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Abstract

The present work seeks to address three different problems that have a multiscale
nature, we apply different techniques from multiscale analysis to treat these
problems.

We introduce the field of multiscale analysis and motivate the need for tech-
niques to bridge between scales, presenting the history of some common meth-
ods, and an overview of the current state of the field.

The remainder of the work deals with the treatment of these problems,
one motivated by reaction rate theory, and two from multiphase flow. These
superficially have little relation with each other, but the approaches taken share
similarities and the results are the same - an average picture of the microscopic
description informs the macroscale.

In Chapter 2 we address an asymmetric potential with a microscale, showing
that the interaction between this microscale and the noise causes a first-order
phase transition. This induces a metastable state which we observe and char-
acterise: showing that the stability of this state depends on the strength of the
tilt, and that the phase transition is inherently different to the symmetric case.

In Chapter 3 we investigate the nucleation and coarsening process of a two-
phase flow in a corrugated channel using a Cahn–Hilliard Navier–Stokes model.
We show that several flow morphologies can be present depending on the channel
geometry and the initial random condition. We rationalise this with a static
energy model, predicting the preferential formation of one morphology over
another and the existence of a first-order phase-transition from smooth slug
flow to discontinuous motion when the channel is strongly corrugated.

In Chapter 4 we address a model for interfacial flows in porous geometries,
formulating an finite-element model for the equations. Within this framework
we solve two equations in the microscale to obtain effective coefficients decou-
pling the two scales from each other. Finite-difference simulations of the macro-
scopic flow recover results from literature, supporting robustness of the method.
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1
Introduction

Problems with multiple scales appear in all branches of science and engineering,
whether it is multiple time scales in the presentation of television pictures that
allow us to see a smoothly moving image, or the huge range of scales in fluid
motion that allow the continuum approximation to be used to model flow. These
scales can be both a blessing and a curse; in a CRT TV, for example, we cannot
perceive the fastest scales corresponding to the raster rate; rather, we only
perceive the image changing smoothly. In turbulent flow, however, the presence
of an extensive chain of scales within turbulence makes modelling and simulating
the behaviour of flows with high Reynolds numbers very difficult.

Exactly when multi-scale methods first came about is a question that is dif-
ficult to answer, but a clear avenue of study began in the late 17th century
when astronomers observed that the planets did not move through space on ex-
act ellipses [183]. This problem was important and relevant because navigation
relied on the accurate determination of the position of stars, and if the Earth
did not move along a perfect ellipse then travellers the world over were relying
on incorrect positional information.

Including the effect of the Moon renders the equations of motion impossible
to solve analytically. Euler proposed a procedure to deal with this problem,
using the existing solution for the motion of the Earth and deriving a reduced-
order approximation for the perturbation caused by the Moon. This resulted in
a more accurate expression for the distance of the Earth-Moon barycentre from
the elliptic, and hence more reliable and accurate information for navigators
[64] [as cited in [183]].

2drdφ+ rd2φ = −1

2
ndt2 sin θ (1.1)

where r is the Earth-Moon distance, φ the phase, dt the time derivative, n
the centripetal force strength and θ represents a small perturbation in the cen-
tripetal force.

Through assumptions on the motion of the Earth (either circular or elliptical,
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and free from perturbation), he could solve Equation 1.1. A similar method was
used to estimate the rate of elongation of the tropical year, which was measured
(spuriously) by many astronomers at the time [183].

Other work was done by Clairault, Laplace and Lagrange to varying de-
grees of technicality and clarity throughout the latter half of the 18th century.
Lagrange presents a transparent approach in his work ‘Analytical Mechanics’
(‘Mechanique Analytique’) [120] [as cited in [159]], wherein he presents most of
the elements required for perturbation expansions and the averaging of ordinary
differential equations (ODEs).

The driving force for the method of homogenisation, however, came from
the study of materials science. With the development in the 20th century of
composite materials like fibreglass, carbon fibre and reinforced concrete, there
was a drive to improve modelling of these materials. Homogenisation began
as a formal method for the reduction in the number of modelled scales which
required proof of convergence in each application [18].

Not only does homogenisation allow for the study of the effect of reinforce-
ment or voids in materials [85, 104], but in many cases numerical solution is
made much faster as the short or fast scale tends to limit time steps in many
simulations [35].

At the heart of homogenisation is the idea that when a series of scales exist,
we would like to describe the behaviour of a system using only some of them.
We would therefore like to extract some information from the scales that we
want to discard without solving the equations in full.

Formally, if it is possible to take a family of differential operators Lε with
corresponding solutions uε for some spatial variable with multiple scales xε in
some region Ω that satisfies:

Lεuε = f ∀xε ⊂ Ω (1.2)

Then we can prove that this sequence converges in some sense to a so-called
homogenised operator L̄ and solution ū for a spatial variable in one scale x:

L̄ū = f ∀x ⊂ Ω (1.3)

The form of this convergence and its proof depend on the nature of the equations,
which we initially take to be spatially periodic. We can then use the method
of two-scale convergence from [3] which finds the correct homogenised equation
and proves convergence in one step.

1.1 Literature Review

As the field of Multiscale Methods is vast, and any attempt to summarise the
state of the field would be futile, we would direct the reader, for a general review,
to [54] and [131]. Horstmeyer refers to a process he calls bridging [95], and this
covers most methods of interest.
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1.1.1 Introduction to Different Approaches - Analytical
Methods

Perturbation Methods and ODE Averaging

Historically the first approaches that are widely regarded to make use of multiple
scales are perturbation methods. When it is clear that the dynamics of a system
are dominated by one contribution, the simplest approach is to neglect other
smaller contributions and create a “first-order” solution. When more accurate
models are required, the smaller contributions must be taken into account: if
these prove impossible to treat exactly then perturbation approaches can offer
valuable insight. Beginning from the first-order solution, one can introduce
small corrections to the governing equations and determine their effects on the
solution obtained.

Subsequent development of these approaches led to the fields of Averaging
and Homogenization. For ordinary differential equations (ODEs) the more gen-
eral framework of Averaging allows a more flexible treatment of microscales,
from very accurate treatments that are only valid for short times, to less ac-
curate expressions that are valid for longer times. This is the characteristic
trade-off of the Averaging method.

Classical perturbation theory has a wide range of books and review articles
for introduction. Sanders [159] offers a clear introduction; Bender and Orszag
offer much more of the mathematical background for many of these methods
[17]; whilst Hinch offers an introduction that omits some of the mathematical
details in favour of readability [91].

Asymptotic Expansions and Homogenization

When no one scale clearly dominates everywhere, but the number of scales or re-
gions of distinct behaviour are small, one approach is to make use of asymptotic
expansions; the so-called “Method of Matched Asymptotics” allowed Prandtl
to develop an understanding of the structure of boundary layers in fluid flow
problems. Recognising that the qualitative behaviour of a fluid is different close
to a wall than far in the bulk, one can develop different asymptotic expansions
in these two regions. These expressions are then assumed to match at some
intermediate point. Careful consideration of scaling arguments in each region
allow this matching process to provide a full solution in the region.

Within the literature, Hunter offers a good introduction to Perturbation
Theory and the details of the Matching process [99], whilst Holmes gives a more
in-depth treatment of Asymptotic Matching and more involved regimes, like
corner matching [93]. Prandtl’s treatment of aerodynamic boundary layers is a
classical application of this method (see [7] for a review), but recent examples
include matching in the Moving Contact Line problem [163], in thin film flow
[105] and in acoustics [136].

When extending perturbation results for partial differential equations (PDEs)
the field of Homogenization was popularized. When the coefficients within the
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Figure 1.1: Example of self-similarity in turbulent fluid flow: The right
panel is a scaled section of the left panel; the fluid looks qualitatively sim-
ilar. In a similar sense the energy dissipation of fluid in the scaled sec-
tion is identical to fluid in the original image. This is the basis of Kol-
mogorov’s arguments. Image by Steven Mathey - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=45053551

equations oscillate rapidly it is desirable to avoid solving them directly (par-
ticularly given the implications for mesh and time-step size when solving nu-
merically). To that end, homogenization formalizes the process of smoothing
out these oscillations, making use of asymptotic expansions and correcting the
“smoother” equations to account for the discarded information.

Homogenization is rather a technical subject, but [149] would be a good
entry point to the field. Bensoussan et al. offer many of the original derivations
and details in their classic text [18] which may help to augment the history of
the field [159].

Self-Similar Analysis

A more modern approach that can be applicable in problems with many sepa-
rate or even a continuous cascade of scales makes use of self-similarity. If the
assumption can be justified that the intermediate scales are similar (when scaled
their governing equations are the same) then the macroscopic equations can be
corrected with effective contributions from the cascade of similar scales: these
are normally found by solving a set of differential equations which may or may
not permit closed-form solutions.

The most celebrated example of the application of Self-Similarity to multi-
scale problems is arguably Kolmogorov’s classic treatment of turbulence [113].
In it he suggested that in the range of intermediate length scales the only im-
portant quantity was the mean energy dissipation rate (Figure 1.1). Through a
dimensional argument he arrived at an expression for the kinetic energy density
as a function of the wavenumber.

The technique has applications for PDEs that model other physical be-
haviour, including flow through porous solids and semi-linear heat transfer [77],
but a general characteristic is the presence of extreme regions (macroscale or
a finite smallest scale) with an intermediate regime. One example from astro-
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physics is Narayan and Li’s work on accretion [135]; they derive a self-similar
solution giving insight into behaviour of hot accretion disks. In optics Kruglov
et al. [117] find a self-similar solution for optical fibre amplification which gave
insight into producing chirp-free pulses for data transmission.

1.1.2 Introduction to different approaches - Numerical Meth-
ods

When no analytical methods exist that permit the solution of complex problems
then numerical methods must be deployed. Since the advent of scientific com-
puting much effort has been spent developing approaches to accelerate solution
of problems with multiple scales. The main driving force is the implications
that oscillatory or microscopic terms have on the mesh-size and time-step re-
quirements - the mesh must be fine enough to resolve the smallest details that
are physically relevant, and the time-step is intrinsically linked to the stability
of the numerical scheme.

Multi-Physics Methods

One approach has been to take a known microscale simulation such as Molecular
Dynamics (MD) and use it to provide coefficients or constitutive relations for
a different macroscale solver. Three methods that make use of this idea are
“Equation-Free Computing”, something of a misnomer, the Multi-Grid Method
and the Heterogeneous Multiscale Method (HMM).

Equation-Free Computing [108] is an example of the former, where micro-
scopic simulations are used to predict the evolution of macroscopic variables.
This means that systems can be modelled with no knowledge of the macroscopic
equations governing the process at all. E provides a good summary of the cur-
rent gaps in this approach [55]; however, both the time acceleration scheme
(projection) and the spatial discretization scheme (patching) require assump-
tions about the problem that cannot be known a-priori.

A more established algorithm with a similar idea is the so-called ‘multi-grid’
method, which is used to accelerate the solution of PDEs. When solving PDEs
with an iterative method, the mesh and time-step size is limited by the fastest
scale in the problem; however, the number of iterations required increases as
the mesh size increases. In essence, the time-step is controlled by the fastest
scales, whilst the length of the simulation is controlled by the slowest scales.

The principle of this method is to solve the problem on several different
grid sizes, such that the slowest modes decay quickly on the coarse grid, whilst
the finer grids resolve more detail and increase the useable time-step. The
main sources of difficulty with multi-grid are the ‘prolongation’ and ‘restriction’
operations that link the different scales and the cost of storing the separate
meshes (typically three or four levels) (Figure 1.2). Briggs et al. [26] provide
an accessible introduction to the method and a very intuitive explanation of its
damping properties. Also, [54] provides a terse summary.
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Figure 1.2: Visualization of the Multigrid Method: Initial solution φ is smoothed
using Gauss–Siedel or similar to produce F, the residual of this process is
computed on the original mesh (top panel of left R). Restriction is then per-
formed, sampling the residual on the coarser grid (top panel of R1). The
process is then repeated until the coarsest grid is achieved (bottom panel of
R1). The coarse residual is then upsampled in a process called Prolongation
to a finer mesh (bottom panel of right R), this corrects error in the cor-
responding finer residual and after smoothing the process repeats until the
finest mesh is reached (top panel of right R). This process is iterated un-
til a solution is reached. (Image by ansariddle - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=52309844)

There is also the Heterogeneous Multiscale Method (HMM), which uses mi-
croscopic simulation to provide the parameters for the macro-scale solver. It
shares some of the shortcomings of the Equation-Free approach, requiring a
careful choice of macro-scale solver, and does not make use of patch dynamics.
That said, much more work has been done with HMM than with Equation-Free
(see section 6.4.2 in [54])

Other Bridging Methods

Another promising avenue that links different solvers together involves linking
MD and Dynamic Functional Theory (DFT). Since DFT makes use of assumed
particle interactions, it is an attractive target for MD simulations. Extraction
of the interaction parameters required for a DFT simulation could be done a-
priori, leaving only the “macroscale” solution to be done for the problem. This

15



approach was initially popularised by Car and Parinello [31], a good introduction
to the method is given by Gianozzi [75] and good examples of applications for
this method come from biology, with Andreoni reviewing the field in 2001 [8].

More recently, there has been work (within this department) to link MD
simulations of vapour-liquid equilibria with Dynamic DFT (DDFT) to model
contact line movement [186].

Alternative approaches for computing the quantites for DFT exist. As an
example, the fast multipole method (FMM) was designed to enable the fast
summation of point-wise particle interactions. This problem appears in a wide
range of contexts, from celestial mechanics to quantum electrodynamics. In
FMM the summation is approximated by grouping points that are ‘far’ from the
test point, and approximating their interaction as a single force. This reduces
the operation count from O(N2) to O(N logN) or even O(N) [15], and reduces
the amount of memory required to solve the problem [144]. Recent applications
of FMM include acoustics (by linking with the Boundary Element Method [102])
[182], quantum molecular dynamics [162] and elasticity [175].

Within the field of complex fluids, the “Brownian Dynamics Method” uses
continuum theory to model polymeric solutions. In order to obtain the stress,
polymer chain interactions are modelled with a stochastic force; see for example
[19] for early work in the field, [100] for simulations in domains with obstacles
and [32] for applications to different polymer shapes. Clearly, the simplicity of
the model used in the micro-scale impacts the convergence behaviour and speed
of the simulation, but for most dilute polymers Carlsson finds that the simple
dumbbell or short chain models offer good results [32].

Moving Contact Line Problem

An excellent example of a problem that has been extensively studied and that
is undergoing a revival is the Moving Contact Line problem. Classical Navier–
Stokes analysis leads to a singularity at the contact line when a no-slip condition
is imposed [98]. Many solutions have been proposed to resolve this, with varying
degrees of physical justification and many review articles discussing the relative
merits. A recent review in this field is by Bonn et al. [23], and they cite previous
reviews back to the 1980s. Verlarde et al. [173] present a discussion article which
covers the current field, as well as the debate still raging.

In the absence of an accepted explanation for the phenomena based on
physics, many authors have turned to either MD or Phase-Field models to in-
vestigate the behaviour at the contact line. Phase-Field models have been used
to reproduce physical behaviour in both spreading and receding, and in ‘rolling
motion’ [164], as well as for more complex situations including droplet growth
and ‘pinch-off’ [50]. Despite the success shown by these models they require
parameters such as the interface width, which the model should ideally provide.
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Figure 1.3: Example diagram showing Chemical Potential Energy against Re-
action Coordinate: The initial state (X+Y) is energetically less favourable than
the final state (Z), so the reaction will occur; the energy barrier between the two
states controls the rate of reaction. In this case the catalyst reduces the energy
barrier (Ea) and so the reaction rate will be faster. Studying the long-term be-
haviour of this system enables chemists to predict the amount of side-products
(the intermediate minima), or reactants (X, Y) will be present after the reaction
is allowed to occur. (Public Domain)

1.1.3 Brownian Motion in Potential Fields

Early Work–Chemical Kinetics

The confinement of particles to potential fields has a wide range of practical
applications and has been well studied. Early work on the problem came from
the study of nucleation and from chemical kinetics; perhaps the first analysis
was by Farkas in 1927 [65], who was interested in the rate of nucleation in
saturated steam. He solved the over-damped expression to obtain the current
across a potential barrier in general terms. Pontryagin et al. were interested in
chemical kinetics in 1933 [150] and provided the first mention and calculation
of the First Passage Time. Other work in the same vein was done by Becker
and Döring in 1935 [16], who gave their names to a series of equations that can
be used to model phase separation.

It is perhaps a shame that it is Kramers who gets most of the credit for the
early study of these systems, but he re-derived the overdamped case, admittedly
with less generality, and managed to obtain a solution in the under-damped case
[116] through some elegant maths which Hänggi calls ‘almost acrobatic’ [89]. His
result was also the first to propose applications to chemical reactions, although
it would be many years before applications became obvious (Figure 1.3).

In 1949 Moyal published an early review of the field of statistical physics and
proposed what we now call the Kramers–Moyal (K-M) expansion as a method
for analysing the behaviour of Markov chains. They showed that this reduces
to the Fokker–Planck equation (FPE) when truncated and Moyal recognises
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the difficulty in treating these equations in their entirety [134]. That said, the
treatment of the Master Equation was to form a fruitful area of study throughout
the 20th century.

Lax and van Kampen made attempts in the 1960s to systematically ap-
proximate solutions to the master equations, with Lax expanding in “orders of
nonlinearity” [124], whilst van Kampen expands in terms of the reciprocal of the
size of the system, achieving agreement with previous work for small noise in
his examples [172]. Either method facilitated the computation of the statistical
moments of the probability density function, which were the best way to study
the systems at the time.

New Applications: Electronics and Optics

Applications for the results generated were still thin on the ground, but in the
early 1960s Landauer and Swanson at IBM published a series of papers which
not only examined transition rates and most likely states, but also investigated
relaxation times in memory design and tunnel diode behaviour [168, 122, 121] in
increasing sophistication. The first paper is accessible to a reader with a limited
background in physics and adopts an intuitive explanation for the transition
rate, whilst the latter two are more rigorous.

Early work in laser physics was carried out by Risken, amongst others, but
he was the first to include noise in a full nonlinear model for a laser cavity
[155]. He obtained solutions by taking limits which were physically realisable.
Subsequent work by the same author extended these results, finding correlation
functions in more useful regimes [156].

