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Abstract

Human language is a remarkable manifestation of our cognitive abilities which is
unique to our species. It is key to communication, but also to our faculty of generat-
ing complex thoughts. We organise, conceptualise, and share ideas through language.
Neuroscience has shed insightful lights on our understanding of how language is pro-
cessed by the brain although the exact neural organisation, structural or functional,
underpinning this processing remains poorly known. This project aims to employ
new methodology to understand speech comprehension during naturalistic listening
condition. One achievement of this thesis lies in bringing evidence towards putative
predictive processing mechanisms for language comprehension and confront those
with rule-based grammar processing. Namely, we looked on the one hand at cortical
responses to information-theoretic measures that are relevant for predictive coding
in the context of language processing and on the other hand to the response to syn-
tactic tree structures. We successfully recorded responses to linguistic features from
continuous EEG recordings during naturalistic speech listening. The use of ecologi-
cally valid stimuli allowed us to embed neural response in the context in which they
naturally occur when hearing speech. This fostered the development of new analysis
tools adapted for such experimental designs. Finally, we demonstrate the ability
to decode comprehension from the EEG signals of participants with above-chance
accuracy. This could be used as a better indicator of the severity and specificity of
language disorders, and also to assess if a patient in a vegetative state understands
speech without the need for any behavioural response. Hence a primary outcome
is our contribution to the neurobiology of language comprehension. Furthermore,
our results pave the way to the development of a new range of diagnostic tools to
measure speech comprehension of patients with language impairment.
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Chapter I

Introduction

“ The builders of prison make miserable poets
compared to the architects of freedom. ”
Stig Daggerman, Our need for consolation

is impossible to satisfy, 1952

O
ne of the most fascinating faculties of human cognition, evidently the forerunner
of our excellent reasoning ability, but also a fundamental ingredient to the de-

velopment of our society and culture, is the language faculty. We employed language
to pass on knowledge that survives across generations but also to create knowledge.
The organisation and structure of language allows to build complex train of thoughts,
mental narratives, and plans of actions of the kind that might have helped our an-
cestors to develop more advanced strategies. Homo Sapiens could use it to foster
ideation within themselves as well as to exchange those ideas among themselves.
Language plays a crucial role in the high reasoning capacity of modern human. It
surpasses simple forms of communication observed in other animals and seems to
coincide with the development of our species on evolutionary terms.

As early as philosophy began in the Western world, in Ancient Greece, we find
questioning about language. It was clear to many that living creatures were given
or endowed with a voice, thought to emerge from their souls. But for humans this
voice seems to glue meaning to sound and speaks with a richer palette of sounds,
obviously different from animals. Why is that so? Why do human struggle to learn
and acquire language at birth while other animals quickly pick their vocalization?
What rules govern the structure employed in language so that we can understand
each other, persuade each other? From sophists of the pre-Socratic era to Aristotle,
Greek philosophers were already asking those questions, pointing at that key human
faculty and opening the very first disciplines related to language such as the art of
rhetoric, poetry, dramaturgy, and logic.
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CHAPTER I

In modern terms, the disciplines revolving around the study of language changed
designation but the same motivation and passion is seen within the current, more
scholarly, work about language. Various research programs, born in different disci-
plines, are nowadays dedicated to the study of language. Linguistics is the science
dealing with language in its many forms, deciphering rules of syntax, of semantics,
and looking at its evolution across civilisations. Psycholinguists link psychologi-
cal analysis with linguistic approaches, and more generally cognitive neuroscientists
link it to more fundamental questions that emerged from the field of neurosciences.
These disciplines evolve sometimes on the their own, but also by bridging ideas be-
tween them, and nowadays we are witnessing the development of an entire research
program for the neurobiology of language. The need for interdisciplinary research
is clearer now than ever, when we observe convergence between works on the ge-
netic account of language, on bird songs development in evolutionary biology, or on
statistical language modelling in artificial intelligence.

On a clinical perspective, there is growing pressure to repair hearing and in
particular speech perception (as this is the first form of complaints in the elderly)
in our ever older society. Hearing aids are evolving and slowly merge with brain-
machine interfaces (BMIs) technologies. As a basic example, let us imagine a brain
machine interface that from electrical activity recorded with electrodes placed around
the ear and head would detect in real time how well you understood the incoming
speech stream, adapting the noise cancellation and sound level according to the
running "comprehension index".

Language impairment can be devastating. The inability to communicate one’s
own thoughts and emotions or to comprehend other’s results in the isolation of
oneself from friends and family. Among the elderly there is a greater likelihood
of strokes occurring as a consequence of various conditions, such as hypertension
or trauma, that can lead to brain damage in regions that are key for language
processing. Aphasia is one type of language impairment where comprehension, or
production, or even both can be impacted. Today, it is still diagnosed by using
battery of questionnaires (Bruce and Edmundson, 2010; Azuar et al., 2013) rather
than neuroimaging assessment. The route to rehabilitation is thus unclear for stroke
patients diagnosed with aphasia. It is crucial to understand better the neurobiology
of language processing and how to measure the mechanisms at play with current
technology in order to comprehensively explain and treat speech impairments. This
thesis is focussed primarily on the basic scientific knowledge of language and how
we can measure the underlying processing mechanisms with EEG. However, from
an engineering perspective this work could also be applied through the use of BMI
devices to assess comprehension in aphasic patients for instance. We hope to see the
work presented in this thesis standing as a fundamental toolkit or approach to the
design of such interfaces.

In this first chapter, we will point to the development of ideas that emerge
from studies on language. A first section will combine elements of cognitive science,
linguistics and evolutionary neurolinguistics to lay out the foundations and basic

2



CHAPTER I I.1. STUDYING LANGUAGE

scientific motivation behind the study of language processing. The second section
will describe current knowledge on how it is implemented in the brain to further
evolve into a section about how we observe, given our neuroimaging technologies,
natural language processing as it occurs in the brain. Finally, after a recap on
the different methods that will be used throughout the thesis, we will conclude the
introductory chapter with a section about the organisation of the thesis.

I.1 Studying language, understanding human cognition

W
hat is the need to understand language from a neuroscientific perspective?
Traditionally, linguists and psychologists have worked through research pro-

grams on language, analysing its structure and development in many ways but dis-
carding the path and methodology borrowed from cognitive neuroscience. A major
obstacle for a long time has been the lack of appropriate tools to bridge these two
fields. However, with the recent bloom in development of neuro-imaging technolo-
gies, we have witnessed a unification. Many aspects of how the brain is studied are
unavailable for studying the faculty of language, for example the luxury of a good
comprehensive animal model. Furthermore, decades of linguistics study demon-
strate the complexity of human language. It is one thing to agree that the essence
of language is represented and controlled by the brain, but to underpin the many
mechanisms at play is another. We know for example that several levels of represen-
tations must co-exist to synthesise a linguistic construct, or percept. This goes from
a representation of sound level or visual input to the syntax and semantic aspects of
language. Moreover, cognitive studies in psychology revealed neural systems, as for
working memory for instance, that we ought to link up with linguistic constraint.
The question of domain specificity of cortical networks is key to the understanding
of how language, among other cognitive function, is processed by the brain (Collins
and Hagoort, 2000). However this statement should be approached with caution as
we observe an accumulation of evidence suggesting a new shift in the perspective
for the interpretation of neurocognitive model of language comprehension (Hasson
et al., 2018).

This ability comes as highly specific to the human species, and as a greatly
evolved trait. It is sometimes even thought to be the pillar of human cognition.
Many questions arise naturally when we start questioning the origin, evolution and
implementation of human language.

Perhaps the most obvious is the question regarding its origin. How did it evolve?
Surely, gaining knowledge on the biological evolution from a genetic and functional
perspective should cast some light on how it is implemented. Especially given that
evolution works over very long time-scales, mostly gradually with small genetic mu-
tations at a time (which can have massive phenotypical changes). For the language
faculty this is however a very debatable topic. The origin and necessity of language
is not clear in the current state of research on that matter. Indeed, the evident fact
that we observe such a radical change in the hominid lineal branch with respect to

3



I.1. STUDYING LANGUAGE CHAPTER I

cognitive abilities is somehow in opposition to the classical view of natural selection
on random walks of genetic mutations for evolution. This enormous gap is left un-
explained. Yet, evolutionary biologists have found even a small unlikely change that
gives a a strong competitive advantage can be crucial in the development of a species
thus justifying the existence of human language within the Darwinist framework.

Naturally, this requires an explanation of what kind of advantage language was
giving to our ancestors that they did not already have with, say, former forms of
communications. Berwick and Chomsky, (2016) and Berwick et al., (2013) argue
that language is the cornerstone to advanced reasoning. It allows individuals to
elaborate more complex trains of thoughts, plans and strategies. This stands against
the theories of language as a product of the pressure for a more developed mean of
communication, or the necessity for gossip. The latter is also a current hypothesis
for the birth of the language faculty. Mainly those investigations revolve around
the question of knowing which come first between language and higher cognitive
abilities. The neurobiology of language asks those questions and continues with the
analysis of neural processes responsible for comprehending and producing human
language. Any attempt at answering these questions still generates many debates
across a variety of fields in sciences. But those attempts are primordial for the quest
of understanding our origin, and grasping the gist of what makes us stand apart
from the rest of the animal realm.

With those first ideas laid out, we see an emerging concept that language stands
apart from animal communication. It is important to narrow down our definition
of language here, as we take it as a unique human faculty as well as means of
communication and source for abstract and symbolic thinking and reasoning. It will
not matter which of those two streams human language stems from for the rest of
the present thesis, however it is crucial that we define properly the bound and scope
of the object under study here. As said, language paradoxically can carry many
different meanings, from programming language in computing science to animal
communication. We take the following definitions from Berwick and Chomsky, 2016,
p. 1:

Definition 1 Language: the ability to construct a digitally infinite array of hierar-
chically structured expressions with determinate interpretations at the interfaces with
other organic systems. Hence it is a finite computational system yielding an infinity
of expressions, each of which has a definite interpretation in semantic-pragmatic and
sensorimotor systems.

In this thesis, we will focus on human language ability, and on the neurobio-
logical mechanism underpinning this capacity. More precisely, we will look at the
neurobiology of naturalistic speech comprehension. The term naturalistic will be ex-
plained later in section I.3.2 on page 18 of this introductory chapter. Moreover we are
narrowing down the study to speech perception, that is language perceived through
auditory modality and also to the comprehension side of language processing rather
than production or discourse, pragmatic analysis.

4



CHAPTER I I.2. SPEECH PERCEPTION

I.2 Speech and language in the brain

“ Aristotle’s classic dictum that language
is sound with meaning should be reversed.
Language is meaning with sound. ”

R. C. Berwick & N. Chomsky, Why Only
Us, 2017

One great advance in language studies, neurolinguistics and probably in neuro-
science in general started from insights about language processing. Indeed, during
the past centuries, several discoveries shed new light on major aspects of the func-
tioning of our brain. It started with studies on brain injuries responsible for aphasias.
These studies gave birth to the standard view of specialized brain areas (Broca, 1865;
Wernicke, 1874), that are not only specialized and localized but also interconnected
and working concurrently in a distributed and parallel fashion. Nowadays this is
the most modern view for neuroscientists, nevertheless old theories about models of
language stood untouched through the history of neuroscience for unclear reasons
since it was these same models which opened the mind of researchers about the brain.
Broca claimed we talk with the left hemisphere and we can still hear that phrase echo-
ing in people’s minds today. This is one aspect of the theory of language processing
which has raised debates among neuroscientists (Fedorenko, Nieto-Castañón, and
Kanwisher, 2012). The last decade has seen a rapid development of new functional
brain imaging techniques such as positron emission tomography (PET), functional
magnetic resonance imaging (fMRI), electroencephalography (EEG) and magneto-
encephalography (MEG) and they allowed scientist to examine further the circuits
and networks involved in language processing (Turken and Dronkers, 2011).

The thesis focuses on speech comprehension, hence we are casting light with re-
spect to language processing research from two distinct perspectives, namely speech
and comprehension. Each of those narrows down the scope of research and limits the
study to some particular brain processes. Studying speech implies that we are looking
at language processing in the brain while information entered through the auditory
modality. Hence this relates to neural mechanisms for hearing (section I.2.1). The
comprehension side on the other hand implies that we are sweeping aside speech
production mechanisms. Our research focuses on understanding language as some-
one else’s message from which the listener has to extract meaning. Even though
production of speech is probably highly tied to comprehension in term of encoding
principles in the cortex, the methodology applied and the set of hypotheses raised
in our study are specific to the receiver’s viewpoint.

After a gentle introduction to the peripheral auditory system, we will present a
more in depth overview of the different language theories of the brain, from past to
present. And we will finish this introduction with an overview of a non language-
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centric framework, namely predictive coding, that can explain results from many
language studies and on which the work of the present thesis is framed.

