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Abstract

Inspired by the work of Alòs, León and Vives [ALV07] and Fukasawa [Fuk17], who

showed that a volatility process driven by a fractional Brownian motion generates the

power law at-the-money volatility skew observed in financial market data, Gatheral,

Jaisson and Rosenbaum [GJR18a] spawned a class of models now known as rough

volatility models. We study the asymptotic behaviour of such models, and investigate

how convolutional neural networks can be used for their calibration.

Chapter 1 serves as an introduction. We begin with implied volatility, and then intro-

duce a number of model classes, starting with local volatility models and ending with

rough volatility models, and discuss their associated asymptotic behaviour. We also

introduce the theoretical tools used to prove the main results.

In Chapter 2 we study the small-time behaviour of the rough Bergomi model, introduced

by Bayer, Friz, and Gatheral [BFG16]. We prove a pathwise large deviations principle

for a small-noise version of the model, and use this result to establish the small-time

behaviour of the rescaled log stock price process. This, in turn, allows us to characterise

the small-time implied volatility behaviour of the model. Using the same theoretical

framework, we are also able to establish the small-time implied volatility behaviour of

the lognormal fSABR model of Akahori, Song, and Wang [ASW17].

In Chapter 3 we present small-time implied volatility asymptotics for realised variance

(RV) options for a number of (rough) stochastic volatility models via a large deviations

principle. We interestingly discover that these (rough) volatility models, together with

others proposed in the literature, generate linear smiles around the money. We provide

numerical results along with efficient and robust numerical recipes to compute the rate

function; the backbone of our theoretical framework. Based on our results, we develop

an approximation scheme for the density of the realised variance, which in turn allows

the volatility swap density to be expressed in closed form. Lastly, we investigate different

constructions of multi-factor models and how their construction affects the convexity of
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the implied volatility smile. Remarkably, we identify a class of models that can generate

non-linear smiles around-the-money. Additionally, we establish small-noise asymptotic

behaviour of a general class of VIX options in the large strike regime.

In Chapter 4, which is self-contained, we give an introduction to machine learning and

neural networks. We investigate the use of convolutional neural networks to find the

Hölder exponent of simulated sample paths of the rough Bergomi model, a method

which performs extremely well and is found to be robust when applied to trajectories

of a fractional Brownian motion and an Ornstein-Uhlenbeck process. We then propose

a novel calibration scheme for the rough Bergomi model based on our results.
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Notations:

B(X ) denotes the Borel σ-algebra of a topological space X .

BV denotes the space of paths of finite variation on some index set T .

Cd := C(T ,Rd) denotes the space of continuous mappings from some index set T to Rd.
We write C1 as C for ease of notation.

δx denotes the Dirac delta function with mass at x.

E[·] denotes the expectation operator.

E denotes the Wick stochastic exponential.

Γ denotes the Gamma function.

2F1 denotes the Gauss hypergeometric function.

ḟ denotes the derivative of a function f .

IA denotes the indicator function of a set A.

ι denotes the inclusion map.

L2 := L2(T ,R) denotes the space of square integrable functions from some index set T
to R.

Φ denotes the Gaussian cumulative distribution function.

n denotes the Standard Gaussian probability density function.

N (µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2.

R+ := [0,+∞) and R∗+ := (0,+∞).
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x ∧ y denotes min{x, y}.

x ∨ y denotes max{x, y}.

x · y denotes the integral
∫ 1

0 x(s)dy(s).

〈X·, Y·〉t denotes the quadratic co-variation of two processes X and Y at time t.

For two paths x and y belonging to C, we shall denote by zxy the two-dimensional path

(x, y)>.

Conventions:

Any stochastic process X given throughout the paper is shorthand for (Xt)t∈T .

Unless stated, the risk-free rate of return r is assumed to be 0 throughout.

Let (Ω,A , (Ft)t≥0,P) be a given filtered probability space, where the filtration is as-

sumed to satisfy the usual conditions. All stochastic processes given throughout the

paper are assumed to live on this probability space, and further are assumed to be

independent from one another unless stated otherwise.
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Chapter 1

Introduction

It is widely accepted that the Black-Scholes options pricing framework, whilst offering

a fast and convenient means of pricing options, suffers from a number of drawbacks

that make it inadmissible for practical use. Perhaps the most significant shortcoming

is the fact that the volatility is assumed to be constant, the converse of which is well-

documented.

Given the parameters (S0,K, T, r)- where S0 ≥ 0 is the spot price, K ≥ 0 is the strike

price, T ≥ 0 is the maturity, and r is the risk-free rate of return- one can use the well-

known Black-Scholes formula to compute option prices as a function of σ, the volatility.

Similarly, if we are given some option price, it is possible to find the unique value of σ-

which we will denote σ̂ and refer to as implied volatility- that corresponds to that option

price within the Black-Scholes framework. Given a set of observed market Call prices at

different strikes and at the same fixed maturity, the σ̂ corresponding to each Call price

varies with the strike. This phenomenon is called the implied volatility smile, which

directly contradicts the assumption of the Black-Scholes framework that σ is constant.

Indeed, more sophisticated models than Black-Scholes are required to explain observed

phenomena in market data.

An extensive number of augmented stock price models that attempt to explain the

implied volatility smile have arisen; exponential Lévy models, local volatility models,

and stochastic volatility models to name a few. A particular point of both theoretical
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and practical interest is how the implied volatility behaves in such stock price models;

especially the small and large-time behaviour. A wide variety of mathematical tools

and techniques are available for the study of implied volatility asymptotics.

The addition of jumps to stock price models has been a popular extension to the Black-

Scholes framework; in particular jumps may be used to explain steeper implied volatility

smiles in small-time. Forde and Figueroa-López [FF12] use an exponential Lévy process

to model a stock price, and give a small-time out-the-money expansion for Call option

prices, which is then used to attain a small-time implied volatility expansion. Tankov

and Mijatović [MT16] also consider the small-time implied volatility asymptotics of

an exponential Lévy process, where the strike is a specific time dependent function.

Figueroa-López, Gong, and Houdré [FGH16] give a second order at-the-money approx-

imation for a general class of exponential Lévy models, and then deduce the small-time

implied volatility; Figueroa-Lòpez and Ólaffson [FO16] then relax the conditions to

their weakest possible such that the previous expansion [FGH16] remains well-defined

and extend to stochastic volatility models with state independent jumps. Medvedev

and Scaillet [MS07] provide the small-time implied volatility behaviour for a stochastic

volatility model with jumps using PDE techniques. Using the Lewis-Lipton formula,

saddlepoint methods, and known results on the decay of Fourier integrals, Andersen

and Lipton [AL12] provide small-time, large-time, and extreme strike asymptotics of

the implied volatility of exponential Lévy models in their survey. The focus of this

thesis, however, is rough volatility models without jumps, and the above references to

jump models are given for the sake of completeness.

Large deviations theory provides a powerful and precise tool to study the asymptotic

behaviour of stochastic and local-stochastic volatility models, and has been used quite

extensively: [FJ09], [FFF10], [FJ11], [GJR18b] for example. Jacquier and Roome [JR15]

use so-called sharp large deviations techniques to arrive at small-time and large-time

expansions of the forward implied volatility smile. Paulot [Pau15] uses a heat kernel

expansion to study the small-time implied volatility behaviour in stochastic volatility

models. Armstrong, Forde, Lorig, and Zhang [AFLZ17] also use a heat kernel expansion,

as well as Laplace’s method, to study the small-time implied volatility behaviour of a

local-stochastic volatility model. There have been a number of recent results on the
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asymptotic behaviour of rough volatility models; these are presented together with

their respective rough volatility models below.

We begin this Chapter by introducing implied volatility in Section 1.1. The observed

convexity of implied volatility in financial markets motivates the development of so-

phisticated models that may capture this convexity: in Section 1.2 we present local

and stochastic volatility models capable of doing so, and then introduce rough volatility

models in Section 1.3. We present the theoretical tools, the theory of Gaussian measures

on (infinite dimensional) Banach spaces and large deviations theory, in Sections 1.4 and

1.5 respectively. We establish some fundamental results1 to be used subsequently in

the thesis. The Chapter finishes with an application of large deviations theory to im-

plied volatility asymptotics, and an overview of other asymptotic methods for implied

volatility analysis.

1.1 Implied Volatility

Let us begin by assuming that we model a stock price process S, starting at S0, using

any (non-negative) stochastic process, other than a geometric Brownian motion. For

(K,T ) ∈ R+ × R+ we may define C(K,T ) := E [(ST −K)+] as the Call price function;

as convention we assume r = 0, unless stated explicitly.

Definition 1.1.1. [Gat06, Chapter 1] For a given strike K ≥ 0 and maturity T ≥ 0 the

implied volatility σ̂(K,T ) is defined as the unique, non-negative solution to the equation

CBS(S0,K, T, σ̂(K,T )) = C(K,T ),

where CBS denotes the Call price within the Black-Scholes framework.

Remark 1.1.2. Note that the implied volatility is simply a means of giving and compar-

ing the relative value of options. Furthermore, we may choose another options pricing

framework rather than Black-Scholes to define implied volatility; however Black-Scholes

is favoured due to its simplicity and tractability.

1This Chapter includes results from article [JPS18].
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Let us briefly recall that empirical evidence [Gat06, Figure 3.2., Page 36] shows that the

implied volatility smile steepens as the time to maturity decreases; the smile becomes

more flat as the time to maturity increases. In equity markets the implied volatility

smile is typically asymmetric: in particular the in-the-money (ITM) slope is steeper

than the out-the-money (OTM) slope, and these features become more pronounced as

the time to maturity decreases.

Remark 1.1.3. Implied volatility σ̂(·, ·) as function of both strike K and time to

maturity T , [Gat06, Figure 3.2., Page 36], is referred to as the implied volatility surface.

1.2 Local and Stochastic Volatility Models

In this Section we give an overview of some approaches used to model volatility, starting

with Dupire’s local volatility model and moving on to the classical SABR and Heston

stochastic volatility models. We finish with some more advanced models: Bergomi’s

multi-factor forward variance model and Guyon’s path dependent volatility model.

1.2.1 Dupire’s Local Volatility Model

One method to model volatility, originally developed by Bruno Dupire [Dup94], is to

assume that volatility is a deterministic function, depending on the current stock price

and the current time. Such models are referred to as local volatility models. More

formally, the stock price process is defined as the unique, strong solution to

dSt = St (rdt+ σ(St, t)dWt) , S0 > 0. (1.1)

By defining C(K,T ) := e−rTE [(ST −K)+] and imposing some mild conditions on the

local volatility function σ(·, ·), it can be shown that C satisfies the following PDE:
∂C

∂T
=
σ(K,T )2K2

2

∂2C

∂K2
− rK ∂C

∂K
,

C(K, 0) = (S0 −K)+.
(1.2)
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From here, one can then rearrange the PDE in (1.2) to arrive at

σ(K,T ) =

√√√√2
∂C
∂T + rK ∂C

∂K

K2 ∂2C
∂K2

. (1.3)

That is, given a surface C := {C(K,T )}K,T≥0 of Call prices at all strikes and maturities,

one can define the local volatility function σ(·, ·) by (1.3) such that all Call prices in the

model (1.1) are consistent with the given Call price surface C . From here, it is possible

to then express σ(·, ·) in terms of the Black-Scholes implied volatility σ̂(·, ·); see [Gat06,

Pages 11-13]. Specifically, we have that

σ(K,T )2 =
∂v
∂T

1− x
v
∂v
∂x + 1

4(−1
4 −

1
v + x2

v2 )( ∂v∂x)2 + 1
2
∂2v
∂x2

,

where v = v(K,T ) := σ̂(K,T )2T defines the total implied variance, and x := log( K
S0erT

).

This in turn allows us to describe the implied volatility smile in terms of the local

volatility function.

1.2.2 Classical Stochastic Volatility Models

Stochastic volatility processes, where the volatility itself is modeled as a stochastic pro-

cess, are also used to explain implied volatility smiles. Additionally, stochastic volatility

models allow the explicit quantification of the volatility processes’ volatility.

The SABR Model

The first stochastic volatility model that we present is the stochastic alpha, beta, rho

(SABR) model, introduced by Hagan, Kumar, Lesniewski, and Woodward [HKLW02].

The dynamics of the forward price S and the volatility process v are determined by the

following system of SDEs:

dSt = vtS
β
t dWt, S0 > 0, (1.4)

dvt = αvtdZt, v0 > 0,

〈W·, Z·〉t = ρt.
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W and Z are two standard Brownian motions; α ≥ 0, β ∈ [0, 1], and ρ ∈ (−1, 1).

While (1.2) and (1.3) do hold statically, Hagan, Kumar, Lesniewski, and Woodward

[HKLW02] show that a movement in the underlying causes σ(·, ·) to move, but in the

opposite direction to what is observed in the market. Indeed, any movement in the

underlying should cause the smile generated by the local volatility function σ(·, ·) to

move in the same direction, whereas Dupire’s local volatility function moves in the

opposite direction. The SABR model, however, does generate a smile that behaves

dynamically as observed market smiles do. As well as capturing observed dynamic

smile behaviour, the SABR model also reproduces the shape of observed smiles from

market data fairly well: see, for example, [HKLW02, Figure 3.3.].

The Heston Model

The Heston model, introduced by Steve Heston [Hes93], is a very popular stochastic

volatility model that is still widely used today. The Heston model is particularly popular

because the characteristic function of the log stock price process is available in closed

form, at any time t. This, amongst other things, allows pricing of options by Fourier

Transforms, see [CM99]. The dynamics of the stock price process S are given by:

dSt = St (µdt+
√
vtdWt) , S0 > 0, (1.5)

dvt = λ(θ − vt)dt+ ξ
√
vtdZt, v0 > 0,

〈W·, Z·〉t = ρt.

W and Z are two standard Brownian motions; µ ∈ R; λ, θ, ξ > 0; ρ ∈ (−1, 1). A further

assumption (the Feller condition) that 2λθ > ξ2 is usually imposed: this ensures that v

is strictly positive, almost surely.

There is a large amount of literature on the implied volatility smile of the Heston model.

Setting µ = 0 and defining Xt := log
(
St
K

)
, Gatheral derives the following approximation

for the implied volatility of the Heston model [Gat06, Equation (3.17), page 34]:

σ̂(K,T )2 ≈ 1

T

∫ T

0

(
θ′ + (vs − θ′)e−(λ−ρξ/2)s

)
ds+ρξ

XT

TΣT

∫ T

0

∫ t

0
E[vs]e

−(λ−ρξ/2)(t−s)dsdt.

θ′ is defined as θλ
λ−ρξ/2 , and Σt is defined as

∫ t
0 E[vs]ds. Weron and Wystrup [WW05]
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show that the Heston implied volatility smile fits observed market smiles well for matu-

rities of 0.25-1.5 years. Forde, Jacquier, and Lee [FJL12] provide a closed form small-

time implied volatility expansion for the Heston model; Forde, Jacquier, and Mijatović

[FJM10] give an asymptotic expansion for the implied volatility of the Heston model.

1.2.3 Advanced Stochastic Volatility Models

The SABR and Heston models described above can be seen as members of a larger

class of stochastic volatility models, where the instantaneous variance is modelled as

a stochastic process. Choosing to model the instantaneous variance, however, has the

drawback of restricting the variance curve’s shape. Bergomi suggested a refinement

of these “first generation” stochastic volatility models to so-called “second generation”

stochastic volatility models, where the forward variance is modelled instead. Some of

the first such forward variance models were introduced by Bergomi [Ber05].

Bergomi’s Multi-factor Forward Variance Model

Denoting S as the stock price process and defining X := log(S), the multi-factor

Bergomi model [BG12] has the following dynamics:

dXt =
√
VttdW 1

t −
1

2
Vttdt, X0 = x0, (1.6)

dVut = σ(t, u,Vut ) · dWt, Vu0 > 0.

W = (W 1, . . . ,W d) is a d-dimensional Brownian motion, and the volatility-of-volatility

σ = (σ1, . . . , σd) takes values in Rd; Vut is the instantaneous forward variance for a future

time u, observed at time t. The initial forward variance Vu0 can be calibrated to vanilla

products in order to recover market prices. One may also choose Vu0 = d
du(uσ̂V S(u)),

where σ̂V S(u) is the implied volatility of a variance swap with maturity u.

Bergomi and Guyon [BG12] derive a smile approximation for the multifactor Bergomi

model (1.6), by means of an expansion of the volatility-of-volatility. This provides a

method to characterise the at-the-money skew and curvature of the implied volatility

smile, both close to and far from maturity. An explicit smile approximation for the two
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factor Bergomi model and for Heston-type models (i.e. where vt = Vtt ) are also provided

by Bergomi and Guyon.

Path Dependent Volatility Models

Guyon [Guy14] studies a path dependent local-stochastic volatility model, where the

volatility at any time t depends on the full trajectory of the stock price process S from

0 to t. Path dependent volatility models have not received the same level of attention

as local volatility and stochastic volatility models over the past two decades; Hobson

and Rogers [HR98] consider a path dependent volatility model, where the volatility

process has dependence on exponentially weighted moments of the historic log stock

price process. Guyon [Guy14] defines the path dependent volatility model as the process

S that satisfies the following SDE:

dSt = σ(t, St, Yt)StdWt, S0 > 0. (1.7)

Here Y represents a finite set of path dependent processes, such as the weighted moving

average and running maximum/minimum; W is a standard Brownian motion. Much

like local-stochastic volatility models, Guyon shows that this path dependent volatility

model can be calibrated to observed market smiles; they additionally can produce rich

volatility dynamics that are unattainable within the local-stochastic volatility frame-

work. The approach outlined by Guyon is to choose any set Y of path dependent

processes and the function σ(·, ·, ·) such that (1.7) has the desired volatility dynamics.

The model may then be calibrated to the market by multiplying by a so-called leverage

function ` :

dSt = σ(t, St, Yt)`(t, St)StdWt.

Guyon demonstrates one advantage of such a path dependent volatility model: it can

be calibrated to a flat smile and still achieve a skewed forward volatility, if the function

σ(·, ·, ·) is chosen correctly for the corresponding set of path dependent processes Y .

Another advantage of such a model is that, since this path dependent volatility model

is able to capture historical volatility patterns, market calibration may also be reconciled

by historical calibration.

23



1.3 Rough Volatility Models

The term “rough volatility” has been adopted from [GJR18a], and refers to a stochastic

volatility model where the volatility process is driven by a process with Hölder regularity

strictly less than 1/2. This is typically achieved with a fractional Brownian motion. The

justification for rough volatility models is that they are able to capture the small-time

power law at-the-money volatility skew observed in financial markets: see the results

by Alòs, León, and Vives [ALV07], and by Fukasawa [Fuk17]. We recall the definition

of a fractional Brownian motion below, [BHØZ08, Definition 1.1.1.].

Definition 1.3.1. Let H ∈ (0, 1): a fractional Brownian motion
(
WH
t

)
t≥0

is a contin-

uous, centred Gaussian process with the following covariance function

E
[
WH
t W

H
s

]
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, for all s, t ≥ 0.

Note that taking H = 1/2 recovers the standard Brownian motion. We now recall some

of the basic properties of the fractional Brownian motion, for more details and proofs

see [BHØZ08, Chapter 1].

Proposition 1.3.2. Let the process WH be a fractional Brownian motion. The follow-

ing properties all hold.

1. Stationary increments: WH
t+s −WH

s and WH
t are equal in law for all s, t ≥ 0.

2. Self-similarity: WH
at and aHWH

t are equal in law for all a > 0 and t ≥ 0.

3. For H 6= 1/2, WH is not a semi-martingale.

4. WH has a version whose trajectories are almost surely γ-Hölder continuous, for

all γ ∈ (0, H).

5. Long range dependence:
∑+∞

n=1 E
[
WH

1

(
WH
n+1 −WH

n

)]
= +∞ for H ∈ (1/2, 1).

6. Correlated increments: for H > 1/2, the increments of WH are positively corre-

lated, and in this case WH is said to be persistent. For H < 1/2, the increments

of WH are negatively correlated, and in this case WH is said to be antipersistent.

See Figure 1.1.
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7. Mandelbrot-Van Ness [MV68] integral representation: let B be a standard Brow-

nian motion. The following representation holds almost surely for all t ≥ 0:

WH
t =

1

Γ(H + 1/2)

∫ 0

−∞

(
(t− s)H−1/2 − (−s)H−1/2

)
dBs +

∫ t

0
(t− s)H−1/2 dBs,

(1.8)

where Γ is the standard Gamma function.
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Figure 1.1: Two trajectories of a fractional Brownian motion WH from t = 0 to t = 1

with 1001 sample points. In the left plot we set H = 0.1 so that WH is antipersistent; in

the right plot we set H = 0.9, hence WH is persistent. Here we have used Mathematica’s

‘FractionalBrownianMotionProcess’ function to simulate each trajectory.

We briefly recall the definition of a semi-martingale [KS91, Definition 3.1.].

Definition 1.3.3. Let the process M be a continuous (Ft)t≥0 local martingale, and

A be a càdlàg process of locally bounded variation, adapted to (Ft)t≥0. A process X

is a (Ft)t≥0 continuous semi-martingale if X is adapted to (Ft)t≥0 and the following

representation holds almost surely, for all t ≥ 0: Xt = X0 +Mt +At.

Remark 1.3.4. Fractional Brownian motion is unsuitable for the application of mod-

elling a stock price process itself, since it is not a semi-martingale for H 6= 1/2: [DS94,

Theorem 7.2.] tells us that if a stock price process is not a semi-martingale, then the

“no free lunch with vanishing risk” condition is not satisfied. Rogers [Rog97] constructs

an explicit arbitrage strategy for a fractional Brownian motion. Since volatility is not

a traded asset, however, this fact does not cause issue in models where the volatility

itself is driven by a fractional Brownian motion.
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Remark 1.3.5. Historically, volatility was thought to exhibit persistence by some fi-

nancial econometricians, and as a result fractional Brownian motion with H > 1/2 has

been used in various models to drive volatility, such as Comte and Renault [CR98].

Comte and Renault extend Hull and White’s stochastic volatility model so that the log

volatility process has long memory and is mean reverting; specifically, the log volatility

process is modelled as a fractional Ornstein-Uhlenbeck process.

In very recent years, a renewed interest in the fractional Brownian motion has devel-

oped, motivated by the recent work by Gatheral, Jaisson, and Rosenbaum [GJR18a].

Gatheral, Jaisson, and Rosenbaum use high frequency time series data to estimate

that the log-volatility of various stock indices behaves in a similar way to a fractional

Brownian motion, with H ≈ 0.1. Very recently, Fukasawa, Takabatake, and West-

phal [FTW19] use a quasi-likelihood estimator to investigate the roughness of realised

volatility time series, and find H to be even smaller than 0.1.

Gatheral Jaisson, and Rosenbaum [GJR18a] propose the so-called rough fractional

stochastic volatility (RFSV) model for the log volatility Y :

dYt = αdWH
t − β(Yt − θ)dt, Y0 = y0.

Here, H ∈ (0, 1/2), θ ∈ R, and α, β > 0. This is precisely the model proposed by Comte

and Renault [CR98], except that Gatheral, Jaisson, and Rosenbaum [GJR18a] take

H ∈ (0, 1/2), whereas Comte and Renault take H ∈ (1/2, 1). The RFSV model does

not exhibit long memory, and this directly contradicts [CR98]. The rationale provided

by Gatheral, Jaisson, and Rosenbaum [GJR18a] to explain this is that, essentially,

classical methods may incorrectly identify long memory. Furthermore, while there may

be some persistence present in the log volatility process, there is no long memory in

terms of power law behaviour. The RFSV model is also shown to produce highly

accurate forecasts for realised volatility.

1.3.1 The Rough Bergomi model

Bayer, Friz, and Gatheral [BFG16] introduce a non-Markovian generalisation of Bergomi’s

“second generation” stochastic volatility model, which they call the rough Bergomi
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model. First define the process Z pathwise as

Zt :=

∫ t

0
Kα(s, t)dW 1

s , for any t ∈ T , (1.9)

where W 1 is a standard Brownian motion. The kernel Kα : R+ × R+ → R+ reads

Kα(s, t) := η
√

2α+ 1(t− s)α, for all 0 ≤ s < t, (1.10)

for some strictly positive constant η and α ∈ (−1/2, 0). Note that, for any t ≥ 0, the

map s 7→ Kα(s, t) belongs to L2, so that the stochastic integral (1.9) is well defined.

The rough Bergomi model is defined as:

St = S0 exp

(∫ t

0

√
VssdBs −

1

2

∫ t

0
Vssds

)
, S0 > 0, (1.11)

Vut = E[Vuu |Ft] exp

(∫ u

t
Kα(s, u)dW 1

s −
η2

2
(u− t)2α+1

)
, Vu0 > 0,

where the process B is defined as B := ρW 1 +
√

1− ρ2W 2, for ρ ∈ (−1, 1). W 2 is a

standard Brownian motion, independent of W 1. For simplicity, we set t = 0 and u = t

in the above definition of V, and from this point onwards we refer to V as v; furthermore

we assume that the forward variance curve is flat, i.e. we have that E[vt|F0] =: v0 > 0

for all t ≥ 0. We emphasise that every reference to the rough Bergomi model from this

point onwards will implicitly assume this simplification of (1.11).

Proposition 1.3.6. The process log v has a modification whose trajectories are almost

surely locally γ-Hölder continuous, for all γ ∈
(
0, α+ 1

2

)
.

Proof. We first prove that Z has a modification whose trajectories are γ-Hölder contin-

uous, for all γ ∈ (0, α+ 1
2). Firstly,

E(|Zt − Zs|2) ≤ η2(2α+ 1)

(∫ t

s
|t− u|2αdu+

∫ s

0
|(t− u)α − (s− u)α|2du

)
= η2|t− s|2α+1 + η2(2α+ 1)

∫ s

0
|(t− u)α − (s− u)α|2du.

Following the change of variables s− u = (t− s)y the integral becomes

|t− s|2α+1

∫ s
t−s

0
|(y + 1)α − yα|2dy,
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and hence
∫ s
t−s

0 |(y + 1)α − yα|2dy is finite since α ∈ (−1
2 , 0). Therefore there exists

K > 0 such that E(|Zt−Zs|2) ≤ K|t−s|2α+1 for any s, t ≥ 0. Applying the Kolmogorov

Continuity Theorem [Øks03, Theorem 2.2.3] then yields that the Gaussian process Z has

a modification whose trajectories are locally γ-Hölder continuous where γ ∈ (0, α+ 1
2),

thus proving the claim. Now, for the process log v, we have

| log vt − log vs| =
∣∣∣∣Zt − η2

2
t2α+1 −

(
Zs −

η2

2
s2α+1

)∣∣∣∣
≤ |Zt − Zs|+

η2

2

∣∣t2α+1 − s2α+1
∣∣

≤ C|t− s|γ +
η2

2

∣∣t2α+1 − s2α+1
∣∣ ,

where C is a strictly positive constant, and γ ∈ (0, α + 1/2). Since the map t 7→ t2α+1

is also locally γ-Hölder continuous for all γ ∈ (0, 2α + 1] and in particular for all

γ ∈ (0, α + 1/2), it follows that the process log v has a modification with locally γ-

Hölder continuous trajectories, for all γ ∈ (0, α+ 1
2).