It was the in 1970s that widespread applications of noisy bistable systems
first appeared. Chemical reactions that undergo state transitions were studied
by Nitzan et al., who recognised that van Kampen’s approach was invalid be-
cause the noise could not be assumed small [140]; they managed to solve the
master equations in their entirety for two simple systems. A similar problem
was studied by Matheson et al., but they simply neglected high order terms
in the K-M equations to derive an FPE, justifying this with scaling arguments
[130].

Haken played a huge role in the early 1970s in the justification of the detailed
balance in models, together with the requirements on FPE coefficients to keep
the balance valid. He provides a review of many different systems in his article,
together with references to a number of his papers from the previous years [86].
He gives examples from hydrodynamics, a review of tunnel diodes and the Gunn
effect in plasma physics, together with a good background of the theory at the
time.

Nonlinear optics provided examples in the field as well with an optical bista-
bility studied by Bonifacio and Lugiato [22], who gave a noisy quantum mechan-
ical model for the phenomenon utilising the Kramers Approximation, which ap-
pears to be reasonable as their potential is smooth. The 1970s also began the
study of neuronal behaviour, with studies by Wilson and Crown (see refs. in
[86])
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Technical Advances – Approximations to the Master Equation

At the same time there was renewed interest in the mathematics of the problem,
with much work being done on the well relaxation time or the decay rate from
metastable states. Kubo et al. base their analysis on the K-M expansion and
recognise that this limits its applicability, but they find the rate and spectrum
of relaxation in several example problems [118]. Meanwhile, Grabert et al.
recognised that the Markov assumption was invalid for most physical systems,
so set about studying the master equations for non-Markovian processes; they
found a transform that turns a physical process into an exact Markov process
[80, 81].

Further insights into the validity (or not) of the FPE came from Hänggi, who
used Semi-Group analysis to study which families of stochastic processes admit
closed form solutions [87]. On this basis, and with numerical agreement from
many sources [130, 86, 94], he argued that the non-linear FPE was a consistent
approximation to the Master Equation, whilst van Kampen disagreed strongly
[87] (see ref. 27 in that article).

Further work on relaxation from instability followed into the early 1980s
with Suzuki studying the central regime (the scaling region), where he improves
on the results from the Ω expansion of van Kampen. Incidentally, he shows
that at least for short times the FPE has the correct asymptotic behaviour in
this case (he refers to this as the initial region) [167]. Caroli et al. confirm
this scaling regime in a quartic potential by applying the WKB method and
subsequently through a Functional Integral approach, but find that there is
more to the intermediate time than just Suzuki’s regime [33, 34].

A major shortcoming in the recognition of the central scaling regime was the
lack of a clear time when the central scaling and Kramers regime should match.
Hu and Zheng recognised this and proposed the use of a different scaling, which
alleviated the problem [96]. They provide numerical results that show good
agreement between their solution and the exact solution at long times, whilst
showing that näıve scaling theory leads to greater deviations. This approach
was also taken by Weiss, who derived an expression valid in all regimes by using
a path integral formulation; he claims agreement with a mode decomposition
calculation, although the reference is unpublished, but he does recover classical
results for occupation probability [179].

Early progress on the periodic case was made by Ambegaokar and Halperin,
who formulated a model for the Josephson effect and solved it in the limit of
large damping to obtain approximate flux [6], their expression being an integral
which required numerical evaluation. A similar analysis was carried out by Das
and Schwendimann, who had the same assumption but were able to find an
analytical expression of general validity [47]. Josephson junctions have found
applications in many areas of physics, including as a primary voltage standard
(Figure 1.4)

Fulde et al. used an adaptation of Mori’s method of continued fractions to
derive mobilities for a silver iodide superconductor, which showed good agree-
ment with experimental data but resulted in a rather unwieldy expression [69].
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Figure 1.4: NIST primary voltage standard: microwave energy enters via the
fin guides on the left, the Josephson junctions are biased with a current to
generate a voltage; the junction produces alternating current at a frequency
determined by this voltage. When the junctions are exposed to microwaves the
oscillations lock to the microwave frequency, permitting only discrete voltages
to be generated.

This method was followed by a collaborator of Fulde’s, who uses it to find static
and dynamic mobilities in both high and low noise regimes; again the author
comments that the expansion is rather unwieldy, and it has problems with actual
convergence due to the assumptions Mori made [49].

Foreshadowing the widespread adoption of homogenization theory that was
to come, Fest and d’Adliano derived an expression for the diffusion coefficient
in periodic potentials as a functional of the landscape which gave a generally
intractable expression, but permitted the determination in one dimension [67].
Using a much simpler argument this result is reproduced by Weaver, who ob-
serves that the result is exactly that of Kramers’ escape over a barrier solution
[177].

Progress in the two-dimensional case was also made around this time by
Zwanzig, who used a conformal mapping approach to study the eigenfunctions
of the diffusion equation in channels, concluding that the effective diffusion is
always reduced by the presence of periodic structures [190]. Weaver uses the
same scenario of periodic channel flow and computes first passage times using a
Green’s function method; he then computes diffusion coefficients and compares
to Zwanzig finding agreement after truncating to only one series term [178].

Recent Developments–Homogenization

The machinery of Homogenization had been around for years, but it was the
introduction of two-scale convergence by Allaire in 1992 [3], who extended an
idea of Nguetseng from earlier [137], that really allowed the method to become
commonplace. Nguetseng proved a result for a class of integral functionals and
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outlined his idea for the method, but Allaire’s paper gives a better introduction
to the process.

Additional motivation for the study of these periodic systems came from the
study of so called ‘Brownian Motors’. See Hänggi and Marchensoni’s excellent
review article for an introduction and progress on artificial devices demonstrat-
ing this phenomenon [88]. Related to our work, this has been analysed in a
multi-scale fashion by Pavliotis, who also compared analytical results to numer-
ical simulations in [148].

One of the easiest ways to model these systems is by assuming a periodic
potential with a force applied externally. This can also be interpreted as a tilted
periodic potential, and it seems clear that this should induce a current. Lindner
showed in 2001 that the rate of transport (dimensionless Péclet number) was
connected to both the forcing and the diffusion coefficient; he found exact and
approximate relations for the Péclet number and compared to numerics [127].
He found that the Péclet number attains a maximum for moderate diffusion at
strong tilts.

These results have recently been extended into two dimensions by a few
authors. Generally the expressions are not analytically soluble - Kostur used
a Finite-Element approach and compared to Monte Carlo simulations [115].
Approximations are also available, with Challis and Jack using machinery from
quantum mechanics to treat the overdamped case. They use the tight-binding
limit in their treatment and derive a condition for the validity of their expression
[36]. In a different approach, Latorre et al. find a series expansion for the
diffusion coefficient and use this to derive corrections for Einstein’s relation
which is perhaps a more straightforward representation [123].

González-Candela and Romero-Roch́ın applied a similar model to protein
folding. They comment that their results are promising, but they need the
actual numerical potential landscape to have any predictive power [79].

Random potentials have also garnered interest, although the homogenization
process is substantially different - Olla provides a well organized account of pre-
vious work from different sources [145], but has to resort to proving convergence
separately. Papanicolaou frames the same work in a different way, more in the
framework of Homogenization, deriving the effective cell equation and stating
it explicitly [147].

Combining periodic and bistable dynamics gives the problem at hand. Pavli-
otis has studied this problem extensively, giving the effective diffusivity in the
absence of perturbations [149] as well as considering the problem of parameter
estimation when separated time scales are present. This problem is also studied
by Azencott et al. in [11], albeit with more general applicability. Duncan et al.
consider the same problem with non separable potentials, showing that stable
states are created by interactions between noise and perturbations in potential
[53].
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Figure 1.5: Single pore in a porous medium partially filled with condensate,
pore is open on the right side. Simulation begins with a hydrophilic pore filled
with vapour (left panel). Condensation begins in the corners of the pore (centre
panel), droplets merge and spread along the hydrophilic walls (right panel). Red
phase is condensate, blue is vapour, yellow region is the diffuse-interface. Image
produced by the Author using FEniCS[5] to solve Cahn–Hilliard phase-field
equations.

1.1.4 Phase-Field Modelling

The original motivation for so-called “Phase-Field” models was the study of
phase separation in a process known as “Spinodal Decomposition”. Cahn de-
rived the evolution equation and the chemical potential from thermodynamic
arguments, and initially applied the model to this phase separation process
[29, 27, 30]. Subsequently this class of models have been applied to a wide
range of systems; in Figure 1.5 they have been used to model condensation in a
pore.

Technical Developments

A great deal of technical work followed, initially for Cahn–Hilliard with conven-
tional boundary conditions. Amy Novick–Cohen made valuable contributions
to the study of the mathematical properties of the equations, initially by finding
equilibrium solutions and stability in [143], extended in [141] for concentration-
dependent mobility. Zheng also made progress in this area, demonstrating that,
in one dimension, a fixed number of solutions exist, and that each solution
converges to an equilibrium solution as t→∞ [165].

Other convergence results, including compactness of solution orbits and some
results on inertial manifolds, followed from Nicolaenko’s work on pattern forma-
tion equations, for both Cahn–Hilliard and the related Kuramoto–Sivashinsky
equations [138, 139]. Elliott and Zheng proved the existence of global attractors
for some types of polynomial potential under certain constraints, as well as find-
ing an example of a regime where negative leading order terms led to a constant
steady state as opposed to finite-time blowup [63]. Together with French he also
carried out initial work on Finite-Element formulations and splitting schemes
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to treat the nonlinear potential term [59]
Further work in this direction has either relaxed the requirements on the

potential, the function spaces or the boundary conditions. Stable solutions in
potentials with walls were studied by Blowey and Elliott in [21] with numerical
results in [20], motivated by taking a very low temperature, corresponding to a
very deep potential, clamping the phase to |φ| ≤ 1. Elliott and Mikelić demon-
strated existence for different forms of free-energy modifications in [62], and
Kenmochi used a novel subdifferential approach to relax limitations in previous
proofs [107].

Physical arguments suggest that the Mobility (M) ought to depend on the
phase; this is because the phase ought not to vary substantially in the bulk.
Initial existence results for this type of mobility were found by Elliott and Garcke
[60], with the same authors later investigating phase transitions with the same
mobility [61].

Equilibrium solutions were studied by Witelski in the context of polymer
layer interactions [184], using phase-plane analysis. Subsequent work has shown
that the equations reduce to simple interface evolution by the mean curvature
[28], and has looked at this problem with multiple phases [112], as well as finite
element formulations and weak solutions [13, 12, 180, 110, 153, 46]

More Complex Systems

Extensions into multicomponent solutions have also yielded valuable insights;
Elliott and Luckhaus proved global existence and demonstrated that in the
deep quench limit, Cahn–Hilliard reduces to an obstacle problem [58]. Cholewa
and Dlotko found a global attractor for certain subspaces of solution in one-
dimensional Hilbert Spaces H [38], which was subsequently extended to the two
and three-dimensional spaces H2 and H3 by Dlotko in [51].

Regarding Boundary Conditions, beyond the classical Dirichlet and Neu-
mann, recent interest has been in dynamic boundary conditions, beginning with
Racke [152] and later elaborated on by Wu [185], Pruss [151] and Miranville [133]
with their collaborators. More recently, progress has been made with permeable
boundaries, with a view to applications in membrane science [71] and Wentzell
boundary conditions, by Gal and Wu [70].

Recent progress has been made in improving the understanding of long-time
behaviour, including new approaches for treating singularities with logarith-
mic potentials [132] leading to an exponential attractor. More recently still,
Kostianko and Zelik obtained Inertial Manifolds for the 3D case with periodic
boundary conditions [114].

Amongst the applications, an interesting example was put forward by Tremaine;
he modelled the formation of Saturn’s rings, and found that their structure could
be produced using the Cahn–Hilliard equations with appropriate boundary con-
ditions [171]
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Concerning Flow–Linking to Kinematic Models

Modelling fluids using these equations is useful, but in many physically driven
cases we are interested in the evolution of fluids in flow. Were the fluid one single
phase it could be coupled to any of the well-studied equations of motion for a
fluid via the chemical potential; making the assumption that this is also valid for
multiple phases (which may have different viscosities and densities) allows these
physical models to be studied with the benefits of the Cahn–Hilliard equations.
The trade-off here is that the numerical solution of the equations becomes more
difficult and the stability is negatively impacted.

Two related models that have bearing on this work are the connections
to Navier–Stokes and, in the creeping flow limit, to Stokes’ Equation. Early
work on the coupled system followed from physical arguments; Joseph derived
the system using Korteweg’s idea that interfacial stress was proportional to
the curvature in order to study bubble motion [103]. A different approach,
motivated by the idea of separating balance laws by Gurtin, Polignone and
Viñals, also derived the equations and carried out some numerical experiments
[84].

Lowengrub and Truskinovsky investigated the sharp-interface limit of the
Cahn–Hilliard–Navier–Stokes (CHNS) equations numerically, and used matched
asymptotics to show that they reduce to the conventional two-phase Navier–
Stokes equations [129]. Subsequently, Jacqmin [101] investigated this conver-
gence to the sharp interface limit in more detail, providing reasonable ranges of
values for the parameters.

Zhao, Wu and Huang offered strong solutions to the CHNS equations in
some specific cases, together with proof of convergence from their strong solu-
tion to steady state in long time, with an estimate of convergence rate [188].
Abels showed that some strong solutions exist globally in two dimensions, and
locally in time in three dimensions, for some singular free energies and unequal
viscosities. He also showed regularity in long times for any weak solution [1].

Gal and Grasselli proved the existence of exponential attractors and demon-
strated convergence of solutions to an equilibrium, together with convergence
rate estimates in [72], and later work has relaxed restrictions and extended to
three dimensions, for example [68].

Complications–Rheology and Multiple Phases

Extending the model to three phases has proven technically challenging. Boyer
and Lapuerta showed that there are limitations on the choice of free-energy
terms in the three-phase case that are necessary to obtain physically relevant
results [24].

Boyer et al. subsequently observed that the standard formulation led to
blowup in the fluid kinetic energy in certain cases; they proposed an alternative
formulation to remove this issue and validated with some standard benchmark
computation, including the liquid lens and heavy-liquid entrainment bench-
marks [25].
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There has also been progress in the modelling of flows with complex rheolo-
gies. Yue et al. replaced the conventional constitutive relationships for stress
and performed some computational benchmarking [187], and Chupin presented
existence and uniqueness for CHNS equations for Jeffry viscoelastic flows [41].

Other benchmarking work has been performed by Kim and Lowengrub; they
studied the three-phase system using a multigrid method, and presented bench-
mark comparisons including liquid-lens and liquid-liquid extraction applications
[109]. Kim has also applied different numerical schemes in [110, 111].

Recently Gal, Grasselli and Miranville applied Generalised Navier Boundary
Conditions to the CHNS model to account for slip velocity, and derived the
existence of a global energy solution and convergence to equilibrium in time
[73].

Creeping Flow–Convective Cahn–Hilliard Equations

For the creeping flow regime, the problem reduces to Cahn–Hilliard coupled by
a convection term to Stokes’ equations. Motivated by interest from the study of
crystal growth, amongst other applications (see [176] for example), Golovin et
al. investigated the transition from coarsening to chaos by varying the driving
force, resulting in behaviour reminiscent of the related Kuramoto–Sivashinsky
Equations [78].

Eden and Kalantarov studied this model with periodic boundaries and showed
the existence of a compact attractor and finite dimensional manifold; they
also established regularity of solutions on the attractor [57], and subsequently
achieved similar results for the global attractor and estimated its dimension
in [56]. Liu established the existence of weak solutions for this problem with
degenerate mobility [128].

Zhao formulated a Galerkin-Spectral approximation in two dimensions and
showed the existence of global attractors to this discrete system [189], and re-
cently, Gidey and Reddy presented an unconditionally stable operator-splitting
approach using front tracking, which they claim is more efficient in some phys-
ically relevant cases than existing monolithic methods [76].

Colli et al. study models for tumor growth and the related optimal control
and optimal distributed control problems; they show existence and uniqueness
for solutions to the model, as well as existence of an optimal control strategy
and the first-order optimality conditions thereof [43, 42, 44, 45]. Garke and Lam
looked at the same application and compared the effects of different boundary
conditions on the solutions [74].

Thiele and Knobloch presented a model for thin-film flow down a heated in-
clined plane, showing that in some regimes it reduced to either the conventional
Cahn–Hilliard or Convective Cahn–Hilliard equations [169]. This is a classical
benchmarking problem for fluid solvers coupled to heat transfer, so offers good
comparisons for Cahn–Hilliard solvers to readily available experimental data.
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1.2 Thesis Aims and Structure

The present work seeks to employ tools and techniques from the study of com-
plex multiscale systems to three different problems. At first sight the models do
not appear to share much in common, but they all have behaviour that relies on
a separation of scales. In the case of Chapter 2, where the interaction between
noise and a microscale causes macroscopic behaviour, this is explicit, whilst the
Cahn–Hilliard and related equations make use of the scale separation between
the interface width and the fluid macroscale (described by the dimensionless
Cahn number Cn) to justify physical assumptions.

In Chapter 2 we investigate the motion of particles in a multiscale potential,
we introduce an asymmetry into the macroscale potential and investigate the
effect on the homogenised equation. We then quantify the phase transition
observed and compare this with literature on the symmetric problem.

In Chapters 3 and 4 we study two variants to the classical Cahn–Hilliard
equations describing a Diffuse-Interface model for fluid flow. Our goal is to un-
derstand how the interaction between the interface and the confinement affects
the macroscopic flow.

In Chapter 3 we study nucleation, coarsening and flow in a corrugated chan-
nel and perform numerical simulations using a coupled Cahn–Hilliard–Navier–
Stokes model. We observe different flow morphologies for long times and ratio-
nalise these with an energy-based phase-plane approach.

In Chapter 4 we use a convective Cahn–Hilliard–Stokes model to study in-
terfacial flow in porous media. We use the machinery of Homogenisation to
produce a macroscopic description of the flow and perform numerical simula-
tions in channels.