I.2.1 Auditory pathway: from sound to speech

Hearing, one of the primary mammalian senses, starts with sound entering the
outer ear. Sound itself is an acoustic pressure wave, a propagation of mechanical
energy, consisting of an alternation of compression and rarefaction of molecules in an
elastic medium. When travelling through air, the wave propagates at approximately
340 m/s. The velocity is determined by the coefficient of elasticity and the density
of the medium in which the wave propagates. The visible part of the human ear
acts as an antenna to focus the acoustic energy into the ear canal. The pressure
wave is thus redirected onto the tympanum, or ear drum, a thin membrane that is
put in motion by the incoming wave. This motion is then transferred to a system of
three small ossicles: the malleus, incus and stapes. Those bones act like a lever and
a piston (the piston being the stapes) and are a key component in the transmission
of the airborne sound waveform into a wave in a fluid inside the cochlea. As we are
matching a wave travelling in air, to a wave in a denser fluid, we need an impedance
matching mechanism. In order to transmit a wave (i.e. avoiding pure reflection)
at the interface between two media with different impedances (the resistive force
against movement of a pressure wave in the given medium), a device must sit at the
interface to efficiently transfer the energy. That is exactly the role of these ossicles.
When the ear drum is put into motion, and hence the stapes, the oval window—to
which the stapes are attached—is pushed back and forth. This in turn will provoke
a pressure wave to propagate in the fluid filling the cochlea compartments called
scalae. The cochlea is a snail shaped structure, enclosing two communicating scalae,
the scala vesitbuli and the scala tympani. Without entering into further details, we
will explain the basic principle underlying the machinery of the inner ear. Those
fluid filled compartments are separated by a thin flexible membrane, the basilar
membrane. The propagation of the sound wave in the fluid of the scalae create
a movement of the basilar membrane. A first important stage of sound analysis
occurs at this level. Indeed, the basilar membrane has a varying stiffness and width,
such that close to the base it is wider and more elastic than at the apex. These
physical properties allow for different locations on the membrane along the cochlea
to respond preferably, through resonance, to different frequencies. In other words,
the basilar membrane acts already as a spectral analyser and spreads mechanical
energy along its length according to the frequency content of the sound. The final
stage consists of a transduction mechanism where the mechanical energy will be
transformed into electrical signals to be sent to the central nervous system. This
transduction is carried out by inner hair cells in the so-called organ of Corti. Inner
Hair cells are sensory neurons located all along the basilar membrane. When tilted,
so when a mechanical force, or a displacement, is applied to the cilia of the cell,
its membrane potential gets depolarised. Enough depolarisation leads to an action
potential to be generated and sent through the axon of the inner hair cell which are
then depolarising neurons constituting the auditory nerve (Hudspeth, 2013).
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The spiking activity is then forwarded through the auditory pathway up to
the cortex. This pathway is a rich deployment of hierarchically organised stages of
processing with feedforward, feedback and recurrent connections at each level. From
the inner hair cells, the pathway consists of nuclei in the brainstem and finishes in
the primary auditory cortices, located in Brodmann area 42 and 41.

The brainstem is responsible for several accounts in hearing perception. Sound
localisation, pitch determination and even auditory stream selectivity is observed at
the brainstem level. Across the different nuclei composing the auditory pathway in
the brainstem up to the auditory cortices, we observe a tonotopical organisation of
neural populations. The spectral decomposition stemming from the spatial organi-
sation along the basilar membrane in the inner ear is preserved at least through to
the primary auditory cortices (Oertel and Doupe, 2013).
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I.2.2 Speech perception: from the Classical Model to modern the-

ories of language

The "Broca–Wernicke–Lichtheim–Geschwind" model

“ Nous parlons avec l’hémisphère
gauche! ”

Paul Broca, 1864

The "Broca–Wernicke–Lichtheim–Geschwind" model, often referred to as the
Wernicke-Lichtheim model or more simply the Classic model, is one of the oldest
and probably the most cited cognitive model. It stands as a neuroanatomic model for
both language production and comprehension. In the late 19th century, neurologists
such as Paul Broca and Carl Wernicke developed this model for language processing
using deficit-lesion analysis. They were treating patients who had speech deficits
after suffering from a stroke, and by observing location and spread of brain lesions
from post-mortem analysis, Broca and Wernicke could infer how some specific areas
of the brain were playing a functional role in language production or comprehension.
The original idea that language function is impaired when lesion occurred in the left
hemisphere can even be traced back earlier, in 1836, from notes of the neurologist
Marc Dax (Dax, 1865). As depicted in figure I.1, the Classical model consists of
three components: Broca’s area, Wernicke’s area (together with the angular gyrus)
and the arcuate fasciculus. The "modern" version of the model, that we find in
most neuropsychology and medical textbooks, is essentially the model as updated
by Geschwind and extends the previous model from Wernicke by linking Broca’s
area, responsible for speech production, and Wernicke’s area, responsible for com-
prehension, with a single fiber tract of white matter called the arcuate fascilucus.
Back in the 19th century, this was the very first anatomical description of a language
model in the brain and shifted the view of neuroscience towards localists theories of
cognition. These theories assumed that brain areas are specialised: distinct brain
areas are responsible for different cognitive functions. This pioneering work in neu-
robiology of language remained the governing concept for more than a century of
research in the field. As of today, we still use the idea behind this model to classify
clinical syndromes such as Broca’s and Wernicke’s aphasia (which are also known as
respectively non-fluent and fluent aphasia).

However, several problems stem from this original work establishing the foun-
dation of the Classical Model. First of all, the spatial accuracy of the model is too
limited to test specific hypothesis about brain and behaviour relationships; secondly
it is focused on two "language-specific regions" while more regions are known to be
involved and those regions might have a domain-general role, thirdly it focuses on
cortical structures, and for the most part leaves out subcortical structure and rele-

8



CHAPTER I I.2. SPEECH PERCEPTION

Figure I.1: Left: The original model from Wernicke, (1874). For unknown reasons,
the model is represented on the right hemisphere. Right: An update of the Classic
model from Geschwind, (1970). Reproduced, with permission, from Tremblay and
Dick, (2016) c©(2016) Elsevier.

vant connections (there are for instance people with aphasia having only subcortical
lesions, and growing amount of evidence about the implication of sub-cortical struc-
tures in speech processing, see Turken and Dronkers, 2011; Hasson and Tremblay,
2016). Even the areas described so widely in the literature are poorly defined. Broca
and Wernicke did not work on many patients, Broca drew its conclusion from a sin-
gle brain which he did not dissect. The brain has been recently imaged with modern
techniques and revealed much wider lesions that dive into subcortical structures be-
low the inferior frontal gyrus (Hasson et al., 2018). An example of those outdated
areas are still ill defined as of today is depicted in figure I.2, where we see how Wer-
nicke’s area’s boundaries vary significantly across author definitions throughout the
20th century as well as across contemporary agreed definitions from academics.

The need to modernise the neuroanatomical model, on both a structural and
functional perspective, is enhanced by recent evidence of deviations from the classical
model brought up with new imaging technology. Notably with fMRI researchers
could analyse with unprecedented accuracy the loci of neural activity in response to a
task. It is relatively fair to admit that the Classical Model is nowadays refuted as new
ones emerge from evidence obtained with fMRI or EEG studies. Moreover, recent
theories on language processing in the brain tackle the question with a mechanistic
approach to explain how and when it is processed in more elaborate way.

Current theories

Neuroanatomical models of language aim at characterizing the brain network
dedicated to language processing, as well as its functional parts. They define, in the
same way the Classical Model did, the organisation of brain areas in the processing
of language. To exemplify the shift in perspective for plausible neuroanatomical
model of language processing, we will present two models that gained popularity in
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Figure I.2: Ambiguous anatomical description of Wernicke’s area. The original
author questioned students and professional academics in neuroscience about the
definition of the Wernicke’s area. Reproduced, with permission, from Tremblay and
Dick, (2016) c©(2016) Elsevier.

the last decade. The first is the dual-stream model, initially described by Hickok
and Poeppel, and the second will be the memory-unification-control, instanced by
Hagoort. Most theories of language in the brain until recent years have focused on
the formation of syntax and semantic, taking different stages of processing as sep-
arated modules that would occur in distinct brain areas. Current neuroanatomical
models were built principally from meta-analysis of fMRI studies Hickok and Poep-
pel, 2007; Friederici, 2011, but also lesion studies and electrophysiological data. A
more nuanced picture emerged where all language processing components are not
necessarily lateralised.

For instance, as presented in the dual-stream model (Hickok and Poeppel, 2007)
shown in figure I.3, partly inspired by the what and where streams found in visual
processing, the mapping from sound to lexical-level meaning seem to be operated
bilaterally in superior temporal lobes of both hemispheres. In contrast with the
Classical model, one finds in the dorsal stream of that model connection with motor
areas. Structures involved in speech production are also involved in speech percep-
tion, underpinning a sensory-motor mapping.

Hagoort, (2016) proposed another model, the Memory-Unification-Control model,
abbreviated as MUC, which segregate three distinct functional components of lan-
guage processing. The memory component is a language-specific component which
refers to the linguistic knowledge acquired during language learning, encoded as a
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Figure I.3: Dual-stream model from Hickok and Poeppel, (2007). The dorsal stream
deals with articulo-motor encoding of speech representations. Spectro-temporal and
phonological processing as well as lexical access occur bilaterally. Reproduced with
permission from c©2007, Springer Nature.
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mapping between e.g. phonemic, spectral, syntactic representations. Then Hagoort
argues that language processing is also evidently more than just a memory retrieval
system that concatenates lexical entries. The combination, or composition of lexical
elements makes up the richness of human language. He refers to this process as
unification (Bastiaansen, Magyari, and Hagoort, 2010, see also), which is somehow
similar to the merge operation defined by Chomsky, 2013 or Hasson et al., 2018.
Although, here unification would not only refer to syntactic processing but would
operate across all levels of representation, that is also at the semantic and phono-
logical levels. Finally the control component relates to language as an action. This
system operates the articulo-motor control for speech production, but also controls
how to use language in social interactions context and at the discourse level. The
brain areas potentially involved in his model are also broadly spread across both
hemisphere and several non language specific areas.

Another shift in perspective from the original classical model occurred thanks
to the field of linguistic which developed independently of neurosciences. In the
mid 20th century, computational linguistic flourished, and slowly turned out to
be an integrative part of cognitive sciences in general given at the same time the
opportunity to integrate ideas from computational language model to fit in the
context of neurobiological grounding.

Neuro-computational models on the other hand, define a theoretical frame-
work on how linguistic inputs are processed. Poeppel, (2014) reviews anatomical
organisation for speech processing but also points out at recent work characterising
the temporal organisation and the potential role of cortical oscillations for speech
processing. This aspect of neurobiology of language is core to the hypothesis and
results described in this thesis.

In the dual-stream model proposed by Hickok and Poeppel, (2007), parallel
routes in the mapping of acoustic input to lexical phonological representations are
hypothesised. Each hemisphere is said to process sound with asymmetric sampling
frequency, the left hemisphere would be mostly working in the gamma range (40-
80Hz), processing segmental information while the right hemisphere would operate
at the slower frequencies characterised by the theta range (4-7Hz) and would produce
syllable-level representations. Again this highlights the bilateral processing of speech
input.

Other models emerged that focused on simulating speech perception to match
results found in the Event Related Potentials (ERP) literature (see section I.3.1).
TRACE is one of such models that gained a lot of popularity. It can recognize word
from the sound input by processing the spectrograms of speech in a hierarchical
manner, parsing sound chunks and decoding possible phonemes first, then lexical
items. The dynamic aspects incorporated in TRACE allows the model to present the
time-course of word recognition as the input is being parsed. It has showed a lot of
compelling result with empirical data (McClelland and Elman, 1986). Such a model
was originally described from a psycholinguist perspective, but it shares similarity
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with modern deep neural network for speech recognition (developed independently
by engineers). We briefly review below, some of the influential models developed in
the field of natural language processing and computational linguistic that inspired
some of the work of this thesis.

Statistical modelling of language stem from computational linguistic, but in
the modern view of perception by inference, they now play a revived role in our
appreciation of language processing in the brain.

Originally, Chomsky evoked the poverty of stimulus argument in Language and
problems of knowledge: the Managua lectures (Chomsky, 1988) against the possi-
bility of a statistical, empiricist, learning of language in human. This has shaped
decades of studies in linguistic and cognitive sciences. It is known as the rationalist
perspective. The argument consist in that language acquisition can not be solely
due to empirical, or phenomenological, exposure to language. The development of
language should rely instead on innate structure or representation of a universal
grammar so that a child can pick quickly on generating sentences never heard be-
fore. The empiricist view states that indeed, through exposure and induction (or
statistical inference), an agent is capable of learning language. Now the debate is still
on, although the field of artificial intelligence and in particular language engineering,
nowadays known as natural language processing, presented models capable of gen-
eralizing well on unseen sentences as well as learning grammatical rules (Manning
and Schütze, 1999, see Chapter I, p.5).

