretic results presented above to the case where the
offspring number is a random number and show that it lies in the same universality class
as binary branching [2, 144]. Instead of two distinct processes for branching into two active
walkers (with rate s above) and getting extinguished (with rate e above) we consider the latter
as branching into k = 0 walkers and generalise the former to branching into any number k
of walkers. Each of these processes may occur with rate σk, which can always be written as
σk = σpk with pk the normalised probability for branching into k walkers and σ the rate with
which any such processes take place.

The two contributions Ps, Eq. (2.12), and Pe, Eq. (2.13), are thus subsumed and generalised
by

Ṗc({n}, {m}; t) = σ
∞∑
k=0

∑
x
pk
(
(nx− k+ 1)P({. . . , nx− k+ 1, . . .}, {m}; t)−nxP({n}, {m}; t)

)
,

(2.69)
which allows for p1, but the process of branching into a single particle has no bearing on the
master equation.

In the field theory, the mass of the bare propagator for active walkers becomes [94]

r = −σ
∞∑
k=0

pk(k − 1) = σ(1− k̄), (2.70)

where k̄ =
∑∞
k=0 pkk is the average offspring number, which again, defines a subcritical (r > 0),

a critical (r = 0), and a supercritical (r < 0) regime.
In the case of generalised branching, the non-linear part of the action contains contributions

of the form ϕ̃kϕ for all k ≥ 2 as soon as there is any k ≥ 2 with pk > 0 [94]. Terms with k > 2,
however, turn out to be infrared irrelevant, as their couplings have dimension Bk−1C2−kL2(k−2).
The field theoretic results above for binary branching therefore govern also branching processes
with generalised offspring distribution.
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2.E Extension to general graphs

In this section we provide further details about the extension of our results to general graphs.
The loops integrated over in Eqs. (2.67) and (2.68) are in fact integrals over the spectrum of
the Laplacian accounting for the diffusion on the graph considered. Generalising to arbitrary
graphs, the Laplacian is to be replaced by a lattice-Laplacian and the integral in Eqs. (2.67)
and (2.68) by a suitable sum or, equivalently, an integral with suitable spectral density. In
fact, the d-dimensional integral in Eqs. (2.67) and (2.68) can be seen as an integral over all
distinct eigenvalues k2 of the Laplacian entering with weight w(k)dk = Sdk

d−1dk with Sd =
2πd/2/Γ(d/2). On regular lattices, their Hausdorff dimension d coincides with the spectral
dimension ds characteristing, in particular, the small k asymptote of w(k) ∼ kds−1. Replacing´

ddk by
´

dk w(k) suggests that the results derived above remain valid by replacing d by ds,
in order to recover the scaling of the various observables in arbitrary graphs with spectral
dimension ds. The replacement d → ds hinges crucially on the fact that ds characterises the
scaling of the spectral density of the Laplacian. If this operator itself renormalises, then a
different spectral density may be needed. In other words, ds may not be the correct dimension
if the Laplacian renormalises, i.e. if the anomalous dimension does not vanish, η 6= 0 [31]. This
argument relies on the assumption that vertices such as Eq. (2.29) preserve momentum, that is
integrals of the form

In(k1,k2, . . . ,kn) =
ˆ

ddxuk1(x)uk2(x) . . . ukn(x) (2.71)

over eigenfunctions uk(x) of the Laplacian with eigenvalue k · k vanish for off-diagonal terms,
i.e. whenever k1 +k2 + . . .+kn 6= 0. This condition can be further relaxed by demanding merely
that off-diagonal terms are sub-leading as observed in the presence of boundaries [68, 171].

Considering only graphs which are translationally invariant such that the indices jm of the q
neighbours m = 1, . . . , q of any node i can be determined by adding the same set of translational
lattice vectors, d1, . . . ,dq, such that jm = i + dm, it is easy to show that the Laplacian has
exponential eigenfunctions and any of their products are an eigenfunction as well, so that
In(k1,k2, . . . ,kn) = I2(k1,k2 + . . . + kn), which vanishes by orthogonality for any k1 + k2 +
. . .+ kn 6= 0, i.e. the assumption of momentum conservation mentioned above is fulfilled.

2.F Numerics for the scaling of moments

The scaling of the moments 〈ap〉 (t, L) for p = 1, 2, 3, . . . , 5, as function of time t in the limit
L→∞, and as function of the system size L in the limit t→∞ were obtained from numerical
Monte Carlo simulations and fitted against a power-law

f(x) = AxB (2.72)

and a power-law with corrections of the form

g(x) = AxB + CxB−1/2. (2.73)
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The fitting parameter B in Eqs. (2.72) and (2.73) provides the estimates of the exponents that
characterise the scaling of the moments in time t and sistem size L (or N , see main text), by
fitting the numerical estimates against f(x) and g(x), with x replaced by t and L, respectively.
At large times the moments display plateauing due to finite-size effects.

For the scaling in system size L, we fitted the data for the latest time point available against
Eq. (2.72) and used the estimates of A and B as the initial values for a fit against Eq. (2.73),
which gave the final estimates of the finite-size scaling exponents.

For the scaling in time t, we fitted data for the largest system, of size L = Lmax. The fitting
range in t for each moment was determined systematically as follows:

• To remove the time-point affected by the finite-size effects, we defined the upper bound
of the fitting range as the time tup for which the lowest moment displaying algebraic
divergence (p = plow) reached a value of half the maximum value in the plateau, i.e.
〈aplow〉 (tup, Lmax) = max

t
(〈aplow〉 (t, Lmax)) /2. For the preferential attachment network

the plateau was observed to occur at an earlier time point than tup, probably due to the
high connectivity of the networks, so we set the upper bound to tup

pa = (1/5) max(
〈
ak
〉

),
in this case.

• To find the lower bound tlow of the fitting range in t we iterate over an auxiliary time
t∗ starting at a value that is close to, but smaller than, tup. For each t∗, we fit both
equations, (2.72) and (2.73), to the data for Lmax. We define f̂[t∗,tup](t) and σf̂[t∗,tup](t) as
the values and errors, respectively, of fitting Eq. (2.72) to the data in the range t ∈ [t∗, tup],
and ĝ[t∗,tup](t) and σĝ[t∗,tup](t) as the values and errors, respectively, of fitting Eq. (2.73)
to the same data set and range. Further, we define N[t∗,tup] as the number of data points
within the fitting interval [t∗, tup]. In each iteration step, we lower t∗ by one time-step
(as given by the simulation data). The iteration halts at the earliest time at which both
fitting models (2.72) and (2.73) agree within errors. This earliest time defines the lower
bound tlow. Formally, this expression reads

tlow = min
0<t∗<tup

{
t∗ : |f̂[t∗,tup](t∗)− ĝ[t∗,tup](t∗)| ≤

√
N[t∗,tup] max

(
σf[t∗,tup](t

∗), σg[t∗,tup](t
∗)
)}

.

(2.74)

Where we account for correlations between estimates of moments by rescaling the error by
the square root of the number of data points in the fitting range, N[t∗,tup]. The exponents
characterising the time depenence of the moments are determined by fitting the data in the
range [t∗, tup] against Eq. (2.73).

The fitting of the power laws, Eqs. (2.72) and (2.73), was done by means of the Levenberg-
Marquardt algorithm [194]. In table 2.F.1 and 2.F.2 we report the numerical results for the
asymptotic scaling in time, 〈ap〉 (t) ∼ tαp , and in system size, 〈ap〉 (t) ∼ Lβp , provided these
observables display an algebraic divergence.”

74



2. Branching Random Walks on General Graphs

101 102

10-6

10-4

10-2

-2.9

Figure 2.F.1.: Degree distribution of the preferential attachment networks used for the
simulations presented in Sec. 2.4. This figure has been published in [25] and is
reproduced here under the creative commons licence as stated in App. A.2
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Part II.

First-passage times
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Wein. Fennin. Oliander. (Geografisch und Algebraische Hefte), Adolf Wölfli (1914).
The work of art depicted in this image and the reproduction thereof are in the public domain.
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Chapter 3

Fist passage time distribution of ac-
tive thermal particles

Abstract

We introduce a perturbative method to calculate all moments of the first-passage time distri-
bution in stochastic one-dimensional processes which are subject to both white and coloured
noise. This class of non-Markovian processes is at the centre of the study of thermal active
matter, that is self-propelled particles subject to diffusion. The perturbation theory about the
Markov process considers the effect of self-propulsion to be small compared to that of thermal
fluctuations. To illustrate our method, we apply it to the case of active thermal particles (i) in
a harmonic trap (ii) on a ring. For both we calculate the first-order (or one-loop) correction
of the moment-generating function of first-passage times, and thus to all its moments. Our
analytical results are compared to numerics.
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3. Fist passage time distribution of active thermal particles

Overview

In this chapter, I present a near verbatim copy of a preprint that is cur-
rently undergoing review

B. Walter, G. Pruessner, and G. Salbreux. First passage time distribution of active
thermal particles in potentials 2020. Submitted, arXiv:2006.00116

This Chapter contains a summary of a research project I conducted with Gunnar Pruessner
and Guillaume Salbreux (Francis Crick Institute). At its centre stand first-passage times. The
first-passage time, the time a stochastic process takes to attain a certain value, is a key concept
in stochastic dynamics and will be the central object of interest in the remaining four chapters
of this thesis. Here, we focus on the problem of first-passage times of stochastic processes with
small short-range correlated increments.

The way we approach the problem is by decomposing the process into a sum of two stochastic
contributions. The first contribution is a fully Markovian process. The second contribution,
which is assumed to be small compared to the first, is a stationary self-correlated noise which
drives the first and is therefore referred to as driving noise. The sum of both contributions
therefore inherits correlated increments from the driving noise. Since the driving noise is con-
sidered to be small, the first-passage time distribution of the full process will be “close” to
the Markovian first-passage time distribution of the undriven first process. The meaning of
closeness will be made more precise in the main text.

In this work, we find a way to calculate the difference between the Markovian and the driven
first-passage time distribution. It is not an exact result, simply because we cannot expect there
is one, but it is a systematic and controllable approximation scheme and therefore the best one
can hope for in such a situation.

This chapter is a slightly edited version of a manuscript submitted for publication.

Statement of Contribution
I have done all of the analytical and numerical work whilst being regularly and fruitfully super-
vised and adviced by Gunnar Pruessner and Guillaume Salbreux. I also wrote the manuscript
except subsection 3.2.2.B which was written by GP and slightly adapted by me.
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3. Fist passage time distribution of active thermal particles

x0

x1

x1

tThermal fluctuations ∼ √2Dx
x0

τx0,x1

Active driving noise correlation β−1

x

V(x)

Figure 3.1.: A particle in a potential (orange parabola) subject to both white and
coloured noise (see Eq. (3.1)). While the white noise models a thermal envi-
ronment whose timescale of correlation is negligibly small, the driving term models
hidden degrees of freedom which are correlated over timescales comparable to those
of the particle’s stochastic dynamics. Those driving forces induce correlations (pink
correlation kernel) in the particle’s increments and therefore break its Marko-
vianity. In this work, we study first-passage times τx0,x1 ; the time such a random
walker (blue rough path) takes to first reach x1 starting from x0 (dashed lines).

3.1 Introduction and Main results

3.1.1 Introduction

Understanding the statistical properties of first-passage times (FPTs), the time a stochastic
process takes to first reach a prescribed target, has fuelled research in stochastic dynamics for
over a century. Thanks to its wide-ranging applications it has enjoyed increased attention over
the last decade [127, 197, 166]. First-passage times are often used as a key characteristic of
complex systems, such as chemical reactions [227], polymer-synthesis [221], intra-cellular events
[97], neuronal activity [230] or financial systems [42]. Besides their dynamical information,
FPTs are helpful to understand spatial properties of complex networks [233], extreme values of
stochastic processes [117] and characteristic observables in out-of-equilibrium statistical physics
[30].

Historically, the first settings in which FPT-problems were studied were Markovian processes
in one spatial dimension. Schrödinger approached this problem first by integrating over the
probability density with absorbing boundary conditions [210]. Pontryagin et al. introduced
a method which casts the mean first-passage time (MFPT) into an ODE derived from the
Kolmogorov backward equation [193, 114]. Further, Siegert and Darling introduced a method
to obtain the moment-generating function of the FPT starting from a renewal equation [215, 52].
These three key advances of the first “classical” period suggest that, despite the innocent looking
simplicity of the problem, even Markovian processes do generally not allow for a closed form
expression of the full distribution of FPT. Expectations alone, the MFPT, are difficult enough
to compute in very simple systems.
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3. Fist passage time distribution of active thermal particles

In a parallel development, and sparked by the work of Kramers [131], much effort was put
into investigating the rate with which fluctuating particles escape from metastable potentials.
The forces the surrounding heat bath exerts on the particle, usually inter-molecular collisions,
were modelled as white noise ξt with correlator 〈ξsξt〉 = 2Dxδ(s − t). This correlator implies
that the timescale on which the particle evolves is infinitely separated from the heat bath’s
correlations [127]. In this setup, the fluctuation-dissipation theorem (FDT) [35, 137] identifies
the diffusivity Dx with a fixed temperature T of the surrounding heat bath. Particles subject
to white noise follow Markovian (memoryless) trajectories and are immersed in a heat bath in
thermodynamical equilibrium (e.g. [150]).

In many systems, the paradigm of white noise is a drastic over-simplification. Coloured noise,
i.e. noise with non-uniform power spectrum, was introduced to account for correlations due to
the heat bath [113, 136]. Coloured noise is usually assumed to have a correlator that decays
exponentially with some characteristic inverse rate β−1, sometimes referred to as the “colour” of
the noise. White noise corresponds to the limit of β →∞. Escape rate problems with coloured
noise were a highly active area of research in the late 1980s and early 1990s, when various
approximation methods to calculate the MFPT were developed [164, 139, 140, 196, 81, 126].
There contradictory predictions initially led to a considerable degree of confusion [89]. Many of
these developments are reviewed in [113].

More recently, coloured noise was suggested as a model for “active” swimmers which are self-
propelled and whose energy-consumption is fuelled by the environment [228]. In these systems,
the fluctuation-dissipation theorem does not hold (e.g. [159]) such that no thermodynamic equi-
librium can be assumed. Ensembles of non-interacting “active swimmers” have been intensively
studied over the last five years in the light of their non-equilibrium features [152, 207, 36, 37].
Notably, their first-passage time distributions have been recognised as one of their characterising
properties [158].

Over the last twenty years or so, first-passage times have regained interest independently of
escape problems, and new methods have been developed to extend older techniques into the
realm of non-Markovian stochastic processes. The classic approaches of Schrödinger (cf. [147,
71, 224]), Pontryagin (cf. [223, 235]) and Siegert (cf. [221]) have been successfully employed to a
plethora of non-Markovian systems such as generalised Langevin and Fokker-Planck equations
and coupled oscillator chains. Further approaches have been found in [236, 29, 16, 15, 105].
The vast majority of that work is concerned with MFPT, also because in many cases higher
moments or the full distribution contain prohibitively complicated expressions. And yet, the
MFPT has recently been criticised as insufficient or misleading in characterising the timescale
of a dynamics. Therefore a more precise understanding of the full distribution poses a pressing
current challenge [100, 101].

In attacking the problem of first-passage times for non-Markovian processes, various per-
turbative methods have been successfully established in the past. One such example is the
calculation of the persistence (see [155, 30]) of non-Markovian Gaussian stochastic processes
in [156]. In some similarity to the methods developed in Chp. 6, a path-integral formalism is
used to characterise Gaussian processes and to calculate constrained propagators. The result
is a perturbative expansion of the large time behaviour of the persistence probability, thus
encapsulating the tail of the first-passage time distribution. Similar perturbative approaches
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3. Fist passage time distribution of active thermal particles

have since been developed to calculate persistence exponents in critical dynamics in various
lattice models near the upper critical dimension using renormalisation group methods [33, 180],
again treating fluctuations as non-Markovian Gaussian processes. This illustrates not only the
scientific context of this chapter but also the overarching claim of this thesis, namely that
field-theoretically inspired perturbation schemes have greatly advanced the understanding of
non-Markovian Gaussian processes, for instance the large-time scaling of their first-passage
time distribution.

In this chapter, however, we depart in two ways from the work following the lines of [155, 156,
33, 180] and others: First, we do not study any critical dynamics, that means there is neither
an assumption of scale invariance nor a notion of a phase (transition). Secondly, we develop a
perturbation theory for the moment generating function instead of the large time scaling, such
that our result is a priori equally valid (in a perturbative sense) at any timescale.

In this work, we address this challenge and compute the full moment-generating function of a
class of non-Markovian stochastic processes perturbatively. In doing so, we obtain all moments
of the distribution to the same order in the perturbative expansion. To our knowledge, this
is the first time the full distribution is obtained systematically in the presence of correlated
driving noise and white thermal noise for a wide range of settings, including a potential. The
formulas we obtain order by order are exact, and the results we obtain for two systems, as an
illustration, are in excellent agreement with numerical simulation.

3.1.2 Outline

In the following, we study the first-passage time distribution of non-interacting active particles
subject to thermal noise in an external potential. Particles which are driven by coloured noise
alone, such as those studied in [87, 159], are used as a model for self-propelled particles, but
do not have a coupling to a thermal heat bath; Such systems are referred to as active and
athermal [229]. More recent models contain an active force term to capture self-propulsion in
addition to thermal white noise which represents the heat bath, e.g. [37, 212, 51]. Additionally,
a conservative force may be considered stemming from an external potential. Particles which are
driven by both white and non-white noise and are embedded in potentials are also considered
in the context of Brownian motors, see [183].

Together, for a particle moving in a 1D space, this class of thermal and active models is
characterised by a single degree of freedom xt satisfying a Langevin-type equation [127, 51] (see
Fig. 3.1 for a graphical representation)

ẋt = −V ′(xt) + ξt + εy(t); (3.1)

Here, V (x) denotes a potential, ξt a white noise with 〈ξsξt〉 = 2Dxδ(t− s) and Dx a diffusivity
fixed by the FDT. The second, stochastic term y(t) in Eq. (3.1) denotes an additional coloured
noise, in the following referred to as driving noise, which we assume to be stationary and of zero
mean. Since there are two noise-terms, we introduce the driving average • over all realisations
of y(t), as opposed to the thermal average 〈•〉 over realisations of ξt. The central result of this
work consists in finding the doubly averaged moment-generating function of first-passage times〈

exp(−sτx0,x1)
〉

perturbatively in ε.
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3. Fist passage time distribution of active thermal particles

Since y(t) is self-correlated, xt by itself is no longer Markovian; Our framework therefore
provides a tool to study FPT-distributions of non-Markovian processes. On the other hand,
this work stands in the context of recent efforts to approach active thermal systems with field-
theoretic methods. As will be reported elsewhere, the process Eq. (3.1) can be mapped to a
non-equilibrium field-theory from which a variety of observables can be deduced. In the present
work, we focus on first-passage times, for which a simpler setup is sufficient in which we use
functional perturbation theory instead of a fully-fledged field theory.

The perturbation takes place in the regime where εy(t) is small compared to ξt, that means
where thermal fluctuations dominate. In our perturbation theory, we will emphasise this point
by controlling the amplitude of the driving noise term via ε which is chosen small. Since ε
carries the dimension of an inverse time, we will later introduce ν which is a dimensionless
perturbation parameter whose precise form depends on the particular process in question. A
priori no assumption is made about the noise-colour β−1 and we recover all moments at once to
equal perturbative order. Our framework is based on the established renewal approach [215, 52],
but uses functional expansions to circumvent the problem of non-Markovianity of Eq. (3.1).

3.1.3 Main results

The central result of the present work concerns the moment-generating function of first-passage
times of xt,

F (s) =
〈
e−sτx0,x1

〉
= 1− s 〈τx0,x1〉+ s2

2
〈

(τx0,x1)2
〉

+ ... (3.2)

where τx0,x1 is the first-passage time of xt defined as

τx0,x1 := inf
t>0
{t : xt = x1|xt=0 = x0} . (3.3)

The following argument is based on two assumptions. First, we assume the moment-generating
function F (s) is known for ε = 0. The case of ε = 0 corresponds to the case of a purely
“passive” particle with no self propulsion. The particle behaves Markovian in this case, and
already established techniques can be applied (see Introduction). We refer to this state as in
equilibrium. Secondly, we assume that around this state F (s) is analytic in ε or, to be more
precise, in a dimensionless parameter ν which is of order O(ε2). This means that the moment
generating function of first-passage times has an expansion in ν of the form

F (s) =
〈

exp (−sτx0,x1)
〉

=M0(x0, x1; s) + νM1(x0, x1, ...; s) +O(ν2). (3.4)

whereM0 andM1 are the coefficients of expansion of F (s) in ν around ν = 0. The equilibrium
component, M0, can be found by classical methods such as the Darling-Siegert method which
is discussed in the next subsection. The first-order contribution, M1, requires some deeper
analysis. Much of what follows is dedicated to the calculation of M1, which to our knowledge
is new in the literature. In principle, the method we present here is capable of calculating
coefficientsM2,M3, ... of arbitrarily high order of ν for arbitrarily coloured noise (cf. Eq. (3.69))
as long as the autocorrelations can be integrated suitably. Further the potentials V (x) are
arbitrary, as long as an associated differential operator can be diagonalised (Sec. 3.3 and [9]),
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(a) Numerical validation of first order correction to FPT moment
generating function M1 (cf. Eq. (3.4)) of a particle in a harmonic
potential V (x) = α

2 x
2 subject to white noise of diffusivity Dx and

coloured Gaussian noise with correlator
yt1yt2 = Dyβ

−1 exp(−β|t1 − t2|)) (see Eq. (3.81) and Sec. 3.3.1 for
discussion). The result is calculated in Eq. (3.109). Numerical
Simulations are shown for various values of ν = Dyε

2/(Dxαβ) (plot
marks). For small values of ν agreement with theoretical first-order
correction (black line) is excellent. For larger values of ν the deviation
increases. The rescaled deviation, M̃2 (see Eq. (3.111)), (inset) collapse
and thus confirm that these deviations are systematic higher-order
corrections. See (3.3.1.B) for further results and discussion.
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(b) Numerical validation of first order correction to FPT
moment generating function M1 of a Brownian Motion on a
ring of radiues r additionally driven by coloured Gaussian noise
with correlator yt1yt2 = Dyβ

−1 exp(−β|t1 − t2|)) (see Eq. (3.115)
and Sec. 3.3.2 for discussion). The moment generating functions
were sampled for Dx = 1, α = 1, Dy = 1, β = 1

2 and varying values
of ν = ε2Dyr

2/(Dxβ2) (plot marks). For small values of ν
agreement with theoretical first-order correction (black line) is
very good. For larger values of ν the deviation increases. The
rescaled deviations, M̃2 (see Eq. (3.141)), (inset) collapse and
thus confirm that these deviations are systematic higher-order
corrections. See (3.3.2.B) for further results and discussion. ε.

Figure 3.2.: First order corrections to the moment-generating function of first-passage times as
found by the framework presented in this work for two example processes.
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otherwise it needs to be treated perturbatively as well.
We further illustrate our framework by explicitly computingM0 andM1 for two cases each of

which are additionally driven by coloured Gaussian noise, i.e. y(t) is Gaussian and has correlator
y(t1)y(t2) = Dyβ

−1 exp(−β|t1− t2|)) with some diffusivity Dy and correlation time β−1. In the
first case, the particle is places in a harmonic potential, V (x) = α

2x
2. This particular model

has been studied in, e.g., [51]. While M0 (see Eq. (3.105)) has been long known, M1 (see
Eq. (3.109)) is a new result. The first-order contribution is compared to numerical simulations
in Fig. 3.2a. Further, we calculate M0 and M1 for the case of a Brownian Motion on a ring of
radius r. The first-order contribution is compared to numerical results in Fig. 3.2b.

Our method is systematic since it allows its user to calculate in principle corrections to
arbitrary order, and it is controllable in the sense that the error can be made arbitrarily small.
Further all moments are available at once. It is also valid for arbitrary noise colours β−1.

The paper is structured as follows. In Sec. 3.2 we give detailed account of how to calculate
F (s) for small ν. First, we reproduce the Darling-Siegert argument in the equilibrium case
(ν = ε = 0). Next, we introduce a perturbative version of the Darling-Siegert equation. Then,
we obtain, as an intermediate result, a formula for F (s) which is still a functional of the coloured
noise y(t). In the last step, we need to average over the stationary distribution of y(t) to arrive
at the explicit formula Eq. (3.78) which is the main result of our work. In the subsequent
section 3.3, we calculate all quantities required for the case of a harmonic potential and a
Brownian motion with periodic boundary conditions and arrive at the first-order correction to
the moment-generating function of first-passage times Eq. (3.109). Section 3.4 concludes with
a discussion of our findings.

3.2 Perturbation Theory

As outlined above, in this work we present a way to calculate the moment-generating function
of first-passage times of stochastic processes which are close to an equilibrium state. The
underlying assumption is that moment-generating function varies smoothly as ε, the coupling
to the self-propelling force, is switched on. The moment-generating function of the equilibrium
version of the process (ε = 0) is assumed to be known in closed form, as is for instance justified
for the Ornstein-Uhlenbeck process or Brownian Motion ([9]). This exact form is then corrected
by terms in the spirit of a perturbative expansion which is controlled by powers of a dimensionless
parameter describing the distance to equilibrium. First, we revise the arguments given by
Darling and Siegert for the equilibrium case ([215, 52]). Next, we outline our perturbative
approach to the active case.

3.2.1 Notation

We introduce some notations. The transition probability density of progressing from x0 at t0
to x1 at t1 is denoted by

T (x0, x1; t0, t1) = T (t0, t1) (3.5)
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where the subscripts x0 and x1 are dropped wherever confusion can be avoided for the sake of
easier notation and where we use hats on symbols to indicate that the function depends on two
variables. Analogously the return probability at x1, T (x1, x1; t0, t1) is denoted by

R(x1; t0, t1) = R(t0, t1) = T (x1, x1; t0, t1) (3.6)

Further, the first-passage time density to first reach x1 starting from x0 is denoted by

F (x0, x1; t0, t1) = F (t0, t1) (3.7)

In the following, we denote the Fourier transform of a function f(t) by a hat as follows:

f̂(ω) =
ˆ ∞
−∞

dt e−iωtf(t) , (3.8)

with inverse
f(t) =

ˆ ∞
−∞

d̄ω eiωtf̂(ω), (3.9)

where d̄ω = dω
2π . In the same spirit, we introduce

δ̄(ω) = 2πδ(ω) =
ˆ ∞
−∞

dt e−iωt , (3.10)

chosen so that we will not encounter any powers of 2π due to the Fourier-transform.
Functions of more than one time, say f(t0, t1, t2), which depend on the difference t1 − t0 and

t2 − t0 only, say f(t0, t1, t2) = g(t1 − t0, t2 − t0) we will refer to as diagonal. Their Fourier-
transforms, then also referred to as diagonal, pick up a δ̄ pre-factor as discussed below, Sec-
tion 3.2.2.B.

3.2.1.A Equilibrium case: The Darling-Siegert solution

We here consider the equilibrium case of Eq. (3.1) defined by setting ε = 0. As xt is Markovian,
the functions F and T satisfy the following renewal equation:

T (x0, x1; t0, t1) =
ˆ t1

t0

dt′ F (x0, x2; t0, t′)T (x2, x1; t′, t1) (3.11)

for all x2 ∈ (x0, x1].
Applying a Fourier transform to Eq. (3.11), the time-homogeneity of both T (t0, t1) and

F (t0, t1) translates into diagonality in frequencies and turns the convolution into a product,
such that the result can be stated at the level of the amplitudes alone. Rearranging the terms
and choosing x2 = x1 results in

F̂ (ω) = T̂ (ω)
R̂(ω)

(3.12)

Since the Fourier transform of a probability density equals its characteristic function, Eq. (3.12)
recovers all moments of the first passage time provided T̂ is known. Further, setting ω = −is
for some s ∈ R+ turns the Fourier transforms into Laplace transforms and the characteristic
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function into the moment generating function. This recovers the Darling-Siegert equation in its
original form in which the Laplace transform of transition and return probabilities is linked to
the moment-generating function of first-passage times.

3.2.1.B Out-of-equilibrium: A perturbative approach

The argument made by Darling and Siegert breaks down when ε 6= 0: indeed when averaging
over the driving noise y(t), the renewal equation Eq. (3.11) no longer is true. The approach
we take in this paper, consists of three steps (with some of the notation introduced in the
subsequent section 3.2.2)

1. Fix a particular realisation y(t), and expand transition and return probabilities of xt as
functional expansion around y(t) ≡ 0 of the form

T̂ (ω0, ω1, [ŷ]) =
∞∑
n=0

εn
ˆ

d̄ ω̃1...d̄ ω̃nδ̄
(
ω0 + ω1 +

n∑
i=1

ω̃i

)
× T (n) (ω1, ω̃1, ..., ω̃n) ŷ(−ω̃1)...ŷ(−ω̃n) . (3.13)

2. As long as y(t) is fixed, the process, when understood as conditioned on this particular
driving, satisfies a renewal equation of the type Eq. (3.11). Inserting the perturbative
transition and return probabilities from the previous step, gives a perturbative series for
the first-passage time density F̂ (ω0, ω1; [y]) of xt conditioned on a particular y(t).

3. Averaging over the ensemble of driving noises. For simplicity, we here assume that the
correlation function of the driving noise is given by

y(t1)y(t2) = Dy

β
exp (−β|t2 − t1|) (3.14)

where β is the inverse correlation time. Generally, when computing the term of order εn,
the first n moments of y(t) need to be known.

This procedure leads to the central result of this work: the moment-generating function of
first-passage times to second order in ε reads

F (ω) = T (0) (ω)
R(0) (ω)︸ ︷︷ ︸

=:M0(x0,x1;ω)

+ε2Dy

β

[
T (2) (ω; iβ,−iβ)

R(0) (ω)
− T (1) (ω − iβ, iβ)R(1) (ω, iβ)

R(0) (ω − iβ)R(0) (ω)
(3.15)

+T (0) (ω)R(1) (ω − iβ, iβ)R(1) (ω, iβ)(
R(0) (ω)

)2
R(0) (ω − iβ)

− T (0) (ω)R(2) (ω; iβ,−iβ)(
R(0) (ω)

)2
]

+O(ε4).

In the next sections, we derive this relation in more details.

3.2.2 Perturbative Darling-Siegert equation

3.2.2.A Expression for the first-passage time distribution

By imposing an additional driving noise y(t), the transition probability and FPT probability
density of xt depend on a particular realisation of y(t). Accordingly, we introduce the transition
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probability density T (t0, t1, [y]) and FPT probability density F (t0, t1, [y]) as the densities of the
process xt conditioned on y(t) given. The conditional densities are explicitly dependent on t0

and t1 rather then their difference t1 − t0 because y(t) is an explicit function of time.
For y fixed, the process remains Markovian and therefore Eq. (3.11) still applies and gives

rise to

T (x0, x1; t0, t1; [y]) =
ˆ ∞
−∞

dt′ F (x0, x1; t0, t′; [y])×R(x1; t′, t1; [y]) (3.16)

where the dependency of the functions on the spatial values x0, x1 has been made explicit for
clarity, and we have used the fact that F (t0, t′; [y]) vanishes for t′ < t0 and R(t′, t1) vanishes for
t′ > t1 to integrate over the full real axis.

It is no longer possible to directly invert this equation in Fourier space to solve for F , as done
in Eq. (3.12), since neither terms in the integral are diagonal, i.e. they depend explicitly on
both t0, t

′ and t′, t1. However, introducing the inverse functional R−1 which is defined by the
implicit equation

ˆ ∞
−∞

dtR−1(t0, t; [y])R(t, t1; [y]) = δ(t1 − t0) (3.17)

the renewal equation can be formally solved by the relation:

F (x0, x1; t0, t1; [y]) =
ˆ ∞
−∞

dt T (x0, x1; t0, t; [y])R−1(x1; t, t1; [y]) (3.18)

Our approach is then to perform a functional expansion of the quantities involved in Eq.
(3.18) in the function y, around the Markovian case y ≡ 0.

3.2.2.B Functional expansion of the transition and return probability densities

We start by spelling out the Taylor expansion in ŷ(ω) about ŷ ≡ 0 of the transition probability
T (t0, t1; [y]) or equivalently its Fourier transform T̂ (ω0, ω1; [y])

T̂ (ω0, ω1; [y]) =
∞∑
n=0

ˆ
d̄ ω̃1 . . . d̄ ω̃n

1
n!

δnT̂ (ω0, ω1; [y])
δŷ(−ω̃1) . . . δŷ(−ω̃n)

∣∣∣∣∣
ŷ≡0
× ŷ(−ω̃1) . . . ŷ(−ω̃n) , (3.19)

where we have chosen the sign of the ω̃i in anticipation of the signs convenient below. As we
show in the following, the functional derivatives with respect to ŷ(ω) all carry a Dirac-δ in ω,
which simplifies the expressions considerably.

The derivative with respect to the Fourier-transformed ŷ(−ω) is the Fourier-transform of the
derivative with respect to y(t), which can be seen by a functional chain rule:

δ

δŷ(−ω̃)

∣∣∣∣
ŷ≡0

T̂ (ω0, ω1; [y])

=
ˆ

dt̃ δ

δy(t̃)

∣∣∣∣
y≡0

T̂ (ω0, ω1; [y]) δy(t̃)
δŷ(−ω̃) =

ˆ
dt̃ δ

δy(t̃)

∣∣∣∣
y≡0

T̂ (ω0, ω1; [y]) exp
(
−iω̃t̃

)
(3.20)
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as
δy(t̃)
δŷ(−ω̃) = exp

(
−iω̃t̃

)
(3.21)

according to Eq. (3.9) and using that the inverse Fourier-transform of ŷ ≡ 0 is y ≡ 0. Higher
order derivatives follow obviously the pattern of Eq. (3.20).

The Dirac-δ in ω of the functional derivatives implicitly present in Eq. (3.19) is found by
returning to direct time. All observables governed by Eq. (3.1) are time (-translational) invariant
after averaging over the white noise, provided y(t) is constant. To see this more clearly for
T (t0, t1; [y]) and its functional derivatives, we notice that for arbitrary shifts of time by t∗, the
transition probability obeys

T (t0, t1; [y]) = T (t0 − t∗, t1 − t∗; [ŷ]) (3.22)

with suitably shifted ŷ(t− t∗) = y(t), so that

δ

δy(t̃)
T (t0, t1; [y])

=
ˆ

dt′ δŷ(t′)
δy(t̃)

δ

δŷ(t′)T (t0 − t∗, t1 − t∗; [ŷ]) = δ

δŷ(t̃− t∗)
T (t0 − t∗, t1 − t∗; [ŷ]) (3.23)

using δŷ(t′)/δy(t̃) = δ(t′+ t∗− t̃) in the functional chain rule. Higher order derivatives produce
corresponding results.