We conclude the present work with general comments on the application
of Multiscale Analysis to these areas of study, as well as recommendations for
future work. In particular Chapter 2 and Chapter 3 offer many opportunities
for extension and validation which we discuss.
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2
Diffusion in a Tilted Multiscale Potential

Brownian motion is a very valuable tool to simulate many physical phenomena
where noise of some sort is important. This setup has been used to model super-
conduction [69], neuronal firing [181] and surface diffusion [119], amongst others.
Amongst the quantities that can be measured from these models we are normally
interested in either the rate of transition from one state to another, which gives
a measure of the reaction rate [89], or the static probability distribution, which
gives a measure of the equilibrium between one product and reactant (see Figure
2.1).
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Figure 2.1: A typical reaction potential diagram, here for the hydrolysis of
bromomethane. CC-by-SA license from Wikipedia

2.1 Introduction and Motivation

Motion of this sort is usually represented in one of two ways, either describing
the instantaneous motion of a particle under the influence of a force and a noise
term, or by the likelihood of observing a particle at a given point.

dXt = −∇V (Xt)dt+
√

2σdBt (2.1)

Equation 2.1 describes this motion instantaneously, where Xt is the particle’s
position vector, V (x) is a spatially varying potential, σ is the noise intensity, and
dBt is a Brownian noise term with mean zero and variance of one. It is known
as the Langevin description of particle motion and is a Stochastic Differential
Equation (SDE).

Pt(x, t) = −∇x (−∇xV (x)P (x, t)) + ∆x (σP (x, t)) (2.2)

Equation 2.2 describes the evolution of the probability density over time, where
Pt (x, t) is the time-dependent probablity distribution of the process, V (x)andσ
are as above, and ∇ is the spatial derivative.

This equation is known variously as the Fokker-Planck Equation (FPE), the
Forward Kolmogorov Equation, or in the context of Brownian motion usually
the Smoluchowski Equation.

We define the multiscale potential in the problem to be of the following form
(Equation 2.3)

V (x) =
1

4
x4 − α

2
x2 − 1

2
sin(2πx/ε)x2 + ηx ε� 1 (2.3)

Where α is a term that controls the height of the central energy barrier, ε is the
scale separation parameter, and η is a small asymmetry that we introduce into
the system.
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Our model considers a simple bistable potential that is familiar from reaction
rate theory and superimposes fast periodic fluctuations of some sort (2.3). We
then intend to homogenize the FPE to derive an effective Langevin SDE for
the particle motion. We then intend to study several parameters with physical
interpretation and of physical interest and compare the homogenised and un-
homogenised behaviour.
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Figure 2.2: Bistable potentials (dashed) with periodic micro-scales (solid)
[Equation 2.3], λ = 1, ε = 0.1, with η = 0 (top) and η = 0.1 (bottom)
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2.2 Homogenisation

The homogenisation of systems with multi-scale potentials under the influence
of noise is an area of ongoing study, a majority of models with physical applica-
tions are not known to be amenable. Recently work has been carried out on a
symmetric version of the system in Equations 2.1 and 2.3 [53]. Beginning from
Equation 2.1 and a generalised version of Equation 2.3, they expand in orders
of ε, the scale separation parameter.

The derivation begins by writing the Backward Kolmogorov Equation (BKE)
corresponding to the SDE Equation (2.1), this is another equivalent way of
expressing the equation to the FPE mentioned in Equation (2.2):

∂tF
ε (x, t) = LεF (x, t) (2.4)

where we have defined the infinitesimal generator

Lεf (x) = −∇V ε (x) · ∇f (x) + σ∆f (x) . (2.5)

The process is to “freeze” the scales x, xε ,
x
ε2 · · · and to quantify the macro-

scopic effects of the O
(
ε−N

)
term. We formally assume that the variable x

εN

is independent of the lower order terms and write V ε (x) = V εN
(
x, x

εN

)
we then

have that:

∇xV ε (x) =

(
∇x +

1

εN
∇z
)
V εN (x, z)

∣∣∣∣
z= x

εN

. (2.6)

We look for solutions of F ε (x, t) of the form F ε (x, z, t) where

F (x, z, t) = F0 (x, z, t) + εF1 (x, z, t) + ε2F2 (x, z, t) + · · · . (2.7)

The Backward Kolmogorov equation can then be rewritten as

∂tF (x, z, t) = −DNV
ε (x, t)DNF (x, z, t) + σDN ·DNF (x, z, t) , (2.8)

where DN =
(
∇x + ε−N∇z

)
. Performing a standard homogenization procedure

of the above equation we can obtain the effective dynamics in the limit that
ε → 0. Substituting the expansion Equation (2.7) into the BKE we consider
the leading order terms of the expansion in powers of 1

ε . The Oε−2N term can
be written as

∇z ·
(
e−V

ε
N (x, z)/σ∇zF0 (x, z, t)

)
= 0 . (2.9)

We observe that for fixed x the exponential quantity is strictly positive, this
implies that F0 is independent of the fast variable, i.e. F0 (x, z, t) = F0 (x, t).
The Oε−N equation is given by
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∇z ·
(
e−V

ε
N (x, z)/σ∇zF1 (x, z, t)

)
= ∇z ·

(
e−V

ε
N (x, z)/σ

)
∂xF0 (x, t) . (2.10)

Solutions to this equation can be constructed as follows: take θN (x, z) to
be the vector-values solutions to the following Poisson equation:

∇z ·
(
e−V

ε
N (x, z)/σ (∇zθN (x, z) + I)

)
= 0 , (2.11)

where (∇zθN )ij = ∂ziθN,j for i, j = 1, · · · , d. We have created the solution

F1 (x, z, t) = θN (x, z)∇xF0 (x, t) which satisfies our Oε−N equation above.
Finally we consider the O1 equation which is given by

∇z ·
(
e−V

ε
N (x, z)/σ∇zF2 (x, z, t)

)
=−∇z ·

(
e−V

ε
N (x, z)/σ∇xF1 (x, z, t)

)
−∇z ·

(
e−V

ε
N (x, z)/σ∇zF1 (x, z, t)

)
−∇z ·

(
e−V

ε
N (x, z)/σ∇xF0 (x, t)

)
− e−V

εN (x, z)/σ

σ
∂tF0 (x, t) (2.12)

A necessary and sufficient condition for the existence of F2 is that the RHS
have zero integral with respect to e−V

ε
N (x, z) dz:

ZN−1 (x) ∂tF (x, t) = σ∇x ·
(∫

e−V
εN (x, z)/σ

∇zF1 (x, z, t) dz

)
+ σ∇x

(∫
e−V

εN (x, z)/σ

dz∇xF0 (x, t)

)
, (2.13)

= σ∇x
(∫

e−V
εN (x, z)/σ

(∇zθN + I) dz∇xF0 (x, t)

)
,

(2.14)

= ∇x (KN−1 (x)∇xF0 (x, t)) , (2.15)

where

ZN−1 (x) =

∫
e−V

εN (x, z)/σ

dz ,

and

KN−1 (x) = σ

∫
e−V

εN (x, z)/σ

(∇zθN (x, z) + I) dz .

Repeating this process inductively for all intermediate scales, introducing
each microscale in turn, we obtain the final coarse-grained BKE that is inde-
pendent of ε:

∂tF0 (x, t) =
1

Z (x)
∇x · (K (x)∇x (x, t)) , (2.16)
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where

Z (x) =

∫
· · ·
∫
e−V

(x, x1, ··· , xN )/σ
dx1 · · · dxN ,

and

K (x) = σ

∫
· · ·
∫ 1∏

i=N

(1 +∇xiθi (x, x1, · · · , xi)) e−V
(x, x1, ··· , xN )/σ

dx1 · · · dxN ,

where the correctors θ1, · · · , θN are the solutions of the cell equations (Equation
(2.11)) at each scale, known up to an additive constant. This corresponds to a
new diffusion process, which we call the homogenised process, described by the
new SDE:

dx0
t =

[
−M

(
x0
t

)
∇xΨ

(
x0
t

)
+∇x · M

(
x0
t

)]
dt+

√
2M (x0

t )dWt , (2.17)

where we use the definitions:

M (x) =
K (x)

Z (x)

and
Ψ (x) = − logZ (x) .

In the tilted bistable case (Equation 2.3) we admit only one micro-scale,
in this case we use the fact that the homogenised dynamics are exponentially
ergodic with respect to the invariant distribution. This allows us to find the
steady-state distribution function ρ directly:

ρ (x) =
Z (x)

Z̄

=
1

Z̄
e−V0/σI0

(
x2

2σ

)
, (2.18)

Z̄ =

∫
R1

e−V0/σI0

(
x2

2σ

)
dx (2.19)

where I0 is the modified Bessel function of the first kind.
This approach allows us to find the long-term behaviour of the system in

the limit that ε→ 0, a regime where numerical simulation becomes prohibitive.

2.3 Numerical Method

In order to investigate the effect of the tilt on the stability of bifurcations we
need to study Equation 2.18. Its stationary points will give us the locations of
maxima and minima in the probability density function.
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The principal tool to study the behaviour and bifurcation of stationary solu-
tions to equations that do not permit analytical study is numerical continuation.
A naive approach would be to solve the equation in question numerically through-
out the parameter space and generate the bifurcation diagram that way. This
will produce a sketch of the diagram, but it is difficult to approach limit points
like this, doing so requires increasingly small steps in the principle bifurcation
parameter to resolve the area around the limit point. Standard non-linear equa-
tion solvers also become less able to distinguish between the branches as they
close, leading to errors in the branch locations.
These problems can partially be ameliorated by resolving the areas around limit
points by solving in a transverse direction, i.e. by fixing the spatial position (x)
and solving for the bifurcation parameters α, this can also be accelerated by
using neighbouring fixed point locations as starting points for the non-linear
solver, but in general this is an unsatisfactory solution.
The approach adopted in this work, and across literature is numerical contin-
uation. Instead of restarting the solution process at each new value of the
bifurcation parameter we use our knowledge of an existing point to predict the
next location using a linear solver, we then correct this location using Newton’s
method (Figure 2.3).

The specific numerical continuation method we employ is called “Pseudo-
arclength Continuation”. We assume that we already have a solution to the
equation at some point, for example we might use Newton’s method at the end
of the area of interest to find an initial solution. We call this point u and it
solves the equation F (u) = 0. We then parametrise both the principal continu-
ation parameter α and the solution location u (α) in terms of the distance along
the solution curve s from some point:

F (u (s) , α (s)) = 0 (2.20)

Taking the definition of arc length and the step size ∆s, which we can allow to
vary in order maximise accuracy or speed as necessary we close the problem.
Taking (u̇0, α̇) to be the tangent at the point (u0, α0):

u̇ (u− u0) + α̇ (α− α0) = ∆s (2.21)

Once the branch of the solution has been identified and continued we can iden-
tify limit points. These correspond to turning points in the function being
continued, and physically represent the extrema of the probability distribution
of the system (regions where the probability of observing a particle once the
system has reached steady state is greatest or least). These can be found by
locating points where the x derivative of F is zero:

F (u∗, α∗) = 0 ,

(
∂F

∂x

)
x∗,α∗

= 0 ,

(
∂F

∂α

)
x∗,α∗

6= 0 (2.22)

, The main avenue of study in this system is to investigate how the existence of
limit points is affected by the noise intensity, this is essentially another parame-
ter in the system, so we re-parametrise the system to include the noise intensity
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Figure 2.3: Schematic diagram of the process of Pseudo-Arclength continuation.
From an initial solution a predictor step is taken along the tangent for a given
step size ds to give a predicted solution (empty blue circle). Newton’s method
is then used to correct this to an actual solution (filled blue circle). We note
that the step size can be adapted when the function’s second derivative is large.

σ.
F (u (s, σ) , α (s, σ)) = 0 (2.23)

The continuation approach is the same as before, we identify an initial point
where we expect to see a limit point and solve the full system with a Newton
solver. This is continued as before at a fixed value of σ to identify the location
of the limit point. If no limit point is observed then we choose a new value
of σ and try again. If we identify a limit point then we allow σ to vary, our
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continuation equations now read:

F (u∗, α∗, σ∗) = 0 , (2.24)(
∂F

∂x

)
x∗,α∗,σ∗

= 0 ,(
∂F

∂α

)
x∗,α∗,σ∗

6= 0 ,(
∂F

∂σ

)
x∗,α∗,σ∗

6= 0 .

2.4 Results

Locating extrema to the homogenised probability density function (Equation
2.18) corresponds to finding the zeroes of its spatial derivative. Computing the
derivative we obtain, using standard results for the derivative of the modified
Bessel function of the first-kind,

∂ρ (x)

∂x
=
∂

∂x

(
e−V0/σI0

(
x2

2σ

))
=

1

σ
e−V0/σ

((
x3 − αx+ η

)
I0

(
x2

2σ

)
− xI1

(
x2

2σ

))
. (2.25)

Setting this to zero and rearranging we obtain:

x3 −

α+
I1

(
x2

2σ

)
I0
(
x2

2σ

)
x+ η = 0 . (2.26)

In order to carry out the continuation procedure we observe that for small
values of σ the quotient I1/I0 approaches unity. This can be shown by taking
the large z limit of the modified Bessel function [146]:

lim
z→∞

Iν (z) =
ez√
2πz

, (2.27)

this is independent of the value of the argument ν, and therefore for sufficiently
small σ we can write that:

x3 − αx+ η = 0 (2.28)

We can therefore solve the approximate equation directly in order to obtain
an initial solution. Given the form of the Equation 2.26 we find that there
are multiple branches, and therefore we follow the stable branch first and then
restart continuation on the unstable branch.

Continuation was carried out using the open-source software package AUTO-
07p [52] together with interface software written by the author in MATLAB.
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Figure 2.4: Bifurcation diagrams for η = 0.1 for different noise intensities: (a)
σ = 0.025; (b) σ = 7.8 ≈ σc; (c) σ = 1; (d) Cusp in λ− σ space at σ u 0.128

In Figure 2.4 we observe three distinct regimes which are characteristic of a
pitchfork bifurcation, the same transition observed for the symmetric case in
[53]: as the noise is reduced the interaction between the periodic micro-scale
and the noise causes a stabilised region to form on the stable branch.

When the noise intensity is very high the stable branch has no hysteresis be-
haviour and only one inflection point (panel c). As the noise reduces the system
passes a critical point (panel b), beyond which the system exhibits hysteresis
behaviour, and we observe a stable region forming on the stable branch (panel
a).

Following the limit points from panel a, the noise is increased until the
limit points merge, as in panel b. The cusp bifurcation observed can then be
represented in σ − λ − x space; the three projections into two dimensions are
shown below (Figure 2.5), for different values of η. The behaviour is complex,
but the general trend is for smaller critical σ with increased tilt, a narrower
region of metastability in the x direction, and the limit points moving more
negative in λ.

Plotting the critical noise intensity as a function of the tilt (Figure 2.6) shows
this first trend; increasing the tilt serves to destabilise the metastable region,
limiting the noise intensity at which it is observed.
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Figure 2.5: Limit point location approaching cusp for different strengths of tilt
eta. First three panels show projections onto the coordinate axes: (a) λ − σ;
(b) σ − x; (c) x − λ. (d) shows a portion of parameter space in 3 dimensions.
In all cases η varies from 10−3 in blue to 10−1 in yellow.

The tilt also serves to narrow this metastable region as observed in panels
b and c of Figure 2.5. Referring to the potential (Equation 2.3), the trend
reducing the critical value of λ can be understood as the tilt reducing the depth
of the local potential well, so a deeper well is needed to maintain the metastable
area.

One quantifier for a change of this kind comes from the theory of phase
transitions. Identifying the noise intensity as a temperature, we define a reduced
temperature Tc as the controlling quantity, and we look at the response in the
principal bifurcation parameter |λ|. Thermodynamically, this corresponds to the
density difference between two phases as the temperature approaches criticality.

X ≡ σc − σ
σc

, Y ≡ |αc|
N

(2.29)

Y ∝ |X|γ , (2.30)

In the rescaled space Figure 2.7 we observe straight line fit, confirming that a
critical exponent of this form does describe the bifurcation process. Performing
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Figure 2.6: Effect of tilt (η) on critical noise intensity (σc)

a linear fit of these curves recovers an exponent of γ u 0.66. This exponent
seems to be insensitive to the size of the tilt (Figure 2.8), suggesting that the
mechanism by which the limit points are destabilised is not related to the critical
exponent.

We observe that the critical exponent computed in this study is not the
same as that computed by Duncan et al. in their study [53] where they recover
γ = 1.6 independent of the number of scales.
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Figure 2.7: Transition from subcritical to supercritical behaviour as the noise
intensity is increased.
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Figure 2.8: Effect of tilt (η) on critical exponent (γ)

2.5 Conclusions and Future Work

We studied the interaction between an asymmetric multiscale potential and
noise. Homogenising the governing equations we found that since the macroscale
potential does not enter into the microscopic governing equations it does not
affect the homogenisation process, and so existing results for the macroscopic
Distribution Function can be applied directly.

Study of the homogenised equations confirmed that for small tilts we can
recover the symmetric result that σc = 0.25, whilst for increasing tilts the critical
noise intensity decreases. This is explained by the tilt destabilising the induced
local minima, and eventually destroying them altogether.

We quantified the bifurcation in terms of phase transitions, and confirmed
that power law behaviour is observed in approach to criticality with a critical
exponent of γ u 0.66. This contrasts with the result for the symmetrical case
from Duncan et al. [53], suggesting that the asymmetry in the problem changes
the critical behaviour of the system fundamentally.

There is ample opportunity for further work in this direction, results exist
to extend this two scale result to any number of scales separated by increasing
orders of the scale separation parameter. A direct extension of the current work
would be to reproduce the results for multiple separated scales, the authors
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expect to observe wider regions of metastability with increasing numbers of
scales.

The present work only considers one kind of physically relevant macroscopic
potential, the work can be extended to any confined potential within C1, and to
piecewise linear potentials, offering a wide scope for further study. An interest-
ing problem would be to investigate the effects of periodic potentials, such as a
tilted ratchet potential, this would require careful treatment of the microscale,
but could yield promising results.

The authors also consider that extension of the present work into three
or more dimensions could offer interesting applications, particularly in protein
folding. Analytical results are no longer available, and the cell problem must be
solved numerically, but the increase in applicability of the model is likely worth
the computational effort involved.
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3
Phase Separation in Confined Geometries

Nucleation in quenched fluids is a very classical problem for Cahn–Hilliard type
models, indeed the original derivation by Cahn ([29], [30]) assumed that an
alloy was quenched and crystals formed in the solid. This can be used to model
engineering systems like phase separation in flash vessels, or for microfluidic
separators ([158] for example). In this work we study the nucleation of a fluid
in a channel which, after some time has passed, is influenced by an external force
causing flow to occur along the channel, we are interested in how the transport
properties are affected by the channel geometry, and to that end we corrugate
the channel.

We begin by introducing the Cahn–Hilliard equations and their coupling to
the Navier–Stokes equations for a description of multiphase flow with convec-
tion, we then perform a static energy analysis of different flow configurations in
order to inform our numerical experiments.