Remark 1.3.7. As a comparison, the fractional Brownian motion has sample paths

that are γ-Hölder continuous for any γ ∈ (0, H), see Proposition 1.3.2, so that the rough

Bergomi model also captures this roughness by identification α = H−1/2; in particular

these trajectories are rougher than those of the standard Brownian motion, for which

H = 1/2.

Proposition 1.3.8. For any t ≥ 0, (Zt, Bt) is a Gaussian random variable with mean

zero and covariance matrix (
η2t2α+1 %tα+1

%tα+1 t

)
,

where % = ρη
√

2α+1
α+1 . Moreover (Z,B) is a two-dimensional Gaussian process. Further-

more,

E[ZsZt] =

∫ s∧t

0
Kα(u, s)Kα(u, t)du =

η2(2α+ 1)

α+ 1
(s∧t)1+α(s∨t)α2F1

(
−α, 1; 2 + α;

s ∧ t
s ∨ t

)
.

Proof. Without loss of generality, let us begin by assuming that s < t. This then implies

that E(ZsZt) = η2(2α + 1)
∫ s

0 (t − u)α(s − u)αdu = tαs1+α
∫ 1

0 (1 − v)α(1 − sv/t)αdv,

28



where the second equality follows from a change of variables. Using a standard integral

representation of the Gauss hypergeometric function 2F1, it follows that
∫ s

0 (t− u)α(s−
u)αdu = 1

α+1 2F1(−α, 1;α+ 2; s/t), from which the result then clearly follows.

Proposition 1.3.8 implies in particular that the process Z is not stationary, and that

the following holds:

Corollary 1.3.9. The process Z is (α + 1
2) self-similar: for any a > 0, the processes

(Zat)t≥0 and (aα+ 1
2Zt)t≥0 are equal in distribution.

Note then that the parameter α can be used to describe the local and long-term be-

haviour of Z.

Remark 1.3.10. The process Z in (1.9) is the Holmgren-Riemann-Liouville fractional

Brownian motion introduced by Lévy [Lev53], modulo some constant scaling, rather

than the more commonly known fractional Brownian motion given by Mandelbrot and

Van Ness (see Propoisiton 1.3.2):

WH
t =

1

Γ(H + 1/2)

(∫ 0

−∞
((t− s)H−1/2 − (−s)H−1/2)dBs +

∫ t

0
(t− s)H−1/2dBs

)
.

The Mandelbrot-Van Ness representation of WH
t requires the knowledge of B from −∞

to t; in comparison we only need to know W 1 from 0 to t to compute the value of Z.

Also both Z and WH are self-similar, but WH has stationary increments whereas the

increments of Z are non-stationary.

Bayer, Friz, and Gatheral [BFG16] provide an options pricing framework for the rough

Bergomi model for options on the stock price S itself, as well as options on the integrated

variance of S. Bayer, Friz, and Gatheral also give details on simulation, as well as

showing the consistency of volatility smiles generated by the rough Bergomi model with

those observed in the market. The rough Bergomi model has the advantage of being

fairly simple in so far as having only three parameters (α, η, ρ). Furthermore these three

parameters each have a clear relation to given features of the implied volatility surface:

• for a fixed maturity, the minimum of the implied volatility smile shifts down and

right as ρ approaches −1;
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• α determines the small-time decay of the term structure of the at-the-money

volatility skew;

• for a fixed α, the level of the volatility skew fixes ηρ.

These properties provide some intuition as to what values the parameters should take,

when calibrating the model from an observed market implied volatility surface. We

consider calibration of the rough Bergomi model in more detail in Chapter 4.

1.3.2 Other Rough Volatility Models

A number of other rough volatility models have recently been proposed: [CCR12] in-

troduces the so-called fractional Heston model, which is also studied by Guennoun,

Jacquier, and Roome [GJR18b]. The dynamics of the log stock price X are given by

dXt =
√
vdt dWt −

1

2
vdt dt, X0 = 0, (1.12)

dvt = λ(θ − vt)dt+ ξ
√
vtdZt, v0 > 0,

vdt = vd0 + Id0+vt.

W and Z are two independent, standard Brownian motions; λ, θ, ξ are strictly positive,

and d ∈ (−1/2, 1/2). The operator Id0+ is the classical left fractional Riemann-Liouville

integral operator of order d, defined on L1[0, 1] where Γ denotes the standard Gamma

function, as

Id0+f(t) :=

∫ t

0

(t− s)d−1

Γ(d)
f(s)ds.

Forde and Zhang [FZ17] define the volatility pathwise as the image of a trajectory of a

fractional Brownian motion under some Hölder continuous mapping. More specifically,

the stock price process S and the volatility process v are determined by the following

system of SDEs:

dSt = Stσ(vt)dWt, S0 > 0, (1.13)

dvt = dWH
t , v0 > 0.

W is a standard Brownian motion, and WH is a fractional Brownian motion: both

the correlated and uncorrelated cases of W and WH are considered. The function σ is
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γ-Hölder continuous, where γ ∈ (0, 1]; Forde and Zhang consider the cases where σ is

both bounded and unbounded.

El Euch, Fukasawa, and Rosenbaum [EFR18] show that the difference of two Hawkes

processes, which are used to describe buy and sell orders within a high frequency market

model, converge to a rough counterpart of the Heston model, different to the fractional

Heston model given in (1.12). The stock price process S in the rough Heston model has

the following dynamics:

dSt = St
√
vtdWt, S0 > 0, (1.14)

vt = v0 +
1

Γ(α)

∫ t

0
(t− s)α−1 [λ(θ − vs)ds+ λξ

√
vsdBs] , v0 > 0.

W and B are two standard Brownian motions, with correlation ρ. The parameter

α is used to describe the roughness of the trajectories of the volatility process; the

parameters λ, θ, ξ are strictly positive and have the same interpretation as the standard

Heston model.

The characteristic function for the rough Heston model is also available [ER19, Theo-

rem 4.1.], and is given in terms of the solution to a fractional Ricatti equation. Explicit

hedging strategies for the rough Heston model are also available [ER18]. El Euch,

Gatheral, and Rosenbaum also establish an approximation for the rough Heston model

with the classical Heston model, by an appropriate rescaling for the vol-of-vol param-

eter [EGR19]. Very recently Dandapani, Jusselin, and Rosenbaum [DJR19] showed

that a rescaled quadratic version of a Hawkes process converges to a refinement of the

rough Heston model, which satisfies the so-called “strong Zumbach effect” (where the

conditional distribution of future volatility depends on both past returns and the past

volatility trajectory).

Forde, Smith and Viitasaari [FSV18] extend the expansions in [Fuk17], which are given

for European options in rough volatility models driven by a two-sided fractional Brown-

ian motion, to a rough volatility model whose volatility process is driven by a Riemann-

Liouville fractional Brownian motion and whose log stock price process contains jumps.

The jumps are modelled by the (infinite activity) one-sided tempered Lévy process,

whose Lévy measure is ν(dx) = Ce−Mx

x1+Y dx. The expansions in this model only require

finite history, unlike the results in [Fuk17]; the expansions are then used to describe the
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small-time implied volatility behaviour.

A natural question to ask is how rough volatility models behave in the limit as H tends

to zero? Neuman and Rosenbaum [NR18] answer this question when the rough volatility

process is driven by a fractional Brownian motion. There are many further interesting

research questions on this topic that remain unanswered; for example, how does the

rough Bergomi model behave as α approaches −1/2?

1.4 Gaussian Measures on Banach Spaces

Having provided an introduction to stochastic and rough volatility models, we now

introduce the theoretical tools used to prove our main results.

Recall that a centred, i.e. mean zero, process (Zt)t∈T , where T ⊆ N or R, is Gaussian

if for all n ∈ N and for any t1, . . . , tn ∈ T : the random variables Zt1 , . . . , Ztn are jointly

Gaussian. Recall also that centred Gaussian processes are completely determined by

their covariance functions. The following is a summary on Gaussian measures on Banach

spaces, for the most part following Carmona and Tehranchi [CT06, Chapter 3]. Let

(E , ‖ · ‖E ) be a real, separable Banach space and let E ∗ be the topological dual of E ,

〈·, ·〉E ∗E gives the duality relationship between E and E ∗. Recall that the topological

dual E ∗ of E is the space of all continuous linear functionals on E ; 〈·, ·〉E ∗E : E ∗×E → R
is a bilinear functional such that if 〈x∗, x〉E ∗E = 0 for all x∗ ∈ E ∗ (resp. x ∈ E ) then

x = 0 (resp. x∗ = 0) [AB06].

The following example gives some intuition to the concept of Gaussian measures on

Banach spaces and the reproducing kernel Hilbert space (RKHS), which is defined

below.

Example 1.4.1. Define Ẽ :={y : [0, 1] → R}, denote the product sigma algebra gen-

erated by cylindrical sets {y ∈ Ẽ : (y(t1), . . . , y(tn)) ∈ R} for t1, . . . , tn ∈ [0, 1] and

R ∈ B(Rn) by Ẽ, and let (Zt)t∈[0,1] be a centred, continuous Gaussian process on some

probability space
(

Ω̃, Ã , P̃
)

. Define the co-ordinate process (Yt)t∈[0,1] by Yt(y) := y(t),

and the co-ordinate map Ỹ : Ω̃ → Ẽ by Ỹ (y) := Z·(y). This map induces a mea-

sure λ on
(
Ẽ , Ẽ

)
given by λ(B) = P̃(Ỹ ∈ B) that clearly is a probability measure.
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Despite the fact that the space of real, continuous functions on [0, 1], which will be

denoted C := C([0, 1],R) hereafter, is not a measurable subset of Ẽ , it is possible to

replace Ẽ with C, and λ with its trace2 λ, using some measure theory manipulations,

since Ỹ (ω) ∈ C for almost all ω ∈ Ω̃. Hence, define λ (the trace of λ) on {E ∩C : E ∈ Ẽ }
such that λ(C) = 1, thus giving a probability measure on (C,C ) where C is the Borel

σ-algebra of C. For y ∈ C and any real sequence {αk}k=1,...,n ⊂ R, define the Gaussian

random variable

n∑
k=1

αkYtk(y) =

n∑
k=1

αkZtk(y) on (C,C , λ). The topological dual C∗ of C

is the set of all signed measures on [0, 1], with duality given by

〈µ, y〉C∗C :=

∫
[0,1]

y(x)µ(dx).

Since

∫
[0,1]

y(x)δtk(dx) = y(tk), for µ̃ =
∑m

k=1 αkδtk , we obtain

〈µ̃, y〉C∗C =
m∑
k=1

αk 〈δtk , y〉C∗C =
m∑
k=1

αky(tk),

which is a Gaussian random variable on (C,C , λ). Any measure on [0, 1] may be ex-

pressed as the limit of
∑m

k=1 αkδtk as m tends to +∞, and the limit of Gaussian ran-

dom variables is also Gaussian. So µ ∈ C∗, when viewed as a random variable on C by

〈µ, y, 〉C∗C , is Gaussian.

Remark 1.4.2. Consider the case where the centred Gaussian process Z in Example

1.4.1 is a standard Brownian motion: the induced measure ν on C is called the standard

Wiener measure.

Definition 1.4.3. Let E be a real, separable Banach space with B (E ) its Borel σ-

algebra. A centred Gaussian measure µ on (E ,B (E )) is such that every f∗ ∈ E ∗ is

a centred, real Gaussian random variable on (E ,B (E ) , µ) when viewed as a random

variable defined by f 7→ 〈f∗, f〉E ∗E .

The following proposition [CT06, Proposition 3.1.] characterises Gaussian measures on

Banach spaces.

2 Let µ be a finite measure on (Ω,A ) and let C be a subset of Ω. Denote the σ-algebra generated

by {A ∩ C : A ∈ A } as DC . For C ⊆ C1 ∈ A , we define µ̃(A ∩ C) := µ(A ∩ C1); µ̃ is a measure on

(C,DC) that in this context is called the trace of µ.
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Proposition 1.4.4. Any centred Gaussian measure µ on E is the law of some centred

Gaussian process with continuous paths, indexed by some compact metric space.

As Example 1.4.1 illustrates, every real-valued, continuous and centred Gaussian process

induces some measure on C.

Remark 1.4.5. By Proposition 1.4.4, one can construct a centred Gaussian proba-

bility measure µ on E by constructing a corresponding Gaussian process. The above

argument may be extended to a d-dimensional centred Gaussian process (Zt)t∈[0,1] =(
(Z1

t , . . . , Z
d
t )
)
t∈[0,1]

, which induces a Gaussian measure on E = C
(
[0, 1],Rd

)
=: Cd.

We shall, from now on, let µ be a Gaussian measure on some Banach space E . Introduce

the bounded, linear operator Γ : E ∗ → E defined as

Γ(f∗) :=

∫
E
〈f∗, f〉E ∗E fµ(df), (1.15)

and note in particular that 〈f∗, f〉E ∗E f in the above definition is a random variable on

(E ,B(E ), µ).

Definition 1.4.6. Let µ be a Gaussian measure on some real, separable Banach space E .

Its reproducing kernel Hilbert space (RKHS) Hµ is defined as the completion of Γ(E ∗)

with the following inner product 〈Γ(f∗),Γ(g∗)〉Hµ
:=

∫
E
〈f∗, f〉E ∗E 〈g∗, f〉E ∗E µ(df).

Remark 1.4.7. It can be shown [CT06, Chapter 3] that Hµ ⊂ E .

Example 1.4.8. As above, let Z be a centred Gaussian process and E = C. Fubini’s

Theorem implies that

Γ(f∗)(t) =

∫
E
〈f∗, f〉E ∗E f(t)µ(df)

=

∫
E

(∫
[0,1]

f(x)f∗(dx)

)
f(t)µ(df)

=

∫
[0,1]

(∫
E
f(x)f(t)µ(df)

)
f∗(dx)

=

∫
[0,1]

ρ(x, t)f∗(dx),
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where ρ(s, t) := E[ZsZt] is the covariance function of the process Z. Note that the final

equality holds because µ is a Gaussian measure on E . The RKHS of µ is then simply

the completion of Γ with the inner product given in Definition 1.4.6.

Example 1.4.9. If we take the specific case of Example 1.4.8 where the process Z is a

standard Brownian motion, with ν denoting the standard Wiener measure, then

Γ(f∗)(t) =

∫
[0,1]

(x ∧ t)f∗(dx) =

∫ t

0
xf∗(dx) +

∫ 1

t
tf∗(dx) =

∫ t

0
f∗([x, 1])dx.

This then implies that Γ(f∗)′(t) = f∗([t, 1]). The RKHS of ν is called the Cameron-

Martin space, and can be defined explicitly as

Hν :=

{∫ t

0
f(u)du : f ∈ L2, t ∈ [0, 1]

}
.

The inner product structure of Hν is given by〈∫ ·
0
f1(u)du,

∫ ·
0
f2(u)du

〉
Hν

:= 〈f1, f2, 〉L2 .

The following result, due to Cameron and Martin [CM44], essentially describes the law

of translations on C by elements of Hν , in terms of the Radon-Nikodym derivative.

Theorem 1.4.10. [Lif12, Theorem 5.1., p34] For a centred Gaussian measure µ

on E with Hµ RKHS, define µh(A) := µ(A − h) for all A ∈ B(E ) and some h ∈ E .

Then µh is absolutely continuous with respect to µ if and only if h ∈Hµ. Furthermore,

if h ∈Hµ, then the Radon-Nikodym derivative is given by

dµh
dµ

(x) = exp

(
f∗(x)− 1

2
‖h‖2Hµ

)
,

where f∗ ∈ E ∗ such that 〈f∗, f〉E ∗E = h.

Example 1.4.11. For the two-dimensional centred Gaussian process (Z,B) that in-

duces the measure µ2 on C2 := C([0, 1],R2), the following holds, by an application of

Fubini’s Theorem

Γ(f∗)(t1, t2) =

∫
[0,1]2

ρ2(s1, s2, t1, t2)f∗(ds1, ds2). (1.16)

The function ρ2(s1, s2, t1, t2) is defined as ρ2(s1, s2, t1, t2) :=

(
E[Zs1Zt1 ] E[Zs1Bt2 ]

E[Zs2Bt1 ] E[Bs2Bt2 ]

)
.
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For the inclusion map ι : Hµ → E , the space ι (Hµ) is dense in E ; it follows then

for the adjoint map ι∗ : E ∗ → H ∗
µ that ι∗ (E ∗) is dense in H ∗

µ . Recall also that Hµ

and H ∗
µ are isometrically isomorphic, which we denote by H ∗

µ ' Hµ, (by the Riesz

representation theorem, as R is the underlying field). Now, consider f∗ as a centred

Gaussian random variable on E (i.e. when viewed as a random variable on (E ,B (E ) , µ)

defined by f 7→ 〈f∗, f〉E ∗E , see Definition 1.4.3):

E
[
〈f∗, f〉2E ∗E

]
=

∫
E
〈f∗, g〉E ∗E 〈f∗, g〉E ∗E µ(dg),

where g is a dummy variable. By Definition 1.4.6 we write∫
E
〈f∗, g〉E ∗E 〈f∗, g〉E ∗E µ(dg) =

∥∥f∥∥2

Hµ

and by the above argument (H ∗
µ 'Hµ) it follows that∥∥f∥∥2

Hµ
=
∥∥ι∗f∗∥∥2

H ∗
µ
.

With this in mind we now formulate an equivalent definition to Definition 1.4.6 for the

RKHS of µ; see, for example [DS89, Page 88] for a similar definition.

Definition 1.4.12. Let Hµ be real, separable Hilbert space such that Hµ ⊂ E : it is

the RKHS of µ if the following two conditions hold.

1. There exists some embedding I : Hµ → E , i.e. an injective continuous map whose

image is dense in E .

2. Any f∗ ∈ E ∗ is a centred Gaussian random variable on E with variance
∥∥I∗f∗∥∥2

H ∗
µ

,

where the adjoint of I is I∗ : E ∗ → H ∗
µ .

Remark 1.4.13. The embedding I need not necessarily be the inclusion map.

Remark 1.4.14. Given a triplet (E ,Hµ, µ), consider the inclusion map Î : E ∗ →
L2(E , µ) (we think of E ∗ as a dense subset in H ∗

µ ' Hµ by ι∗). Since Î preserves the

Hilbert space structure of L2(E , µ), it is possible to extend it to an isometric embedding

from Hµ to L2(E , µ), i.e. I : H ∗
µ → L2(E , µ) such that

∥∥If∗∥∥
H ∗
µ

=
∥∥f∗∥∥

L2(E ,µ)
.
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For convenience of notation, for function ϕ : R+ × R+ → R, introduce the L2-operator

Iϕ as

Iϕf :=

∫ ·
0
ϕ(u, ·)f(u)du. (1.17)

Whenever the function ϕ is constant, equal to c, we shall write Ic without ambiguity.

Requirements on ϕ in the context of RKHS will be introduced below.

Proposition 1.4.15. For the process Z defined in (1.9), let µ denote the corresponding

induced Gaussian measure on C. The RKHS of µ is H Kα :=
{
IKαf : f ∈ L2

}
, with

inner product
〈
IKαf1, IKαf2

〉
H Kα

:= 〈f1, f2〉L2 .

Proof. First we note that, by definition, the operator IKα is surjective on H Kα . Let

f1, f2 ∈ L2 such that IKαf1(t) = IKαf2(t) for all t ∈ [0, 1]. Then
∫ t

0 (t − u)α[f1(u) −
f2(u)]du = 0. The Titchmarsh Convolution Theorem [Tit26, Theorem VII.] then implies

that f1 = f2 almost everywhere. Hence IKα : L2 → H Kα is a bijection. We can

define
〈
IKαf1, IKαf2

〉
H Kα

:= 〈f1, f2〉L2 , which does indeed define an inner product

on H Kα , due to the linearity of the operator IKα and since 〈·, ·〉L2 is itself an inner

product; therefore
(
H Kα , 〈·, ·〉H Kα

)
is a real inner product space. In order for H Kα to

satisfy Definition 1.4.12, we first need to show that it is a separable Hilbert space. Let

{fn}n∈N be a sequence in L2 such that
{
IKαfn

}
n∈N converges to IKαf in L2. Therefore∥∥IKαfn−IKαfm∥∥H Kα

=
∥∥fn− fm∥∥L2 tends to zero as n and m tend to infinity. Since

L2 is a complete (Hilbert) space, there exists a function f̃ ∈ L2 such that the sequence

{fn}n∈N converges to f̃ . Assume that f 6= f̃ , then, since IKα is a bijection, the triangle

inequality yields

0 <
∥∥IKαf − IKα f̃∥∥

H Kα
≤
∥∥IKαf − IKαfn∥∥H Kα

+
∥∥IKα f̃ − IKαfn∥∥H Kα

,

which converges to zero as n tends to infinity. Therefore f = f̃ , IKαf ∈ H Kα and

H Kα is complete, so that it is a real Hilbert space. L2 is separable with countable

orthonormal basis, which we will call {φn}n∈N; then we also get that
{
IKαφn

}
n∈N is an

orthonormal basis for H Kα . So, H Kα is a real, separable Hilbert space as required.

We now wish to find a dense embedding I : H Kα → E , rewriting H Kα as in the

Proposition. Since H Kα ⊂ C, take the embedding to be the inclusion map i.e. I = ι.
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Take fc(s) ≡ c for s ∈ [0, 1] where c is some arbitrary non-zero constant so that∫ t

0
Kα(u, t)fc(u)du =

cη
√

2α+ 1

α+ 1
tα+1 =: g(t).

For any t1, t2 ∈ [0, 1], g(t1) = g(t2) if and only if t1 = t2 and so we see that g is in the

separating set of C. Hence, by the Stone-Weierstrass Theorem [Will70, Theorem 44.5.,

page 291] it follows immediately that H Kα is dense in C.

Finally, let us take f∗ ∈ C∗ : since µ is a Gaussian probability measure on (E ,B(E )),

f∗ is a centred, real Gaussian random variable on (E ,B (E ) , µ) by Definition 1.4.3 . In

turn, Remark 1.4.14 implies the following:∥∥I∗f∗∥∥2

H Kα∗ =
∥∥f∗∥∥2

L2(E ,µ)
=

∫
E

(f∗)2 dµ = Var(f∗).

So, we conclude that H Kα :=
{
IKαf : f ∈ L2

}
is the RKHS of µ.

By applying the same arguments as Proposition 1.4.15, it is possible to generalise the

result in order to give the RKHS for the measure induced by a Gaussian process Y ,

defined pathwise as Yt :=
∫ t

0 ϕ(s, t)dWs for t ∈ [0, 1] and some kernel ϕ on R+ × R+

such that the stochastic integral is indeed well-defined. We briefly present this result

below, after first introducing the following assumption:

Assumption 1.4.16. For ϕ : R+×R+ → R such that ϕ(u, ·) ∈ L2 for all u ∈ [0, 1], there

exists φ ∈ L2([−1, 0],R) such that
∫ 0
−ε |φ(s)|ds > 0 for all ε > 0 and ϕ(s, t) = φ(t − s)

for all s, t ∈ [−1, 0].

Proposition 1.4.17. Let ϕ satisfy Assumption 1.4.16 such that Iϕ is injective on L2.

The RKHS of the measure induced the process by
∫ ·

0 ϕ(u, ·)dWu on C is given by H ϕ :=

{Iϕf : f ∈ L2}, with inner product 〈Iϕf1, Iϕf2〉H ϕ := 〈f1, f2〉L2.

Proof. The arguments presented in the proof of Proposition 1.4.15 can be used to ver-

ify that H ϕ is indeed a real, separable Hilbert space. We now wish to find a dense

embedding I : H ϕ → E as in Definition 1.4.12. Since H ϕ ⊂ C, take the embedding to

38



be the inclusion map I = ι. By [Che08, Lemma 2.1], the conditions on φ in Assump-

tion 1.4.16 imply that H ϕ is dense in C. Finally, for f∗ ∈ C∗, the measure µ induced

by the process
∫ ·

0 ϕ(u, ·)dWs is a Gaussian probability measure on (E ,B(E )), f∗ is a

centred, real Gaussian random variable on (E ,B(E ), µ) by Definition 1.4.3 . In turn,

Remark 1.4.14 implies that I∗, the dual of I, admits an isometric embedding Ī∗ such

that ‖Ī∗f∗‖2(H ϕ)∗ = ‖f∗‖2L2(E ,µ) =
∫
E (f∗)2dµ = Var(f∗), and hence H ϕ is the required

RKHS.

We now extend Proposition 1.4.15 to find the RKHS of µ2, which is the Gaussian

measure on the space C2 induced by the two-dimensional process
((
Zt,W

1
t

))
t∈[0,1]

, where

Z and W 1 are defined in (1.9) and (1.11) respectively.

Proposition 1.4.18. For the two-dimensional process (Z,B), let µ2 denote the induced

measure on C2. Then the RKHS of µ2 is H Kα
ρ :=

{
IKαρ (f1, f2) : f1, f2 ∈ L2

}
with inner

product 〈IKαρ (f1, f2), IKαρ (g1, g2)〉H Kα
ρ

:= 〈f1, g1〉L2 + ρ̄〈f2, g2〉L2 , where the operator

IKαρ : L2 × L2 →H Kα
ρ is defined as

IKαρ (f1, f2) :=

(∫ ·
0
Kα(s, ·)f1(s)ds,

∫ ·
0
ρf1(s) + ρ̄f2(s)ds

)
.

Proof. First we prove that the operator IKαρ is bijective. Clearly it is surjective. To

prove injectivity, first note that
∫ ·

0 Kα(s, ·)f1(s)ds =
∫ ·

0 Kα(s, ·)g1(s)ds is equivalent to∫ ·
0 Kα(s, ·)[f1(s)− g1(s)]ds = 0, the Titchmarsh convolution theorem then implies that

f1 = g1. Therefore IKαρ (f1, f2) = IKαρ (g1, g2) implies that∫ ·
0
ρf1(s) + ρ̄f2(s)ds =

∫ ·
0
ρg1(s) + ρ̄g2(s)ds,

since f1 = g1 it then follows that f2 = g2 and so the operator IKαρ is indeed bijective.