Eq. (3.23) holds for any t∗ with the additional caveat that ŷ(t−t∗) = y(t), implying a different
transformation of y to ŷ for each t∗. Making the particular choice of t∗ = t0 renders the right
hand side of Eq. (3.23) dependent on only two time differences. Defining therefore T0 such that

T (t0, t1; [y]) = T0(t1 − t0; [ŷ0]) with ŷ0(t− t0) = y(t) , (3.24)

the functional derivative in Eq. (3.23) can be written in terms of T0 after a suitable transform
of y to ŷ0. This transform, however, becomes the identity for y(t) ≡ 0 or equivalently ŷ ≡ 0 as
needed in Eq. (3.19). The functional derivative on the right of Eq. (3.20) may thus be written
as

δn

δy(t̃1) . . . δy(t̃n)

∣∣∣∣
y≡0

T (t0, t1; [y]) = δn

ŷ0(t̃1 − t0) . . . δŷ0(t̃n − t0)

∣∣∣∣
y≡0

T0(t1 − t0; [ŷ0]) (3.25)

= T
(n)
0 (t1 − t0, t̃1 − t0, . . . , t̃n − t0; [0]) . (3.26)

On the right hand side of this equation all dependence on t0 features explicitly in the arguments
and not in ŷ0, because y(t) = const. means ŷ0(t) = const. without any dependence on t0. The
right hand side is a function rather than a functional of n + 1 arguments. Taking the Fourier
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transform in t0, t1, as well as t̃1, . . . t̃n of Eq. (3.25) thus gives

δn

δŷ(−ω̃1) . . . δŷ(−ω̃n)

∣∣∣∣
ŷ≡0

T̂ (ω0, ω1; [y]) (3.27)

=
ˆ

dt0dt1dt̃1 . . .dt̃1
δ

δy(t̃1) . . . δy(t̃n)

∣∣∣∣
y≡0

T (t0, t1; [y]) exp(−i(ω0t0 + ω1t1 + ω̃1t̃1 + . . .+ ω̃nt̃n))

(3.28)

=
ˆ

dt0dt1dt̃1 . . .dt̃1 T (n)
0 (t1 − t0, t̃1 − t0, t̃2 − t0, . . . , t̃n − t0; [0])

× exp(−i(ω0t0 + ω1t1 + ω̃1t̃1 + . . .+ ω̃nt̃n))

=δ̄(ω0 + ω1 + ω̃1 + . . .+ ω̃n)T̂ (n)
0 (ω1, ω̃1, ω̃2, . . . , ω̃n; [0]) (3.29)

combining Eqs. (3.25) and (3.20). To ease notation we introduce T (n) as

T (n) (ω̃1, . . . , ω̃n) = 1
εn
T̂

(n)
0 (ω1, ω̃1, ω̃2, . . . , ω̃n; [0]) (3.30)

which includes the factor 1/εn to make the orders of ε explicit in the functional expansion.
The derivation above may be repeated for the return probability R, which is obtained from the
transition probability T by taking x0 to x1. As a result, R is equally time-invariant. Introducing
therefore

δ̄(ω0 + ω1 + ω̃1 + . . .+ ω̃n)R(n) (ω1, ω̃1, . . . , ω̃n)

= 1
εn

δn

δŷ(−ω̃1) . . . δŷ(−ω̃n)

∣∣∣∣
ŷ≡0

R̂(ω0, ω1; [y]) (3.31)

we arrive at a new form of the functional expansions for the transition and the return proba-
bilities

T̂ (ω0, ω1, [ŷ]) =
∞∑
n=0

εn
ˆ

d̄ ω̃1 . . . d̄ ω̃nδ̄
(
ω0 + ω1 +

n∑
i=1

ω̃i

)
× T (n) (ω1, ω̃1, ..., ω̃n) ŷ(−ω̃1) . . . ŷ(−ω̃n) (3.32a)

R̂(ω0, ω1, [ŷ]) =
∞∑
n=0

εn
ˆ

d̄ ω̃1 . . . d̄ ω̃nδ̄
(
ω0 + ω1 +

n∑
i=1

ω̃i

)
×R(n) (ω1, ω̃1, ..., ω̃n) ŷ(−ω̃1) . . . ŷ(−ω̃n) . (3.32b)

3.2.2.C Functional expansion of the inverse of the return probability density

We now turn to the expansion of R−1 in Eq. (3.18). The analysis of the previous subsection
still applies and one obtains the expansion

R̂−1(ω0, ω1, [ŷ]) =
∞∑
n=0

εn
ˆ

d̄ ω̃1...d̄ ω̃nδ̄
(
ω0 + ω1 +

n∑
i=1

ω̃i

)
(3.33)

×(R−1)(n)(ω1, ω̃1, ..., ω̃n)ŷ(−ω̃1)...ŷ(−ω̃n)
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where again we simplify the notation of the expansion terms in direct analogy to Eq. (3.32).
We then obtain by applying a Fourier transform to Eq. (3.17):

ˆ
d̄ωR̂−1(ω0, ω; [ŷ])R̂(−ω, ω1; [ŷ]) = δ̄(ω0 + ω1) . (3.34)

This relation allows to relate the functions (R−1)(n) to the functions R(n), by repeatedly taking
derivatives with respect to ŷ(−ω̃i) and identifying the terms on the left hand side, which need
to vanish. The first three expansion terms thus read

(R−1)(0)(ω) = 1
R(0)(ω)

(3.35)

(R−1)(1)(ω, ω̃1) = − R(1) (ω, ω̃1)
R(0) (ω)R(0) (ω + ω̃1)

(3.36)

(R−1)(2)(ω, ω̃1, ω̃2) = 1
R(0) (ω + ω̃1 + ω̃2)R(0) (ω)

{
2R(1) (ω + ω̃2, ω̃1)R(1) (ω, ω̃2)

R(0) (ω + ω̃2)
−R(2) (ω, ω̃1, ω̃2)

}
.

(3.37)

3.2.2.D Second-order expansion of the first passage time distribution

Equipped with these expansions, one now can expand the first-passage time density expression
(3.18) to obtain a functional expansion of the first-passage density in ε, involving the functions
T̂ (n) and R̂(n) which are simpler to calculate. We first state the Fourier-transformed version of
the key relation (3.18):

F̂ (ω0, ω2; [ŷ]) =
ˆ ∞
−∞

d̄ω T̂ (ω0, ω1; [ŷ])R̂−1(−ω1, ω2; [ŷ]) . (3.38)

where the dependency on x0, x1 is here implicit. Performing an expansion of this relation in ε,
the result reads to second order:

F̂ (ω0, ω2; [ŷ]) = T̂ (0)(ω2)
R(0) (ω2)

δ̄(ω0 + ω2) (3.39)

+ ε

[
−T

(0) (−ω0)R(1) (ω2,−ω0 − ω2)
R(0) (−ω0)R(0) (ω2)

+ T (1) (ω2,−ω0 − ω2) 1
R(0) (ω2)

]
ŷ(ω0 + ω2)

+ 1
2ε

2
ˆ

d̄ ω̃
[
T (2) (ω2, ω̃,−ω0 − ω2 − ω̃)

R(0) (ω2)
− 2T (1) (−ω̃ − ω0; ω̃)R(1) (ω2,−ω0 − ω2 − ω̃)

R(0) (ω2)R(0) (−ω̃ − ω0)

+ T (0) (−ω0)
R(0) (−ω0)R(0) (ω2){2R(1) (−ω̃ − ω0; ω̃)R(1) (ω2,−ω0 − ω2 − ω̃)

R(0) (−ω̃ − ω0)
−R(2) (ω2, ω̃,−ω0 − ω2 − ω̃)

}]
× ŷ(−ω̃)ŷ(ω0 + ω2 + ω̃) + ...

At this stage, we have obtained a perturbative expansion of the first-passage time density for
a particular realisation of y, and only in terms of the expansion coefficients of transition and
return probability T and R. Before we turn to give a more explicit expression of the latter, we
discuss driving noise averaging.
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3.2.3 Driving noise averaging

As was set out initially, the quantity of interest is the first-passage time density when averaged
over all driving noises (even if the quantity given above might be of interest in itself). The
average over driving noise realisations y(t) is an average different to the average over the un-
derlying stochastic process xt, in that sense akin to “quenched disorder averages” which replace
a stochastic background field by an effective deterministic correction to observables. The ex-
pansion in Eq. (3.39) is a power series in orders of ε, where contributions of order εn contain
an internal integration over n − 1 free frequencies. The expansion terms which stand in front
of the y terms, those denoted within square brackets, are independent of y. They may be in-
terpreted as the nth order response functionals of the first-passage time distribution (in s) to
perturbations in the driving noise y. To calculate the y-average of F̂ (ω0, ω2; [y]), each term in
Eq. (3.39) is integrated over the path-measure of y, P[y]. The order of internal integration and
y-averaging can be swapped. Consequently, since 〈y〉 = 0 by assumption, all terms in first order
in y vanish. To second order, correlations of y come into play. We introduce the correlation
function

Ĉ2(ω̃2)δ̄(ω̃1 + ω̃2) = ŷ(ω̃1)ŷ(ω̃2) =
ˆ
D[y]P[y]ŷ(ω̃1)ŷ(ω̃2), (3.40)

which by assumption of stationarity in time is diagonal in Fourier space and symmetric in
ω̃ 7→ −ω̃. Averaging then amounts to an integral over the remaining free variable. We illustrate
the averaging using the simplest term of second order appearing in Eq. (3.39) which reduces to

ˆ
d̄ ω̃ T

(2) (ω2, ω̃, ω0 + ω2 − ω̃)
R(0) (ω2)

ŷ(−ω̃)ŷ(+ω0 + ω2 + ω̃)

=
ˆ

d̄ ω̃ T
(2) (ω2, ω̃,−ω̃)
R(0) (ω2)

Ĉ2(ω̃)δ̄(ω0 + ω2).

The last integral is irreducible and needs to be calculated for the corresponding correlator. In
this fashion, all terms in Eq. (3.39) are averaged and result in

F̂ (ω0, ω2; [y]) = T (0) (ω2)
R(0) (ω2)

δ̄(ω0 + ω2)

+ε2

−
ˆ

d̄ ω̃ T
(0) (ω2)R(2) (ω2, ω̃,−ω̃)(

R(0) (ω2)
)2 Ĉ2(ω̃)︸ ︷︷ ︸

=:(I)

+ 2
ˆ

d̄ ω̃ T
(0) (ω2)R(1) (ω2 + ω̃, ω̃)R(1) (ω2,−ω̃)(

R(0) (ω2)
)2
R(0) (ω2 + ω̃)

Ĉ2(ω̃)︸ ︷︷ ︸
=:(II)

− 2
ˆ

d̄ ω̃ T
(1) (ω2 + ω̃, ω̃)R(1) (ω2,−ω̃)
R(0) (ω2)R(0) (ω̃ − ω2)

Ĉ2(ω̃)︸ ︷︷ ︸
=:(III)

+
ˆ

d̄ ω̃ T
(2) (ω2, ω̃,−ω̃)
R(0) (ω2)

Ĉ2(ω̃)︸ ︷︷ ︸
=:(IV )

 δ̄(ω0 + ω2) + ...

(3.41)

The first term, of zeroth order, represents the Darling-Siegert solution (3.12). This is consistent
with our expansion around the base-point of no driving noise (fully Markovian process). Once
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averaged, the second-order contribution is again diagonal (i.e. proportional to δ̄(ω0 + ω2)) in-
dicating that the y-averaged first-passage distribution is again invariant under time-shifts. The
four correction terms featuring in the second order expansion in ε are labelled (I) to (IV ), and
need to be calculated explicitly. This requires to find explicit expressions for the coefficients
of expansion T (n) (ω1, ω̃1, ..., ω̃n) and R(n) (ω1, ω̃1, ..., ω̃n). These expressions are derived in the
following section.

3.2.4 Finding the coefficient terms for probability densities in the functional
expansion

In this section we show how the functional expansion of transition and return probability are
obtained perturbatively in terms of some suitable eigenfunctions.

The transition probability T (t0, t1) of the undriven process, characterised by Langevin equa-
tion (3.1) for ε = 0, depends on the time-difference only and can therefore be shortened to
T (t0, t1) = T (0) (t1 − t0). The transition density solves the Kolmogorov forward equation

∂tT
(0) (t) = Lx1T (0) (t) t > 0

T (0) (t = 0) = δ(x1 − x0)
(3.42)

where we introduce the forward evolution operator L as

Lf = ∂x(V ′(x)f) +Dx∂
2
xf, (3.43)

where f is a twice differentiable test function, and may denote the forward operator as Lx1 to
indicate its gradient terms are acting on x1 where necessary to avoid confusion. Correspondingly,
the L2-adjoint operator L†, also referred to as backward operator, is

L†f = −V ′(x)∂xf +Dx∂
2
xf. (3.44)

The forward operator L has a countable set of eigenfunctions {un(x)} and a non-positive spec-
trum 0 ≥ −λ0 > −λ1 > . . . [184],

Lun(x) = −λnun(x) n ∈ N0 (3.45)

but is a priori not self-adjoint in L2(R). In fact, one can show [184] that L is self-adjoint on
L2(u0), the space of square-integrable functions weighted by the stationary solution

u0(x) = N exp
(
−V (x)

Dx

)
(3.46)

with N a suitable normalisation constant. In what follows, however, we will discuss eigenfunc-
tions in the unweighted L2 space. To that end, we need to slightly modify the operator to
ensure that our choice of adjoint eigenfunctions is still a suitable bi-orthogonal base of L2. It is
straightforward to show [200] that the operator

L = (u0(x))−
1
2 L (u0(x))

1
2 = exp

(
V (x)
2Dx

)
L exp

(
−V (x)

2Dx

)
(3.47)
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is indeed self-adjoint in (unweighted) L2 and that therefore the family of{
exp

(
V (x)
2Dx

)
un(x)

}∞
n=0

, (3.48)

as eigenfunctions of L, form an orthogonal set of eigenfunctions spanning L2(R). Defining un(x)
as right eigenfunctions, and

vn(x) = e
V (x)
Dx un(x) (3.49)

as left eigenfunctions, satisfying

L†vn(x) = −λnvn(x), (3.50)

we obtain a bi-orthogonal set which after suitable normalisation fulfils
ˆ

dx vm(x)un(x) = δm,n. (3.51)

This is useful to solve the forward equation; taking the Fourier transform in time of Eq. (3.43),
one obtains

iωT (0) (ω) = LT (0) (ω) + δ(x1 − x0). (3.52)

Inserting the ansatz

T (0) (ω) =
∑
n

T (0)
n (x0;ω)un(x1) (3.53)

into Eq. (3.52) and using Eq. (3.45) leads to

∑
n

(iω + λn)T (0)
n (x0;ω)un(x1) =

∑
n

vn(x0)un(x1) (3.54)

where we made use of the decomposition of unity,

δ(x0 − x1) =
∑
n

vn(x0)un(x1). (3.55)

Since the un(x1) are linearly independent, their prefactors in Eq. (3.54) need to agree. Therefore,

T (0)
n (x0; s) = vn(x0)

iω + λn
(3.56)

implying, together with Eq. (3.53),

T (s) =
∑
n

vn(x0)un(x1)
iω + λn

. (3.57)

Turning to the case of ε 6= 0, the translation probability of the driven Langevin equation (3.1)
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solves the forward equation∂t1 T̂ (t0, t1; [y]) = (Lx1 + εy(t1)∂x1) T̂ (t0, t1; [y])

T̂ (t0, t0; [y]) = δ(x1 − x0)
(3.58)

where time-homogeneity can no longer be assumed. Under Fourier transform, this forward
equation becomes

(iω1 − Lx1) T̂ (ω0, ω1; [y]) = δ(x1 − x0) + ε∂x1

ˆ
d̄ ω̃1 ŷ(ω̃1)T̂ (ω0, ω1 − ω̃1; [y]) (3.59)

where the y-dependent term turns from a product into a convolution under the Fourier trans-
form. We develop a perturbative solution of T̂ (ω0, ω1; [y]) in powers of y, akin to previous
perturbative approaches for externally driven Fokker-Planck equations as developed in [183].
Following functional expansion ansatz (3.32), and using zeroth order result (3.57), we assume

T̂ (ω0, ω1; [y]) =
∑
n

vn(x0)un(x1)δ(ω0 + ω1)
iω1 + λn

+ ε

ˆ
d̄ ω̃1T

(1) (ω1, ω̃1) ŷ(ω̃1)δ̄(ω0 + ω1 + ω̃1) + ...

(3.60)

Since the un(x) span the L2-space, in analogy to ansatz (3.53), we assume that the first-order
correction too can be written as a sum

T (1) (ω1, ω̃1) =
∑
n

T (1)
n (x0;ω1, ω̃1)un(x1). (3.61)

Re-inserting this ansatz into Eq. (3.59) causes all terms to zeroth order in y to cancel, and one
obtains an equation relating the contributions proportional to ε,

∑
n

(iω1 + λn)
ˆ

d̄ ω̃1T
(1)
n (x0;ω1, ω̃1) ŷ(ω̃1)un(x) =

ˆ
d̄ ω̃1

∑
n

vn(x0)∂x1un(x1)
i(ω1 − ω̃1) + λn

ŷ(ω̃1). (3.62)

The right hand side, which is the convolution of T (0) (ω) and ŷ(ω), no longer sums over un(x1)
but their derivative ∂x1un(x1). In order to compare both left and right terms, we need to
express this sum as a sum over the linearly independent un(x1) again. The decomposition of
the derivative in terms of un(x1) is given by

∂xun(x1) =
∑
k

∆nkuk(x1) (3.63)

where we refer to the ∆nk as derivative coupling matrix whose entries, as follows from bi-
orthogonality, are

∆nk =
ˆ

dx vk(x)∂xun(x). (3.64)

Using this notation, inserting the sum (3.63) into Eq. (3.62), and resolving the ansatz (3.61),
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one yields

T (1) (ω1, ω̃1) =
∑
n,k

vk(x0)∆knun(x1)
(i(ω1 − ω̃1) + λk)(iω1 + λn) (3.65)

In a similar way, the second order correction can be found: Using

T̂ (ω0, ω1; [y]) =
[∑

n

vn(x0)un(x1)δ(ω0 + ω1)
ω1 + λn

+ ε
∑
n,k

vk(x0)∆knun(x1)
(−ω0 + λk)(ω1 + λn) ŷ(ω0 + ω1)

+ ε2
x

d̄ ω̃1d̄ ω̃2T
(2) (ω1, ω̃1, ω̃2) ŷ(ω̃1)ŷ(ω̃2)δ̄(ω0 + ω2 + ω̃1 + ω̃2)

]
+ · · · (3.66)

as ansatz, with the results from Eqs. (3.57) and (3.65) to zeroth and first order, inserting this
ansatz into the forward equation (3.59) gives, following in complete analogy to the previous
steps,

T (2) (ω1, ω̃1, ω̃2) =
∑
n,m,k

vn(x0)∆nk∆kmum(x1)
(i(ω1 − ω̃1 − ω̃2) + λn)(i(ω1 − ω̃1) + λk)(iω1 + λn) . (3.67)

Following this method, it is straightforward to generate the perturbative terms of T (n) to
arbitrary order in n,

T (n) (ω1, ω̃1, ..., ω̃n) =
∑

k0,...,kn

vk0(x0)∆k0k1 · ... ·∆kn−1knukn(x1)∏n
j=0

(
i(ω1 −

∑j
`=0 ω̃`) + λkj

) . (3.68)

Finally, choosing x0 = x1 in any of the expressions (3.57), (3.65), (3.67) and (3.68) gives the
corresponding terms for the return probability coefficients R(0) (ω) , R(1) (ω, ω̃1) , .... Equipped
with these expressions, we are able to compute the relevant integrals in the formula for the
y-averaged first-passage time density Eq. (3.41).

3.2.5 The full one-loop correction to the moment-generating function

So far, in our derivation of the second-order correction to the first-passage time density, Eq. (3.41),
we only demanded the active driving noise to be stationary, with finite correlations and vanish-
ing mean. In what follows, we specify y(t) to be Gaussian coloured noise. This choice is almost
canonical in the study of coloured noise, in our case it greatly simplifies the necessary integrals.
It is, however, possible to use any other correlation functions as long as the integrals remain
manageable. Generally, to compute the perturbative contribution of nth order in y, the n-point
correlation function of y(t) needs to be known; For Gaussian processes all higher moments fol-
low from the two-point correlation function which simplifies the calculation of potential higher
order corrections. Since the correlation function of coloured noise is an exponential, the results
obtained in this section hold for any noise with such autocorrelation up to order O(ε2). In par-
ticular, this implies that the results developed in the following hold to this perturbative order for
telegraphic noise as is used in the run-and-tumble process [40] for which recently first-passage
time statistics have been found in [66]. In difference to the typical run-and-tumble process,
however, the active thermal processes studied in this chapter are dominated by the thermal
noise contribution ξt, and the perturbation takes place in the magnitude of the active noise.
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The run-and-tumble process therefore is at the opposite end of the thermal-active spectrum of
stochastic processes.

Gaussian coloured noise is defined by its exponential correlator,

y(t1)y(t2) = Dyβ
−1 exp (−β|t1 − t2|) , (3.69)

which in Fourier space reads (Eq. (3.40))

Ĉ2(ω̃) = 2Dy

ω̃2 + β2 (3.70)

With the explicit expressions (3.57),(3.65), (3.67), we perform the loop-integral of (I) (see
Eq. (3.41) for notation) in eigenfunction-representation,

(I) =
ˆ

d̄ ω̃ T
(0) (ω2)R(2) (ω2, ω̃,−ω̃)(

R(0) (ω2)
)2 Ĉ2(ω̃) (3.71)

= 2Dy
T (0) (ω2)(
R(0) (ω2)

)2
ˆ

d̄ ω̃R
(2) (ω2, ω̃,−ω̃)
β2 + ω̃2

= 2Dy
T (0) (ω2)(
R(0) (ω2)

)2 ∑
n,m,k

×
ˆ ∞
−∞

d̄ ω̃ vn(x1)∆nk∆kmum(x1)
(iω2 + λn)(i(ω2 − ω̃) + λk)(iω2 + λm)

1
ω̃2 + β2

= Dy

β

T (0) (ω2)R(2) (ω2,−iβ, iβ)(
R(0) (ω2)

)2 . (3.72)

where in the last equality we employed Cauchy’s residue theorem closing the contour in the
lower half-plane containing the simple pole at ω̃ = −iβ. Likewise, we find

(IV ) =
ˆ

d̄ ω̃ T
(2) (ω2, ω̃,−ω̃)
R(0) (ω2)

Ĉ2(ω̃) (3.73)

= 2Dy
1

R(0) (ω2)
∑
n,m,k

×
ˆ ∞
∞

d̄ ω̃ vn(x0)∆nk∆kmum(x1)
(iω2 + λn)(i(ω2 − ω̃) + λk)(iω2 + λm)

1
ω̃2 + β2

= Dy

β

T (2) (ω2,−iβ, iβ)
R(0) (ω2)

where again the integral is evaluated by closing the contour in the lower half-plane enclosing
the pole at ω̃ = −iβ.

The diagrams (II) and (III), featuring ω̃-dependent denominators, require some more careful
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analysis. We have

(II) = 2
ˆ

d̄ ω̃ T
(0) (ω2)R(1) (ω2 + ω̃, ω̃)R(1) (ω2,−ω̃)(

R(0) (ω2)
)2
R(0) (ω2 + ω̃)

Ĉ2(ω̃)

= 4Dy
T (0) (ω2)(
R(0) (ω2)

)2 (3.74)

ˆ ∞
−∞

d̄ ω̃
∑
mnk`

vm(x1)∆mnun(x1)
(iω2+λm)(i(ω2+ω̃)+λn) ·

vk(x1)∆k`u`(x1)
(i(ω2+ω̃)+λk)(iω2+λ`)(∑

j
vj(x1)uj(x1)
i(ω2+ω̃)+λj

)
(ω̃2 + β2)

Again, the numerator’s poles all lie in the upper half-plane with the exception of the pole at
ω̃ = −iβ stemming from the correlator. Before evaluating the integral by closing the contour in
the lower half-plane, however, one needs to confirm that the denominator R(0) (ω2 + ω̃) does not
have any roots for =(ω̃) < 0 as these would lead to further poles. That this is indeed the case
can be shown as follows. Using relation (3.49), one finds that vj(x1)uj(x1) = e−V (x1)/Duj(x1)2.
Since the uj(x) span the L2, there cannot be a x1 for which all uj(x1) = 0. It follows that
all vj(x1)uj(x1) are all real and non-negative, and at least one is strictly positive. Further,
by assumption =(ω̃) < 0, λj ≥ 0 and =(ω2) < 0 (for convergence of Eq. (3.8)). Therefore,
<(i(ω2 + ω̃) + λj) > 0. Finally, the real part of a positive real number divided by a number
with positive real part is positive. Therefore, R(0) (ω2 + ω̃) has strictly positive real part in the
lower half-plane and thus no roots. The contour can safely be closed in the lower half-plane
and, invoking Cauchy’s residue formula the integral is given by

(II) = 2Dy

β

T (0) (ω2)R(1) (ω2 − iβ, iβ)R(1) (ω2, iβ)(
R(0) (ω2)

)2
R(0) (ω2 − iβ)

. (3.75)

By analogous reasoning one obtains

(III) = 2
ˆ

d̄ ω̃ T
(1) (ω2 + ω̃, ω̃)R(1) (ω2,−ω̃)
R(0) (ω2)R(0) (ω̃ − ω2)

Ĉ2(ω̃) (3.76)

= 2Dy

β

T (1) (ω2 − iβ, iβ)R(1) (ω2, iβ)
R(0) (ω2)R(0) (ω2 − iβ)

(3.77)

All four terms together give a general formula for the moment generating function of first-
passage times for arbitrary underlying processes and driving noises provided the eigenfunctions
and correlators are known. In the case of driving noise with exponentially decaying auto-
correlation, the full formula for F̂ (ω0, ω2) = F (ω2) δ̄(ω0 + ω2), reads

F (ω) = T (0) (ω)
R(0) (ω)

(3.78)

+ ε2Dy

β

[
−T

(0) (ω)R(2) (ω,−iβ, iβ)(
R(0) (ω)

)2 + 2T
(0) (ω)R(1) (ω − iβ, iβ)R(1) (ω, iβ)(

R(0) (ω)
)2
R(0) (ω − iβ)

(3.79)

−2T
(1) (ω − iβ, iβ)R(1) (ω, iβ)
R(0) (ω)R(0) (ω − iβ)

+ T (2) (ω,−iβ, iβ)
R(0) (ω)

]
(3.80)

This general result concludes this section. In the next section, we consider two concrete examples
to demonstrate how this perturbation theory can be turned into analytical results.
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3.3 Results

3.3.1 Active Thermal Ornstein Uhlenbeck Process (ATOUP)

In this example we study the case of a particle in a harmonic potential driven by white and
coloured noise described by the Langevin Equation

ẋt = −αxt + ξt + εy(t) (3.81)

with driving noise correlator (see Eq. (3.69))

y(t1)y(t2) = Dyβ
−1e−β|t1−t2|. (3.82)

This process reduces to the simple Ornstein Uhlenbeck process when ε = 0 which models a
particle in a harmonic potential (V (x) = α

2x
2) within a thermal bath. We consider, however,

the process driven by an additional “active” term εy(t). We therefore refer to this process
as active thermal Ornstein Uhlenbeck process (ATOUP). In the undriven case (ε = 0), the
dynamics are characterised by the time and length-scales α−1 and

` =
√
Dxα−1.

3.3.1.A From eigenfunctions to the moment generating function of first-passage
times

The Fokker-Planck equation associated (cf. Eq. (3.43)) to the Langevin Equation (3.81) has
eigenvalues

λn = αn (3.83)

and is diagonalised by the (normalised) eigenfunctions

vm(x) = 1√√
2π` ·m!

Hem
(
x

`

)
(3.84)

un(x) = 1√√
2π` ·m!

Hem
(
x

`

)
· exp

(
− x

2

2`2

)
(3.85)

where we introduced Hermite polynomials using the convention

Hen(x) = (−1)ne
x2
2

dn

dxn e
−x

2
2 (3.86)

which satisfy the relation

∂x Hen(x) = xHen(x)−Hen+1(x) (3.87)
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such that the coupling matrix (cf. Eq. (3.64)) resolves to

∆mn = −
√
n

`
δm+1,n (3.88)

This time the coupling matrix is no longer diagonal, but instead incoming momentum n is
upgraded to outgoing momentum n+ 1 by the noise coupling. Just as in the case of Brownian
motion, the amplitude of ∆m,n grows like |∆m,n| ∼

√
λm. For later use, we also note that

(x− ∂x)vn(x) =
√
n+ 1 vn+1(x) (3.89)

∂xvn(x) =
√
n vn−1(x) (3.90)

By L2-adjointness, it follows that the adjoint creation and annihilation operators are1

−∂xun(x) =
√
n+ 1un+1(x) (3.91)

(x+ ∂x)un(x) =
√
nun−1(x) (3.92)

In order to compute the transition and return probabilities, the following identity [153]

∞∑
k=0

Hek(x) Hek(y)e−
y2
2

k! zk (3.93)

= 1√
1− z2

exp
(
−1

2
(y − zx)2

1− z2

)
(3.94)

proves to be useful.
We introduce all quantities in dimensionless form, such as the reduced frequency σ and the

reduced autocorrelation time β′ as

σ = iα−1ω β′ = α−1β (3.95)

By considering the Fourier transform at σ = iα−1ω, we are effectively studying the Laplace
transform. This is intended since our final observable is the moment generating function, the
Laplace transform of the first-passage time distribution. Further, we denoted the lengths rescale
by ` as

x′1 = `−1x1 x′0 = `−1x0. (3.96)

In the discussion that follows, we analyse all densities as densities in these dimensionless quan-
tities to simplify notation and calculations. Following Eq. (3.57), one obtains for the transition

1It further follows that forward operator is L = −∂x(x + ∂x) and L† = (x − ∂x)∂x, when interpreting them as
number operators on a Fock space [3].
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probability

T (0) (σ) = 1√
2π`α

∑
n=0

Hen(x′0) Hen(x′1)e−
x′1

2

2

n!(σ + n) (3.97)

= 1√
2π`α

ˆ ∞
0

dt e−σt
∞∑
n=0

Hen(x′0) Hen(x′1)e−
x′1

2

2

n!
(
e−t
)n

= 1√
2π`α

ˆ ∞
0

dt e−σt√
1− e−2t

exp
[
−(x′1 − x′0e−t)

2(1− e−2t)

]

where we used identity (3.94) setting z = e−t. This choice suggests already that this integral
is in fact the Laplace transform of the Ornstein-Uhlenbeck propagator (in t↔ σ) the result of
which is known in the literature to be ([52])

T (0) (σ) =


Γ(σ)√
2π`α exp

(
x′0

2−x′1
2

4

)
D−σ (−x′0)D−σ (x′1) x′0 < x′1

Γ(σ)√
2π`α exp

(
x′0

2−x′1
2

4

)
D−σ (x′0)D−σ (−x′1) x′0 > x′1

(3.98)

where we introduced the parabolic cylinder functions D−σ(x) ([102, 9.240]). By continuity, for
x′0 → x′1 it follows that

R(0) (σ) = Γ(σ)√
2π`α

D−σ(x′1)D−σ(−x′1). (3.99)

In order to compute T (1) (σ,−β′), we use Eq. (3.65) and the derivative coupling matrix computed
in (3.88) to find

T (1) (σ, iβ′) = 1√
2π`2α2

∑
n

vn(x′0)(−
√
n+ 1)un+1(x′1)

(σ + β′ + n)(σ + n+ 1) (3.100)

= 1√
2π`2α2(1− β′)

∂x′1

∑
n

vn(x′0)un(x′1)
[ 1
σ + β′ + n

− 1
σ + n+ 1

]

=
∂x′1

`α(1− β′)
[
T (0) (σ + β′

)
− T (0) (σ + 1)

]
where we made use of relation (3.91) in the second equality. Letting x′0 → x′1, one obtains
R(1) (σ,−β′). The counterpart, T (1) (σ + β′, β′), is similarly found to be

T (1) (σ − iβ′, iβ′) =
∂x′1

`α(1 + β′)
[
ρ

(0)
x′0,x

′
1
(σ)− ρ(0)

x′0,x
′
1
(σ + β′ + 1)

]
(3.101)

This terms can be explicitly calculated and simplified. The rather lengthy but explicit expres-
sions are given in appendix 3.C.
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For the second order derivative term, using formula (3.67), one finds

T (2) (σ,−iβ′, iβ′) = 1√
2π`3α3

∞∑
n=0

vn(x′0)
√
n+ 1

√
n+ 2un+2(x′1)

(σ + n)(σ + β′ + n+ 1)(σ + n+ 2) (3.102)

=
∂2
x′1√

2π`3α3

∞∑
n=0

vn(x′0)un(x′1)
(σ + n)(σ + β′ + n+ 1)(σ + n+ 2)

=
∂2
x′1

`2α2

[ 1
2(β′ + 1)T

(0) (σ)− 1
2(β′ − 1)T

(0) (σ + 2) + 1
(β′2 − 1)

T (0) (σ + β′ + 1
)]

Again, the evaluated terms, including for x′0 → x′1 are given in appendix 3.C.
Equipped with the return and transition probabilities and its first two derivatives with respect

to driving noise y (cf. (3.98)-(3.102)), we obtain the four diagrammatic contributions (3.71)-
(3.77) which constitute the one-loop correction formula (3.78). Whilst all the explicit expressions
are given in appendix 3.C, we here give the moment generating function in full as a undriven
part and a perturbative correction, using s = ασ = iω,

〈
e−sτx0→x1

〉
= F (s)

=MOU
0

(
x0
`
,
x1
`
, α−1s

)
+ Dyε

2

Dxαβ︸ ︷︷ ︸
=:νOU

MOU
1

(
x0
`
,
x1
`
, α−1β, α−1s

)
+O(ν2

OU ) (3.103)

where we introduced the dimensionless parameter of expansion

νOU = ε2Dy

Dxαβ
. (3.104)

As is already known from literature (e.g. [52]),

MOU
0 (x′0, x′1, σ) =


exp

(
x′0

2−x′1
2

4

)
D−σ(−x′0)
D−σ(−x′1) x′0 < x′1

exp
(
x′0

2−x′1
2

4

)
D−σ(x′0)
D−σ(x′1) x′0 > x′1.

(3.105)

By symmetry (x′0, x′1) ↔ (−x′1,−x′0) of the problem and symmetry of driving noise, it suffices
to regard one case only, such that without loss of generality we assume x′0 < x′1. The central
result of this section then is

MOU
1 (x′0, x′1, β′, σ) (3.106)

= σe
x′0

2−x′1
2

4

2
(
β′2 − 1

)
D−σ(−x′1)2D−β′−σ(−x′1)

(3.107)

×
[(
β′ + 1

)
(σ + 1)

(
D−σ(−x′0)D−σ−2(−x′1)−D−σ−2(−x′0)D−σ(−x′1)

)
D−β′−σ(−x′1)

(3.108)

−2(β′ + σ)D−σ−1(−x′1)
(
D−σ(−x′0)D−β′−σ−1(−x′1)−D−σ(−x′1)D−β′−σ−1(−x′0))

)]
(3.109)
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Using for instance a computer algebra system, all moments can be obtained by differentiation
and evaluating the limit of σ → 0 at which all derivatives have a removable singularity.