We then derive a finite-element formulation including a splitting scheme for
the nonlinear potential term which enables us to simulate the flow field. We
draw some conclusions from the results and suggest directions for future work.

3.1 Introduction

In this section we introduce the theoretical background and justification for the
coupled Cahn–Hilliard-Navier–Stokes equations as a model for multiphase flow
in confined geometries.

3.1.1 The Cahn–Hilliard Equations

The Cahn–Hilliard equations were first posed as a phenomenological model for
phase separation in a series of papers by Cahn and Hilliard ([29],[30] and [27]) as
a model for phase separation by spinodal decomposition. In contrast to classical
nucleation for phase separation, spinodal decomposition is usually encountered
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when a mixture that is above its critical point is rapidly cooled to below the
critical point whereupon small clusters of each constituent phase will form spon-
taneously throughout the fluid.
These clusters then enlarge by a process known as Ostwald Ripening, eventually
forming droplets of one phase supported in the other. This process is of interest
in areas such as Metallurgy[14, 154], Geology[166, 48] and Chemistry[174].
Since the original paper there have been many derivations for these equations,
both physically based and phenomenological, a good review of derivations is
given by Lee et al. [125].

3.1.2 The Cahn–Hilliard Navier–Stokes’ Equations

The utility of the Cahn–Hilliard (C–H) equations in studies of diffusive-dominated
flow is great, however only a small fraction of flow problems fall into this regime.
Many more problems require the resolution of convective flow as well as diffu-
sive, and for this the C–H equations must be coupled to some kind of momen-
tum conservation model. Two models that have received much study are the
Cahn–Hilliard Navier–Stokes (CHNS) model (Model H in the terminology of
Hohenberg and Halperin [92]), and the reduced Cahn–Hilliard Stokes model
(CHS), for creeping flow (Re << 1).

These models are attractive for several reasons, the stress-singularity formed
at the contact line of a sharp interface model is not present, neither slip-length
nor special treatment of that region is required. The smoothness of the phase-
field also allows a simple unstructured mesh to be used in computation, and
this can be adapted as necessary without difficulty. Lastly the use of two well-
studied models allows expertise from Computational Fluid Dynamics (CFD) in
the solution of the Navier–Stokes equations and existing methods to solve the
C-H equations to be applied.

The addition of a characteristic length scale for the interface does, however,
introduce the same problems we see with other multi-scale methods. We are
interested in the macroscopic flow field and morphology, but it becomes critical
to correctly resolve the behaviour of the fluids across the interface. This requires
us to carefully design numerical schemes that allow for mesh and time-step
adaptation, as well as dealing with very stiff equations. The scale separation
has its own dimensionless number in this field, the Cahn number Cn which is
the ratio of the interface width to the characteristic length scale of the flow
geometry.

Within the literature the CHNS equations are currently less well applied than
other models for two-phase flow, largely being relegated to modelling test-cases
and benchmarks, but they show promise in these. A major reason for the lack
of application has been historical: the first method for simulating free surface
flows to achieve widespread adoption was the Volume of Fluid method (VOF),
which is used to this day in many commercial CFD codes including Fluent and
STAR-CCM. Additionally the value for the interface thickness, or equivalently
the Cahn Number (CN ), must be very small (O

(
10−9m

)
) to model meaning-
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ful flows accurately. That said, relaxing this requirement to simply enforce
a scale separation allows simulation of fluid flow in a qualitatively reasonable
way. Direct benchmarking of CHNS solvers against the widely accepted VOF
method gives reasonable agreement in the rising and falling droplet benchmarks
([2],[66]). This suggests that the CHNS model can be applied to physically rel-
evant situations with relatively large interface widths, recovering comparable
results to the classical VOF method.

3.2 Derivation of The Cahn–Hilliard Navier–Stokes
Equations

In order to motivate the coupled CHNS equations we follow a derivation from
microforce balances first presented by Gurtin [84]. This makes the balance laws
that govern the fluid flow clear, and presents a more rigorous argument than
the classical derivation, this has the benefit of justifying the connection to the
Navier–Stokes equations.

The basic premise of the microforce balance approach is to assert that within
some region R the power exerted on atomic configurations within R for some
change in the order parameter φ can be written as one of the following:∫

∂R

(ξ · n) ρ′ da ,

∫
R

πρ′ dv ,

∫
R

γρ′ dv .

Here we have defined a vector stress ξ and two scalar forces π and γ which
represent internal and external forces respectively, distributed over the body
of the fluid. The integrals represent the power expended by neighbours of R
across the boundary ∂R, the power expended on the atoms by the lattice, and
the power expended on the atoms by external forces.

The microforce balance can then be written for each control volume as:∫
∂R

ξ · n da+

∫
R

(π + γ) dv = 0 (3.1)

We also identify the external work done on some control volume as:

W (r) =

∫
∂R

(ξ · n) da+

∫
R

γρ′ dv (3.2)

The kinematics of the fluid are straightforward to state: incompressibility gives:

∇ · v = tr (∇v) = 0 (3.3)

which means that the stretching D is traceless:

D =
1

2

(
∇v +∇vT

)
(3.4)
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The mass balance can then be written, introducing the notation Φ• to be
the material derivative of the field Φ (also represented by

D (Φ))

in some contexts). We observe that the the change of mass within a volume
must be equal to the flux through the boundary of the volume:{∫

R

ρb dv

}•
= −

∫
∂R

hb · n da

Making use of the fact that the total density is constant and that the mass flux
h of the two phases (usually referred to as ‘a’ and ‘b’) sums to zero we can
write this locally in terms of the order parameter. This represents the local
composition of the field, conventionally taken to represent the local fraction of
phase ‘a’:

φ• = −∇ · h (3.5)

Writing T as the macroscopic stress tensor and n the normal of the control
volume’s boundary, the momentum balances for linear and angular momentum
take standard form:∫

∂R

Tn da =

{∫
R

ρv dv

}• ∫
∂R

x×Tn da =

{∫
R

(x× ρv) dv

}•
,

equivalently in local form:

∇ ·T = ρv• T = TT (3.6)

The stress can be rewritten to make the connection to the pressure clear:

S = T + pI p = −1

3
(trT) I . (3.7)

Returning to the microscopic force balance, we restrict our treatment to the
isothermal case. We note that the second law of thermodynamics states that
the rate of energy increase for any control volume R cannot exceed the sum of
energy transported into R plus the working given by W. Defining the chemical
potential µb for phase b and the difference between the two phases as µ we can
write the second law as the dissipation inequality:{∫

R

(φ+ k) dv

}•
≤
∫
∂R

Tn · v da+

∫
∂R

φ•ξ da−
∫
∂R

µh · n da .

The terms in the right-hand side of this equation represent the effects of the
microscopic stress, the macroscopic stress, and the diffusion of energy in the
form of chemical potential respectively. As a consequence of the local forms and
the definition of the material derivative we have:

φ• −T · ∇v + (π − µ)φ• + ξ · ∇φ• + h∇µ ≤ 0 ,
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Making use of equations 3.6 and 3.7 we can rewrite this as:

φ• − [S +∇φ⊗ ξ] · ∇v + (π − µ)φ• + ξ · (∇φ)
•

+ h · ∇µ ≤ 0 . (3.8)

Constitutive relations are now required in order to close the problem, thank-
fully the dissipation inequality provides restrictions on the form these can take,
we refer the reader to the original work for the detailed restriction and justifi-
cation [84]. We assume that:

P = 2νD , h = −m∇φ , ψ = f (φ) +
1

2
α |∇φ|2 , (3.9)

where the mobility m, the viscosity ν, and the free energy α are taken to be
non-negative constants and we have introduced P , the thermodynamic stress
which is a conjugate of the stretching D.

ψ =f (φ) +
1

2
α |∇φ|2 (3.10)

T =− pI + 2νD− α∇φ⊗∇φ (3.11)

ξ =α∇φ (3.12)

π =µ− f ′ (φ) (3.13)

h =−m∇µ (3.14)

The term ∇φ⊗∇φ, which is sometimes known as the Korteweg stress tensor,
represents normal stress in the absence of flow, and acts as a surface tension.

Cahn’s formula for the chemical potential is apparent substituting the con-
stitutive equation for π into the local microscopic balance, and the generalised
Navier–Stokes and Cahn–Hilliard equations can also be found by making use
of the constitutive relations. The extra term on the RHS of Equation 3.16 is a
result of the Korteweg stress tensor mentioned above, all the other terms are
classical.

µ =f ′ (φ)− α∆φ , (3.15)

ρv· =−∇p+ ν∆v − α (∆φ)∇φ , (3.16)

0 =∇ · v , (3.17)

φ· =m∆ [f ′ (φ)− α∆φ] . (3.18)

3.2.1 Non-dimensionalisation

The form of the CHNS equations derived from the microforce balance is use-
ful for physical modelling, where measurement of physical quantities can be
made, but this also hides the fundamental quantities that control the relative
importance of physical phenomena. These physical quantities are summarised,
together with their units, in table 3.2.1. In order to elucidate the parameters
that control different effects we rewrite the equations in terms of dimension-
less groups, highlighting the relative magnitude of the contributions from each
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Quantity Unit
Free Energy (α) J

Chemical Potential (µ) J ·m−3

Phase-Field (φ) −
Mobility (m) J−1 ·m5 · s−1

Surface Tension (σ) J ·m−2

Velocity (v) m · s−1

Pressure (P ) N ·m−2

Mass Density
(
ρ1, ρ2

)
kg ·m−3

Viscosity
(
η1, η2

)
Pa · s

Table 3.1: Physical quantities and their dimensions in the Cahn–Hilliard Navier–
Stokes system of equations

term.
We adopt a characteristic length, velocity, viscosity and chemical potential

L̄, Ū , η̄, µ̄, this allows us to rewrite the equations in terms of the rescaled vari-
ables:

ũ =
u

Ū
, t̃ =

tL̄

Ū
, x̃ =

x

L̄
, ∇̃ = L̄∇, p̃ =

pL̄

η̄1Ū
, µ̃ =

µ

µ̄
(3.19)

Cahn–Hilliard Equation

Making use of the definition of the material derivative we begin from Equation
(3.13):

∂φ

∂t
+ (u · ∇)φ = m∆µ (3.20)

we substitute the dimensionless quantities from Equation (3.19), and collect the
terms:

Ū

L̄

[
∂φ

∂t̃
+
(
ũ · ∇̃

)
φ

]
=
m̄µ̄

L̄2

[
∇̃2µ̃

]
,

∂φ

∂t̃
+
(
ũ · ∇̃

)
φ =

(
m̄µ̄

Ū L̄

)
∇̄2µ̃ ,

∂φ

∂t̃
+
(
ũ · ∇̃

)
φ =

(
1

Pe

)
∇̄2µ̃ . (3.21)

The Péclet number (Pe) is identified as the controlling group in this equation,
which represents the balance between the advection and diffusion. When the
Péclet number is small the right hand side of the equation will dominate, re-
ducing to steady diffusive transport, when it is large the right hand side will
vanish, and the advection will dominate.
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Cahn’s Formula for Chemical Potential

Again making use of the formula for the material derivative, and rescaling the
potential term appropriately we have:

µ = µ̄f ′ (φ)− α∆φ , (3.22)

similarly substituting the dimensionless quantities from Equation (3.19) and
collecting terms we obtain:

µ̄µ̃ =µ̄f ′ (φ)− α

L̄2
∇̃2φ ,

µ̃ =f ′ (φ)− α

µ̄L̄2
∇̃2φ ,

=f ′ (φ)− ξ2

L̄2
∇̃2φ ,

=f ′ (φ)− Cn2∇̃2φ . (3.23)

The Cahn number is identified as the controlling group in this equation, it
represents the balance between interfacial thickness and the characteristic length
of the domain. Large values of this group favour wide interfaces, where the
diffusive term dominates, for small values the potential term dominates, and
the narrow interface experiences little smoothing.

Continuity Equation

The continuity equation can be rewritten directly, since any rescaling of the
equation corresponds to a simple multiplicative constant for all terms:

∇ · u = ∇̃ · ũ = 0 (3.24)

Modified Navier–Stokes Equation

The modified Navier–Stokes equation requires slightly more remarks, replacing
the material derivative and substituting dimensionless quantities as before we
obtain the initial dimensionless equation:

ρ

[
∂u

∂t
+ (u · ∇)u

]
=−∇p+ η∇2u + α∇φ , (3.25)

ρŪ2

L̄

[
∂ũ

∂t̃
+
(
ũ · ∇̃

)
ũ

]
=− η̄1Ū

L̄2
∇̃p̃+

ηŪ

L̄2
∇̃2ũ +

µ̄

L̄
µ̃∇φ ,[

∂ũ

∂t̃
+
(
ũ · ∇̃

)
ũ

]
=− η̄1

ρŪL̄
∇̃p̃+

η

ρŪL̄
∇̃2ũ +

µ̄

ρŪ2
µ̃∇φ . (3.26)

Taking the pressure term from equation (3.26), we define the density ratio
ρ̄ = ρ

ρ1
and identify the Reynolds number Re:

η1

ρ1Ū L̄

ρ1

ρ
=

1

ρ̄Re
. (3.27)
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Defining the corresponding viscosity ratio η̄ = η
η1

the coefficient of the vis-
cous term can we expressed as:

η

ρŪL̄
=

η1

ρ1Ū L̄

η

η1

ρ1

ρ
, (3.28)

=
1

ρ̄Re
η̄ . (3.29)

For the interfacial energy term we obtain:

µ̄

ρŪ2
=

1

ρ̄Re

µ̄L̄

η1Ū
(3.30)

The surface tension enters via the parameter µ̄. Solving the Cahn–Hilliard
equation in one dimension gives and expression for the interface profile, and
this can be used to obtain the effective surface tension. Making use of this fact
we obtain:

µ̄

ρŪ2
=

1

ρ̄Re

µ̄L̄

η1Ū
,

=
3

2
√

2

1

ρ̄Re

σ̄

η1Ū

L̄

ξ
,

=
3

2
√

2

1

ρ̄Re

1

Ca

1

Cn
. (3.31)

The remaining dimensionless quantity we introduce is the capillary number

Ca = η1Ū
σ̄ , this controls the balance between viscous forces and the surface

tension. Small values of this group lead to large surface tensions, and the fluid
is strongly convected by surface effects, large values effectively decouple the
velocity field from the phase.

In our simulations and analysis we assume that both phases have identical
viscosity and density, this reduces the generality of the model somewhat, but is
a common assumption to make in the literature. We therefore take ρ̄ and η̄ to
be one. The relative magnitudes of the viscosity and density will still enter the
equations through the dimensionless groups.

The system of equations is thus parameterised by three dimensionless groups,
these are summarised in the table below. The final dimensionless equations to
be studied are presented below, we have dropped the tildes, and now assume
that all quantities are their dimensionless equivalents.
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Table 3.2: Dimensionless groups that control the behaviour of the Cahn–Hilliard
Navier–Stokes equations, together with the balance of physical quantities they
represent.

Name Symbol Balance Expression
Reynolds’ Number Re Viscous Forces - Inertial Forces ρ1Ū L̄/η̄1

Cahn Number Cn Interfacial Length - Fluid Length ξ/L̄
Capillary Number Ca Viscous Forces - Surface Tension η1Ū/σ̄

∂φ

∂t
+ (u · ∇)φ =

(
1

Pe

)
∇2µ , (3.32)

µ =f ′ (φ)− Cn2∇2φ , (3.33)

∇ · u =0 , (3.34)[
∂u

∂t
+ (u · ∇) u

]
=− 1

Re
∇p+

1

Re
∇2u +

1

Re Ca Cn
µ∇φ . (3.35)

3.3 Problem Formulation

The channel is taken to be a periodic channel in the x-direction, symmetrical
about the x-axis with the upper wall given by the equation yupper = 1+ε cos kx.
By varying the values of k and ε we can control the strength and frequency of
corrugations in the channel, this geometry is shown below in Figure 3.1.

Initial numerical simulations (See 3.4), suggest that we expect to observe:

1. Slug flow: Where phase A extends from the upper to the lower wall for
some length of the channel, capped with circular section interfaces with
phase B.

2. Droplet flow: Some volume of phase A is enclosed entirely by phase B,
the interface is then a circle.

3. Stratified flow: A layer of phase A extends along the entire channel, sep-
arated from either wall by phase B, the interface is then two straight
sections.

It is worth noting that the stratified case is only observed because the domain
is periodic, we can imagine that the flow is confined to a very thin annular layer
between two cylinders, like for Couette flow. This means that the interface
between the two fluids has a finite length, and hence the morphology has finite
energy.

3.3.1 Static Energy Analysis

In order to obtain an initial idea of the flow patterns we will encounter we
formulate a simple model of the channel and suggest that the likelihood of
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Figure 3.1: Half-channel geometry, ε = 0.6, channel is mirrored about the x-axis
and periodic in the x-direction.

observing a state is inversely proportional to its interfacial energy. We assume
that the geometry of the droplet is unaffected by the velocity, or rather that
the capillary number (Ca) is small. This enables us to extract the interfacial
energy as a function of the droplet’s size and position, predicting the most likely
morphology, as well as the energy barrier to flow down the channel.

Slug flow

The interfacial energy of the slug is a function of the interface length, both
between phase A and phase B, and between phase A and the wall. This is
a function of the volume and position of the droplet. We define the droplet
position by its centre of mass, or barycentre, as the droplet will be asymmetrical
throughout most of the channel. The profile we construct is shown in Figure
3.2.