This argument was stated far before the rise of more efficient computing meth-
ods for statistical learning. Nowadays, it is clear that a statistical model, if trained
properly, can inject probability mass to events it has not encountered during the
training phase. In the field of natural language processing, or NLP, modelling lan-
guage through a probabilistic generative model is a key operation, that is currently
broadly used in all our mobile phone that do speech recognition. The idea is to esti-
mate the probability of occurring for a given word sequence w1, . . . , wT . A first order
estimation in such implementation would only look at the probability of occurrence
of a word regardless of the previous items in the sequence. If we take the assumption
that words can co-occur independently, the probability of a full sequence becomes
the product of the probability of each word individually. However, words are or-
ganised in sentences following some grammatical rules, making up the syntax of a
language. Early language models were based on such co-occurrence statistics were
the probability of a word conditioned on the N − 1 words preceding it is estimated
simply by counting such occurrences in a large corpus of text. This method is called
N-gram language modelling (Manning and Schütze, 1999). The main limitation of
such models is that they have a limited window of context (N words).

Artificial neural networks, and in particular recurrent neural networks (RNN) go
beyond this limitation (Elman, 1990; Bengio et al., 2000; Mikolov et al., 2010). RNN-
based language models encode past input in their hidden layer through a recurrent
connection. Theoretically, they can encode infinitely long sequences although they
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are in reality limited by the implementation used and the training method employed.
It is actually extremely difficult to train such an architecture of neural network with
the classic stochastic gradient descent by back-propagation algorithm. The main
issue is the vanishing gradient. Long Short-Term Memory (LSTM) are a novel
architecture that aims at avoiding this problem by gating input to a memory cell
(Graves, 2013). For both architectures, we train a recurrent neural network for
language modelling by teaching it to predict the next word based on the previous
words it encountered. The last layer is implemented as a softmax layer, which is
a layer of artificial neurons of which the sum of activity is normalised to one. By
construction, this layer is therefore interpretable as a probability distribution. For
a language model, this distribution would often be defined over the entire, or a
limited portion of the vocabulary of the training corpus. To reduce the numbers
of parameters to be fitted and also to enhance the performance of such networks,
the first layer used is an embedding layer. Mikolov et al., (2013) found that it is
possible to embed one-hot encoded vectors representing words, that is a vector of
the size of the vocabulary with every component values at zero except a one (hence
"one-hot") at the word index, into a lower dimensional space that carry some lexical
information such as plurality, or gender. For instance, a vocabulary set of 35000
words could be embedded into a lower vectorial representation of 300 dimensions
of dense real valued vector space. Mikolov et al., (2010) called this representation
"Word2Vec". Amazingly, algebraic calculus are possible in such space such that the
following sum is often taken as a canonical example: queen−king+man ≈ woman. In
this example, the word vector corresponding to "queen" minus the sum of the word
vectors representing respectively "man" and "king" is close to the word vector mapped
to "woman". This demonstrates that the embedding learnt a meaningful manifold
to represent the vocabulary in few, but dense (as opposed to one-hot encoded),
dimensions. A toy example of a RNN for language modelling is illustrated in the
diagrams of figure I.4.

I.3 EEG studies in speech processing

In comparison with other neural processes such as those involved in decision
making, motor control or sensory perception, studying the neural basis of language
models poses unique chalenges. Inherently, the faculty of language as we know it
and defined earlier is unique to human. In other words, there is no true animal
model in the field which greatly limits neuroscientists. Cell recordings, ablation
studies, optogenetics, are unavailable when studying speech. Nevertheless, there are
numerous results found in related research programs such as in animal communica-
tion research, specifically with studies on song learning in birds or communication
in primates, that bring evidence regarding the evolution of language faculty for
instance. Those studies may inform on the putative underlying precursors neural
systems allowing human language ability to blossom.

The most common neuroimaging techniques for studying language processing
in the brain are fMRI, PET and M/EEG. Teams have rarely access to electro-

14





I.3. EEG CORRELATES TO SPEECH CHAPTER I

corticography (ECoG) data because it requires setting up electrodes invasively dur-
ing sub-dural surgical operations. PET/fMRI are based on the haemodynamic ac-
tivity. The haemodynamic response stems from blood flow activity, the latter being
partially correlated with the surrounding neuronal activity as neurons require more
oxygen and nutrients when solicited. Nevertheless, haemodynamic response and
neural activity are non-linearly related and are coupled through slow dynamic. As
a result, fMRI or PET is better at measuring sustained brain activity but too slow
to capture fast transient activity. Most studies involving PET or fMRI focused on
single word responses to avoid the problem of fast dynamic integration of sentences.
The biggest advantage of those imaging techniques are their spatial resolution. In
fact they allow for precise mapping of language functions to brain structures. Many
studies focused on the role of Broca’s area for instance, and could conclude with
new insights on its role and localisation thanks to such imaging techniques.

If fMRI is the tool to answer where the neural foci of language processing are,
then electrophysiological recording technology such as electroencephalogram (EEG)
or magento-encephalogram (MEG) answer the when question. Naturalistic speech
contains information at many different time scales. Pitch and timber, as many other
spectro-temporal cues are rapidly processed in the auditory cortex while in parallel
phonological decoding, syntactic integration and lexical access occurs all within a
short time. Moreover, information at those different timescales must be unified to
form the conceptual percept representing the meaning of speech input. For instance,
considering lexical phonological representations, evidence points towards a model in-
tegrating segmental information on the acoustic input at a fast rate while a parallel
processing stream would parse the input on a shorter time-scale and map to syllable-
level representations (dual-stream model as described in Hickok and Poeppel, (2007),
see figure I.3 on page 11). Those two views of the input need to rapidly get unified
to form the lexical phonological encoding of the input. A similar idea can be extrap-
olated to word level processing, or syntactic integration of larger constituents. In
conclusion, speech input is highly dynamic, and the extraction of meaning occurs at
near real-time. The neural machinery encoding speech must also reflect fast dynamic
that are difficult or impossible to capture with fMRI or PET. In order to capture
the time-course of brain activity to linguistic features, researchers relied mostly on
the analysis of Event Related Potentials (ERP) or ERF (MEG counterpart) as we
will discuss in the following section. Recently, new analysis methods have been de-
veloped and successfully used with electrophysiological recording to track natural
speech processing, those new tools will be described in section I.3.3.

I.3.1 ERP studies

Most of the work looking at neural correlates of language processing with EEG
relied on the computation and analysis of Event Related Potentialss (ERPs) to inter-
pret neural activity. An ERP is the time aligned average EEG response to an aspect
of the stimulus, for instance relative to the onset of a visual stimulus. It contains
rich spatio-temporal dynamics usually regarded as different "ERP components". It
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informs whether the brain, and by inference, cognitive processing, is specifically
responding to experimental manipulations, for instance semantic or syntactic vio-
lations (see Kutas and Hillyard, 1980; Kutas and Federmeier, 2011, for a review).
Peak of activity in ERPs are thus pinned to local processing of corresponding brain
areas. The interpretation of location of underlying electric dipole is fuzzy although
methods exist to infer such information. The main advantage stems from the tem-
poral resolution of EEG. It allows to analyse the time course of the response to a
stimulus on a millisecond timescale, which behavioural paradigms or fMRI analysis
cannot offer. By careful design of experimental paradigms, researchers could map
the different components of word-related responses to distinct linguistic processes.
Such careful designs imply almost in every case to insert controlled violations of spe-
cific aspect of speech as semantic, or morpho-syntactic, or also pragmatic/thematic
violations and even prosodic violations as in Friederici, (2002). Interpreting the role
of each ERP component is difficult as experimental designs eliciting those ERP share
some confounds. Here is a short overview of the most seen interpretations for the
word-level ERP components (for a review see Friederici and Weissenborn, (2007)
and Kuperberg, (2007)):

• early left anterior negativity (ELAN): This component is associated to local
phrase structure binding, the word category starts to be integrated with the
current syntactic structure.

• left anterior negativity (LAN): The amplitude of the LAN is modulated by
manipulation syntactic and thematic relations

• N400: The most studied ERP component for language. It has a centro-parietal
negativity peaking around 300-500ms. This is often linked to semantic viola-
tion paradigms. It is hypothesised to be a signature of the process of integrat-
ing the current word to the semantic context (an example sentence is "He took
coffee with sugar and dog", see Kutas and Hillyard, (1980)). Previously it was
attributed to lexical retrieval difficulty, but findings from (Kutas and Feder-
meier, 2011) reject this view in favour of an anticipatory mechanism. It can be
noted that the N400 has been widely used as a marker of semantic processing
in clinical population (Kielar, Meltzer-Asscher, and Thompson, 2012).

• P600: The P600 has a similar topography as the N400 but with inverted
polarity, and with the peak of amplitude at a latency of 500-800ms. It has been
reported principally in response to syntactic or morpho-syntactic violations
(Friederici and Kotz, 2003), or even for animacy violation (Kuperberg et al.,
2003) (as in For breakfast, the eggs would only eat toast), but it is also found
in fully grammatical but ambiguous sentences indicating that it might reflect
processing difficulty in integrating complex sentences (Osterhout, McLaughlin,
and Bersick, 1997).

Several functions have been attributed to these ERP components, and some-
times with confronting interpretations. One major issue concerns syntactic-effects.
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The presence or absence and the latency of the ELAN/LAN, as well as their spa-
tial distribution (bilateral or not) is still being debated (Friederici and Weissenborn,
2007). Researchers aimed at differentiating different ERP components for each stage
of preocessing, although it is clear that these linguistic functions are not indepen-
dent. Hagoort, (2003) showed that the amplitude of the N400 was boosted when an
additional syntactic violation was completing an already present semantic violation.
However, he reported that the size of the P600 was not influenced by additional
semantic violation. This points towards an asymmetrical interplay between syntax
and semantic processing. Even further, Fedorenko et al., (2016) argues that lexical,
semantic and syntactic processing always occurs congruently and in an unified man-
ner. Altogether, these limitations highlight the difficulty of dissociating language
functions. Moreover, as we will see in the next section, working with artificial viola-
tions in single sentences is probably hindering some of the mechanism at play during
natural language understanding.

I.3.2 On the use of naturalistic stimuli for speech studies

An inherent problem to trial-based experiments when studying speech is that
the stimulus might lack of what characterizes language in the first place. Speech
is used to communicate, or receive information. Listening to repetition of sentence
or speech segments, with no narrative, appears very artificial with respect to how
speech is naturally used. ERP studies suffer from this limitation.

Language comprehension happens in our daily life with naturalistic speech,
where the brain is subject to multi-modal information to begin with and where
speech also present long term statistics. Structures in language, entity reference,
or semantic information, can span several sentences and so do cortical represen-
tations of speech. To an extreme, it has been shown as well that discourse level
information modulates brain responses to similar stimulus (Kandylaki et al., 2016).
Non-linguistic information such as the perceived age of the speaker combines with
semantic representation of speech (such as to elicit an N400 to the word wine in "I
like drinking wine" if the sentence is said by a child speaker, Hasson et al., (2018)).
Those are forms of context that can modulate brain response to perceived speech.
We see that context is broadly defined, across modalities, social cues, and not only
textual or semantic. That the brain operates naturally within those contexts is clear.

One other benefit of using naturalistic experiment designs resides in that it
produces results more readily generalisable to everyday language use. Various de-
gree of ecological credibility can be achieved by choosing different type of stories
(Kandylaki and Bornkessel-Schlesewsky, 2019). In Hamilton and Huth, (2018), the
authors argue in favour of using more naturalistic stimuli for linguistic studies. The
underline the fact that in the past it was actually more difficult or unfeasible to
quantify stimulus statistics if it was not tightly controlled. However as of today,
those downsides of using natural stimuli are overcome by modern statistical and
computational models.
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This thesis is an opportunity to explore new approaches and methodology in
order to foster the use of naturalistic and complex stimuli. We build up on recent
studies in the field of auditory processing and speech perception where continu-
ous complex stimuli were used to gain knowledge on how the brain process those.
Through estimating spectro-temporal receptive fields from continuous speech pre-
sentation (Mesgarani and Chang, 2012), or similarly, extracting canonical response
to envelope (Ding and Simon, 2014; Crosse and Lalor, 2014) or semantic dissimilarity
(Broderick et al., 2018), researchers have managed to take advantage of the richness
of the stimulus to answer meaningful questions about underlying neural mechanisms.
Besides, advances in statistical learning such as deep learning and NLP allows to
build statistic representing linguistic information as it unfolds through a narrative.
By merging the recent analysis methods from neuroscientists studying continuous
speech and modern language models we hope to offer a new way standard for the
study of naturalistic language perception.