Next we prove that
(
H Kα
ρ , 〈·, ·〉H Kα

ρ

)
is a real, separable Hilbert space. Note that

〈·, ·〉H Kα
ρ

is indeed an inner product due to the linearity of IKαρ and 〈·, ·〉L2 itself

being an inner product. For i = 1, 2 let {fi,n}n∈N be a sequence in L2 such that{
IKαρ (f1,n, f2,n)

}
n∈N converges to IKαρ (f1, f2) in L2. Therefore∥∥IKαρ (f1,n, f2,n)− IKαρ (f1,m, f2,m)

∥∥
H Kα
ρ

=
∥∥f1,n − f1,m

∥∥
L2 + ρ̄

∥∥f2,n − f2,m

∥∥
L2
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tends to zero as n and m tend to infinity. Since L2 is a complete (Hilbert) space, there

exists a functions f̃i ∈ L2 such that the sequence {fi,n}n∈N converges to f̃i for i = 1, 2.

Assume that fi 6= f̃i, then, since IKαρ is a bijection, the triangle inequality yields

0 <
∥∥IKαρ (f1, f2)− IKαρ (f̃1, f̃2)

∥∥
H Kα
ρ

≤
∥∥IKαρ (f1, f2)− IKαρ (f1,n, f2,n)

∥∥
H Kα
ρ

+
∥∥IKαρ (f̃1,n, f̃2,n)− IKαρ (f1,n, f2,n)

∥∥
H Kα
ρ

,

which converges to zero as n tends to infinity. Therefore fi = f̃i, IKαρ (f1, f2) ∈ H Kα
ρ

and H Kα
ρ is complete, so that it is a real Hilbert space. L2 is separable with countable

orthonormal bases, which we will call {φi,n}n∈N for i = 1, 2; then we also get that{
IKαρ (φ1,n, φ2,n)

}
n∈N is an orthonormal basis for H Kα

ρ . So, H Kα
ρ is a real, separable

Hilbert space as required.

Finally we prove that H Kα
ρ is dense in C2. Fix ε > 0 and (u, v) ∈ C2: because H Kα is

dense in C we can chose f∗1 ∈ L2 such that ‖
∫ ·

0 Kα(s, ·)f∗1 (s)ds−u‖∞ < ε/2. Now define

v∗ ∈ C as v∗(t) := v(t)−
∫ t

0 ρf
∗
1 (s)ds. A second application of the Stone-Weirstrauss The-

orem implies that there exists f∗2 ∈ L2 such that ‖
∫ ·

0 ρ̄f
∗
2 (s)ds− v∗‖∞ < ε/2. Together

this implies that there exists (f∗1 , f
∗
2 ) ∈ L2 × L2 such that

∥∥IKαρ (f∗1 , f
∗
2 )− (u, v)

∥∥
∞ < ε

i.e. that H Kα
ρ is indeed dense in C2.

Lastly, for f∗ ∈ C2∗: f∗ is a real, centred Gaussian random variable on (C2,B(C2), µ2)

and so

Var(f∗) =

∫
C2

(f∗)2dµ2 = ‖f∗‖2L2(C2,µ2) = ‖ι∗f∗‖2
(H Kα

ρ )∗
.

Thus, the conditions of Definition 1.4.12 have been satisfied, and we conclude that H Kα
ρ

is indeed the RKHS of (Z,B).

1.5 Large Deviations Theory

Large deviations theory is an area of probability theory focused on characterising the

exponential decay of rare events. Informally, let us consider a family of probability

measures (µε)ε>0 converging weakly to δx as ε tends to zero: given a set B such that
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x ∈ B, large deviations theory aims to provide the exponential rate at which µε(B
c)

tends to zero, as ε tends to zero. We recall some facts about large deviations, as well as

some results essential for proving Theorem 2.1.2, using [DS89] and [DZ10] as our guide.

Definition 1.5.1. A rate function Λ : E → [0,+∞] is a lower semi-continuous function:

for all x0 ∈ E lim infx→x0 Λ(x) ≥ Λ(x0).

Definition 1.5.2. A family of probability measures (µε)ε>0 on (E ,B(E )) is said to

satisfy a large deviations principle (LDP) as ε tends to zero with speed ε−γ and rate

function Λ if, for any B ∈ B(E ),

− inf
x∈B◦

Λ(x) ≤ lim inf
ε↓0

εγ logµε(B) ≤ lim sup
ε↓0

εγ logµε(B) ≤ − inf
x∈B

Λ(x), (1.18)

where B and B◦ denote respectively the closure and the interior of B.

Remark 1.5.3. A stochastic process X is said to satisfy an LDP as t tends to zero if

the family of probability measures (P(Xt ∈ ·))t>0 satisfies an LDP as t tends to zero.

Remark 1.5.4. We say that the family of probability measures (µε)ε>0 on (E ,B(E ))

satisfies an LDP as ε tends to +∞ with rate function Λ and speed εγ , if we replace εγ

with 1/εγ in (1.18) and take ε tending to +∞ rather than zero.

We now present two classical theorems from large deviations theory: Cramér’s Theorem,

[DZ10, Theorem 2.2.30.], and the Gärtner-Ellis Theorem, [DZ10, Theorem 2.3.6.], which

is referred to below in Section 1.6. Let Y1, Y2, . . . be i.i.d. d-dimensional random vectors,

and let

Y n :=
1

n

n∑
i=1

Yi

be the empirical mean of Y1, Y2, . . . whose law is denoted νn. Define the logarithmic

moment generating function Λ of Y1 as Λ(y) := logE
[
e〈y,Y1〉

]
for y ∈ Rd, and the

Fenchel-Legendre transform of Λ as

Λ∗(x) := sup
y∈Rd

{〈y, x〉 − Λ(y)} , x ∈ Rd.

Theorem 1.5.5. (Cramér’s Theorem) [Cra38] If the logarithmic moment gener-

ating functions Λ exists everywhere in Rd then {νn}n∈N satisfies an LDP on Rd as n

tends to +∞ with speed n and rate function Λ∗.
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Now let (Xt)t≥0 be a d-dimensional real-valued stochastic process and denote the loga-

rithmic moment generating function of Xt by Λt.

Definition 1.5.6. Let f : Rd → (−∞,+∞] with dom(f) :=
{
x ∈ Rd : f(x) < +∞

}
; f

is essentially smooth if the following three conditions hold.

1. The interior of dom(f), dom(f)◦, is non-empty.

2. f is differentiable at every point in dom(f)◦.

3. For all {xt}t that are sequences in dom(f)◦ that converge to a boundary point of

dom(f)◦: lim
t→+∞

|∇f(xt)| = +∞.

Assumption 1.5.7. For each y ∈ Rd, assume that Λ(y) := limt→0 tΛt (y/t) exists as

some extended real number, and denote Λ∗ as the Fenchel-Legendre transform of Λ.

Assume also that the origin in Rd belongs to the interior of dom (Λ) := {y ∈ Rd :

Λ(y) < +∞}.

Theorem 1.5.8. (Gärtner-Ellis Theorem) Let Assumption 1.5.7 hold. If Λ is lower

semi-continuous and essentially smooth in the sense of Definition 1.5.6, then the process

X satisfies an LDP on Rd as t tends to zero with speed t−1 and rate function Λ∗.

We now concentrate on large deviations for Gaussian measures. To remain consistent

we denote a real, separable Banach space as E , with its corresponding norm ‖ · ‖E . Let

µ be some probability measure on (E ,B (E )) with∫
E

exp [−i〈y, x〉E ∗E ]µ(dx) = exp

[
−Cµ(y, y)

2

]
for y ∈ E ∗ and Cµ : E ∗ × E ∗ → [0,+∞) a bilinear, symmetric map. That is, µ is

a centred Gaussian measure on (E ,B (E )). Define Λµ(y) :=
Cµ(y,y)

2 , and its Fenchel-

Legendre transform Λ∗µ(x) := supy∈E ∗ {〈y, x〉E ∗E − Λµ(y)} for x ∈ E . The following

Lemma is proved in [DS89, Lemma 3.4.2 ].

Lemma 1.5.9. The following three statements hold for the centred Gaussian measure

µ on (E ,B(E )).

1. There is some α ∈ (0,+∞) such that
∫
E exp

[
α‖x‖2E

]
µ(dx) is finite.
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2. Cµ(y, y) =
∫
E 〈y, x〉

2
E ∗E µ(dx) ≤ ‖y‖2E ∗

∫
E ‖x‖

2
E µ(dx) ∈ (0,+∞) for all y ∈ E ∗.

3. Λ∗µ defines a rate function on E and satisfies Λ∗µ(ay) = a2Λ∗µ(y) for all a ∈ R.

For a Gaussian random variable X with distribution µ, define Xε := ε1/2X, whose law

we will denote as µε. Then the following LDP holds, [DS89, Theorem 3.4.5.].

Lemma 1.5.10. The family of probability measures (µε)ε>0 satisfies an LDP on E as

ε tends to zero with speed ε−1 and rate function Λ∗µ.

Proof. Consider n i.i.d. random variables (X1, . . . , Xn) where each Xk has distribu-

tion µ. Then, let 1
n

∑n
k=1X

k have distribution µ1/n. Lemma 1.5.9 then implies that∫
E exp

[
α‖x‖2E

]
µ1/n(dx) is finite for some α ∈ (0,+∞). Together with [DS89, Theorem

3.3.11.] we conclude that
(
µ1/n

)
n≥1

satisfies an LDP with rate function Λ∗µ. Define

n(ε) :=
⌊

1
ε

⌋
∨ 1, `(ε) := εn(ε) for ε > 0, noting that `(ε) ∈ [1

2 , 1]. For X with dis-

tribution µ1/n(ε), it follows that `(ε)1/2X has distribution µε, for `(ε) ∈ [1 − ε, 1] and

0 < ε < 1.

Let B ⊂ E closed, and define B̃ :=
{
`−1/2x : for all ` ∈

[
1
2 , 1
]
, x ∈ B

}
that is also

closed:

lim sup
ε→0

ε log (µε(B)) = lim sup
ε→0

`(ε)

n(ε)
log
(
µ1/n(ε)(`(ε)

−1/2B)
)

≤ lim sup
ε→0

1

n(ε)
log
(
µ1/n(ε)(B̃)

)
= lim sup

n→+∞

1

n
log
(
µ1/n(B̃)

)
≤ − inf

x∈B̃
Λ∗µ(x).

Since inf
x∈B̃

Λ∗µ(x) = inf
`∈[ 1

2
,1]

inf
x∈B

Λ∗µ(`−1/2x) = inf
`∈[ 1

2
,1]
`−1 inf

x∈B
Λ∗µ(x) = inf

x∈B
Λ∗µ(x) we attain

the required upper bound for an LDP.

Now for C ⊂ E open with x ∈ C, there is some open neighbourhood Ox of x with
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ε0 ∈
(
0, 1

2

]
such that Ox ⊆ `(ε)−1/2C for 0 < ε < ε0. It then follows that:

lim inf
ε→0

ε log (µε(C)) = lim inf
ε→0

`(ε)

n(ε)
log
(
µ1/n(ε)(`(ε)

−1/2C)
)

≥ lim inf
n→+∞

1

n
log
(
µ1/n(Ox)

)
≥ − inf

y∈Ox
Λ∗µ(y)

≥ −Λ∗µ(x).

This gives the lower bound and completes the proof.

Remark 1.5.11. Theorem 1.5.10 implies that a standard Brownian motion (Wt)t≥0

satisfies an LDP on R as t tends to zero with speed t−1, because Wt and
√
tW1 are

equal in law. Furthermore, the proof of Theorem 1.5.10 stills holds for the case where

tα+1/2X has law µt, with speed t−(2α+1), and the proof can be easily adapted to confirm

this case.

Corollary 1.5.12. Let νt be the law of Zt, defined in (1.9). Then (νt)t>0 satisfies an

LDP on R as t tends to zero with speed t−(2α+1) and rate function Λ∗µ(x) := x2

2η2 for

x ∈ R.

Proof. Here, E = R and 〈u, v〉E ∗E = uv. Recall that Zt and tα+1/2Z1 are equal in law,

and the law ν of Z1 is centred Gaussian with variance η2:∫
R

exp [iyx]µ(dx) = exp

[
−y2η2

2

]
.

Taking Cµ(x, y) = xyη2, the remainder of the proof follows from Theorem 1.5.10 and

Remark 1.5.11.

The following two results will also be essential for establishing an LDP for the rough

Bergomi model. For the proofs see [FV10, Theorem C.6.] and [DS89, Theorem 3.4.12.]

respectively.
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Proposition 1.5.13. (The Contraction Principle) Let E and Ẽ be two Hausdorff

topological spaces and let f : E → Ẽ be a continuous mapping. Let (νε)ε>0, (ν̃ε)ε>0

be two families of probability measures on (E ,B(E )) and (Ẽ ,B(Ẽ )) respectively, such

that ν̃ε = νε ◦ f−1 for each ε > 0. If (νε)ε>0 satisfies an LDP on E as ε tends to zero

with rate function Λ, then (ν̃ε)ε>0 satisfies an LDP on Ẽ as ε tends to zero with rate

function

Λ̃(y) := inf {Λ(x) : y = f(x)} = inf{Λ(f−1(y))}.

Theorem 1.5.14. Let B be a d-dimensional Gaussian process, inducing a measure µ

on
(
Cd,B(Cd)

)
with RKHS Hµ. Then (εµ)ε>0 satisfies an LDP as ε tends to zero with

speed ε−1 and rate function

Λ∗µ(x) :=


1
2‖x‖

2
Hµ
, if x ∈Hµ,

+∞, otherwise.

Example 1.5.15. Recall Hν , the RKHS corresponding to the standard Wiener measure

ν on C induced by a standard Brownian motion, from Example 1.4.9. Applying Theorem

1.5.14 yields that the family of measures (εν)ε>0 on C satisfies an LDP as ε tends to

zero with speed ε−1 and rate function

Λ∗ν(f) =


1
2

∫ 1
0 |ḟ(u)|2du, if f ∈Hν ,

+∞, otherwise.

This result is classically referred to as Schilder’s Theorem: see, for example, [DZ10,

Theorem 5.2.3.].

Before providing the final theorem of this section, [Gar08, Theorem 1.2.], it is first

necessary to define a certain class of sequences of stochastic processes.

Definition 1.5.16. [Gar08, Definition 1.1.] Let U denote the space of simple, real

valued, adapted processes Z such that supt≥0 |Zt| ≤ 1. A sequence of semi-martingales

{Y ε} is said to be uniformly exponentially tight (UET) if, for every t > 0 and c > 0,

there exists Kc,t > 0 such that

lim sup
ε→0

ε log

[
sup
Z∈U

P
(

sup
s≤t

∣∣∣∣∫ s

0
Zu−dY ε

u

∣∣∣∣ ≥ Kc,t

)]
≤ − c.
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Theorem 1.5.17. [Gar08, Theorem 1.2.] Let {Xε} be a sequence of adapted, càdlàg

stochastic processes, and let {Y ε} be a sequence of uniformly exponentially tight semi-

martingales. If {(Xε, Y ε)} satisfies an LDP as ε tends to zero with rate function Λ,

then the sequence of processes
(∫ ·

0 X
ε
sdY ε

s

)
ε≥0

satisfies an LDP as ε tends to zero with

rate function

Λ̂(ϕ) := inf

{
Λ(x, y) : ϕ =

∫ ·
0
x(s)dy(s), y finite variation

}
.

1.6 Application of Large Deviations Theory to Implied

Volatility Asymptotics

We now focus on an application of large deviations theory to implied volatility asymp-

totics. We first give a short example that will demonstrate how small-time asymptotics

for the implied volatility of a given model can be recovered from an LDP for that given

model, and then present other relevant results.

Forde and Jacquier [FJ09] consider the Heston model (1.5), and use the closed form

moment generating function of the log stock price process to establish an LDP for the

log stock price process, as t tends to zero, using the Gärtner-Ellis Theorem. The LDP

has rate function I∗, which is the Fenchel-Legendre transform of the continuous function

I that is defined as

I(p) :=


v0p

ξ(
√

1−ρ2 cot(ξp
√

1−ρ2/2)−p)
, if p ∈ (p−, p+),

+∞, otherwise.

Recall the parameter ρ is the correlation between the Brownian motions driving the

stock price process and the volatility process, ξ is the volatility-of-volatility, and v0 > 0.

The table below gives the values of p− and p+:
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ρ p+ p−

< 0
2(π+arctan(

√
1−ρ2/ρ))

ξ
√

1−ρ2

2 arctan(
√

1−ρ2/ρ)

ξ
√

1−ρ2

= 0 π
ξ −π

ξ

> 0
2 arctan(

√
1−ρ2/ρ)

ξ
√

1−ρ2

2(π−arctan(
√

1−ρ2/ρ))

ξ
√

1−ρ2

The following Lemma is stated without proof, but can be found in Section 2 [FJ09,

Corollary 2.1.] of the paper.

Lemma 1.6.1. − lim
t→0

t logE
[
(St −K)+

]
= I∗(x), where x = log(K/S0) ≥ 0.

Using Lemma 1.6.1, we may now state the small-time behaviour of the implied volatility

σ̂(x, t):

lim
t→0

σ̂(x, t) =
x√

2I∗(x)
for x 6= 0. (1.19)

We briefly sketch why the above limit holds; Lemma 1.6.1 implies that for δ > 0,

exp(−(I∗(x) + δ)/t) ≤ E [(St −K)+] . Estimates on normally distributed random vari-

ables then imply that E [(St −K)+] ≤ S0Cn(d1), where C is a positive constant and d1

is defined as
−x+ σ̂(x, t)2t/2

σ̂(x, t)
√
t

.

Taking logs of both sides and multiplying by t then yields

−(I∗(x) + δ) ≤ −x2

2σ̂(x, t)2
+ δ.

Using similar techniques, Forde and Jacquier then establish that

−(I∗(x)− δ) ≥ − (x+ δ)2

2σ̂(x, t)2
− δ,

and from here the result is clear.

There is a wealth of literature that focuses on applying large deviations techniques to

stochastic volatility models to draw inferences on the small-time, as well as large-time,

implied volatility behaviour. Feng, Forde, and Fouque [FFF10] derive a small-time LDP

from the moment generating function of the time changed log stock price process for the

Heston model, as the volatility process mean reverts. The small-time implied volatility
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behaviour is then deduced. Jacquier, Keller-Ressel, and Mijatović [JKM13] consider a

class of affine stochastic volatility models with jumps: the log stock price process and

the volatility process are assumed to be a two-dimensional, time-homogeneous Markov

process, whose cumulant generating function has a given affine form. This class of

models includes the Heston model (with and without state independent jumps), the

Bates model with state dependent jumps, and the Barndorf-Nielsen-Shepard model.

Jacquier, Keller-Ressel, and Mijatović [JKM13] apply the Gärtner-Ellis Theorem to

attain an LDP as t tends to +∞ for the rescaled log stock price process. The LDP then

determines the large-time implied volatility behaviour.

More recently, attention has turned to rough volatility models and their implied volatil-

ity behaviour. The fractional Heston model (1.12), first proposed by Comte, Coutin,

and Renault [CCR12], is studied in [GJR18b]. Guennoun, Jacquier, and Roome prove

an LDP for the log stock price process as t tends to zero, and an LDP for the rescaled log

stock price process as t tends to +∞, using the Gärtner-Ellis theorem; small and large

time implied volatility asymptotics are then deduced. Notably, the small-time smiles

are steeper than in classical stochastic volatility models. A small-time and large-time

large deviations principle for the rough Heston model [EFR18] has recently been proved

by Forde, Gerhold, and Smith [FGS19].

Forde and Zhang [FZ17] consider the rough volatility model (1.13), where the volatility

process is defined pathwise as the image of a Hölder continuous function acting on the

trajectory of a fractional Brownian motion. An LDP as t tends to zero is attained,

and used to describe small-time implied volatility asymptotics. A large-time LDP for a

fractional local-stochastic volatility model is also provided.

Bayer, Friz, Gulisashvili, Horvath, and Stemper [BFGHS19] use the large devations

results from [FZ17] to derive the small-time behaviour of the implied volatility in the

so-called “moderate deviations regime”. Horvath, Jacquier, and Lacombe [HJL19] use

large deviations techniques to establish the small-time implied volatility behaviour for

the generalised Stein-Stein model, where the volatility process has a random start point

v0 and is driven by a fractional Brownian motion; tail estimates are also given.

Remark 1.6.2. Large deviations techniques are, of course, not solely limited to de-

scribing asymptotic implied volatility behaviour; see for example the survey [Pha08],
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where large deviations for credit risk, optimal long term investment, and rare event

simulation are reviewed. Outside of mathematical finance, large deviations theory has

a wide variety of applications too: for example in the random conduction of heat, in

polymer chains, and in statistical mechanics, [Hol00, Chapter VII, Chapter IX] and

[Tou09] respectively.

1.7 Other Asymptotic Methods for Implied Volatility

It is very much worth emphasising at this point that large deviations techniques are

not the sole means of analysing the asymptotic behaviour of implied volatility within

stochastic volatility models. Indeed, we finish the introduction with a brief overview of

some other methods used to derive implied volatility asymptotics.

For simplicity we now assume S0 = 1; we recall the definition C(x, t) := E[(St − ex)+],

x := log(K), and denote Xt to have distribution µt, with finite first moment. First note

that

C(x, t) = E
[
eXtI{Xt≥x}

]
− exP(Xt ≥ x) =

∫ +∞

x
(ey − ex)µt(dy), (1.20)

CBS(x, t, σ̂(x, t)) =
1

2

[
1− ex + erf

(
d−(x, t)√

2

)
− exerf

(
d+(x, t)√

2

)]
,

where d±(x, t) :=
−x± σ̂

2(x,t)t
2

σ̂(x,t)
√
t
, and erf(z) := 2√

π

∫ z
0 e
−t2dt denotes the error function.

Using that the error function has a Taylor expansion given by erf(z) = 2√
π

(z− z3

3 +o(z5)),

[AS72, page 932], we see that for (nonzero) x, as t tends to zero, the following expansion

for the price of a Call option holds:∫ +∞

x
(ey − ex)µt(dy) =

1− ex

2
+

1√
π

[
σ̂(x, t)t1/2

(
24(1 + ex) + 6x(1− ex)− σ̂(x, t)2t(1 + ex)

)
24
√

8

−x (4(1− ex) + x(1 + ex))

4
√

2σ̂(x, t)t1/2
+

x3(1− ex)

6
√

2σ̂(x, t)3t3/2
+ o(σ̂(x, t)5t5/2)

]
= CBS(x, t, σ̂(x, t)).

This representation allows us to characterise the small-time asymptotic behaviour of

the implied volatility σ̂(·, ·).
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Remark 1.7.1. Clearly the at-the-money case, where x = 0, the above expansion may

be simplified further as t tends to zero:∫ +∞

0
(ey−1)µt(dy) =

1√
2π

[
σ̂(0, t)t1/2 − σ̂(0, t)3t3/2

24
+ o(σ̂(0, t)5t5/2)

]
= CBS(0, t, σ̂(0, t)).

Gulisashvili, Viens, and Zhang [GVZ18] consider a general class of self-similar Gaussian

stochastic volatility models; an estimate on the small-time stock price density is given

using the Karhunen-Loève expansion coefficients of the volatility process, together with

the self-similarity parameter. From here, well-known small-time relations between Call

prices and implied volatilities are used to draw conclusions on the implied volatility

behaviour. Paulot [Pau15] uses a heat kernel expansion to provide a general frame-

work for the computation of an exact Taylor expansion for the implied volatility of a

stochastic volatility model, which is then applied specifically to the SABR model. Using

PDE techniques and Taylor expansions, Medvedev and Scaillet [MS07] provide close to

maturity implied volatility behaviour for a stochastic volatility model with jumps.
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Chapter 2

Small-time Asymptotics for

Selected Rough Volatility Models

In this Chapter, we turn our attention to the asymptotic behaviour of the rough Bergomi

model. Our aim is to precisely characterise the small-time behaviour of the rough

Bergomi implied volatility. We begin, in Section 2.1 by proving a large deviations

principle for a rescaled version of the log stock price process, which then allows us to

give the small-time limit of the implied volatility, under some mild assumptions. This

is the main result of the Chapter1. We are able to use the same methodology, in fact,

to establish the small-time implied volatility behaviour of the lognormal fSABR model;

this is done briefly in Section 2.2.

2.1 An LDP for the Rough Bergomi Model

Let us start by defining the process X as Xt := log
(
St
S0

)
, where the stock price process

S is the rough Bergomi model, defined in (1.11). Recall the process Z, defined in (1.9),

and the (simplified) process v, defined in (1.11), with corresponding Brownian motion

B also defined in (1.11). We fix T = [0, 1] for the rest of this Chapter, although our

results can be easily adapted for the general interval [0, T ].

1This Chapter includes results from article [JPS18].
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We now define the rescaled versions of the processes X, Z, v, B, as follows for t, ε ≥ 0:

Xε
t := εβXεt, (2.1)

Zεt := εβ/2Zt,

vεt := ε1+βv0 exp

(
Zεt −

η2

2
(εt)β

)
,

Bε
t := εβ/2Bt,

where β := 2α + 1 takes values in (0, 1). Note that Zεt = εα+1/2Zt, so Zεt and Zεt are

equal in law. This implies that the rescaled volatility process vε· and the process ε1+βvε·

are also equal in law. In turn, this implies that the following representation of Xε
· holds

as a process:

Xε
· := εβXε·

d
= εβ

(∫ ε·

0

√
vsdBs −

1

2

∫ ε·

0
vsds

)
d
= εβ

(∫ ·
0

√
vεsdBεs −

1

2

∫ ·
0
vεsεds

)
d
=

∫ ·
0

√
ε1+2βvεsdBs −

1

2

∫ ·
0
ε1+βvεsds

d
=

∫ ·
0

√
vεsdB

ε
s −

1

2

∫ ·
0
vεsds.

Remark 2.1.1. Following [GJR18a], Bayer, Friz, and Gatheral [BFG16] suggest taking

α ≈ −0.4. This corresponds to β ≈ 0.2. The findings of [GJR18a] are corroborated by

[BLP17a], and further validated by our own findings in Chapter 4.

We now state the main result of this section: the rescaled process (Xε)ε∈T satisfies an

LDP. We first define the operator M : C2 → C(T 2,R+ × R) as

(Mzxy)(t, ε) :=

(
(mx)(t, ε)

y(t)

)
, for all t, ε ∈ T , (2.2)

where the operator m : C → C is defined by

(mx)(t, ε) := v0ε
1+β exp

(
x(t)− η2

2
(εt)β

)
, (2.3)
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and the function Λ(zx1
y1

) := inf
{

Λ∗(zx2
y2

) : zx1
y1

= M(zx2
y2

)
}

for zx1
y1
∈ C(T 2,R+×R), where

Λ∗(zxy) := 1
2‖z

x
y‖2H Kα

ρ
and H Kα

ρ is defined in Proposition 1.4.18. Recall zxy denotes the

two-dimensional path (x, y)> ∈ C2; see Notations section prior to Chapter 1.