3.3.1.B Numerical Validation

In order to corroborate the closed form result of the first-order correction to the moment gener-
ating function of first-passage times, Eq. (3.109), we employ Monte Carlo simulations integrating
the driven Langevin equation (3.81) N ' 106 times, numerically find the first-passage time τ̃i,
and average the moment generating function M̃ = 1

N

∑N
i=1 exp (−sτ̃i) over the range s ∈ [0, 5].

Throughout this work, the tilde denotes quantities that have been numerically obtained. Since
we assume an expansion of the form M(ν) =M0 + νM1 + ν2M2 + ..., we take the numerical
first derivative

M̃1(ν) = M̃(ν)−M0
ν

(3.110)

which expands as M̃1(ν) = M1 + νM2 + . . ., to verify our analytic prediction of M1. In
Fig. 3.2a, the numerical estimate M̃1 is shown for various values of ν, together with the analytic
expression Eq. (3.109) of the scaling function M1. For small ν, the agreement is excellent. For
larger values of ν, higher-order corrections become more visible. The next-higher contribution,
which we did not calculate analytically but which can be found by following the framework to
second order in ν, is numerically estimated by taking the second numerical derivative,

M̃2(ν) = M̃1(ν)−M1
ν

, (3.111)

and is shown in the inset of Fig. 3.2a. For 0.2 ≤ ν ≤ 0.8, the second-order corrections collapse,
indicating that the deviations in the main figure are well accounted for by second-order cor-
rections. For ν = 0.1, M̃2 deviates slightly due to the statistical noise, since the second order
correction is very small.

This numerical result therefore confirms the analytically obtained first-order correction to the
moment-generating function; consequently, the correction to all moments has been gained. As
an illustration, we further show the first and second moment of the Ornstein-Uhlenbeck process
driven by coloured noise in Fig. 3.1a and Fig. 3.1b. In analogy to the moment-generating
function, we measure the mean and mean square first passage times T̃ 1 = 1

N

∑N
i=1 τ̃i, T̃ 2 =

1
N

∑N
i=1 τ̃

2
i , which we assume to expand in ν as T 1(ν) = T 1

0 + νT 1
1 + ν2T 1

2 + . . . and T 2(ν) =
T 2

0 + νT 2
1 + ν2T 2

2 + . . .. The first-order corrections introduced are obtained by differentiation
wrt σ

T n1 = 1
n!

d n

d(−σ)n

∣∣∣∣
σ=0
M1 (3.112)

using the result of Eq. (3.109) which is performed by a computer algebra system and evalu-
ated exactly. Due to their lengthiness, we do not give their full expression here. In order to
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(a) Correction to mean first passage time of active thermal Ornstein
Uhlenbeck process (cf. Eq. (3.81)) as obtained from Eq. (3.113) versus
target positions x1, x0 = 0 fixed, and various values of ν (plot marks)
compared to theoretical result to first order in ν (black line) using
Eq. (3.112) and the result obtained in (3.109). The inset shows the mean
first-passage time τx0,x1 as measured vs x1 and its corrections for values of
ν = 0.1 to 0.8. Correction due to active driving noise increases MFPT for
x1 . 1.6 and decreases MFPT for x1 & 1.6. This behaviour is fully captured
by the analytic result.
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(b) Correction to mean squared first passage time of active thermal
Ornstein Uhlenbeck process (cf. Eq. (3.81)) as obtained from Eq. (3.114)
versus target positions x1, x0 = 0 fixed, and various values of ν (plot marks)
compared to theoretical result to first order in ν (black line) using
Eq. (3.112) and the result obtained in (3.109). The inset shows the mean
squared first-passage time τx0,x1 as measured vs x1 and its corrections for
values of ν = 0.1 to 0.8. Correction due to active driving noise increases
MFPT for x1 . 1.6 and decreases MFPT for x1 & 1.6. This behaviour is fully
captured by the analytic result.

Figure 3.1.: First order correction to first and second moment of ATOUP.
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numerically confirm these predictions, we measure the first order derivatives

T̃ 1
1 (ν) = T̃

1
1 (ν)− T 1

0
ν

(3.113)

T̃ 2
1 (ν) = T̃

2
1 (ν)− T 2

0
ν

(3.114)

and compare it to the result obtained from Eq. (3.112). In Fig. 3.1a and Fig. 3.1b, we show
the resulting moments of first-passage times obtained for fixed start position x0 = 0 (at the
minimum of the potential) but varied x1 ∈ [0.05, 2]. The figures show a clear agreement with
the theoretical result and systematic deviations for larger ν. Further, we observe that in this
setting the coloured noise increases the mean-first passage time for smaller distances (x1 . 1.6)
and decreases it for larger distances. This also holds true for the mean squared first-passage
time. This example therefore further illustrates that the effect of coloured driving (or memory)
on the Langevin dynamics is highly non-trivial, but yet our framework is to capture this effect.
The insets in both figures show the measured moments T̃ 1, T̃ 2.

3.3.2 Active Thermal Brownian Motion on a ring (ATBM)

In this subsection, we consider the case of Brownian Motion xt driven by coloured noise with
periodic boundary conditions (x ≡ x+ 2πr). The position of the particle satisfies the Langevin
equation

ẋt = ξt + εy(t) (3.115)

with

〈ξt1ξt2〉 = 2Dxδ(t1 − t2) (3.116)

〈y(t1)y(t2)〉 = Dyβ
−1e−β|t1−t2|. (3.117)

We refer to this system as Active Thermal Brownian Motion on a ring (ATBM). In analogy
to the previous subsection, we derive the correction to the moment generating function of the
first-passage time distribution.

3.3.2.A From eigenfunctions to the moment generating function of first-passage
times

The eigenfunctions associated to the forward equation corresponding to Langevin Equation
(3.115) are

un(x) = 1√
2πr

ei
kx
R (3.118)

vn(x) = 1√
2πr

e−i
kx
R (3.119)

with corresponding eigenvalues

λn = Dxr
−2n2 (n ∈ Z). (3.120)
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The eigenfunctions are conjugate to each other since the forward operator of simple diffusion,
L = Dx∂

2
x, is self-adjoint. From this follows that the noise-coupling matrix,

∆mn = 1
2πr

ˆ 2πr

0
dx in

r
ei(n−m)x

r = i
n

r
δmn (3.121)

is diagonal and purely imaginary. Because of scale-invariance and rotational symmetry, we
simplify the following discussion by introducing the dimensionless angle

θ := x1 − x0
r

, (3.122)

where we restrict ourselves to θ ∈ [0, 2π), and the diffusive timescale

α−1 = r2

Dx

with which we rescale the Fourier-frequency s to

σ = iα−1ω, (3.123)

again effectively evaluating the Laplace transform (cf. Eq. (3.8)) of the respective probability
densities. With this simplified notation, the transition density to zeroth order reads

T (0) (σ) = 1
2παr

∞∑
k=−∞

eikθ

σ + k2

= 1
2αr

cosh ((θ − π)
√
σ)√

σ sinh (π
√
σ) , (3.124)

and the return probability, setting θ = 0, is

R(0) (σ) = 1
2αr

cosh (π
√
σ)√

σ sinh (π
√
σ) . (3.125)

Assuming the y-averaged moment generating function has an expansion of

F (s) =M0

(
x1 − x0

r
,
r2

Dx
s

)
+ Dyε

2

Dxαβ︸ ︷︷ ︸
νBM

M1

(
x1 − x0

r
,
r2

Dx
s,
r2β

Dx

)
+O(ν2

BM ), (3.126)

where we introduced the dimensionless perturbative parameter

νBM = Dyε
2

Dxαβ
= ε2Dyr

2

D2
xβ

, (3.127)

then the zeroth order contribution is, using the classic result Eq. (3.12), and the results in
(3.124), (3.125),

M0(θ, σ) = cosh ((θ − π)
√
σ)

cosh (π
√
σ) (3.128)
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which expands around σ = 0 as

M0(θ, σ) =1 +
(
θ2

2 − πθ
)
σ (3.129)

+ 1
24
(
θ4 − 4πθ3 + 8π3θ

)
σ2

+ 1
720

(
θ6 − 6πθ5 + 40π3θ3 − 96π5θ

)
σ3 + . . .

Being a moment generating function, the prefactors in front of σn correspond to the (rescaled)
moments of the first-passage time (−1)n

n!
〈
τnx0→x1

〉 (Dx
r2

)n
.

We turn to higher orders in ε. To first order, the transition density

T (1) (σ, iβ′) = 1
2πα2r2

∞∑
n=−∞

−in
(σ + β′ + n2)(σ + n2) = 0 (3.130)

vanishes since the sum is over terms odd in n. Here, we introduced

β′ = α−1β (3.131)

as the dimensionless correlation time-scale of the coloured noise. This implies that the con-
tribution of diagrams (II) and (III), as given in Eq. (3.75) and (3.77), vanish, leaving only
(I) and (IV ) as correction terms. Indeed, the vanishing of the “odd” diagrams (II) and (III)
is a consequence of the translational invariance of the system; all response functions of odd
order T (2n+1) (σ; iβ′) need to vanish since to that order the response to a driving noise in a flat
potential is invariant under y(t)→ −y(t).

To second order, the transition density is

T (2) (σ − iβ′, iβ′) = − 1
2πα3r3

∞∑
n=−∞

n2einθ

(σ + n2)(σ + β′ + n2)(σ + n2)

= − 1
2πα3r3

∞∑
n=−∞

[
1
β′2

n2einθ

σ + β′ + n2 −
1
β′2

n2einθ

σ + n2 + 1
β′

n2einθ

(σ + n2)2

]

= 1
α2r2 ·

1
β′2

∂2
θ

[
T (0) (σ + β′

)
− T (0) (σ)− β′∂σT (0) (σ)

]
= 1
α3r3 ·

1
4β′2
√
σ

[
cosh ((θ − π)

√
σ)

sinh (π
√
σ)

(
πβ′
√
σ coth

(
π
√
σ
)
− 2σ − β′

)
+
√
σ

{
2
√
β′ + σ

cosh ((θ − π)
√
σ)

sinh(π
√
β′ + σ)

+ β(π − θ)sinh ((θ − π)
√
σ)

sinh(π
√
σ

}]
(3.132)

where ∂θ = r∂x1 . Setting θ = 0, one obtains the second order response of the return probability,

R(2) (σ,−iβ′, iβ′) (3.133)

= 1
4α3β2r3

[
πβ coth2 (π√σ)− (β + 2σ) coth (π

√
σ)√

σ
+ 2

√
β + σ coth

(
π
√
β + σ

)
− πβ

]
,

108



3. Fist passage time distribution of active thermal particles

Inserting these quantities into the FPT correction (3.78), gives

F (s = ασ) =
〈
e−sτx0→x1

〉
= cosh ((θ − π)

√
σ)

cosh (π
√
σ) + Dyε

2

Dxαβ
·
√
σ tanh (π

√
σ)

2β′2

[
cosh

(
(θ − π)

√
β′ + σ

)
sinh

(
π
√
β′ + σ

) 2
√
β′ + σ

+ cosh
(
π
√
β′ + σ

)
cosh (π

√
σ)

(
πβ′ − 2

√
β′ + σ coth

(
π
√
β′ + σ

))
+ sinh ((θ − π)

√
σ)

sinh (π
√
σ) β′ (π − θ)

]
(3.134)

This expression is the full moment generating function up to second order in ε in elementary
functions. In line with our previous notation, we identify the dimensionless scaling functions

MBM
0 (θ, σ) = cosh ((θ − π)

√
σ)

cosh (π
√
σ) (3.135)

MBM
1

(
θ, σ, β′

)
=
√
σ tanh (π

√
σ)

2β′2

[
cosh

(
(θ − π)

√
β′ + σ

)
sinh

(
π
√
β′ + σ

) 2
√
β′ + σ (3.136)

+ cosh
(
π
√
β′ + σ

)
cosh (π

√
σ)

(
πβ′ − 2

√
β′ + σ coth

(
π
√
β′ + σ

))
+ sinh ((θ − π)

√
σ)

sinh (π
√
σ) β′ (π − θ)

]

which together form the first-order correction of the moment-generating function

〈
exp(−sτx0,x1

〉
=MBM

0

(
x1 − x0

r
,
r2s

Dx

)
+ Dyr

2ε2

D2
xβ
MBM

1

(
x1 − x0

r
,
r2s

Dx
,
r2β

D

)
. (3.137)

An expansion around σ = 0 gives corrections to all moments. The one-loop corrected mean
first-passage time over an angle of θ, 〈τ0→θ〉, for instance reads

α 〈τ0,θ〉 = πθ − θ2

2︸ ︷︷ ︸
T 1

0 (θ)

+νBM
1

2β′3/2

(√
β′(2π − θ)π − 2π coth

(
π
√
β′
)

+ 2π cosh
(√
β′(θ − π)

)
sinh(π

√
β′

)
︸ ︷︷ ︸

=:T 1
1 (θ,β′)

(3.138)

where we indicated that the result can be written as the classical contribution (T 1
0 ) times the

dimensionless perturbative coefficient νBM (cf. Eq. (3.127)) and a dimensionless scaling function
T 1

1 (θ, β′). By successive derivation, any higher order moment may be obtained from Eq. (3.134).

3.3.2.B Numerical Validation

In order to validate the analytic result of the moment generating function of first-passage times
Eq. (3.134) and the mean first-passage time Eq. (3.138), we follow the same steps as in the
previous section 3.3.1.B. Using Monte-Carlo simulations, we sample the first-passage times τi
of the integrated stochastic equation (3.115). To validate the moment-generating function, we
average over N ' 106 to 107 iterations to sample

M̃ = 1
N

N∑
i=1

exp(−sτi) (3.139)
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(a) Correction to mean first passage time of ATBM on a ring (cf.
Eq. (3.115)) as obtained from Eq. (3.113) versus target position x1 and various
values of ν (plot marks cf. Eq. (3.127)). This is compared to theoretical
result of Eq. (3.138) (solid blue line).
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(b) Correction to mean squared first passage time of ATBM on a ring
(cf. Eq. (3.115)) as obtained from Eq. (3.114) versus target position x1 and
various values of ν (plot marks cf. Eq. (3.127)). This is compared to
theoretical result of twice differentiating Eq. (3.136) (solid blue line).

Figure 3.2.: First order correction to first and second moment of first-passage times of ATBM
with periodic boundary conditions.
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for various values of ν (cf. Eq. (3.127)) and across x′1 − x′0 ∈ (0, π] (with r = 1). Again,
symbols with a tilde denote quantities which are measured numerically. To validate the theo-
retically predicted first-order correction Eq. (3.136), we subtract the ν = 0 contribution, M0

(cf. Eq. (3.135)), and rescale by ν,

M̃1(ν) = M̃(ν)−M0
ν

=M1 + νM2 + ... =M1 + νM̃2 (3.140)

where we introduced, in analogy to Eq. (3.111),

M̃2 = M̃1(ν)−M1
ν

=M2 + νM3 + ... (3.141)

as shorthand for numerically measured higher-order corrections. In Fig. 3.2b, we show the
analytic resultM1 (cf. Eq. (3.136)) and numerically obtained M̃1(ν) (cf. Eq. (3.140)) for various
values of 0 ≤ ν ≤ 0.8. The agreement is again excellent, and the discrepancy between simulated
result and theoretical first order correction grows, as expected, with larger values of ν. The
rescaled discrepancy, M̃2, to leading order the second-order correction M2 (cf. Eq. (3.141)), is
plotted in the inset and collapses, indicating that the discrepancy is systematic and confirming
the validity of the result in Eq. (3.136).

In Figs. 3.2a and 3.2b, we show the first and second moment of first-passage times and how its
deviation to the ν = 0 case is captured by the first-order correction obtained using Eq. (3.113)
and Eq. (3.114) with the result of Eq. (3.136). For the first and second moment, the agreement
is again excellent, showing that the correction induced by the active driving noise is accurately
captured to leading order. The insets of Figs. 3.2a and 3.2b show the respective moments of
the FPT for various ν, indicating the systematic decrease for increased values of ν.

3.3.3 Limit Cases

The framework we introduce here allows to study coloured driving noises at any noise-colour
β. In particular, this includes two limit cases of β → 0 and β →∞. For appropriate re-scaling
of Dy, the former limit corresponds to a particular quenched disorder model, and the latter to
additional white noise. In what follows we discuss these limit cases in more detail.

3.3.3.A The white noise limit

For very small autocorrelation times β−1 the driving noise y(t) appears more and more as white
noise. If increasing Dy in a way such that limβ→∞Dyβ

−2 = w2β−1 remains constant (w has
units of length), then the correlator of y(t) tends towards

〈y(t1)y(t2)〉 = Dy

β
e−β|t1−t2| → 2w2β−1δ(t1 − t2), β →∞. (3.142)

In this limit, the driving noise features in the Langevin equation (3.1) as additional white noise
and is absorbed as

ẋ = −V ′(xt) +
√

2 (Dx + ε2w2β−1)ξ, (3.143)
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such that effectively the diffusion constant is shifted by Dx 7→ Dx + ε2w2. In the white noise
limit, the theory is Markovian and Eq. (3.12) may be applied using the shifted diffusivity to
obtain exact results. The perturbation theory presented here, however, will effectively expand
in

Deff = Dx + ε2w2 = Dx (1 + ν + ...) (3.144)

with ν = ε2w2β−1D−1
x . This means that the first order correction term toM0(x0, x1, ...;Dx) is

lim
β→∞

M1(x0, x1, ...;Dx) =
(

∂

∂Dx
M0(x0, x1, ...;Dx)

)
Dx. (3.145)

3.3.3.B Quenched Disorder limit

In the opposite limit of β → 0, provided Dyβ
−1 = w2 remains fixed, the driving noise “freezes”

to a random constant since

〈y(t1)y(t2)〉 = Dy

β
e−β|t1−t2| → 2w2, β → 0. (3.146)

Effectively, the Langevin equation (3.1) therefore turns into

ẋ = −V ′(xt) +
√

2Dxξt + v (3.147)

where v is a constant driving velocity which is normal distributed according to v ∼ N (0, ε2w2).
The driving noise average e−sτx0,x1 then corresponds to a quenched average over the ensemble
of normal distributed velocities v. If we treatM1 as a functional of the potential V (x) in which
the particle is embedded, then formally

lim
β→0
M1(x0, x1, ...; [V (x)]) (3.148)

= 1
2 ε

2w2︸ ︷︷ ︸
=v2

∂2
v

∣∣∣
v=0
M(x0, x1, ...; [V (x) + vx]). (3.149)

Our framework therefore predicts the first-order correction in v2.

Example: Brownian Motion with periodic boundary conditions and a random drift
For Brownian Motion with periodic boundary conditions, as studied in Sec. 3.3.2, one can
compute the moment generating function of first-passage times for a particular fixed drift v
exactly (see Appendix 3.A and in particular Eq. (3.163) for the result. We could not find this
result elsewhere in the literature.) On expanding this result in orders of the drift v and averaging
v2 over its distribution N (0, ε2w2) we obtain a resulting quenched average approximation in
orders of v2, F (s; v) = F (s; v = 0) + 1

2 ∂
2
v

∣∣
v=0 F (s; v) · v2 + .... When employing our framework

and letting β → 0 in our general result Eq. (3.134) we recover precisely 1
2∂

2
v |v=0F̂ (s; v). The

necessary calculations are given in App. 3.B and show that this is indeed the case. By way
of this relation, our framework for instance returns the correction to the mean-first passage
time of a Brownian motion with quenched disordered drift to first order in ν as (compare to
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Eq. (3.138))

α 〈τ0,θ〉 = θ (2π − θ)
2 − ε2w2

α2R2 ·
θ2(θ − 2π)2

24 + ... (3.150)

such that quenched disorder lowers the mean first-passage time for any choice of parameters.
Further, for the mean squared first-passage time we obtain

α2 〈τ0,θ〉 = 1
12θ (θ − 2π) (θ + 2ϕπ) (θ − 2π + 2ϕπ)

+ ε2w2

α2R2
θ(θ − 2π)(θ − π(1 + ψ+))(θ − π(1− ψ+))

360
· (θ − π(1 + ψ−))(θ − π(1− ψ−)), (3.151)

where ϕ = 1+
√

5
2 is the golden ratio, and ψ± = 1±

√
10√

3 .

3.4 Conclusion

In the present work, we introduce a perturbative approach to study the first-passage time
distribution of stochastic processes which are driven both by white and coloured noise. This
class of stochastic processes lies at the heart of the study of self-propelled particles in a thermal
environment. The self-propulsion is modelled by a noise with exponential autocorrelation and
characteristic timescale β−1, while the thermal bath is modelled by white noise with diffusion
constant Dx. The expansion parameter in which the perturbation takes place is a dimensionless
quantity, ν, which indicates how strong the fluctuations of the self-propulsion are in comparison
to the strength of thermal fluctuations.

Setting out from a renewal equation which gives the moment generating function of first-
passage times, we employ a functional expansion to obtain its perturbative corrections. This key
equation (3.18) stands at the centre of this work. In order to solve it perturbatively, one needs
to calculate the expansion terms (cf. Eqs. (3.32) and (3.33)) which involve the eigenfunctions of
the Fokker Planck operator associated to the non driven process (cf. Eq. (3.45)). To first order
in ν, we obtain an analytic result of the moment-generating function in terms of the associated
eigenfunctions (cf. Eq. (3.78)). Higher order contributions can be obtained by further iterating
the steps outlined in Sec. 3.2.4.

To illustrate the capabilities of our framework, we study two systems. First, we consider
an active thermal particle in a harmonic potential, the Active Thermal Ornstein-Uhlenbeck
Process. In Sec. 3.3.1.A, we calculate all necessary response functions to find the first order
correction to the moment-generating function of first-passage times (cf. Eq. (3.109)). By taking
derivatives, we could in principle obtain closed form expressions for the first order correction
to any moment of the first-passage time distribution. We confirm these analytical results by
numerical simulations. Sampling the experimental moment generating function, we obtain
an excellent agreement with the first-order correction (see Fig. 3.2a). For larger values of
ν, the perturbative parameter, the deviations systematically indicate higher-order corrections.
Further, we compare the theoretically predicted correction to the first two moments of the first-
passage times to numerical results (see Figs. 3.1a and 3.1b) which are in excellent agreement.
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Secondly, we study Active Thermal Brownian Motion on a ring (see Sec. 3.3.2). Again, we
illustrate our framework by finding the first-order correction to the moment generating function
(cf. Eq. (3.134)). Numerical simulations show excellent agreement and systematic higher-order
corrections (see Fig. 3.2b). Both first and second moment of the first-passage time are obtained
from Eq. (3.134) and show good agreement with numerical simulations.

Further, since the perturbation theory we present makes no assumption on β−1, we are able
to recover the limiting cases for β → 0 and ∞, respectively. The case of β → 0 is of particular
interest since it recovers quenched disorder averages over processes with additional fixed and
normal distributed drift (see Sec. 3.3.3).

The framework requires to find the eigenfunctions of a differential operator, and to express
all transition and return densities as sums over these eigenfunctions. This often requires certain
calculations that for more unusual eigenfunctions may be difficult to perform.

Our approach further allows for the presence of an external potential provided the associated
differential operator (Eq. (3.43)) can be diagonalised. This significantly extends the range of
systems our framework can be applied to. In this work, we focused on Fourier-modes and
Hermite-polynomials which are suitable for flat and harmonic potentials. It is, however, also
possible to study piece-wise combinations of the potentials using these eigenfunctions. This
may be relevant when studying bi-stable processes for instance. Further, as long as Eq. (3.43)
can be diagonalised, this framework also allows for a space-dependent thermal diffusivity by
letting Dx = D(x). For future work, for instance, it would be interesting to study first-passage
time behaviour of particles at the boundary between two heat baths at different temperature
(e.g. D(x) = D0 + sgn(x)∆D).

Moreover, the functional expansion in ŷ(ω) (cf. Eq. (3.32)) drastically simplifies in the case of
y(t) being a periodic driving force. This framework therefore would not only be able to capture
stochastic y, but also oscillating deterministic driving forces. This will possibly be addressed in
future work

To first order in ν, the corrections, as given in Eqs. (3.71) to (3.77), involve simple complex
integrals which can be solved by the residue theorem. For higher-order corrections, however,
the integration runs over more than one free internal variable and will require more work. This
corresponds to the problems of typical Feynman-diagrams of higher order in statistical field
theories which often involve non-trivial integrals. To study higher orders, field theory therefore
would provide the necessary toolbox to solve the required correction terms.

The results obtained in this work can be derived alternatively using field-theoretic methods.
In fact, the field theoretic treatment allows for the study of a broader class of extreme events
and will be reported in the subsequent chapter 4.

114



Appendix

3.A First passage times of Brownian Motion on a ring with drift

We calculate the first-passage time distribution of a Brownian Motion with drift v on a ring of
radius R departing from the methods outlined in [48, Chp. V] although the explicit formula is
not given there. Instead of considering the first passage event of transition x0 → x1, we calculate
the exit probability of a Brownian Motion on the real line over the absorbing boundaries at x1

and x1 − 2πR where without loss of generality we chose x1 − 2πR < x0 ≤ x1. The transition
density T (t) satisfies the Fokker-Planck Equation

∂tT (t) = Dx∂
2
xT (t)− v∂xT (t) (3.152)

and the Kolmogorov backward equation

∂tT (t) = Dx∂
2
x0T (t) + v∂x0T (t) (3.153)

with absorbing boundary conditions

T (x = x1; t) = 0 (3.154)

T (x = x1 − 2πR; t) = 0 (3.155)

and initial condition

T (t) = δ(x− x0) (3.156)

As is outlined in more detail in [48], the moment generating function of the first-passage time
τx0,x, F (x0, x; s) = F (s), satisfies the differential equation obtained by Fourier transform of
Eq. (3.153),

Dx∂
2
x0F (s) + v∂x0F (s) = sF (s) (3.157)

with boundary conditions

F (x0 = x1, x1; s) = F (x0 = x1 − 2πR, x1; s) = 1 (3.158)

since the process is immediately absorbed when started at either boundary, corresponding to a
1 under Laplace transformation. The ordinary differential equation in the starting point x0 is
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solved by the exponential ansatz

F (x0, x1; s) = Aeω1x0 +Beω2x0 (3.159)

Inserting this ansatz into (3.157) enforces

ω1,2 = − v

2Dx
±
√
v2 + 4Dxs

2Dx
(3.160)

The boundary conditions (3.158) fix the normalising constants A,B to

A = e−ω1x1 (1−Beω2x1) (3.161)

B = e−2πRω1 − 1
eω2x1−2πRω1 − eω2x1−2πRω2

= 1− exp (πR(ω2 − ω1))
2 sinh (πR (ω1 − ω2))

=
1− exp

(
−πR

√
v2+4Dxs
Dx

)
2 sinh

(
πR

√
v2+4Dxs
Dx

) (3.162)

After some further simplifications one arrives at the v-dependent moment generating function

F (x0, x1; s; v) = 1

sinh
(
r
√
v2+4Dxs
2Dx 2π

)
×
[
exp

(
rv

2Dx
(θ − 2π)

)
sinh

(
r
√
v2 + 4Dxs

2D θ

)
− exp

(
rv

2Dx
θ

)
sinh

(
r
√
v2 + 4Dxs

2Dx
(θ − 2π)

)]
(3.163)

Indeed, for v → 0,

r
√
v2 + 4Dxs

2D →
√
σ (3.164)

(with notation from main text) and one recovers the undriven moment generating function

F (x0, x1; s; v = 0) = F (x0, x1; s) = sinh (θ
√
σ)− sinh ((θ − 2π)

√
σ)

sinh (2π
√
σ) (3.165)

which after some hyperbolic identities reduces to

F (x0, x1; s) = cosh ((θ − π)
√
σ)

cosh (π
√
σ) (3.166)

in agreement with the independently found expression (3.128). In App. 3.B, we show that to
second order in v this result is identical to the first-order correction M1 from Eq. 3.134 in the
limit of β → 0.
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3.B Equivalence of quenched averages

In this section, we provide a more detailed proof showing that Eq. (3.149) indeed holds for
the case of Brownian Motion driven by coloured noise, i.e. that our framework perturbatively
gives the correct moment generating function of first-passage times when taking the quenched
average over Eq. (3.147) with normal distributed drift v ∼ N (0,

√
2ε2w2). To that end, we take

the β → 0 limit of the analytically found M1 (Eq. (3.136)),

lim
β→0
M1 = 1

8α2r2√σ

{
θ cosh

(
θ
√
σ
) (
θ
√
σ − tanh

(
π
√
σ
))

(3.167)

+ sinh
(
θ
√
σ
) [
−
(
θ2 − 2πθ + 2π2

)√
σ tanh

(
π
√
σ
)

(3.168)

+2π(π − θ)
√
σ coth

(
π
√
σ
)

+ π tanh2 (π√σ)+ θ − π
] }
.

In Eq. (3.149), it is claimed that this equals

1
2

ˆ ∞
−∞

dv e−
v2

2ε2w2
√

2πε2w2
v2 ∂2

v

∣∣∣
v=0

F (x0, x1; s; v) . (3.169)

Evaluating this expression using the result from Eq. (3.163) and setting v = 0 results in

1
2 ∂2

v

∣∣∣
v=0

F (x0, x1; s; v) = (3.170)
1

8α2r2√σ
×
{ 1

sinh (2π
√
σ)
[

sinh
(
(θ − 2π)

√
σ
) (

2π coth
(
2π
√
σ
)
− θ2√σ

)
+ θ cosh

(
θ
√
σ
)

+ (2π − θ) cosh
(
(θ − 2π)

√
σ
)

+ sinh
(
θ
√
σ
) (

(θ − 2π)2√σ − 2π coth
(
2π
√
σ
)) ]}

.

The expressions in Eq. (3.167) and Eq. (3.170) are indeed equal as can be verified using for
instance Mathematica.

3.C Explicit expressions for functional derivatives of transition
probability densities of Ornstein-Uhlenbeck processes

Following the notation from Sec. 3.3.1.A, we here give the explicit expressions of ρ(1)
x0,x1 , ρ

(2)
x0,x1

as implicitly given in Eq. (3.100)-(3.102). We confine ourselves to the case of x0 < x1. Starting
from the Fourier-transformed transition probability density (cf. Eq. (3.98)), all other functional
derivatives are given as partial derivatives of this density. From formula (3.100), one obtains

T (1) (σ, iβ′) = e
x2

0−x
2
1

4
√

2π(β′ − 1)
[
(Γ(β′ + σ)D−β′−σ(−x0)D−β′−σ+1(x1)− Γ(σ + 1)D−σ−1(−x0)D−σ(x1))

]
(3.171)
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where Γ(σ) is the usual Gamma-function. Letting x0 → x1, gives the first functional derivative
of the return probability at x1,

R(1) (σ, iβ′) = Γ(β + σ)D−β−σ (−x1)D−β−σ+1 (x1)− Γ(σ + 1)D−σ−1 (−x1)D−σ (x1)√
2π(β − 1)

(3.172)

These results imply

T (1) (σ − iβ′, iβ′) = e
x2

0−x
2
1

4 (Γ(β′ + σ + 1)D−β′−σ−1(−x0)D−β′−σ(x1)− Γ(σ)D−σ(−x0)D1−σ(x1))√
2π(β′ + 1)

(3.173)

and

R(1) (σ − iβ′, iβ′) = Γ(β + σ + 1)D−β−σ−1 (−x1)D−β−σ (x1)− Γ(σ)D1−σ (x1)D−σ (−x1)√
2π(β + 1)

(3.174)

The second order derivative of the transition probability is

T (2) (σ, iβ′) = e
x2

0−x
2
1

4

2
√

2π
(
β′2 − 1

) [2Γ(β′ + σ + 1)D−β′−σ−1(−x0)D−β′−σ+1(x1)

+(β′ − 1)Γ(σ)D−σ(−x0)D2−σ(x1)− (β + 1)Γ(σ + 2)D−σ−2(−x0)D−σ(x1))
]

(3.175)

and of the return probability

R(2) (σ, iβ′) = 1
2
√

2π
(
β′2 − 1

) [2Γ(β′ + σ + 1)D−β′−σ−1(−x1)D−β′−σ+1(x1)

+(β′ − 1)Γ(σ)D−σ(−x1)D2−σ(x1)− (β + 1)Γ(σ + 2)D−σ−2(−x1)D−σ(x1))
]

(3.176)
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Chapter 4

Field Theory for Extreme Values in
Stochastic Processes

Abstract

I introduce a field-theoretic method to calculate the full distribution of first-passage times,
running maxima, and explored volume of one-dimensional stochastic processes which are subject
to both white and coloured noise. All associated densities are expressed in terms of the transition
probability of the process. In the case of only white noise, the expressions are exact. When
coloured noise is added, I give a systematic field-theoretic correction.
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Overview

This Chapter is more than any other chapter a synthesis of this thesis. It connects the tracing
mechanism developed in Chp. 2 and re-interprets the vertex computed in Eq. (2.36) as a trace
function in the spirit of the survival probability introduced later in Sec. 6.2.14 in Chp. 6. In
doing so, one recovers the key results in Chp. 3 but with a clear field-theoretic interpretation
of the rather abstract functional derivatives with respect to the driving noise used there.

This chapter, albeit relatively short, therefore has benefited from the many different influ-
ences I have gathered over the course of my PhD and illustrates the way I think field theory
and stochastic processes are symbiotic.
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Salbreux and Gunnar Pruessner. I have tremendously benefited from discussions with members
of the Non-Equilibrium Group. In particular I would like to thank Rosalba Garcia Millan for
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4. Field Theory for Extreme Values in Stochastic Processes

4.1 Field Theory for Random Walkers

In this chapter, I widely follow the notation introduced in Chp. 3. I also assume some familiarity
with the concepts introduced in Chp. 2, in particular the field theory for the trace particles
introduced there. I consider one-dimensional continuous stochastic processes xt which are either
described by a Langevin Equation [127],

ẋt = −V ′(xt) + ξt (4.1)

where V ′(xt) is the gradient of a potential and ξt Gaussian white noise with correlator 〈ξtξt′〉 =
2Dxδ(t− t′), or the equivalent Fokker Planck Equation [200, 127]

∂tT (x, t) = ∂x (V ′(xt)T (x, t)) +Dx∂
2
xT (x, t)

T (x, t = t0) = δ(x− x0)
(4.2)

where T (x, t) ≡ T (x0, x; t0, t) is the transition probability for the walker to travel from x0 at
time t0 to x at time t. Where confusion can be avoided, I omit noting x0 and t0 explicitly. The
second-order differential operator in the first line of Eq. (4.2) is referred to as forward operator,
and is denoted by

L(x) = V ′′(x) + V ′(x)∂x +Dx∂
2
x. (4.3)

The partial differential equation (4.2) can be mapped to a Doi-Peliti field theory containing two
fields, ϕ(x, t) and ϕ̃(x, t), satisfying [38, 231]

T (x, t) = 〈ϕ(x, t)(1 + ϕ̃(x0, t0))〉Sϕ , (4.4)

where 〈•〉Sϕ denotes the expectation over the joint stochastic distribution of the fields given by

P[ϕ, ϕ̃] = exp (−Sϕ[ϕ, ϕ̃]) , (4.5)

where the random walker action Sϕ featuring in the exponential is given by [231]

Sϕ =
x

dx dt ϕ̃(∂t − L)ϕ =
x

dx dt ϕ̃
(
∂t − V ′′(x)− V ′(x)∂x −D∂2

x

)
ϕ. (4.6)

4.2 Tracing Mechanism

In order to keep track of the range already visited by xt up to time t, I introduce the trace
function,

Q(x, t) = P[xs = x for at least one s ≤ t] (4.7)

which measures the probability with which the particle has been at x at or before time t, but
does not keep track of how many times such a visit occurred. As is detailed in Chp. 2, the
evolution of Q(x, t) can also be mapped to a Doi-Peliti field theory with two additional fields
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ψ(x, t) and ψ̃(x, t). To derive this field theory, I introduce a tracing mechanism that is described
as follows and has been used in Chp. 2.