I.3.3 Cortical tracking of speech features

The shift towards more naturalistic stimulus puts new constraints on the type
of analysis and methods used on the EEG data. Indeed, with continuous speech and
no repetition at all, it becomes obsolete to think about extracting ERPs. Instead,
researchers must employ novel techniques and make use of the entire recording in
an efficient way. A growing amount of studies has been using continuous recording
in the last decade, with most of those studies stemming from auditory neuroscience
and especially focused on speech processing. Researchers, such as Lakatos et al.;
Ding and Simon; Peelle and Davis; Poeppel, paved the way with early results on
cortical tracking, or envelope entrainment.

The term entrainment is debatable, as it implies an intrinsic oscillatory source
that will adapt its frequency towards the one from the stimulus if in range. This
precise mechanism has still to be proven with further electrophysiological studies.
Nevertheless a phase locked neural activity to the low-frequency content of the stim-
ulus is clear. Recent studies (Kadir et al., 2019; Zoefel and VanRullen, 2015b; Etard
and Reichenbach, 2019) explicitly show how this observed alignment is not solely
a passive by-product of the periodicity from the input stimulus. Indeed, the low-
frequency tracking is thought to be an anticipatory mechanism, or pro-active, in
the sense that cortical oscillations seek to align their "best" phase (for example the
phase at which connected neuronal population can synchronously decode the parsed
input) to the ongoing phase of sound envelope. This is illustrated in the diagram in
figure I.5 reproduced from Giraud and Poeppel, (2012).

Speech itself is a dynamic input, therefore it is stipulated that cortical rhythms
may be involved in the parsing of auditory input (Ghitza, 2011; Hyafil et al., 2015).
Sound chunks that fall within the time scale of syllables, so roughly 150–300ms
which corresponds to the theta frequency range, are continuously being parsed in
order to map them to phonemic representations and so forth. Features that unfolds
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Figure I.5: Oscillation for Speech processing Giraud and Poeppel, 2012. Slow corti-
cal oscillations in the theta range align their phase to the incoming speech envelope
in order to match the period of higher excitability of neuronal population that en-
code sound chunks into phonological representations. Reproduced with permission
c©(2012), Springer Nature.
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at other timescales in speech like words, phrases or pragmatic discourse rhythms,
can also be tracked by neural activity. The idea that there are endogenous or in-
trinsic oscillations that reset their phase according to the stimulus phase or instead
time-locked potentials responses emerging from synchronous activity is still debat-
able. However it is now clear that we observe cortical activity with strong coherent
oscillatory power in relationship with some speech features. Most of findings in
the current literature concern processing of speech envelope, or more generally of
spectro-temporal features of sounds.

Neural tracking of the envelope in the auditory cortices is probably involved
in speech sounds too. It is thought to reflect the chunking of input and computa-
tions of summary statistics regarding regularities in the stimulus. A popular view,
is that ongoing phase of cortical rhythm is reset by salient aspect in stimulus so that
we align an optimal phase of the ongoing oscillations with the stimulus in order to
process the speech segment efficiently, as detailed in figure I.5. It was argued that
changes in neural tracking reflect stimulus intelligibility (Poeppel, 2014), however
it has been reported that neural tracking to envelope can be as strong for reversed
speech. Recent work pointed towards the contribution of high level features to the
cortical tracking of envelope (Zoefel and VanRullen, 2015a; Etard and Reichenbach,
2019). Those features only exist for understandable speech. The mechanistic inter-
pretation of how neural coding at the microscopic scale generate this tracking is still
discussed. Obleser and Kayser, (2019) gives a review on the possible mechanisms
such as neuronal phase coding of the stimulus to explain those results, highlighting
the importance of understanding what entrainment is in the narrow sense.

The processing of higher-level linguistic information in speech may employ cor-
tical tracking as well. Recent findings showed that cortical activity in the delta band
and the power time course in beta band synchronized to the rhythm of phrases and
sentences in continuous speech (Ding et al., 2016; Keitel, Gross, and Kayser, 2018).
Another study by Broderick et al. demonstrates that semantic dissimilarity between
individual words is significantly modulating amplitude of low-frequency cortical os-
cillations (Broderick et al., 2018). Finally, tracking of phonemic features seems to
bring a strong and reliable way of encoding neural dynamics as shown by Brodbeck,
Presacco, and Simon, (2018) and Di Liberto et al., (2019).

All these studies employed similar methods to analyse the relationship between
speech features and electrophysiological signals. A review of this type of analysis can
be found in Sassenhagen, 2019. Mainly, one aims at using time-resolved multivariate
regression analysis to infer brain responses to speech features under naturalistic
listening conditions. Depending on the end goal of the task and analysis, the model
predicts the brain signals from the stimulus features (Mesgarani and Chang, 2012;
Di Liberto et al., 2015, known as forward models as in), or conversely, decode the
input from brain data (Etard et al., 2019; Cheveigné et al., 2018b).
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I.4 Predictive Processing as a key mechanism for Language

Comprehension

“ Uste-gabea ”
from Basque:

literally Without belief. Translate as
Unpredictably, suddenly,

In sections I.2.2 and I.3.3 we already mentioned the concept of predictive pro-
cessing, notably with temporal predictions of stimulus spectro-temporal structure
with model of entrainments as in figure I.5 where phase alignment allow neuronal
population to anticipate incoming salient part of the stimulus. The notion of pre-
dictions in neuroscience is a widespread idea and not only restricted to speech or
auditory processing. Actually, the brain is often view as a predictive organ, an infer-
ence machine, capable of actively predicting its sensory inputs through a generative
model. The idea that the brain generates its own perception and that it is not merely
applying a series of transformations to its sensory input is not new. It refers to the
original concept advanced by Hermann Von Helmoltz about unconscious inference in
Helmholtz, (1866). The theory has been largely refined since and predictive coding
principles are now used to explain perception and action, hence behaviour. Some
researchers describe it as a fundamental and unifying principle, and argue that it
can explain the theory of mind or the sense of agency (Clark, 2013; Friston, 2012).

I.4.1 Predictive Coding: a short review

Rao and Ballard were pioneers of the modern account of predictive coding.
They developed a computational model of visual processing in the primary visual
cortex entirely based on predictive coding by proposing that feedback projections
were modulating receptive fields of neurons by predicting bottom-up activity. Their
result suggested that visual processing is not an exclusively feedforward mechanism
but that an efficient hierarchical strategy based on feedback connections could ex-
plain some data observed in physiological studies. At that time, the idea of efficient
coding such as sparse coding and redundancy reduction was strongly present in the
mind of neuroscientists working on neuronal mode of visual processing. It appears
as obvious that the brain is strongly constraint by energy consumption. It uses
approximately 20% of the body’s energy while accounting for only 2% of its mass.
Therefore the encoding schemes must capture maximal information about the stim-
ulus in the sparsest representation. Physiological results were also bringing evidence
to this energy-constraint as we observe irregular and sparse firing patterns, and a
globally balanced excitatory to inhibitory activity (Yang, Zhou, and Zhou, 2017).
Results from Rao and Ballard, (1999) were emerging from another perspective but
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still accounted for efficiency and sparsity. Recently, Chalk, Marre, and Tkačik,
(2018) showed that predictive coding can be unified to efficient coding by using an
information theoretic approach.

We can look at this framework, or theory, through each of the different levels
from Marr’s systemic representation (Marr, Poggio, and Brenner, 1979). On the
computational level, we lay out the core principles of the theory. The information
coming at a level of hierarchical representation is constantly predicted by higher
levels, such that only a prediction error is passed through the levels above. The
algorithmic level which describes in mathematical terms possible way to implement
such principles, for instance using non-linear dynamic systems (Friston, 2005), and
finally an implementational level which gives the details of biological implementation
of afore mentioned descriptions. Only the first computational level is described here.
The framework models how neuron populations encode the environment in an agent’s
brain. Perception of the environment, along with the sense of our own body and
motion, the decisions for actions, all emerge from inferences made by the brain
about causes of sensory inputs (Friston, 2010). This results in a generative model of
the world, that is continuously confronted to actual sensory bottom-up information.
The neural code for perception could thus be reduced to the difference between
predictions made by the generative model and the upcoming inputs, referred to as
prediction errors.

Perception is therefore an emerging phenomenon resulting from the interplay
between predictions and sensory inputs, or more generally, between top-down predic-
tions and bottom-up information, encoded as prediction errors. This computational
element can be generalized at different levels of representation in the brain as a
hierarchy of increasing complexity and abstraction. Such that lower level (closer to
sensory input in the processing hierarchy) pass on the message, encoded in predic-
tion errors to higher levels which themselves pass on predictions or beliefs to the
level below. Each level tries to suppress the error generated on the incoming input
based on the top-down predictions.

Friston and Kiebel, 2009 described a biologically plausible implementation of
predictive coding with physiological grounding in the form of hierarchical dynamical
system between activity of neurons in different cortical layers. They test their model
in the context of bird songs generation and recognition with remarkable success
(Yildiz and Kiebel, 2011, see also). Their model is based on an internal generative
model of how songs are produced by a hierarchical system. This same model has
then been ported to speech production and recognition in Yildiz, Kriegstein, and
Kiebel, (2013).

Other mechanistic descriptions of the neural circuitry involved in predictive cod-
ing have been studied (Bastos et al., 2012, for the "cortical microcircuit of predictive
coding"). One important finding relates to the asymmetry of frequency content
between population of neurons sending predictions compared to those forwarding
prediction errors. Indeed, Bastos et al. show that as the deep pyramidal cells of
cortical columns is processing and propagating predictions in his model, they must
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Prediction errors
γ range

Predictions
β range

High-frequencies intro-
duced by non-linearities

Linear accumulatin of
evidence/Bayesian filter-
ing (intrisic low-pass)

Lower level Higher level

Figure I.6: This diagram illustrates the asymmetry in oscillatory activity for pre-
dictive coding as described in Bastos et al., (2012) and Giraud and Poeppel, (2012).
Note that the left node comes from the level below in the cortical hierarchy (hence
they represent different neuronal populations, and/or different cortical columns).

accumulate prediction errors in order to generate their conditional expectations.
Hence they produce a smooth estimate of hidden causes and suppress high-frequency
fluctuations from their input. This is inherent in Bayesian filtering. On the other
hand, the bottom up signal, generated in superficial layers, propagates prediction
errors at higher frequencies (gamma range), see figure I.6 for an illustration. The
authors predicted that deep layers should express more beta relative to gamma and
conversely in the superficial layers. This was observed experimentally with extracel-
lular recording in primates (Fries, 2015) and in human for auditory tone sequences
(Sedley et al., 2016; Giraud and Arnal, 2018).

Building on those results, predictive coding for auditory processing has been
linked to cortical oscillations (see Giraud and Arnal, 2018, for a review), and the
asymmetric oscillatory activity mapped up to different signals in the hierarchy of
predictions and prediction errors, as seen in figure I.7.

I.4.2 Predictions in Language Processing

In the context of language processing, predictive coding gained a lot of at-
tention. It could explain many previous experimental results and provides with a
framework to justify the rapidity of processing of spoken language and the robust-
ness of comprehension in noisy environments. Although it is not a new concept
for the neurobiology of language, but it was often attributed to different mecha-
nisms than predictive coding per se. Originally, behavioural studies have indeed
shown that the brain makes predictions about upcoming speech segments: words
can be better distinguished from noise when transition probabilities between words
are high rather than low (Miller et al., 1951), and a highly-predictable word can
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Figure I.7: Predictive coding and different level of computation. The spectral asym-
metry between predictions, in the beta band, and predictions errors, in the gamma
band, is also depicted. Reproduced from Giraud and Arnal, (2018), with permission,
c©2018 Elsevier Inc.
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be perceived as heard even when obscured by noise (Miller and Isard, 1963). Many
psycholinguists have therefore proposed that anticipatory mechanisms are at play
during language processing. We can read in Federmeier and Kutas, (1999) that "in
the course of processing a sentence, the comprehension system is involved in some
process tantamount to prediction". Predictions play a key role in language process-
ing, but it is still unclear whether predictive coding is the mechanism implementing
those. The hierarchy of representation during speech processing follows quite natu-
rally from the encoding of sound and its characteristic acoustic features such as pitch
to language-specific representations such as phonemes, lexical information, syntac-
tic constituents and phrases. Under the framework of predictive processing, we thus
expect that higher-level such as the representation of semantic content will predict
the upcoming sequence of phonemes which in turn will predict spectral content from
ongoing acoustic input (Levy, 2008; Lewis and Bastiaansen, 2015; Willems et al.,
2016). Gagnepain, Henson, and Davis, 2012 showed that partially matching words
(such as "formu. . . " predicting "formula") are used to predict upcoming speech seg-
ments more precisely. In their study, they show that their data are better explained
by such a predictive mechanism rather than by some form of lexical competition.