Theorem 2.1.2. The sequence (Xε)ε∈T satisfies an LDP on C as ε tends to zero, with

speed ε−β and rate function ΛX : C → [0,+∞] defined as

ΛX(ϕ) := inf
{

Λ(zxy) : ϕ =
√
x · y, y ∈ BV ∩ C

}
.

Remark 2.1.3. Taking Proposition 1.4.17 into consideration, it is straightforward to

extend the proof of Theorem 2.1.2 to the case where the process Z is defined more

generally as the stochastic integral of some deterministic kernel on R+×R+. Some ad-

ditional conditions, namely self-similarity, would be required on the generalised process,

however, in order for the log stock price process X itself to satisfy an LDP.

We now prove Theorem 2.1.2.

Proof. Let ((Zt, Bt))t∈T induce the measure µ on C2. It follows immediately from

Theorem 1.5.14 and Proposition 1.4.18 that the family of measures (εβµ)ε∈T satisfies

an LDP as ε tends to zero with speed ε−β and rate function

Λ∗(zxy) :=


1
2‖z

x
y‖2H Kα

ρ
, if zxy ∈H Kα

ρ ,

+∞, otherwise.

Recall that H Kα
ρ is given in Proposition 1.4.18. Note that scaling µ by εβ is equivalent

to scaling (Z,B) by εβ/2. We denote this rescaled two-dimensional process as (Zε, Bε)

as in (2.1). Pathwise, we may view t 7→ (Zεt , B
ε
t ) as an element of C2 and with that in

mind, we may express (vεt , B
ε
t ) as M(Zε, Bε)(t, ε). Note that the choice of ε as the second

argument of (t, ε) in M(Zε, Bε)(t, ε) allows control the index and scaling of (vεt , B
ε
t ).

First let us verify that M is indeed a continuous operator, with respect to the C(T 2,R+×
R) norm

∥∥ · ∥∥∞.

For any (f, g)> ∈ C2, introduce a small perturbation (δf , δg) ∈ C2. Then, recalling
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T = [0, 1],∥∥∥∥∥M

(
f + δf

g + δg

)
−M

(
f

g

)∥∥∥∥∥
∞

= sup
t,ε∈T

{∣∣∣(m(f + δf ))(t, ε)− (mf)(t, ε)
∣∣∣+ |δg(t)|

}
≤ sup

t,ε∈T

{
v0ε

1+β exp

(
−η

2

2
(εt)β

) ∣∣∣ef(t)
∣∣∣ ∣∣∣eδf (t) − 1

∣∣∣}+ sup
t∈T
|δg(t)|

≤ C sup
t∈T

∣∣∣eδf (t) − 1
∣∣∣+ sup

t∈T
|δg(t)|,

for some strictly positive constant C. The right-hand side clearly tends to zero as

(δf , δg) tends to zero with respect to
∥∥ · ∥∥∞, and hence M is a continuous operator.

The Contraction Principle (Proposition 1.5.13) therefore implies that the sequence

(vε, Bε)ε∈T satisfies an LDP on C(T 2,R+ × R), with speed ε−β and rate function Λ.

Since M is clearly a bijection, the rate function Λ may then be expressed as Λ(zx1
y1

) =

Λ∗
(
M−1(zx1

y1
)
)
, for any (x1, y1) ∈ C2.

We now use Theorem 1.5.17, which tells us that the sequence of processes
(∫ ·

0

√
vεsdB

ε
s

)
ε∈T

satisfies an LDP as ε tends to zero. For convenience we adopt the following notation:

I(vε, Bε)(t) =
∫ t

0

√
vεsdB

ε
s . Note that I(vε, Bε)(t) =

∫ t
0

√
ε2αvεs

√
εdBs and [Gar08, Ex-

ample 2.1.] demonstrates that the sequence of (semi)-martingales {
√
εB·} is UET in the

sense of Definition 1.5.16. Furthermore, the sequence of processes {
√
ε2αvε· } is càdlàg,

and adapted to the filtration (Ft)t≥0. Thus, having satisfied all the requirements of

Theorem 1.5.17, we conclude that the sequence of processes I(vε, Bε) satisfies an LDP

as ε tends to zero with speed ε−β and rate function

ΛX(ϕ) = inf{Λ(x, y) : ϕ = I(x, y), y ∈ BV ∩ C}.

Our final aim is to prove an LDP for the sequence of processes (Xε)ε∈T , where we have

that Xε
t =

∫ t
0

√
vεsdB

ε
s− 1

2

∫ t
0 v

ε
sds in law, so all that is left for us to negotiate is the drift

term. The LDP for the sequence (Xε)ε∈T is given as ε tends to zero, so without loss of

generality we may indeed set t = 1.

To complete the proof we show that the sequences (Xε
1)ε∈T and (I(vε, Bε)(1))ε∈T are

exponentially equivalent. For any δ > 0 it follows that

P (|Xε
1 − I(vε, Bε)(1)| > δ) ≤ P

(∫ 1

0
vεsds > δ

)
≤ P

(∫ 1

0
exp(Zεs )ds > bε

)
,
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where bε := δ/v0ε
1+β. Note that Zεs −

η2

2 (εs)β ≤ Zεs for all s ∈ [0, 1] and ε ∈ T , from

which the final inequality follows.

Using that
∫ 1

0 exp(Zεs )ds ≤ exp(supt∈[0,1] Z
ε
t ) almost surely, it follows that

P
(∫ 1

0
exp(Zεs)ds > bε

)
≤ P

(
sup
t∈[0,1]

Zεt > log bε

)
= P

(
sup
t∈[0,1]

Zt >
log bε

εβ/2

)
.

The process (Zt)t∈[0,1] is almost surely bounded [AT07, Theorem 1.5.4], and so we may

apply the Borell-TIS inequality; a consequence of which [AT07, Theorem 2.1.1 and

discussion below] implies that

P

(
sup
t∈[0,1]

Zt >
log bε

εβ/2

)
≤ exp

−1

2

(
log bε

εβ/2
− E

[
sup
t∈[0,1]

Zt

])2
 .

This then implies that

εβ logP
(∫ 1

0
exp(Zs)ds > bε

)

≤ εβ
−(log bε)

2

2εβ
+

log bε

εβ/2
E

[
sup
t∈[0,1]

Zt

]
− 1

2
E

[
sup
t∈[0,1]

Zt

]2
 .

Note that εβ/2 log bε converges to zero as ε tends to zero, which in turn implies that

lim sup
ε↓0

εβ/2 log bεE

[
sup
t∈[0,1]

Zt

]
= 0.

Similarly, lim supε↓0 ε
βE
[
supt∈[0,1] Zt

]2
= 0. Furthermore, it follows that

lim sup
ε↓0

εβ
(
−(log bε)

2

2εβ

)
= −∞,

and

lim sup
ε↓0

εβ logP

(
sup
t∈[0,1]

|Xε
t − I(vε, Bε)(t)| > δ

)
= −∞.

Therefore lim supε↓0 ε
β logP (|Xε

1 − I(vε, Bε)(1)| > δ) = −∞, which is precisely the def-

inition of exponential equivalence [DZ10, Definition 4.2.10]. Then, by [DZ10, Theorem
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4.2.13], the sequence (Xε
1)ε∈T satisfies an LDP with speed ε−β and rate function ΛX .

Clearly, since 1 was chosen arbitrarily, the result for (Xε)ε∈T also holds.

Remark 2.1.4. Note that there is a degree of flexibility when choosing how to define

the rescaled process (Xε)ε∈T . For example, we may define Xε
t := εαXεγt where γ :=

α
α/2+5/4 . In this case we define the rescaled process (Zε, Bε) as εγ(α+1/2)(Z,B), and

the rescaled volatility process vεt as εα+γvεγt. In this case Xε satisfies an LDP with

speed ε−(2γ(α+1/2)) and a rate function similar to Theorem 2.1.2. This essentially falls

in the category of moderate deviations, within the context of [Gui03], for the original

process X; X is scaled by 1/
√
th(t) where h(t) ∈ [1, 1/

√
t] for small enough t.

Corollary 2.1.5. The rescaled log stock price process
(
tβXt

)
t∈T satisfies an LDP on

R as t tends to zero with speed t−β and rate function ΛX1 (u) := inf{ΛX(ϕ) : ϕ(1) = u},
u ∈ R.

Proof. Since Xε
1 and εβXε are equal in law, (εβXε)ε∈T satisfies an LDP with speed ε−β

and rate function ΛX by Theorem 2.1.2; mapping ε to t completes the proof.

Remark 2.1.6. Recall that Forde and Zhang [FZ17] derived pathwise large deviations

for rough volatility models, with application (by scaling) to small-time asymptotics of

the corresponding implied volatility. The model they consider is of the following form,

for the log stock price process:{
dXt = −1

2σ(Yt)
2dt+ σ(Yt)dBt,

Yt = WH
t ,

whereB is a standard Brownian motion, WH a (possibly correlated) fractional Brownian

motion. In order to prove an LDP, they consider a small-noise version of the SDE above,

namely: {
dXε

t = −1
2εσ(Yt)

2dt+
√
εσ(Yt)dBt,

Y ε
t = εHWH

t .
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It is of course tempting to apply their results to the rough Bergomi model. Unfor-

tunately, the following intricacies make this impossible: firstly, they assume the func-

tion σ to have at most linear growth, whereas it is of exponential growth in rough

Bergomi; secondly, their scaling assumption, allowing them to translate small-noise into

small-time estimates crucially relies on the volatility process Y being driftless [FZ17,

Equation (4.4)], which does not hold in rough Bergomi.

Remark 2.1.7. The RKHS structure of H Kα
ρ precisely determines the rate function

ΛX . If we were to consider the two-dimensional process (Z,B), where Z is defined in

(1.9) and B is an independent Brownian motion such that 〈Z,B〉t = 0 for all t, the cor-

responding RKHS would have a different structure to H Kα
ρ and thus a different inner

product. The corresponding rate function, as defined in Proposition 1.5.14, would there-

fore be different too. Indeed, we refer the reader to Appendix A for further discussion

on the matter.

Remark 2.1.8. Recall that every zxy ∈ H Kα
ρ has the integral representation (x, y) =

I(f1, f2), where (f1, f2) ∈ L2 × L2 and the operator I = IKαρ as in Proposition 1.4.18.

With that in mind, we may reformulate the rate function given in Theorem 2.1.2:

ΛX(ϕ) = inf
ϕ=I(M(I(f1,f2)))

f1,f2∈L2

{
1

2

(∫ 1

0
f2

1 (u)du+ ρ̄

∫ 1

0
f2

2 (u)du

)}
, (2.4)

where the notation I and M are consistent with that in the proof of Theorem 2.1.2.

2.1.1 Implied Volatility Asymptotics

Let σ̂ denote the implied volatility, that is, for a given log-moneyness x ∈ R and

maturity t ≥ 0, the unique non-negative solution to the equation CBS(x, t, σ̂(x, t)) =

C(x, t), where CBS denotes the Black-Scholes price of a vanilla Call price, and C the

corresponding Call price with log-strike x and maturity t in a given (here the rough

Bergomi) model.

We aim to investigate the implied volatility of the rough Bergomi model, and in order

to do so we must impose the following (reasonable) assumptions, which firstly ensure

that implied volatility is well defined for the rough Bergomi model and secondly allow
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us to deduce the asymptotic implied volatility behaviour from the small-time log stock

price behaviour.

Assumption 2.1.9. Assume the rough Bergomi model, which is a local martingale,

satisfies the following:

1. the rough Bergomi model is a true martingale;

2. xt−β/| logE(St − ext
−β

)+| tends to zero as t tends to zero.

Remark 2.1.10. Gassiat [Gas19] recently proved that the rough Bergomi model (under

certain correlation regimes) generates true martingales for the spot process.

The second assumption in Assumption 2.1.9 allows us to apply [GL14, Corollary 7.1],

to translate the asymptotic behaviour of the log stock price in Corollary 2.1.5 into

small-time behaviour of the implied volatility, as follows:

Corollary 2.1.11. The following holds for all x 6= 0:

lim
t↓0

t1+βσ̂
(
xt−β, t

)2
=


x2

2 infy≥x ΛX1 (y)
, if x > 0,

x2

2 infy≤x ΛX1 (y)
, if x < 0.

(2.5)

2.2 The Lognormal fSABR Model

We briefly divert from the rough Bergomi model to discuss the lognormal fSABR model

of Akahori, Song, and Wang [ASW17]. The lognormal fSABR is an extension of the

classical SABR model (1.4), where β = 1 and the driving noise for the volatility process

is a fractional Brownian motion. The fSABR model, with normalised log stock price

process X, has the following dynamics:

Xt =

∫ t

0

√
vsdBs −

1

2

∫ t

0
vsds, X0 = 0, (2.6)

vt = v0 exp(αBH
t ), v0 > 0.

The process B is a standard Brownian motion, and the process BH is a fractional

Brownian motion with Hurst parameter H. The volatility of volatility parameter α is
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chosen such that α ≥ 0. We chose to represent the fractional Brownian motion in terms

of the Golosov-Molchan [GM69] kernel KH ,

BH
t =

∫ t

0
KH(s, t)dWs for all t ≥ 0,

KH(s, t) :=

√
2HΓ(H + 1/2)Γ(3/2−H)

Γ(2− 2H)

(t− s)H−1/2

Γ(H + 1/2)
2F1(1/2−H,H − 1/2, H + 1/2,

s− t
s

),

where W is a standard Brownian motion such that 〈W·, B·〉t = ρt.

Comparing the fSABR and rough Bergomi models, it is clear that we can also establish

a large deviations principle for the fSABR model by applying the same methodology as

the rough Bergomi model. Let us now then define the rescaled processes as follows:

Xε
t := ε2HXεt, vεt = ε1+2Hvεt, Bε

t := εHBt.

By definition, it follows that the below representation of Xε holds:

Xε
·
d
=

∫ ·
0

√
vεsdB

ε
s −

1

2

∫ ·
0
vεsds.

Finally, let us define the rate function Λ : C → [0,+∞] as

Λ(ϕ) := inf
f1,f2∈L2

{1

2

(
||f1||2L2 + ρ̄||f2||2L2

)
:

ϕ = v0

∫ ·
0

exp

(
αKHf1(s)

2

)[
ρf1(s) + ρ̄f2(s)− 1

2
exp

(
αKHf1(s)

2

)]
ds
}
,

where KHf(s) :=
∫ s

0 KH(u, s)f(u)du. The following theorem tells us about the small

ε behaviour of the sequence of processes (Xε)ε∈T ; the proof follows that of Theorem

2.1.2, albeit with a different RKHS, and is omitted for brevity.

Theorem 2.2.1. The sequence (Xε)ε∈T satisfies an LDP on C with speed ε−H and rate

function Λ.

Corollary 2.2.2. The rescaled log stock price process (t2HXt)t∈T satisfies an LDP on

R with speed t−H and rate function Λ1, which is defined analogously to ΛX1 in Corollary

2.1.5.
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Remark 2.2.3. For small vol-of-vol α, we have the following representation of the rate

function Λ:

Λ(ϕ) := inf
f1,f2∈L2

{1

2

(
||f1||2L2 + ρ̄||f2||2L2

)
:

ϕ = v0

∫ ·
0

[
α

2
K f1(s)(ρf1(s) + ρ̄f2(s)− 1) + ρf1(s) + ρ̄f2(s)− 1

2

]
ds
}
.

As with the rough Bergomi model, we may translate the small-time behaviour of the

rescaled log stock price (t2HXt)t∈T into the small-time implied volatility behaviour for

the fSABR model, which we present in the Corollary below. Again, we assume that

Assumption 2.1.9 holds for the fSABR model, with β replaced by H.

Corollary 2.2.4. The following holds for all x 6= 0:

lim
t↓0

t1+3H σ̂
(
xt−2H , t

)2
=


x2

2 infy≥x Λ1(y)
, if x > 0,

x2

2 infy≤x Λ1(y)
, if x < 0.

(2.7)
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Chapter 3

Asymptotics for Volatility

Derivatives in Multi-factor

Rough Volatility Models

Having established the small-time implied volatility behaviour for the rough Bergomi

and fSABR models in Chapter 2, we now shift our focus from options on spot prices to

options on integrated variance. Indeed, the main aim of this Chapter is to derive the

small-time behaviour of the integrated variance process of the rough Bergomi model,

as well as related but more complicated multi-factor rough volatility models, together

with the small-time behaviour of options on integrated variance1.

Perhaps, options on volatility itself are the most natural object to first analyse within

the class of rough volatility models. In this direction, Jacquier, Martini, and Muguruza

[JMM18] provide algorithms for pricing VIX options and futures. Horvath, Jacquier

and Tankov [HJT18] further study VIX smiles in the presence of stochastic volatility

of volatility combined with rough volatility. Nevertheless, the precise effect of model

parameters (with particular interest in the Hurst parameter effect) on implied volatility

smiles for VIX (or volatility derivatives in general for rough volatility) has not been

studied until very recently in Alòs, Garćıa-Lorite and Muguruza [AGM18].

1This Chapter includes results from article [LMS19].
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Volatility options are becoming increasingly popular in the financial industry. For in-

stance, VIX options’ liquidity has consistently increased since its creation by the Chicago

Board of Exchange (CBOE). One of the main popularity drivers is that volatility tends

to be negatively correlated with the underlying dynamics, making it desirable for port-

folio diversification. Due to the appealing nature of volatility options, their modelling

has attracted the attention of many academics such as Carr, Geman, Madan and Yor

[CGMY05], and Carr and Lee [CL09]. Keller-Ressel and Muhle-Karbe [KM13] study

the small-time asymptotic behaviour of options on discretely sampled realised variance,

where the underlying is an exponential Lévy model; we study the continuous time coun-

terpart for rough volatility. Keller-Ressel and Muhle-Karbe find the jump distribution

has a strong impact on the option’s small-time behaviour; the authors also capitalise

on the exponential Lévy form of the underlying to propose exact pricing methods for

realised variance via the Laplace transform.

In spite of most of the literature agreeing on the fact that more than a single factor

is needed to model volatility (see Bergomi’s [Ber16] two-factor model, Avellaneda and

Papanicolaou [AP18] or Horvath, Jacquier and Tankov [HJT18] for instance), there

is no in-depth analysis on how to construct these (correlated) factors, nor the effect of

correlation on the price of volatility derivatives and their corresponding implied volatility

smiles. Our aim is to understand multi-factor models and analyse the effect of factors in

implied volatility smiles. This Chapter, to the best of our knowledge, is the first piece

of research to address such questions, which are of great interest to practitioners in

the quantitative finance industry; it is also the first to provide a rigorous mathematical

analysis of the small-time behaviour of options on integrated variance in rough volatility

models.

For a log stock price process X defined as Xt =
∫ t

0

√
vsdBs − 1

2

∫ t
0 vsds,X0 = 0, where

B is standard Brownian motion, we denote the quadratic variation of X at time t by

〈X〉t. Then, the core object to analyse in this setting is the integrated variance option

with payoff (
1

T

∫ T

0
d〈X〉s −K

)+

, (3.1)

which in turn defines the risk neutral density of the integrated variance. In this work,

we analyse the small-time behaviour of the implied volatility given by (3.1) for a num-
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ber of (rough) stochastic volatility models by means of large deviation techniques. We

specifically focus on the construction of correlated factors and their effect on the dis-

tribution of the integrated variance. We find our results consistent with those of Alòs,

Garćıa-Lorite and Muguruza [AGM18], which also help us characterise in close-form the

implied volatility around the money. We also obtain some asymptotic results for VIX

options.

While implied volatilities for options on equities are typically convex functions of log-

moneyness, giving them their “smile” moniker, implied volatility smiles for options

on integrated variance tend to be linear. Options on integrated variance are OTC

products, and so their implied volatility smiles are not publicly available. VIX smiles

are, however, and provide a good proxy for integrated variance smiles; see Figure 3.1

below for evidence of their linearity. The data also indicates both a power-law term

structure ATM and its skew.

Figure 3.1: Implied volatility smiles for Call options on VIX for small maturities, close

to the money. Data provided by OptionMetrics.

The structure of the Chapter is as follows. Section 3.1 introduces the models, two

extensions of the rough Bergomi model, whose small-time integrated variance behaviour

we study; the main results are given in Section 3.2. In Section 3.3 we provide numerical
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schemes to compute the rate functions given in Section 3.2; numerical examples, which

include implied volatility smiles for integrated variance, are then given in Section 3.4.

Motivated by the numerical examples in Section 3.4, we propose a simple and very

feasible approximation for the density of the integrated variance for the mixed rough

Bergomi model (see (3.3)) in Section 3.5. We finish the Chapter with Section 3.6, where

we introduce a general variance process, which includes the rough Bergomi model for a

specific choice of kernel, and briefly investigate the small-noise behaviour of VIX options

in this general setting.

3.1 A Showcase of Rough Volatility Models

Let us begin this Section by recalling the process Z from the rough Bergomi model,

defined in (1.9). We define an analogous multi-dimensional version of (1.9) by

Zt :=

(∫ t

0
Kα(s, t)dW 1

s , ...,

∫ t

0
Kα(s, t)dWm

s

)
:=
(
Z1
t , ...,Zmt

)
, for any t ∈ T ,

(3.2)

where W 1, ...,Wm are independent Brownian motions. We now introduce the two ex-

tensions of the rough Bergomi model, used in the forthcoming computations.

Model 3.1.1 (Mixed rough Bergomi). The mixed rough Bergomi model is given in

terms of log stock price process X and instantaneous variance process v(γ,ν) as

Xt =

∫ t

0

√
v

(γ,ν)
s dBs −

1

2

∫ t

0
v(γ,ν)
s ds, X0 = 0,

v
(γ,ν)
t = v0

∑n
i=1 γi exp

(
νi
η Zt −

ν2
i
2 t

2α+1
)
, v0 > 0

(3.3)

where γ := (γ1, ..., γn) ∈ [0, 1]n such that
∑n

i=1 γi = 1 and ν := (ν1, ..., νn) ∈ Rn, such

that 0 < ν1 < ... < νn.

The above modification of the rough Bergomi model, inspired by Bergomi [Ber08], allows

a bigger slope (hence bigger skew) on the implied volatility of variance/volatility options

to be created, whilst maintaining a tractable instantaneous variance form. This will be

made precise in Section 3.4.2.
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Model 3.1.2 (Mixed multi-factor rough Bergomi). The mixed rough Bergomi model is

given in terms of log stock price process X and instantaneous variance process v(γ,ν,Σ)

as

Xt =

∫ t

0

√
v

(γ,ν,Σ)
s dBs −

1

2

∫ t

0
v(γ,ν,Σ)
s ds, X0 = 0,

v
(γ,ν,Σ)
t = v0

∑n
i=1 γiE

(
νi

η · LiZt
)
, v0 > 0,

(3.4)

where γ := (γ1, ..., γn) ∈ [0, 1]n such that
∑n

i=1 γi = 1. The vector νi = (νi1, ..., ν
i
m) ∈ Rm

satisfies 0 < νi1 < ... < νim for all i ∈ {1, ..., n}. In addition, Li ∈ Rm×m is a lower

triangular matrix such that LiL
T
i =: Σi is a positive definite matrix for all i ∈ {1, ..., n},

denoting the covariance matrix. Recall that E denotes the Wick stochastic exponential.

For all results involving models (1.11), (3.3), and (3.4) we fix T = [0, 1]; minor adjust-

ments to the proofs yield analogous results for more general T . We recall the definition

β := 2α+ 1 ∈ (0, 1) from Chapter 2.

Remark 3.1.3. In models (1.11), (3.3), and (3.4) we have considered a flat or constant

initial forward variance curve v0 > 0. However, our framework can be easily extended

to functional forms v0(·) : T 7→ R+ via the Contraction Principle (Proposition 1.5.13)

as long as the mapping is continuous.

Remark 3.1.4. Note that the mixed multi-factor rough Bergomi defined in (3.4) is

indeed general enough to cover both (1.11) and (3.3). However, we provide our theo-

retical results in an orderly fashion starting from (1.11) and finishing with (3.4), which

we find the most natural way to increase the complexity of the model.

3.2 Small-time Results for Options on Integrated Variance

We start our theoretical analysis by considering options on integrated variance, which

we also refer to as realised variance and RV interchangeably. We recall that volatility

is not directly observable, nor a tradeable asset. Options on realised variance, however,

exist and are traded as OTC products. Below are two examples of the payoff structure

of such products:

(i)(RV (v)(T )−K)+, (ii)(
√
RV (v)(T )−K)+, where T,K ≥ 0. (3.5)
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where we define the following C(T ) operator

RV (f)(·) : f 7→ 1

·

∫ ·
0
f(s)ds, RV (f)(0) := f(0), (3.6)

and v represents the instantaneous variance in a given stochastic volatility model. Note

that RV (v)(0) = v0.

Remark 3.2.1. As shown by Neuberger [Neu94], we may rewrite the variance swap in

terms of the log contract as

E[RV (v)(T )] = E
[

1

T

∫ T

0
vsds

]
= E

[
−2

XT

T

]
(3.7)

where E[·] is taken under the risk-neutral measure and S = exp(X) is a risk-neutral

martingale (assuming interest rates and dividends to be null). Therefore, the risk neutral

pricing of RV (v)(T ) or options on it is fully justified by (3.7).

As with Call options on stock price processes, we can define and study the implied

volatility of options on integrated variance. In the case of (3.5)(i) we define the implied

volatility σ̂(T, k) to be the solution to

E[(RV (v)(T )− ek)+] = CBS(RV (v)(0), k, T, σ̂(T, k)), (3.8)

where CBS denotes the Call price in the Black-Scholes model. Using Corollary 3.2.6, we

deduce the small-time behaviour of the implied volatility σ̂, as defined in (3.8).

3.2.1 Small-time Results for the Rough Bergomi Model

We first consider the most simple case, the rough Bergomi model. We start by proving a

pathwise large deviations principle for the variance process v, Theorem 3.2.2, and then

deduce the small-time behaviour of the integrated variance process RV (v). This allows

us to characterise the small-time integrated variance implied volatility behaviour.

Before stating Theorem 3.2.2, we define the following function ΛZ : C(T ) → R+ as

ΛZ(x) := 1
2‖x‖

2
H Kα , and if x /∈ H Kα then ΛZ(x) = +∞, where H Kα is defined in

Proposition 1.4.15.
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Theorem 3.2.2. The sequence of variance processes (vε·)ε>0 satisfies a large devia-

tions principle on C(T ) as ε tends to zero, with speed ε−β and rate function Λv(x) :=

ΛZ
(

log
(

x
v0

))
, where Λv(v0) = 0 and x ∈ C(T ).