The shape of each circular interface is found by taking some location z as
the contact point between phase A and phase B. The apparent contact angle
θa is found as a function of the static contact angle θ0 by observing that it is
related to the angle of the wall to the horizontal at z (θw):

θa = θ0 − θw (3.36)
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Figure 3.2: Construction of the slug geometry. Contact points at B and G,
static contact angle θ0, apparent contact angle θa. Centres of circular sections
at D and I, radii of sections given by DE and IJ

where:
θw = arctan (kε sin kz) (3.37)

The area and arc length of the circular cap are related to the radius and
the angle subtended, the angle is found by observing that the apparent contact
angle and the subtended angle form a right angle, and so:

θs =
π

2
− θa (3.38)

The radius can be found by substituting the location of the contact point
into the equations of a circle centred at some z0 with unknown radius r:

z =z0 + pr cos θs ,

1 + ε cos kz =r sin θs ,

thus, making use of standard trigonometric identities:

z0 =z − pr sin θa , (3.39)

r =
1 + ε cos kz

cos θa
, (3.40)
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where we have defined p in the first equation as the convexity of the interface:
specifically it is the value of sign

[
θa − π

2

]
. When p is equal to 1 the interface is

convex, when it is equal to −1 it is concave.
The volume and arc length can then be computed using the standard for-

mulae, these give:

Vr =p

∣∣∣∣∣ (1 + ε cos kz)
2

4 cos2 θa

(
2
(
θa −

π

2
+ sin 2θa

))∣∣∣∣∣ , (3.41)

sr =2

(
θa − π

2

)
(1 + ε cos kz)

cos θa
. (3.42)

A result of using the static contact angle is that the left and right circular
caps are given by slightly different expressions. We use the above equations Eqs.
(3.36)-(3.41) directly for the right-hand end of the slug, but must modify them
for the left-hand end. As we measure the contact angle in the opposite sense we
must replace θ0 by π − θ0:

θa,r = π − θ0 − θw , (3.43)

we also must reverse the sign in Equation (3.40) for z0 as convexity now corre-
sponds to the interface left of the contact point rather than right of it:

z0 = z + pr sin θa,r . (3.44)

The area of the central section and the length of the phase A - wall interface
are both found by integration directly:

Vc =2

∫ zr

zl

y dx

=2

∫ zr

zl

(1 + ε cos kx dx)

=2 (zr − zl) +
2ε

k
(sin kzr − sin kzl) , (3.45)

sc =2

∫ zr

zl

√
1 +

(
dy

dx

)2

dx

=2

∫ zr

zl

√
1− ε2

k2
sin2 kx dx

=
2

k

(
E
(
kzr,

ε

k

)
− E

(
kzl,

ε

k

))
, (3.46)

where we have made use of the definition of E (ϕ, k) as the incomplete elliptic
integral of the second kind.

54



From Equations (3.42) and (3.46) we can compute the interfacial energy, by
choosing an appropriate scaling we have that:

γ =sl + sr − 2sc cos θ0

=2

(
θa,l − π

2

)
(1 + ε cos kzl)

cos θa,l

+ 2

(
θa,r − π

2

)
(1 + ε cos kzr)

cos θa,r
(3.47)

− 4 cos θ0

k

(
E
(
kzr,

ε

k

)
− E

(
kzl,

ε

k

))
.

In order to permit comparison of slugs with droplets and stratified flow we
need to find the locations of the contact lines as a function of the centre of mass
of the slug and its volume. This means we must solve two equations to find the
values of zl and zr, and hence the interfacial energy.

Firstly the volume of the droplet is defined as the sum of the contributions
from the different pieces, two end caps and the slug body:

0 =Vr + Vl + Vc − V

=pr

∣∣∣∣∣ (1 + ε cos kzr)
2

4 cos2 θa,r

(
2
(
θa,r −

π

2
+ sin 2θa,r

))∣∣∣∣∣
+ pl

∣∣∣∣∣ (1 + ε cos kzl)
2

4 cos2 θa,l

(
2
(
θa,l −

π

2
+ sin 2θa,l

))∣∣∣∣∣ (3.48)

+ 2 (zr − zl) +
2ε

k
(sin kzr − sin kzl)

− V .

In order to impose the centre of mass we need to compute the centres of mass
for each section, for the end caps we use the standard result for the centroid of
a circular segment:

x̄ =
4r sin3 (θs)

3 (2θs − sin (2θs))

=
4 (1 + ε cos kz) cos2 (θa)

3 (π − 2θa − cos (2θa))
. (3.49)

For the central slug section we integrate to find the moment of the shape and
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divide by the mass, which is equivalent to the volume, to obtain the centroid:

x̄ =
1

V

∫ zr

zl

xy (x) dx

=
1

V

∫ zr

zl

x+ εx cos(kx)dx

=
1

V

(
1

2

(
z2
r − z2

l

)
+
ε

k
(zr sin kzr − zl sin kzl) +

ε

k2
(cos kzr − cos kzl)

)
.

(3.50)

The barycentre of the slug is then found as the sum of each moment divided
by the total mass, setting this equal to the desired location provides the second
equation to close the problem:

0 =x̄− Z̄

=
Vlx̄l + Vrx̄r + Vcx̄c

Vl + Vr + Vc
− Z̄ . (3.51)

When the value of ε is large we observe that, for small volumes, the two cir-
cular interfaces meet. This means that at that regime, slug flow is not possible,
instead the slug will split into two wetted droplets.

This will happen at the widest part of the channel, so the problem reduces
to finding a point such that r = z0:

0 =z0 − r

=zr − prr sin θa,r −
1 + ε cos kzr

cos θa,r

=
zr

1 + ε cos kzr
+

sin θa − 1

cos θa
. (3.52)

The critical volume for which the slug is physically feasible is then computed
using Equation (3.48), assuming the slug is symmetrical about the y-axis, such
that zl = −zr.

Droplet Flow

Droplet flow is much more straightforward to analyse, we note that there can
be an infinite number of droplets formed (the regime known as bubbly flow),
but these have a higher energy than a single large drop. This is because a circle
is the shape that minimises the perimeter for a given volume.

The circumference of a circle with given area is trivially found as:

s = 2
√
πV . (3.53)

We observe that there is a physical limitation to the size of the droplet: the
diameter of the droplet cannot exceed the minimal width of the channel. This
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suggests that there are some regions where the higher energy of a multiple-
droplet state would be favourable, as a single droplet would be too large. The
maximal droplet volume is also trivially found:

r <min (1 + ε cos kx)

< (1− ε)

V <π (1− ε)2
. (3.54)

Stratified Flow

Stratified flow is stable statically in periodic domains and in channels with ends.
With flow it is only stable in periodic domains, for NI fluid-fluid interfaces its
energy is identified as the length of the periodic domain Lperiodic:

s = NILperiodic . (3.55)

Energy results

Initially we investigate the effect of slug volume on the interfacial energy. We
fix the slug’s location at the origin and the contact angle as π

2 , we then vary the
volume repeatedly solving the equations to compute the contact points and the
interfacial energy.

Very quickly we discovered that the equations permit multiple solutions: for
some given volume there can be multiple corresponding contact points. In order
to find all the possible solutions we adopted a numerical continuation approach.
Solving the equation with different starting points would have been another
valid approach, but the continuation method offers various advantages, includ-
ing easy adaptation of the step size and a simpler algorithm overall. We elected
to implement Moore–Penrose continuation, also known as Gauss–Newton con-
tinuation.

Moore–Penrose is a predictor-corrector method: from some previous solution
the algorithm predicts the next solution by a linear step; a Newton solver is then
used to correct the prediction. Moore–Penrose makes use of a matrix pseudo-
inverse of the same name to make this corrector step quicker to evaluate [4, 126].

Solving the equations using this continuation method reveals the behaviour
mentioned, for small channel perturbations (ε < 0.7) the droplet monotonically
extends. For larger perturbations multiple configurations with equal volume
exist in the vicinity of the widest part of the channel.

The bifurcation corresponds to a region where the droplet interface locally
reverses direction: a local maximum volume is reached and it must be decreased
to continue the motion of the contact line. It then reverses again and increases
with increasing volume. The three coexisting states are shown in Figure 3.5:
physically the transition across this would be discontinuous, upon reaching the
lower limit point the system would transition to the corresponding state on the
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Figure 3.3: Location of right contact line, equivalently half-length of slug, as a
function of slug volume. Colours correspond to different values of ε

branch directly above. In reverse the system would reach the upper limit point
before dropping to the branch below.

The interfacial energy here shows the same bifurcation, but with a different
profile, here a complex cusp is observed: the upper and lower branch in Figure
3.5 have equal energy and correspond to the point where the curves cross, the
two cusps correspond to the limit points in Figure 3.5, and the local minimum
energy corresponds to the central unstable state.

The bifurcation is controlled by the parameter ε, and it has a critical value
εc. This corresponds to the minimum perturbation such that the interface
undergoes this discontinuous motion. In order to find this value we compare
the change in volume of the central slug section and the end caps (Equations
3.41 and 3.45).

A first order Taylor expansion in the parameter ε gives a critical value of
εc = 0.711.

To confirm this value we use two-parameter continuation in ε and V : begin-
ning at one of the limit points in Figure 3.5 we allow Z and ε to vary, we then
move across the bifurcation surface until the limit points coincide. This hap-
pens when ε u 0.71, which confirms that our first-order expansion can correctly
predict the cusp location and therefore the critical value of ε. As long as the
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Figure 3.4: Same as Figure 3.3, zoomed on pitchfork bifurcation. Critical value
of ε appears to be approximately 0.7

perturbations are less than this value we expect the interface location to vary
smoothly; if we increase the perturbation above this value then the interface
location will jump discontinuously.

Away from the origin the droplet is no longer symmetric, fixing the channel
corrugation at a moderate value (ε = 0.5) we follow the droplet profile as it
passes through the channel and we compute the total interfacial energy. With
the contact angle θ0 = π

2 the Solid-Liquid energy is zero, so the energy profiles
will be periodic in V.

The energy results suggest that the resistance to flow is related to the droplet
volume, volumes that correspond to odd multiples of 2 (when the contact lines
are precisely out of phase) minimise this barrier, and even multiples (when they
are precisely in phase) maximise it: this is shown below in Figure 3.9.

Sampling droplet and slug energies for each volume and value of ε enables
us to plot a phase diagram. We observe that for large volumes we are unable to
form single droplets; here we either expect to observe multiple droplets, which
complicates analysis, or slugs. We also expect to observe multiple droplets when
ε is large and the volume is small; here the volume is below the critical volume
and the slug will destabilise.

Where both slug and droplet flow are possible (below the blue line), slugs
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Figure 3.5: Location of right contact point, equivalently the half-length, as a
function of volume for ε = 0.8. Insets show coexisting states along the dashed
line, top and bottom are stable states, centre is unstable.

are more stable for low values of ε (in the green region). For larger values of ε
the droplets are more stable than slugs at some points in the channel and less
in others, and both droplets and slugs are therefore feasible (the yellow region).
For very large values of ε slugs will separate into two when the channel is at
its widest, and so here droplets are preferred (the blue region). Above the blue
line the droplets would be too large to pass down the channel without colliding
with the wall and forming slugs (the cyan region), or neither are feasible and
multiple droplets must be formed (the orange region).

Equipped with this energy-based model we can predict what flow morphol-
ogy we should observe for a given set of parameters, assuming that the flow
velocity and, more importantly, the flow velocity gradient, is small. Larger ve-
locity gradients will cause shear in the droplets and will increase the interface
length, increasing the interfacial energy.

3.3.2 Numerical Methods

In one-dimension the non-convective Cahn–Hilliard equation Equation (4.17)
can be solved analytically, however in two or more dimensions, or where convec-
tion is included, this is impossible and the equations must be solved numerically.
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Figure 3.6: Interfacial energy as a function of slug volume for ε = 0.8. Pitchfork
bifurcation in Figure 3.5 corresponds to a symmetric bifurcation with two cusps.
Solid-Liquid interfacial energy is zero due to the contact angle.

The time dependant PDE requires a time-stepping scheme and the domain to
be discretised in some fashion.

Many approaches have been used to solve the equations in the literature
including classical Finite-Difference, Finite-Volume, and Spectral Methods. We
discarded a Spectral Approach as we intend to simulate complex geometries
for confinement, spectral methods require a smooth mapping from a square or
circular domain to the domain in question. They would offer increased accuracy
in simple geometries though, and they have been used widely in the literature.
Finite-Difference methods are appealing for their simplicity, and they are more
able to handle complex geometries, but we know that the CHNS equations tend
to favour solutions with large local changes in φ with large areas of little interest.
We therefore would like to make use of adaptive meshing to accelerate our
solution, this is complex and requires manual implementation in finite-difference
schemes, particularly for complex boundaries and boundary conditions.

We elected to use a Finite-Element method as it allows for arbitrarily com-
plex geometries and boundary conditions as well as allowing for mesh adapta-
tion.

Beginning with the non-dimensional formulation of the Cahn–Hilliard Navier–
Stokes equations we must relax our problem in such a way that we can find a
solution with a Finite-Element method. In the original formulation, known as
the Strong Form in the language of Finite-Element solutions, we cannot hope to
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Figure 3.7: Locus of a pair of limit points from Figure 3.5 for varying ε. Shows
a cusp at approximately 0.71

solve our equations with functions that are piecewise polynomial. They will have
undefined derivatives in places, and unless we are careful will have insufficient
continuous derivatives, we are doomed to fail.

However if we introduce a set of “test functions” from an appropriate func-
tion space we can reformulate our equations in such a way that the continuity
requirements are lifted. It turns out that this procedure allows us to naturally
satisfy Neumann boundary conditions within the equations themselves. We note
that Dirichlet conditions need to be enforced by manipulating the equations, but
this turns out to be straightforward.

Chorin’s Method for Time-Stepping

We need to formulate a strategy to compute the velocity field at each time-step.
The Navier–Stokes equations are not straightforward to solve in general, and
in particular the presence of the convective term (u · ∇)u, when the Reynolds
number is not small, lead to issues with numerical stability. We adopt a clas-
sical approach to treat the Navier–Stokes equations, which is modified to allow
solution where the interfacial stress has been coupled.

Chorin’s method is a splitting scheme that separates the velocity updates
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Figure 3.8: Interfacial energy as a function of slug centre for varying slug volume
(Top Purple - V = 4, Bottom Blue - V = 8)). Difference between maximal and
minimal energy corresponds to a resistance to flow.

into two contributions, a projection is made ignoring the pressure field, and this
is then corrected by computing a new pressure field [39],[40]. Euler’s method
is usually adopted in time, but this can be implemented with more accurate
time-stepping scheme. We elect to use Euler’s method to reduce complexity in
implementation and to improve simulation speed.

Formally we adopt the following scheme:

1. Compute velocity prediction.

u∗ − un

∆t
= − (un · ∇) un +

1

Re
∆un +

1

ReCaCn
µ∇φ . (3.56)

2. Compute updated pressure

∆pn+1 =
1

∆t
∇ · u∗ . (3.57)

3. Correct intermediate velocity

un+1 = u∗ − 1

Re
∆t∇pn+1 . (3.58)
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Figure 3.9: Interfacial energy barrier as a function of slug volume for ε = 0.8.
Minimum energy barrier is observed for volumes that are odd multiples of 2,
and the maximum barrier for even multiples of 2.

Operator Splitting Scheme for Cahn–Hilliard

The Cahn–Hilliard equation is also nonlinear, for any physically relevant form
of the free-energy gradient term. From the application of regular solution the-
ory, thermodynamic arguments suggest a free-energy incorporating the reduced
temperature of the form [142]:

F (φ) =
Θ

2
[φ lnφ+ (1− φ) ln (1− φ)] + αφ (1− φ) . (3.59)

This is difficult to work with as the potential is degenerate outside the region
(0, 1) (it is undefined at φ = 0 and φ = 1), additionally the multiple logarith-
mic terms make the evaluation at each time step computationally expensive.
Instead, most authors adopt a similarly shaped quartic potential of the form:

F (φ) = (φ+ 1)
2

(φ− 1)
2

(3.60)

This recovers qualitatively the same behaviour – two distinct phases in the
low temperature regime, but has the advantage of continuity everywhere and at
much reduced computational complexity.
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Figure 3.10: Phase plane portrait showing energy levels for different flow mor-
phology

Explicit solution of this system, even with the polynomial free-energy, is
impossible due to the stiffness of the equations at the interface ([106] amongst
others), instead impliict schemes must be used which are computationally ex-
pensive. Fortunately the wide range of studies with Cahn–Hilliard models has
led to much development in numerical schemes to handle this nonlinearity, and
an excellent survey is given by Tierra and Guillén-González [170]. We adopt the
OD2 method for its computational simplicity and accuracy without much com-
ment, higher order methods offer little advantage, as our temporal and spatial
convergence is limited by the Navier–Stokes solver.

The OD2 scheme, like several related schemes, splits the polynomial into a
convex and concave part, the concave part is handled implicitly, and the convex
explicitly. The splitting scheme is given below:

φ
(
φ2 − 1

)
=

1

2

(
φ2
nφn+1 − φn+1

)
. (3.61)

Finite-Element Formulation

We introduce the test functions θ and ν corresponding to the trial functions φ
and µ in the Cahn–Hilliard equation, and we introduce the test functions w and
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q corresponding to the trial functions u and p

0 =
∂φ

∂t
ρ− 1

Pe
∆ (µ) ν , (3.62)

0 = µν − F ′ (φ) ρ+ Cn2∆ (φ) ρ , (3.63)

∂u

∂t
w + (u · ∇) (u) w = − 1

Re
∇ (p) q +

1

Re
∇2 (u) w +

1

Re Ca Cn
µ∇ (φ) ν .

(3.64)

These equations are then integrated across an arbitrary domain:

0 =

∫
R

∂φ

∂t
ρ dx− 1

Pe

∫
R

∆ (µ) ν dx , (3.65)

0 =

∫
R

µν dx−
∫
R

F ′ (φ) ρ dx+ Cn2

∫
R

∆ (φ) ρ dx ,

(3.66)∫
R

∂u

∂t
w dx+

∫
R

(u · ∇) (u) w dx = − 1

Re

∫
R

∇ (p) q dx+ (3.67)

1

Re

∫
R

∇2 (u) w dx+
1

Re Ca Cn

∫
R

µ∇ (φ) ν dx .

(3.68)

In order to decouple the test functions from the trial functions in the second
derivative terms we integrate those terms by parts:

0 =

∫
R

∂φ

∂t
ρ dx+− 1

Pe

∫
R

∂µ

∂x

∂ν

∂x
dx−

[
1

Pe

∂µ

∂x
ν

]
∂R

, (3.69)

0 =

∫
R

µν dx−
∫
R

F ′ (φ) ρ dx− Cn2

∫
R

∂φ

∂x

∂ρ

∂x
dx+

[
Cn2 ∂φ

∂x
ρ

]
∂R

,

(3.70)∫
R

∂u

∂t
w dx =−

∫
R

(u · ∇) (u) w dx− 1

Re

∫
R

∇ (p) q dx+
1

Re

∫
R

∂u

∂x

∂w

∂x
dx

(3.71)

−
[

1

Re

∂u

∂x
w

]
∂R

+
1

Re Ca Cn

∫
R

µ∇ (φ) ν dx .