In the literature there are also examples of computational models applying
predictive coding principles to showcase their utility for perceptual systems as men-
tioned in the previous section but also to present the usability of those principles
for speech processing. Using a version from the cortical microcircuit for predictive
coding proposed by Friston and Kiebel, 2009, Yildiz, Kriegstein, and Kiebel, 2013
extended the model from Yildiz and Kiebel, 2011 to apply predictive coding directly
to speech recognition. Keeping to two level in the hierarchy of hidden states after
cochlear input, they managed to build a system of speech recognition that after
being trained on a single speaker could still perform well in a competing speaker
environment. This is an example of predictive coding for the speech recognition al-
though they applied to the lowest level, where the hidden causes predicted by their
system were at most equivalent to phonemic encoding.

The asymmetry described in the previous section, and found in the auditory
domain by Sedley et al., 2016 are also being hypothesised for language process-
ing. In a review, Lewis and Bastiaansen, 2015 present how results from language
studies converge towards a predictive coding account of sentence-level language com-
prehension that involves different cortical oscillations too. Lewis and Bastiaansen
propose to reframe the classical findings on P600 into a predictive coding framework
in which this ERP component would be a marker of syntactic prediction update
or prediction error. Moreover, following Bastos et al.’s theory, they advocate that
beta oscillations carry predictions to lower-level of linguistic representations, while
gamma oscillations would convey prediction errors to higher levels. Those hypoth-
esised involvement of oscillatory activity for predictive processing during language
comprehension found empircal data bringing evidence and conclusive results for such
a theory. Beta power has been found to be reduced by semantic and syntactic vio-
lations (Bastiaansen, Magyari, and Hagoort, 2010; Kielar et al., 2014) and gamma
power has been observed to increase when a word is highly predictable but not when

26



CHAPTER I I.5. RECAP ON LINEAR MODELS AND REGRESSION ANALYSIS

its predictability is low (Molinaro, Barraza, and Carreiras, 2013; Wang, Hagoort,
and Jensen, 2017). Besides the contribution of oscillatory activity to predictive
mechanisms for language processing, others have focused on quantifying prediction
in order to relate those to brain activity. This has been done mainly with fMRI,
hence they could not asses which frequency band where supporting the measured
processes. Willems et al., (2016) recorded the fMRI of subjects while they where
exposed to ongoing speech. He found areas that were significantly responding to the
entropy and to the surprisal of a word as defined by a language model that predicts
the next word based on the previous context. With a similar experimental design,
Frank and Willems, (2017) observed that the predictability of a word activated dis-
tinct brain areas than the semantic dissimilarity, and that it correlated with the
amplitude.

We aim at unifying the views on predictive coding for language processing, by
analysing electrophysiological data during naturalistic story comprehension. The
nature of EEG provides us an access to high frequency brain activity in response to
the stimulus and instead of using artificial sentences, with semantic or syntactic vio-
lation, we will quantify key metrics for predictive coding, like surprisal and entropy,
in order to represent the ongoing speech stimulus and to model the stimulus-response
relationship.

I.5 Recap on Linear Models and Regression Analysis

One of the strongest and boldest assumption we will make to study the link
between recorded EEG signals and the stimulus is that there exists a linear rela-
tionship between those. In other words, we are looking for a linear map between
a vectorial representation of the stimulus and the EEG time series, or vice-versa.
Although this assumption might appear quite restrictive at first sight, it is in its
simplicity that we get the most of its value. Through such linear approaches, we are
effectively trying to determine a linear, and also time-invariant system that takes the
stimulus as an input signal and outputs the multi-channel EEG activity. That is, if
we can find such a system that significantly explains the data observed, we would
have explained and modelled at best that much of the relationship between stimulus
and response. It can be seen as a first order relation, where all the non explained
noise, or residual, contains task-irrelevant signals, speech-independent responses or
high order activity. The most basic form of equation for such a system, with a one
channel signal output and one dimensional input is:

y(n) = β0 +
l2

∑

k=−l1

βkx(n − k) + ǫ (I.1)

Where y(n) is the nth sample of the EEG single channel data y ∈ R
T ×1, with

T the total number of samples (hence the duration of the data in sample unit). The
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stimulus is represented in the signal x. The intercept is estimated through β0 and
the coefficient βk are multiplicative factor of the input signal x at different lags. This
operation is a discrete convolution between the input x and the kernel formed by the
coefficients β. We can extend this model to multi-dimensional features x ∈ R

T ×Nfeat ,
this is often referred to as multivariate linear regression:

y(n) = β0 +
Nfeat
∑

i=1

l2
∑

k=−l1

βi
kxi(n − k) + ǫ (I.2)

The dummy indices i runs across feature dimensions, so there is a linear co-
efficient for each feature i and lag k: βi

k. Note that equation (I.2) can be com-
pletely reversed, such that we reconstruct a one-dimensional feature x from the
multi-channel EEG signals. This would thus be referred to as a backward model (see
below). Finally we can simplify further equation (I.2) by writing it in its matrix
form. First of all, let us consider the multi-channel, or multi-dimensional matrix of
input x ∈ R

T ×Nfeat , where each row represents a sample of the multi-dimensional
input x(n) =

(

x1(n) · · · xNfeat(n)
)

. Then for each lag, we define a vector of coef-

ficients βk ∈ R
Nfeat×1 such that we can get the summation over feature dimension

through the dot product:

x(n − k) · βk =
Nfeat
∑

i=1

βi
kxi(n − k)

We can now define the lag-matrix X ∈ R
T̃ ×Nlags·Nfeat of the input data. This

will be a Tœplitz matrix formed of shifted version of x:

X =









...
...

x1(n + l1) · · · xNfeat(n + l1) · · · x1(n − l2) · · · xNfeat(n − l2)
...

...









=









...
...

...
x(n + l1) x(n) x(n − l2)

...
...

...









And by doing so, we can vectorize the summation over lag indices to end up
with:
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ŷ = X · β

Ŷ = X · β (I.3)

Note the ˆ denoting an estimated value (therefore rendering this equation exact so
we can drop the noise term ǫ). Hence in equation (I.3), ŷ refers to the estimated
EEG time series of one channel and Ŷ to the estimated matrix of EEG data, the
concatenation of all channel time series.

Now we can isolate β in equation (I.3), such that we obtain from the pseudo
inverse of X the estimate β̂:

β̂ = X† · Y =
(

XTX
)−1

XTY (I.4)

X† is the Moose-Penrose pseudo-inverse of the matrix X.

The covariance matrix XTX can be non invertible if it is rank deficient. In that
case, one on more of its eigenvalues will be zero. Numerically, this does not usu-
ally happen as the machine will reach numerical precision for near zero eigenvalues.
Practically, the inversion of the matrix is stable if it is well conditioned, that is, if the
range between the highest and the smallest eigenvalues is within the dynamical range
of the computing machine. To assure numerical stability of the inversion in equa-
tion (I.4), one can shift all eigenvalues away from zero by adding a constant λ to all

diagonal element of XTX so that equation (I.4) becomes β̂ =
(

XTX + λI
)−1

XTY.
This is referred to as Tikhonov, or Ridge regularization.

Family of Linear models

Several linear modelling approaches are available to establish the relationship
between stimulus and response, but they all fall into three major classes:

• Forward models: The model predicts the response from the stimulus. Namely
the input of a forward model is the stimulus representation and its output is
the neural response. It allows to look into how the brain encodes features from
stimulus space (as measured through EEG signals as observables).

• Backward models: For this class of methods, one decodes stimulus features
from brain responses. Therefore, the weight learn are not directly interpretable
as brain sources, but rather as spatio-temporal filters over brain responses that
map onto stimulus space.

• Hybrid models: Those models are a form of encoding/decoding, where both
stimulus and responses are projected into a subspace where they are, for in-
stance, maximally correlated. This can be useful to quantify the strength of
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the relationship between a feature set and the EEG response. See methods in
section IV.3.1.

Each family of methods comes with mutually exclusive advantages that strongly
depend on the end goal of the analysis. Forward models are more directly inter-
pretable than backward ones. Indeed, the weights βk in equation (I.1) act as a
scaling factors of the input features x and therefore are in the unit of y when the
input is made adimensional (by z-scoring or whitening for instance). They represent
the convolution kernel of the model and characterize fully the linear time-invariant
system. By looking at the coefficient series β1:k as the discretization of the signal
β(τ), we are considering the canonical response of the system to an impulse (dirac)
from the stimulus space. Observing that canonical response gives us insights on the
underlying brain mechanisms at play (as of where and when in the brain the stimulus
feature is being processed). However weight from backward models are not directly
interpretable as such but provides a direct projection into stimulus space, optimal
in the least-square sense, which can be thus used as brain computer interface in
decoding tasks. Backward models are principally used in the literature for decoding
selective attention in competing speaker experiments. Finally, hybrid methods are
better to inform on the quality of cortical tracking and to assess the degree of lin-
ear relationship existing between two datasets, in a symmetrical fashion (Cheveigné
et al., 2018b; Di Liberto et al., 2019).

In all three following chapters, we will be using forward models to capture the
time-course of the linear relationship between EEG and linguistic predictors derived
from the stimulus. This is actually the only model that is readily interpretable as
mentioned above. The linear coefficients computed during fitting such model are
alike brain potentials. This will allow a direct transcription into meaningful brain
response to each linguistic feature. Moreover, only the forward and backward model
take in consideration the covariance between different speech (linguistic) features.
It can be seen in equation (I.4), where the computation of β coefficients imply
to know XT X, the covariance matrix of the input. Our goal will be to measure
brain response to a set of features describing linguistic information at once, and
it is therefore important that we take the full covariance of the stimulus space in
account. These two points make up the main reasons for choosing forward modelling
approach. In the last chapter though, in one analysis we will be using a hybrid model
to better characterize the strength of the linear relationship between stimulus and
response, but again this does not allow to interpret time-course of coefficients as
forward models do.

I.6 Goals and organisation of the thesis

Having in mind the different models for language processing and available
methodology, we aim at bringing new tools for analysing EEG data in the con-
text of naturalistic speech comprehension. We designed an experiment allowing the
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participant to be exposed to language with a full narrative context, and developed
analysis methods to extract information from continuous EEG signals. We wanted
to explore how statistical features derived from a generative language model are
encoded in EEG signals. To extend to other theories of language processing, we
looked also at syntactic features, derived from rule-based algorithms. Both set of
features could give significant result, and we finally tested how each would benefit
a decoding system to predict comprehension state from EEG. Hence we are asking
the following questions:

How are different word level linguistic features contributing to comprehension
of language? Can we decode whether speech is being understood from EEG?

Chapter II focuses on statistical models for language, taking inspiration from
predictive coding models established for auditory perception. Mainly, inspired by
the results obtained by Sedley et al., 2016 in the auditory domain using surprisal and
precision but applied to the linguistic domain. Moreover, we wanted to investigate
the relative contribution of different frequency bands to the response to those features
following hypothesis from Arnal and Giraud, 2012; Lewis and Bastiaansen, 2015

In chapter III, we thought of exploiting recent results from Ding et al., 2016
to study how the brain respond to syntactic structures during naturalistic language
comprehension. Moreover, this allowed us to define linguistic features that could
relate to the merge/unification operation described by Bastiaansen and Hagoort,
2006; Chomsky, 2013. It has been shown with non natural speech, that sentence
building and syntactic unification presented neural correlate in theta and beta band
activity. We hope to reproduce this result in a naturalistic experiment.

Finally the last chapter will try to characterize in more depth the dynamics of
those different stage of processing and to establish their relative roles for language
comprehension. We will reflect on the use of envelope acoustic tracking such as
described in section I.3.3 to understand how linguistic features can modulate low-
level acoustic tracking and conclude with a decoding analysis where the task is to
effectively decode comprehension from the EEG signals.
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Chapter II

Cortical tracking of surprisal

and precision entropy during

continuous speech

comprehension

B
esides the intrinsic complexity of speech, there is some meaningful redundancy
and structure within its linguistic constituents. We demonstrate in this chapter

how we can record a response to data-driven statistical features extracted from
speech.

The brain continuously decodes the message being transmitted by speech to ex-
tract meaning from it. It can do so in a variety of environments, where the speech sig-
nal can sometimes be mixed with many other acoustic sources, other speech sounds,
or environmental noise. More variability also comes from the variation of acoustic
properties stemming from physical differences between speakers (for instance, dif-
ferent pitch corresponding to differences in vocal tract shapes), as well as different
accent and so on. Though our brain can robustly encode information despite this
variability and still extract the original meaning of the message remarkably fast.
One putative mechanism to be able to process speech in unpredictable, noisy en-
vironment and in real-time, is for the neural population responsible in decoding
language to predictively process speech signals.