Proof of Theorem 3.2.2. For t ∈ T , ε > 0, we first define the rescaled processes

Zεt := εβ/2Zt
d
= Zεt,

vεt := v0 exp

(
Zεt −

η2

2
(εt)β

)
,

(3.9)

where β := 2α+ 1 ∈ (0, 1). From Theorem 1.5.14 and Proposition 1.4.15, we have that

the sequence of processes (Zε)ε>0 satisfies a large deviations principle on C(T ) with

speed ε−β and rate function ΛZ . We now prove that the two sequences of stochastic

processes Zε and Z̃ε : = Zε − η2

2 (ε·)β are exponentially equivalent [DZ10, Definition

4.2.10]. For each δ > 0 and t ∈ T , there exists ε∗ := 1
t

(
2δ
η2

)1/β
> 0 such that

sup
t∈T
|Zεt − Z̃εt | = sup

t∈T
|η

2

2
(εt)β| ≤ δ,

for all 0 < ε < ε∗. Therefore, for all δ > 0, lim supε↓0 ε
β logP(‖Zε − Z̃ε‖∞ > δ) = −∞,

and the two processes are indeed exponentially equivalent. Then, using [DZ10, Theorem

4.2.13], the sequence of stochastic processes (Z̃ε)ε>0 also satisfies a large deviations

principle on C(T ), with speed ε−β and rate function ΛZ . Moreover, for all ε, t, we have

that vεt = v0 exp(Z̃εt ), where the bijective transformation x(t, ε) 7→ v0 exp(x(t, ε)) is

clearly continuous with respect to the sup norm metric. Therefore we can apply the

Contraction Principle (Proposition 1.5.13), concluding that the sequence of processes

(vε)ε>0 satisfies a large deviations principle on C(T ) with speed ε−β and rate function

ΛZ
(

log
(

x(1,·)
v0

))
. Here we have used that, for each ε > 0, t ∈ T and x ∈ C(T × R+),

the inverse mapping of the bijection transformation x(t, ε) 7→ v0 exp(x(t, ε)) is given by

log
(

x(t,ε)
v0

)
. Since, for all t ∈ T , vεt and vεt are equal in law, we conclude the theorem.

Notice also that Λv(v0) = ΛZ(0) = ‖0‖2
H Kα = 0.

Corollary 3.2.3. The integrated variance process (RV (v)(t))t∈T satisfies a large devi-

ations principle on R∗+ as t tends to zero, with speed t−β and rate function Λ̂v defined

as Λ̂v(y) := inf {Λv(x) : y = RV (x)(1)}, where Λ̂v(v0) = 0.
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Proof. As proved in Theorem 3.2.2, (vε)ε>0 satisfies a pathwise large deviations principle

on C(T ) as ε tends to zero. For small perturbations δv ∈ C(T ), we have

‖RV (v + δv)(t)−RV (δv)(t)‖∞ ≤ sup
t∈T

1

t

∣∣∣∣∫ t

0
δv(s)ds

∣∣∣∣ ≤M,

where M = supt∈T |δv(t)|, which is finite as δv ∈ C(T ). Clearly M tends to zero as

δv tends to zero, and hence the operator RV is continuous with respect to the sup

norm on C(T ). Therefore we can apply the Contraction Principle (Proposition 1.5.13),

and consequently the integrated variance process RV (vε) satisfies a large deviations

principle on C(T ) as ε tends to zero. Clearly RV (vε)(t) = RV (v)(εt), for all t ∈ T ,

and so setting t = 1 and mapping ε to t then yields the result. By definition, Λ̂v(y) :=

inf {Λv(x) : y = RV (x)(1)}. If we choose x ≡ v0 then clearly v0 = RV (x)(1), and

Λv(x) = 0. Since Λv is a norm, it is a non-negative function and therefore Λ̂v(v0) = 0.

This concludes the proof.

Remark 3.2.4. Corollary 3.2.3 can be applied to a large number of existing results on

pathwise large deviations for rough variance processes to get a large deviations result

for the integrated rough variance process; for example the fSABR model in Section 2.2

and Forde and Zhang’s rough volatility model [FZ17].

Corollary 3.2.5. The rate function Λ̂v is continuous.

Proof. Indeed, as a rate function, Λ̂v is lower semi-continuous. Moreover, as Λv is

continuous, one can use similar arguments to [FZ17, Corollary 4.6], and deduce that Λ̂v

is upper semi-continuous, and hence is continuous.

Before stating results on the small-time behaviour of options on integrated variance,

we state that the log integrated variance process logRV (v) satisfies a large deviations

principle on R as t tends to zero, with speed t−β and rate function Λ̂v(e·). Then,

the small-time behaviour of such options can be obtained as an application of Corol-

lary 3.2.3.

Corollary 3.2.6. For log moneyness k := log K
RV (v)(0) 6= 0, the following equality holds

true for Call options on integrated variance

lim
t↓0

tβ logE
[(
RV (v)(t)− ek

)+
]

= −I(k), (3.10)

68



where I is defined as as I(x) := infy>x Λ̂v(ey) for x > 0, I(x) := infy<x Λ̂v(ey) for x < 0.

Similarly, for log moneyness k := log K√
RV (v)(0)

6= 0,

lim
t↓0

tβ logE
[(√

RV (v)(t)− ek
)+
]

= −Ī(k), (3.11)

where Ī is defined analogously as Ī(x) := infy>x Λ̂v(e2y) for x > 0 and Ī(x) := infy<x Λ̂v(e2y)

for x < 0.

Proof of Corollary 3.2.6. The proof of Equation (3.10) is similar to the proof of [FZ17,

Corollary 4.9], and we shall prove the lower and upper bound separately, which turn

out to be equal. Firstly, as the rate function Λ̂v is continuous on C(T ), we have that,

for all k > 0,

lim
t↓0

tβ logP(log[RV (v)(t)] > k) = −I(k),

as an application of Corollary 3.2.3.

(1) The proof of the lower bound is exactly the same as presented in [FZ17, Appendix

C] and will be omitted here; we arrive at lim inft↓0 t
β logE

[
(RV (v)(t)− ek)+

]
≥

−I(k).

(2) We establish the upper bound:

We first apply Hölder’s inequality:

E[(RV (v)(t)− ek)]+ = E
[
(RV (v)(t)− ek)+11{RV (v)(t)≥ek}

]
,

≤ E
[((

RV (v)(t)− ek
)+
)q]1/q

P(RV (v)(t) ≥ ek)
1−1/q

,

≤ E [(RV (v)(t))q]1/q P(RV (v)(t) ≥ ek)
1−1/q

which holds for all q > 1. Thus

tβ logE[(RV (v)(t)−ek)]+ ≤ tβ

q
logE [(RV (v)(t))q]+tβ

(
1− 1

q

)
logP

(
RV (v)(t) ≥ ek

)
.

(3.12)
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We further obtain the following inequality by applying Jensen’s inequality and the

fact that all moments exist for (RV (v)(t))q

E [(RV (v)(t))q] ≤ 1

tq

∫ t

0
E[vqs ]ds ≤

vq0
tq

∫ t

0
exp

((
q2η2

2
− qη2

2

)
s2α+1

)
ds (3.13)

≤ vq0
tq−1

exp

((
q2η2

2
− qη2

2

)
t2α+1

)
.

Therefore,

lim
q↑∞

lim sup
t↓0

tβ

q
logE [(RV (v)(t))q]

≤ lim
q↑∞

lim sup
t↓0

tβ

q

(
q log v0 − (q − 1) log t+

(
q(q − 1)

η2

2
t2α+1

))
= 0.

Hence, taking q ↑ ∞ and t ↓ 0 on both sides of (3.12), we obtain by Corollary 3.2.3

lim sup
t↓0

tβ logE[(RV (v)(t)− ek)]+ ≤ −I(k),

which concludes the proof. The proof of Equation (3.11) follows the same steps,

after proving that the process
√
RV (v) satisfies a large deviations principle on

R+. Indeed, as the function x 7→ x2 is a continuous bijection on R+, we have

that the square root of the integrated variance process
√
RV (v) satisfies a large

deviations principle on R+ as t tends to zero, with speed t−β and rate function

Λ̂v((·)2), using [DZ10, Theorem 4.2.4].

Corollary 3.2.7. The small-time asymptotic behaviour of the implied volatility is given

by the following limit, for a log moneyness k 6= 0:

lim
t↓0

t1−βσ̂2(t, k) =: σ̂2(k) =
k2

2I(k)
.

Proof. The log integrated variance process logRV (v) satisfies a large deviations princi-

ple with speed t−β and rate function Λ̂v(e·), which is continuous. Therefore, it follows

that

lim
t↓0

tβ logP(RV (v)(t) ≥ ek) = −I(k).
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In the Black Scholes model, i.e. a geometric Brownian motion with S0 = RV (v)(0) with

constant volatility ξ, we have the following small-time implied volatility behaviour:

lim
t↓0

ξ2t logP(RV (v)(t) ≥ ek) = −k
2

2
.

We then apply [GL14, Corollary 7.1], identifying ξ ≡ σ̂(k, t), to conclude.

Remark 3.2.8. Notice that the level of implied volatility in Corollary 3.2.7 has a power

law behaviour as a function of time to maturity. This power law is of order
√
tβ−1, which

is consistent with the at-the-money RV implied volatility results by Alòs, Garćıa-Lorite

and Muguruza [AGM18], where the order is found to be tH−1/2 using Malliavin Calculus

techniques. Recall that β = 2α+ 1, and α = H − 1/2 by Remark 1.3.7.

3.2.2 Small-time Results for the Mixed Rough Bergomi model

We now consider the mixed rough Bergomi model. As with the previous Section, our aim

is to establish the small-time integrated variance implied volatility behaviour. Minor

adjustments to Theorem 3.2.2 give the following result for the mixed variance process

v(γ,ν) introduced in Model (3.3).

Theorem 3.2.9. The sequence of mixed variance processes (v
(γ,ν)
ε· )ε>0 satisfies a large

deviations principle on C(T ) with speed ε−β and rate function

Λ(γ,ν)(x) := inf{ΛZ(
η

ν1
y) : x(·) = v0

n∑
i=1

γie
νi
ν1

y(·)},

satisfying Λ(γ,ν)(v0) = 0.

Proof. For brevity we set n = 2, but for larger n, identical arguments can be applied.

From Theorem 1.5.14 and Proposition 1.4.15, we have that the sequence of processes

(Zε)ε>0 satisfies a large deviations principle on C(T ) with speed ε−β and rate function

ΛZ . Define the operator f : C(T ) → C((T ),R2) by f(x) := (ν1
η x, ν2

η x), which is clearly

continuous with respect to the sup-norm ‖ · ‖∞ on C(T ,R2). Applying the Contraction

Principle (Proposition 1.5.13) then yields that the sequence of two-dimensional processes
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((ν1
η Z

ε, ν2
η Z

ε))ε>0 satisfies a large deviations principle on C(T ,R2) as ε tends to zero

with speed ε−β and rate function

Λ̃(y, z) := inf{ΛZ(x) : f(x) = (y, z)} = inf{ΛZ(
η

ν1
y) : z =

ν2

ν1
y}.

Identical arguments to the proof of Theorem 3.2.2 give that the sequences of processes

((ν1
η Z

ε, ν2
η Z

ε))ε>0 and ((ν1
η Z

ε− ν2
1
2 (ε·)β, ν2

η Z
ε− ν2

2 (ε·)β))ε>0 are exponentially equivalent,

thus satisfy the same large deviations principle, with the same rate function and the

same speed.

We now define the operator gγ : C(T ,R2) → C(T ) as gγ(x, y) = v0(γex + (1 − γ)ey),

where γ = γ1, 1− γ = γ2. For small perturbations δx, δy ∈ C(T ) we have that2

sup
t∈T
|gγ(x+δx, y+δy)−gγ(x, y)| ≤ |v0|

(
sup
t∈T
|γex(t)(eδ

x(t) − 1)|+ sup
t∈T
|(1− γ)ey(t)(eδ

y(t) − 1)|
)
.

Clearly the right hand side tend to zero as δx, δy tend to zero; thus the operator gγ

is continuous with respect to the sup-norm ‖ · ‖∞ on C(T ). Applying the Contraction

Principle (Proposition 1.5.13) then yields that the sequence of processes

(v(ε,γ,ν))ε>0 :=

(
v0

(
γ exp(

ν1

η
Zε − ν2

1

2
(ε·)β) + (1− γ) exp(

ν2

η
Zε − ν2

2

2
(ε·)β)

))
ε>0

satisfies a large deviations principle on C(T ) as ε tends to zero, with speed ε−β and rate

function

x 7→ inf{Λ̃(y, z) : x = gγ(y, z)} = inf{ΛZ(
η

ν1
y) : x = gγ(y,

ν2

ν1
y)}

= inf{ΛZ(
η

ν1
y) : x = v0(γey + (1− γ)e

ν2
ν1

y
)}.

Since, for all ε > 0 and t ∈ T , v
(γ,ν)
εt and v

(ε,γ,ν)
t are equal in law, the theorem follows

immediately. Identical arguments to the proof of Theorem 3.2.2 then yield that Λγ(v0) =

0.

By Remark 3.2.4, we immediately get the following result for the small-time behaviour

of the integrated mixed variance process RV (v(γ,ν)).

2 Recall we fix T = [0, 1] on p65.
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Corollary 3.2.10. The integrated mixed variance process (RV
(
v(γ,ν)

)
(t))t∈T satisfies

a large deviations principle on R∗+ as t tends to zero, with speed t−β and rate function

Λ̃(γ,ν)(y) := inf
{

Λ(γ,ν)(x) : y = RV (x)(1)
}

, where Λ̃(γ,ν)(v0) = 0.

To get the small-time implied volatility result, analogous to Corollary 3.2.7, we need

the following Lemma, which is used in place of (3.13). The remainder of the proof then

follows identically.

Lemma 3.2.11. For all t ∈ T and q > 1 we have

E
[(
RV

(
v(γ,ν)

)
(t)
)q]
≤ vq0n

q−1

tq−1
exp

(
(ν∗)2

2η2

(
q2 − q

)
t2α+1

)
,

where ν∗ = max{ν1, ..., νn}.

Proof. First we note that by Hölder’s inequality (
∑n

i=1 xi)
q ≤ nq−1

∑n
i=1(xi)

q, for xi >

0. Since, γi ≤ 1 for i = 1, ..., n, we obtain

E
[(
RV

(
v(γ,ν)

)
(t)
)q]
≤ vq0
tq
nq−1

n∑
i=1

∫ t

0
E
[
exp

(
qνi
η
Zs −

qν2
i

2η2
s2α+1

)]
ds

≤ vq0
tq−1

nq−1
n∑
i=1

exp

(
ν2
i

2η2

(
q2 − q

)
t2α+1

)
.

Choosing ν∗ = max{ν1, ..., νn} the result directly follows.

Corollary 3.2.12. For log moneyness k := log K
RV (v(γ,ν))(0)

6= 0, the following equality

holds true for Call options on integrated variance in the mixed rough Bergomi model:

lim
t↓0

tβ logE
[(
RV (v(γ,ν))(t)− ek

)+
]

= −I(k), (3.14)

where I is defined as I(x) := infy>x Λ̃(γ,ν)(ey) for x > 0, I(x) := infy<x Λ̃(γ,ν)(ey) for

x < 0.

Similarly, for log moneyness k := log K√
RV (v(γ,ν))(0)

6= 0,

lim
t↓0

tβ logE

[(√
RV (v(γ,ν))(t)− ek

)+
]

= −Ī(k), (3.15)

where Ī is defined analogously as Ī(x) := infy>x Λ̃(γ,ν)(e2y) for x > 0 and Ī(x) :=

infy<x Λ̃(γ,ν)(e2y) for x < 0.
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Proof. Follows directly from Lemma 3.2.11 and proof of Corollary 3.2.6.

The small-time implied volatility behaviour for the mixed rough Bergomi model is then

given by Corollary 3.2.7, where the function I is defined in terms of the rate function

Λ̃(γ,ν), as in Corollary 3.2.12, in this case.

3.2.3 Small-time Results for the Multi-factor Rough Bergomi model

Finally we consider the multi-factor rough Bergomi model (3.4), the most general of

the three cases. The asymptotic behaviour for the variance process is given in Theorem

3.2.13 below; note that Λm is the rate function associated to the reproducing kernel

Hilbert space of the measure induced by Z on C(T ,Rm), denoted Hm.

Theorem 3.2.13. The sequence of processes
(
v

(γ,ν,Σ)
ε·

)
ε>0

satisfies a large deviations

principle on C(T ) with speed ε−β and rate function

Λ(γ,ν,Σ)(y) = inf

{
Λm(x) : x ∈Hm, y = v0

n∑
i=1

γi exp

(
νi

η
· Lix(1)

)}
,

satisfying Λ(γ,ν,Σ)(v0) = 0.

Proof of Theorem 3.2.13. We begin by introducing a rescaling of (3.4) for ε > 0, so

that the system becomes

v
(γ,ν,Σ,ε)
t := v

(γ,ν,Σ)
εt = v0

n∑
i=1

γiE
(
νi

η
· LiZεt

)
, (3.16)

with the rescaled process Zεt defined as

Zεt := Zεt = εα+ 1
2

(∫ t

0
Kα(s, t)dW 1

s , ...,

∫ t

0
Kα(s, t)dWm

s

)
.

The m-dimensional sequence of processes (εβ/2Zε)ε>0 satisfies a large deviations prin-

ciple on C(T ,Rm) as ε goes to zero with speed ε−β and rate function Λm defined by

Λm(x) := 1
2 ‖x‖

2
Hm

for x ∈ Hm and +∞ otherwise, by Theorem 1.5.14. Hm is the

reproducing kernel Hilbert space of the measure induced by Z on C(T ,Rm), defined as

Hm :=

{
(g1, · · · , gm) ∈ C(T ,Rm) : gi(t) =

∫ t

0
Kα(s, t)f i(s)ds, f i ∈ L2(T ) for all i ∈ {1 · · ·m}

}
.
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Then, using an extension of the proof of [HJL19, Theorem 3.6], for i = 1, · · · , n, the

sequence of m-dimensional processes (LiZε· )ε>0 satisfies a large deviations principle on

C(T ,Rm), as ε tends to zero with rate function y 7→ inf {Λm(x) : x ∈Hm, y = Lix} and

speed ε−β, where Li is the lower triangular matrix introduced in Model (3.4). Conse-

quently, for i = 1, · · · , n each (one-dimensional) sequence of processes
(
νi

η · LiZ
ε
·

)
ε>0

also satisfies a large deviations principle as ε tends to zero, with speed ε−β and rate

function ΛΣi(y) := inf
{

Λm(x) : x ∈Hm, y = νi

η · Lix
}

.

Each sequence of processes
(
νi

η · LiZ
ε
·

)
ε>0

and
(
νi

η · LiZ
ε
· − 1

2ν
iΣiν

i(ε·)β
)
ε>0

are expo-

nentially equivalent for i = 1, · · · , n ; therefore they satisfy the same large deviations

principle with the same speed ε−β and the same rate function ΛΣi .

We now define the operator gγ : C(T ,Rn)→ C(T ) as

gγ(x)(·) := v0

n∑
i=1

γi exp

(
νi

η
· x(·)

)
,

with x := (x1, · · · , xn). For small perturbations δ1, · · · , δn ∈ C(T ) with δ := (δ1, · · · , δn),

we have that

sup
t∈T
|gγ(x + δ)(t)− gγ(x)(t)| = sup

t∈T

∣∣∣∣∣v0

n∑
i=1

γi exp(
νi

η
· (x(t) + δ(t)))− exp(

νi

η
· x(t))

∣∣∣∣∣
≤ sup

t∈T
|v0|

n∑
i=1

∣∣∣∣exp(
νi

η
· x(t))(exp(δ(t))− 1)

∣∣∣∣
The right-hand side tends to zero as δ1, · · · , δn tends to zero; thus the operator gγ

is continuous with respect to the sup-norm ‖·‖∞ on C(T ). Using that v
(γ,ν,Σ,ε)
t =

gγ(ν
i

η · LiZ
ε
· − 1

2ν
iΣiν

i(ε·)β)(t) for each ε > 0 and t ∈ T , we can apply the Contraction

Principle (Proposition 1.5.13), yielding that the sequence of processes (v(γ,ν,Σ,ε))ε>0

satisfies a large deviations principle on C(T ) as ε tends to zero, with speed ε−β and rate

function

y 7→ inf

{
ΛΣi(x) : y = v0

n∑
i=1

γi exp

(
νi

η
· x
)}

= inf

{
Λm(x) : x ∈ Hm, y = v0

n∑
i=1

γi exp

(
νi

η
· Lix

)}
.
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As with the previous two models we have that, for all ε > 0 and t ∈ T , v
(γ,ν,Σ,ε)
t and

v
(γ,ν,Σ)
εt are equal in law and so the result follows directly.

In the same way as with the mixed variance process, Remark 3.2.4 gives us the following

small-time result for RV (v(γ,ν,Σ)) straight off the bat.

Corollary 3.2.14. The integrated variance process (RV
(
v(γ,ν,Σ)

)
(t))t∈T in the multi-

factor Bergomi model satisfies a large deviations principle on R∗+ as t tends to zero,

with speed t−β and rate function

Λ̃(γ,ν,Σ)(y) := inf
{

Λ(γ,ν,Σ)(x) : y = RV (x)(1)
}
,

where Λ̃(γ,ν,Σ)(v0) = 0.

We now establish the small-time behaviour for Call options on realised variance in

Corollary 3.2.16, by adapting the proof of Corollary 3.2.6 as in the previous subsection.

To do so we use Lemma 3.2.15 in place of (3.13). Then we attain the small-time implied

volatility behaviour for the multi-factor rough Bergomi model in Corollary 3.2.7, where

the function I is given by Corollary 3.2.16.

Lemma 3.2.15. For all t ∈ T and q > 1 we have

E
[(
RV

(
v(γ,ν,Σ)

)
(t)
)q]
≤ vq0n

q−1

tq−1
exp

(
(ν∗)2

2η2

(
q2 − q

)
t2α+1

)
,

where ν∗ = max{ν1, ..., νn}

Proof. First we note that by Hölder’s inequality (
∑n

i=1 xi)
q ≤ nq−1

∑n
i=1(xi)

q, for xi >

0. Since, γi ≤ 1 for i = 1, ..., n, we obtain

E
[(
RV

(
v(γ,ν,Σ)

)
(t)
)q]
≤ vq0
tq
nq−1

n∑
i=1

∫ t

0
E
[
E
(
νi

η
· LiZs

)q]
ds

≤ vq0
tq−1

nq−1
n∑
i=1

exp

(
ν2
i

2η2

(
q2 − q

)
t2α+1

)
.

Choosing ν∗ = max{ν1, ..., νn} the result directly follows.
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Corollary 3.2.16. For log moneyness k := log K
RV (v(γ,ν,Σ))(0)

6= 0, the following equality

holds true for Call options on integrated variance in the multi-factor rough Bergomi

model:

lim
t↓0

tβ logE
[(
RV (v(γ,ν,Σ))(t)− ek

)+
]

= −I(k), (3.17)

where I is defined as I(x) := infy>x Λ̃(γ,ν,Σ)(ey) for x > 0, I(x) := infy<x Λ̃(γ,ν,Σ)(ey) for

x < 0.

Similarly, for log moneyness k := log K√
RV (v(γ,ν,Σ))(0)

6= 0,

lim
t↓0

tβ logE

[(√
RV (v(γ,ν,Σ))(t)− ek

)+
]

= −Ī(k), (3.18)

where Ī is defined analogously as Ī(x) := infy>x Λ̃(γ,ν,Σ)(e2y) for x > 0 and Ī(x) :=

infy<x Λ̃(γ,ν,Σ)(e2y) for x < 0.

Proof. Follows directly from Lemma 3.2.15 and the proof of Corollary 3.2.6.

3.3 Numerical Schemes

Having established a number of theoretical results for small-time integrated variance

implied volatility in Section 3.2, we now tackle the problem of numerically computing the

various rate functions with the ultimate aim of producing plots to represent the small-

time integrated variance implied volatility smiles. We begin this Section by presenting

the numerical schemes used to compute the rate functions in each case; we then present

numerical results for each of the three models in Section 3.4 below, and analyse the

effect of each parameter on the implied volatility smile.

3.3.1 Single-factor Case

We first consider the rough Bergomi (1.11) model for sake of simplicity and further

develop the mixed multi-factor rough Bergomi (3.4) model in Section 3.3.3 (which also

includes the mixed rough Bergomi model (3.3)). Therefore, we tackle the numerical
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computation of the rate function

Λ̂v(y) := inf {Λv(x) : y = RV (x)(1)} .

This problem, in turn, is equivalent to the following optimisation:

Λ̂v(y) := inf
f∈L2

{
1

2
‖f‖2L2 : y = RV

(
exp

(∫ ·
0
Kα(u, ·)f(u)du

))
(1)

}
. (3.19)

A natural approach is to consider a class of functions that is dense in L2. The Stone-

Weierstrass Theorem states that any continuous function on a closed interval can be

uniformly approximated by a polynomial function. Consequently, we consider a poly-

nomial basis,

f̂ (n)(s) =
n∑
i=0

ais
i

such that {f̂ (n)}ai∈R is dense in L2 as n tends to +∞. Problem (3.19) may then be

approximated via

inf
a∈Rn+1

{
1

2
||f̂ (n)||2L2 : y = RV

(
exp

(∫ ·
0
Kα(u, ·)f̂ (n)du(u)

))
(1)

}
,

where a = (a0, ..., an). The y = RV
(

exp
(∫ ·

0 Kα(u, ·)f̂ (n)(u)du
))

(1) constraint needs

to be satisfied in order to obtain the solution. To accomplish this, we consider anchoring

one of the coefficients in f̂ (n) such that

a∗i = argminai∈R

{(
y −RV

(
exp

(∫ ·
0
Kα(u, ·)f̂ (n)(u)du

))
(1)

)2
}

(3.20)

and the constraint will be satisfied for all combinations of a∗ = (a0, ..., ai−1, a
∗
i , ai+1, ..., an).

Numerically, (3.20) is easily solved using a few iterations of the Newton-Raphson algo-

rithm. Then we may easily solve

inf
a∗∈Rn+1

{
1

2
||f̂ (n)||2L2

}
which will converge to the original problem (3.19) as n → +∞. The polynomial basis

is particularly convenient since we have that

RV

(
exp

(∫ ·
0
Kα(u, ·)f̂ (n)(u)du

))
(1) (3.21)

=

∫ 1

0
exp

(
η
√

2α+ 1
n∑
i=0

ais
α+1+i

2F1(i+ 1,−α, i+ 2, 1)

i+ 1

)
ds,
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where 2F1 denotes the Gaussian hypergeometric function. In particular one may store

the values {2F1 (i+ 1,−α, i+ 2, 1))}ni=0 in the computer memory and reuse them through

different iterations. In addition, the outer integral in (3.21) is efficiently computed using

Gauss-Legendre quadrature i.e.