The time-stepping scheme and the splitting schemes for the equations can
now bw implemented, and this form of equations is amenable to solution by
standard finite-element methods.

Boundary Conditions

The boundary conditions in this model are physically motivated, we investigate
the flow of fluids within a channel that we assume to be periodic, so we have
the following
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1. The channel is taken to be periodic in x

u (0, y) = u (Lx, y) , p (0, y) = p (Lx, y) , φ (0, y) = φ (Lx, y) .

2. The walls of the channel are solid and permit no flow through them, we
also enforce no-slip

u = 0 on ∂R .

3. The contact angle is fixed on the wall as θ0

∇φ · n̂ = −
√

2

2Cn2 cos θ0

(
1− φ2

)
on ∂R .

4. The walls of the channel permit no flow of chemical potential

∇µ · n̂ = 0 on ∂R .

The boundary condition imposing the contact angle is known as the Cahn
Wetting Boundary Condition. This, like the nonlinear term in the chemical
potential expression, must be treated with our operator splitting approach. The
corresponding splitting scheme gives:

∇φ · n̂ = −
√

2

2Cn2 cos θ0

(
1− φnφn+1

)
on ∂R .

Numerical Solver

The set of equations were solved using the FreeFem++ software package, an
open-source Finite Element solver [90]. FreeFem provides a convenient interface
in both Python and C++, removing the need to implement the actual machinery
of finite-element solvers manually, it interfaces with open-source solver libraries
including Petsc, and can be used in parallel environments with some work.

Convergence was measured by computing the interface width and interfacial
energy during the initial nucleation and coarsening phase, the mesh adaptation
eagerness and time-step adaptation parameters in the algorithm were adjusted
to ensure reliable results.

3.4 Computational Results

In order to simulate the physical situation of interest we start our simulation
with a non-uniform mixture of both phases, this will lead to the process of
nucleation and ripening as discussed in the introduction to this chapter. A
simple way to achieve this was to set the phase field to a slightly perturbed
state corresponding to a quenched fluid where the temperature is slightly below
the critical point (T < Tc). Gaussian noise was generated and used to set φ
throughout the domain with mean µ and small variance σ.
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Figure 3.11: Example initial φ fields for two different channel geometries, colour-
ing exaggerated, field chosen to be a Gaussian distribution: N (−0.1, 0.2)

The equations were then solved for the initial evolution of the fluids; in all
cases, initial nucleation to small droplets of each phase was observed. Coarsening
then occured, whereby small droplets coalesce to form larger droplets that have
lower interfacial energy. Eventually the rate of dissipation decreased and the
fluid attained a steady-state: at this point, a body force was applied to the fluid
and flow was generated.

We carried out a qualitative analysis of the long-time states in this driven
system, observing the different flow morphologies and attempted to rationalise
these with energy and flow field arguments.

3.4.1 Initial nucleation process

In order to simulate quenching of a fluid to below its critical point we set the
initial phase field to a normally distributed random value. For our simulations
we set the mean to be equal to zero, corresponding to no preference for one
phase over the other, and we set the noise intensity, controlled by the standard
deviation, to a small value (0.2).

Several sets of intial conditions are shown below in Figure 3.11. Here, green
corresponds to φ = 0, but we exaggerate the colouring for clarity; it is clear that
the phase is perturbed, and we predict that areas where one colour predominates
(yellow or blue) will lead to local droplets in the early stages of nucleation.

Shown below (Figure 3.12)is the progress of nucleation and coarsening for
one set of initial conditions. The first stage involves the slightly perturbed phase
relaxing to ±1, and small droplets form of both phases in a predominantly mixed
fluid (panels a-b). These droplets then grow as the bulk fluid relaxes into one
phase or the other; the interfaces attain their natural width, but the droplets
are still on the same length scale as the interfaces (panel c).

As the fluid continues to evolve, smaller droplets shrink by diffusion and
disappear, narrow filaments of fluid separate, and large bulk areas grow. The
length scale describing the droplets and slugs is now larger than the interface
length scale (panels d-e). As the fluid continues to evolve, large droplets are
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Figure 3.12: Example of nucleation and coarsening process for ε = 0.1,
φ = 1 in yellow, φ = −1 in blue. Panels a-f show the same channel for
t = 0.002, 0.005, 0.015, 0.04, 0.1, 0.3

left, together with slugs, and the interfacial energy of the system continues to
relax towards equilibrium.

3.4.2 Effect of Flow Geometry

From our static analysis we predict that the shape of the channel will influence
the flow morphology. We expect that strongly corrugated channels will prefer
slug flow, and once the interfacial energy barrier to flow grows large enough
we predict that pinning will occur, trapping a slug in the widest part of the
channel.

For large corrugations this pinning was observed: in Figure 3.13, the fluid
has formed a single slug which is pinned in the widest portion of the channel.
The energy barrier to overcome is too large for the current forcing and the
slug has stopped. In this case the fluid continues to flow, for the diffusive flux
through the boundary is nonzero, which corresponds to fluid changing phase at
the boundary.

The most commonly observed state was slug flow: for contact angles not
equal to 90 deg one slug was observed, which was convected along the channel
at varying speed, and since mass is conserved in this system the droplet length
varied as in the static energy analysis. The size of the contact angle controls
which phase appears to be the bulk and which the slug; the convention adopted
is that the contact angle refers to the yellow phase (φ > 0).

We also observed different variants of stratified flow which we did not expect
to be stable. Below are two examples, where there are three strata (the mini-
mal case), and where there are five strata, where the interfacial energy is even
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Figure 3.13: ]
Large corrugations pin slugs at regions where the interfacial energy is

minimised, shown for ε = 0.6, θ0 = 140 deg .

Figure 3.14: Smaller corrugations allow slug flow, the left shows θ0 = 140 deg,
with the yellow phase appearing to be a slug in blue bulk (ε = 0.2), the right
shows θ0 = 40 deg, the blue phase as a slug in bulk yellow phase (ε = 0.1).

greater. We suggest that this is due to the velocity gradient within the channel
causing shear, damping disturbances from this state. Here the fluid closest to
the wall is controlled by the contact angle, yellow when θ0 > 90 deg and blue
when θ0 < 90 deg. Further study is needed to investigate the mechanism by
which the flow stabilises the strata.

3.4.3 Effect of Contact Angle

When the contact angle produces exactly neutral wetting we observe a different
picture. Smaller droplets no longer shrink when in contact with the wall, and
a more complex picture emerges. As neither phase spreads when in contact
with the wall, the forces which cause droplet coalescence are only the velocity
gradient and the free energy interface width minimisation. For comparison see
Figure 3.16; in the same geometry from the same intial conditions we observe
that a thin layer of fluid forms immediately at the wall when the contact angle
promotes spreading (panel a ii), this leads to filaments forming in the direction
of the flow (panel a iv). When the contact angle is 90 deg this boundary layer
does not form (panel b ii), and so there is less structure in the filament formation
(panel b iii). This leads to a more complex fluid structure during the coarsening
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Figure 3.15: Two examples of stratified flow, left ε = 0.1, k = 5π shows a yellow
stratum between two blue strata, θ0 = 70 deg, right ε = 0.01, k = π

5 shows a
yellow stratum surrounded by blue strata and yellow strata, θ0 = 110 deg.

(panel b iv), and it also makes multiple slugs much more likely (panel b v).

3.4.4 Effect of Initial Conditions

We hope that the flow morphology is affected more strongly by the geometry
of the channel and the contact angle than by the initial conditions, as these
parameters can be controlled in the simulations and in reality. Unfortunately,
comparing the exact same parameter values for different initial conditions shows
that this is not the case: the final flow morphology is strongly affected by the
initial conditions (Figure 3.17).

In order to quantify the effect of the flow geometry and the contact angle on
the final flow morphology, and in order to extract meaningful statistics from it,
we need to compute the likely states. This involves computing the final state
for a large number of initial conditions and determining likelihood of each state.
This unfortunately proved impossible in the scope of this thesis, but provides
an excellent opportunity for further work.
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Figure 3.16: Identical channel geometries and initial conditions show marked
differences in flow morphology when θ0 = 90 deg vs when θ0 = 45 deg. Initial
nucleation is slower (panels i, ii), no boundary layer is observed (panel iii),
coarsening is less structured (panel iv), and multiple slugs are observed.
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Figure 3.17: Final flow morphologies for different initial conditions, some led to
stratified flow, some to slug flow, one to droplet and slug flow. θ0 = 70 deg, ε =
0.2.

73



3.5 Conclusions and Future Work

Multi-phase flow in complex geometries is an area of research that looks to
provide valuable insights into physical systems from science and engineering.
Currently these flows are most commonly studied with the Volume of Fluid
method in commercial CFD codes; these tend to be robust, but are compu-
tationally expensive. Phase-field models offer an attractive way to reduce the
computational complexity of these types of systems, and offer a more rigorously
based approach to treat the contact line.

We used a static analysis of droplet shapes to suggest likely configurations
for two-phase fluids in different channel geometries, and concluded that, in
general, fluids are likely to form slugs. This provided an initial idea of the
parameter space that we could use to inform our numerical simulations. We
also determined that the contact line motion is likely to be complex; static
analysis suggests that hysteresis behaviour is expected in places, and that the
motion is likely to be discontinuous. We determined the critical value for which
this behaviour is to be expected analytically and confirmed it with numerical
continuation, observing a cusp bifurcation.

We implemented the Cahn–Hilliard-Navier–Stokes equations in FreeFem++,
obtaining a qualitative picture of the fluid flow. Whilst we were able to repro-
duce the flow morphologies we expected, we were unable to confirm how well
the static energy analysis described the system. The final flow morphology was
found to depend strongly on the random initial conditions. We propose that
statistical analysis of many runs would be likely to reproduce the static analysis,
but this was unfeasible within the limitations of this work.

This work offers many avenues for further study, work is needed to deter-
mine the magnitude of the effect that the initial conditions have on the final
flow morphology. In order to confirm that the geometry has the effect of se-
lecting one morphology over another it is necessary to compare the results of
many simulation runs with different initial conditions, this will likely require
the extension of the finite-element code to be fully parallel, as well as further
computational resources. It will likely also require an automated method of flow
characterisation in order to categorise the simulation results. Since the energy
does not offer an unambiguous means of distinguishing between flow morpholo-
gies one would need to determine whether the interface was at the wall, and
also measure the number of contiguous regions of each phase.

Another promising extension is to compare the predicted energy barrier from
static analysis with the strength of the forcing introduced in the simulations, the
authors predict that pinning is related to the magnitude of these two elements,
but no direct link was found within the scope of this study. The analysis also
assumes that only one droplet is likely, which is not justified, and the analysis
could be extended to include multiple droplets. This would result in a whole
family of possible solutions, and the phase portrait would be correspondinglt
more complex.

The static analysis could also be extended to include systems where the two
walls are not precisely out of phase, this would enable channels with different
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wavelengths, and those where snaking occurs to be treated, potentially this
could allow preferential selection of droplet sizes.
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4
Transport in Porous Media

Porous media provide many physically interesting problems that we would wish
to analyse, but difficulties in exactly treating flows in these kind of geometries
are formidable. When introducing multiple phases we not only have the usual
problems with contact-line stress to deal with, but we also have topological
changes in the boundary and interface to treat.

Application of Cahn–Hilliard type equations to these kind of porous flow
problems are attractive, not only do we gain the benefits mentioned, but we
can make use of average representations of the medium to inform our fluid
modelling. A classic approach to inform macroscopic flows in these media is to
create a representative pore geometry which we imagine to be tiled repeatedly
across the domain. We choose a classical representative pore (Figure 4.1) for
our study, the kinked channel, but we note that other pores could be used.

Figure 4.1: Multiscale view of a porous medium: A microscopic single pore
through which fluid flow is simulated (Left); The macroscale channel geometry
showing many repeated pores throughout the domain (Right)
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4.1 Thermodynamic Derivation of the Convec-
tive Cahn–Hilliard Equations

In Chapter 3 we derived the Cahn–Hilliard equations using a microscopic and
macroscopic force balance approach, this directly allowed us to motivate the
coupling to the Navier–Stokes equations. In this chapter we recognise that flow
is on a microscopic length scale and will be upscaled, we therefore present the
original derivation as it highlights the thermodynamic basis for the model [29].

Cahn begins by observing that the free energy of some molecule in a non-
uniform system will depend on both the local composition and the composition
of the immediate vicinity. Assuming that the free energy (f) is continuous, it
can be expanded with a Taylor series about the free energy of a molecule in a
uniform solution (f0) to obtain, to leading order:

f
(
ci,∇ci,∇2ci

)
= f0 (c)+

∑
i

Li
∂c

∂xi
+
∑
ij

κ
(1)
ij

∂2c

∂xi∂xj
+

1

2

∑
ij

κ
(2)
ij

[
∂c

∂xi

∂c

∂xj

]
+· · · ,

(4.1)
where

Li =

[
∂f

∂ ∂c
∂xi

]
0

, (4.2)

κ
(1)
ij =

[
∂f

∂ ∂2c
∂xi∂xj

]
0

, (4.3)

κ
(2)
ij =

[
∂2f

∂ ∂c
∂xi

∂ ∂c
∂xj

]
0

. (4.4)

In the original framework, where solid phases were considered, the tensors κij
reflect the crystal symmetry and Li is the polarisation vector for a polar crystal.
Using symmetry arguments for a cubic crystal (which are identical to assuming
that the system is an isotropic liquid medium), most of the components of the
tensors κ1, κ2 are zero, Equation 4.1 simplifies to:

f
(
c,∇c,∇2c

)
= f0 (c) + κ1∇2c+ κ2 (∇c)2

+ · · · . (4.5)

Integrating over some volume V gives the free energy of the volume F :

F = NV

∫
V

[
f0 (c) + κ1∇2c+ κ2 (∇c)2

]
dV . (4.6)

Applying the divergence theorem to Equation (4.6) yields∫
V

(
κ1∇2c

)
dV = −

∫
V

(
dκ1

dc

)
(∇c)2

dV +

∫
S

(κ1∇c · n̂) dS , (4.7)

since we are interested in the behaviour of the bulk, not the edge effects, we can
choose a boundary of integration such that the surface integral term vanishes.
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This allows us to eliminate the ∇2c term from Equation (4.6). This yields an
expression for the Free Energy of a system with two contributions, one repre-
senting the free energy of this volume in homogenous solution and a gradient
energy term that is a function of the neighbourhood.

F = NV

∫
V

[
f0 + κ (∇c)2

]
, (4.8)

where

κ = −dκ1

dc
+ κ2 ,

= −
[

∂2f

∂c∂∇2c

]
0

+

[
∂2f

∂|∇c|2

]
0

. (4.9)

The chemical potential is then introduced as the variational derivative of the
free-energy. The flux of one component in the system can then be computed,
permitting the use of a continuity equation. This is the classical Cahn–Hilliard
equation.

µ =
δF

δc
= F ′ (c)− κ∆c , (4.10)

∂c

∂t
= −∇ · (−M∇µ) = ∇ · (M∇ (F ′ (c)− κ∆c)) . (4.11)

The choice of function to model the free energy is an important one. Phys-
ically, the function should have one minimum for T > Tc and two minima for
T < Tc. Thermodynamic arguments lead to Equation (4.12) [125], but most
authors replace this with a polynomial representation that is much simpler to
treat Equation (4.13), this is usually fitted to the logarithmic form at a given
temperature using the parameter α which can be interpreted as a reduced tem-
perature.

∆Fmix (T, c) = Ωc (1− c) +RT [(1− c) ln (1− c) + c ln c] , (4.12)

where R is the ideal gas constant, Ω and T are proportional to the critical
temperature and the system temperature respectively.

∆Fmix (β, α, c) =
1

4
β
(
c2 + α

)2
, (4.13)

where β scales the magnitude of the free-energy and α is proportional to T −Tc.
In most physical systems the case of α < 0 is relevant. This induces two

minima at c = −1√
−α and c = 1√

−α and corresponds to a system below the critical

temperature, without loss of generality we assume that this is the case and set
α = −1. Henceforth we refer to the quantity ∆Fmix from equation 4.13 as F ′

as is convention in the literature.
Equation (4.11) is in dimensional form, in order to non-dimensionlise this we
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use a result from Van der Waals [157] in [37] that the stationary solutions have
constant chemical potential with a phase-field profile

ĉ = tanh
x√
2ξ
. (4.14)

The parameter ξ controls the width of the interface, with the form of the free

potential defined in Equation 4.13 this is identified as ξ =
√

κ
β . This allows us

to compute the equilibrium surface tension, it is given by

σ = α

∫ ∞
−∞

(
dĉ

dx

)2

dx =
2
√

2

3

√
ακ . (4.15)

We now define non-dimensional variables:

x̄ =
1

L
L , ū =

1

U
u , t̄ =

U

L
t

Making use of the surface tension and interface width we determine that:

β =
3σ

2
√

2ξ
s, .

Rescaling Equation 4.11 and factoring β out of the potential we have:

∂c

∂t
=

3Mσ

2
√

2LUξ
∇ ·
(
∇
(
F ′ (c)− ξ2

L2
∆c

))
. (4.16)

We then can identify two dimensionless groups:

ξ

L
= Cn,

2
√

2ULξ

3Mσ
= Pe ,

the Cahn number (Cn) controls the width of the interface relative to the char-
acteristic length of the geometry, the Péclet number (Pe) controls the relative
importance of convective and diffusive flux.

The non-dimensionlised form of the Cahn–Hilliard equation is therefore given
(dropping the overbars) by:

∂c

∂t
=

1

Pe
∆
(
F ′ (c)− Cn2∆c

)
(4.17)

or equivalently, as the following two equations:

∂φ

∂t
=

1

Pe
∆ (µ) , (4.18)

µ− F ′ (φ) + Cn2∆φ = 0 . (4.19)

In the above we replace the concentration c with the more conventional or-
der parameter φ (this can represent density and concentration interchangeably
under our assumptions).
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4.2 Upscaling in Porous Media

Within a porous medium we observe that there is a large resistance to flow,
therefore the macroscopic Reynolds number of the flow is likely to be low. We
can therefore model the flow at the microscale using the Stokes equations cou-
pled with the Cahn–Hilliard equations from Section 4.1 at the macroscale. We
consider a model system with a separation of scales, we admit a periodic mi-
crostructure in a macroscopic flow channel.

Much in the way that Darcy’s law models flow as a pressure overcoming a
constant resistance caused by the medium, we seek to quantify the medium’s
effect on flow. By solving Stokes’ equation and then using the machinery of
homogenization we seek to use a more complex model for our medium that can
model anisotropy and flow-dependent effects without directly simulating the
entire flow field.