I consider a coarse-grained version xt of the stochastic process xt (cf. Eq. (4.1)) which only
takes values on a lattice δaZ (where δa is the lattice-spacing) and is defined as xt = δa[δ−1

a xt]
where [x] = minn∈Z {n : n ≥ x− 1/2}. At any time, the random walker attempts to deposit
a trace at xt with Poissonian rate γ. If at this point a trace has already been deposited, any
further deposition is suppressed such that every site of the lattice has either zero or one traces
attached to it. Taking γ →∞, the particle will deposit trace particles everywhere given it has
not done so before. In the limit of δa → 0, the process xt tends to xt, and the density of trace
particles approaches Q(x, t).

Translating this reaction-diffusion like kinetics into a field theory leads to a joint probability
distribution of the fields (cf. Eq. (2.7))

P[ϕ, ϕ̃, ψ, ψ̃] = lim
γ↑∞

exp
(
−Sϕ[ϕ, ϕ̃]− Sψ[ψ, ψ̃] + γSγ [ϕ, ϕ̃, ψ, ψ̃]

)
(4.8)

with Sψ denoting the trace action

Sψ =
ˆ

dx dt ψ̃(∂t + ε)ψ, (4.9)

where ε > 0 is a regularising infrared-cutoff to be taken to ε→ 0+ at the end of the calculation,
and Sγ the deposition action Sγ (cf. Chp. 2)

Sγ =
x

dx dt τ ψ̃ϕ+ σϕ̃ψ̃ϕ− λϕ̃ϕψ − κϕ̃ψ̃ϕψ (4.10)

where I introduced the couplings τ, σ, κ, λ which are nominally different to emphasize their
(potentially) different renormalisations but at bare level are all given by1

τ = σ = κ = λ = 1. (4.11)

The trace function Q(x, t) field-theoretically translates into the expectation value

Q(x, t) = lim
γ↑∞
〈ψ(x, t) (1 + ϕ̃(x0, t0))〉S (4.12)

where 〈•〉S denotes the average with respect to the probability distribution given in Eq. (4.8).
To calculate the trace function, in a first step I employ standard tools from field theory to
perturbatively calculate Eq. (4.12) in small γ, and secondly evaluate the expressions for γ →∞.
That this is in fact justified will be discussed later.

1Note the slight difference to Chp. 2 where γ was absorbed into the couplings itself, see for instance Sec. 2.B.4.
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4.3 Field-theoretic Calculation of Q(x, t)

I begin by studying the bilinear theory at γ = 0, i.e. in the absence of trace-deposition. I intro-
duce the right and left eigenfunctions of the forward operator L together with their eigenvalues

Lun(x) = −λnun(x) (4.13)

L†vn(x) = −λnvn(x) (4.14)

where

L† = −V ′(x)∂x +Dx∂
2
x. (4.15)

is the L2-adjoint of L [184]. In what follows, I will restrict myself to Fokker Planck operators
with a unique stationary solution u0(x). The eigenfunctions are rescaled such that they satisfy
the orthonormal relation

ˆ
dxum(x)vn(x) = δmn, (4.16)∑

n

vn(x1)un(x2) = δ(x1 − x2) (4.17)

Since they jointly form a bi-orthogonal basis of L2 [200] (see also the remarks in previous Chp. 3
and [184] on adjointness in weighted L2 spaces), every field ϕ, ϕ̃, ψ, ψ̃ has a unique decomposition
into the un(x), vn(x) in space which, together with the Fourier transform in time, I introduce
as

ϕ(x, t) =
ˆ

d̄ω
∑
k

ϕk(ω)uk(x)e−iωt (4.18)

ϕ̃(x, t) =
ˆ

d̄ω
∑
k

ϕ̃k(ω)vk(x)e−iωt, (4.19)

and analogously for ψ, ψ̃ with coefficients ψk(ω), ψ̃k(ω′), respectively. This eigenfunction trans-
form diagonalises the non-perturbative contributions to the action, Sϕ and Sψ (cf. Eq. (4.8)),
which read

Sϕ[ϕ, ϕ̃] =
ˆ

d̄ω
∑
n

ϕ̃n(ω) (−iω + λn)ϕn(ω) (4.20)

Sψ[ψ, ψ̃] =
ˆ

d̄ω
∑
n

ψ̃n(ω) (−iω + ε)ψn(ω). (4.21)

For γ = 0, the action in Eq. (4.8) is Gaussian and the bare propagators of both fields therefore
immediately follow from Eqs. (4.20), (4.21),

〈ϕn(ω′)ϕ̃m(ω)〉 = δm,nδ(ω − ω′)
−iω′ + λn

=
(m,ω′) (n, ω)

(4.22)

〈ψn(ω′)ψ̃m(ω)〉 = δm,nδ(ω − ω′)
−iω′ + ε

=
(m,ω′) (n, ω)

, (4.23)
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where I introduced a diagrammatic representation for both bare propagators. Using Eq. (4.4),
and transforming back into real space and time using Eqs. (4.18)-(4.19), I obtain the transition
probability

T (x, t) =
∑
n

vn(x0)un(x)e−λn(t−t0)Θ(t− t0) (4.24)

where Θ(t) is the Heaviside Θ-function. Crucially, I made use of the property [38]

〈ϕ̃〉S = 0. (4.25)

such that 〈ϕ(1 + ϕ̃)〉 = 〈ϕϕ̃〉.
Turning to the trace function and its field-theoretic formula (4.4), I need to consider γ 6= 0.

For γ 6= 0, the non-linear contributions of Sγ (Eq. (4.10)) enter into the path-action (4.8). Each
of the four vertices is diagrammatically represented as

τ σ −λ −κ
(4.26)

and enters into the action multiplied by γ. It follows that the diagrammatic expansion of the
trace function (4.12) is

Q(x, t) = lim
γ→∞

(x0, t0)(x, t)
(4.27)

where the central dot stands for the renormalised coupling τR. This renormalisation is given by
the diagrammatic expansion

τR = = γ
τ

+ γ2 −λ σ + γ3 −λ−κ σ + ... (4.28)

The only possible diagrams contributing to this expansions are chains of the loop-diagram
. Considering the expansion in Fourier/eigenfunction transform (see Eqs. (4.18), (4.19) and

App. 4.A for details), each diagram factorises into a product over the bubbles and I can employ
the geometric sum to obtain the renormalised coupling (see App. 4.A for derivation)

τR(ω0, ω1) = γ

1 + γR (x1, ω1) δ̄(ω0 + ω1) (4.29)

such that the effective trace function, in Fourier domain, is
ˆ

dt eiωtQ(x, t) = lim
γ→∞

1
−iω + ε

γ

1 + γR (x1, ω + iε)T
(
x′0, x

′
1, ω

)
(4.30)

= 1
−iω + ε

T (x′0, x′1, ω)
R (x1, ω + iε) (4.31)

where I made use of time-translational invariance to write the Fourier-transform in one frequency
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only. This then leads to the central result

Q(x, t) =
ˆ

dω e−iωt T (x′0, x′1, ω)
(−iω)R (x′1, ω) (4.32)

where I have tacitly taken the limit ε→ 0.

4.4 Extreme value distributions from Q(x, t)

The trace function contains the distribution and moment-generating function of three extreme
events which are introduced as follows.

4.4.1 First-passage times

The first-passage time (FPT) τx0,x1 is the first time it takes a stochastic process to reach a
prescribed target x1 given it is initialised at x0 and is defined as

τx0,x1 = inf
t>0
{t|xt = x1, x0 = x0} . (4.33)

Its probability distribution, PFPT(τx0,x1), is linked to the trace function via

PFPT(τx0,x1 = t) = ∂tQ(x1, t) . (4.34)

and its characteristic function χFPT

χFPT(ω) =
〈
e−iωτx0,x1

〉
= iω

ˆ
dt e−iωtQ(x1, t). (4.35)

From Eq. (4.32), the characteristic function immediately follows as

χFPT(ω) = T (x′0, x′1;ω)
R (x′1;ω) (4.36)

which is the classic result obtained by Darling and Siegert in 1951 [215, 52].

4.4.2 Running Maximum

The running maximum of a stochastic process, x̂t, is the largest value the process attained up
to time t,

x̂t = sup
t′<t

xt′ . (4.37)

Its probability distribution, PMax(x̂t), is given by

PMax(x̂t = x1) = −∂x1Q(x1, t), (4.38)
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and its characteristic function by

χMax(ω) =
〈
eikx̂

〉
= −ik

ˆ
dx eikx′1Q(x′1, t) (4.39)

4.4.3 Mean volume explored

The mean volume explored, 〈Vol〉t, is the average difference between maximum and minimum
(x̌t = inft′<t xt′) of the stochastic process up to time t and describes the mean volume explored
by the process. It is defined as

〈Vol〉t = x̂t − x̌t (4.40)

and is given by the space-integral of the trace function,

〈Vol〉t =
ˆ

dx′1Q(x′1, t) . (4.41)

4.5 External Driving Noise

As a further generalisation, the field-theoretic framework is capable of perturbatively describing
stochastic processes which are additionally driven by some self-correlated (i.e. non-white) noise,
yt, thus extending the Langevin Eq. (4.1) to

ẋt = −V ′(xt) + ξt + gyt (4.42)

where yt is assumed to be stationary noise with zero mean, and g is a coupling constant meant
to be small.2

I here assume that together with the externally driven Langevin Eq. (4.42) a further Langevin
Equation describes yt via

ẏt = −F (yt) + ηt (4.43)

where F (yt) is a smooth force-field with an expansion of the form

F (y) = F1y + F2y
2 + · · · (4.44)

where I assume Fn≥2 � F1 (i.e. yt lies perturbatively close to an Ornstein-Uhlenbeck process),
and η is a white Gaussian noise with correlator

〈ηt1ηt2〉 = 2Dyδ(t1 − t2) (4.45)

with Dy denoting the driving noise diffusivity. In this case, the corresponding Doi-Peliti field

2In the sense that gyt � ξt. Of course, we could have absobred the “smallness” into yt. For clarity, however, I
choose to think of yt and ξt as being both of O(1), whilst g is explicitly the parameter of perturbation.
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theory follows the previous steps but the forward operator is shifted to

L 7→ L+ gyt∂xϕ(x, t) (4.46)

where the added driving term is the translation of the additional noise gyt into the Fokker-
Planck picture (see Chp. 3). The shifted random walker action therefore now depends on a
particular realisation of yt,

Sϕ[yt] =
x

dx dt ϕ̃(∂t − L− gyt∂x)ϕ (4.47)

which needs to be averaged over all realisations of yt with the correct path measure of yt. The
Martin-Siggia-Rose Jansen-De Dominicis response field formalism [162, 55, 121, 231] constructs
this average by introducing an auxiliary field ỹt

〈•[y]〉y =
〈ˆ
D[y(t)](•[y(t)])δ (ẏt + F (yt)− ηt)

〉
η

(4.48)

=
ˆ
D[y(t)] • [y(t)]

〈ˆ
D[ỹt] exp

(
−
ˆ

dt ỹt (∂tyt + F (yt)− ηt)
)〉

η
. (4.49)

Through this construction the average over a random yt has been pushed forward to an average
over η which is simpler to handle since it is white noise. The average in η is performed as a
Gaussian path integral over its probability measure

Pη[η(t)] = exp
(
−
ˆ

dt′ η(t′)2

2Dy

)
, (4.50)

which results in

〈•[y]〉y =
x
D[y]D[ỹ] • [y] exp (−SRF [y, ỹ]) (4.51)

with the response field action

SRF [y, ỹ] =
ˆ

dt ỹt (∂tyt + F (yt))−Dyỹ
2
t . (4.52)

Averaging the yt-dependent action in Eq. (4.47) therefore is equivalent to the y, ỹ-extended field
theory

P[ϕ, ϕ̃, y, ỹ] = exp (−Sϕ[ϕ, ϕ̃] + gSg[ϕ, ϕ̃, y]− SRF [y, ỹ]) (4.53)

where I introduce the coupling action

Sg =
x

dx dt ϕ̃(x, t)yt∂xϕ(x, t). (4.54)

The tracing mechanism remains untouched by the external driving and there is no direct cou-
pling between y, ỹ and ψ, ψ̃. The driving noise y does enter, however, into the trace function
by affecting the renormalisation in τ (cf. (4.28)). The driven and trace-depositing system is
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captured by the six-field theory giving the joint path measure3

P[ϕ, ϕ̃, ψ, ψ̃, y, ỹ]

= lim
γ→∞

exp
(
−Sϕ[ϕ, ϕ̃]− Sψ[ψ, ψ̃] + γSγ [ϕ, ϕ̃, ψ, ψ̃] + gSg[ϕ, ϕ̃, y]− SRF [y, ỹ]

)
(4.55)

This extended action further adds to the already established propagators (cf. Eqs. (4.22), (4.23))
and vertices (cf. Eq. (4.26)) the following propagator for yt (see SRF , Eq. (4.52))

= 1
−iω + F1

(4.56)

and vertices (see SRF and Sg, Eqs. (4.52),(4.54))

...
}
n

−Fn
Dy

g∂x
(4.57)

where the Fn are defined in Eq. (4.44), and the black perpendicular mark in the rightmost
diagram represents the gradient term ∂x applied to the ϕ field.

I denote by 〈•〉S,y the averages taken with respect to the measure in Eq. (4.55). The trace
function of the driven system, (cf. Eq. (4.42)), then, in analogy to Eq. (4.12), is

Q(x′1, t) = 〈ψ(x, t) (1 + ϕ̃(x0, t0))〉S,y (4.58)

= 〈ψ(x, t)ϕ̃(x0, t0)〉S,y (4.59)

This average is no longer fully summable, as was the case for the undriven Langevin Eq. (cf.
Eq. (4.32)). Instead, the field theory allows for a perturbative treatment in small g. The
calculations are cumbersome, since not only the correlators in ϕ, but also the couplings σ and
κ are renormalised by the g-coupling.

In what follows, I briefly illustrate how to compute the trace function to second order in g,
assuming F (y) = −F1y (i.e. yt becomes an Ornstein-Uhlenbeck Process). To include higher
coefficients F2, F3, · · · one would need to renormalise the 〈yỹ〉-propagator in Eq. (4.56). This is
conceptually not much more difficult than the other computations presented here and I therefore
omit the rather lengthy self-correction induced by non-linear force-fields (cf. Eq. (4.44)). To
systematically capture the effect of the external driving noise to second order in g (the first
order correction vanishes), one needs to compute

〈ϕϕ̃〉S;γ = + g2Dy (4.60)

= + g2 � (4.61)

3This time the probability measure, and therefore all averages, already contains the limit of γ → ∞ for better
readability.
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as well as

−σR;g = + = + g2 � (4.62)

−κR;g = + = + g2 � (4.63)

where the lozenge-shape diagrammatically represents the driving-noise correction to second
order (with the g2 term explicitly taken out). Arranging them delivers the systematic diagram-
matic expansion to O(g2)

Q(x, t) = lim
γ→∞

+ lim
γ→∞

g2
[
γ � + γ2

(
� + � + �

)
(4.64)

+ γ3
(
� + � + � + � + �

)
+ γ4 · · ·

]
+O(g3)

(4.65)

To calculate the sum, it is useful to re-arrange the diagrams in four distinct terms J1,J2,J3,J4

J1 =
(
1 + γ + γ2 + · · ·

)
· � ·

(
1 + γ + γ2 + · · ·

)
· (4.66)

J2 =
(
1 + γ + γ2 + · · ·

)
· � ·

(
1 + γ + γ2 + · · ·

)
· (4.67)

J3 =
(
1 + γ + γ2 + · · ·

)
· � (4.68)

J4 =
(
1 + γ + γ2 + · · ·

)
· � . (4.69)

I further define the auxiliary functions4

R2 = � R1 = � (4.74)

T1 = � T2 = � (4.75)

4The notation is intentionally evocative of the one introduced in Chp. 3. I have

R2 =
ˆ

d̄ ω̃R(2) (ω, ω̃,−ω̃) Ĉ2(ω̃) (4.70)

T2 =
ˆ

d̄ ω̃T (2) (ω, ω̃,−ω̃) Ĉ2(ω̃) (4.71)

R1 =
ˆ

d̄ ω̃R(1) (ω + ω̃, ω̃)R(1) (ω,−ω̃) Ĉ2(ω̃) (4.72)

T1 =
ˆ

d̄ ω̃T (1) (ω + ω̃, ω̃)R(1) (ω,−ω̃) Ĉ2(ω̃) (4.73)

(cf. Eq. (3.41)).
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Following the same arguments as in App. 4.A, I employ the geometric sum to arrive at

K1 := lim
γ→∞

J1 = 1
−iω + ε

R2

(R (x′1, ω + iε))2 (4.76)

K2 := lim
γ→∞

J2 = 1
−iω + ε

R1

(R (x′1, ω + iε))2 (4.77)

K3 := lim
γ→∞

J3 = 1
−iω + ε

T2
R (x′1, ω + iε) (4.78)

K4 := lim
γ→∞

J4 = 1
−iω + ε

T1
R (x′1, ω + iε) (4.79)

Finally, the g2 correction to the trace function reads (having taken the limit ε→ 0)

Q(x, t) =
ˆ

d̄ωe−iωt
(

T (x′0, x′1, ω)
(−iω)R (x′1, ω) + g2 (K1 +K2 +K3 +K4)

)
. (4.80)

To render this calculation concrete, it thus requires to find the explicit transition and return
probability of the process, and to calculate the auxiliary functions defined in Eqs. 4.74 and 4.75.

In Chp. 3, I perform this calculation explicitly for two systems to find ∂tQ(x, t), the first-
passage time moment generating function (cf. Eq. (4.35)). Using the notation in Chp. 3, I
identify (I) = −iωK1, · · · , (IV ) = −iωK4 (cf. Eqs. (3.71), (3.73), (3.75), and (3.77)), and
Eq. (4.80), modulo a factor of −iω, with Eq. (3.78). The re-interpretation of the auxiliary
function therefore is the second functional derivative of the transition and return probability
conditional on yt evaluated at yt ≡ 0 as introduced earlier in Eq. (3.25).

This result therefore has re-derived the results in Chp. 3 using the technology developed in
Chp. 2. This concludes this chapter.
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Appendix

4.A Renormalisation of τ

In this appendix, the renormalisation of the coupling τ is computed. To ease computations, I
perform the calculation in x, ω variables, i.e. in real space and Fourier transformed time. The
renormalisation is given by its diagrammatic expansion (cf. Eq. (4.28))

= γ
τ

+ γ2 −λ σ + γ3 −λ−κ σ + ... (4.81)

which stems from the expansion of the path-integrated average Eq. (4.4) in γ,

〈
ψ(x′1, ω1)ϕ̃(x′0, ω0)

〉
S (4.82)

= γτ
x

dz d̄ω′
〈
ψ(x′1, ω1)ψ̃(z, ω′)ϕ(z, ω′)ϕ̃(x′0, ω0)

〉
S;γ=0

(4.83)

− γ2λσ
x

dz1 dz2 d̄ω′1d̄ω′2d̄ω1
′′d̄ω2

′′ (4.84)

×
〈
ψ(x′1, ω1)ψ̃(z1,−ω′1 − ω′′1)ψ(z1, ω1

′′)ϕ(z1, ω
′
1)ψ̃(z2, ω2

′′)ϕ̃(z2, ω
′
2)ϕ(z2,−ω′2 − ω′′2)ϕ̃(x′0, ω0)

〉
S;γ=0

+ · · ·

Crucially, the averages 〈•〉S;γ=0 are taken over Gaussian random variables since γ = 0 such that
Wick’s rule applies [143]. The only non-vanishing Gaussian correlation functions are

〈ϕ(z1, ω1)ϕ̃(z0, ω0)〉S;γ=0 = T (z0, z1;ω1) δ̄(ω0 + ω1) (4.85)

=
ˆ

d̄ω1e
iω1(t−t0)T (z0, z1; t) δ̄(ω0 + ω1) (4.86)〈

ψ(z1, ω1)ψ̃(z0, ω0)
〉
S;γ=0

= δ(z1 − z0)δ̄(ω0 + ω1)
−iω1 + ε

(4.87)

=
x

d̄ω0d̄ω1e
iω1t+iω0t0Θ(t− t0)δ(z1 − z0)e−ε(t−t0) (4.88)

The second correlator intuitively characterises the behaviour of the trace which, once deposited
at z0 at time t0, remains there for an infinitely long time, as ε → 0. Equipped with these
correlators and Wick’s theorem, the non-vanishing contributions to the averages appearing in
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Eq. (4.85) are to first order

γτ
x

dz d̄ω′
〈
ψ(x′1, ω1)ψ̃(z, ω′)ϕ(z, ω′)ϕ̃(x′0, ω0)

〉
S;γ=0

(4.89)

= γτ
x

dz d̄ω′ δ(x
′
1 − z)δ(ω1 + ω′)
−iω1 + ε

T (x′0, z, ω′)δ̄(ω′ + ω0)

= γτ
T (x′0, x′1,−ω1)
−iω1 + ε

δ̄(ω0 − ω1), (4.90)

and further to second order

− γ2λσ
x

dz1 dz2 d̄ω′1d̄ω′2d̄ω′′1d̄ω2
′′ (4.91)

×
〈
ψ(x′1, ω1)ψ̃(z1,−ω′1 − ω′′1)ψ(z1, ω1

′′)ϕ(z1, ω
′
1)ψ̃(z2, ω2

′′)ϕ̃(z2, ω
′
2)ϕ(z2,−ω′2 − ω′′2)ϕ̃(x′0, ω0)

〉
S;γ=0

(4.92)

= −γ2λσ
1

−iω1 + ε

ˆ
d̄ω′′2

R (x′1, x′1, ω1 − ω′′2)
−iω′′1 + ε

T
(
x′0, x

′
1, ω0

)
δ̄(ω0 + ω1) (4.93)

= −γ2λσ
R (x′1, ω1 + iε)
−iω1 + ε

T
(
x′0, x

′
1, ω0

)
δ̄(ω0 + ω1) (4.94)

where in the first equality I used the definition of the return probability to abbreviate
x

dz1 dz2 δ(x′1 − z1)δ(z1 − z2)T (z1, z2, ω) = R
(
x′1, ω

)
, (4.95)

and in the second equality used Cauchy’s residue formula to solve the integral by evaluating the
residue of the simple pole at ω′′2 = −iε.

Since both correlators in Eq. (4.85) are proportional to δ(ω0 + ω1), any higher order expan-
sion term simply factorises into a product over the amputated one-loop bubble diagram (i.e.
interpreted here as a function of external parameters z1, ω1 and z2, ω2, respectively) which by
analogous reasoning to the calculation is

z1, ω1 z2, ω2 = γ2λσR (z1, ω1 + iε) δ(ω1 + ω2)δ(z1 − z2). (4.96)

With some casualty, the bubble may be read as the probability of a particle depositing a trace
and then return to it, in other words an “ordered” return probability. Likewise the higher order
diagrams in Eq. (4.28) may be interpreted as repeated returns to x′1.

Returning to Eq. (4.28), the renormalised τ coupling,τR, is the effective factor satisfying

〈
ψ(x′1, ω1)ϕ̃(x′0, ω0)

〉
S = 1

−iω1 + ε
τR(ω0, ω1)T

(
x′0, x

′
1,−ω0

)
(4.97)

and collecting the factors generated by the terms above one obtains

τR(ω0, ω1) =
[
γτ − γ2λσR

(
x′1, ω1 + iε

)
+ γ3λσκ

(
R
(
x′1, ω1 + iε

))2 (4.98)

−γ4cσκ2 (R (x′1, ω1 + iε
))3 + · · ·

]
δ̄(ω0 + ω1) (4.99)

This series can be resummed using the geometric series or, as its known in field-theoretic liter-
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ature, Dyson’s equation [4]. Rearranging the sum gives

τR(ω0, ω1) =
[
γτ + γ

cσ

κ

∞∑
r=1

(
−γκR

(
x′1, ω1 + iε

))r]
δ̄(ω0 + ω1) (4.100)

=
[
γτ + γ

cσ

κ

∞∑
r=0

(
−γκR

(
x′1, ω1 + iε

))r − γ cσ
κ

]
δ̄(ω0 + ω1) (4.101)

=

λσκ γ

1 + γκR (x′1, ω1 + iε) + γ

τ − cσ

κ︸ ︷︷ ︸
=0


 δ̄(ω0 + ω1) (4.102)

= γ

1 + γR (x′1, ω1 + iε) δ̄(ω0 + ω1) (4.103)

where I made use of the bare values given in Eq. (4.11). This vertex interpolates the physical
pictures for γ = 0, where no deposition takes place (τR = 0), and γ → ∞, where every newly
visited site gets marked immediately by a deposited trace. For γ →∞, the coupling tends to

lim
γ→0

τR(ω0, ω1) = δ̄(ω0 + ω1)
R (x′1, ω1 + iε) (4.104)
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Fractional Brownian Motion
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Untitled, Kay Wiese (2020).
Courtesy of Kay Wiese
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Chapter 5

Sampling first-passage times of frac-
tional Brownian Motion using adap-
tive bisections

Abstract

“We present an algorithm to efficiently sample first-passage times for fractional Brownian mo-
tion. To increase the resolution, an initial coarse lattice is successively refined close to the
target, by adding exactly sampled midpoints, where the probability that they reach the target
is non-negligible. Compared to a path of N equally spaced points, the algorithm achieves the
same numerical accuracy Neff , while sampling only a small fraction of all points. Though this
induces a statistical error, the latter is bounded for each bridge, allowing us to bound the total
error rate by a number of our choice, say P tot

error = 10−6. This leads to significant improve-
ments in both memory and speed. For H = 0.33 and Neff = 232, we need 5 000 times less
CPU time and 10 000 times less memory than the classical Davies-Harte algorithm. The gain
grows for H = 0.25 and Neff = 242 to 3 × 105 for CPU and 106 for memory. We estimate
our algorithmic complexity as CABSec(Neff) = O

(
(lnNeff)3

)
, to be compared to Davies-Harte

which has complexity CDH(N) = O (N lnN). Decreasing P tot
error results in a small increase in

complexity, proportional to ln(1/P tot
error). Our current implementation is limited to the values

of Neff given above, due to a loss of floating-point precision. Our algorithm can be adapted to
other extreme events and arbitrary Gaussian processes. It enables one to numerically validate
theoretical predictions that were hitherto inaccessible.”

Cited from
B. Walter and K. J. Wiese. Sampling first-passage times of fractional brownian motion
using adaptive bisections. Phys. Rev. E 101:043312, 2020. arXiv:1908.11634
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Overview

In this chapter, I present a near verbatim copy of the peer-reviewed journal article

B. Walter and K. J. Wiese. Sampling first-passage times of fractional brownian motion
using adaptive bisections. Phys. Rev. E 101:043312, 2020. arXiv:1908.11634
DOI:doi.org/10.1103/PhysRevE.101.043312

This paper introduces a new algorithm which is capable of sampling the first-passage time dis-
tribution of fractional Brownian Motion bias-free with a higher numerical accuracy and lower
computational costs than any previous comparable sampling algorithm. Why is it needed?

Fractional Brownian Motion is a non-Markovian self-similar process with a first-passage time
distribution that is not known in closed form. As is addressed in Chp. 3 and 4, this is typical for
non-Markovian processes and calls for powerful perturbative approaches. In order to validate
these analytical approximations, one needs to be able to sample the true first-passage time
distribution to great accuracy so as to correctly gauge the quality of an approximation. Such
an approximation, for the case of a fractional Brownian Motion with linear and non-linear drift,
will be developed in the subsequent Chapter 6. In fact, it were the results obtained there
which motivated the development of a higher performing algorithm presented here. Simulating
fractional Brownian Motion is a fruitful challenge to computational physcs and has led to
various exact and approximative methods. Since the correlation between increments of fractional
Brownian Motion is long-ranged, for an algorithm to produce a great number of such points, as
is typically necessary to accurately measure a first-passage event, comes to great cost in both
computations and memory.

In principle, the algorithm can also be adapted to sample other extreme events of any stochas-
tic process, provided it is Gaussian, whilst remaining fast and accurate. It will be used to
numerically validate the analytical results of the subsequent chapter, Chp. 6, which also was
the initial motivation to develop this algorithm.

Statement of Contribution

Kay Wiese and I jointly developed the key ideas of the algorithm. I constructed the logical
steps, implemented the algorithm in C, devised and run benchmarks, and wrote the manuscript.
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5.1 Introduction

“Estimating the distribution of first-passage times is a key problem in understanding systems as
different as financial markets or biological systems [197, 166], and the dynamics of local reactions
[114, 100]. Typically, research focuses on non-Markovian processes and bounded geometries,
where first-passage time distributions are difficult to obtain analytically [206, 105, 149, 250]
and Chp. 6. Within the class of non-Markovian processes, fractional Brownian Motion (fBm)
is of particular interest as it naturally extends standard diffusion to sub- and super-diffusive
self-similar processes [160]. Fractional Brownian Motion is a one-parameter family of Gaussian
processes, indexed by the Hurst parameter H ∈ (0, 1]. The latter parametrizes the mean-square
displacement via 〈

X2
t

〉
= 2t2H , (5.1)

recovering standard Brownian Motion at H = 1
2 . It retains from Brownian motion scale and

translational invariance, both in space and time. Due to its correlations, it has peculiar char-
acteristics, as e.g. the recently observed behavior near a reflecting boundary [239, 107]. FBM
has long defied an analytic study of its extreme events, except for results in the mathematical
literature concerning the tail of these distributions [119, 168, 191, 192].

In order to render the extreme events of this process accessible to an analytical treatment,
an ε-expansion around Brownian motion in ε = H − 1

2 was proposed [252]. This field theoretic
approach was applied to a variety of extreme events, yielding the first-order corrections of
several probability distributions [252, 61, 202, 250]. The scaling functions predicted by this
perturbative field theory are computationally expensive to verify, since they require a high
numerical resolution of the path. Typically this is done by simulating a discretized version of
the path over a grid of N equidistant points. Measuring a first-passage time then amounts
to finding the first passage of a linear interpolation of these grid points. This approximation,
however, can lead to a systematic over-estimation of the first-passage time. As can be seen on
Fig. 5.1, a high resolution of the path is necessary in order to find the first-passage event at
t = 0.36 instead of the one at t = 0.45 or even t = 0.47 for the coarser grids. To account for this,
usually the number of grid points is increased. As the size of fluctuations between gridpoints
diminishes as

δX = N−H , (5.2)

the sub-diffusive regime (H < 1
2) necessitates an enormous computational effort.

This poses challenges to the numerical validation of high-precision analytical predictions as
can be seen for instance in Ref. [250]. There, in order to validate the analytically obtained scaling
functions, and to minimize discretisation errors in the sub-diffusive regime, system sizes up to
N = 224 are sampled using the standard Davies-Harte algorithm. The implementation used
there required a CPU time of 6 seconds per sample. This illustrates that if theories of such high
precision are to be tested against simulations, new numerical techniques need to be developed.
The present work addresses this problem by designing, implementing, and benchmarking a new
algorithm sampling first-passage times of fractional Brownian Motion using several orders of
magnitude less CPU time and memory than traditional methods. The general idea is to start
from a rather coarse grid (as the red one on Fig. 5.1), and to refine the grid where necessary.
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Figure 5.1.: The continuous stochastic path (grey rough line) crosses the barrier (blue horizontal
line) for the first time at τ∞ (black leftmost square mark). The discretization with
N points (red line passing through rightmost square) over-estimates this time as
τN (red rightmost square mark). The numerical estimate is improved to τ4N (green
middle square mark) when refining the discretization (green line passing through
middle square mark). This systematic error worsens for diminishing values of Hurst
parameter H. This figure is accepted for publication as [242]. See App. A.4 for
approval of co-authors.

As a testing ground, we simulate and compare to theory the first-passage time of an fBm with
drift (cf. Chp. 6).

The algorithm proposed here is an adaptive bisection routine that draws on several numerical
methods already established in the field of numerical fractional Brownian motion, notably the
Davies-Harte algorithm [54], bisection methods [41, 225], and the Random Midpoint Displace-
ment method [88, 173]. It is further closely related to “Exact Algorithms” which have already
been established for stochastic differential equations driven by white noise in, e.g., [21] which
also address the problem of sampling the first-passage time efficiently and exactly. In difference
to [21], we here extend the exact algorithm to processes of the form

dX t = f ′(t)dt + dB (H)
t (5.3)

where dB (H)
t is a fractional Gaussian noise with Hurst parameter H (see further remarks in

Sec. 5.2.4), i.e. processes which are, up to an additional deterministic function f(t), a fBm path.
The key ideas of this algorithm, however, straightforwardly translate to all Gaussian processes
provided their correlator is known (see Sec. 5.2.5 for further discussion).

The central, and quite simple, observation is that in order to resolve a first-passage event
it is necessary to have a high grid resolution only near the target. This translates into an
algorithm that generates a successively refined grid, where refinement takes place only at points
close to the target, with the criterion of closeness scaling down by 2−H for each bisection. This
refinement is stopped after the desired resolution is reached. The sampling method is exact, i.e.
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the collection of points is drawn from the ensemble of fBm, a continuous process, with no bias.
The only error one can make is that one misses an intermediate point. We have been able to
control this error with a failure rate smaller than 10−6 per realisation.

While there is a relatively large overhead for the non-homogenous refinement, this is compen-
sated by the use of far less points, leading to a significant increase both in speed and memory
efficiency over sampling methods that produce points for the full grid. For H = 0.33 and sys-
tem size N = 232, our algorithm is 5000 times faster than the Davies-Harte Algorithm (DH),
the fastest exact sampler (cf. [69, 49]) if all points are needed. It has computational com-
plexity O(N ln(N)), which makes it the standard algorithm in most current works, see e.g.
[106, 149, 132], with system size N ranging from 221 to 224. Our maximal grid size is limited
by the precision of the floating point unit to Nmax ≈ 211/H .

This paper is organised as follows. In Sec. 5.2, we introduce our adaptive bisection algorithm.
First, its higher-level structure is outlined and then each subroutine is detailed. Possible gener-
alisations to other extreme events or other Gaussian processes are discussed at the end of this
section. In Sec. 5.3, we present our implementation of the adaptive bisection in C, which is freely
available [241]. We benchmark it against an implementation of the Davies-Harte algorithm. We
compare error rates, average number of bisections, CPU time and memory. Sec. 5.4 contains a
summary of our findings.

5.2 Algorithm

In this section, we introduce the adaptive bisection routine (ABSec). The central aim is to
translate the idea of refining the grid “where it matters” into a rigorous routine.