RV

((∫ ·
0
Kα(u, ·)f̂ (n)(u)du

))
(1)

≈ 1

2

m∑
k=1

exp

(
η
√

2α+ 1
n∑
i=1

ai
(

1
2(1 + pk)

)α+1+i
2F1(i+ 1,−α, i+ 2, 1)

i+ 1

)
wk,

where {pk, wk}mk=1 are m-th order Legendre points and weights respectively.

3.3.2 A Tailor-made Polynomial Basis for Rough Volatility

We may improve the computation time of the previous approach by considering a tailor-

made polynomial basis. In particular, recall the following relation∫ s

0
Kα(u, s)ukdu =

uα+1+k
2F1(k + 1,−α, k + 2)

k + 1
,

then, for k = −α− 1 we obtain∫ s

0
Kα(u, s)u−α−1du =

2F1(−α,−α, 1− α, 1)

−α
,

which in turn is a constant that does not depend on the upper integral bound s.

Proposition 3.3.1. Consider the basis ĝ(n)(s) = cs−α−1 +
∑n

i=0 ais
i. Then,

c∗ =
−α

η
√

2α+ 12F1(−α,−α, 1− α, 1)
log

 y∫ 1
0 exp

(
η
√

2α+ 1(
∑n

i=0
aisα+1+i

2F1(i+1,−α,i+2,1)
i+1

)
ds


solves (3.20).

Proof. We have that

RV

(∫ ·
0
Kα(u, ·)ĝ(n)(u)du

)
(1) = exp

(
η
√

2α+ 1

−α 2F1 (−α,−α, 1− α, 1)

)
×
∫ 1

0
exp

(
η
√

2α+ 1

n∑
i=0

ais
α+1+i

2F1 (i+ 1,−α, i+ 2, 1)

i+ 1

)
ds

and the proof trivially follows by solving y = RV
(∫ ·

0 Kα(u, ·)ĝ(n)(u)du
)

(1).
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Remark 3.3.2. Notice that Proposition 3.3.1 gives a semi-closed form solution to

(3.20). Then, we only need to solve

inf
(a0,...,an)∈Rn+1

{
1

2
||ĝ(n)||2 : c = c∗

}
in order to recover a solution for (3.19).

Remark 3.3.3. Notice that u−α−1 /∈ L2, however u−α−1I{u>ε} ∈ L2 for all ε > 0.

Moreover,∫ s

0
Kα(s, u)u−α−1I{u>ε}du =

2F1(−α,−α, 1− α, 1)

−α
−
ε−αsα 2F1(−α,−α, 1− α, εt )

−α

=
2F1(−α,−α, 1− α, 1)

−α
+O(ε−α),

hence for ε sufficiently small the error is bounded as long as α 6= 0. In our applica-

tions we find that this method behaves nicely for α ∈ (−0.5,−0.05]. In Figure 3.2

we provide precise errors and we observe that the convergence is better for small α

(which is rather surprising behaviour, as the converse is true of other approximation

schemes when the volatility trajectories become more rough) as well as strikes around

the money. Moreover, the truncated basis approach constitutes a 30-fold speed im-

provement in our numerical tests. As benchmark we consider the standard numerical

algorithm introduced in (3.20), with accuracy measured by absolute error.
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Figure 3.2: Absolute error of the rate function. We consider the truncated basis ap-

proach against the standard polynomial basis with (η, v0, n) = (1.5, 0.04, 5) and different

values of α.
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3.3.3 Multi-Factor Case

The correlated mixed multi-factor rough Bergomi (3.4) model requires a slightly more

complex setting. By Corollary 3.2.14, the rate function is given by the following multi-

dimensional optimisation problem:

Λ̂(v,Σ)(y) := inf
(f1,...,fm)∈L2

{
1

2

m∑
i=1

||fi||2L2 : y = RV

(
m∑
i=1

γi exp

(
νi

η
· Σif

Kα
.

)
u

)
(1)

}
,

(3.22)

where fKα. =
(∫ ·

0 Kα(u, ·)f1(u)du, ...,
∫ ·

0 Kα(u, ·)fm(u)du
)
. The approach to solve this

problem is similar to that of (3.19). Nevertheless, in order to solve (3.22) we shall use

a multi-dimensional polynomial basis

(
f̂

(p)
1 (s), ..., f̂ (p)

m (s)
)

=

(
p∑
i=0

a1
i s
i, ...,

p∑
i=0

ani s
i

)

such that each f̂
(p)
i (s) for i ∈ {1, ...,m} is dense as p tends to +∞ in L2 by Stone-

Weierstrass Theorem. Then we may equivalently solve

inf
(a1

0,...,a
1
p,...,a

m
0 ,...,a

m
p )∈R(p+1)m

{
1

2

m∑
i=1

||f̂ (p)
i ||

2
L2 : y = RV

(
m∑
i=1

γi exp

(
νi

η
· Σîf

(Kα,p)
.

)
u

)
(1)

}
,

(3.23)

where f̂(Kα,p). =
(∫ ·

0 Kα(u, ·)f̂ (p)
1 (u)du, ...,

∫ ·
0 Kα(u, ·)f̂ (p)

m (u)du
)

. Then as p tends to +∞,

(3.23) will converge to the original problem (3.22). In order to numerically accelerate

the optimisation problem in (3.23), we anchor coefficients (a1
0, ...., a

m
0 ) to satisfy the

constraint y = RV (·)(1) (same way we did in the one dimensional case), that is

a∗ := inf
(a1

0,....,a
m
0 )∈Rm


(

y −RV

(
m∑
i=1

γi exp

(
νi

η
· Σif

Kα
.

)
u

)
(1)

)2


where a∗ = (a1∗
0 , ..., a

m∗
0 ) and one may use (3.21) and Gauss-Legendre quadrature to effi-

ciently compute RV (·)(1). Then, the constraint will always be satisfied by construction

and instead we may solve

inf
(a1∗

0 ,a1
1...,a

1
p,...,a

m∗
0 ,am1 ,...,a

m
p )∈R(p+1)m

{
1

2

m∑
i=1

||f̂ (p)||2L2

}
. (3.24)
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3.4 Integrated Variance Smiles

We now use the numerical schemes described above to plot the small-time integrated

variance smiles.

3.4.1 Smiles for the Rough Bergomi Model

We begin with the rough Bergomi model (1.11), using Corollary 3.2.7. In Figure 3.3,

we represent the rate function given in Corollary 3.2.3, which is the fundamental ob-

ject to compute numerically. In particular, we notice that Λ̂v is convex; a rigorous

mathematical proof of this statement is left for future research.

Figure 3.3: Rate function Λ̂v for different values of α. We set (η, v0, n) = (2, 0.04, 5).
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Figure 3.4: Comparison of Monte Carlo computed implied volatilities (straight lines)

and LDP based implied volatilities (stars), in the rough Bergomi model, for different

values of α and maturities T . We set (η, v0, n) = (2, 0.04, 5); for Monte Carlo we use

200, 000 simulations and ∆t = 1
1008 .
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More interestingly, in Figure 3.4 we provide a comparison of Corollary 3.2.7 with respect

to a benchmark generated by Monte Carlo simulations, and see all smiles to follow

a linear trend. In particular, we notice that Corollary 3.2.7 provides a surprisingly

accurate estimate, even for relatively large maturities. As a further numerical check,

in Figure 3.5 we compare our results with the close-form at-the-money asymptotics

given by Alòs, Garćıa-Lorite and Muguruza [AGM18] and once again find the correct

convergence, suggesting a consistent numerical framework.

Figure 3.5: Comparison of Alòs, Garćıa-Lorite and Muguruza [AGM18] at-the-money

implied volatility asymptotics and LDP based implied volatilities for different values of

α, in the rough Bergomi model, with (η, v0, n) = (2, 0.04, 5).

3.4.2 Smiles for the Mixed Rough Bergomi Model

We now consider the mixed rough Bergomi model (3.3) in a simplified form given by

vt = v0 (γ1E(ν1Zt) + γ2E(ν2Zt)). In Figure 3.6, we observe that a constraint of the type

γ1ν1 + γ2ν2 = 2 in the mixed variance process (3.3) allows us to fix the at-the-money

implied volatility at a given level, whilst generating different slopes for different values

of (ν1, ν2, γ1, γ2); as in Figure 3.4, we see that the smiles generated follow a linear trend.

This is again consistent with the results found in [AGM18].
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Figure 3.6: Comparison of LDP based implied volatilities for different values of

(ν1, ν2, γ1, γ2) in the mixed rough Bergomi process (3.3) such that γ1ν1 + γ2ν2 = 2,

with (α, p) = (−0.4, 5).

Remark 3.4.1. At this point it is important to note that the mixed rough Bergomi

model 3.3 allows both the at-the-money implied volatility and its skew to be controlled

through (γ, ν), whilst in the rough Bergomi model (1.11) there is not enough freedom

to arbitrarily fit both quantities. Remarkably, we observe a linear pattern in Figures

3.4-3.6 for around the money strikes. In Section 3.5 below we provide an approximation

scheme for the realised variance density based on the assumption of linear smiles.

3.4.3 Smiles for the Mixed Multi-factor Rough Bergomi Model

We conclude our analysis by introducing the correlation effect in the implied volatility

smiles, by considering the mixed multi-factor rough Bergomi model (3.4). We shall
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consider the following two simplified models for instantaneous variance

vt = E
(
ν

∫ t

0
(t− s)αdWs + η

(
ρ

∫ t

0
(t− s)αdWs +

√
1− ρ2

∫ t

0
(t− s)αdW⊥s

))
,

(3.25)

vt =
1

2

(
E
(
ν

∫ t

0
(t− s)αdWs

)
+ E

(
η

(
ρ

∫ t

0
(t− s)αdWs +

√
1− ρ2

∫ t

0
(t− s)αdW⊥s

)))
,

(3.26)

where W and W⊥ are independent standard Brownian motions and ν, η > 0.

On one hand, Figure 3.7 shows the implied volatility smiles corresponding to (3.25). We

conclude that adding up correlated factors inside the exponential does not change the

behaviour of implied volatility smiles, and they still have a linear form around the money.

Moreover, in this context [AGM18] results still hold and we provide the asymptotic

benchmark in Figure 3.7 to support our numerical scheme. On the other hand, Figure

3.8 shows the implied volatility smiles corresponding to (3.26), which are evidently non-

linear around the money in the negatively correlated cases. Consequently, we can see

that having a sum of exponentials, each one driven by a different (fractional) Brownian

motion does indeed affect the behaviour of the convexity in the implied volatility around

the money. We further superimpose a linear trend on top of the smiles in Figure 3.9 to

clearly show the effect of correlation in the convexity of the smiles.

3.5 Realised Variance Density Approximation for the Mixed

Rough Bergomi Model

In light of the numerical results shown in Section 3.3 (see Figures 3.4-3.7) we identify a

clear linear trend in the implied volatility smiles generated by both the rough Bergomi

and mixed rough Bergomi models. Therefore, it is natural to postulate the following

conjecture/approximation of log-linear smiles.

Assumption 3.5.1. The implied volatility of realised variance options in the mixed

rough Bergomi (3.3) model is linear in log-moneyness, and takes the following form:
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Figure 3.7: Rate function and corresponding implied volatilities for the model (3.25),

with (α, ν, η, p) = (−0.4, 1.0, 3.0, 5).

Figure 3.8: Rate function and corresponding implied volatilities for the model (3.26)

with (α, ν, η, p) = (−0.4, 1.0, 3.0, 5).
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Figure 3.9: Implied volatilities and superimposed linear smiles for the model (3.26),

with (α, ν, η, p) = (−0.4, 1.0, 3.0, 5).

σ̂(K,T ) =

(
T β
(
a(α, γ, ν) + b(α, γ, ν) log

(
K

RV (v)(0)

)))+

where

a(α, γ, ν) =

√
2α+ 1

∑n
i=1 γiνi

(α+ 1)
√

2α+ 3
,

b(α, γ, ν) =
√

2α+ 1

(∑n
i=1 γiν

2
i∑n

i=1 γiνi
I(α)(2α+ 3)3/2(α+ 1)−

∑n
i=1 γiνi

(2α+ 2)
√

(2α+ 3)

)
,

with

I(α) =

( ∞∑
n=0

(α)n
(α+ 2)n

1− 2−2α−3−n

2α+ 3 + n
+
∞∑
n=0

(−1)n
(−α)n(α+ 1)

(α+ 2 + n)n!

F̂ (n, 1)− 2n−1/2−nF̂ (n, 1/2)

α+ 1− n

)
(α+ 1)(4α+ 5)

such that F̂ (n, x) = 2F1(−n − 2α − 2, α + 1 − n, α + 2 − n, x) and (x)n =
n−1∏
i=0

(x + i)

represents the rising Pochhammer factorial.
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Remark 3.5.2. The values of the constants a(α, γ, ν) and b(α, γ, ν) in Assumption

3.5.1, which give the level and slope of the implied volatility respectively, are given in

[AGM18, Example 24 and Example 27] respectively; we generalise to n factors. These

results are given in terms of the Hurst parameter H; to avoid any confusion we will

continue with our use of α. Recall that, by Remark 1.3.7, α = H − 1/2.

Proposition 3.5.3. Under Assumption 3.5.1 , the density of RV (v(γ,ν))(T ) is given by

ψRV (x, T ) = −n(d2(x))
∂d1(x)

∂x

(
a(α, γ, ν)Tα+1/2d1(x) + 1

)
, x ≥ 0

where d1(x) = log(v0)−log(x)

σ̂(x,T )
√
T

+ 1
2 σ̂(x, T )

√
T , d2(x) = d1(x) − σ̂(x, T )

√
T for x ≥ 0 and

n(·) is the standard Gaussian probability density function.

In order to prove Proposition 3.5.3 we need the following Lemma.

Lemma 3.5.4. v0n(d1(x)) = xn(d2(x))

Proof. In order to prove v0n(d1(x)) = xn(d2(x)), we will prove the following equivalent

result

(d1(x))2 − (d2(x))2 = 2 log
(v0

x

)
.

For x ≥ 0, d1(x) = log(v0)−log(x)

σ̂(x,T )
√
T

+ 1
2 σ̂(x, T )

√
T and d2(x) = d1(x) − σ̂(x, T )

√
T , we

obtain

(d1(x))2 − (d2(x))2 = (d1(x))2 −
(
d1(x)− σ̂(x, T )

√
T
)2
,

= 2d1(x)σ̂(x, T )
√
T − T σ̂2(x, T ),

= 2

[
log(v0)− log(x) +

1

2
σ̂2(x, T )T

]
− T σ̂2(x, T ),

= 2 log
(v0

x

)
.

Proof of Proposition 3.5.3. As usual let us denote

C(K,T ) := E[(RV (v(γ,ν))(T )−K)+].
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The well-known Breeden-Litzenberger formula [BL78] tells us that

∂2C(x, T )

∂x2

∣∣∣∣
x=K

= ψRV (K,T ).

Under Assumption 3.5.1, we have that

C(K,T ) = CBS(v0, σ̂(K,T ),K, T )

where CBS(v0, σ,K, T ) = v0Φ(d1) −KΦ(d2) is the Black-Scholes Call pricing formula

with Φ the standard Gaussian cumulative distribution function. Then, differentiating

C with respect to the strike gives

∂C(x, T )

∂x

∣∣∣∣
x=K

= v0n(d1(K))
∂d1(x)

∂x

∣∣∣∣
x=K

− xn(d2(K))
∂d2(x)

∂x

∣∣∣∣
x=K

− Φ(d2(K))

where

∂d1(x)

∂x
=
−σ̂(x, T ) + log(x/v0)a(α, γ, ν)Tα

xσ̂(x, T )2
√
T

+
1

2

a(α, γ, ν)Tα+1/2

x

=
−b(α, γ, ν)Tα

xσ̂(x, T )2
√
T

+
1

2

a(α, γ, ν)Tα+1/2

x

and
∂d2(x)

∂x
=
∂d1(x)

∂x
− a(α, γ, ν)Tα+1/2

x
.

Using Lemma 3.5.4, we further simplify

∂C(K,T )

∂K
= v0n(d1(K))

(
a(α, γ, ν)Tα+1/2

K

)
− Φ(d2(K)).

Differentiating again we obtain,

ψRV (K,T ) = −v0n(d1(K))
a(α, γ, ν)Tα+1/2

K

(
d1(K)

∂d1(x)

∂x

∣∣∣∣
x=K

+
1

K

)
−n(d2(K))

∂d2(x)

∂x

∣∣∣∣
x=K

.

Then, by using v0n(d1(x)) = xn(d2(x)), we find that

ψRV (K,T ) = −n(d2(K))

(
a(α, γ, ν)Tα+1/2

(
d1(x)

∂d1(x)

∂x

∣∣∣∣
x=K

+
1

K

)
+
∂d2(x)

∂x

∣∣∣∣
x=K

)
,
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which we further simplify to

ψRV (K,T ) = −n(d2(K))
∂d1(x)

∂x

∣∣∣∣
x=K

(
a(α, γ, ν)Tα+1/2d1(K) + 1

)
,

and the result then follows. Note that the density ψRV (·, T ) is indeed continuous for all

T > 0.

Remark 3.5.5. Note that Proposition 3.5.3 gives the density ofRV (v(γ,ν))(T ) in closed-

form. In addition, Proposition 3.5.3 can be easily used to get the density of the Arith-

metic Asian option under the Black-Scholes model. This would correspond to the case

α = 0 and ν = σ > 0 as the Black-Scholes constant volatility.

Remark 3.5.6. Assuming the density ψRV exists, we have the following volatility swap

price:

E[
√
RV (v(γ,ν))(T )] =

∫ ∞
0

√
xψRV (x, T )dx.

In Figure 3.10, we provide numerical results for the volatility swap approximation,

which performs best for short maturities, due to the nature of the approximation being

motivated by small-time smile behaviour. Interestingly, it captures rather accurately

the short time decay of the Volatility Swap price for maturities less than 3 months; for

larger maturities the absolute error does not exceed 20 basis points.

3.6 Asymptotic Behaviour of Options on VIX

Although options on realised variance are the most natural core modelling object for

stochastic volatility models, in practice the most popular underlying for variance deriva-

tives is the VIX. To finish the Chapter we finally turn our attention to the VIX and VIX

options and study their asymptotic behaviour. For this section, we fix T := [T, T + ∆].

Let us now consider the following general model (vt)t≥0 for instantaneous variance:

vt = ξ0(t)E
(∫ t

0
g(t, s)dWs

)
. (3.27)

Then, the VIX process is given by

VIXT =

√
1

∆

∫ T+∆

T
E[vs|FT ]ds.
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Figure 3.10: Volatility Swap Monte Carlo price estimates (straight lines) and LDP based

approximation (stars) for (η, v0, p) = (1.5, 0.04, 5); for Monte Carlo we use 200, 000

simulations and ∆t = 1
1008 .

We introduce the following stochastic process (V g,T )t∈[T,T+∆], for notational conve-

nience, as

V g,T
t :=

∫ T

0
g(t, s)dWs, (3.28)

and assume that the mapping s 7→ g(t, s) is in L2 for all t ∈ [T, T + ∆] such that the

stochastic integral in (3.28) is well-defined.

Proposition 3.6.1. The VIX dynamics in model (3.27), with volatility of volatility ν,

are given by

VIX2
T,ν :=

1

∆

∫ T+∆

T
ξ0(t) exp

(
νV g,T

t − ν2

2
E[(V g,T

t )2]

)
dt.

Proof. Follows directly from [JMM18, Proposition 3.1].
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We now define the following L2 operator Ig,T : L2 → C[T, T + ∆], and space H g,T as

Ig,T f(·) :=

∫ T

0
g(·, s)f(s)ds, H g,T := {Ig,T f : f ∈ L2}, (3.29)

where the space H g,T is equipped with the following inner product 〈Ig,T f1, Ig,T f2〉H g,T :=

〈f1, f2, 〉L2 . Note that the function g must be such that the operator Ig,T is injective so

that the inner product 〈·, ·〉H g,T on H g,T is well-defined.

Proposition 3.6.2. Assume that there exists h ∈ L2 such that
∫ ε

0 |h(s)|ds < +∞ for

some ε > 0 and g(t, ·) = h(t − ·) for any t ∈ [T, T + ∆]. Then, the space H g,T is the

reproducing kernel Hilbert space for the process (V g,T
t )t∈[T,T+∆].

Proof of Proposition 3.6.2. The proof of Proposition 3.6.2, which is similar to the proofs

given in Chapter 1, is made up of three parts. The first part is to prove that
(
H g,T , 〈·, ·〉H g,T

)
is a separable Hilbert space. Clearly Ig,T is surjective on H g,T . Now take f1, f2 ∈ L2

such that Ig,T f1 = Ig,T f2. For any t ∈ [T, T + ∆] it follows that
∫ T

0 g(t, s)[f1(s) −
f2(s)]ds = 0; applying the Titchmarsh convolution Theorem then implies that f1 = f2

almost everywhere and so Ig,T : L2 →H g,T is a bijection. Ig,T is a linear operator, and

therefore 〈·, ·〉H g,T is indeed an inner product; hence
(
H g,T , 〈·, ·〉H g,T

)
is a real inner

product space. Since L2 is a complete (Hilbert) space, there exists a function f̃ ∈ L2

such that the sequence {fn}n∈N converges to f̃ . Assume for a contradiction that f 6= f̃ ,

then, since Ig,T is a bijection, the triangle inequality yields

0 <
∥∥∥Ig,T f − Ig,T f̃∥∥∥

H g,T
≤
∥∥Ig,T f − Ig,T fn∥∥H g,T +

∥∥∥Ig,T f̃ − Ig,T fn∥∥∥
H g,T

,

which converges to zero as n tends to infinity. Therefore f = f̃ , Ig,T f ∈ H g,T and

H g,T is complete, hence a real Hilbert space. Since L2 is separable with countable

orthonormal basis {φn}n∈N, then {Ig,Tφn}n∈N is an orthonormal basis for H g,T , which

is then separable.

The second part of the proof is to show that there exists a dense embedding ι : H g,T →
C[T, T + ∆]. Since there exists h ∈ L2 such that

∫ ε
0 |h(s)|ds for all ε > 0 and g(t, ·) =

h(t − ·) for any t ∈ [T, T + ∆], we can apply [Che08, Lemma 2.1], which tells us that

H g,T is dense in C[T, T + ∆] and so we choose the embedding to be the inclusion map.

Finally we must prove that every f∗ ∈ C[T, T + ∆] is Gaussian on C[T, T + ∆], with
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variance ‖ι∗f∗‖H g,T ∗ , where ι∗ is the dual of ι. Take f∗ ∈ C[T, T + ∆]∗, then Remark

1.4.14 implies that ι∗ admits an isometric embedding ι∗ such that

‖ι∗f∗‖H g,T ∗ = ‖f∗‖L2(C[T,T+∆],µ) =

∫
C[T,T+∆]

(f∗)2dµ = VAR(f∗),

where µ is the Gaussian measure induced by the process on (C[T, T + ∆],B(C[T, T + ∆])) .

Theorem 3.6.3. For any γ > 0, the sequence of stochastic processes (εγ/2V g,T )ε>0

satisfies a large deviations principle on C[T, T + ∆] with speed ε−γ and rate function

ΛV , defined as

ΛV (x) :=


1

2
‖x‖2H g,T , if x ∈H g,T ,

+∞, otherwise.
(3.30)

Proof. Direct application of Theorem 1.5.14.

Remark 3.6.4. We now introduce a Borel subset of C[T, T + ∆], defined as

A := {∈ C[T, T + ∆] : h(x) ≥ 1 for all x ∈ R}.

Then, by a simple application of Theorem 3.6.3 and using that the rate function ΛV is

continuous on A, we can then obtain the following tail behaviour of the process V g,T :

lim
ε↓0

εγ logP
(
V g,T
t ≥ 1

εγ/2

)
= − inf

h∈A
ΛV (h), (3.31)

for any γ > 0 and t ∈ [T, T + ∆].

Remark 3.6.5. Let us again fix the kernel g as the rough Bergomi kernel and denote the

corresponding reproducing kernel Hilbert space by H η,α,T (to emphasise the parameter

values) and the corresponding process V g,T as V η,α,T . If x ∈H η,α,T it follows that there

exists f ∈ L2 such that x(t) =
∫ T

0 η
√

2α+ 1(t−s)αf(s)ds for all t ∈ [T, T+∆]. Clearly,

it follows that x ∈ H aη,α,T for any a > 0, as f ∈ L2 implies that 1
af =: fa ∈ L2. We

can compute the norm of x in each of these spaces to arrive at the following isometry:

‖x‖2H aη,α,T = ‖fa‖2L2 =
1

a2

∫ T

0
f2(s)ds =

1

a2
‖x‖2H η,α,T . (3.32)
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We may now amalgamate (3.30), (3.31), and (3.32) to arrive at the following statement,

which tells us how the large strike behaviour scales with the vol-of-vol parameter η in

the rough Bergomi model:

lim
ε↓0

εγ logP

(
V aη,α,T
t ≥ 1

εγ/2

)
= lim

ε↓0
εγ log

(
P

(
V η,α,T
t ≥ 1

εγ/2

)1/a2
)
. (3.33)

Indeed, (3.33) tells us precisely how increasing the vol-of-vol parameter η multiplica-

tively by a factor a in the rough Bergomi model increases the probability that the

associated process V g,T will exceed a certain level.

Before stating the main theorem of this Section, we first define the following rescaled

process:

V g,T,ε
t := εγ/2V g,T

t , Ṽ g,T,ε
t := V g,T,ε

t − εγ

2

∫ t

0
g2(t, u)du+ εγ/2, (3.34)

for ε ∈ [0, 1], t ∈ [T, T+∆]. We also define the following C ([T, T + ∆]× [0, 1]) operators

ϕ1,ξ0 and ϕ2, which map to C ([T, T + ∆]× [0, 1]) and C[0, 1] respectively, as

(ϕ1,ξ0f)(s, ε) := ξ0(s) exp(f(s, ε)), (ϕ2g)(ε) :=
1

∆

∫ T+∆

T
g(s, ε)ds. (3.35)

Note that in the definition of ϕ1,ξ0 in (3.35) we assume ξ0 to be a continuous, single

valued, and strictly positive function on [T, T + ∆]. This then implies that for every

s ∈ [T, T + ∆], the map ε 7→ (ϕ1,ξ0f)(s, ε) is a bijection and hence has an inverse,

denoted by ϕ−1
1,ξ0

, which is defined as (ϕ−1
1,ξ0

f)(s, ε) := log
(
f(s,ε)
ξ0(s)

)
.