This chapter is a study on the predictive processes occurring in the brain dur-
ing speech comprehension. The work hereafter has been published in Weissbart,
Kandylaki, and Reichenbach, (2019a), what follows is the manuscript of the actual
article modified slightly for formatting and adjusting content.
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II.1 Introduction

To understand spoken language, a listener must rapidly process information
that unfolds over several timescales, including the duration of syllables at around
150 ms, words of about 300 ms, and phrases of 1 s (Giraud and Poeppel, 2012).
Recent studies have shown that cortical activity in the delta, theta and gamma
frequency bands tracks acoustic features of speech such as the speech envelope as
well as phonemic features (Lakatos et al., 2007; Zion Golumbic et al., 2013; Ding
and Simon, 2014; Di Liberto et al., 2015; Ding et al., 2018). This cortical tracking of
speech features has accordingly been proposed to reflect neural mechanisms of speech
processing, for instance an online segmentation of speech into acoustic speech tokens,
such as phonemes that occur on the time scale of a few hundreds of milliseconds
(Giraud and Poeppel, 2012; Hyafil et al., 2015).

The processing of higher-level linguistic information in speech may employ cor-
tical tracking as well. Recent findings showed that cortical activity in the delta
and beta frequency bands synchronized to sequential cues such as the rhythm of
phrases and sentences in continuous speech (Ding et al., 2016; Keitel, Gross, and
Kayser, 2018), to hierarchical cues such as context-free grammar structure (Brennan
and Hale, 2019), as well as to the semantic dissimilarity between successive words
(Broderick et al., 2018).

An important property of word sequences is that they can allow the prediction
of an upcoming word, resulting in a word expectation. The degree to which a word
can be predicted is referred to as precision and reflects the certainty with which a
neural population generates its prediction. Predictions and precision are both closely
related to putative implementations of predictive processing mechanisms (Friston,
2005; Feldman and Friston, 2010; Heilbron, 2018). Behavioral studies have indeed
corroborated that the brain makes predictions about upcoming speech segments:
words can be better distinguished from noise when transition probabilities between
words are high rather than low (Miller et al., 1951), and a highly-expected word can
be perceived as heard even when obscured by noise (Miller and Isard, 1963).

Neurophysiological research on event-related potentials elicited by a word in a
sentence has shown that the brain response to a word reflects the word expectancy
through modulation of the N400 response (Kutas and Hillyard, 1980; Kutas and
Federmeier, 2011, for a review). Although this response has not been found to
be further modulated by the precision of the prediction (Federmeier et al., 2007),
precision can influence the neural power in the alpha and theta band (Rommers
et al., 2017; Sedley et al., 2016) The power in the beta frequency band has been
found to be reduced by semantic and syntactic violations, and may therefore relate
to word expectation as well (Bastiaansen, Magyari, and Hagoort, 2010; Lewis and
Bastiaansen, 2015; Kielar et al., 2014). Gamma power has been observed to increase
when a word is highly predictable but not when its predictability is low (Molinaro,
Barraza, and Carreiras, 2013; Wang, Hagoort, and Jensen, 2017). However, these
prior studies on neural correlates of word expectancy and precision have focused on
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specific words in single sentences, contrasting words with high and low expectancy
as well as with high and low precision. But natural speech often consists of many
sentences, and the expectancy and the corresponding precision of successive words
take a range of values that do not fall in only two classes of ’high’ and ’low’. It
therefore remains unclear how neural responses to word expectancy and precision
correlate with this graded variability. An analysis taking in account the time course
of such variability as it occurs in natural speech could potentially better characterize
the neural mechanisms underlying speech processing.

Furthermore, assessing the cortical responses to these linguistic features of suc-
cessive words using naturalistic stories as stimuli, instead of only focusing on a par-
ticular word in single sentences presentation, allows to quantify the cortical tracking
of these features. Recent investigation on word predictability and hierarchical struc-
ture in naturalistic speech used such an approach to show cortical tracking of word
surprisal (Brennan and Hale, 2019; Frank and Willems, 2017), but did not investi-
gate the influence of precision entropy nor the power modulation in higher frequency
bands. Here we therefore set out to investigate cortical tracking, including through
power modulation in higher frequency bands, of word surprisal and the precision
of word prediction in naturalistic stories. The surprisal of a word denotes the log-
transformed conditional probability of a word based on the preceding context, has
been argued to relate to processing load (Levy, 2008) and predicts reading time
(Smith and Levy, 2013; Frank et al., 2015). Precision has been computed as the
inverse of the entropy of the conditional probability distribution over a close vo-
cabulary set. We quantified word surprisal and precision from naturalistic stories
using language modelling as estimated by a recurrent deep neural network, and then
related the obtained word features to electroencephalographic (EEG) responses of
volunteers who listened to the stories.

II.2 Materials and Methods

II.2.1 Experimental design

Participants. 13 subjects (aged 25 ± 3 years, 6 females) participated in the
experiment. The volunteers were all right-handed native English speakers. They had
no history of hearing or neurological impairment. All participants provided written
informed consent. The experimental procedures were approved by the Imperial
College Research Ethics Committee.

We employed naturalistic speech narratives in the native language of our sub-
jects (English). The experiment consisted of one session in which we measured elec-
troencephalographic (EEG) responses to the short stories ’Gilray’s flower pot’ and
’My brother Henry’ by J.M. Barrie as well as ’An undergraduate’s aunt’ by F. Anstey
(Patten, 1910). The stimuli were sourced from the public domain librivox.org and
were spoken by a male voice. The corresponding text was obtained from the project
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Gutenberg1. The audio material was presented in 15 parts, each of which were 2.6
± 0.43 min long. The total length of the stories was 40 min. After each part of a
story, participants answered comprehension questions about what they just heard in
the form of multiple choice questions, where they had to select their answer among
four possible answers. Participants were asked 30 questions in total; the questions
were presented and answered on a monitor.

II.2.2 Statistical Model of Language

We used computational linguistics methods to quantify linguistic features in
the employed stories (Graves, 2013). Specifically, we employed statistical language
modelling to compute word frequency, entropy and surprisal from the text of the
stories. Word frequency is a property of each individual word out of any context,
which was computed from Google N-grams by using only the unigram values. This
word feature is an estimate of the unconditional probability of occurrence of a word,
p(wi). We used the negative logarithm of this probability such that all our infor-
mation theoretic word features are expressed in the same unit. Both entropy and
surprisal follow from conditional probabilities of a particular word given the pre-
ceding words. We denote by p(wi|wi−1 . . . w1) the conditional probability of the ith

word in the sequence, wi, given the previous wi−1 . . . w1 words. Taking the negative
logarithm of this probability yields the surprisal value for that word:

S(wi) = − log(p(wi|wi−1 . . . w1)) (II.1)

The surprisal, also referred to as self-information or information content, quan-
tifies the information gain that an upcoming word generates with respect to the
sequence of words formed with its context. It can be related to how unexpected
a word is given the previous words in the sentence. Inasmuch as surprisal informs
about expected words, precision relates to the confidence about the predictions made
(Koelsch, Vuust, and Friston, 2019). We implement this degree of certainty by tak-
ing the inverse of entropy. A high precision translates in a high confidence about a
word expectation, meaning that the word is predictable. The entropy E(i) at word
i, that is, the uncertainty for predicting the word from the context wi−1 . . . w1, is
given by the sum of the conditional probabilities for each possible word wi, weighted
by the logarithm of this probability. In other words, the entropy is the expected
surprisal:

E(i) = E
w∈V

[S] = −
∑

w

p(w|wi−1 . . . w1) log(p(w|wi−1 . . . w1)) (II.2)

The precision entropy of the mth word follows as the inverse of entropy.

1http://www.gutenberg.org/ebooks/32846
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The conditional probabilities for the different words in the sequence, given the
preceding words, were computed through a recurrent neural network language model
(Bengio et al., 2003; Graves, 2013). The network had a hidden layer with recur-
rent connections to encode previous input. Such networks are particularly useful
for processing sequences and have previously been successfully applied to language
modelling (Bengio et al., 2003; Graves, 2013). In particular, a recurrent neural net-
work can capture long-term dependencies, of variable length, by encoding preceding
words through its recurrent connection into the state of the hidden neurons. This is
enabled by a careful balance between short- and long-term memory and means that
there is in principle no limit on the number of preceding words that such a network
can thereby take into account (Bengio et al., 2003; Pascanu, Mikolov, and Bengio,
2012). This contrasts with N-gram language models, for instance, that are limited
to a context window of N-1 words (Brown et al., 1992).

The network was implemented using the feature-augmented recurrent neural
network language modelling toolkit (Mikolov et al., 2010; Mikolov et al., 2011). To
decrease the computational time required for training, this toolbox assigns words
to classes and factorizes the output layer into a part that describes the probability
of each class given the previous words, as well as another part that describes the
probability of each word within a class given the previous words. This factorization
yields a significant decrease in training time at a small cost to accuracy; importantly,
the network still computes the probability of individual words following the previous
words. We employed 300 classes. As an embedding layer we used the pre-trained
global vectors for word representation trained on the Wikipedia 2014 and the Giga-
word 5 datasets (Mikolov et al., 2013, for the original paper on word embeddings;
and see Pennington, Socher, and Manning, 2014, for the embeddings used here).
The recurrent layer encompassed 350 hidden units. The source code was customized
to compute the entropy of each word, a feat that the original code did not allow.
The neural network was then trained on the text8 dataset that consists of 100 MB
of data from Wikipedia2, using back propagation through time, truncated to five
words with a starting learning rate of 0.1. The data was cleaned to remove punc-
tuation, html tags, capitalisation and numbers before training. Since the network
can only train well on words that appear frequently enough in the training data to
allow meaningful training, we limited the vocabulary to the 35,000 most common
words in the training dataset. The remaining words were mapped to an "unknown"
token. Infrequent words in the stories, such as compound nouns used for style, that
appeared repeatedly throughout the stories did therefore not obscure the results.

The output of the recurrent neural network was obtained from a softmax func-
tion, and could therefore be interpreted as the probability distribution for an upcom-
ing word given the preceding words in the input sequence, as shown in the diagram
of figure I.4 on page 15. The network was therefore trained to predict the next
word, that is, to compute an output that was as close as possible to a probability
distribution that was one for the actual upcoming word and zero for all remaining
ones. The trained network was then run on the stories that the participants heard.

2retrieved from http://www.mattmahoney.net/dc/textdata.html
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Figure II.1: Probability distributions (green) obtained after evaluating the network
on a sequence of words. The corresponding surprisal values in base 10 are also shown
in blue.

Entropy (and hence precision) and surprisal of each word were determined from
the network’s computed probability distribution at the corresponding word through
equations (II.1) and (II.2). An example of the actual values obtained by a forward
sweep through the neural network once trained is shown on figure II.1.

II.2.3 Speech Representation: Linguistic-modulated comb

To relate surprisal and entropy to the EEG data, we constructed a time series for
each linguistic feature. We first aligned each word of the speech to the acoustic sig-
nal through forced alignment using the Prosodylab-Aligner software from Gorman,
Howell, and Wagner, (2011). We thereby obtained the time at which each word
began. To construct features for surprisal and for precision that were aligned with
the speech stimuli, we assigned each of the time points where a new word started
a spike of a magnitude that corresponded to the surprisal respectively precision of
that word (figure II.2). A similar procedure has been employed recently for assessing
neural responses to the semantic dissimilarity of consecutive words (Broderick et al.,
2018).

Because surprisal and precision are high-level linguistic features of speech, we
sought to ascertain that any putative cortical tracking of them could not be explained
by lower-level features. To this end we added three low-level speech features. First,
cortical activity can track the onset of words, which can partly be based on changes
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Figure II.2: Experimental overview. (A), We employ continuous speech narratives
and utilize speech processing as well as language modelling to extract acoustic and
linguistic features, namely word onset, word frequency, precision and surprisal. (B),
The participant’s neural activity is recorded through EEG while they listen to the
stories. (C), We extract temporal response functions for each of the four speech
features through computing a linear model that estimates the EEG recordings from
the speech features.
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in the acoustics at word boundaries and partly result from the brain’s parsing of the
acoustic signal to form discrete linguistic units (Ding and Simon, 2014; Brodbeck,
Presacco, and Simon, 2018). To account for this onset response, we constructed a
word onset feature as a series of spikes, each of which had unit amplitude and was
located at the onset of a word. This feature also takes the role of capturing the
variance in EEG, elicited by any word, which cannot be explained by the variance
from surprisal and precision values. Second, we computed the word position within
a sentence and used it as another word feature. The latter can be correlated with
precision, as the entropy tends to decrease across words within the sentence. Hence
the word position feature is for us a control to ensure that the neural response to
precision is not solely due to the incremental processing occurring throughout a
sentence. Third, the frequency of a word in a given language, outside its context,
is a linguistic feature that acts as a prior probability for computing the probability
of a word in a sequence (Brodbeck, Presacco, and Simon, 2018). Word frequency
can also interfere with surprisal: less frequent words may indeed often be more
surprising. To capture the share of the neural response that could be explained
away by word frequency, we included the latter as a third linguistic feature. This
feature was computed by scaling the amplitude of the spike at each word onset by
the negative logarithm of the frequency of the corresponding word. The logarithm
was used such that word frequency and surprisal were expressed in the same units.