5.2.1 Fractional Brownian Motion and first-passage times

Gaussian processes Xt are stochastic processes for which Xt evaluated at a finite number of
points T in time, has a multivariate Gaussian distribution [192]. They are simple to handle,
since their path probability measure can be obtained from their correlation function. The best
known Gaussian Process is Brownian Motion which is the only translational invariant Gaussian
process with stationary and independent increments.

Fractional Brownian Motion (fBm) generalises Brownian Motion by relaxing the requirement
of independent increments, while keeping self-similarity. The latter property means that its
path probability measure is invariant under a space-time transformation t → ct, x → c−Hx

for c > 0. The parameter H is referred to as Hurst exponent. As a Gaussian process, fBm is
entirely characterized by its mean X0 = 〈Xt〉 = 0, and correlation function

C(s, t) = 〈XsXt〉 = |s|2H + |t|2H − |t− s|2H , (5.4)

where H ∈ (0, 1]. As a consequence,
〈
(Xt −Xs)2〉 = 2|t−s|2H , and in particular

〈
X2
t

〉
= 2|t|2H .

From the correlation function it follows that on all time scales non-overlapping increments are
positively correlated for H > 1

2 and negatively correlated for H < 1
2 . For H = 1

2 one recovers
Brownian Motion with uncorrelated increments.

The first-passage time (FPT) of a stochastic process is the fist time the process crosses a
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threshold m. Since we use X0 = 0, it is defined for m > 0 as

τm = inf
t>0
{t|Xt ≥ m} . (5.5)

5.2.2 Notation

In simulating a fBm on a computer, one is forced to represent the continuous path by a dis-
cretized path that takes values on a finite set of points in time, the grid. We denote the
grid by ordered times T = {t1, t2, . . . , tN}, and the corresponding values of the process by
X = {Xt1 , Xt2 , . . . , XtN }. Together, (X , T ) form the discretized path. Due to self-similarity of
the process, we can restrict ourselves to T ⊂ [0, 1] with no loss of generality. The intervals be-
tween any two successive times ti, ti+1 ∈ T are referred to as bridges (ti, ti+1). Each connected
component of [0, 1]\T is a bridge.

We denote the dyadic lattice on the unit interval by Λk =
{
i2−k; 0 ≤ i ≤ 2k

}
. Our adaptive

bisection algorithm sets out from a dyadic lattice Λg of relatively low resolution (typically g . 8
or 10). A fBM path is sampled for every point of the coarse grid Λg. If the linear interpolation
of this coarse path already surpasses the threshold m at a time τ (0), or in other words if there
is a smallest K such that XK2−g > m, then the grid is truncated at τ (0). (That this truncation
does not introduce a bias is shown below.) If this is not the case, i.e. if all points remain below
the threshold m, then the full grid is kept. We define the truncation of the grid T to a certain
time τ ∈ [0, 1] as

T |τ := {ti ∈ T |ti−1 < τ} (5.6)

i.e. the truncation contains all points in time up to time τ plus the next gridpoint of the initial
grid Λg (cf. section 5.2.3.C). This procedure results in an initial grid T (0) ⊂ Λg containing
|T (0)| = K points, with K ≤ 2g. Next, the algorithm performs bisections of this grid in
successive iterations T (0), T (1), · · · , T (M), where M is the total number of bisections before the
routine terminates. Since each new bisection adds exactly one point to the grid, M also denotes
the total number of points added to the initial grid. The final grid T (M) contains K+M points.

To each bridge (tl, tr) between left and right endpoints tl and tr and contained in a grid
T (m), we associate a level ` defined by ` = − ln2 (tr − tl). A bridge is bisected by intro-
ducing its midpoint, tm = 1

2 (tl + tr) = tl + 2−`−1 and inserting tm into the grid T (m+1) =
{t1, ..., tl, tm, tr, ..., tN}. A bridge can be bisected until its level reaches a maximum bisection
level L (typically L . 30 for H = 0.33). Since each iteration only halves an existing interval,
all grids are subsets of the maximal dyadic lattice ΛL,

Λg ⊇ T (0) ⊂ T (1) ⊂ · · · ⊂ T (M) ⊆ ΛL. (5.7)

Note that for each bridge (tl, tr), there is always one dyadic lattice Λn, s.t. ti and ti+1 are
neighbouring points in Λn; they are members, but not neighbours in Λn′ for n′ > n; at least
one of them does not exist in Λn′ for n′ < n.
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5.2.3 Definition of the algorithm

The algorithm consists of two phases. In the first phase, the initialisation, a coarse grid is
generated. In the second phase, the adaptive bisection, this grid is successively bisected where
necessary. Once the second phase terminates, the first-passage time is calculated using the final
grid.

The first phase starts by sampling an initial discretized path X (0) over a dyadic lattice T (0) =
Λg with N = 2g equidistant points, using the Davies-Harte algorithm. The latter is the fastest
known algorithm to sample an exact fBm path on an equidistant grid in time [69], its execution
time scales as N ln(N), thus only slightly slower than what is needed to generate an uncorrelated
sample of the same length N . From this relatively coarse grid, (X (0), T (0)), the first-passage
time is estimated via linear interpolation as τ (0).

Subsequently, the grid is truncated by discarding all points behind the first point surpassing
m (cf. Eq. (5.6)). That this does not change the measure is explained in section 5.2.3.C. If no
such point exists, the full grid is kept. The correlations between the different points Xt at times
t stored in the grid are given by the correlation matrix

Cij(T ) = C(ti, tj) , ti, tj ∈ T , 1 ≤ i, j ≤ |T | . (5.8)

It is a symmetric matrix computed from the correlation function (5.4). It is then inverted to
obtain the inverse correlation matrix C−1

ij (T ). The inversion is optimised by using pre-calculated
tabularized matrices. This concludes the first phase.

In the second phase, bridges are checked successively until the maximum level is reached. The
order in which the bridges of the growing grid are checked is determined by a subroutine whose
aim is to find the first-passage event with the least amount of bisections. The check consists
in testing whether the midpoint Xtm of the bridge (tl, tr) could surpass the threshold m with
a probability larger than ε, taken small. If this is the case the bridge is deemed critical and
bisected. The bisection consists in generating a midpoint Xtm at time tm conditional to the
pre-existing grid. This computation requires the inverse correlation matrix and is detailed in
Sec. 5.2.3.F. Once the midpoint is generated, it is added to the path (X , T ). In a last step the
inverse correlation matrix of the new grid, C−1(T ∪tm) is stored. Further below, the algorithm is
given in pseudocode. The routines in the pseudocode are described in sections 5.2.3.A–5.2.3.G.

5.2.3.A Davies-Harte Algorithm

The Davies-Harte algorithm (DH) is a widely used method to generate fBm samples. It was
introduced in [54], is pedagogically described in [69], and has been extended to other Gaussian
processes in [49], allowing us to omit an introduction. It generates a sample of fractional
Gaussian noise (fGn) ξ1, ξ2, · · · , ξN , the incremental process of fBm ξj = Xj+1−Xj , j ∈ N, and
then sums the increments to a fBm sample with values Xiδt = (δt)H

∑i
j=1 ξj . Simulating the

increments is more efficient since fGn is a stationary Gaussian process which, for equally sized
increments, has a circulant correlation matrix, which can be diagonalised using a fast Fourier
transform (FFT). Therefore a fGn sample of N increments can be simulated with computational
complexity O(N ln(N)). The FFT algorithm works optimally when the number of points is a
natural power of 2, i.e. if the grid is a dyadic lattice.
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Algorithm 1: Adaptive bisection

procedure ABSec(g, L,m, ε)
T ← Λg
X ←davies harte(Λg) . 5.2.3.A
τ ← fpt from grid(X , T ) . 5.2.3.B
(X , T )← (X , T )|τ (0) . 5.2.3.C
C−1 ← CMatrixTable[τ (0)] . 5.2.3.D
(tl, tr)←Next bridge(T , 0, τ (0))
while (tl, tr) defined do

if Bridge (tl, tr) critical and not yet bisected then . 5.2.3.E
C−1 ← Augment C−1-Matrix(C−1, tm)
X∗ ← Generate midpoint(C−1, tm) . 5.2.3.F
X ← X ∪X∗
T ← T ∪ tm
if X∗ > m then

τ ← fpt from grid(X , T )
(ti, ti+1)←Next bridge(T , (ti, ti+1), τ) . 5.2.3.G

output(τ)

5.2.3.B Estimating the first-passage time

Given a discretized path (X , T ), we use its linear interpolation to give the first-passage time as
its first intersection with the threshold (cf. Fig.5.1).

5.2.3.C Truncating the grid

A further optimisation is to discard grid points beyond the first point crossing the threshold
(cf. Eq. (5.6)). It is necessary to show that the density of first-passage times conditioned on the
full grid equals the distribution conditioned on the truncated grid, i.e. that truncating does not
change the measure.

The first-passage time distribution (FPTD) P (τ) can be decomposed into a sum of conditional
probabilities for disjoint events. Each term of the sum is the probability that the ith point of a
grid surpasses m, the threshold, for the first time (“P grid(Xti > m first)”), times the FPTD of
a fBm conditioned on the event that its discretization on grid T surpasses m at ti for the first
time, i.e.

PT (τ |Xti > m first) = P (τ |Xt : Xti > m and Xtj < m∀tj < ti) (5.9)

for tj , ti ∈ T . The decomposition thus reads

P (τ) =
∑
ti∈T

PT (τ |Xti > m first)P grid(Xti > m first). (5.10)

By continuity of the process,

PT (τ > ti|Xti > m first) = 0, (5.11)
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such that the sum in Eq. (5.10) can be truncated to

P (τ) =
∑

ti−1<τ

PT (τ |Xti > m first)P grid(Xti > m first). (5.12)

In order to sample PT (τ |Xti > m first), one would naively sample the entire grid X over all of
T , but since

PT (τ |Xti > m first) = PT |τ (τ |Xti > m first), (5.13)

where the restriction is defined in Eq. (5.6), it is sufficient to only regard the smaller grid T |τ ,
i.e.

P (τ) =
∑

ti−1<τ

PT |τ (τ |Xti > m first)P grid(Xti > m first). (5.14)

Discarding points in the initial stage leads to a smaller correlation matrix to be inverted, which
increases performance, and decreases memory.

5.2.3.D Tabulating inverse correlation matrices

The inverse of the correlation matrix (5.8) is necessary to compute the conditional probability
of any further midpoint (cf. App. 5.B). Its computation is costly and typically scales with
O(N3) where N = 2g is the number of points in T (0). If the algorithm is run multiple times,
this computation slows it down. The initial grid however, is always a dyadic lattice truncated
at some point, i.e. T (0) = {k2−g; 0 ≤ k ≤ K}, where XK2−g is the first point to surpass m.
Therefore, the initial inverse correlation matrix C−1

(
T (0)

)
can take 2g − 1 possible values, one

for each possible value of K. It is more efficient to pre-calculate all possible inverse correlation
matrices in the beginning, and store them in a vector ‘CMatrixTable’,

CMatrixTable[K] =
([
C(i2−g, j2−g)

]K
i,j=1

)−1
. (5.15)

After generating the initial grid and measuring τ (0), one reads out the appropriate entry of the
table at K = min

{
n ∈ Z;n2−g ≥ τ (0)

}
.

5.2.3.E Deciding whether a bridge is critical

Once entering the bisection phase, the algorithm needs to decide whether a particular bridge is
critical, i.e. whether it is suspicious of hiding a “dangereous” excursion crossing the threshold at
m (cf. Fig. 5.1). Rather than determining whether any point in (tl, tr) surpasses the threshold,
we focus on the midpoint tm conditioned on all other points X , and ask how likely Xtm > m.
Such an event needs to be avoided with a very low probability ε, the error tolerance. The
relevant probability,

P (Xtm > m|X ) < ε, (5.16)

is too costly to be computed for every bridge in every step of the iteration, as the midpoint is
a Gaussian random variable, with its mean and variance determined by every other point in
the grid. If we ignore all points of the path apart from (ti, Xti) and (ti+1, Xti+1), a calculation
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given in App. 5.A shows that mean and variance would be given by

µ = 1
2
(
Xti +Xti+1

)
(5.17)

and
σ2 =

(
21−2H − 1

2

)
2−2`H . (5.18)

Here ` is the level of the bridge of width δt = 2−`. Interestingly, adding to the bridge’s endpoints
further points lowers the variance (cf. Eq. (5.31)) which means that neglecting all but nearest
neighbours gives an upper bound on the variance of the midpoint. Further, we conservatively
bound the mean by the maximum of both endpoints, µ . max

(
Xti , Xti+1

)
. This is a priori not

a precise approximation, since far-away grid points are able to “push” the expected midpoint
above the bridges’ endpoints for values of H 6= 1

2 . As is shown in Sec. 5.3.3, this systematic
error can be absorbed by introducing an even smaller error tolerance ε′. Furthermore, it is
less relevant in the sub-diffusive regime, where the process is negatively correlated. By giving
conservative bounds on mean and variance with quantities that are local (i.e. do not depend on
the remaining grid), we can replace the original criterion (5.16) by a computationally cheaper
alternative, namely the local condition

P (Xtm > m|(Xtl , Xtr)) < ε′. (5.19)

This implies that Eq. (5.16) holds for an appropriate choice of ε′, on average. This is to be
understood as follows. In a simulation, there are n decisions of type (5.16) to be taken. The
total error is approximately P tot

error ≈ nε. The parameter ε′ is chosen such that the total error
rate remains smaller than 10−6, and thus negligible as compared to MC fluctuations. The
dependence between ε′ and P tot

error is investigated in Sec. 5.3.3 (cf. Fig. 5.1).
Criterion (5.19) is rephrased, using again ` as the level of the bridge, to

Φ

m−max
(
Xti , Xti+1

)(√
21−2H − 1

2

)
2−`H

 > 1− ε′ (5.20)

which implies

max
(
Xti , Xti+1

)
< m−

(√
21−2H−1

2

)
2−`HΦ−1(1−ε′), (5.21)

where we introduced Φ, the cumulative distribution function of the standard normal distribu-
tion, and its inverse Φ−1. This is further simplified by defining the critical strip

c0 =
(√

21−2H − 1
2

)
Φ−1 (1− ε′) , (5.22)

and the level-corresponding critical strips

c` = 2−`Hc0. (5.23)
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A bridge (Xtl , Xtr) of level ` is deemed critical if either of its endpoints lies above the critical
strip corresponding to `, i.e.

max
(
Xti , Xti+1

)
> m− c` . (5.24)

This makes for a computationally fast decision process, since the critical strip width has to
be computed only once. The procedure then checks for a given level of the bridge whether it
reaches into the critical strip, in which case it is bisected (cf. Fig. 5.1 for illustration).

5.2.3.F Generating the new midpoint efficiently

If a bridge triggers a bisection, the midpoint is drawn according to its probability distribution,
given all points that have been determined previously. If this occurs at, say, the m-th iteration,
the discretized path is ((X1, t1), · · · , (XN , tN )) with |T (m)| = |X (m)| = N = K + m where
K ≤ 2g is the number of points in the truncated initial grid. Denoting the midpoint to be
inserted by (Xt∗ , t

∗), one needs to find

P (Xt∗ |X1, · · · , XN ) . (5.25)

The midpoint is again normal distributed with mean µ∗(N) and variance σ∗(N). Let T (m+1) =(
T (m), t∗

)
be the augmented grid, and C−1(N + 1) = C−1

(
T (m+1)

)
the associated inverse

correlation matrix (cf. Eq. (5.8)). Then, as detailed in App. 5.B, the inverse of the variance is
given by

σ−2
∗ (N) =

[
C−1(N + 1)

]
N+1,N+1

, (5.26)

and the mean by

µ∗(N) = σ2
∗(N)

N∑
i=1

[
C−1(N + 1)

]
N+1,i

Xti . (5.27)

Computing the inverse correlation matrix from scratch at every iteration would require a matrix
inversion which typically uses O(N3) steps. We do this in O(N2) steps, by starting from
the already calculated inverse correlation matrix of the previous grid C−1(N) = C−1

(
T (m)

)
.

As detailed in App. 5.C, the inverse correlation matrix C−1(N + 1) = C−1
(
T (m+1)

)
can be

constructed as follows. First, generate a vector containing all correlations of the new point with
the grid, using Eq. (5.4)

~γ(N) = (C(t∗, t1), C(t∗, t2), · · · , C(t∗, tN ))T . (5.28)

Second, multiply it with the (already constructed) inverse correlation matrix to obtain

~g(N) = C−1(N) · ~γ(N) . (5.29)
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In terms of ~γ and ~g, the mean and variance can be expressed as

µ∗(N) = ~X · ~g, (5.30)

where we use ~X = (Xt1 , · · · , XtN ) for short, and

σ2
∗(N) = 2 (t∗)2H − ~γ · ~g. (5.31)

Since ~γT~g = ~γTC−1(N)~γ > 0, conditioning on more points diminishes the variance of a mid-
point. The outer product of ~g defines the matrix

G(N) := ~g ⊗ ~gT . (5.32)

It is used to build the enlarged inverse correlation matrix

C−1(N + 1) =

C−1(N) + σ−2G(N) −σ−2~g(N)
−σ−2~gT (N) σ−2

 , (5.33)

where σ2 = σ2
∗(N). In our implementation entries in ~µ,~g, C−1 etc. are generally not in order of

time but in order of their addition to the grid.

5.2.3.G Bridge selection

The task of the bridge-selection routine (cf. Alg. 5.2.3) is to choose the order in which bridges
of the successively refined grid are tested, and possibly inserted. Its aim is to find the first-
passage event with the least number of bisections. To this aim, it zooms in into areas where a
first-passage time is likely, and zooms out when the possibility of a crossing becomes negligible.
In this subsection, we phrase this intuition in more rigorous terms.

Prior to the first call of the routine, the initial grid consists of 2g bridges of uniform width
2−g. The routine selects the earliest bridge, i.e. (tl = 0, tr = 2−g), and scans all bridges of the
initial grid in ascending order in time until a critical bridge is found (by applying the criticality
criterion (5.19)). Once such a bridge is found, the algorithm explores this bridge by successive
bisections. After a finite number of bisections the algorithm either has identified a first-passage
event to the desired precision, or no crossing was found. In the latter case, the routine then
moves on to the next bridge of the initial grid.

In order to illustrate the workings of the bridge-selection routine, it is helpful to consider a
bijection between the adaptively bisected grid and a rooted binary tree (cf. Fig. 5.1). Every
bridge (tl, tr) that is bisected by introducing a point at tm contains two sub-bridges (tl, tm) and
(tm, tr). We refer to these bridges as the left and right children of (tl, tr). Vice versa, every bridge
that is not part of the initial bridge (i.e. with level ` > g) is the child of another bridge which is
referred to as parent of the bridge. The set of all bridges that are contained in a initial bridge
of width 2−g is mapped to a rooted binary tree by identifying every node with a bridge, where
a node can either have zero or two children depending on whether the bridge has been bisected
or not. The root of the tree corresponds to the bridge contained in the initial bridge from where
the bisections were spawned off. The generation of a node in the tree corresponds to its level by
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generation = `− g+ 1. Therefore, the depth of the tree is limited to generationmax = L− g+ 1.
The routine stores a representation of this tree internally, together with the information

whether a node/bridge has previously been checked for criticality or not. If a bridge is bisected,
but its two children have not yet been checked for criticality, the left child is selected. This is
because earlier crossings of the threshold render later crossings irrelevant. If a bridge has two
children, but the left has already been checked (implying that neither it nor any of its further
descendants contains a first-passage event), the right child is selected. If both children of the
bridge have already been checked, none of the descendants contains a first-passage event. In that
case the parent of the bridge is returned (zooming out). If the routine returns to the root, the
bridge of type (i2−g, (i+ 1)2−g) has no parent, and the next such bridge ((i+ 1)2−g, (i+ 2)2−g)
is returned. If i = 2g − 1, the routine terminates by returning an empty bridge since the entire
grid has been checked. This selection routine implies that in the “worst case”, when every point
of the initial grid T (0) lies in the critical strip without ever crossing the threshold m, every
single sub-interval will be analysed. This means that in a worst-case scenario up to 2g search
trees (cf. Fig. 5.1) would be generated, each tree containing up to 2L−g−1 nodes. This scenario
is extremely unlikely

To summarise, the routine is either descending (zooming in) or ascending (zooming out)
within the tree, depending on whether the children of a node, if existent, have been visited or
not.

The routine takes into account two additional constraints. First, the maximum bisection
level L; if a bridge of maximum level L contains a first-passage event, the routine terminates
since this estimate has reached the desired resolution. If it contains no crossing, the parent is
returned. Second, it takes into account whether a bridge is early enough in time to improve the
first-passage estimate. If a bridge at level ` records a first-passage event, only its descendants
can improve this result.

We give the pseudocode of the routine below. In the implementation we present later
(Sec. 5.3.1), the algorithm is implemented slightly differently for performance reasons. The
logical steps however are the same and we decided to present them here for pedagogical rea-
sons.

5.2.4 Adding deterministic functions

The adaptive bisection routine can be adapted to further generate first-passage times of stochas-
tic processes of the form

Zt = Xt + f(t), (5.34)

where f(t) is a deterministic smooth function, e.g. a linear or fractional drift term, and Xt is
again a fractional Brownian motion. In its first phase, Xt is generated on a subgrid, and f(t)
is added accordingly. The resulting process Zt, t ∈ T (0) is then passed to the bridge-selection
routine, where the bridges are checked for criticality using the values of Zt in the criticality
criterion (5.21). Once a bisection is required, the midpoint is generated using the subtracted
process Xt = Zt − f(t), i.e. the vector used to generate the midpoint’s mean (cf. Eq. (5.27)) is
~X, not ~Z. Then, the generated midpoint Xm is transformed back using Zm = Xm + f(tm), and
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Algorithm 2: Finding the next bridge to be checked

procedure Next Bridge(T , (tl, tr), τm)
if (tl, tr) = 0 then

return (0, 2−g) . Initialise with first bridge
if (tl, tr) has no children then

return parent bridge
if (tl, tr) early enough for τm AND level < L then

if left child not checked then
return left child . Move down left

if left child checked AND right child not checked then
return right child . Move down right

if both children checked then
return parent bridge . Move up to parent

if level of (tl, tr) = L then
if Bridge crosses threshold then

return NULL
else

return parent bridge

inserted into the path of Z. Note that even if f(t) = µt (linear drift), and contrary to Brownian
motion, the iteration can not be performed directly on Zt.

5.2.5 Further generalisations

The underlying idea of the algorithm – to generate a grid that is fine only where it matters –
lends itself to various other non-local observables, in particular extreme events, such as running
maxima (minima), positive time (time spent in the region Xt > 0), last returns, or the range
or span (maxXt −minXt) of a process.

In each of these examples, one needs to adapt two logical steps in the procedure; (i) the
order in which bridges of the grid are iterated, and (ii) the criterion for triggering a bisection.
For first-passage times, the order of the bridges is given by the subroutine described above in
Sec. 5.2.3.G. The criterion for bisection is determined by the bridge’s distance to the threshold.
These two choices are particular to first-passage events.

For running maxima, the bridges should be tested in descending order of height, and the
bisection-criterion adapted to decide whether the midpoint could surpass the current maximum
with a probability larger than ε. If the current maximum changes, the criterion for triggering a
bisection also changes. As the maximum can only increase, bridges which were uncritical before
do not become critical by a change of the estimate of the maximum.

To find the last return to zero (t0 = supt′<t {t′|Xt′ = 0}), the bisection criterion is the same
as for first-passage times (with m set to zero), but bridges should be iterated over from latest
to earliest, choosing the right subinterval first after bisection (cf. Fig. 5.1).

The span of a process at time t is defined as the running maximum minus the running
minimum [246, 247, 176, 250, 251]. To find the first time the span reaches one is more delicate.
There are two cases, given a discretization. Either span one is reached first when the maximum
increases, or the minimum decreases. Suppose that the maximum increases. Then there is
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Figure 5.1.: Illustration of the adaptive bisection routine. The grid T (bottom) contains points
in time, here detail shown of initial bridge tl = i2−g, tr = (i+1)2−g (labelled bullets)
and successively introduced midpoints (bullets on time axis); The path X (above)
samples values at times (dashed lines) which approximate path by linear interpola-
tions (grey and black thick lines). The threshold m (red uppermost horizontal line)
is crossed by the path and bisections are generated for every bridge whose endpoints
lie in the critical strip corresponding to its level (blue vertical lines underneath).
The horizontal arrows on top of the path indicate the bridges in between the grid
points. The mapping from bridges to binary tree (top) is indicated with dotted lines.
The top node (1) corresponds to the widest bridge (i2−g, (i+ 1)2−g), and children
correspond to sub-intervals generated by midpoint. The bridges are explored in
order as given by numbers above nodes and chosen by the bridge-selection routine
(see text for details). Bridges that are critical (blue filled nodes) are bisected, and
their children checked from left to right, until a first-passage event has been identi-
fied at maximum bisection level L (red filled node ‘7’). This event terminates the
algorithm. In contrast to Node 1 which belongs to the initial grid T (0), Nodes 2
to 7 stem from adaptive bisections and contribute to the total count of bisections
M . The maximum number of nodes which could theoretically be spawned off this
particular sub-interval is 2L−g − 1. This figure is accepted for publication as [242].
See App. A.4 for approval of co-authors.
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a minimum for a smaller time. By refining the grid close to this minimum, the latter may
decrease. This in turn shifts down the critical strip for the maximum, and one has to redo all
checks for bridges close to the maximum.

The algorithm can be generalized to other Gaussian processes, since the derivations given in
Sec. 5.2.3.F and App. 5.B for the insertion of a conditional midpoint apply to any Gaussian
process. The only point at which we made explicit use of properties for fBm was at the ini-
tialisation step, where the Davies-Harte method was employed to generate a path on a coarse
dyadic lattice. If one were to study another Gaussian process, one would need to replace the
correlation function (5.4), and adapt the routine generating the initial grid.

Once these modifications are made for the new problem, we expect the algorithm to deliver
similar improvements in performance and memory.

5.3 Results and Benchmarking

In this section, we compare an implementation of our adaptive bisection method (ABSec) with
an implementation of the Davies-Harte (DH) method. Our focus lies on comparing both CPU
time and memory usage for a simulation of equal discretization error. We find that for large
system sizes, Neff & 102/H , the adaptive bisection routine outperforms the Davies-Harte method
both in CPU time and memory. This advantage grows markedly for lower values of H. At
H = 0.33, for instance, and a final grid size of Neff = 232 we need 5000 times less CPU time
and 10 000 less memory. At H = 0.25 we find ABSec to be 300.000 times faster and 106 less
memory intensive than DH at an effective system size of Neff = 242.

We then discuss systematic errors and analyse how they depend on the parameters, in order
to clarify the payoff between computational cost and numerical accuracy. We conclude with a
discussion of our findings.

5.3.1 Implementation in C

We implemented the adaptive biection algorithm in C, using external libraries lapack [5],
gsl [91], fftw3 [90], and cblas [24]. The code is published [241] and available under a BSD
license. It was compiled using the Clang/LLVM compiler using the −O3 flag as only compiler
optimisation. The code was executed on an ‘Intel(R) Core(TM) i5-7267U CPU 3.10GHz’
processor.

As reference, we use an implementation of the Davies-Harte method in C1. Compiler settings
and hardware are identical to those used for the adaptive bisection algorithm.

In order to compare performance, we used user time and maximum resident set size as mea-
sured by the POSIX command getrusage; user time indicates the time the process was executed
in user space, and maximum resident set size the amount of RAM held by the process.

5.3.2 Numerical errors and fluctuation resolution

The adaptive bisection algorithm suffers from three errors.

1B. Walter, K. J. Wiese, https://github.com/benjamin-w/davies-harte-fpt.git
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(i) the resolution of the grid itself, determined by the maximum grid size if all bridges were
triggered, which we refer to as horizontal error. Any discretization of a continuous path suffers
from errors that are made when replacing the rough continuous path by the linear interpolation
of a grid. Even if the true first-passage time is optimally approximated, the error still depends
on the system size N . In that respect, our algorithm does not differ from DH or other exact
sampling methods.

(ii) the adaptive bisection routine suffers from a probabilistic error, namely false negative
results of the criticality check, i.e. bridges which do contain an excursion crossing the threshold
m, but whose endpoints do not lie in the critical strip (cf. Sec. 5.2.3.E). We refer to these errors
as vertical errors.

(iii) the algorithm suffers from rounding errors of the floating-point unit.
Horizontal errors correspond to the resolution of the process’ fluctuations. To contain fluc-

tuations of a fBm between two grid points at distance N−1 to the order of δX, one needs to
choose N ∼ (δX)−

1
H . Horizontal errors are therefore characterised by the effective discretiza-

tion resolution NH ∼ (δX)−1 which corresponds to the inverse fluctuation resolution. In order
to compare two discretizations of a fBm path for two different values of the Hurst parameter H,
comparing N is misleading. Rather, we compare their effective discretization resolutions NH .
Horizontal errors are impossible to measure numerically, since there exists no way to simulate a
continuous path. They are however independent of the sampling method used; this implies that
the horizontal error of a path generated by DH with system size 2L and an adaptive bisection
routine of maximum bisection level L are exactly the same, given no vertical error occurred.
For a deeper discussion of discretization errors of the DH algorithm, see [251, Sec.V.E].

Vertical errors are controlled by the error tolerance ε′, of Eqs. (5.21)-(5.22). To study vertical
errors systematically, one needs to compare the results with a fully sampled grid using (for
instance) DH. This is discussed in the next section.

In the remainder of the section, we run benchmarking experiments that repeat the adaptive
bisection routine a large number of times, typically I = 104. Following the insights of Sec. 5.3.3,
we choose an error tolerance that is small enough to neglect errors of the vertical kind (whenever
the vertical error rate is much smaller than I−1). In doing so, we can ignore the vertical error
such that the numerical discretization error becomes a good common error for both adaptive
bisections and DH. This allows us to compare grids sampled with both methods systematically
across various values of H and L.

Finally, errors due to the finite precision of the floating-point unit are considered. These
arise in the matrix inversion (5.33), where inspection reveals terms of opposite sign. They can
be detected by plotting σ2

∗(N) as a function of grid resolution. For small grids, σ2
∗(N) almost

follows a power-law, with little spread. Numerical errors are visible as a net increase of this
spread, see Fig. 5.8. To be on the safe side, we choose the maximal L to be 4 less than the
point where we first see numerical errors appear.

5.3.3 Error rate depending on ε′

This section addresses the question of vertical errors, i.e. bridges that were deemed uncritical
by the adaptive bisection routine (cf. Sec. 5.2.3.E), yet contained an excursion that crossed the
threshold for the first time. This probability, P (Xtm > m), where Xtm marks the midpoint of
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Figure 5.1.: Error rate from phone book test for various values of ε′ for H = 0.33. The error rate
is almost identical when changing the initial grid size from 28 (red square marks)
to 24 (blue triangle marks) at the same maximum bisection level L = 20. When
lowering the maximum bisection level to L = 16, the error rate improves. The
relation between error rate and error tolerance decreases approximatively linearly
over several orders of magnitude (compare with solid gray line). The total error
rate is approximately 10ε′ for L = 20 (solid gray line) and about 3ε′ for L = 16
(dashed gray line). Note that the prefactor is much smaller than the number of
points, which can read off from Fig. 5.3. Error rates were averaged over 105 to
106 iterations. This figure is accepted for publication as [242]. See App. A.4 for
approval of co-authors.

a bridge, was bounded using an error tolerance ε′. Therefore, we need to know how ε′ controls
the error rate. Since we can only measure the error rate when compared to another numerically
generated grid, we compare our algorithm to a path generated using the Davies-Harte algorithm
of equal precision. The procedure is as follows. In a first step, the Davies-Harte method is used
to generate a path on the dyadic lattice ΛL. For this path, and a threshold m, the first-passage
time is calculated using its linear interpolation as detailed in Sec. 5.2.3.B. Then, only times in
the subgrid Λg ⊂ ΛL are copied into a second path. This path is handed over to a modified
adaptive bisection routine (cf. Alg. 5.2.3). The bridges of the grid are successively checked, at
each step deciding whether to bisect as discussed in Sec. 5.2.3.E. Once a midpoint needs to be
drawn, it is not randomly generated, but taken from the full grid at the same time. The full
grid thus serves as a phone book for the adaptive bisection algorithm, where points are looked
up if they lie at points the algorithm would have otherwise generated randomly. The algorithm
then outputs its own estimate of the first-passage time. If the first-passage times disagree, this
is considered an error. We refer to this check as phone book test. This test is iterated 106 times,
and the error rate P tot

error is defined as the ratio between errors and the number of iterations.
The results are shown in Fig. 5.1, where we compare the error-rate for different values of ε′

and for three different grids of varying initial grid size, and maximum bisection levels. The plot
shows that the total error rate and error tolerance ε′ depend on each other linearly, indicating
that ε′ is a suitable replacement for ε introduced in Eq. (5.16). The plot further shows that
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Figure 5.2.: Average number of new midpoints generated at bridge level `, for various values
of H (solid, dashed, dash-dotted, and dotted lines) as a function of `H. For equal
values of `H, lower Hurst parameter implies a larger number of average bisections.
These numbers are virtually independent of the initial grid size, as is shown for Λ4

(circle marks) and Λ8 (triangle marks). This figure is accepted for publication as
[242]. See App. A.4 for approval of co-authors.

the error rate remains almost identical when replacing the initial grid Λ8 by Λ4 (which contains
16 points only). Further, the error rate improves if the maximum bisection level is lowered.
When lowering the effective system size from 220 to 216, the error rate lowers approximately by
a factor of three.

In summary, this plot confirms that the computationally cheap variant (5.19) allows us to
control the vertical errors (false negative results of the criticality test).

5.3.4 Average number of bisections

In this section, we investigate how many points are added to the initial grid, and how the
additionally inserted midpoints are distributed over the different generations. The number
of midpoints generated, M , is the main expense of computational resources, since each point
requires promoting an inverse correlation matrix from size n to n+ 1 requiring O(n2) steps.

Each midpoint that is generated bisects a bridge at level ` and creates two sub-bridges at
level ` + 1. In order to know how the algorithm spends most of its time, we simulated the
adaptive bisection routine 104 times over an initial grid of size Λ4 or Λ8 and measured the
average distribution of the M newly generated midpoints over the different levels. The results
are shown in Fig. 5.2.

While the distribution remains virtually unchanged when replacing the initial grid by Λ8, its
shape changes for different values of Hurst parameter H. For H > 1

2 , the distribution remains
flat and even descends for ` > 5/H. For H = 1

2 it remains constant for ` > 8 (at around 11
midpoints per generation), while for H < 1

2 (see figure for H = 1
3 and H = 1

4), the number of
inserted midpoints increases, and tends to be at higher bridges.