This model (porous Cahn–Hilliard with Stokes’ Flow or pCHS) consists of
Stokes’ equation, the incompressibility criterion and the Cahn–Hilliard equa-
tions from before. The velocity is coupled to the phase-field φ through a con-
vection term in the Cahn–Hilliard equation. As a result of our assumption that
the Reynolds’ number is low we model the effect of phase on the velocity through
a driving force term in the Stokes’ equation. The equations read:

∂φ

∂t
+ Pe (u · ∇)φ = λ∇ · (µ) ,

µ− F ′ (φ) + Cn2∆φ = 0 ,

∇ · u = 0 ,

−η∆u +∇p = η (φ) .

(4.20)

The driving force for the flow is a function of the elastic energy in the system,
which models the effect of phase on the velocity. This is formally:

η = γ∇ · (∇φ⊗∇φ) ,

which, for simplicity, and to a reasonable physical approximation we can set to
1 in the principal direction of the flow: î.

Identifying a scale separation parameter ε = l
L as the ratio of the microscopic

cell size l to the macroscopic channel width L, we can rewrite the equations in
their microscopic form (for the flow through the periodic microstructure). In
order to derive an effective expression for flow we take the stationary version of
the equations:

Pe (uε · ∇)φ = λ∇ · (∇µ) ,

µ− F ′ (φε) + Cn2∆φε = 0 ,

∇ · uε = 0 ,

−ε2µ∆uε +∇pε = î .

(4.21)
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Following the process from [160], we begin by expanding the Laplace op-
erators ∆ and ∇ · (M∇) into powers of ε, taking the first two terms in the
expansion:

∆uε = ε−2A0 (u) + ε−1A1 (u) +A2 (u) ,

∇ · (Muε) = ε−2B0 (u) + ε−1B1 (u) + B2 (u) ,
(4.22)

where the terms are given below. We take the interface to be a moving frame,
so the velocity uε is defined as u

(
x− v

ε , y, t
)

A0 = −
d∑

i,j=1

∂

∂yi

(
δij

∂

∂yj

)
,
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[
∂

∂xi

(
δij

∂

∂yj

)
+

∂

∂yi

(
δij

∂

∂xj

)]
,

A2 = −
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∂

∂xj

(
δij

∂

∂xj

)
,

(4.23)

B0 = −
m∑

i,j=1

∂

∂yi

(
δij

∂

∂yj

)
,

B1 = −
m∑

i,j=1

[
∂

∂xi

(
δij

∂

∂yj

)
+

∂

∂yi

(
δij

∂

∂xj

)]
,

B2 = −
m∑

i,j=1

∂

∂xj

(
δij

∂

∂xj

)
,

(4.24)

we also obtain the following equation for the flow velocity as a result of the
above change of reference frame:

∂

∂t
uε =

(
∂

∂t
− v · ∇x

ε

)
uε . (4.25)

Carrying out a conventional expansion of the variables in powers of ε:

wε = w0 + εw1 (x, y, t) + ε2w2 (x, y, t) + · · · ,
φε = φ0 + εφ1 (x, y, t) + ε2φ2 (x, y, t) + · · · .

(4.26)

The non-linear form of the homogenous free energy admits a natural Taylor
expansion in ε:

f (φε) = f (φ0) + f ′ (φ0) (φε − φ0) +
1

2
f ′′ (φ0) (φε − φ0)

2
+O

(
(φε − φ0)

3
)
.

(4.27)
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Substituting the expressions from Equation (4.26) into Equation (4.23) and
(4.24) and collecting terms in like powers of ε we obtain three sets of equations.
Considering them in order they read:

λB0 [w0 + f (φ0)] + Pemic (u · ∇y)A−1
2 w0 =0

w0 periodic

A0w0 =0

w0, φ0 are periodic

∇nφ0 =0 on the boundary

no− flux on boundary

(4.28)

This requires that the leading order terms are independent of the micro-scale
y, the second set of equations gives the reference cell problem for φ0, once we

identify φ1 = −
∑d
k=1 ξ

k
φ (y)

(
∂φ0

∂xk

)
:

λB0 [w1 + f ′ (φ0)φ1] + Pemic (u · ∇y)A−1
2 w1 =

−λB1 [w0 + f (φ0)]− Pemic ((u− v) · ∇)A−1
2 w0

A0φ1 = −A1φ0

w1, φ1 are periodic

∇nφ1 = 0 on the boundary

no− flux on boundary

(4.29)

−
d∑

i,j=1

∂

∂yi

(
δik − δij

∂ξkφ
∂yj

)
= −∇ ·

(
ek −∇yξkφ

)
= 0

n ·
(
∇ξkφ + ek

)
= 0

ξkφ (y) is periodic

MY 1

(
ξkφ
)

= 0

(4.30)

It also yields the cell problem for w1, this depends on both the corrector
field ξkφ from Equation 4.30 and the fluid velocity u. Under the assumption of a
scale separated potential (assuming that the potential has a non-zero derivative
in only the macroscopic scale), we obtain:
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−
d∑
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∂
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(
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)
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)
(4.31)
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)
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ξkw (y) is periodic (4.33)

MY 1

(
ξkw
)

= 0 (4.34)

This leads to the following expressions for ξkw and vi:
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The last of the problems for φ2 is classical and after identifying the correc-

tion tensor D̂ where dij = 1
|Y |
∑d
j=1

∫
Y 1

(
δik − δij

∂ξkφ
∂yj

)
dy gives the upscaled

equation:

−∆D̂φ0 = −∇ ·
(

D̂∇φ0

)
= ρw0 + g̃0 (4.37)

Applying the Fredholm alternative (also known as the solvability criterion)
to the problem for w2 and some manipulation we define two new tensors related
to the mobility and one related to the flow which makes use of Equation (4.35):

mw
ik =

1

|Y |

d∑
j=1

(
mik −mij

∂ξkw
∂yj

)
dy , (4.38)

mφ
ik =

1

|Y |

d∑
j=1

(
mik −mij

∂ξkφ
∂yj

)
dy , (4.39)
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cik =
Pemic

|Y |

∫
Y 1

(
ui − vi

)
δikξ

k
φ dy , (4.40)

where the components cik form the tensor Ĉ, the components mφ
ik form the

tensor M̂φ and the components mw
ik form the tensor M̂w.

Making use of Equation 4.37 we obtain the final upscaled macroscopic phase
field equation:

p
∂φ0

∂t
= ∇ ·

([
λM̂φf

′ (φ0) + Ĉ
]
∇φ0

)
− λ

p
∇ ·
(

M̂w∇
(
∇ ·
(

D̂∇φ0

)
− g̃0

))
(4.41)

We observe that the upscaling process has the effect of modifying the origi-
nal Convective Cahn–Hilliard equation (Equation (4.20)), adding tensors that
reflect the microscopic flow. It does not change the actual nature of the equa-
tions, and so we can presume that the upscaled equations will still have physical
relevance and a physical basis.

4.3 Numerical Method

The upscaling method effectively decouples the micro-scale form the macro-
scopic flow equations. The result is that we have several scalar fields and tensors
to compute and we can then solve CHS on only the macroscopic domain. We
begin by making assumptions about the fluid and the flow which will reduce the
number of tensors we need to precompute to two: we assume that the mobility
is isotropic and independent of the phase. This reduces the number of tensors
to compute to two: D̂ and Ĉ. We also further assume that the mobility is equal
to 1.

4.3.1 Cell Problem Solver

The cell problem for the tensor D̂ (Equation (4.30)) is a classic Poisson equation
with Neumann boundary conditions. This is solved within the reference cell to
obtain the diffusion tensor for that reference cell geometry.

∇2ξkφ =0 in Y1 , (4.42)

n̂ · ∇ξkφ =nk on ∂Y1 . (4.43)

The boundary condition links the normal to each wall segment n̂ with the
unit vector in the kth direction nk.

In order to solve the cell problem using a finite-element method it must be
rewritten in its weak form. This is done by multiplying each term by a test
function π and integrating over the domain, obtaining an equivalent equation
that can be satisfied by piecewise constructed functions.
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∇2ξkφ = 0 , (4.44)

∇2ξkφπ = 0 , (4.45)∫
Y 1

∇2ξkφπ dx = 0 , (4.46)∫
Y 1

∇ξkφ · ∇π dx−
∫
∂Y 1

∇ξkφ · n̂πds = 0 . (4.47)

The boundary conditions (Equation 4.43) are satisfied by choosing appropri-
ate values for the surface integral term for each wall in the microscopic geometry.

The remaining constraint for solution is that the average value of the cor-
rector field be equal to zero, and this is satisfied by ensuring that

∫
Y 1 ξ

k
φ dx = 0.

The problem was then solved by the continuous Galerkin method using the
open source finite element software FEniCS [5]. Convergence was tested by
comparing the interface velocity and width for various coarsenesses of mesh.

4.3.2 Stokes’ Problem for the Convection Tensor

The problem for the convection tensor Ĉ (Equation (4.40)) requires the solution
of a periodic Stokes’ problem with constant forcing (Equation (4.21). We adopt
the same approach, converting the equations into their weak form to enable
solution using the finite element method.

We adopt test functions v, q corresponding to the velocity and the pressure
respectively and carry out the same process as for the cell problem:

−µ∇2u+∇p =η (4.48)

−µ
∫
Y 1

v∇2udx+

∫
Y 1

v∇pdx =

∫
Y 1

η · v dx (4.49)

∇ · u =0 (4.50)∫
Y 1

q∇ · udx =0 (4.51)

Since these equations must be true for any arbitrary domain we can add the
equations together and use integration by parts to obtain:

−µ
∫
Y 1

v∇2udx+

∫
Y 1

v∇pdx+

∫
Y 1

q∇ · udx =

∫
Y 1

η · v dx , (4.52)

−µ
∫
Y 1

∇u∇v dx+

∫
Y 1

v∇pdx+

∫
Y 1

q∇ · udx =

∫
Y 1

η · v dx− µ
∫
∂Y 1

v∇uds .

(4.53)

Following the assumption also made by the authors in [160] and [161], we take
the microscopic driving force to be constant and unaffected by the macroscopic
phase field–we assume that the Korteweg stress tensor is constant.

85



Figure 4.2: Kinked channel geometry: Panel a ξ1 field, yellow = 0.32, blue =
-0.32. b ξ2 field, yellow = 0.41, blue = -0.4. c u1. d) u2.

The problem is closed by the boundary conditions, we assume that on the
wall boundary we have a no slip and no flux condition, and the channel is
periodic in the x direction:

∇u =0 on ∂Y 1 , (4.54)

u (1, ·) =u (0, ·) . (4.55)

The former is neatly dealt with by dropping the last term in Equation (4.53),
and the latter must be imposed in some way.

We solve Equation 4.53 in the same software–FEniCS [5], using a Continuous
Galerkin method. Results for both the cell problem and the Stokes’ problem
are shown below for two different microscopic geometries - Figure (4.2) shows a
classical kinked channel geometry, and Figure 4.3 shows an ‘Inkbottle’ geometry.

4.3.3 Macroscopic Problem

Once the values for the tensors Ĉ and D̂ are computed we can solve the upscaled
equation for the evolution of the phase field (4.41). We elected initially to use the
same Finite-Element approach and package as for the cell and Stokes problem:
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Figure 4.3: So-called ‘Inkbottle’ geometry: Panel a ξ1 field, yellow = 0.15, blue
= -0.21. b ξ2 field, yellow = 0.4, blue = -0.4. c u1. d) u2.

p
∂φ0

∂t
= ∇ ·

([
λM̂φf

′ (φ0) + Ĉ
]
∇φ0

)
− λ

p
∇ ·
(

M̂w∇
(
∇ ·
(

D̂∇φ0

)
− g̃0

))
.

(4.56)
The time derivative will be dealt with later, we make initial rearrangements

as a result of the constant values of Ĉ and D̂, yielding the more classical formu-
lation of the chemical potential and an evolution equation for the phase field:

p
∂φ0

∂t
=∇ · Ĉ∇φ0 +∇ · M̂∇ (µ (φ0)) , (4.57)

µ =f ′ (φ0)− λ

p
∇ · D̂∇φ0 . (4.58)

Introducing test functions as before, θ and ν corresponding to the phase (φ)
and the chemical potential µ respectively:
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p

∫
Y

∂φ0

∂t
θ dx =

∫
Y

∇ · Ĉ∇φ0θ dx+

∫
Y

∇ · M̂∇ (µ (φ0)) θ dx , (4.59)∫
Y

µν dx =

∫
Y

f ′ (φ0) ν dx− λ

p

∫
Y

∇ · D̂∇φ0ν dx (4.60)

p

∫
Y

∂φ0

∂t
θ dx =

∫
Y

Ĉ∇φ0∇θ dx+

∫
Y

M̂∇ (µ (φ0))∇θ dx ,

−
∫
∂Y

Ĉ∇φ0θ ds−
∫
∂Y

M̂∇ (µ (φ0)) θ ds (4.61)∫
Y

µν dx =

∫
Y

f ′ (φ0) ν dx− λ

p

∫
Y

D̂∇φ0∇ν dx+
λ

p

∫
∂Y

D̂∇φ0ν ds .

(4.62)

The nonlinear term in the expression for the chemical potential (Equation
(4.62)) presents numerical difficulties, if it is handled it its present form an
iterative method must be used to solve the equation and this is computationally
inefficient, it also presents severe constraints on the time and spatial resolution
required [170].

In order to overcome this difficulty we adopt a splitting strategy called the
OD2-BDF method, this separates the potential term into a convex and non-
convex part, treating the former with the Optimal Dissipation second order
scheme from [82] and the latter with a two-step backward difference method
[83]. This offers a good balance of accuracy and speed, having a second order
truncation error in time and second order numerical dissipation in time [170].

f ′ (φ) =φ
(
φ2 − 1

)
(4.63)

=
1

2

(
3φ2

n−1φn − φ3
n−1

)
− 1

2
(3φn−1 − φn−2) . (4.64)

The time stepping was handled with the first-order Euler Method, this
was chosen as to reduce the computational complexity and following most ap-
proaches taken in literature. This yields the final Finite-Element scheme:

p

∆t

∫
Y

(φn − φn−1) θ dx =

∫
Y

Ĉ∇φn∇θ dx+

∫
Y

D̂∇ (µ (φn))∇θ dx

−
∫
∂Y

Ĉ∇φnθ ds−
∫
∂Y

D̂∇ (µ (φn)) θ ds , (4.65)∫
Y

µν dx =

∫
Y

(
1

2

(
3φ2

n−1φn − φ3
n−1

)
− 1

2
(3φn−1 − φn−2)

)
ν dx

−λ
p

∫
Y

D̂∇φn∇ν dx+
λ

p

∫
∂Y

D̂∇φnν ds . (4.66)
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4.3.4 Boundary Conditions

The boundary conditions for the upscaled equation that we choose to close the
problem are:

1. No chemical potential flux through walls:

∇µ · n̂ = 0 on ∂Yw . (4.67)

2. Fixed flux of chemical potential at the inlet and outlet corresponding to
a pressure driven flow:

∇µ · n̂ = ĝ on ∂Yi . (4.68)

3. Fixed value of phase at the inlet corresponding to purely phase A entering

φ (0, ·) = φi on ∂Yi , (4.69)

φ3
i − φi − 1 = 0 . (4.70)

4. Wetting boundary condition along wall [97]:

∇φ · n̂ = −3σ

4

(
1− φ2

)
. (4.71)

In a similar way to the chemical potential term the wetting boundary con-
dition must be split over time-steps, this can be carried out as follows [10]:

−3σ

4

(
1− φ2

)
= −3σ

4
(1− φnφn−1) (4.72)

4.4 Results

Computations were carried out using this Finite-Element formulation, results
for the Stokes’ problem and the cell problem are shown above.

In order to validate this Finite-Element formulation we seek to recover the
results from the paper by Schmuck [160]. We take a channel with a neutral
wetting and fixed inward flux and we begin with a periodically perturbed inter-
face. Duncan et al. found that the interface would propagate along the channel,
retaining the perturbation. This is in contrast to a plain Cahn–Hilliard model,
where the perturbation would be smoothed out.

The authors of the previous study matched the macroscopic inlet conditions
to the microscopic geometry by perforating the walls at the inlet and outlet.
This enables us to change the relative size of the channel to the microscopic
flow field.

We attempted to use the Finite-Element formulation derived above, but were
unable to achieve convergence within the timescale of this project, and hence we
are unable to present results from it. Instead we present initial simulations from
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Figure 4.4: Evolution of an initially flat interface according to the Upscaled
phase-field model, θ0 = π

2 , Cn = 1
240 . Panels show phase-field over time: a)

Initially t = 0s, b) After 10 timesteps t = 100s, c) after 20 steps t = 200s,
d) after 50 steps t = 500s. Mesh is a regular rectangular mesh, with 400x240
elements

a Finite-Difference model of the same system [161]. We take the tensor values
from that work, which compares well with experimental work by Auriault et al.
[9] (D11 = 0.4, D22 = 0 and C11 = 0.023, C22 = 0.015, all off-diagonal elements
are zero).

An initially straight interface is allowed to evolve under the influence of a
pressure difference and we observe its motion in a channel:

The interface rapidly develops fronts in line with the inlet locations, the effect
of the diffusion tensor is to remove diffusive flux in the y-direction, and this is
observed as the interface is unable to relax to a flat state. Once the interface
waves become large enough, convection increases the chemical potential in the
areas bounded by walls and the interface begins to move as a whole. As the
interface moves away from the inlet end of the channel convection is more able
to transport chemical potential and the interface relaxes somewhat.

In the literature the problem was studied with an initially perturbed inter-
face, and so we set up the same case, perturbing the straight interface with a
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Figure 4.5: Evolution of a sinusoidally perturbed interface according to the
Upscaled phase-field model, θ0 = π

2 , Cn = 1
240 . Panels show phase-field over

time: a) Initially t = 0s, b) After 2 timesteps t = 20s, c) after 10 steps t = 100s,
d) after 20 steps t = 320s. Mesh is a regular rectangular mesh, with 200x120
elements

sinusoidal component. The evolution of this interface is shown in Figure 4.5:
In this case we observe that the initially perturbed interface is rapidly de-

formed from its sinusoidal shape due to the initial chemical potential, but subse-
quently returns to a sinusoidal profile before being transported along the channel
as before.