Theorem 3.6.6. For any γ > 0, the sequence of rescaled VIX processes (eε
γ/2

VIXT,εγ/2)ε∈[0,1]

satisfies a pathwise large deviations principle on C[0, 1] with speed ε−γ and rate function

ΛVIX(x) := inf
s∈[T,T+∆]

{
ΛV
(

log

(
y(s, ·)
ξ0(s)

))
: x(·) = (ϕ2y)(·)

}
.

Proof of Theorem 3.6.6. First we recall Ṽ g,T,ε
t := V g,T,ε

t − εγ

2

∫ t
0 g

2(t, u)du+εγ/2. We be-

gin the proof by showing that the sequence of processes (V g,T,ε)ε∈[0,1] and (Ṽ g,T,ε)ε∈[0,1]

are exponentially equivalent [DZ10, Definition 4.2.10]. As g(t, ·) ∈ L2 for t ∈ [T, T + ∆],
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for each δ > 0 there exists ε∗ > 0 such that supt∈[T,T+∆]

∣∣∣εγ/2∗ − εγ∗
2

∫ T
0 g2(t, u)du

∣∣∣ ≤ δ.

Therefore, for the C[T, T + ∆] norm ‖ · ‖∞ we have that for all ε∗ > ε > 0,

P
(∥∥∥V g,T,ε − Ṽ g,T,ε

∥∥∥
∞
> δ
)

= P

(
sup

t∈[T,T+∆]

∣∣∣∣εγ/2 − εγ

2

∫ T

0
g2(t, u)du

∣∣∣∣ > δ

)
= 0.

Therefore lim supε↓0 ε
γ logP

(∥∥∥V g,T,ε − Ṽ g,T,ε
∥∥∥
∞
> δ
)

= −∞, and so the two sequences

of processes (V g,T,ε)ε∈[0,1] and (Ṽ g,T,ε)ε∈[0,1] are exponentially equivalent; applying [DZ10,

Theorem 4.2.13] then yields that (Ṽ g,T,ε)ε∈[0,1] satisfies a large deviations principle on

C[T, T + ∆] with speed ε−γ and rate function ΛV .

We now prove that the operators ϕ1,ξ0 and ϕ2 are continuous with respect to the

C([T, T + ∆] × [0, 1]) and C[0, 1] ‖ · ‖∞ norms respectively. The proofs are very sim-

ple, and are included for completeness. First let us take a small perturbation δf ∈
C([T, T + ∆]× [0, 1]):∥∥∥ϕ1,ξ0(f + δf )− ϕ1,ξ0(f)

∥∥∥
∞

= sup
ε∈[0,1]

s∈[T,T+∆]

∣∣∣ξ0(s)ef(s,ε)
(
eδ
f (s,ε) − 1

)∣∣∣
≤ sup

ε∈[0,1]
s∈[T,T+∆]

|ξ0(s)| sup
ε∈[0,1]

s∈[T,T+∆]

|ef(s,ε)| sup
ε∈[0,1]

s∈[T,T+∆]

|eδf (s,ε) − 1|.

Since ξ0 is continuous on [T, T + ∆] and f is continuous on [T, T + ∆] × [0, 1], they

are both bounded. Clearly eδ
f (s,ε) − 1 tends to zero as δf tends to zero and hence the

operator ϕ1,ξ0 is continuous. Now take a small perturbation δf ∈ C([T, T + ∆]× [0, 1]):∥∥∥ϕ2(f + δf )− ϕ2(f)
∥∥∥
∞

= sup
ε∈[0,1]

∣∣∣∣ 1

∆

∫ T+∆

T
δf (s, ε)ds

∣∣∣∣ ≤M,

where M := supε∈[0,1] δ
f (s, ε). Clearly M tends to zero as δf tends to zero, thus the

operator ϕ2 is also continuous.

For every s ∈ [T, T + ∆] we have the following: by an application of Proposition 1.5.13

and using the fact that ε 7→ (ϕ1,ξ0f)(s, ε) is a bijection for all f ∈ C[T, T + ∆] it follows

that the sequence of stochastic processes
((
ϕ1,ξ0 Ṽ

g,T,ε
s

)
(s, ε)

)
ε∈[0,1]

satisfies a large

deviations principle on C[0, 1] as ε tends to zero with speed ε−γ and rate function

Λ̂Vs (y) := ΛV
(
(ϕ1,ξ0y)−1(s, ·)

)
= ΛV

(
log

(
y(s, ·)
ξ0(s)

))
.
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A second application of Proposition 1.5.13 then yields that the sequence of stochastic

processes
(

(ϕ2(ϕ1,ξ0 Ṽ
g,T,ε
s ))(ε)

)
ε∈[0,1]

satisfies a large deviations principle on C[0, 1]

with speed ε−γ and rate function ΛVIX(x) = infs∈[T,T+∆]{ΛV
(
(ϕ1,ξ0y)−1(s, ·)

)
: x(·) =

(ϕ2y)(·)}. By definition, the sequence of processes
(

(ϕ2(ϕ1,ξ0 Ṽ
g,T,ε
s ))(ε)

)
ε∈[0,1]

is almost

surely equal to the rescaled VIX processes (eε
γ/2

VIXT,εγ/2)ε∈[0,1] and hence satisfies the

same large deviations principle.

Remark 3.6.7. Using Theorem 3.6.6, we can deduce the small-noise, large strike be-

haviour of VIX options. Indeed, for the Borel subset A of C[T, T + ∆] introduced in

Remark 3.6.4 we have that, for any γ > 0,

lim
ε↓0

εγ logP
(
V IXT,εγ/2 ≥ e

−εγ/2
)

= − inf
g∈A

ΛVIX(g).
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Chapter 4

Calibrating Rough Volatility

Models: a Convolutional Neural

Networks Approach

The appeal of rough volatility models- their ability to generate power law at-the-money

volatility skew and to accurately forecast future volatility- is clear. Calibration, however,

is highly nontrivial and is perhaps the final stumbling block that has prevented rough

volatility models being adopted by practitioners in the quantitative finance industry.

The aim of this Chapter is to provide a robust, fast, and accurate means of calibrating

the rough Bergomi model1.

Calibrated parameters for a given model are typically found to be those that minimise

the error between observed option prices in the market, and theoretical option prices

given by the model. In the case of rough volatility models, which are non-Markovian,

theoretical option prices tend to be computed via Monte Carlo methods, and therefore

the computational cost of calibration via minimisation becomes too high for practical

use. Instead, in this Chapter, we propose a novel calibration scheme using convolutional

neural networks, which are known to give fast and accurate estimations in a wide range

of applications.

1This Chapter includes results from article [Sto20].
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We begin Chapter 4 with an introduction to machine learning and convolution neu-

ral networks (referred to as CNNs from here) using [BCG16, Chapter 5], [KNTY18],

and [Yeg09, Chapter 1] as our guides. We establish the necessary machine learning

terminology, and describe the structure and mechanics of a CNN.

4.1 An Introduction to Machine Learning and Convolu-

tion Neural Networks

4.1.1 Machine Learning Fundamentals

The supervised machine learning paradigm is, in its most simple form, the following:

Given a set of input data {xi}i∈{1,...,N} with corresponding output data

{yi}i∈{1,...,N} can we find a function g such that g(xi) ≈ yi for i ∈ {1, ..., N}?

Indeed, any supervised machine learning algorithm should answer the above question,

albeit when the meaning of g(xi) ≈ yi is specified in a precise and meaningful way.

The predictive performance of a machine learning algorithm is measured in terms of

a loss function `(·, ·), which associates a loss `(g(xi),yi) to the prediction g(xi) of

the true value yi. Clearly the loss function should satisfy `(x, x) = 0 for all x. In

general, supervised learning algorithms aim to find g that minimises the expected loss
1
N

∑N
i=1 `(g(xi),yi). As well as minimising the expected loss, the function g should

predict well on unseen data; that is, it should also satisfy g(xj) ≈ yj for j ∈ {N +

1, ...,M} or equivalently produce a small expected loss 1
M−N

∑M
i=N+1 `(g(xi),yi).

Let us now introduce some relevant machine learning terminology, which will be used

throughout the Chapter.

• Classification problem: A machine learning problem where the output data

{yi}i∈{1,...,N} take values in some countable set.

• Epoch: The number of iterations executed by a machine learning algorithm on

the training set.
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• Hyperparameter: a variable that remains unchanged during the training pro-

cess.

• Overfitting: the scenario where a machine learning algorithm learns noise in

the training set, rather than the desired underlying signal. An overfitted model

will perform poorly on unseen data, i.e. have a high test error compared to the

training error.

• Regression problem: A machine learning problem where the output data {yi}i∈{1,...,N}
take continuous values.

• Test set: the set ({xj}, {yj})j∈{N+1,...,M}, which is used to measure the predictive

power of the machine learning algorithm.

• Test loss: the value 1
M−N

∑M
i=N+1 `(g(xi),yi) for a given loss function `.

• Training: the process of finding the function g. Also referred to as the learning

process.

• Training set: the set ({xi}, {yi})i∈{1,...,N}, which is used to find the function g.

• Training loss: the value 1
N

∑N
i=1 `(g(xi),yi) for a given loss function `.

• Validation set: a subset of the training set, used during training to evaluate the

model and test for overfitting.

• Validation loss: analogous definition to training and test loss, instead applied

to the validation set.

Remark 4.1.1. In this introductory Section we have purely focused on supervised

learning, where the input data {xi}i∈{1,...,N} has a corresponding output data {yi}i∈{1,...,N}.
The case where the output data is unknown is referred to as unsupervised learning.

4.1.2 Convolutions Neural Network Structure and Mechanics

Before describing the structure of a CNN we must first describe an artificial neural

network. An artificial neural network is a biologically inspired system of interconnected
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processing units, where each processing unit is called a layer. Inputs to each layer, apart

from the first layer, are outputs from previous layers. A layer is composed of a number

of nodes, and each node in a given layer is connected to the nodes in a subsequent

layer, thus forming a network; each edge in this network has a weight associated to it.

The first processing unit is called the input layer, and the final processing unit is the

output layer. The processing unit or units between the input layer and output layer

are referred to as hidden layers; typically artificial neural networks have more than

one hidden layer. Figure 4.1 below illustrates the structure of a simple artificial neural

network2. A formal, mathematical definition [BGTW19, Definition 4.1] of a neural

network is given below in Definition 4.1.2.

Figure 4.1: An example of a neural network, with two hidden layers. The input layer

has three nodes; the hidden layers have five and six nodes respectively; the output layer

has two nodes.

2 The image was drawn using Python, and the code used is available on Github:

https://gist.github.com/craffel/2d727968c3aaebd10359.
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Definition 4.1.2. Let L ∈ N denote the number of layers in the neural network. The

dimension of each hidden layer is denoted by N1, ..., NL−1 ∈ N, and the respective

dimension of the input and output layer is denoted by N0, NL ∈ N. For A` ∈ RN`−1×N`

and b ∈ RN` let the affine function W` : RN`−1 → RN` be defined as W`(x) := A`x+ b`,

for ` = 1, ..., L. The entries of matrix A` are the weights connecting each node in layer

` − 1 to layer `. The neural network, with (non-linear) activation function σ, is then

the function N : RN0 → RNL defined as the composition

NL(x) := WL ◦ (σ ◦WL−1) ◦ ... ◦ (σ ◦W1)(x). (4.1)

The learning process of an artificial neural network essentially boils down to finding the

optimal weights in each matrix A` that minimise a given loss function, which depends

on the task at hand i.e. if it is a classification problem or regression problem being

solved. These optimal weights are then used to formulate the function g, which can be

used for predictions on the test set.

Remark 4.1.3. We take this opportunity to emphasise that the activation function

σ should non-linear, otherwise the neural network is simply a composition of linear

functions, and hence is itself linear.

Remark 4.1.4. Deep neural networks, those with more than one hidden layer such that

L ≥ 3, typically have superior predictive power to shallow neural networks, which only

have one hidden layer such that L = 2. The predictive power of deep neural networks

lies in the composition of many non-linear functions, which allows the neural network

NL to belong to a very rich space of functions. In comparison, a shallow neural network

N2 belongs to a space of linear combinations of single non-linear functions, all of which

have the same dimension. It follows, then, that adding layers is more significant for

improving predictive power than increasing the number of nodes in a shallow neural

network. Consequently, we can think of composition of non-linear functions as being

more “powerful” than addition of non-linear functions. There is much empirical evidence

to support what is written above; a good overview is given by Mhaskar, Liao, and Poggio

[MLP17].

CNNs are a class of artificial neural networks, where the hidden layers can be grouped

into different classes according to their purpose; one such class of hidden layer is the
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eponymous convolutional layer. Below we describe the classes of hidden layers used in

our CNN. Of course, this list is not exhaustive, and there exist many classes of hidden

layers that we omit for means of brevity. Note also that we describe a CNN in the

context of the problem we are trying to solve, where the input data are one dimensional

vectors. CNNs can of course also be used on higher dimensional input data, but the

fundamental structure and different roles of the hidden layers do not change.

• Convolutional Layer: In deep learning, the convolution operation is a method

used to assign relative value to entries of input data, in our case one dimensional

vectors of time series data, while simultaneously preserving spatial relationships

between individual entries of input data. For a given kernel size k and an input

vector of length m, the convolution operation takes entries 1, ..., k of the input

vector and multiplies by the kernel element-wise, whose length is k. The sum of

the entries of the resulting vector are then the first entry of the feature map. This

operation is iterated m+ 1− k times, thus incorporating every entry in the input

data vector into the convolution operation. The output of the convolutional layer

is the feature map.

For example, let (1, 2, 1, 0, 0, 3) be our input vector, and (1, 0, 1) be our kernel;

here the kernel size is 3. The first iteration of the convolution operation involves

taking the element-wise multiple of (1, 2, 1) and (1, 0, 1): (1, 0, 1) is produced and

the sum, equal to 2, is computed. This is the first entry of the feature map. The

resulting feature map in this example is then (2, 2, 1, 3).

Clearly, the centre of each kernel cannot overlap with the first and final entry of

the input vector. Zero-padding, sometimes referred to as same-padding, preserves

the dimensions of input vectors and allows more layers to be applied in the CNN:

zero-padding is simply the extension of the input vector and the setting of the first

and final entries as 0, while leaving the other entries unchanged. In our example,

the input vector becomes (0, 1, 2, 1, 0, 0, 3, 0) after zero padding.

• Activation Layer: The activation layer is a non-linear function σ that is applied

to the output of the convolutional layer i.e. the feature map; the purpose of

the activation layer is indeed to introduce non-linearity into the CNN. Examples
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of activation functions include the sigmoid function and the hyperbolic tangent

function. In our CNN we use the ‘LeakyReLU’ activation function, defined as

fα(x) :=

x, if x > 0,

αx, otherwise.

The LeakyReLU activation function allows a small positive gradient when the unit

is inactive.

• Max Pooling Layer: For a given pooling size p, the max pooling layer returns

a vector whose entries are the maximum among the neighbouring p entries in the

feature map. For example, for feature map (1, 3, 8, 2, 1, 0, 0, 4, 6, 1) and p = 3 the

max pooling output is (8, 8, 8, 8, 8, 2, 4, 6, 6, 6).

Other pooling techniques apply the same idea, but use different functions to eval-

uate the neighbouring p entries in the feature map. Examples include average

pooling, and L2-norm pooling, which in fact uses the Euclidean norm in mathe-

matical nomenclature.

• Dropout Layer: Dropout is a well-known technique incorporated into CNNs

in order to prevent overfitting. Without the addition of a dropout layer, each

node in a given layer is connected to each node in the subsequent layer; dropout

temporarily removes nodes from different layers in the network. The removal of

nodes is random and determined by the dropout rate d, which gives the proportion

of nodes to be temporarily dropped. Note that dropout is only implemented during

training; during testing the weights of each node are multiplied by the dropout

rate d.

An excellent overview of the technique is given by Hinton, Krizhevsky, Salakhut-

dinov, Srivastava, and Sutskever [HKSSS14]. The authors provide an extensive

study to show how predictive performance of CNNs, in a number of different

settings, is improved using dropout.

• Dense Layer: Also referred to as the fully connected layer, each node in the input

layer is connected to each node in the output layer as the name suggests. After

being processed by the convolutional, activation, pooling, and dropout layers,
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the extracted features are then mapped to the final outputs via a subset of the

dense layer, an activation function is then applied subsequently. This activation

function is chosen specifically for the task that the CNN is required to execute, i.e.

binary/multi-class classification, or regression to output a continuous value. The

final output from the dense layer has the same number of nodes as the number of

classes in the output data.

Remark 4.1.5. The number of layers L, the nodes per layer NL, the kernel size k, the

pooling size p, and the dropout rate d are all examples of CNN hyperparameters.

Having described the structure, we now focus on the mechanics of training the CNN.

As mentioned previously, training a CNN corresponds to finding weights in the fully

connected layer, and kernels in the convolutional layers, that minimise a specific loss

function. Forward propagation is the name for the process by which input data is

translated to an output through layers of the CNN; it is used to give the value of the

loss function, and therefore the predictive power of the CNN, for certain weights and

kernels. The back-propagation algorithm is used to compute the gradient of the loss

function from the error values of the loss function computed via forward propagation;

weights and kernels, depending on the values of the loss function, are then updated

iteratively. In the case of our CNN the Adam optimizer is used. More details on the

back-propagation algorithm and the Adam optimizer can be found in [BCG16, Section

6.5, pages 200-219] and [BK17] respectively.

For the classification problem we solve below, we employ the categorical cross entropy

function as the loss function; for the regression problem, the mean squared error function

is used.

4.2 Classification Methodology and Results

The aim of the following two Sections is to investigate whether a CNN can learn the

Hölder regularity from rough Bergomi and fractional Brownian motion (fBm) sample

paths; in other words, we seek to establish if the CNN can learn ‘roughness’. CNNs

are known to be very powerful machine learning tools with a vast array of applications
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including (but of course not limited to) image classification [HKS12], [BCGL97], [SZ15];

speech recognition [DHK13], [ADY13]; and for self-driving cars [CKSX15], [IJKW17].

In the field of mathematical finance, neural networks have recently become an area of

interest for research. Bayer and Stemper [BS18] used neural networks to learn implied

volatility surfaces; the network is then used as part of a wider calibration scheme for

options pricing. Similarly, Horvath, Muguruza, and Thomas [HMT19] use neural net-

works to approximate the pricing function of vanilla options; the trained network is then

used to reduce calibration time. Buehler, Gonon, Teichmann, and Wood [BGTW19] use

deep reinforcement learning techniques to establish a hedging framework for derivative

portfolios. Jacquier and Oumgari [JO19] use deep learning techniques to approximate

the solution of the path dependent pricing PDE for a rough local-stochastic volatility

model. To the best of our knowledge, however, this is the first piece of research to

explore the use of CNNs to learn the Hölder regularity of a given stochastic process.

We hope to establish a robust means for calibrating rough volatility models; indeed,

once the CNN has been trained we want it to perform well when making predictions

on unseen data. We begin with a ‘toy’ classification experiment: we use CNNs to solve

the classification problem for a discrete set of H values. While the problem setting

may be unrealistic, and unsuitable for practical applications to calibration, it allows us

to establish that CNNs are indeed a suitable tool for learning Hölder regularity. The

methodology is outlined is Section 4.2.1 and the results are given in Section 4.2.2. We

then move on to the regression problem, giving the methodology in Section 4.3.1 and

the results in Section 4.3.2, and show that the same CNN architecture can additionally

be used to solve that regression problem.

If the CNN is able to accurately learn α in rough Bergomi and H in a fBm, then we

are making an important contribution to the field of mathematical finance, applied

probability, and machine learning.

4.2.1 Classification Methodology

We use trajectories of fractional Brownian motion and of the normalised log volatility

process (log(vt/v0))t≥0 of the rough Bergomi model as our input data, with the corre-
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sponding Hölder regularity as the output data. We use MATLAB’s wfbm(H,L) function

to generate the fractional Brownian motion trajectories where H is the Hurst parameter

H and L is the length of the fBm vector. We set L= 500, and let the Hurst parameter

H take values in {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. To simulate rough Bergomi we

use Cholesky decomposition; this very well-known simulation technique is recommended

because the resulting sample paths have the exact distribution, rather than an approxi-

mate distribution, of the normalised log volatility process of the rough Bergomi model.

The code used is publicly available on Github3.

By Proposition 1.3.6, the Hölder regularity of the normalised log volatility process is

independent of the value of η; the same proposition proves that the process Z, defined

in (1.9), and the normalised log volatility process have the same Hölder regularity. We

therefore set η = 1 in the model (1.11) above when generating the sample paths, for

simplicity, and we also ignore the deterministic drift term t2α+1.

Every member of the resulting input data set has the following form: a vector xi

containing 500 entries, which is a rough Bergomi or fBm sample path with a given α

or H, and a label yi ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, which corresponds to

that given α or H used to generate xi. Recall that H = α+ 1/2 in the rough Bergomi

model. We then split the input data into training and test sets; we subsequently create

a validation set from part of the test set. The sizes of each training/test/validation set

for the fractional Brownian motion data and rough Bergomi data are given in Tables

4.1 and 4.5 respectively.

Data set Number of samples

Training set 20,149

Test set 10,795

Validation set 5,038

Table 4.1: Fractional Brownian motion input data size description.

We use a one dimensional CNN, since our input xi are vectors, with three layers of

kernels, where the kernel size for each kernel is 20 and each layer is succeeded by the

Leaky ReLU activation function with alpha = 0.1; we add max pooling layers, each

3https://github.com/amuguruza/RoughFCLT/blob/master/rDonsker.ipynb
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Data set Number of samples

Training set 10,080

Test set 5,400

Validation set 2,520

Table 4.2: Rough Bergomi input data size description.

of size 3, and dropout layers between each layer of kernels. The values for kernel size,

max pooling size, dropout rate, and rate for the Leaky ReLU activation function were

chosen because they achieved the lowest error among all values tested. By no means are

these hyperparameters chosen in the most optimal way but are sufficiently optimal to

achieve accurate predictions, as will be shown below. We clarify the specific structure

of the hidden layers of the CNN below:

• the first layer, with 32 kernels;

• max pooling layer;

• a dropout layer, with rate = 0.25;

• the second layer, with 64 kernels;

• max pooling layer;

• a dropout layer, with rate = 0.25;

• the third layer, with 128 kernels;

• max pooling layer;

• a dropout layer, with rate = 0.4;

• a dense layer with 128 units;

• a dropout layer, with rate = 0.3.

The reason for choosing this structure for our CNN, which is fairly standard for image

classification in the computer science discipline, is two fold. The first is that, heuristi-

cally, images are classified by considering the values of each entry of an image matrix
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together with the neighbouring entries; more emphasis is put on those neighbouring

values than entries far from the entry being considered. To study the Hölder regularity

of the sample path of a stochastic process, the values of neighbouring points of each

entry in a sample path vector will provide the most information about the Hölder regu-

larity of that process. For this reason we employ an image processing-type architecture.

The second is to avoid the task of choosing optimal hyperparameters for the number of

filters in each layer.

4.2.2 Classification Results

We train the CNN, with the architecture described above, setting batch size= 64 as

is fairly standard, and epochs= 30 as these values gave the highest test accuracy and

lowest categorical cross entropy loss (our chosen loss function for classification). Note

that we train on the fractional Brownian motion input data and rough Bergomi input

data separately. The test loss and test accuracy results for fractional Brownian motion

and rough Bergomi are given in Tables 4.3 and 4.4; loss plots are given in Appendix

B.1.

Test Loss Test Accuracy

0.613 0.750

Table 4.3: Fractional Brownian motion classification results.

Test Loss Test Accuracy

0.247 0.873

Table 4.4: Rough Bergomi classification test results.

The results presented in this Section are indeed very promising: we see that both H

and α can be predicted to a high degree of accuracy using CNNs. In fact, we conjecture

that a higher test accuracy could be attained if we optimised the hyperparameter values

in our CNN. Additionally, invoking a k-fold cross validation could further increase the

test accuracy.
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4.3 Regression Methodology and Results

We now move on to solving the more realistic regression problem; the CNN will now

output a continuous value for the Hölder exponent, rather than classifying the output

as a member of a discrete set. We emphasise that the architecture of the CNN remains

unchanged from that given above.

4.3.1 Regression Methodology

Since we are aiming to use this trained CNN to calibrate the rough Bergomi model to

realised volatility market data, we focus on using simulated rough Bergomi sample paths

as our input data. Once again, the simulation is done using Cholesky decomposition;

we first set η = 1 and ignore the deterministic drift term as before.

For each α value we generate 5,000 rough Bergomi samples paths. We then split the

input data into training and test sets; we subsequently create a validation set from part

of the test set. The sizes of each training/test/validation set of the rough Bergomi data

are given in Table 4.5. Since we know a-priori that H ≈ 0.1, we choose to only generate

rough Bergomi sample paths with α < 0 i.e. H < 1/2. Note that we will now refer to

the value of α in the rough Bergomi model in terms of H = α + 1/2, the reason for

which will be clarified below.

Data set Number of samples

Training set 14,000

Test set 7,500

Validation set 3,500

Table 4.5: Rough Bergomi input data size description.

Selection of H values

We begin by letting H, and hence the corresponding label yi, take values in the discrete

grid {0.1, 0.2, 0.3, 0.4, 0.5}. We also sample 5 H values from two probability distribu-
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tions: the Uniform distribution4 on (0,0.5) and the Beta(1,9) distribution5. This not

only allows us to avoid discreteness in the output of the network; it should also make the

network more robust when it comes to calibration, as H values for historical volatility

data will almost certainly not be on the discrete grid {0.1, 0.2, 0.3, 0.4, 0.5}. Futhermore,

we are also able to emphasise the “rough” values of H, i.e. H ≈ 0.1, particularly in the

case of the Beta distribution.

Recall the pdf of the Beta(α, β) distribution is given by fα,β(x) = xα−1(1−x)β−1

B(α,β) I(0,1)(x),

where the function B is defined as B(α, β) := Γ(α)Γ(β)
Γ(α+β) . The Beta distribution has sup-

port [0, 1] and therefore we cannot sample α values from this distribution, but sampling

H values does make sense. We set α = 1, β = 9, so that the expected value of the

Beta distribution is 0.1, in accordance with the existing empirical studies [GJR18a] and

[BLP17a]. For each H value we generate 5,000 rough Bergomi samples paths.

The CNN calibration method should also be robust to the dimensions of the input

data, and training the CNN on vectors of length 100 should produce similar predictive

performance to the CNN trained on vectors of length 500, as in the classification case

presented above. Consequently we train the regression CNN with the length of the

input vector taking values in {100, 200, 300, 400, 500}.