Since the number of additionally inserted points M is crucial to the performance of ABSec,
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Figure 5.3.: Average number of bisections M as a function of the maximum bisection level
L (i.e. Neff = 2L) for different values of H (diamond, circle, upright and upside
down triangle marks). Inset shows M versus LH. As long as H ≥ 0.33 growth is
asymptotically approximately linear in L, corroborating M ∼ ln(Neff). For smaller
values of H, either the linear regime is not yet reached, or the growth is stronger.
(5000 iterations with initial grid Λ8 and error tolerance ε′ = 10−9). For H =
0.5, extrapolation was used. This figure is accepted for publication as [242]. See
App. A.4 for approval of co-authors.

the routine is designed to minimise this number, with a hypothetical minimum of L− g points
(when finding the first-passage event with no fault). The hypothetical maximum corresponds
to a full bisection of the grid which would require 2L − 2g ≈ 2L additional points (this occurs
when the path does not cross the threshold at all and ε′ → 0). In Fig. 5.3, we show the total
number of bisections M for various system sizes L, averaged over 104 realisations. The number
of additional points ranges from 40 to 1500, where larger system sizes lead to an increase of M .
For H = 0.33 and L = 32, the average of additional points is M = 710 which corresponds to
1.6×10−7 of the full grid. This means that with that fraction of the full grid only, the algorithm
identifies the first-passage time to the same accuracy as DH (up to vertical errors controlled by
ε′ = 10−9 in this case).

We observe that for values of H & 1
3 , the number of bisections grows first sublinearly and

then linearly in L. This behaviour changes for values H . 1
4 , where growth is stronger, and

we may not yet be in the asymptotic regime. This is also indicated by the profiles shown in
Fig. 5.2, where for lower values of H the distribution ceases to tend to a plateau, but grows for
higher levels of bisection `.

5.3.5 Computing time and complexity estimate

In this section, we analyse how the performance of our algorithm varies with different parame-
ters, and how it compares to DH. In loose terms, we expect the initial grid, generated by DH,
to cost O(2g ln(2g)), and each of the M bisections to cost k2 with k, the number of gridpoints,
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Figure 5.4.: Average user time required to find first-passage time in a grid of effective discretiza-
tion precision 2−LH . The dashed lines indicate user time for Davies-Harte method,
solid lines for the adaptive bisection method. The three different colours indicate
H = 0.33, 0.5, 0.67 (bottom, centre, top pairs of lines). Simulations were run 104

times for ε′ = 10−9 and for two different initial subgrid sizes (Λ4 circle marks; Λ8

square marks). For H = 0.33 (top solid blue lines), the effective system sizes range
from L = 4 to 32 for Λ4, and L = 12 to 28 for Λ8. For H = 0.5 (centre solid green
lines), L ranges from 4 to 22 for Λ4 and from L = 12 to 22 for Λ8. For H = 0.67
(bottom solid red lines), L ranges from 4 to 16 for Λ4 and 12 to 16 for Λ8. This
figure is accepted for publication as [242]. See App. A.4 for approval of co-authors.

i.e. costs, or more precisely the algorithmic complexity, should behave as

CABSec(g,M) ∼
2g+M∑
k=2g

k2 ≈ 1
3(2g +M)3 . (5.35)

It is therefore evident that the majority of the computational cost lies in the bisection phase,
and the overall complexity is of order O((2g +M)3). When comparing this to the complexity of
generating 2L gridpoints with DH, which is O(2L ln(2L)), one estimates that ABSec outperforms
DH whenever M3 � 2L ln(2L). As is shown below, ABSec outperforms DH for L & 12 to 16.

We define the performance of the algorithm via its user time, i.e. the share of the CPU time
the process spends in user space. This means that, depending on the implementation, the total
of CPU time (“wall time”) might differ. User time is a more robust observable, so we use it as
best approximation to the performance of the implementation.

We measure the average user time per generated first-passage time, using either DH or ABSec.
To render different Hurst-values and algorithms comparable, we plot the user time versus the
inverse of the effective discretization error, which scales as NH for DH and 2LH for ABSec. It
describes how well the fBm-path is resolved numerically, taking into account the fluctuation
scaling for different Hurst-parameters.

Since at the beginning of the ABSec procedure inverse correlation matrices are tabulated
(cf. section 5.2.3.D), we measured the run time for 104 iterations, in order to render the initial
overhead irrelevant.
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Fig. 5.4 shows the result of the benchmarking. For small effective system sizes, ABSec per-
forms slower than DH, which is due to the relatively complex overhead of bisections. For
(effective) system sizes of N & 10

2
H the ABSec algorithm gains an increasing and significant

advantage since its run time only grows sublinearly.
To estimate the performance time, we observe that for values of H ≥ 0.33, the number of

additional gridpoints M grows linearly in the logarithm of the effective system size (cf. Fig. 5.3)
throughout the entire observed range. Based on our empirical findings, we propose a linear
relation M ∼ L = ln2(Neff), which implies, cf. Eq. (5.35), an overall computational complexity
of

CABSec(Neff) = O
(
(lnNeff)3

)
, H &

1
3 , (5.36)

since eventually M � 2g for Neff large enough (cf. Fig. 5.3 for H & 1
3). This estimate is

corroborated by Fig. 5.6, where the scaling of user time with system size agrees with our
estimate of (lnNeff)3 for sufficiently large system sizes. The linear relation between the number
of bisections M and the logarithmic system size L, however, does not extend to smaller values
of H, where Fig. 5.3 indicates super-linear growth. Still, testing the ABSec routine at H = 0.25
for an effective system size of Neff = 242 gave an average user time of 6.2s and was about 300000
faster than an extrapolation of the user time for DH at the same system size.2 This shows that
for all practical purposes, ABSec remains a much faster algorithm even at parameters where
estimate (5.36) seems to no longer hold.

For H = 0.33, due to memory limitations, DH is unable to generate paths larger than N = 224,
where ABSec is already about 40 times faster. Since ABSec is also more memory-efficient (see
next section), we can generate grids of size up to 232 for which, if we interpolate the growth
of DH3, we find that ABSec is 5500 times faster than DH for these parameters. For H > 1

2 ,
the advantage is less pronounced, and at a comparable discretization precision, the algorithm
is “only” 40-50 times faster at H = 0.67.

Performance also depends on the initial grid size. In Figs. 5.4 and 5.5, we compare run times
for two different initial grids, Λ4 and Λ8. For larger initial grid sizes, the algorithm is slower
since more points need to be generated initially. An increase in initial grid size leads to a
decrease of 15% (for H = 0.33) in the average number of bisections. This is approximately
outweighed by the time DH takes to generate a path on Λ8 (cf. Fig. 5.4).

The run time increases only slowly for a smaller error tolerance. In Fig. 5.5, we show how
user time decreases when changing ε′ from ε′ = 10−9 to ε′ = 10−7. For an effective precision of
2

32
3 , user time increases by roughly 60 %. Since error rates grow linearly with ε′ (see Fig. 5.1),

we conclude that for an error rate 100 times lower one only needs to invest 60% more user time.
All together, these observations show that the algorithm behaves in a controlled manner for

varying error tolerances and initial grid sizes. Depending on the number of iterations, and the
quality of the data desired, choosing g (initial grid size), L (desired precision), and ε′ (error
tolerance level) accordingly leads to an algorithm that performs up to 5000 times faster than
DH at H = 0.33, that was hitherto very hard to access with high precision. The algorithm
should be tested more for H = 0.25, where it allows one to reach a precision unimaginable by
DH.

2This experiment was run with an initial grid Λ4 and ε′ = 10−9.
3Since DH scales with N ln(N), we fit with f(N ; a, b, c) = N (a ln(N) + b) + c.
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Figure 5.5.: User time for ABSec (solid lines) compared to DH (dashed line) for two different
initial grid sizes and two different values of error tolerance ε′. For a hundred times
higher error tolerance (top semi-transparent pair of lines), user time increase by up
to 60%. This figure is accepted for publication as [242]. See App. A.4 for approval
of co-authors.
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Straight lines indicate fits of the form a ln(N) + b versus t1/3user implying a scaling
of tuser ∼ a3 (ln(Neff)3)+O
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)
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estimate in Eq. (5.36). The inset shows the ratio between data points and the
fit. This figure is accepted for publication as [242]. See App. A.4 for approval of
co-authors.
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Figure 5.7.: Memory usage for DH (dashed line) and ABSec (solid line) for two different initial
subgrid sizes. DH scales linearly in N , while ABSec grows only slowly (see text for
estimate). For system of size Neff = 228, ABSec needs only 10−2 to 10−3 of the
memory for DH. For larger systems or smaller H, the advantage of ABSec is even
bigger. Measurements were taken after 104 iterations. This figure is accepted for
publication as [242]. See App. A.4 for approval of co-authors.

5.3.6 Memory requirements

As a final benchmark of our algorithm, we consider memory usage. The latter is defined by the
resident set size of the process, as measured by getrusage. When using DH, the full grid needs
to be saved, and in doing so memory usage scales like N . Fig. 5.7 shows memory usage for both
DH and ABSec when performed for different effective discretization precisions and initial grid
sizes. It shows that for large system sizes, ABSec gains a growing and significant advantage.
To generate a path of 228 lattice points in double precision via DH, one requires 10 GB working
memory, whereas ABSec uses between 20 and 80 MB, depending on the initial grid size. This
represents an improvement by a factor of 125 to 500. This is due to the fact that only the initial
grid which scales as O(2g), the additional gridpoints of order O(M) and a correlation matrix,
scaling as O(2g + M)2, need to be stored. As implemented, additional memory is needed for
the catalogue of inverse correlation matrices (cf. Eq. (5.15)) which occupies memory of order
O(23g), so including the catalogue overall memory space grows like 23g + (2g + M)2. For Neff

large enough, we assume that 2g �M , such that asymptotically for large effective system sizes
the necessary memory grows as order M2. For values of H & 1

3 , we empirically found that
M ∼ ln(Neff), such that in that parameter range we estimate memory to grow as

MABSec(Neff) = O
(
(lnNeff)2

)
, H &

1
3 . (5.37)

This advantage is again due to M � 2L, i.e. using the fact that the first-passage time can be
found to equal precision with much less grid points.
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Figure 5.8.: Ratio between sampled variance and no-neighbour-estimate of variance
(cf. Eq. (5.18)) of an inserted midpoint Xm versus the level of the bisected bridge.
For H = 0.5 (green diamond marks), the ratio equals 1, as BM is Markovian. For
H 6= 0.5 (red square marks H = 0.67, blue circle lines H = 0.33), the variance
fluctuates, as shown by the error bars for one standard deviation. Numerical errors
due to a loss of floating point precision become relevant around Lmax ' 11/H.
ABSec was used with an initial grid Λ8 and ε′ = 10−9. This figure is accepted for
publication as [242]. See App. A.4 for approval of co-authors.

5.3.7 Floating point precision

Currently, our implementation uses the 64-bit double type. Since the variance of a bridge-point
is calculated from the subtraction of quantities of O(1) (cf. Eq. (5.31)) whose difference can be
as small as O(2−LH), the subtraction suffers from the finite floating-point precision when L is
too large, as is demonstrated in Fig. 5.8 (cf. caption for details). This leads to Lmax ' 10.5/H,
or Neff ' 2× 10

3
H .

5.3.8 Discussion

In this section we illuminated several aspects of our algorithm that show how it is capable of
generating first-passage times with high numerical precision using several orders of magnitude
less CPU time and memory as compared to DH. We chose to compare ABSec to DH because
the latter is widely spread in simulating first-passage times of fBm (see e.g. [106, 149]), and
since it is the fastest known exact generator of fBm. Since our method is also exact (the
statistics of the grid generated is bias-free), we think of DH as the natural benchmark. There
are related approximative algorithms like the random midpoint displacement algorithm R`,r

that also inserts midpoints, only taking into account the ` left and r right nearest neighbours
[173]. This neglects long-range correlations between small increments at t1, t2 which even for
t1 � t2 are correlated algebraically via (t1 − t2)−1 + O

(
(H − 1

2)2
)

(for H 6= 1
2). The ABSec

algorithm uses the full inverse correlation matrix of all points generated and is therefore closely
related to exact procedures like DH.

Supported by our experiments, we are able to control both vertical and horizontal errors at
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the scale of inherent errors of a Monte Carlo simulation. In practice, the limiting factors are not
systematic errors of the algorithm but floating point imprecisions stemming from the matrix
inversion.

The phone-book test used to asses the error rate does not take into account issues of precision
when drawing new midpoints, which are copied from a pre-generated grid. Since this is an
implementation-dependent grid, we decided to only use the phone-book test since the errors
caused in that procedure are the ones inherent to the algorithm itself. An implementation with
a higher-precision floating-point unit seems highly desirable.

5.4 Summary

When simulating first-passage times, or any other non-local observable, of fractional Brownian
Motion, the large fluctuations for H < 1

2 require the grid to have a very high resolution for the
same quality of data as for H ≥ 1

2 . Generating a fine grid is particularly expensive, both in
memory and time. The algorithm proposed here refines the grid only where it is likely to impact
the first-passage event. To give rigorous notion to that idea, we developed a precise criterion
for when and where the grid should be refined. The new mid-points are then sampled exactly.
Comparing it to the fastest known exact sampler, the Davies-Harte algorithm, we find that our
implementation of the algorithm is 5000 times faster and uses 1000 times less memory when
applied toH = 0.33 atNeff = 232, due to the fact that only roughly 0.1% of the full grid is needed
to determine the first-passage event. Our algorithm works with a probabilistic approximation,
and the error rate can be bounded by 10−6 or even 10−8. This should be sufficient for most
Monte Carlo experiments and be in the order of numerical (algorithm-independent) errors.

We have successfully used the algorithm to validate the analytic results for the first-passage
time in Chp. 6. There we used 2.5 CPU years at precision N = 228. With DH we would have
had to reduce the precision to N = 224, which still would have taken 75 CPU years.

Finally, the concepts presented here can be used for other observables and other Gaussian
processes. We hope that our algorithm contributes to confirming theoretical predictions on ex-
treme events in Gaussian processes that where hitherto numerically inaccessible at the required
precision.
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Appendix

5.A Derivation of the critical strip length

In this section we derive the width of the critical strip which was introduced in Sec. 5.2.3.E.
The critical strip refers to the distance between a fBm-bridge of size δt = 2−` and the threshold
m, below which the midpoint of the bridge may surpass the threshold with probability larger
than ε. We ignore any other grid points beyond the two fixed bridge points. By translational
invariance, we set X0 = 0, and Xδt = a (a ∈ R). The problem is then equivalently stated as

P (XB
δt/2 > c(ε)) = ε, (5.38)

where XB
t is the fBm-bridge process conditioned on X0, Xδt. Following the derivation in [62],

the law of the fBm-bridge is itself a Gaussian process with first and second moment,

〈
XB
t

〉
= 〈Xtδ(Xδt − a)〉
〈δ(Xδt − a)〉 , (5.39)〈

XB
s X

B
t

〉
= 〈XsXtδ(Xδt − a)〉

〈δ(Xδt − a)〉 , (5.40)

where on the right-hand-side the averages are over free fBm paths. As shown in Resf. [62],
Eqs. (8) and (9), the averages are

〈
XB
t

〉
= a

C(t, δt)
C(δt, δt) (5.41)〈

XB
s X

B
t

〉c
= C(s, t)− C(s, δt)C(t, δt)

C(δt, δt) , (5.42)

where C(s, t) is the correlation function of Eq. (5.4). Since we are only interested in the midpoint
with s = t = δt/2, this yields

µ =
〈
XB
δt/2

〉
= a

2 , (5.43)

σ =
〈

(XB
δt/2)2

〉c
=
(

21−2H − 1
2

)
(δt)2H . (5.44)

This determines the normal distribution of the midpoint and by translational invariance proves
the values used in Sec. 5.2.3.E.
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5.B How to generate an additional random midpoint

We derive the conditional law of an additional randomly generated midpoint for an arbitrary
Gaussian processes as given in Eqs. (5.26)–(5.27). Let T N = t1, · · · , tN and XN = Xt1 , · · · , XtN

be given, and denote the point to be inserted by tN+1 and XtN+1 (the times are not or-
dered). For ease of notation, we write Xi = Xti . As a Gaussian process, the vector ~X =
(X1, · · · , XN , XN+1)T is a normal random variable with mean zero and covariance matrix〈

~X ⊗ ~X
〉

= C(ti, tj) =: C(N + 1) , 1 ≤ i, j ≤ N . (5.45)

It has a symmetric inverse correlation matrix C−1
i,j . Its probability law is therefore given by

P ( ~X) =
exp

(
−1

2
∑N+1
i,j=1XiC

−1
i,j Xj

)
√

(2π)N+1 det(C)
. (5.46)

Since X1, · · · , XN are fixed, XN+1 conditioned on XN follows the marginal distribution

P (XN+1|XN ) =
exp

(
−1

2X
2
N+1C

−1
N+1,N+1 −

∑N
j=1XjC

−1
N+1,jXN+1

)
√

2π/C−1
N+1,N+1

. (5.47)

Note that the normalizing factor in Eq. (5.46) has cancelled, since Eq. (5.47) is a conditional
average. This is a Gaussian distribution

P (XN+1|XN ) =
exp

(
−σ2

2 (XN+1 − µ)2
)

√
2πσ

, (5.48)

with variance

σ2 = 1
C−1
N+1,N+1

, (5.49)

and mean

µ = −
N∑
j=1

Xj

C−1
N+1,j

C−1
N+1,N+1

. (5.50)

The mean can be seen as an average of the Xj with weight C−1
N+1,j/C

−1
N+1,N+1.

5.C Derivation of the enlarged correlation matrix

In this section, we derive the algorithm to promote inverse correlation matrices as given in
Eqs. (5.28)–(5.33). Assuming that C(N) and C−1(N) are known, the aim is to find C(N + 1)
and C−1(N+1) in as little as possible computational steps. The starting point is the observation
that C(N + 1) contains C(N) as block matrix and is only augmented by a row and identical
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column,

C(N + 1) =

C(N) ~γ

~γT
〈
X2
N+1

〉 (5.51)

where ~γ is defined in Eq. (5.28) and
〈
X2
N+1

〉
= 2t2HN+1 in the case of fBm, but is intentionally

left general. For the more difficult part, the inversion, we assume that the inverse correlation
matrix is of the form

C−1(N + 1) =

A(N) ~b

~bT c

 (5.52)

for some arbitrary (symmetric) matrix A, vector ~b and number c. Multiplying matrices (5.51)
and (5.52) results in

CC−1 =

C(N)A(N) + γ ⊗~bT C(N)~b+ c~γ

(C(N)~b+ c~γ)T ~bT~γ + c
〈
X2
N+1

〉
!= 1N+1 , (5.53)

such that one obtains the system of equations

C(N) ·A(N) + ~γ ⊗~bT = 1N , (5.54)

C(N) ·~b+ c~γ = ~0 , (5.55)
~b · γ + c

〈
X2
N+1

〉
= 1 . (5.56)

This is solved by

A(N) = C−1(N) + C−1(N) · ~γ ⊗ ~γT · C−1(N)〈
X2
N+1

〉
− ~γ · C−1(N) · ~γ

, (5.57)

~b = − C−1(N) · ~γ〈
X2
N+1

〉
− ~γ · C−1(N) · ~γ

, (5.58)

c = 1〈
X2
N+1

〉
− ~γ · C−1(N) · ~γ

. (5.59)

Defining ~g as in Eq. (5.29) and σ2 as in Eq. (5.31), one arrives at the inverse matrix (5.33).”
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Chapter 6

Extreme Events for Fractional Brow-
nian Motion with Drift: Theory and
Numerical Validation

Abstract

“We study the first-passage time, the distribution of the maximum, and the absorption proba-
bility of fractional Brownian motion of Hurst parameter H with both a linear and a non-linear
drift. The latter appears naturally when applying non-linear variable transformations. Via a
perturbative expansion in ε = H − 1/2, we give the first-order corrections to the classical result
for Brownian motion analytically. Using a recently introduced adaptive bisection algorithm,
which is much more efficient than the standard Davies-Harte algorithm, we test our predictions
for the first-passage time on grids of effective sizes up to Neff = 228 ≈ 2.7 × 108 points. The
agreement between theory and simulations is excellent, and by far exceeds in precision what
can be obtained by scaling alone.”

Cited from
M. Arutkin, B. Walter, and K. J. Wiese. Extreme events for fractional Brownian motion

with drift: Theory and numerical validation, 2019. Submitted to Phys. Rev. E, arXiv:1908.10801
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6. Extreme values of Fractional Brownian Motion

Overview

In this chapter, I present a near verbatim copy of a preprint that is cur-
rently undergoing review

M. Arutkin, B. Walter, and K. J. Wiese. Extreme events for fractional Brownian motion
with drift: Theory and numerical validation, 2019. Submitted to Phys. Rev. E, arXiv:1908.10801

This chapter addresses the first-passage time problem of fractional Brownian Motion by means
of a perturbative field theory. The key difference to the approach chosen in Chps. 3 and 4 is
that fractional Brownian Motion has increments which are long-ranged correlated. Therefore,
one cannot simply decompose it into a Markovian process and a driving noise as has been done
in the previous part II.

This Chapter sheds light on the connection between field theory and Gaussian processes. The
field-theory associated to Gaussian processes is bilinear. It does not feature any higher-order
vertices like the field theories in previous chapters. Instead, the perturbation takes place in
the inverse correlation function which features in the bilinear action. For a fractional Brownian
Motion this action is not integrable in closed form. But again, perturbative field theory gives us
a way of approximating it systematically, and to compute a host of observables of such paths.
The expansion takes place around the action of (fully integrable) Brownian Motion. Another
interpretation of the field-theoretic technique here, is that the averages which are supposed to be
taken over the ensemble of fractional Brownian Motion are first calculated for simple Brownian
Motion, which induces a “sampling error”, and then later “fixed” by the corrected action which
accounts for this sampling error.

Further, this Chapter illustrates an application of the algorithm presented in Chp. 5.

Statement of Contribution
When I joined the project, most of the analytics had already been done by Maxence Arutkin
and Kay Wiese (with exception of the absorption probability, Sec. 6.2.13), so I did not do any
of the analytic work. Instead, I wrote, ran, and evaluated the numerics (cf.. Sec. 6.3) employing
the algorithm introduced in Chp. 5. Kay Wiese wrote the initial draft, which he and I discussed
in great detail. After the first round of review, I contributed in clarifying the presentation of
the results.
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6.1 Introduction

“Understanding the extreme-value statistics of random processes is important in a variety of
contexts. Examples are records [154], e.g. in climate change [248], equivalent to depinning
[74], in quantitative trading [199], or for earthquakes [214]. While much is known for Markov
processes, and especially for Brownian motion [197, 109, 86, 85, 26, 20, 251], much less is known
for correlated, i.e. non-Markovian processes, of which fractional Brownian motion (fBm) is the
simplest scale-free version [174, 222, 218, 160, 135, 69, 70, 8].

FBm is important as it successfully models a variety of natural processes [58]: a tagged
particle in single-file diffusion (H = 0.25) [133, 203], the integrated current in diffusive trans-
port (H = 0.25) [204], polymer translocation through a narrow pore (H ' 0.4) [258, 75, 177],
anomalous diffusion [27], values of the log return of a stock (H ' 0.6 to 0.8) [187, 50, 22, 222],
hydrology (H ' 0.72 to 0.87) [161], a tagged monomer in a polymer (H = 0.25) [110], solar flare
activity (H ' 0.57 to 0.86) [169], the price of electricity in a liberated market (H ' 0.41) [216],
telecommunication networks (H ' 0.78 to 0.86) [172], telomeres inside the nucleus of human
cells (H ' 0.18 to 0.35) [32], or diffusion inside crowded fluids (H ' 0.4) [82].

Recently, first-passage times of fractional Brownian Motion have been investigated [122, 123,
105, 63, 59, 61]. Due to the non-Markovian nature of the process, translating these results to
a fBM with drift is far from trivial, and even properly estimating the drift for H < 1/2 is a
challenge [83]. To our knowledge, no analytical result for a fBm with drift are known. It is this
gap we intend to fill here.

As is discussed later, apart from a linear drift, a non-linear drift may appear as well, leading
us to consider the process,

zt := xt + µt+ νt2H . (6.1)

Here xt is a standard fractional Brownian motion (fBm) with mean and variance

〈xt〉 = x0 = 0 , (6.2)

〈xt1xt2〉 = |t1|2H + |t2|2H − |t1 − t2|2H . (6.3)

The parameter H is the Hurst parameter. Since fBm is a Gaussian process, the above equations
uniquely and completely specify it. Taking a derivative w.r.t. both t1 and t2 shows that the
increments of the process are correlated,

〈ẋt1 ẋt2〉 = 2H(2H − 1)|t1 − t2|2H−2 . (6.4)

Correlations are positive for H > 1/2, and negative for H < 1/2. The case H = 1/2 corresponds
to Brownian motion, with uncorrelated increments.

The parameters µ and ν are the strength of linear and non-linear drift. While linear drift is
a canonical choice, non-linear drift appears as a consequence of non-linear variable transforma-
tions. As an example, consider the process

yt := ezt . (6.5)
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P probability
P = ∂xP probability density in x

P = ∂tP probability density in t

P = ∂yP probability density in y

Table 6.1.: Notations used for probabilities and their various densities.

The exponential transformation appears quite often, be it in the Black-Scholes theory of the
stock market where the logarithm of the portfolio price is treated as a random walk [23, 50,
28], be it in non-linear surface growth of the Kardar-Parisi-Zhang universality class [128, 249,
120], where the transformation is known as the Cole-Hopf transformation [118, 43], or in the
evaluation of the Pickands constant [57, 60, 56, 115, 167, 119, 189, 190]. Like any non-linear
transform, this generates an effective drift known from Itô-calculus. Computing the average of
yt gives

〈yt〉 = 〈ezt〉 = exp
(
〈zt〉+ 1

2
[〈
z2
t

〉
− 〈zt〉2

])
= exp

(
µt+ [ν + 1] t2H

)
. (6.6)

Thus even if initially there is no nonlinear drift, it is generated by non-linear transformations.
For this reason, we include it into our model.

While for Brownian motion, equivalent to H = 1
2 , many results can be obtained analytically

[197, 109, 86, 85, 26, 20, 251], for fBm much less is known. Recently, some of us developed a
framework [252] for a systematic expansion in

ε := H − 1
2 . (6.7)

It has since successfully been applied to obtain the distribution of the maximum and minimum
of an fBm [61, 63], to fBm bridges [62], evaluation of the Pickands constant [60], the 2-sided exit
problem [250] and the generalization of the three classical arcsine laws [202]. It is also known
that the fractal dimension of the record set of an fBm is df = H [17].

This chapter is organized into four sections, the introduction, theory in section 6.2, and
numerics in section 6.3, followed by conclusions in section 6.4.

6.2 Theory

In this section, we find the probability distribution of first-passage times and running maxima of
fractional Brownian motion with linear and non-linear drift by way of a perturbation expansion
around simple Brownian motion. The key result of this section is the scaling function (6.89)
which together with the auxiliary functions defined in Eqs. (6.92), (6.99) and (6.103) gives the
distribution of first-passage times. The majority of this section is devoted to deriving these
results.
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6.2.1 Scaling dimensions

Before developing the perturbation theory, we consider the scaling dimensions involved. This
will be useful for later discussion of the scaling functions. For fractional Brownian motion as
defined in Eq. (6.1), there are four dimension-full quantities, x, t, µ, and ν. Scaling functions
will thus depend on three scaling variables, which we now identify. We start with the terms
without drift:

x ∼ tH ⇐⇒ t ∼ x
1
H , (6.8)

where the tilde means “same scaling dimension”. Thus (without drift), any observable O(x, t)
can be written as

O(x, t) = xdimx(O)fO(y) , y := x√
2tH

. (6.9)

The variable y is dimension free. In presence of a linear drift, one has

x ∼ µt ⇐⇒ µ ∼ x

t
∼ x1− 1

H ∼ tH−1 . (6.10)

Thus the combination u = µx
1
H
−1 is dimension free, as is ũ := u

H
1−H = µ

H
1−H x. For non-linear

drift, we have
x ∼ νt2H ⇐⇒ ν ∼ x

t2H
∼ 1
x
∼ 1
tH

. (6.11)

Another scaling variable therefore is v = νx. In conclusion, any observable O can, in general-
ization of Eq. (6.9), be written as

O(x, t, µ, ν) = xdimx(O)fO(y, u, v) , (6.12)

y = x√
2tH

, (6.13)

u = µx
1
H
−1, or ũ = µ

H
1−H x , (6.14)

v = νx . (6.15)

6.2.2 The first-passage time

The central result of our work is a perturbative expression of the first-passage-time density of
fBM with linear and nonlinear drift as introduced in Eq. (6.1). The first-passage time tFP is
defined as

tFP (m) := inf
t>0
{t, zt ≤ 0|zt=0 = m} , (6.16)

where m is the starting point of the process zt, and m > 0. The first-passage-time density for
Brownian motion with (linear) drift, see e.g. [197], and rederived below in Eq. (6.30), is

P0(tFP (m) = t) = m

2
√
πt3/2

e
− 1

2

(
m√
2t

+µ
2
√

2t
)2

. (6.17)

This density in time is most naturally expressed in terms of the scaling variable y introduced
in Eq. (6.9), and which for Brownian motion (H = 1/2) reads

y = m√
2t

∣∣∣∣
t=tFP (m)

. (6.18)
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For Brownian Motion,and the probability distribution of y takes the simple form

P0(y;µ) =
√

2
π
e−F0(y;µ) , (6.19)

F0(y;µ) = 1
2

(
y + µ

2
m

y

)2
. (6.20)

Note that the measure is dt in Eq. (6.17) (density in time), whereas in Eq. (6.19) it is dy (density
in y). To avoid confusion, we use distinct symbols for probabilities P, densities P in time t,
densities P in y, and densities P in space x, independent of the actual choice of variables. This
is summarized in table 6.1.

We introduced the scaling function F0. Below we compute its corrections to first order in ε,
leading to a correction of the first-passage density in y,

P(y;µ, ν) = y
1
H
−2

√
2π

e−F0(y;µ,ν)−εδF(y;µ,ν) +O(ε2) . (6.21)

The result is given in Eqs. (6.88)-(6.89). Two comments are in order: ( i) the exponential
resummation is chosen for better convergence for larger ε, as discussed in [250], section IV.C;
( ii) the distribution of first-passage times is related to the distribution of maxima.

Readers wishing to skip ahead will find the function δF evaluated using path-integral meth-
ods, described in section 6.2.5. For the explicit result, see section 6.2.12. A confirmation by
numerical simulations is shown in section 6.3.2.

6.2.3 Summary of calculations to be done

In order to calculate the first-passage-time distribution, we consider the process zt > 0 in the
presence of an absorbing boundary condition at z = 0 and restrict ourselves to zt > 0. The
transition probability density of the process zt to pass from z0 > 0 to z1 > 0 in time t, without
being absorbed at z = 0 is denoted Pµ,ν+ (z0, z1; t). The probability density of first-passage times
P
(
tFP (m) = t

)
can then be obtained as

P(tFP (m) = t) = ∂z1P
µ,ν
+ (m, z1, t)

∣∣
z1=0 . (6.22)

This relation holds since the derivative on the right-hand-side picks out those trajectories which
assume zt = 0 at time t for the first time. The general strategy of this work is to compute
∂z1P

µ,ν
+ (m, z1, t)

∣∣
z1=0 and its perturbative corrections using path-integral methods. In the sub-

sequent section 6.2.4, we discuss the reference point of our expansion, simple Brownian motion.
In section 6.2.5, we introduce a perturbative expansion around Brownian motion, based on a
path-integral formalism. This yields a diagrammatic expansion (section 6.2.6), with three di-
agrams, listed in section 6.2.7, evaluated in sections 6.2.8 to 6.2.10, and regrouped in section
6.2.11. The final result is given in section 6.2.12. Contrary to the drift-free case, not all pro-
cesses are absorbed, as is discussed in section 6.2.13. Relations between the different probability
densities are discussed in section 6.2.14, followed by an analysis of the tail of these distributions
in section 6.2.15. Numerical checks are presented in section 6.3, followed by conclusions in
section 6.4.
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6.2.4 Simple Brownian Motion: First-passage time and absorption probabil-
ity

The perturbation theory is an expansion around simple Brownian Motion. This base point is
considered here. By setting H = 1

2 and ν = 0 in Eq. (6.1), we obtain simple Brownian Motion
with drift. For this process, we compute (i) the positive transition probability and (ii) the
absorption probability.

The transition probability of simple Brownian Motion Pµ+ (to alleviate our notations, we do
not put an index 0 to indicate Brownian motion, since P+ is not used for fBm), the probability
to pass from z0 to z1 within time t without crossing the line z ≡ 0, satisfies the associated
Fokker-Planck equation

∂tP
µ
+(z0, z1, t) = ∂2

z1P
µ
+(z0, z1, t)− µ∂z1P

µ
+(z0, z1, t) . (6.23)

with appropriate absorbing boundary condition at z ≡ 0. Its solution is given by the mirror-
charge solution

Pµ+(z0, z1, t) = 1√
4πt

(
e−(z1−z0)2/4t − e−(z1+z0)2/4t

)
e
µ
2 (z1−z0)−µ

2t
4 , (6.24)

which for z0, z1 > 0 satisfies the initial condition

Pµ+(z0, z1, t = 0+) = δ(z0 − z1) . (6.25)

It is useful to consider its Laplace-transformed version. We define the Laplace transform of a
function f(t), with t ≥ 0 as

f̃(s) := Lt→s [f(t)] =
ˆ ∞

0
dt e−stf(t) . (6.26)

This yields

P̃µ+(z0, z1, s) = e
µ
2 (z1−z0)P̃+

(
z0, z1, s+ µ2

4
)
, (6.27)

where the drift-free propagator reads

P̃+(z0, z1, s) = e−
√
s(z0−z1) − e−

√
s(z0+z1)

2
√
s

. (6.28)

The Laplace transform P̃(m, s) of the first-passage-time probability density, following Eq. (6.22),
equals the probability to go close to the boundary, and there being absorbed for the first time,

P̃(m, s) :=
ˆ ∞

0
dt e−stP(tFP (m) = t)

= ∂z1P̃
µ
+(m, z1, s)

∣∣∣
z1=0

= e−
µ
2me−m

√
s+µ2/4 . (6.29)
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Its inverse Laplace transform is the first-passage-time probability density

P(tFP (m) = t) = e−
µ
2m−

µ2
4 t me

−m
2

4t

2
√
πt3/2

, (6.30)

confirming the result in Eq. (6.17). The total (time integrated) absorption probability is

Pabs(m) = P̃(m, s = 0)

= e−
µ
2me−

|µ|
2 m =

{
e−µm , µ > 0

1 , µ ≤ 0
. (6.31)

In what follows, we present perturbative corrections of these results for ε 6= 0.