Finally, to investigate the weighting effect that precision may have on surprisal,
we added an interaction term “Surprisal * Precision”. Indeed, in the framework
of predictive processing for instance, precision comes as a top-down signal that
modulates the degree of integration of predictions against bottom up information.
Inaccurate predictions (associated with a low precision entropy) will let bottom up
speech representations prevail against the prediction itself and vice-versa. This was
computed by multiplying precision values with surprisal such that the interaction
feature effectively stands as a confidence-weighted version of surprisal. In summary,
we computed five speech features: one acoustic feature, word onset, and four linguis-
tic features, word position in its sentence, word frequency, precision, and surprisal.
To those, we add the interaction term between surprisal and precision. Each feature
was a time series of spikes, which each spike being located at the onset of a word.
The amplitude of the spike was constant for the word onset feature, and for each
other feature it was scaled the corresponding value for each respective linguistic fea-
ture. All values of the different linguistic features have been standardized to have
unit variance and zero mean across all words of our speech stimulus.

II.2.4 EEG acquisition and pre-processing

We recorded brain activity using 64 active electrodes (actiCAP, BrainProd-
ucts, Germany) and a multi-channel EEG amplifier (actiCHamp, BrainProducts,
Germany). The presented sound was recorded simultaneously through an acoustic
adapter (Acoustical Stimulator Adapter and StimTrak, BrainProducts, Germany)
and was used for aligning the EEG recordings to the audio signals. Both the EEG
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and the audio data were acquired at a sampling rate of 1 kHz. The ear lobe was
used as a reference for the EEG. The EEG data was processed by first applying
an anti-aliasing filter (Kaiser window, FIR filter, cutoff -6 dB at 125 Hz, transition
bandwidth 50 Hz, order 130) and by downsampling the data to 250 Hz to reduce the
computation time of subsequent operations. A high-pass filter (Hanning window,
sinc type I linear phase FIR filter, cutoff -6 dB at 0.3Hz, transition bandwidth 0.15
Hz, order 5168), was then applied to every channel to remove non-stationary trends
such as slow drifts and offsets. Bad channels were identified using the procedure
’clean_rawdata’ from the EEGLAB plugin ASR (Artefact Subspace Reconstruc-
tion); they were then removed and interpolated with spherical interpolation. All
channels were then average referenced. We subsequently ran an ICA decomposition
and removed artifacts from eye blink, eyes movement as well as muscle motion by
visual inspection of the ICA components. The cleaned data were low-pass filtered
(Hamming window, linear phase FIR filter, cutoff -6 dB at 62 Hz, transition band-
width 10 Hz, order 138) and further down-sampled to 125 Hz. The filtered EEG
data therefore contained the broad frequency range from 0.3 Hz to 62 Hz.

We computed Temporal Response Functionss (TRFs) from EEG data in several
frequency bands. The TRFs followed from a linear forward model that expressed
the EEG signal at each electrode as a linear combination of the speech features
shifted by different latencies, as detailed in section I.5 (Ding and Simon, 2012; Di
Liberto et al., 2015). Every filter used were FIR type I filters, designed with synced
windowed method, and using a hamming window. We filtered the EEG data in
several frequency bands of interest: delta band (low-pass filter, cutoff at 4.5 Hz, filter
order 132), theta band (band-pass filter, cutoff frequencies at 4 Hz and 8 Hz, order
206), alpha band (band-pass filter, cutoff frequencies at 8 and 12 Hz, order 206), beta
band (band-pass filter, cutoff 20 Hz and 30 Hz, order 82) and gamma band (cutoff at
30 and 60 Hz, order 164). For every frequency band other than delta, we computed
the power modulation by taking the absolute value of the Hilbert transform of the
band passed data and further band passed it between 0.5 Hz and 20 Hz (filter order
824) to remove DC offset and higher frequencies that do not occur in our speech
representations.

II.2.5 EEG data analysis

To relate the speech features to the EEG data, we used a linear spatio-temporal
forward model that reconstructed the EEG recordings from the acoustic feature
and the three linguistic features, shifted by different delays (see figure II.2). A
detailed mathematical description of such is given in the introduction, section I.5
on page 27. Such an approach has recently been used successfully for assessing the
cortical tracking of the speech envelope, phonemic information as well as semantic
dis similarity of words in speech (Ding and Simon, 2012; Di Liberto et al., 2015;
Broderick et al., 2018). The coefficients resulting from this regression constitute the
TRFs that inform on the brain’s response to each feature at different latencies. In
particular, the forward model sought to express the pre-processed EEG recordings
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{xi(tn)}Nchan

i=1 of the Nchan = 64 channels at each time instance tn through the

time series {yj(tn − τk)}
Nfeat

j=1 of the Nfeat = 6 speech features ( word onset, word
frequency, word position, word precision, word surprisal, and the product of surprisal
and entropy), shifted by Nlags different delays {τk}

Nlags

k=1 . This actually corresponds
to a discrete convolution between features and TRF kernels, which is linear in the
kernel coefficients. The model is thus:

x̂i(tn) =
Nfeat
∑

j=1

Nlags
∑

k=1

βij(τk)yj(tn − τk) (II.3)

∀n ∈ {1, . . . , T} ; ∀i ∈ {1, . . . , Nchan}

This equation is the application of equation (I.1) on page 27. We hereby con-

sidered equally spaced delays {τk}
Nlags

k=1 that ranged from -400 ms to 1,100 ms. At
the sampling rate of 125 Hz this yielded a number of Nlags = 188 lags. T is the
total number of samples in the sampled recording of the speech aligned EEG. The
obtained estimate for the EEG channel i is denoted by x̂i. The coefficient βij(τk) is
the TRF for the ith EEG channel and speech feature j at the latency τk. The pre-
processed EEG recording {xi(tn)}Nchan

i=1 was either the EEG signal in the delta band
or the power of higher frequency activity. We computed those coefficients for each
participant separately, leading to a set of TRFs on which we could apply our group-
level statistical analysis. The different speech features that we employed were partly
correlated. The largest correlation emerged between surprisal and the interaction
term “surprisal * precision”, at a value of 0.61. We wondered if these correlations
would hinder the EEG analysis, and in particular if they would obscure the neural
responses to the individual speech features through the linear regression analysis, an
issue known as multicollinearity (Kumar, 1975). A high multicollinearity between
features could result in higher variance or leakage between the coefficient βij(τk).
However, the Frisch–Waugh–Lovell theorem from econometrics states that linear re-
gression based on correlated features yields the same results as when the features are
first orthogonalized, that is, decorrelated (Frisch and Waugh, 1933; Lovell, 2011).

In addition, in our implementation of the multiple linear regression we used a
singular value decomposition of the design matrix of time-lagged features, resulting
in transformed features that were mutually uncorrelated. The correlation of the
features was therefore not problematic. The only issue that multicolinearity can
cause is significantly increased variance for each βij(τk) estimate, which typically
emerges when the variance inflation factor (VIF) is above 5. For our speech features
we obtained VIFs between 1.22-2.25, indicating that increased noise due to correlated
features is not an issue.

We fitted the TRF models on N-1 subjects and evaluated each models on the left-
out subject so that the model has never seen those data before. This was repeated for
each subject. The evaluation of a model was done by computing the reconstruction

41



II.2. MATERIALS AND METHODS CHAPTER II

accuracy, as measured by the correlation between predicted EEG signals and the
true EEG in a given frequency band:

ρi = corr(ŷi, yi) i ∈ {1..64} (II.4)

Where yi and ŷi are the EEG time-series of channel i and the time series pre-
dicted by the TRF respectively. This gives a total of 64×13 scores as it is evaluated
on each subject. The evaluation of those scores was systematically done using a
cross-validation procedure. Here, on the subject level, the cross-validation occurs
within subjects. Namely, we used a 5-folds cross-validation where the TRF model is
trained on 4 folds, and evaluated on the fifth. This is then repeated for each fold and
the average score across folds is used as the subject score. One quick approach to
evaluate the quality of a given model was to take the average score across electrodes
for each participants as in figure II.3.

As an additional control that our TRFs did not contain leakage from responses
to different features, we developed a null model that was employed to assess the sta-
tistical significance of the actual TRFs (see below). The null model was constructed
such that a potential leakage between features would appear similarly both in the
actual model and in the null model, and therefore would not result in statistical
significant results. It follows that any statistically-significant part in the TRFs that
we obtained did not result from leakage between the features.

II.2.6 Statistical significance

In order to determine the statistical significance of the estimated TRFs , we
computed chance-level TRFs as a null model. The chance-level TRFs were gener-
ated by constructing unrelated speech features, and by regressing these to the EEG
recordings in the same way as for the computation of the actual TRFs . To establish
chance-level linguistic TRFs , only the linguistic information of interest contained
in the spike amplitude of the speech features but not the acoustic information in
the spike timing needed to be unrelated to the EEG. We therefore created unrelated
speech features by keeping the timing of the spikes identical to those in the true
model. The speech feature that described word onsets was therefore not altered.
However, we changed the amplitude of the spikes for the other linguistic speech
features by taking their values from an unrelated story (that is a story not aligned
with EEG during the experiment). To obtain a large number of null models, we
then considered permutations of all our 15 story parts. Through permutation of the
entire story parts, and not the order of individual words, the statistical relationship
between the linguistic features of successive words was conserved. However, because
we kept the timing of the spikes in the null model as in the actual stories, the ob-
tained null model could only be used to determine the significance of the neural
responses to the linguistic features, but not for those to the acoustic word onset.
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The subject-level TRFs were then analysed for statistical significance at the
group level by comparing them to the 1,000 null models. The comparison was
obtained from a permutation test together with cluster-based correction for multiple
comparison (Oostenveld et al., 2011), where only clusters of at least four electrodes
were kept. Specifically, we used the function spatio_temporal_cluster_test from
MNE python library (Gramfort et al., 2013).

The procedure consists in determining whether the global null hypothesis can
be rejected, i.e. that there is at least one cluster (here across space, or channels,
and time lags) which makes data non-exchangeable between experimental conditions
(our two conditions being the true TRF and the null ones). The calculation of cluster
statistics is derived first from a t-test applied to every sample (a (channel, time)-
pairs). The computed t-value is not the cluster-based test statistic. Then, samples
whose t-values are larger than 0.01 are selected as a possible candidate member of
a cluster. If the candidate samples are connected, based on temporal and spatial
adjacency, they will be assigned to a cluster. From here, one can compute the cluster-
based statistics by taking the sum of the t-values of each samples within the clusters.
Finally, a reference distribution is created by permuting samples between the two
conditions (the true TRF and the null models) and re-calculating cluster statistics on
this random partition. This permutation is done 1000 times thus providing us with a
distribution of cluster statistics values forming the reference distribution. We reject
or accept the null hypothesis by computing the proportion of permutation statistics
(from the reference distribution) that are greater than each cluster-based statistic.
This corresponds to the p-value of each cluster. If the p-value is smaller than the
critical level we can conclude that the two experimental conditions are significantly
different, which in our case results in having significant samples at the group-level
for our TRF that differ from the null models. We considered only clusters with a
p value greater than 0.05/10 (hence correcting for the multiple tests done, as we
carried this analysis for 4 frequency bands of interest with only a subset of linguistic
features for each band, yielding a total of ten such analysis). This permutation test
effectively controls for multiple comparison across channels and time.