4.3.2 Regression Results

We now move on to solving the regression problem, in order to find the Hölder exponent

from sample path input data. In Section 4.3.3 we use the rough Bergomi model described

above to generate our input data; in Section 4.3.4 we additionally train the CNN with

the above rough Bergomi input data, except with η 6= 1, as well as with random η and

H for each sample path. We also train with fBm sample paths as input data. The aim is

to illustrate the robustness of this novel method using CNNs. In Section 4.3.5 we briefly

investigate if the CNN approach can be extended to additionally learn the parameter

η, as well the parameter H. We finish by investigating the trained CNNs’ prediction

accuracy of the Hölder regularity of mean-reverting Ornstein-Uhlenbeck processes in

4The corresponding set of possible H values is {0.05, 0.18, 0.29, 0.31, 0.44}.
5The corresponding set of possible H values is {0.02, 0.07, 0.06, 0.13, 0.22}.
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Section 4.3.6.

4.3.3 Rough Bergomi Test Results

The sizes of each training/test/validation set of the rough Bergomi data are given in

Table 4.5. We train the CNN three times: for discretely sampled H, for Uniformly

sampled H, and for Beta sampled H.

We present the test results for the CNN in Tables 4.6, 4.7, and 4.8. We use the mean

square error as the loss function in the CNN, and report the predictive performance of

the CNN using the root mean square error (RMSE), so that the predicted value and true

value of H are of the same unit of measurement. We also give the time taken, in sec-

onds, to complete the training and testing of the CNN6. The loss plots are given in Ap-

pendix B.2. The Python code is available here: https://github.com/henrymstone/CNN-

repository.

We train the network with the architecture described above, setting batch size= 64

as is fairly standard, and epochs= 30 as this value gave the lowest mean square error.

As a comparison, we also use the least square (LS) calibration approach suggested by

[GJR18a, Section 2.1] on the test set used for the CNN, and compute the loss as the

root mean square error between the predicted and true values for H.

Input length RMSE (CNN) Training Time Test Time RMSE (LS) Time

100 1.041× 10−2 69.77 0.76 2.118× 10−1 591.76

200 8.196× 10−3 74.89 0.75 2.046× 10−1 622.00

300 1.096× 10−2 80.92 0.79 2.025× 10−1 635.65

400 8.263× 10−3 92.02 0.93 2.014× 10−1 634.22

500 1.232× 10−2 93.76 0.93 2.010× 10−1 627.62

Table 4.6: Test results for discretised H.

For each input length, the predictive performances of the CNNs trained on H ∼
6All computations were executed in Python, using the Keras module to build and train the network,

on a Macbook pro with a 2.6 GHz Intel Core i5 processor and 8 GB 1600 MHz DDR3 memory. The

code was run on Google Colaboratory, using the platform’s GPU running capabilities.
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Input length RMSE (CNN) Training Time Test Time RMSE (LS) Time

100 1.137× 10−2 66.66 0.68 1.989× 10−1 611.61

200 7.910× 10−3 72.20 0.73 1.927× 10−1 620.72

300 5.115× 10−3 79.80 0.78 1.907× 10−1 630.75

400 9.409× 10−3 86.35 0.82 1.895× 10−1 634.24

500 1.282× 10−2 96.79 0.93 1.892× 10−1 628.26

Table 4.7: Test results for H ∼ Uniform(0.0, 0.5).

Input length RMSE (CNN) Training Time Test Time RMSE (LS) Time

100 6.672× 10−3 70.71 0.72 1.040× 10−1 616.74

200 7.193× 10−3 73.26 0.70 9.962× 10−2 626.77

300 1.207× 10−1 80.63 0.74 9.791× 10−2 637.45

400 1.171× 10−2 87.09 0.75 9.699× 10−2 637.33

500 1.207× 10−1 94.20 0.77 9.663× 10−2 644.60

Table 4.8: Test results for H ∼ Beta(1, 9).

Uniform(0.0, 0.5) and discretised H are similar, and in each case the CNN approach

clearly outperforms the least square approach in terms of predictive power, by one or

two orders of magnitude. ForH ∼ Beta(1, 9), the CNN also outperforms the least square

approach, again by one or two orders of magnitude, when the input vector length is 100,

200 or 400; the accuracy of the CNN is slightly poorer than the least square approach

for the other input vector lengths.

As one would expect for both calibration approaches, the time taken in both cases is,

in general, an increasing function of the length of the input vector for each method of

sampling H. Since we are able to train the CNN using Google Colaboratory’s GPUs,

and Python’s Keras module has been optimised for execution on GPU, the time taken

for training and testing is approximately eight times less than the least square approach.

The training and test times for each sampling method are all very similar.

The above analysis indicates that decreasing the length of the input vector does not

significantly worsen the predictive performance of the CNN; in fact when H ∼ Beta(1, 9)

the performance is improved, when comparing the performance of the length 100 input
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vector and the length 500 input vector.

4.3.4 Robustness Test Results

Following the analysis in Section 4.3.3, we set the input vector length to be 100. We

then generate our input data by letting η take values in {0.25, 0.8, 1.3, 2.5} in the rough

Bergomi model, and use discretised sampling for H to generate 5,000 sample paths for

each H. We give the results in Table 4.9; as before we also include the root mean square

error (RMSE) and time taken in seconds for the least square (LS) approach of [GJR18a],

applied to the test set as a comparison. Plots of the training error and validation error

are given in Appendix B.3.

η RMSE (CNN) Training Time Test Time RMSE (LS) Time

0.25 8.206× 10−3 66.81 0.63 2.122× 10−1 666.79

0.8 1.137× 10−2 66.93 0.60 2.122× 10−1 665.68

1.3 1.473× 10−2 67.22 0.66 2.122× 10−1 671.11

2.5 9.003× 10−3 67.27 0.63 2.122× 10−1 667.16

Table 4.9: Rough Bergomi regression results for η 6= 1 and input vector length=100.

We can see that the CNN approach vastly outperforms the LS approach in each case,

both in terms of the accuracy of the predictions and the time taken. The CNN’s

performance for η = 0.8, 1.3 is slightly worse than for the other two values of η, but

is still superior to the LS approach. Note that values for the RMSE values for the LS

approach are only equal when rounded to three decimal places.

We further extend the robustness test on rough Bergomi data as follows: we begin by

generating 25,000 η ∼ Uniform(0, 3) and H ∼ Beta(1, 9), and then use these values to

simulate 25,000 rough Bergomi sample paths of length 100, each with its own unique

and random η and H. The corresponding training, test, and validation sets thus remain

the same size. The results are presented in Table 4.10; as above we include the root

mean square error and time taken for the LS approach as a comparison. Plots of the

training error and validation error are given in Appendix B.4.

Interestingly, when η ∼ Uniform(0, 3) and H ∼ Beta(1, 9) for each sample path, the
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predictive power of the CNN is only inferior, in the worst case, by one order of magnitude

compared to when the values for either η or H are fixed. Furthermore, the CNN

approach maintains its significant advantage over the LS approach, both in terms of

predictive power and speed.

RMSE (CNN) Training Time Test Time RMSE (LS) Time

1.382× 10−2 66.52 0.61 1.499× 10−1 598.51

Table 4.10: Rough Bergomi regression results for η ∼ Uniform(0, 3), H ∼ Beta(1, 9),

and input vector length=100.

We conclude this robustness test by using fBm sample paths, generated using Cholesky

decomposition, as input data to train and test the CNN. For each H we simulate 5,000

sample paths of length 100; we employ the discretised H, H ∼ Uniform(0.0, 0.5), and

H ∼ Beta(1, 9) sampling methods. The results are given in Table 4.11 and the plots of

the training error and validation error are given in Appendix B.5.

Sampling RMSE (CNN) Training Time Test Time RMSE (LS) Time

Discretised 2.483× 10−2 72.79 0.65 2.346× 10−1 635.18

Uniform 2.001× 10−2 71.95 0.64 2.090× 10−1 615.74

Beta 1.945× 10−2 72.20 0.67 9.785× 10−2 622.36

Table 4.11: fBm regression results for discretised H, H ∼ Uniform(0.0, 0.5), and H ∼
Beta(1, 9).

The CNN maintains its speed advantage over the LS method for each sampling method

for H, as well as maintaining superior predictive performance, by an order of magnitude.

The results from this final part of the robustness test allow us to conclude that CNNs

can indeed identify Hölder regularity from a set of sample paths, thus answering the

question posed at the start of the Chapter.

4.3.5 Extension to Learning η

In this Subsection we briefly explore whether the CNN can learn the value of η, as well

as H. We use the rough Bergomi model, with η ∼ Uniform(0, 3), H ∼ Beta(1, 9) for
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each sample path, and input vectors of length 100 as our input data, as above; the

corresponding output variable then becomes a two-dimensional vector yi = (Hi, ηi).

We continue to use the root mean square error as a measure of predictive power, and

compare to the least square approach as above. The least square (LS) approach can

indeed be used to estimate the value of η [GJR18a, Section 3.4], although the authors

use the notation ν instead of η. The results are given in Table 4.12, with loss plots

given in Appendix B.6.

RMSE (CNN) Training Time Test Time RMSE (LS) Time

0.666 71.82 0.62 1.170 613.62

Table 4.12: Regression results for learning H and η, with input vector length=100.

Encouragingly, we see that the CNN approach still outperforms the LS approach for

both accuracy and time; however the CNN approach is approximately twice as accurate

as the LS approach, compared to the orders of magnitude in the cases above. Note that

we kept all hyperparameter values unchanged; it is likely that superior predictive power

could be achieved with some tuning of the hyperparameter values in the CNN. This is

not the focus of this study, however, and we leave this question to further research.

Remark 4.3.1. We conclude the above results with a remark on the speed and accuracy

advantages of the CNN approach, from a theoretical perspective. The above results show

the CNN method to be more accurate, by orders of magnitude, and significantly faster

than the existing method suggested in [GJR18a] when estimating H on simulated rough

Bergomi and fBm data. The explanation for the speed advantage of the CNN method

is that once the network has been trained, estimations are made by the straightforward

computation of the composition (4.1) given in Definition 4.1.2. On the other hand,

the LS approach requires a number of successive regressions to be executed in order to

estimate H. Clearly then the CNN method will be faster than the LS approach. We

now recall our motivation that justifies the use of a CNN to estimate H: the predictive

power of the CNN lies in the convolutional operator, which assigns a value to each

entry xji of an input vector xi; this value is determined by the relative values of the

entries neighbouring xji . To estimate the Hölder regularity of a stochastic process, the

values of neighbouring points of each entry in a trajectory vector will provide the most
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information about the Hölder regularity of that trajectory, and thus a CNN is indeed

a valid means of estimating H. The CNN is able to detect very subtle path regularity

properties, via interated applications of the convolutional operator, allowing for very

accurate predictions of H. Furthermore, the LS estimation is based on an approximation

of the qth moment of an increment of log volatility, whose accuracy is highly dependent

on the choice of q, while the CNN approach is completely independent of the choice of

q. Together, this explains why the CNN approach gives more accurate H estimations

than the LS approach.

4.3.6 Robustness Test Results on a (Mean-reverting) Ornstein-Uhlenbeck

Process

We finish this Section with a comparison of the performance of the CNN and LS

approaches on a (mean-reverting) Ornstein-Uhlenbeck process. Recall that a (mean-

reverting) Ornstein-Uhlenbeck process X satisfies the following SDE:

dXt = (a− bXt)dt+ cXtdWt, X0 = x0 ∈ R,

where W is a standard Brownian motion, and that X is γ-Hölder continuous for all

γ ∈ (0, 1/2); therefore we expect both approaches to estimate H ≈ 0.5.

We set the input length to be 100 for the CNN, using the Discretised and Uniform

H sampling methods detailed above7 to train the CNN. Each trained network is then

used to estimate H on trajectories of a (mean-reverting) Ornstein-Uhlenbeck process,

which are simulated using the Euler-Maruyama method. We simulate 1000 trajectories

of length 100, setting (x0, a, b) = (0.1, 1., 2.1), and report the mean estimated H values

for the CNN and LS approaches in Table 4.13 below, for the ‘high volatity’ (c = 3) and

‘low volatility’ (c = 0.3) regimes.

The results in Table 4.13 provide compelling evidence that the CNN is indeed learning

the Hölder regularity of the sample path, as the mean H estimates for the CNN are

sufficiently close to 0.5. Note that the mean LS H estimates are significantly further

7We do not experiment with the Beta sampling method, since those H values are concentrated

around 0.1, and so will produce poor estimations when we expect H ≈ 0.5.

118



c CNN (Discretised) CNN (Uniform) LS

3 0.46 0.42 0.22

0.3 0.49 0.44 0.67

Table 4.13: Mean H estimates for a (mean-reverting) Ornstein-Uhlenbeck process X.

from 0.5. The results provide further evidence that the CNN approach is preferable to

the LS approach, which is not only slower and less accurate than the CNN approach

but may also incorrectly identify roughness in data.

4.4 Calibration Using CNNs

We finish by solving the calibration problem that motivated Chapter 4. Indeed, existing

calibration techniques for the rough Bergomi (rBergomi) model are still in need of

development:

“Calibration of the rBergomi model is not easy... So far, we cannot claim to

have had real success with any of these approaches”.

Jim Gatheral, ‘Rough volatility: an overview’, Global Derivatives Trading

and Risk Management 2017 Barcelona presentation, page 46.

The method predicts H accurately on simulated data, but in practice volatility swaps

tend to be illiquid for maturities less than 8 months, and therefore it is difficult to

use this method for accurate calibration in practice. Another technique, proposed by

Chang [Cha14], suggests using maximum likelihood estimation to estimate H. While

the method accurately predicts H from simulated fBm data, the computational cost of

this approach is too high for practical application in the quantitative finance industry.

Lastly we consider the least squares method of Gatheral, Jaisson, and Rosenbaum

[GJR18a]. Inspired by the qth moment formula8 for increments of a fBm, the authors

suggest estimation of H via a linear regression of the log of lagged qth moments of the

8 For a fBm WH , the following holds for all q > 0: E[|WH
t+∆ −WH

t |q] = Kq∆
qH , where Kq is the

absolute qth moment of a standard normal distribution.
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log volatility process against the log of the lags. The method, however, is sensitive

to the choice of q; in particular the method does not perform well for higher order

moments. Additonally, in Section 4.3.2, we demonstrated that the least squares method

will provide erroneous H estimates for processes exhibiting mean reversion.

We begin by using the trained CNNs from Section 4.3.3 to predict the Hölder exponent of

historic realised volatility data from the Oxford-Man Institute of Quantitative Finance,

which is free and publicly available9. We choose the length of the input vectors to be 100

from the analysis given in Section 4.3.3. We took a sample of 10 different indices10 from

the 31 available; for each index we then used a time series of 200 sequential data points

to create 11 vectors of length 100 (entries 0 to 100, 10 to 110, and so on) to predict

the Hölder exponent for each index. We compute the root mean square error between

the CNN prediction and the least square prediction, and the standard deviation of the

difference between the two predictions; see Table 4.14.

Sampling Method Root Mean Square Error Standard Deviation

Discretised H 5.558× 10−2 2.900× 10−3

H ∼ Uniform(0.0, 0.5) 2.444× 10−1 1.141× 10−2

H ∼ Beta(1, 9) 4.253× 10−2 1.098× 10−3

Table 4.14: Calibration results

Indeed, we can see that this set of results is very promising. In each case, both the

root mean square error and the standard deviation are small; note that both root mean

squared error values and the standard deviations of discretised H and H ∼ Beta(1, 9)

are an order of magnitude greater than for H ∼ Uniform(0.0, 0.5). This therefore

indicates that the calibration values attained by the network are very close to those

attained by the least squares approach. Note that this in turn provides further evidence

that H ≈ 0.1, further corroborating the findings of [GJR18a] and [BLP17a].

We can state, therefore, that this calibration scheme is precise enough to be used in

practice, where we recommend using H ∼ Beta(1, 9) to train the network with input

9https://realized.oxford-man.ox.ac.uk/data/download
10AEX, All Ordinary, DAX, FTSE 100, Hang Seng, NIFTY 50, Nasdaq 100, Nikkei 225, S&P500 ,

Shanghai Composite.
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length 100, due smaller root mean squared error and standard deviation in testing, the

nondiscretised network output, and emphasis of this distribution on “rough” values of

H i.e. H ≈ 0.1.

The practical implementation of our calibration scheme is a simple two-step process.

The first step is to train the CNN, with the H sampling method and input length n

chosen by the practitioner; this can be done once offline, with the weights of the trained

network saved to avoid unnecessary repetition for each calibration task. The second step

is to input the most recent n volatility observations into the CNN, which will return the

corresponding H value for those n observations. This value of H = α+ 1/2 can then be

inputted into the rough Bergomi model and used for, say, pricing. We note that some

testing for the optimal choice of H sampling method and input length n is required on

the part of the practitioner implementing our calibration scheme.

Remark 4.4.1. We now take this opportunity to discuss the calibration methodology

presented in this paper. We are treating calibration as a supervised learning problem

when in practice it is an unsupervised learning problem, strictly speaking. While each

vector in the input data in the regression problems above was indeed labelled with the

corresponding H value, the data from the Oxford-Man Institute ‘realized’ library has

no such labels, thus we use the least square calibration values as “true” values.
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Conclusion

This thesis has focused on rough volatility models, and has made a number of important

contributions both to their understanding from a theoretical perspective, and their

application from a practical perspective.

On the theoretical side we have proved a number of general results for Gaussian mea-

sures on general Banach spaces, which allow us to establish the small-time log stock

price, integrated variance, and pathwise VIX behaviour in a number of rough volatil-

ity models, using the theory of large deviations. We then characterise the small-time

implied volatility behaviour, for Call options on stock price and integrated variance,

in terms of the rate function of the large deviations principle. Crucially, we find that

the parameter describing the Hölder regularity of the volatility process determines the

speed of the large deviations principle, and thus the power law behaviour of the level of

the implied volatility as time to maturity approaches zero, as well as implicitly defin-

ing the rate function itself. Extensions to small-time results for more general volatility

processes are possible in our framework, by using lemmas and propositions provided,

and would make for interesting new research topics. Investigation into the large-time

behaviour of rough volatility models is also possible using our framework.

On the practical side we have provided numerical schemes to compute the rate func-

tions for integrated variance processes; we are indeed able to plot accurate implied

volatility smiles, which agree with Monte Carlo simulations. Perhaps surprisingly, we

have discovered that lognormal models such as rough Bergomi (1.11), 2 Factor Bergomi

[Ber08, Ber16] and mixed versions thereof, generate linear smiles around the money

for options on realised variance in log-space. This is, at the very least, a property to
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be taken into account when modelling volatility derivatives and, to our knowledge, has

never been addressed or commented on in previous works. Whether such an assumption

is realistic or not, we have in addition provided an explicit way to construct a model

that generates non-linear smiles. Additionally, by approximating the realised variance

density, we provide a means of pricing volatility swaps in the mixed rough Bergomi

model that is fast and remarkably accurate, particularly in the close-to-maturity case.

We have also provided an efficient and accurate means of calibrating the rough Bergomi

model; our method is shown to be far more accurate, by orders of magnitude, and sig-

nificantly faster than the existing method suggested in [GJR18a]. We have shown our

method to correctly estimate H on mean-reverting trajectories, where the least squares

approach fails and incorrectly identifies roughness.
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Lévy Models. Siam Journal on Financial Mathematics, 3(1): 33-65, 2012.
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26(3): 516-557, 2016.

[FGS19] M. Forde, S. Gerhold, and B. Smith. Small-time and large-time smile behaviour

for the Rough Heston model. Preprint available at arXiv:1906.09034, 2019.

[FJ09] M. Forde and A. Jacquier. Small-Time Asymptotics for Implied Volatility Under

The Heston Model. IJTAF, 12(6): 861-876, 2009.

[FJ11] M. Forde and A. Jacquier. Small-Time Asymptotics for an Uncorrelated Local-

Stochastic Volatility Model. Applied Mathematical Finance, 18(6): 517- 535, 2011.

[FJL12] M. Forde, A. Jacquier, and R. Lee. The Small-Time Smile and Term Struc-

ture of Implied Volatility Under the Heston Model. SIAM Journal on Financial

Mathematics, 3(1): 690-708, 2012.

[FJM10] M. Forde, A. Jacquier, and A. Mijatović. Asymptotic Formulae For Implied
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Appendix A

An LDP for the Uncorrelated

Rough Bergomi Model

We treat here the special case of (1.11), where the Brownian motions W and B have zero

correlation (ρ = 0). Following similar arguments to Proposition 1.4.18, and analogously

to (1.17), we introduce the operator I0 : L2 × L2 → C2 as

I0(f1, f2) :=

(
IKαf1

I1f2

)
, for any f1, f2 ∈ L2,

so that the RKHS (on C2) of the measure induced by (Z,B) is H :=
{
I0(f1, f2) : f1, f2 ∈ L2

}
,

with inner product
〈
I0(f1, f2), I0(g1, g2)

〉
H

:= 〈f1, g1〉L2+〈f2, g2〉L2 , for any f1, f2, g1, g2 ∈
L2. Similarly to Theorem 2.1.2, [DS89, Theorem 3.4.12] yields an LDP on C2 for

((Zε, Bε))ε∈T with speed ε−β and rate function

Λ(zxy) :=


1

2

∥∥zxy
∥∥2

H
, if(x, y)> ∈H ,

+∞, otherwise.

This in turn yields an LDP for ((vε, Bε))ε∈T in (3.9) on C2 with speed ε−β and rate

function Λ̃(zxy) := inf
{

Λ(zx
∗
y∗ ) : zxy = Mzx

∗
y∗
}

, where the operator M is defined in (2.2).

In the same vein as Theorem 2.1.2, Theorem 1.5.17 yields an LDP for (
∫ ·

0

√
vεsdB

ε
s)ε∈T
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on C with speed ε−β and rate function Λ̂X , defined as

Λ̂X(ϕ) := inf
{

Λ̃(zxy) : ϕ = x · y, y ∈ BV ∩ C
}

= inf
{

Λ(zx
∗
y∗ ) : ϕ = x · y, zxy = Mzx

∗
y∗ , x

∗, y∗ ∈H
}

= inf
{

Λ(zxy) : ϕ = x · y, zxy = M(I0(f1, f2)), f1, f2 ∈ L2
}

= inf
f1,f2∈L2

{
1

2
‖f1‖2L2 +

1

2
‖f2‖2L2 : ϕ =

∫ ·
0

√
m ((IKαf1)(s))f2(s)ds

}
.

with m introduced in (2.3). Following identical an identical argument to that presented

in Theorem 2.1.2, we conclude that (Xε)ε∈T satisfies an LDP with speed ε−β and rate

function Λ̂X .
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Appendix B

CNN Loss plots

In this final Appendix we present the loss ploss for the CNN in Chapter 4. We begin

with the classification loss plots, and then move onto on the regression loss plots, which

are presented in the same order as their respective results.

B.1 Classification Loss Plots

Figures B.1 and B.2 show that the training/validation accuracy both increase, and

training/validation loss both decrease, as the number of epochs increases for the fraction

Brownian motion and rough Bergomi input data respectively. This is a good indica-

tion that predictive performance improves as the number of epochs increases, without

overfitting [KNTY18, Overfitting Section, Page 619].

B.2 Loss Plots for rough Bergomi with Different H Sam-

pling

Here we plot the training and validation loss (MSE) at each epoch, for discretised H,

H ∼ Uniform(0.0, 0.5), and H ∼ Beta(1, 9) in Figures B.3, B.4, and B.5 respectively.

Note that the training and validation loss both tend to decrease as the number of epochs
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Figure B.1: Visual representation of the predictive power of the CNN on fractional

Brownian motion input data.

Figure B.2: Visual representation of the predictive power of the CNN on rough Bergomi

input data.

increases; this again indicates predictive performance improves as the number of epochs

increases, without overfitting. The only exception is Figure B.5, in the case where input

length is either 300 or 500; note that these two cases also correspond to larger root mean

squared error values. Recall, however, that our calibration scheme uses input vectors of

length 100 so this does not pose any real problems for practical use.
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Figure B.3: Loss plots for discretised H.
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Figure B.4: Loss plots for H ∼ Uniform(0.0, 0.5).
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Figure B.5: Loss plots for H ∼ Beta(1, 9).
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B.3 Loss Plots for rough Bergomi with η 6= 1

We now plot the training and validation loss (MSE) at each epoch, as above, for the

rough Bergomi model with discretised H and η ∈ {0.25, 0.8, 1.3, 2.5} in Figure B.6. We

fix the input vector length to be 100. For each η value, the training loss and validation

loss both decrease with each epoch.

Figure B.6: Loss plots for discretised H and η ∈ {0.25, 0.8, 1.3, 2.5}.
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B.4 Loss Plots for rough Bergomi with η ∼ Uniform(0, 3)

and H ∼ Beta(1, 9)

We now plot the training loss and validation loss (MSE) at each epoch, as above, for

the rough Bergomi model with η ∼ Uniform(0, 3) and H ∼ Beta(1, 9) for each sample

path, in Figure B.7. We fix the input vector length to be 100. Note that the training

loss and validation loss both decrease with each epoch.

Figure B.7: Loss plots for η ∼ Uniform(0, 3) and H ∼ Beta(1, 9).

B.5 Loss Plots for fBm with Different H sampling

We plot the training and validation loss (MSE) at each epoch, for fBm with discretised

H, H ∼ Uniform(0.0, 0.5), and H ∼ Beta(1, 9) in Figures B.8, B.9, and B.10 respec-

tively. As in Appendix B.3 we fix the input vector length to be 100. For discretised H

and H ∼ Uniform(0.0, 0.5) the training loss and validation loss both decrease with each

epoch. For H ∼ Beta(1, 9), however, the training loss decreases but the validation loss

remains flat. This could possibly suggest overfitting, and poor predictive performance;

note that the root mean square error was indeed higher than for discretised H and

H ∼ Uniform(0.0, 0.5).
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Figure B.8: Loss plot for fBm with discretised H.

Figure B.9: Loss plot for fBm with H ∼ Uniform(0.0, 0.5).

Figure B.10: Loss plot for fBm with H ∼ Beta(1, 9).
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B.6 Loss plots for Learning η

In Figure B.11 we plot the training loss and validation loss (MSE) at each epoch, as in

Appendix B.4, for the rough Bergomi model with η ∼ Uniform(0, 3) and H ∼ Beta(1, 9)

for each sample path. Recall that in this case the CNN is learning the value of η, as

well as the value of H. We fix the input vector length to be 100. Note that the training

loss and validation loss both tend to decrease with each epoch.

Figure B.11: Loss plots for η ∼ Uniform(0, 3) and H ∼ Beta(1, 9).
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“But it was all right, everything was all right, the struggle was
finished. He had won the victory over himself.”

George Orwell, Nineteen Eighty-Four, 1949.
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