6.2.5 The path-integral of a fBm with drift

The technology developed in [252, 63, 250] uses a path-integral to describe fBM. Since zt is
Gaussian, its path-probability measure on a finite interval [0, T ] is

P[zt] = exp (−S[zt;µ, ν]) , (6.32)

where S[zt;µ, ν] is an action quadratic in zt. Without drift (µ = ν = 0), the action for a fBM
to order ε is [252, 63, 250]

S[zt;µ = ν = 0] =
ˆ T

0
dt ż2

t

4Dε
− ε

2

ˆ T

τ
dt2
ˆ t2−τ

0
dt1

żt1 żt2
|t1 − t2|

. (6.33)

The action consists of a local part, corresponding to simple Brownian motion, and a non-local
part, proportional to ε. The idea behind the perturbative expansion is that Brownian motion (as
given by the first term) samples the whole phase space of fBm, albeit with the wrong probability
measure. Our perturbation theory corrects this, by weighing each path with the second term
in Eq. (6.33). This implies that the absorbing boundary conditions at the origin are properly
taken into account, and that observables as the absorption current, which are given by local
operators, remain valid. For regularity, a short-distance cutoff |t1− t2| > τ is introduced in the
last integral, which is reflected in the diffusion constant [63]

Dε = 2Hτ2H−1 = (1 + 2ε)τ2ε = (eτ)2ε +O(ε2) . (6.34)

Inserting the definition (6.1), we arrive after some algebra at the action for an arbitrary drift

S[zt] =
ˆ T

0
dt ż2

t

4Dε

+
ˆ T

0
dt ε2 żt

[
(µ+ν) ln

(
t(T−t)
τ2

)
− 2ν ln

(
t

τ

)]
− ε

2

ˆ T

τ
dt2
ˆ t2−τ

0
dt1

żt1 żt2
|t1 − t2|

−zT − z0
2

[ µ
Dε

+ ν
]

+ T

4 (µ+ ν)2 + T

2 ε
(
ν2 − µ2

)
ln(T ) + O(ε2) . (6.35)
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Some checks are in order. In absence of absorbing boundaries, the exact free propagator reads

Pµ,ν(0, z, T ) = 1
2
√
πTH

e
− (z−µT−νT2H )2

4T2H

= 1
2
√
πTH

exp
(
− z2

4T 2H + z

2
[
ν+µT−2ε

]
−T4

[
νT ε+µT−ε

]2)
. (6.36)

Since the above formalism has variables ż only, the term ∼ z2 is given by the drift-free per-
turbation theory. We can further check that if we replace in the action ż(t) by its “classical
trajectory”, i.e. ż(t) → [z(T ) − z(0)]/T , then both the normalization and the drift term agree
with the exact propagator.

Let us specify Eq. (6.35) to the two cases of interest: For a fBm with linear drift as given in
Eq. (6.1) with ν = 0, we have

Sν=0[zt] =
ˆ T

0
dt ż2

t

4Dε
− µ

2Dε
(zT − z0) + T 1−2ε

4 µ2

−ε2

ˆ T

τ
dt2
ˆ t2−τ

0
dt1

żt1 żt2
|t1 − t2|

+ εµ

2

ˆ T

0
dt żt ln

( [T − t]t
τ2

)
+O(ε2) . (6.37)

For a fBm with non-linear drift as given in Eq. (6.1) with µ = 0, we have

Sµ=0[z] =
ˆ T

0
dt ż2

t

4Dε
− ν

2 (zT − z0) + T 1+2ε

4 ν2

−ε2

ˆ T

τ
dt2
ˆ t2−τ

0
dt1

żt1 żt2
|t1 − t2|

+ εν

2

ˆ T

0
dt żt ln

(
T − t
t

)
+O(ε2) . (6.38)

Note the appearance of the diffusion constant in the “bias” (Girsanov) term zT − z0 for a linear
drift, and its absence for a non-linear drift.

To simplify the notation, we introduce

S0[zt] =
ˆ T

0
dt ż

2
t

4 (6.39)

as a shorthand for the Brownian action around which perturbation theory expands. The drift
(Girsanov) term is e−Sd , with

Sd[z] = z0 − zT
2

(
µ

Dε
+ν
)

+ T

4
(
µT−ε+νT ε

)2
. (6.40)

Further, define

α := µ− ν , β := µ+ ν , (6.41)

µ = α+ β

2 , ν = β − α
2 . (6.42)
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m

x1

x2

x0
t1 t2 T

time

space G1

m

x1

x0
t T

time

space Gα

m

x1

x0
t T

time

space
Gβ

Figure 6.1.: Graphical representation of the path-integral for diagram G1(m, t) (left, ex-
pectation of S1, Eq. (6.52)), Gα(m, t) (middle, expectation of Sα, Eq. (6.53)), and
Gβ(m, t) (right, expectation of Sβ, Eq. (6.54)). The wiggly line in the first diagram
represents the interaction proportional to 1/(t2 − t1). The red lines in the second
and third diagram contain a log of the corresponding time difference, ln(t/T ) for
the first, and ln

(
(T − t)/T

)
for the second. This figure has been submitted for

publication to Phys. Rev. E. See App. A.5 for approval of co-authors.

This simplifies the drift terms in the action to

Sα[zt] := 1
2

ˆ T

0
dt żt ln

(
t

τ

)
, (6.43)

Sβ[zt] := 1
2

ˆ T

0
dt żt ln

(
T − t
τ

)
. (6.44)

Finally, the drift-independent perturbative correction containing the non-local interaction reads

S1[zt] = 1
2

ˆ T

τ
dt2
ˆ t2−τ

0
dt1

żt1 żt2
|t1 − t2|

. (6.45)

In these notations, the action to order ε reads

S[zt;µ, ν] = S0
Dε

+ Sd − ε (S1 − αSα − βSβ) . (6.46)

Perturbation theory takes place in the three interaction-terms proportional to ε, plus an addi-
tional contribution due to Dε. The bare result Eq. (6.27) of transition probabilities of fBM will
thus be corrected by three different terms corresponding to the three interaction terms Sα,Sβ
and S1, plus a correction from Dε. The (diagrammatic) rules for computing these corrections
are outlined in the next section.

6.2.6 Diagrammatic expansion

The central aim of this work is to calculate the first-passage-time density. This is done by taking
the derivative of the survival transition density at its endpoint (cf. Eq. (6.22)). The latter is
obtained perturbatively by evaluating a path-integral over the action defined previously.

Pµ,ν(m, t) := ∂z1 |z1=0 P
µ,ν
+,ε (m, z1, t)

≡ lim
z1→0

1
z1
Pµ,ν+,ε (m, z1, t) . (6.47)
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Here we introduced Pµ,ν+,ε (m, z1, t)

Pµ,ν+,ε (m, z1, t) :=
ˆ zt=z1

z0=m
D[zt]Θ(zt) exp (−S) , (6.48)

the probability of a path zt to pass from m to z1 within time t without being absorbed at z = 0
(cf. Eq. (6.24)). At first order in ε, this path integral has four perturbative contributions: The
three diagrams induced by S1, Sα, and Sβ, as well as the change in the diffusion constant Dε.
The simplest way of doing these calculations is to calculate with D = 1, and finally correct for
Dε 6= 1 by writing the FPT density in time of zt as

Pµ,ν(m, t) = Gµ,ν(m, tDε) (6.49)

where we introduce the auxiliary probability density

Gµ,ν(m, t) = ∂

∂z1

∣∣∣
z1=0

zt=z1ˆ
z0=m

D[zt]Θ(zt) e−S
0−Sd+ε(S1−αSα−βSβ) +O(ε2) .

We now use the perturbation expansion established in Ref. [252, 61, 62, 63]; we refer to [63, 59]
for a detailed introduction, and only briefly summarise the method.

The function Gµ,ν(m, t) introduced above has the perturbative expansion

Gµ,ν(m, t) = e−Sd
[
G0(m, t) + ε δG(m, t)

]
(6.50)

where

δG(m, t) = ∂z1

∣∣∣
z1=0

ˆ zt=z1

z0=m
D[zt]Θ(zt) (S1 − αSα − βSβ) e−S0

!= G1(m, t)− αGα(m, t)− βGβ(m, t) +O(ε) . (6.51)

The three auxiliary functions are defined as

G1(m, t) := ∂z1

∣∣∣
z1=0

ˆ zt=z1

z0=m
D[zt]Θ(zt)S1e

−S0 , (6.52)

Gα(m, t) := ∂z1

∣∣∣
z1=0

ˆ zt=z1

z0=m
D[zt]Θ(zt)Sαe−S0 , (6.53)

Gβ(m, t) := ∂z1

∣∣∣
z1=0

ˆ zt=z1

z0=m
D[zt]Θ(zt)Sβe−S0 . (6.54)

As the term Sd only depends on the initial and final point, as well as the time T , we were able
to take it out. Each of the perturbations S1, Sα, and Sβ, defined in Eqs. (6.43)-(6.45) has to be
evaluated inserted into the path integral with absorbing boundaries at z = 0.

Let us summarize the rules of this perturbative expansion, explained in detail in Ref. [63]. The
first step is to perform a Laplace transform, from the time variable t to the Laplace conjugate
s. This transform has two advantages: First of all, it eliminates integrals over the intermediate
times. Second, the propagator (6.27)-(6.28) is exponential in the space variables, thus the latter
can be integrated over.
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The next step is to eliminate the denominator in Eq. (6.45), using a Schwinger parametrization
(Eq. (31) of [63]),

1
t2 − t1

=
ˆ
y>0

e−y(t2−t1) . (6.55)

The variable y on the r.h.s. of Eq. (6.55) can be interpreted as a shift in the Laplace variable s
associated to the time difference t2 − t1, i.e.

s→ s+ y (6.56)

for all propagators between times t1 and time t2. For an example see the first diagram in
Eq. (6.64) below.

The integral over times necessitates a cutoff τ at small times, which can be replaced by a
cutoff Λ for large y (Eq. (A3) of [63]). Their relation is

ˆ T

0
dt
ˆ Λ

0
e−ytdy = ln(TΛ) + γE +O(e−TΛ)

!= ln
(
T

τ

)
=
ˆ T

τ

1
t

dt . (6.57)

This implies the choice
Λ = e−γE/τ . (6.58)

Finally, while the insertion of the position zt at time t with 0 < t < T leads to a factor of z in
the corresponding propagators,

〈zt〉z0=a,zT=b =
ˆ
z
P+(a, z, t)zP+(z, b, T − t) , (6.59)

the insertion of żt yields a derivative (Eq. (A1) of [63])

〈żt〉z0=a,zT=b = 2
ˆ
z
P+(a, z, t)∂zP+(z, b, T − t) . (6.60)

Here P+(a, b, T ) is the Brownian transition density introduced in Eq. (6.24) in the absence of
drift (µ = 0).

6.2.7 Diagrams to be evaluated

The three auxiliary functions introduced in Eqs. (6.52)-(6.54) have a diagrammatic representa-
tion presented in Fig. 6.1. They give to first order in ε for G,

Gµ,ν(m,T ) := exp
(
−m2

(
µ

Dε
+ν
)
− T

4
(
µT−ε+νT ε

)2)
×
{
G0(m,T ) + ε

[
G1(m,T )− αGα(m,T )− βGβ(m,T )

]}
. (6.61)
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The zeroth order contribution G0(m, t) follows from Eqs. (6.29) and (6.30),

G0(m, t) = me−
m2
4t

2
√
πt3/2

(6.62)

G̃0(m, s) = e−m
√
s . (6.63)

6.2.8 Order ε, first diagram G1

The Laplace transform of the first diagram is obtained from the insertion of S1 (without drift),
as represented by the first diagram of figure 6.1, using the Brownian propagators found in
Eq. (6.27). (The global factor of 2 = 22/2 comes from a factor of 2 for each insertion of ẋ, and
the 1/2 from the action.)

G̃1(m, s) (6.64)

= lim
x0→0

2
x0

ˆ Λ

0
dy
ˆ
x1>0

ˆ
x2>0

P̃+(m,x1, s)∂x1P̃+(x1, x2, s+ y)∂x2P̃+(x2, x0, s)

= 2
ˆ Λ

0
dy
√
s
(
e−m

√
s (my − 2

√
s+ y) + 2

√
s+ ye−m

√
s+y
)

2y2

= em
√
s (m√s+ 1

)
Ei
(
−2m

√
s
)

+ e−m
√
s
[
m
√
s

(
ln
(

m

2
√
sτ

)
− 1

)
− ln

(
2m
√
s
)
− γE

]
,

where we introduced the exponential integral function Ei(z) = −
´∞
−z dt e−zz , and used Eq. (6.58)

to eleminate Λ. For the inverse Laplace transform we find using appendix C of Ref. [62]

G1(m, t)

= G0(m, t)
[
I
(
m√
2t

)
+ 2

(
m2

4t − 1
)

ln
(
m2

τ

)
+ ln

(
t

τ

)
+ (γE − 1)m2

2t − 2γE − 1
]
. (6.65)

The special function I appearing in this expression was introduced in Ref. [252], Eq. (B53)

I(z) = z4

6 2F2

(
1, 1; 5

2 , 3; z
2

2

)
+ π(1− z2) erfi

(
z√
2

)
− 3z2 +

√
2πe

z2
2 z + 2 , (6.66)

where erfi(z) is the imaginary error function. Using the definition (6.58) of Λ, Eq. (6.65) and
introducing the variable

z := m√
2t

, (6.67)

G0(m, t) and G1(m, t) can be written more compactly as

tG0(m, t) = e−
z2
2 z√
2π

, (6.68)

G1(m, t) = G0(m, t)
{
I(z)− ln

(
4tz4

τ

)
+ z2

[
ln
(

2tz2

τ

)
+ γE − 1

]
− 2γE − 1

}
.(6.69)
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Note that there is a global prefactor of 1/t, and a logarithmic dependence on t and τ for G1.

6.2.9 Order ε, second diagram Gα

To study perturbations with Sα defined in Eq. (6.43), we represent the logarithm as

ln
(
t

τ

)
=
ˆ ∞

0

dy
y

[
e−τy − e−ty

]
. (6.70)

This yields for the insertion of Sα

G̃α(m, s) = lim
x0→0

1
x0

ˆ Λ

0

dy
y

ˆ
x1>0

[
P̃+(m,x1, s)e−τy − P̃+(m,x1, s+ y)

]
∂x1P̃+(x1, x0, s)

=
ˆ Λ/s

0
dy
[
e−m

√
s

√
sy2 −

e−m
√
s
√
y+1

√
sy2 − me−m

√
s−sτy

2y

]
= 1

4me
−m
√
s

[
2e2m

√
sEi

(
−2m

√
s
)

+ ln
(

4sτ2

m2

)
+ 2

]
+O(Λ−1) . (6.71)

We checked that the y integrand is convergent, at least as 1/y2 for large y, and has a finite limit
for y → 0; thus neither x0 nor Λ are necessary as UV cutoffs, and the y-integral is finite. The
τ -dependence stems from the ln(t/τ) of the perturbation term.

Doing the inverse Laplace transform using appendix C of [62], we get with z defined in
Eq. (6.67)

√
tGα(m, t) = e−

z2
2 z2 [I(z)− 2]

2
√
π(1− z2) +

z erfc( z√
2)

√
2 (z2 − 1)

−
e−

z2
2 z2

[
ln
(

2tz2

τ

)
+ γE − 1

]
2
√
π

, (6.72)

defining the complementary error function erfc(z) = 1 − erf(z). Note that there is no pole at
z = 1. Indeed, for z → 1 one obtains

1
8
√
eπ

(
− 2F2

(
1, 1; 5

2 , 3; 1
2

)
− 4 2F2

(
1, 1; 3

2 , 2; 1
2

)
(6.73)

+2
√

2eπ
(

erfc
( 1√

2

)
− 3

)
+ 4πerfi

( 1√
2

)
− 4 ln

(2t
τ

)
− 4γE + 22

)
.

6.2.10 Order ε, third diagram Gβ

Using again the integral representation (6.70), the third diagram for the insertion of Sβ is read
off from Fig. 6.1 as

G̃β(m, s) = lim
x0→0

1
x0

ˆ Λ

0

dy
y

ˆ
x1>0

P̃+(m,x1, s) ∂x1

[
P̃+(x1, x0, s)e−τy − P̃+(x1, x0, s+ y)

]
=
ˆ ∞

0
dy
[√

y + 1e−m
√
s

√
sy2 −

√
y + 1e−m

√
s
√
y+1

√
sy2 − me−m

√
s−sτy

2y

]

=
e−m

√
s
(
m
√
s
[
2− ln

(
m2

4sτ2

) ]
+ ln

(
4m2s

)
+ 2γE

)
4
√
s

− em
√
s (m
√
s+ 1) Ei (−2m

√
s)

2
√
s

.(6.74)
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We checked that the y integrand is convergent, as it decays at least as 1/y3/2 for large y, and
has a finite limit for y → 0, thus no UV cutoff is necessary, and the y-integral is finite.

Doing the inverse Laplace transform using appendix C of Ref. [62], we get with z defined in
Eq. (6.67)

√
tGβ(m, t) = e−

z2
2 [I(z)− 2]

2
√
π (1− z2) +

z erfc( z√
2)

√
2 (z2 − 1)

+
e−

z2
2 z2 [1− ln( tτ )

]
2
√
π

. (6.75)

6.2.11 Combinations

In the drift-free case the result for G0(z) is given in Eq. (6.68), while G1(z) is given in Eq. (6.69).
Let us now turn to the corrections for drift. While Gα and Gβ are the appropriate functions
for the calculations, we finally need the corrections for linear drift µ and non-linear drift ν.
Demanding that

αGα + βGβ
!= µGµ + νGν , (6.76)

and using Eqs. (6.41) and (6.42) yields

√
tGµ(m, t) =

√
t
[
Gα(m, t) + Gβ(m, t)

]
= −e

− z
2
2
(
z2+1

)
[I(z)−2]

2
√
π (z2−1) +

√
2 z erfc( z√

2)
z2−1 −

e−
z2
2 z2

[
ln
(

2t2z2

τ2

)
+ γE − 2

]
2
√
π

as well as

√
tGν(m, t) =

√
t
[
Gβ(m, t)−Gα(m, t)

]
= e−

z2
2 [I(z)−2]

2
√
π

+ e−
z2
2 z2 [ln(2z2)+γE

]
2
√
π

.

(6.77)

The perturbative contributions can be grouped together as (cf. Eqs. (6.51) and (6.61))

G(m, t) := exp
(
−m2

[
µ

Dε
+ ν

]
− t

4
[
µt−ε + νtε

]2)
×
{
G0(m, t) + ε

[
G1(m, t)−µGµ(m, t)−νGν(m, t)

]}
.

(6.78)

This expression is to this order equivalent to

G(m, t) := exp
(
−m2

[
µ

Dε
+ ν

]
− t

4
[
µt−ε + νtε

]2)
×G0(m, t) exp

(
ε
G1(m, t)− µGµ(m, t)− νGν(m, t)

G0(m, t)

)
. (6.79)

See [250], Sec. IV.C for a discussion of why it is better to write the perturbative corrections in
an exponential form.
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6.2.12 Scaling and corrections from the diffusion constant, final result

The natural scaling variable for fBm is not z, but

y := m√
2tH

. (6.80)

This will induce some corrections (cf. Eq.(6.49)). Consider

e−
y2
2 y√
2π

= e−
z2
2 z√
2π

[
1 + (z2 − 1)ε ln(t)

]
+O(ε2) . (6.81)

There is also a correction to the diffusion constant,

Dε ' (eτ)2ε . (6.82)

According to Eq. (6.49), this implies that

P(m, t) = G(m, tDε)

= e−
y2
2 y√

2πtDε

exp
(
−m2

[
µ

Dε
+ ν

]
− Dεt

4
[
µ2(Dεt)−2ε + ν2(Dεt)2ε

])
× exp

(
ε

[G1(m, t)− µGµ(m, t)− νGν(m, t)
G0(m, t) − (y2 − 1) ln(t)

])
(6.83)

Note that we used the factored form (6.79) to make appear the ratios of G1, Gµ and Gν with
G0, yielding more compact special functions F1, Fµ and Fν defined below. Regrouping terms
yields

P(m, t) = e−
y2
2 y

1
H
−1

√
2πt

exp
(
−µm

1−2ε/H

2 y2ε − νm

2 yε − t

4
[
µt−ε + νtε

]2)
× exp

(
ε
[
F1(y)− µmFµ(y)− νmFν(y)

])
. (6.84)

To order ε, this can be rewritten in a more intuitive form as

tP(m, t) = y
1
H
−1

√
2π

exp
(
−y

2

2

)

×exp
(
ε
[
F1(y)+F0

1

]
−µm

1
H
−1y2ε

[1
2+εFµ(y)

]
−νmy2ε

[1
2+εFν(y)

]
−m

2

8y2

µ(2y2

m2

)ε
H

+ ν

2)
.

(6.85)

Note that since our expansion is restricted to the first order in ε, in expressions like

1
H
− 1 = 1− 4ε+O(ε2) , 1− 1

2H = 2ε+O(ε2) , (6.86)

we have no means to distinguish between left- and right-hand side. Some choices are given by
scaling, as the prefactor of y

1
H
−1, or seem natural, others are educated guesses.

Finally, we wish to rewrite Eq. (6.85) (a density in time) as a density in y, given distance m
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from the absorbing boundary for the starting point. Using that

dt
t

= 1
H

dy
y
, (6.87)

this yields
P(y|m,µ, ν) = P>(y|m,µ, ν) + Pescape(m,µ, ν)δ(y) . (6.88)

The function P>(y|m,µ, ν) is equivalent to Eq. (6.85) after the change in measure (6.87),

P>(y|m,µ, ν) = y
1
H
−2

√
2πH

exp
(
−y

2

2 + ε
[
F1(y)+F0

1

]
− µm

1
H
−1y2ε

[1
2+εFµ(y)

]
(6.89)

− νmy2ε
[1

2+εFν(y)
]
−m

2

8y2

µ(2y2

m2

)ε
H

+ ν

2)
.

Some trajectories escape, which we count as absorption time t = ∞, equivalent to y = 0,
resulting into the contribution proportional to δ(y) in Eq. (6.88), with amplitude

Pescape(m,µ, ν) = 1−Pabs(m,µ, ν) , (6.90)

where
Pabs(m,µ, ν) :=

ˆ ∞
0

dyP>(y|m,µ, ν) . (6.91)

It is evaluated in the next section, see Eqs. (6.119)-(6.121).
The three special functions appearing in Eq. (6.84) are defined as follows: First, the drift-free

contribution are

F1(y) + F0
1

:= G1(y)
G0(y) − (y2 − 1)

[
ln(t/τ)− 1

]
+ 4 ln y (6.92)

= I(y) + y2
(
ln
(
2y2

)
+γE

)
− 2 (γE + 1 + ln 2) .

The conventions are s.t. F1(y) agrees with Refs. [252, 63, 61], i.e. F1(0) = 0. The constant part
F0

1 is equivalent to a change in normalization, N = exp(−εF0
1 ), which for the drift-free case

was of no interest [252, 63, 61], as there the absorption probability is one, which is not the case
with drift. In the chose convention,

F1(y) = I(y) + y2
(
ln
(
2y2

)
+ γE

)
− 2 , (6.93)

F1(0) = 0 , (6.94)

F0
1 = −2 (γE + ln 2) . (6.95)
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Figure 6.2.: Left: The function F1(y) (blue, solid), with its asymptotic expansions (red
and green dashed). Middle: ibid. for Fµ(y). Right: ibid. for Fν(y). Numer-
ical measurements are presented on Figs. 6.2, 6.3 and 6.5. This figure has been
submitted for publication to Phys. Rev. E. See App. A.5 for approval of co-authors.

Its asymptotic expansions for small and large y are

F1(y) = 2
√

2πy + y2
(
ln
(
2y2

)
+ γE − 3

)
− 1

3
√

2πy3 + y4

6 −
1
30

√
π

2 y
5

+y6

90 −
1

420

√
π

2 y
7 + y8

1260 −

√
π
2 y

9

6048 + y10

18900 +O(y11) , (6.96)

F1(y) = ln(y2/2) + 1− ψ
(

1
2

)
+ 1

2y2 −
1

2y4 + 5
4y6 −

21
4y8 + 63

2y10 +O(y−11) . (6.97)

Eq. (6.93) is equivalent to Eqs. (55) in [252], and (56) in [63].
The second function is for the drift proportional to µ,

Fµ(y) := Gµ(m, t)
mG0(m, t) + ∂ε

∣∣∣∣
ε=0

(
m4ε

2Dεy2ε

)
. (6.98)

It is evaluated as

Fµ(y) =
(
y2 + 1

)
[I(y)− 2]

2y2(1− y2) +

√
2πe

y2
2 erfc

(
y√
2

)
y (y2 − 1) + 1

2
[

ln(2)− γE
]
. (6.99)

Its asymptotic expansions are

Fµ(y) = 1
2
[
1− γE + ln(2)

]
+ 1

3
√

2πy − y2

4 + 1
15

√
π

2 y
3 − y4

36 + 1
140

√
π

2 y
5

− y6

360 +

√
π
2 y

7

1512 −
y8

4200 +

√
π
2 y

9

19008 −
y10

56700 +O(y11) , (6.100)

Fµ(y) = ln(2y) + ln(2y2) + γE − 1
2y2 + 3

4y4 −
5

4y6 + 35
8y8 −

189
8y10 +O(y−11) . (6.101)

Note that we added some strangely looking factors into the result (6.89). The factor m×m−
2ε
H =

m
1
H
−1 accounts for the dimension of the diffusion constant, m/Dε ∼ mτ−2ε, and takes out the

term ln(m) from Fµ(y). We moved out also a remaining term ∼ ln y.
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The third function is for the drift proportional to ν,

Fν(y) := Gν(y)
G0(y)m − ln(y) . (6.102)

It is evaluated as
Fν(y) = I(y)− 2

2y2 + ln(2) + γE
2 . (6.103)

Its asymptotic expansions read

Fν(y) =
√

2π
y

+ −3 + γE + ln(2)
2 − 1

3

√
π

2 y + y2

12 −
1
60

√
π

2 y
3 + y4

180 −
1

840

√
π

2 y
5

+ y6

2520 −

√
π
2 y

7

12096 + y8

37800 −

√
π
2 y

9

190080 + y10

623700 +O(y11) (6.104)

Fν(y) = − ln(y) + 2 ln(y) + γE + 1 + ln(2)
2y2 + 1

4y4 −
1

4y6

+ 5
8y8 −

21
8y10 +O(y−11) (6.105)

Using Eq. (6.89) for small y, there is a problem when εν < 0, since then the combination
(second-to-last term in the exponential)

− ενmy2ε
[1

2+εFν(y)
]
y→0−→ −ενm

√
2πy2ε−1 ≈ −2ν

√
πtH . (6.106)

diverges (at least for 1
4 < H < 1

2), which is amplified since it appears inside the exponential.
We propose to use the following Padé variant, which seems to work well numerically,[1

2+εFν(y)
]

ε<0, ν>0
−−−−−−−→ 1

2− 4εFν(y) . (6.107)

While Fν(y) diverges for small y, this is at leading order nothing but a normalization factor
depending on νtH .

All three functions F1(y), Fµ(y) and Fν(y) are measured in section 6.3, see figures 6.2, 6.3,
and 6.5.
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6.2.13 Absorption probability

From Eq. (6.61), we obtain, Pabs(m,α, β)

Pabs(m,α, β) =
ˆ ∞

0
dtG(m, tDε)

=
∞̂

0

dt exp
(
−m2

[
µ

Dε
+ν
]
− t4

[
µt−ε+νtε

]2)G0(m, tDε)

+ ε

∞̂

0

dt exp
(
−m2 β −

t

4β
2
)
×
[
G1(m, t)− αGα(m, t)− βGβ(m, t)

]
+ ...

= exp
(
−m2

[
µ

Dε
+ ν

])

×
{ ∞̂

0

dt exp
(
− t4

[
µt−ε + νtε

]2)G0(m, tDε)

+ ε
[
G̃1(m, s)− α G̃α(m, s)− βG̃β(m, s)

]∣∣∣√
s=|β|/2

}
+ ... . (6.108)

Here G̃1(m, s) is given by Eq. (6.64), G̃α(m, s) by Eq. (6.71), and G̃β(m, s) by Eq. (6.74). We
still need the integral

ˆ ∞
0

dt exp
(
− t4

[
µt−ε + νtε

]2)G0(m, tDε) = e−|β|m/(2
√
Dε) + αβ

2 εG3(m,β) , (6.109)

G3(m,β) =
ˆ ∞

0
dt e−

β2t
4 t ln(t)G0(m, t) . (6.110)

The last expression can be calculated as

G3(m,β) :=
ˆ ∞

0
dt e−

β2t
4 t ln(t)G0(m, t)

= ∂κ
∣∣∣
κ=0

ˆ ∞
0

dt e−
β2t

4 t1+κG0(m, t)

= ∂κ
∣∣∣
κ=0

|β|−κ−
1
2mκ+ 3

2Kκ− 1
2

(
m|β|

2

)
√
π

= −
m3/2∂κ

∣∣∣
κ=0

Kκ− 1
2

(
|β|m

2

)
√
π|β|

+
me−

|β|m
2 ln

(
m
|β|

)
|β|

= −me
m|β|

2 Ei(−m |β|)
|β|

+
me−

m|β|
2 ln

(
m
|β|

)
|β|

= m

|β|
[−2 ln(|β|)− γE] + 1

2m
2[− 2 ln(m)− γE + 2)

]
+O(m3) , (6.111)
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where Kn(z) denotes the modified Bessel function of the second kind. With the above formulas,
Eq. (6.108) is rewritten as

Pabs(m,α, β) = e−m(β+|β|)/2
{

1 + ε e|β|m/2
[
αβ
2 G3(m,β) + α+β+|β|

2 m(1+ ln τ)e−|β|m/2

+G̃1(m, s)− αG̃α(m, s)− βG̃β(m, s)
]
√
s= |β|2

+O(ε2)
}
. (6.112)

We note the exact relations, which can be verified using a computer algebra system,

G̃1(m, s) + 2
√
s G̃β(m, s) = 0 , (6.113)

G3(m,β)|β|+ 2G̃α(m, s)−m(1 + ln τ)e−
m|β|

2

∣∣∣√
s= |β|2

= 0 . (6.114)

Let us analyse Pabs separately for β < 0 and β > 0, starting with the former. Using both
cancelations in Eqs. (6.113) and (6.114), we find

Pabs(α, β < 0) = 1 +O(ε2) . (6.115)

Thus there is no change in normalisation for a drift towards the absorbing boundary. For β > 0,
we find again with the use of Eqs. (6.113) and (6.114)

Pabs(α, β > 0)

= e−mβ
{

1 + ε

[
(α+β)m(1 + ln τ) + 2eβm/2

(
G̃1(m, s)− αG̃α(m, s)

)
√
s=β

2

]
+O(ε2)

}
. (6.116)

For what follows, we note regularity of the combination Ei(−x) − ln(x) − γE. We can write
Eq. (6.116) as

Pabs(m,α, β) = e−mβ
{

1 + ε

[
(m(β − α) + 2)

(
eβmEi(−mβ)− ln(βm)− γE

)
(6.117)

−αm(2 ln(β) + γE) + βm(2 ln(m) + γE)
]

+O(ε2)
}

= e−mβ
{

1 + εm

[
2(β−α) ln(β)− γE(α+3β)− 2β + 4β ln(m)

]
+O(ε2) +O(m2ε)

}
.

As the asymptotic expansion in the last line shows, a common resummation is possible; passing
to variables µ and ν, it reads

Pabs(m,µ, ν) = exp
(
−m

1
H
−1µ

[
1 + 2(1− γE)ε

]
−m

1
H
−1ν(µ+ν)

1
H
−2 [1+2(1−2γE)ε

])
+O(ε2) +O(m2ε) . (6.118)

This formula represents the leading behavior of Pabs(m,µ, ν) for small m; thus terms of order
O(m2ε) could be neglected. Note that the (inverse) powers of H were chosen s.t. the resulting
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object is scale invariant. Expanding in ε leads back to Eq. (6.117). One finally arrives at

Pabs(m,µ, ν) = exp
(
−m

1
H
−1
{
µ
[
1 + 2(1− γE)ε

]
+ ν(µ+ ν)

1
H
−2
[
1 + 2(1− 2γE)ε

]}

+ε
{

2(mν + 1)
[
em(µ+ν)Ei

(
−m(µ+ ν)

)
− ln

(
m(µ+ ν)

)
− γE

]
−2m(µ+ ν)

[
ln
(
m(µ+ ν)

)
+ γE − 1

]})
+O(ε2) . (6.119)

In order that this formula be invariant under m → λm, µ → λ1− 1
H µ and ν → λ−1ν, we can

either replace mµ by mµ
H

1−H , or m
1
H
−1µ. The first version is

P(a)
abs(m,µ, ν) = exp

(
−m

1
H
−1
{
µ
[
1 + 2(1− γE)ε

]
+ ν

(
µ

H
1−H + ν

) 1
H
−2 [

1 + 2(1− 2γE)ε
]}

+ε
{

2(mν + 1)
[
em
(
µ

H
1−H +ν

)
Ei
(
−m

(
µ

H
1−H + ν

))
− ln

(
m
(
µ

H
1−H + ν

))
− γE

]
−2m

(
µ

H
1−H + ν

)[
ln
(
m
(
µ

H
1−H + ν

))
+ γE − 1

]})
+O(ε2) . (6.120)

The alternative second version is

P(b)
abs(m,µ, ν) = exp

(
−m

1
H
−1
{
µ
[
1 + 2(1− γE)ε

]
+ ν(µ

H
1−H + ν)

1
H
−2
[
1 + 2(1− 2γE)ε

]}

+ε
{

2(mν + 1)
[
em

1
H
−1
µ+mνEi

(
−m

1
H
−1µ−mν

)
− ln

(
m

1
H
−1µ+mν

)
− γE

]
−
(
m

1
H
−1µ+mν

)[
ln
(
m

1
H
−1µ+mν

)
+ γE − 1

]})
+O(ε2) . (6.121)

From the appearance of fractal powers of m and ν in Eq. (6.118), we suspect that both power
series in mµ

H
1−H and m

1
H
−1µ might appear. While numerical simulations could decide which

version is a better approximation, only higher-order calculations would be able to settle the
question.

6.2.14 Relation between the full propagator, first-passage times, and the
distribution of the maximum

In this section, we demonstrate how the probability densities of three different observables follow
from the same scaling function. This shows how our result can be used to find the probability
distribution of both running maxima and first-passage times for fBM with linear and non-linear
drift.

Let us start with the drift-free case, µ = ν = 0.

(i) In Ref. [252], we calculated P+(m, t), the normalised probability density to be at m, given
t, when starting at x0 close to 0 (in [252] this quantity is denoted P+(x, t) with m = x).
This object is the constrained propagator of the process, obtained by solving the Fokker
Planck equation with vanishing Dirichlet boundary conditions at the absorbing boundary
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Figure 6.3.: Example for the absorption probability as a function of µ at ν = 0 (left),
and ν at µ = 0 (right). In all cases m = 0.1. The blue solid line represents the
result obtained by a direct numerical integration of Eq. (6.89), and adjusting the
overall normalisation at µ = ν = 0 to 1; this has the advantage that the combination
µm

1
H
−1 appears naturally. The green dashed curve is the same, without adjustment

of normalisation. The red dotted curve (visible only on the left plot) is obtained
using Eq. (6.119). The magenta curve is obtained using Eq. (6.120). The cyan
curve is from Eq. (6.121), and is identical to the magenta one on the right plot.
This figure has been submitted for publication to Phys. Rev. E. See App. A.5 for
approval of co-authors.

x ≡ 0, i.e. P+(m = 0, t) = 0. While P+ is a density in m, and thus should be denoted P+

(cf. Tab. 6.1), it is the time derivative of a probability, see Eq. (6.127). This can be seen
from its definition,

P+(m, t) := P+(m, t|x0)´∞
0 dmP+(m, t|x0)

, (6.122)

and the asymptotic expansion at small x0, (see e.g. [252], appendix C)
ˆ ∞

0
dmP+(m, t|x0) ∼ x

1
H
−1

0 , (6.123)

which implies that P+(m, t) has dimension 1/time.