We observe that the convection is the only term that allows flow in the
y-direction is therefore responsible for the motion of the interface in regions
where no flow occurs at the inlet of the channel. In order to visualise this and
confirm that this is the case we plot the largest contribution to the phase. In
the Figure 4.6 we see that in regions where the inlet allows flow the diffusive
flux is dominant, in regions where the inlet is plugged we see that convection
is dominant. In the vicinity of the interface the picture is more complex, and
in general the diffusion is stronger, this is likely due to the larger magnitude of
D11 versus C11 for this microscale geometry.

In both cases we observe nucleation along the walls, initially in the top
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Figure 4.6: Largest contribution to phase evolution, yellow indicated diffusive
flux is dominant and blue indicates that convective flux is dominant. Panels
show dominant flux: a Initially t = 0s, b After 10 timesteps t = 100s, c after 20
steps t = 200s, d after 50 steps t = 500s. Mesh is a regular rectangular mesh,
with 400x240 elements

right corner and then in droplets all along the top and bottom walls. We
suggest that this is due to steadily increasing chemical potential throughout the
channel interacting with the wetting boundary conditions on the wall promoting
nucleation, but this is undetermined at present.

4.5 Conclusions and Future Work

We investigated a model for two phase flow in porous media, we assumed that
the medium consisted of a periodic pore which tiled the whole macroscale geom-
etry. Under these assumptions we adopted a convective Cahn–Hilliard approach
to model the fluid flow. We made use of the machinery of homogenisation to
decouple the microscale and macroscale and to derive an upscaled equation de-
scribing the average flow. In this model we obtained tensors describing the
influence of the microscopic geometry on the flow.
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We formulated a finite-element model for these equations, solving for the cell
corrector field and the Stokes’ flow field a representative microscopic geometry,
this compared well in appearence with literature results. We were also able
to compute these fields for other geometries that might be of interest, and we
presented results for an inkbottle geometry. At this stage we were unable to
reproduce the numerical values of the tensors reported in literature, and this is
a work in progress at this time.

We attempted to use our finite-element formulation for the upscaled equation
but were unable to achieve convergence within the limitations of the present
work; in order to confirm that the model is stable for longer times we adopted
a simple finite-difference method. Using this approach we confirmed that the
observed behaviour in literature, that of perturbations in the interface being
stable, was observed for longer times. We also confirmed that in the absence
of diffusion in the cross-stream direction is balanced by the convection term,
which acts to transport chemical potential.

At this stage this project is still in progress, the outlook is good however,
as there are many open questions, initially we intend to investigate the effect
of microscale geometry by changing the reference cell and investigating how the
values of D and C are affected. The inverse problem is also of interest: given a
target set of parameters can we produce a reference cell that matches, if this is
possible then matching results with experiment would become much easier.

Beyond a straight channel it would be worthwhile investigating how the
microstructure affects flow in more complex geometries, as well as with differ-
ent wetting properties in both the macroscale channel and the microscale pore
geometry.
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5
Conclusions and Outlook

We have studied three different problems using the machinery of multi-scale
analysis; our general approach has been to address problems that have complex
behaviour as a result of the interaction between scales, and we have applied
different methods to treat the scale separation.

We began by investigating a problem that arises in various physical systems
such as reaction rate theory: that of particles diffusing in an external potential
under the influence of thermal noise. Much literature exists with analytical
results and numerical simulations, and various statistics have been studied. We
chose to study the invariant probability distribution which allowed us to find
the locations where particles were most likely to be.

Existing literature suggested that thermal noise and microscopic fluctuations
in the potential would interact and stabilise new states, but this had not been
investigated for asymmetric potentials. The appeal of this modification was
that it would enable description of reaction systems where the equilibrium was
not exactly central, which is a very unlikely situation for physical systems.

Through the use of Homogenisation we were able to describe the steady-state
behaviour of the system using only the macro-scale. We found that we could
directly apply literature results to the problem, and this enabled us to deter-
mine that an additional stable state was induced. Describing the system with
the framework of Bifurcation Analysis we determined that the noise controlled
transition from an Imperfect Supercritical Pitchfork Bifurcation to a Subcritical
one.

In the limit of small tilt we recovered the literature result for the symmetric
case and showed that the tilt has the effect of destabilising the additional state.
Indeed with numerical continuation we showed that there exists a critical noise
value that depends on the tilt for which the transition no longer happens.

Using terminology from Phase Transition Theory we determined that the
system undergoes a first-order phase transition with a critical exponent of γ u
0.66. This extends results in literature for the symmetric case, where in [53] the
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authors find that γ u 1.6 regardless of the number of microscales. This value
was found to be insensitive to the magnitude of the tilt, suggesting that the
difference was due to the presence of an asymmetry rather than its magnitude.

There exist several open questions with this model which would warrant
further study:

1. The author expended some energy to obtaining an analytical expression
for the effect of the tilt on the critical noise but was unable to do so. This
would be a valuable result.

2. Existing results for the effect of multiple micro-scales in [53] could be
directly applied, this would also be a valuable extension to the present
work.

3. Restrictions on the form of the potential are reasonably light, other types
of confined potential could be studied without much extra work.

4. Extension of the present results to three or more dimensions is also possi-
ble, the equations to be solved in the homogenisation process lend them-
selves to separable potentials quite straightforwardly. In the more general
case the cell equation must be solved numerically, but the wider applica-
bility of more complex potentials would render the effort worthwhile.

We subsequently studied two different problems involving multi-phase flow:
these types of flow are characterised by complex dynamics and multiple com-
peting effects. Particular problems are encountered when looking at interfacial
flows in confinement, where care must be taken to accurately describe contact-
line motion.

In Chapter 3 we analysed a flow relevant to microfluidic separators: a fluid
was quenched within a corrugated channel and allowed to nucleate, before force
was applied inducing flow. We looked to investigate the effect of the channel
geometry and the wetting properties of the confining walls on the flow morphol-
ogy.

We adopted a two-pronged approach, building a static model for interfa-
cial energy and performing numerical simulations of the Cahn–Hilliard-Navier–
Stokes equations. Considering each of the likely flow morphologies in turn we
derived expressions for the interfacial energy and thus the likelihood of observing
each.

The behaviours of droplet flow and stratified flow were described straightfor-
wardly but slug flow presented much richer behaviour. Numerical continuation
was used to solve the nonlinear equation describing the interface shape, and a
first-order phase transition was observed. Large perturbations in the channel
width admitted multiple configurations with equal volume, two low energy states
corresponding to concave and convex interfaces and a higher energy unstable
state in which the interface was flat.

The presence of this phase transition indicated that slug motion would transi-
tion from continuous, when the corrugation was small, to discontinuous jumping
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motion when the walls were more corrugated. We found that the critical value of
the corrugation was approximately 0.71 and confirmed this with two-parameter
continuation.

By computing the interface lengths for different centres of mass we found
the interfacial energy at each point. Comparing these energy values with those
for droplet and stratified flow with equal volume we produced a parameter map
in V − ε space. Physical arguments separate the space into regions where only
plug flow was possible, a region where only droplet flow was possible, and a
region where either were possible depending on the precise values of V and ε.

Subsequent numerical computations using a Finite-Element formulation yielded
flows in each of the expected morphologies. Unfortunately the final state proved
to be very dependent on the initial conditions, which we took to be random, and
therefore we were unable to draw conclusions about the accuracy of our energy
model. It seems likely that statistical analysis of the effect of initial conditions
will be needed to validate the parameter map we developed.

This chapter offers promising areas for future work:

1. A statistical analysis of the mapping between initial state and final state
would offer a way to validate the energy analysis

2. Dimensional analysis of the energy model we developed could be used
to compare the magnitude of the interfacial energy barrier with the flow
forcing, this could enable prediction of regimes in which slugs become
pinned.

3. Numerical simulations produced configurations that we did not consider
in the static analysis, such as multiple droplets. Adding these would be
straightforward, indeed we predicted the need for this when we found a
region in parameter space where neither slug flow nor droplet flow were
feasible.

4. Modification of the geometry would be a simple extension, either by
moving the two walls out of phase with each other, or by changing the
wavenumber of one relative to the other. In this way it might be possible
to select for specific droplet sizes.

5. Once the implications of the geometry and contact angle on the morphol-
ogy are understood it would be possible to extend the model to account
for two different fluids, or a fluid and a solute. This would be a much
more industrially relevant model.

Chapter 4 gave an introduction to a work that is currently in progress, we
motivated the study of porous media flows with industrial applications and
presented an upscaling approach to separate the dominant scales. This resulted
in three separate problems to solve in order to model the interfacial flow, but
the only connection between the dominant scales was through constant tensors.

We formulated a Finite-Element model for the system which we aimed to
solve using open-source software, but as of writing we have been unable to
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achieve success. Instead we presented validation of literature simulations for
longer times using a Finite-Difference scheme. We confirmed that the model
was robust and that the behaviour observed at the interface was not transient.

Some areas for further study of this problem include:

1. Full finite-element implementation for the model will allow complex ge-
ometries to be studied, offering more scope for experimental validation.

2. Computation of the tensors D and C for other microscopic geometries will
permit comparison of different pore geometries, as well as possibly solving
the inverse problem to predict pore geometries from tensor values.

3. Extending this model to three dimensions is fairly straightforward and
would offer further applications and opportunities for comparison with
experiment.

In general the field of multiscale methods is ripe for further study, the pos-
sible gains for success are huge: from acceleration of fluid simulation to direct
coupling of molecular dynamics to macroscale descriptions. Industrially relevant
problems are currently insoluble in reasonable time due to the limitations of mi-
croscale behaviour. Further progress in averaging, homogenisation or upscaling
will hopefully lead to these kinds of problems becoming soluble.
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in übersättigten Dämpfen. Annalen der Physik 416, 8 (1935), 719–752.

[17] Bender, C., and Orszag, S. Advanced Mathematical Methods for Sci-
entists I - Asymptotic Methods and Perturbation Theory, 2 ed. Springer-
Verlag New York, New York, 1999.

[18] Bensoussan, A., Lions, J.-L., and Papanicolaou, G. Asymptotic
Analysis of Periodic Structures, 1st ed. North-Holland Publishing Com-
pany, Amsterdam, 1978.

[19] Bird, R. Kinetic Theory and Constitutive Equations for Polymeric Liq-
uids. Journal of Rheology 26, 3 (1982), 277–299.

[20] Blowey, J., and Elliott, C. The Cahn-Hilliard gradient theory for
separation with non-smooth free energy Part II: Numerical analysis. Euro.
Jnl of Applied Mathematics 3 (1992), 147–149.

[21] Blowey, J. F., and Elliott, C. M. The Cahn-Hilliard gradient theory
for phase separation with non-smooth free energy Part I: Mathematical
analysis. Euro. Jnl of Applied Mathematics 2 (1991), 233–279.

99



[22] Bonifacio, R., and Lugiato, L. Photon Statistics and Spectrum of
Transmitted Light in Optical Bistability. Physical Review Letters 40, 15
(1978), 1023–1027.

[23] Bonn, D., Eggers, J., Indekeu, J., and Meunier, J. Wetting and
spreading. Reviews of Modern Physics 81, 2 (2009), 739–805.

[24] Boyer, F., and Lapuerta, C. Study of a three component Cahn-
Hilliard flow model. Mathematical Modelling and Numerical Analysis 40,
4 (jul 2006), 653–687.

[25] Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., and Quintard,
M. Cahn–Hilliard/Navier–Stokes Model for the Simulation of Three-
Phase Flows. Transport in Porous Media 82, 3 (apr 2010), 463–483.

[26] Briggs, W., Henson, V., and McCormick, S. A Multigrid Tutorial,
2 ed. Society for Industrial and Applied Mathematics, Philadelphia, 2000.

[27] Cahn, J. W. Free Energy of a Nonuniform System. II. Thermodynamic
Basis. The Journal of Chemical Physics 30, 5 (may 1959), 1121–1124.

[28] Cahn, J. W., Elliott, C. M., and Novick-Cohen, A. The
Cahn–Hilliard equation with a concentration dependent mobility: mo-
tion by minus the Laplacian of the mean curvature. European Journal of
Applied Mathematics 7, 03 (jun 1996), 287–301.

[29] Cahn, J. W., and Hilliard, J. E. Free Energy of a Nonuniform System.
I. Interfacial Free Energy. The Journal of Chemical Physics 28, 2 (feb
1958), 258–267.

[30] Cahn, J. W., and Hilliard, J. E. Free Energy of a Nonuniform System.
III. Nucleation in a Two-Component Incompressible Fluid. The Journal
of Chemical Physics 31, 3 (sep 1959), 688–699.

[31] Car, R., and Parrinello, M. Unified approach for molecular dynamics
and density-functional theory. Physical Review Letters 55, 22 (1985),
2471–2474.

[32] Carlsson, T. Brownian Dynamics Simulations of Macromolecules. Phd,
Uppsala University, 2012.

[33] Caroli, B., Caroli, C., and Roulet, B. Diffusion in a bistable po-
tential: A systematic WKB treatment. Journal of Statistical Physics 21,
4 (1979), 415–437.

[34] Caroli, B., Caroli, C., and Roulet, B. Diffusion in a bistable po-
tential: The functional integral approach. Journal of Statistical Physics
26, 1 (1981), 83–111.

100



[35] Ceniceros, H., and Roma, A. A nonstiff, adaptive mesh refinement-
based method for the Cahn-Hilliard equation. Journal of Computational
Physics 225 (2007), 1849–1862.

[36] Challis, K. J., and Jack, M. Tight-binding approach to overdamped
Brownian motion on a multidimensional tilted periodic potential. Physical
Review E 87, 5 (2013), 052102.

[37] Chella, R., and Vinals, J. Mixing of a Two-phase Fluid by Cavity
Flow. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related
Interdisciplinary Topics 53, 4 (1996), 3832–3840.

[38] Cholewa, J., and Dlotko, T. GLOBAL ATTRACTOR FOR THE
CAHN-HILLIARD SYSTEM. Bull. Austral. Math. Soc. 49 (1994), 277–
292.

[39] Chorin, A. A Numerical Method for Solving Incompressible Viscous
Flow Problems. Journal of Computational Physics 2, 1 (1967), 12–26.

[40] Chorin, A. J. Numerical solution of the Navier-Stokes equations. Math-
ematics of Computation 22, 104 (1968), 745–745.

[41] Chupin, L. Existence result for a mixture of non Newtonian flows with
stress diffusion using the Cahn-Hilliard formulation. Discrete and Con-
tinuous Dynamical Systems - Series B 3, 1 (nov 2003), 45–68.

[42] Colli, P., Farshbaf-Shaker, M. H., Gilardi, G., and Sprekels,
J. Optimal Boundary Control of a Viscous Cahn–Hilliard System with
Dynamic Boundary Condition and Double Obstacle Potentials. SIAM
Journal on Control and Optimization 53, 4 (jan 2015), 2696–2721.

[43] Colli, P., Gilardi, G., and Hilhorst, D. On a Cahn-Hilliard type
phase field system related to tumor growth. Discrete and Continuous
Dynamical Systems 35, 6 (dec 2014), 2423–2442.

[44] Colli, P., Gilardi, G., Rocca, E., and Sprekels, J. Optimal dis-
tributed control of a diffuse interface model of tumor growth. Nonlinearity
30 (2017), 2518–2546.

[45] Colli, P., Gilardi G., and Sprekels, J. Optimal velocity control
of a convective Cahn-Hilliard system with double obstacles and dynamic
boundary conditions: A ’deep quench’ approach. Journal of Convex Anal-
ysis 26, 2 (2019), 485–514.

[46] Dai, S., and Du, Q. Weak Solutions for the Cahn-Hilliard Equation
with Degenerate Mobility. Arch. Rational Mech. Anal 219, 3 (mar 2016),
1161–1184.

[47] Das, A., and Schwendimann, P. Fokker-Planck Equation for a Peri-
odic Potential. Physica A 89, 3 (1977), 605–612.

101



[48] de Chalendar, J. A., Garing, C., and Benson, S. M. Pore-scale
Considerations on Ostwald Ripening in Rocks. Energy Procedia 114 (jul
2017), 4857–4864.

[49] Dieterich, W., Peschel, I., and Schneider, W. Diffusion in Periodic
Potentials. Zeitschrift für Physik B 27, 2 (1977), 177–187.

[50] Ding, H., Gilani, M., and Spelt, P. Sliding, pinch-off and detachment
of a droplet on a wall in shear flow. Journal of Fluid Mechanics 644 (2010),
217–244.

[51] Dlotko, T. Golbal Attractor for the Cahn-Hilliard Equation in H2 and
H3. Journal of Differential Equations 113 (1994), 381–393.

[52] Doedel, E. J., Fairgrieve, T. F., Sandstede, B., Champneys,
A. R., Kuznetsov, Y. A., and Wang, X. Auto-07p: Continuation
and bifurcation software for ordinary differential equations. Tech. rep.,
2007.

[53] Duncan, A. B., Kalliadasis, S., Pavliotis, G. A., and Pradas, M.
Noise-induced transitions in rugged energy landscapes. Physical Review
E 94, 3 (sep 2016), 032107.

[54] E, W. Principles of Multiscale Modeling, 1 ed. Cambridge University
Press, Cambridge UK, 2011.

[55] E, W., and Vanden-Eijnden, E. Some Critical Issues for the
”Equation-Free” Approach to Multiscale Modeling, 2008.

[56] Eden, A., and Kalantarov, V. 3D convective Cahn–Hilliard equation.
Communications on Pure & Applied Analysis 6, 4 (2007), 1075–1086.

[57] Eden, A., and Kalantarov, V. K. The convective Cahn-Hilliard equa-
tion. Applied Mathematics Letters 20 (2007), 455–461.

[58] Elliott, C., and Luckhaus, S. A generalized diffusion equation for
phase separation of a multicomponent mixture with interfacial energy.
1991.

[59] Elliott, C. M., French, D. A., and Milner, F. A. A second order
splitting method for the Cahn-Hilliard equation. Numerische Mathematik
54, 5 (sep 1989), 575–590.

[60] Elliott, C. M., and Garcke, H. On the Cahn–Hilliard Equation with
Degenerate Mobility. SIAM Journal on Mathematical Analysis 27, 2 (mar
1996), 404–423.

[61] Elliott, C. M., and Garcke, H. Diffusional phase transitions in
multicomponent systems with a concentration dependent mobility matrix.
Physica D: Nonlinear Phenomena 109, 3-4 (nov 1997), 242–256.

102
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