(ii) Here we consider the probability density to be absorbed at time t when starting at m.
This is a first-passage time, with distribution Pfirst(m, t).

(iii) Third, let the process start at 0, and consider the distribution of the max m, given a total
time t, Pmax(m, t), denoted by P TH(m) (with t = T ) in Ref. [63].

All three objects have a scaling form depending on the same variable y = m√
2tH :

Pfirst(m, t) = H

t
Pfirst(y) , (6.124)

P+(m, t) = H

t
P+(y) , (6.125)

Pmax(m, t) = 1√
2TH

Pmax(y) . (6.126)

The factors of H and
√

2 where chosen for later convenience. These objects are related. Denote
Psurv(m, t) the probability to start at x = 0, and to survive in presence of an absorbing boundary
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at m up to time t. Note that Psurv(m, t) is a probability, whereas Pfirst(m, t), P+(m, t), and
Pmax(m, t) are densities, the first two in t, the latter in m. Then

P+(m, t) = Pfirst(m, t) = −∂tPsurv(m, t) , (6.127)

Pmax(m, t) = ∂mPsurv(m, t) . (6.128)

Since Psurv(m, t) is a probability, it is scale free, and scaling implies that

Psurv(m, t) = Psurv

(
y = m√

2tH

)
. (6.129)

Putting together Eqs. (6.127), (6.128) and (6.129) proves Eqs. (6.124) to (6.126), with

Pfirst(y) = P+(y) = yP′surv(y) (6.130)

Pmax(y) = P′surv(y) . (6.131)

The scaling functions appearing are almost the same, differing by (innocent looking) factors of
t and H and a (non-innocent looking) factor of y. However, when changing to the measure
in y, all of them become identical. The survival probability in absence of a drift is given in
Eqs. (63)-(64) of Ref. [63].

Let us finally add drift. Then the survival probability Psurv(y, ũ, v) depends on three variables
introduced in Eqs. (6.12)-(6.15), setting there x→ m. Since ũ = mµ

H
1−H , and v = νm are both

constants multiplying m, we can write Psurv(y, ũ, v) = Psurv(y,m). Using Eqs. (6.127) and
(6.128), we find

P+(m, t) = Pfirst(m, t) = − d
dtPsurv(y,m)

= H

t
∂yPsurv(y,m) , (6.132)

Pmax(m, t) = d
dmPsurv(y,m)

=
[
y

m
∂y + ∂m

]
Psurv(y,m) . (6.133)

Passing to the measure in y, we obtain

P+(y,m) = Pfirst(y,m) = y∂yPsurv(y,m) , (6.134)

Pmax(y,m) =
[
∂y + m

y
∂m

]
Psurv(y,m) . (6.135)

This set of equations allows us to express Pmax(y,m) as an integral over P+(y,m) = Pfirst(y,m).

6.2.15 Tail of the distribution

In this section, we briefly discuss a notable contradiction between the textbook by Piterbarg
[192] and our calculations that concerns the tail of the distribution of maxima of a fBm. This
clash is, as of now, not resolved and at the time of writing lacks a satisfying answer. We did
attempt unsuccessfully to reach out and to discuss this matter with Piterbarg.
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Piterbarg [192] states (section 11.3, page 85) that for a fBm defined on the interval [0, 1],
with

〈
x2

1
〉

= 1, in the limit of u→∞,

P(max0≤t≤1 xt > u) ' Ψ(u)×


2 H = 1/2
1 H > 1/2

H2H
2H 2

1
2H u

1
H
−2 H < 1/2

. (6.136)

with Ψ(u) := 1√
2πu

exp
(
−u

2

2

)
' 1√

2π

ˆ ∞
u

exp
(
−x

2

2

)
dx .

(6.137)

The estimate for H < 1/2 seems to contain misprints: We find σ(t) :=
√〈

x2
t

〉
= 1 −H|1 − t|

(i.e. H instead of 2H). Rescaling t− 1→ 2
1

2H (t− 1) gives σ(t)→ 1− 2
1

2H ·H · |1− t|, thus

P(max0≤t≤1 xt > u) ' H2H

2
1

2HH
u

1
H
−2Ψ(u) , H <

1
2 . (6.138)

Using the latter result, taking a derivative w.r.t. u, and passing to the measure in y, one obtains
P(y) ≡ P>(y|m,µ = ν = 0) ≡ Pmax(y) (in terms of our variable y), in the limit of large y,

P(y) ' e−
y2
2

√
2π
×


2 H = 1/2
1 H > 1/2

H2H

2
1

2HH
y

1
H
−2 H < 1/2

. (6.139)

The Pickands constant H2H has ε-expansion [60]

H2H = 1− 2γEε+O(ε)2 . (6.140)

How is this consistent with Eq. (6.89)? Taylor-expanding the latter for large y yields

P(y) ' 2e
−y2/2
√

2π

{
1 −

[
1 + γE + 2 ln(y) + ln(2)

]
ε+O(ε2) + o(y0)

}
. (6.141)

In Ref. [252] this was interpreted as P(y) ∼ y−2εe−y
2/2. Eq. (6.139) shows that this interpre-

tation is incorrect. For large y, our expansion is almost the sum of the two contributions in
Eq. (6.139) for H 6= 1/2,

P(y) ≈ e−y
2/2

√
2π

[
1 + H2H

2
1

2HH
y

1
H
−2 + ...

]
' 2e

−y2/2
√

2π

{
1−

[
1 + γE + 2 ln(y)− ln(2)

]
ε+O(ε2) + o(y0)

}
. (6.142)

Note the difference in sign for the ln(2) term between Eqs. (6.141) and (6.142), showing that
the guess (6.142) slightly underestimates the amplitude for ε < 0.
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FIG. 5: Left: First-passage time density Pfirst(m, t) = P(y) plotted as a function of y as given in Eq. (9). In order to increase the resolution
of the plot, we use overlapping bins with binsize 5 ⇥ 105, with y increasing by 105 points for each bin; m = 0.1. For various values of H
and µ, numerical simulations are compared to the theory. As can be seen on this plot, and on the ratio between simulations and theory to the
right, the relative error is about 3% at the extreme points. Note that neglecting F1(y) would lead for H = 0.4/0.6 to an error of 15%, and for
H = 0.33/0.67 to an error of 25%.
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FIG. 6: Numerical estimate of F1. The black curve is the theoretical
estimate (80), followed by a number of estimates using Eq. (132).
Solid lines are for m = 0.1, dashed ones for m = 1. The sym-
metrised estimates (133) are in olive/cyan. The latter has minimal
deviations from the theory. The inset shows a numerical estimate
for F2(y), as given by Eqs. (134) and (135). All curves are consis-
tent, and let appear even the next-to-leading corrections. (Remind
that changing the normalization is equivalent to adding a constant to
F1(y) or F2(y)). The strong curve-down for small and large y are
due to numerical problems.

samples at H = 0.33, H = 0.6 and H = 0.67, and twice as
much for H = 0.4. As we will see below, this allows us to
precisely validate our analytical predictions.
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FIG. 7: Numerical estimate of Fµ. The black curve is the theoretical
result (84). The colored curves are obtained using Eq. (139) with
µ = ±1 for H = 0.6 and H = 0.67, and µ = ±3 for H =
0.33 and H = 0.4. Solid lines are for m = 0.1, dashed ones for
m = 1. The symmetrised estimates (133) are in olive/cyan. The
cyan curve using the equivalent of Eq. (133) with H = 0.4/0.6 is
our best numerical estimate of Fµ(y). The inset shows the estimated
second-order correction, analogous to Eqs. (134)-(135).

C. Simulation results

We show simulation results on Figs. 5 to 9. First, on fig-
ure 5 (left), we present results for the first-passage probabil-
ity P(y|m, µ, ⌫ = 0), using m = 0.1. The numerical re-
sults (in color) are compared to the predictions from Eq. (76).
One sees that theory and simulations are in good quantitative
agreement. This comparison is made more precise by plotting
the ratio between simulation and theory on the right of Fig. 5.

Figure 6.1.: Left: First-passage time density Pfirst(m, t) = P(y) plotted as a function of y as
given in Eq. (6.9). In order to increase the resolution of the plot, we use overlapping
bins with binsize 5 × 105, with y increasing by 105 points for each bin; (Averages
taken over 2.5 × 107 samples per curve, m = 0.1). For various values of H and
µ, numerical simulations are compared to the theory. As can be seen on this plot,
and on the ratio between simulations and theory to the right, the relative
error is about 3% at the extreme points. Note that neglecting F1(y) would lead
for H = 0.4/0.6 to an error of 15%, and for H = 0.33/0.67 to an error of 25%.
This figure has been submitted for publication to Phys. Rev. E. See App. A.5 for
approval of co-authors.

6.3 Numerics

6.3.1 Simulation protocol

Fractional Brownian motion can be simulated with the classical Davis-Harte (DH) algorithm
[54, 69], whose algorithmic complexity (execution time) scales with system size N as N lnN .
Here we use the adaptive bisection algorithm introduced and explained in Chp. 5. For H = 1/3
its measured algorithmic complexity grows as (lnN)3, making it about 5000 times faster, and
10000 times less memory consuming than DH for an effective grid size of N = 232.

To measure the functions F1, Fµ and Fν , which all depend on y only, we

(i) generate a (drift free) fBm xt with x0 = 0, of length N ; the latter corresponds to a time
T = 1.

(ii) add the drift terms to yield zt = xt + µt+ νt2H

(iii) for given m, find the first time t, s.t. zt = m

(iv) evaluate y = m√
2tH ; add a point to the histogram of y.

This histogram misses values of t > T = 1, i.e. y < m√
2 .

We checked the procedure for Brownian motion (with ν → 0), where

P(y|m,µ) =
√

2
π
e
− (µm+2y2)2

8y2 . (6.143)
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FIG. 5: Left: First-passage time density Pfirst(m, t) = P(y) plotted as a function of y as given in Eq. (9). In order to increase the resolution
of the plot, we use overlapping bins with binsize 5 ⇥ 105, with y increasing by 105 points for each bin; m = 0.1. For various values of H
and µ, numerical simulations are compared to the theory. As can be seen on this plot, and on the ratio between simulations and theory to the
right, the relative error is about 3% at the extreme points. Note that neglecting F1(y) would lead for H = 0.4/0.6 to an error of 15%, and for
H = 0.33/0.67 to an error of 25%.
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FIG. 6: Numerical estimate of F1. The black curve is the theoretical
estimate (80), followed by a number of estimates using Eq. (132).
Solid lines are for m = 0.1, dashed ones for m = 1. The sym-
metrised estimates (133) are in olive/cyan. The latter has minimal
deviations from the theory. The inset shows a numerical estimate
for F2(y), as given by Eqs. (134) and (135). All curves are consis-
tent, and let appear even the next-to-leading corrections. (Remind
that changing the normalization is equivalent to adding a constant to
F1(y) or F2(y)). The strong curve-down for small and large y are
due to numerical problems.

samples at H = 0.33, H = 0.6 and H = 0.67, and twice as
much for H = 0.4. As we will see below, this allows us to
precisely validate our analytical predictions.
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FIG. 7: Numerical estimate of Fµ. The black curve is the theoretical
result (84). The colored curves are obtained using Eq. (139) with
µ = ±1 for H = 0.6 and H = 0.67, and µ = ±3 for H =
0.33 and H = 0.4. Solid lines are for m = 0.1, dashed ones for
m = 1. The symmetrised estimates (133) are in olive/cyan. The
cyan curve using the equivalent of Eq. (133) with H = 0.4/0.6 is
our best numerical estimate of Fµ(y). The inset shows the estimated
second-order correction, analogous to Eqs. (134)-(135).

C. Simulation results

We show simulation results on Figs. 5 to 9. First, on fig-
ure 5 (left), we present results for the first-passage probabil-
ity P(y|m, µ, ⌫ = 0), using m = 0.1. The numerical re-
sults (in color) are compared to the predictions from Eq. (76).
One sees that theory and simulations are in good quantitative
agreement. This comparison is made more precise by plotting
the ratio between simulation and theory on the right of Fig. 5.

Figure 6.2.: Numerical estimate of F1. The black curve is the theoretical estimate (6.93),
followed by a number of estimates using Eq. (6.145). Solid lines are for m = 0.1
(ca. 2.5 × 107 samples per curve), dashed ones for m = 1 (ca. 5 × 107 samples
per curve). The symmetrised estimates (6.146) are in olive/cyan. The latter has
minimal deviations from the theory. The inset shows a numerical estimate for F2(y),
as given by Eqs. (6.147) and (6.148). All curves are consistent, and let appear
even the next-to-leading corrections. (Remind that changing the normalization is
equivalent to adding a constant to F1(y) or F2(y)). The strong curve-down for
small and large y are due to numerical problems. This figure has been submitted
for publication to Phys. Rev. E. See App. A.5 for approval of co-authors.

Note that this is a function of y and mµ only, so that we can write

P(y|mµ) =
√

2
π
e−

y2
2 × e−

mµ
2 e
− (mµ)2

8y2 . (6.144)

For fBm, we measure P(y|m,µ, ν), and then extract F1, Fµ and Fν . Firstly,

Fε1(y|m) := 1
ε

ln
(
P(y|m)y2− 1

H e
y2
2

)∣∣∣∣
µ=ν=0

(6.145)

and Fε1(y|m) = F1(y) +O(ε2). The following combination is more precise, since terms even in
ε cancel,

Fε,sym1 (y|m) = 1
2
[
Fε1(y|m) + F−ε1 (y|m)

]
+O(ε2) . (6.146)

The second-order correction can be estimated as

Fε2(y|m) := 1
ε

[Fε1(y|m)−F1(y|m)] +O(ε) . (6.147)

Its symmetrised version again suppresses subleading corrections,

Fε,sym2 (y|m) := 1
2ε
[
Fε1(y|m)−F−ε1 (y|m)

]
+O(ε2) . (6.148)
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The third order correction can be extracted as

Fε3(y|m) := 1
2ε2

[
Fε1(y|m) + F−ε1 (y|m)− 2F1(y|m)

]
+O(ε) . (6.149)

For the remaining functions Fµ and Fν , we can employ similar formulas; we have to decide how
to subtract F1, numerically from the simulation, or analytically, i.e. by supplying numerically
or analytically the denominator in

Fεµ(y|m,µ) := −1
ε

[
ln
( P(y|m,µ, ν = 0)
P(y|m,µ = ν = 0)

)
y−2ε

µm
1
H
−1

+ 1
2 + µ

4

(
m

2

)1
H
−1
y3− 5

2H

]
,(6.150)

Fεν (y|m) := −1
ε

[
ln
( P(y|m,µ = 0, ν)
P(y|m,µ = ν = 0)

)
y−2ε

νm
+ 1

2 + νm

8 y−ε−2
]
. (6.151)

We can also work symmetrically

Fεµ(y|m) := −1
ε

[
ln
( P(y|m,µ, ν=0)
P(y|m,−µ, ν=0)

)
y−2ε

2µm
1
H
−1

+1
2

]
. (6.152)

Fεν (y|m) := −1
ε

[
ln
( P(y|m,µ=0, ν)
P(y|m,µ=0,−ν)

)
y−2ε

2νm + 1
2

]
. (6.153)

Finally, a more precise estimate of the theoretical curves is given by symmetrizing results for
the same |ε|, using the analogue of Eq. (6.146).

Below, we measure the three scaling functions F1, Fµ and Fν for H = 0.33, using our recently
introduced adaptive-bisection algorithm Chp. 5. The latter starts out with an initial coarse grid
of size 2g, which is then recursively refined up to a final gridsize of 2g+G. It gains its efficiency
by only sampling necessary points, i.e. those close to the target.

The optimal values of g and G depend on H. We run simulations with the following choices:
H = 0.33 (g = 8, G = 18), H = 0.4 (g = 10, G = 14), H = 0.6 (g = 8, G = 8), and H = 0.67
(g = 8, G = 6). Thanks to the adaptive bisection algorithm, we can maintain a resolution in x

of 10−3, with about 25 million samples at H = 0.33, H = 0.6 and H = 0.67, and twice as much
for H = 0.4. As we will see below, this allows us to precisely validate our analytical predictions.

6.3.2 Simulation results

We show simulation results on Figs. 6.1 to 6.5. First, on figure 6.1 (left), we present results
for the first-passage probability P(y|m,µ, ν = 0), using m = 0.1. The numerical results (in
color) are compared to the predictions from Eq. (6.89). One sees that theory and simulations
are in good quantitative agreement. This comparison is made more precise by plotting the ratio
between simulation and theory on the right of Fig. 6.1.

The function F1(y) is extracted on Fig. 6.2. We show simulations for m = 0.1 (colored solid
lines), and m = 1 (colored dashed lines). The theoretical result (6.93) agrees with numerical
simulations for all H, at both values of m. Using the symmetrized form (6.146) with H = 0.4/0.6
shows a particularly good agreement. It allows us to extract the subleading correction via
Eqs. (6.147) and (6.148). This is shown in the inset of Fig. 6.2; again the symmetrized estimate
is the most precise. Note that the second-order correction is rather sensitive to the choice of m;

192



6. Extreme values of Fractional Brownian Motion

14

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
H = 0.67, µ = 0

H = 0.67, µ = ±1

H = 0.6, µ = 0

H = 0.6, µ = ±1

H = 0.4, µ = 0

H = 0.4, µ = ±3

H = 0.33, µ = 0

H = 0.33, µ = ±10

Brownian, µ = � = 0

y

P(y) for µ 6= 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.96

0.98

1.00

1.02

1.04
H=0.67, µ=0

H=0.67, µ=±1

H=0.6, µ=0

H=0.6, µ=±1

H=0.4, µ=0

H=0.4, µ=±3

H=0.33, µ=0

H=0.33, µ=±10

y

Psim(y)/Ptheory(y) for µ 6= 0

FIG. 5: Left: First-passage time density Pfirst(m, t) = P(y) plotted as a function of y as given in Eq. (9). In order to increase the resolution
of the plot, we use overlapping bins with binsize 5 ⇥ 105, with y increasing by 105 points for each bin; m = 0.1. For various values of H
and µ, numerical simulations are compared to the theory. As can be seen on this plot, and on the ratio between simulations and theory to the
right, the relative error is about 3% at the extreme points. Note that neglecting F1(y) would lead for H = 0.4/0.6 to an error of 15%, and for
H = 0.33/0.67 to an error of 25%.
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FIG. 6: Numerical estimate of F1. The black curve is the theoretical
estimate (80), followed by a number of estimates using Eq. (132).
Solid lines are for m = 0.1, dashed ones for m = 1. The sym-
metrised estimates (133) are in olive/cyan. The latter has minimal
deviations from the theory. The inset shows a numerical estimate
for F2(y), as given by Eqs. (134) and (135). All curves are consis-
tent, and let appear even the next-to-leading corrections. (Remind
that changing the normalization is equivalent to adding a constant to
F1(y) or F2(y)). The strong curve-down for small and large y are
due to numerical problems.
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much for H = 0.4. As we will see below, this allows us to
precisely validate our analytical predictions.
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FIG. 7: Numerical estimate of Fµ. The black curve is the theoretical
result (84). The colored curves are obtained using Eq. (139) with
µ = ±1 for H = 0.6 and H = 0.67, and µ = ±3 for H =
0.33 and H = 0.4. Solid lines are for m = 0.1, dashed ones for
m = 1. The symmetrised estimates (133) are in olive/cyan. The
cyan curve using the equivalent of Eq. (133) with H = 0.4/0.6 is
our best numerical estimate of Fµ(y). The inset shows the estimated
second-order correction, analogous to Eqs. (134)-(135).

C. Simulation results

We show simulation results on Figs. 5 to 9. First, on fig-
ure 5 (left), we present results for the first-passage probabil-
ity P(y|m, µ, ⌫ = 0), using m = 0.1. The numerical re-
sults (in color) are compared to the predictions from Eq. (76).
One sees that theory and simulations are in good quantitative
agreement. This comparison is made more precise by plotting
the ratio between simulation and theory on the right of Fig. 5.

Figure 6.3.: Numerical estimate of Fµ. The black curve is the theoretical result (6.99).
The colored curves are obtained using Eq. (6.152) with µ = ±1 for H = 0.6
and H = 0.67, and µ = ±3 for H = 0.33 and H = 0.4. Solid lines are for
m = 0.1 (ca. 2.5 × 107 samples per curve), dashed ones for m = 1 (ca. 5 × 107

samples per curve). The symmetrised estimates (6.146) are in olive/cyan. The
cyan curve using the equivalent of Eq. (6.146) with H = 0.4/0.6 is our best nu-
merical estimate of Fµ(y). The inset shows the estimated second-order correction,
analogous to Eqs. (6.147)-(6.148). This figure has been submitted for publication
to Phys. Rev. E. See App. A.5 for approval of co-authors.

more effort would be needed to estimate it properly. Also note that adding a constant to F1(y)
is equivalent to an overall change in normalization, thus one should concentrate on the shape
of the cuves.

Using the data presented on Fig. 6.1, Fig. 6.3 shows the order-ε correction Fµ extracted
via Eq. (6.152). The symmetrized estimate is rather close to the analytical result. The inset
estimates the subleading correction. Again, estimates for m = 0.1 (dashed lines) and m = 1
(solid lines) are consistent, and a proper measure of the second-order correction would demand
a higher numerical precision.

The results for non-linear drift ν are presented on Fig. 6.4, starting with the probability
distribution P(y|m) (left), followed by the ratio between simulation and theory on the right,
using m = 0.1. The agreement is again good. From these data is extracted the function Fν(y)
defined in Eq. (6.103), see Fig. 6.5. Note that Fν(y) is much larger than Fµ(y) (Fig. 6.3),
and diverges for small y. The subleading corrections to Fν(y) are not negligible, seemingly
m-dependent, and estimated as well, allowing us to collapse all measured estimates on the
theoretical curve.

In summary, we have measured all scaling functions with good to excellent precision, ensuring
that the analytical results are correct.
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FIG. 8: Left: first-passage-time density plotted with overlapping bins as in Fig. 5 for various values of H and non-linear drift ⌫ compared to
the theory given in Eq. (76). Right: Ratio of simulation and theoretical values.
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⌫(y) ' F⌫(y)✏+ (y � 1.7)(1.5✏2 � 6✏3), see right figure. Since extrapolation problems mentioned
around Eq. (92) become important for small y, this estimate is intended as a fit only, to show that the scatter on the left plot is consistent with
higher-order corrections.

The function F1(y) is extracted on Fig. 6. We show simu-
lations for m = 0.1 (colored solid lines), and m = 1 (colored
dashed lines). The theoretical result (80) agrees with numer-
ical simulations for all H , at both values of m. Using the
symmetrized form (133) with H = 0.4/0.6 shows a particu-
larly good agreement. It allows us to extract the subleading
correction via Eqs. (134) and (135). This is shown in the inset
of Fig. 6; again the symmetrized estimate is the most precise.
Note that the second-order correction is rather sensitive to the
choice of m; more effort would be needed to estimate it prop-
erly. Also note that adding a constant to F1(y) is equivalent to
an overall change in normalization, thus one should concen-

trate on the shape of the cuves.

Using the data presented on Fig. 5, Fig. 7 shows the order-✏
correction Fµ extracted via Eq. (139). The symmetrized esti-
mate is rather close to the analytical result. The inset estimates
the subleading correction. Again, estimates for m = 0.1
(dashed lines) and m = 1 (solid lines) are consistent, and a
proper measure of the second-order correction would demand
a higher numerical precision.

The results for non-linear drift ⌫ are presented on Fig. 8,
starting with the probability distribution P(y|m) (left), fol-
lowed by the ratio between simulation and theory on the right,
using m = 0.1. The agreement is again good. From these

Figure 6.4.: Left: first-passage-time density plotted with overlapping bins as in Fig. 6.1
for various values of H and non-linear drift ν compared to the theory given in
Eq. (6.89). Right: Ratio of simulation and theoretical values. This figure
has been submitted for publication to Phys. Rev. E. See App. A.5 for approval of
co-authors.

6.4 Conclusion

In this work, we gave analytical results for fractional Brownican motion, both with a linear and
a non-linear drift. Thanks to a novel simulation algorithm, we were able to verify the analytical
predictions with grid sizes up to N = 228, leading to a precise validation of our results.

Our predictions to first order in H − 1/2 are precise, and many samples of very large systems
are needed to see statistically significant deviations. We therefore hope that our formulas will
find application in the analysis of data, as e.g. the stock market.

Another interesting question is how a trajectory depends on its history, i.e. prior knowledge
of the process. We obtained analytical results also in this case, and will come back with its
numerical validation in future work.

Our study can be generalised in other directions, as e.g. making the variance a stochastic
process, as in [44] or in the rough-volatility model of Ref. [96], which both use fBm in their
modelling.”
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The function F1(y) is extracted on Fig. 6. We show simu-
lations for m = 0.1 (colored solid lines), and m = 1 (colored
dashed lines). The theoretical result (80) agrees with numer-
ical simulations for all H , at both values of m. Using the
symmetrized form (133) with H = 0.4/0.6 shows a particu-
larly good agreement. It allows us to extract the subleading
correction via Eqs. (134) and (135). This is shown in the inset
of Fig. 6; again the symmetrized estimate is the most precise.
Note that the second-order correction is rather sensitive to the
choice of m; more effort would be needed to estimate it prop-
erly. Also note that adding a constant to F1(y) is equivalent to
an overall change in normalization, thus one should concen-

trate on the shape of the cuves.

Using the data presented on Fig. 5, Fig. 7 shows the order-✏
correction Fµ extracted via Eq. (139). The symmetrized esti-
mate is rather close to the analytical result. The inset estimates
the subleading correction. Again, estimates for m = 0.1
(dashed lines) and m = 1 (solid lines) are consistent, and a
proper measure of the second-order correction would demand
a higher numerical precision.

The results for non-linear drift ⌫ are presented on Fig. 8,
starting with the probability distribution P(y|m) (left), fol-
lowed by the ratio between simulation and theory on the right,
using m = 0.1. The agreement is again good. From these

Figure 6.5.: Left: Numerical estimate of Fν , using Eq. (6.153). The black curve is the
theoretical prediction (6.103). The colored curves are simulation results using
Eq. (6.153). Solid lines are for m = 0.1, dashed ones for m = 1. The cyan
and olive curves are the symmetrised results using the equivalent of Eq. (6.146) for
H = 0.4/0.6 (cyan) and H = 0.33/0.67 (olive). The former one is the best numerical
estimate of the theory, and very close to the latter. The inset shows the estimated
second-order corrections, analogous to Eqs. (6.147)-(6.148). There seem to be
non-negligible corrections of order three. An almost perfect data collapse can
be obtained for m = 0.1 as εFεν (y) ' Fν(y)ε+(2y−2−4y−1−6+y)ε2 +(3y−20)ε3,
and for m = 1 as εFεν (y) ' Fν(y)ε+ (y − 1.7)(1.5ε2 − 6ε3), see right figure. Since
extrapolation problems mentioned around Eq. (6.107) become important for small
y, this estimate is intended as a fit only, to show that the scatter on the left plot is
consistent with higher-order corrections. This figure has been submitted for publi-
cation to Phys. Rev. E. See App. A.5 for approval of co-authors.

195



Chapter 7

Conclusion

Throughout the three parts of this thesis, I have demonstrated various ways in which field
theories are capable of systematically studying various observables in stochastic processes.

Chapter 1 hopefully conveyed that branching processes are a fruitful playground for Doi-
Peliti field theories. A particularly nice feature is the very visual correspondence between the
branching events and the associated Feynman diagrams as introduced in Chp. 1. By translating
a non-spatial branching process into a Doi Peliti field theory with only time-dependent fields,
many interesting observables such as the avalanche shape are cast into diagrammatic language.
The combinatorial problems which one encounters when computing them provide intuition and
a deeper understanding of branching processes. A key finding which is made transparent by
the diagrammatics is the universality of a variety of observables (such as the moments of active
particles, the avalanche shape, or the survival property) near or at the critical point. Now that
we established a field-theoretic route to universality in branching process, this enables many
new research questions.

What happens if the lifetime of a particle no longer is exponentially distributed, but has a
lifetime-dependent extinction rate? Understanding such processes would be useful for the study
of ageing cell populations. Another interesting problem are genealogical observables. As of
now, the fields introduced in Chp. 1 do not contain any genealogical information concerning the
particles.1

If one is to cast genealogical information into a field theory, this is essentially returning to
the problem of memory: how can fields keep track of past events? This is precisely the sort of
questions addressed by the tracing mechanisms in Chps. 2 and 4. A possible synthesis of these
parts of my thesis is therefore the development of a family-tree preserving Doi Peliti field theory
to study the genealogy of branching processes.

In fact, my collaborators have already advanced the research developed in Chp. 1 to another
field of study. In [182], they consider branching processes with a periodically oscillating ex-
tinction rate which is relevant to the study of neuronal avalanches. A further possible future
direction of research would be to combine the branching field theory with the external driv-
ing framework introduced in Chp. 4 to study the impact of randomly fluctuating extinction or
branching rates with small short-range correlations. The diagrammatic correction should yield

1An example for genealogical information is the time of death of the last common ancestor of two chosen active
particles, or the average generation of alive particles. See [77] for a classic study of genealogy in critical
branching processes, and [7] for a more recent summary of results on coalesence.
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7. Conclusion

a systematic approximation (in the spirit of Chp. 4) with many applications to branching in
noisy environments, such as reproductive processes in ecology or epidemiology.

In Chp. 2, I presented our collaborative work on branching random walks. By casting the
process into a two-species reaction-diffusion problem, we are able to translate the observable of
“number of visited sites” into a field-theoretic observable whose renormalisation group behaviour
near the critical point provides the scaling behaviour in time and system size. As I point out
in Chp. 4, this is merely one of many applications of what I call the tracing mechanism. In
fact, it can be similarly used to calculate the full distribution of a variety of extreme values of
stochastic processes, among others first-passage times.

I argue that the tracing mechanism is capable of addressing a variety of questions arising in
statistical dynamics which I did not cover yet in this thesis but wish to explore in the future.
I plan, for instance, on investigating its application to extreme value problems (such as first-
passage times and running maxima) of more than one walker, such as studied in, e.g., [134].
Further, field theory is destined to tackle extreme value problems of (weakly) interacting random
walkers by way of a perturbative expansion.

I have collected a few questions which I believe to be within reach by some modest develop-
ment of the tools introduced in Chp. 2 and 4:

• First-passage time distribution of N independent stochastic processes subject to white
and active noise (in the sense of Chp. 3).

• Extreme Events (running maxima) of branching Ornstein-Uhlenbeck processes such as
those studied in the mathematical branching community (cf. [18]).

• The volume explored by a branching random walk whose adiabatically changing extinction
rate lets the branching random walker oscillate between the super-critical and the sub-
critical phase. Numerical evidence from an earlier project suggests that through the
“adiabatic pumping” an additional net effective current of visited sites is generated which
is related to a Berry phase (which would connect it to the research in [219, 220]).

Chapter 3, which I consider the central chapter of this work, provides a perturbative frame-
work to study the full first-passage time distributions for a certain class of non-Markovian
processes relevant to the study of active matter. This result is given by corrections to the
Markovian distribution which is assumed to be known and requires the diagonalisation of a
second-order differential operator. Albeit the latter poses some restrictions on the practically
accessible processes, the range of possible applications of this framework is rather large. For
illustration, we demonstrated its usefulness calculating the first-order correction to the first-
passage time distribution of an active thermal Ornstein Uhlenbeck process and active thermal
Brownian motion. Further, the framework is easily adapted to deterministic driving such as, for
instance, a (small) periodic forcing on a particle otherwise driven by white noise. This opens
up the possibility to address questions like

• What is the first-passage time distribution of a periodically driven Ornstein-Uhlenbeck
process? Are there stochastic resonances? How does the mean first-passage time depend
on the frequency?
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• Extend the framework to potentials whose associated Fokker Planck equation is not fully
diagonalisable by introducing a second perturbative expansion in the eigenfunctions. In
doing so, one could approach the problem of first-passage time in disordered potentials. A
particularly simple case of first-passage time in disordered potentials is already addressed
in the main text as a limit case of the theory.

• Finally, I think that the link to experiments is crucial at this stage of the project. In the
future, I would very much look forward to discuss possible experimental realisations of
such processes, ideally in vivo, and develop collaborations.

In the third part, I have presented my joint work with Kay Wiese which is the field-theoretic
calculation of the first-passage time distribution of a fractional Brownian Motion with drift(s).
My contribution to this project was numerical. I designed an algorithm which is capable of
sampling first-passage times of fractional Brownian Motion with a significantly lower demand
with regards to computing power and memory. This algorithm is abstract enough to deal with
other extreme values and processes. Currently, Alexander Shpilkin is improving and extending
it to study the running maxima of fractional Brownian Motion with drift which incidentally is
also a future research direction logically following Chp. 6. A further extension of this project
is the exact numerical sampling of trajectories of stochastic differential equations (SDE) with
fractional driving term, i.e. processes defined via

dX t = µ(Xt, t)dt + σdB (H)(t) (7.1)

where dB (H)(t) is a fractional Gaussian noise (see e.g. [111] for a discussion of fractional SDE
and their ergodic properties). The exact sampling of general fractional SDE at high numerical
precision remains challenging, but for specific observables adaptive bisections may provide a
substantial improvement in performance.

Altogether, this thesis develops tools and viewpoints which will certainly foster future research
advances. Field theory is a useful tool to study stochastic processes, as is underlined
by the range of different processes considered and observables computed in this thesis. From
fractional Brownian Motion to branching processes, I have considered a wide area of questions
which connect various communities, ranging from active matter to stochastic dynamics and
finance, and hopefully will contribute to increasing scientific interdisciplinary exchange in the
future.
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[120] H. Janssen, U. Täuber, and E. Frey. Exact results for the kardar-parisi-zhang
equation with spatially correlated noise. Eur. Phys. J. B 9:491, 1999.

[121] H. K. Janssen. On a Lagrangean for classical field dynamics and renormalization group
calculations of dynamical critical properties. Z. Phys. B 23:377, 1976.

[122] J.-H. Jeon, A. Chechkin, and R. Metzler. First passage behaviour of fractional
Brownian motion in two-dimensional wedge domains. EPL 94(2):20008, 2011.

[123] J.-H. Jeon, A. Chechkin, and R. Metzler. First passage behavior of multi-
dimensional fractional brownian motion and application to reaction phenomena. In First-
Passage Phenomena and Their Applications (edited by R. Metzler, G. Oshanin, and
S. Redner), pp. 175–202. World Scientific, London, 2014. arXiv:1306.1667.

206

http://arxiv.org/abs/arXiv:1404.5505
http://arxiv.org/abs/arXiv:1306.1667


BIBLIOGRAPHY

[124] H. Jeong, S. P. Mason, A. L. Barabási, and Z. N. Oltvai. Lethality and centrality
in protein networks. Nature 411(6833):41, 2001.

[125] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabási. The large-
scale organization of metabolic networks. Nature 407(6804):651, 2000.

[126] P. Jung. Colored noise in dynamical systems: Some exact solutions. In Stochastic
Dynamics (edited by L. Schimansky-Geier and T. Pöschel), Vol 484 of Lecture
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