II.3 Results

II.3.1 Behavioural assessment

We first assessed to which degree the participants understood the stories through
asking them comprehension questions. These questions were answered with an av-
erage of 96% accuracy, evidencing that the volunteers consistently understood the
speech and paid attention.
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II.3.2 Cortical tracking of acoustic and linguistic speech features

The cortical tracking of the speech features can be found in different frequency
bands. First, because all four features relate to words, the frequency range of the
features is similar to the rate of words in speech. The latter is about 1 – 4 Hz
and corresponds to the delta frequency range. Cortical activity at low frequencies,
including the delta frequency band, can therefore be evoked by or entrain to the
rhythm set by the acoustic and linguistic word features. Second, the amplitude
of the neural activity in higher frequency bands can be modulated by the speech
features. In order to obtain results comparable to previous work in this domain we
opt to focus on activity in the classic EEG frequency bands. This is a relatively
arbitrary decomposition but it reflects main band of activity as observed in raw
EEG data and provides us with comparable results. This allows to directly map our
contributions to similar work such as Bastiaansen et al., (2008) where power increase
in beta and gamma bands have been studied or as in Etard et al., (2019), which
showed how activity in theta and delta bands differentially decode comprehension
and attention. Our stimulus residing mainly in the delta band, we ought to take
the power of higher frequency band in order to observe any response to the stimuli
at those higher frequencies in the EEG using a linear model. The classic frequency
bands for EEG are the theta band (4 - 8 Hz), the alpha band (8 – 12 Hz), the mid-
high beta frequency band (20 – 30 Hz, and gamma band (30 – 100 Hz), the power
of which can be modulated by prediction in sentence comprehension (Bastiaansen
and Hagoort, 2006; Bastiaansen, Magyari, and Hagoort, 2010; Weiss and Mueller,
2012; Wang, Hagoort, and Jensen, 2017).

Figure II.3 presents the reconstruction accuracy, measured as the correlation
between predicted and true EEG and averaged across all channels. Averaging over
the whole head is misleading, as some electrodes might not benefit form certain word
features in the reconstruction, but this is a crude way to measure the predictive power
of each feature to encode EEG data. We trained a different model for each set of
individual features (so not for interaction) in the delta band, that is the band where
phase locked activity to word onset is plausible. We observed significant increase
(t = 5.4, degree of freedom = 12, p-value < 1e-4) for word frequency and surprisal
only with respect ro reconstruction accuracy achieved with a model containing only
word onsets. For reference, we also show the topography of reconstruction accuracy
of a model with word onset only in panel B of figure II.3 while panel C present
the difference in reconstruction accuracy between the full model and the word onset
only model. We observe an improvement in parietal electrodes and also in the left
anterior temporal ones.

We started by quantifying the neural tracking of the word features at low fre-
quencies. In figure II.4, we observe in (A), the responses to the word onset appear as
insignificant due to the construction of the null model. In panels (B,C), we obtain
significant neural responses to word frequency as well as surprisal for delays around
400 ms (D), Significant neural responses to precision arise around delays of 100 ms
as well as at 500 ms. In figure II.4 panel (E), the interaction between surprisal and
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precision leads to a neural response at a delay of 400 ms as well as at a long delay
of 1,000 ms. The topographic plots of the responses show large differences between
the temporal scalp areas on the one hand and the parietal and occipital areas on the
other hand.

Importantly, we found significant responses to the word surprisal around a delay
of 450 ms (figure II.4). These responses emerged predominantly in the temporal and
occipital scalp areas and was lateralised on the left hemisphere. Precision was tracked
by cortical activity at delays of around 100 ms and around 500 ms. Moreover, we
observed a significant neural response to the interaction of surprisal and precision,
at an earlier latency of around 400 ms and at a longer latency of around 1,000 ms.
We also computed the modulation of the power in the theta band, the alpha band,
the lower and higher beta band as well as in the gamma band by the acoustic and
linguistic features (figures II.6 and II.7). While the power in the alpha band and
in the lower beta band was not significantly related to the linguistic features, the
power in the theta band was shaped by word frequency at delays of around 300 ms
and around 1,000 ms (figure II.5). Furthermore, the power in the theta band was
significantly decreased by precision at delays of about 700 ms.

The power in the higher beta band correlated positively with surprisal at delays
of around 700 ms and 1,000 ms (figure II.6). At the latter delay, the influence of sur-
prisal was strongest at the left temporal channels. Moreover, the power in the higher
beta band was modulated by precision at a delay of about 700ms, with the main
contributions coming from the occipital channels The power in the gamma band
was shaped by surprisal around the early delays of about 0 ms, with pronounced
modulation of the gamma power at the electrodes from the left temporal area (fig-
ure II.7). The gamma power was also increased by word with higher surprisal at the
long latency of around 1,000 ms, again mainly for the left temporal channels. The
interaction of surprisal and precision shaped the gamma power as well, at the early
delay of about 0 ms.

Even though we carefully designed the analysis in a conservative way, evalu-
ating each score on held-out data and using multiple comparison corrections with
permutation based cluster statistics to establish significance at the population level.
We were intrigued how much single participants were biasing the grand average.
Therefore we computed several averages, each time leaving a single participant out,
in order to verify any participant was driving the effects observed. The figure II.8
show those results.

Figure II.8 represents one channel (randomly picked, for illustrative purposes).
For this channel and a given TRF model (e.g. Word Frequency feature), we compute
the grand average of this signal but discarding one participant each time, and then
repeat this for all participants. Thus we have 12 different grand averages, always with
a different subject being left out. In red we can observe the actual grand average.
The same data are then also presented in the right panel, but we subtracted the
mean (red) and show now for, each participant, the spread of samples (taking each
lags as independent sample) around that mean. We see already on the figure how
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ticular, word predictions that are made with high precision but then lead to large
surprisal cause an increased gamma power at zero lag. However, as opposed to a
previous study on event-related potentials, we did not observe a significant effect in
the theta or alpha bands (Rommers et al., 2017). This difference may be due to our
use of naturalistic stimuli, and the inclusion of all words in the analysis, while the
previous study used specialized sentences with final words that had either high or
low surprisal, and either high or low precision.

II.4.1 Evidence for predictive coding account of language process-

ing

The cortical tracking of surprisal may indicate predictive processing by the
brain. Predictive processing is a framework for perception in which it is assumed
that the brain infers hypotheses about a sensory input, that the hypotheses are con-
stantly updated as new sensory information becomes available (Friston and Kiebel,
2009; Friston, 2010; Kanai et al., 2015). In particular, the surprisal of a word reflects
a prediction error, a key quantity in the framework of predictive coding (Friston,
2010; Sedley et al., 2016). However, the expectancy of a word based on previous
words also correlates with the plausibility of a word in a particular context (De-
Long, Urbach, and Kutas, 2005; DeLong, Quante, and Kutas, 2014; Nieuwland et
al., 2020). Further studies are therefore required to disentangle neural correlates of
actual word prediction from those that do not require predictive processing, such as
word plausibility. The surprisal of a word can reflect both its semantic as well as syn-
tactic information, and previous investigations into the neurobiological mechanisms
of language comprehension have manipulated both independently (Henderson et al.,
2016; Humphries et al., 2006). In contrast, our approach has taken a naturalistic
and holistic approach to surprisal; we employed natural speech without manipula-
tions combined with statistical learning of a rich variety of natural language cues
through a recurrent neural network. Because the neural network infers both syntac-
tic rules as well as semantic information from the training of the speech material,
the reported neural response to word surprisal can reflect both semantic as well as
syntactic information (Elman, 1990; Collobert et al., 2011).

We observed a significant response to precision entropy around 0 ms (onset time
of a word), with peaks before and after the word onset for the theta band (see fig-
ure II.5) or right at 0 ms for the gamma band (figure II.7). This might appear as an
anti-causal response. However we shall carefully examine what quantity is proposed
for the precision entropy. Indeed, as shown in equation (II.2), precision at some
position in a sentence only depends on previous words and not on the current word
(as opposed to surprisal or word frequency). No information on the word currently
heard is needed. In other words, the precision entropy can be computed fully be-
fore the word onset and such early latency does not reflect an anti-causal response.
Interestingly, the effect is seen exactly around 0 ms. This highlights the possible
prediction of the latency at which words are perceived. As the cortical response to
precision is already acting on neural populations to acquire the newly incoming word
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by weighting neural activity with its prior knowledge. This furthermore emphasizes
the role of precision entropy as a Bayesian prior in the context of word prediction.

II.4.2 Link with other language related ERPs

It is instructive to compare the reported neural responses to surprisal to the well-
characterized event-related responses that can be elicited by violations of semantics,
syntax or morphology in sentences. In particular, semantic violations can cause
the N400 response, a negativity at 200 – 500 ms at the central and parietal scalp
areas (Kutas and Hillyard, 1980; Kutas and Federmeier, 2011). Syntactic anomalies
due to ungrammaticality or temporary misanalysis elicit the P600, a broad positive
potential that is located at the posterior scalp area and arises around 600 ms after
the anomaly (Friederici and Kotz, 2003; Hagoort, 2003). More specific syntactic
anomalies can lead to negative potentials that occur anteriorly and that can be left
lateralised, either occurring at 300 – 500 ms (LAN) or earlier, at 125 – 150 ms
(ELAN) (Rösler et al., 1998; Van Den Brink, Brown, and Hagoort, 2001; Friederici,
2002; Steinhauer and Drury, 2012).

These Event Related Potentialss (ERPs) do presumably not reflect the activa-
tion of single static neural sources, but rather waves of neural activity that propagate
in time across different brain areas (Maess et al., 2006; Tse et al., 2007; Kutas and
Federmeier, 2011). In the case of the N400, for instance, this wave of activity starts
at about 250 ms in the left superior temporal gyrus, and then propagates to the
left temporal lobe by 365 ms as well as to both frontal lobes by 500 ms (Helenius,
1998; Halgren et al., 2002; Van Petten and Luka, 2006). A recent theory suggests
that this wave of activity reflects reverberating activity within the inferior, middle
and superior temporal gyri that corresponds to the activation of lexical information,
the formation of context and the unification of an upcoming word with the context
(Baggio and Hagoort, 2011). The spatio-temporal characteristics of the responses to
surprisal that we have measured here share certain similarities with these ERPs . In
particular, we have found neural responses to surprisal at latencies between 300 ms
and 600 ms. These responses show a central-parietal negativity that is reminiscent
of the N400. However, other features of the neural responses that we describe here
appear distinct from these ERPs . The neural response to surprisal in the delta band
at the latency of 600 ms does, for instance, not display the posterior positivity of the
P600. Moreover, we have identified late responses around 700 ms and 1,000 ms. We
have also shown that neural responses to surprisal arise in various frequency bands,
beyond the delta band that matters for the ERPs . However, a further comparison
of the neural response to surprisal to the related ERPs is hindered by the lack of
spatial resolution offered by EEG recordings. Future neuroimaging studies using in-
tracranial recordings or magento-encephalogram (MEG) may localize the sources of
the neural response to surprisal that we have measured here and quantify potential
shared sources with these ERPs .

The difference of the cortical tracking of surprisal to the well-known neural

52



CHAPTER II II.4. DISCUSSION

correlates of semantic, syntactic or morphological anomalies, and in particular the
late responses at a delay of around one second, may come as a result of our use of
natural speech that differs from the artificially constructed and tightly controlled
stimuli used to measure ERPs . First, in our experiment the subjects encountered
no violations of semantics, syntax and morphology, but instead heard naturalistic
speech, within which the words occurred in context. Second, our stimuli did not
contain artificial manipulations of word surprisal or entropy. Instead of altering the
stimuli, we focused on quantifying surprisal and precision, or confidence, as it varied
naturally in the presented stories. Third, we assessed the responses to surprisal and
precision at each word in the story, and hence for words in every sentence position,
rather than for words at a particular position within each sentence. Adding the
word position within sentences, we can thus avoid the possibility of sentence position
having an effect on the results (Bastiaansen, Magyari, and Hagoort, 2010). Fourth,
we did not employ isolated sentences but continuous stories so that information of
integration occurred over time scales exceeding a few seconds.

II.4.3 Possible source localisation

While our EEG recordings showed the cortical tracking of surprisal in differ-
ent frequency bands, they did not allow us to precisely localize the sources of the
activity in the cortex. Pairing EEG with functional magnetic resonance imaging
(fMRI) or employing magnetoencephalographic (MEG) may allow to add spatial
information to the temporal tracking that we have assessed here. A recent fMRI
study, for instance, found that the left inferior temporal sulcus, the bilateral poste-
rior superior temporal gyri, and the right amygdala responded to surprisal during
natural language comprehension, while the left ventral premotor cortex and the left
inferior parietal lobule responded to entropy (Willems et al., 2016). Another recent
magnetoencephalographic (MEG) measurement of the brain’s natural speech pro-
cessing found that entropy and surprisal play a role in the assembly of phonemes
into words, and involves brain areas such as core auditory cortex and the superior
temporal sulcus (Brodbeck, Presacco, and Simon, 2018). Combining the temporal
precision of EEG with the spatial precision of fMRI, or harnessing the ability of
MEG to locate neural sources temporally and spatially, will allow to further clarify
the spatio-temporal mechanisms of natural language comprehension in the brain.

Conclusion

In summary, we showed that neural responses to word surprisal can be measured
from EEG responses to naturalistic stories. Our results demonstrate that both the
slow delta band as well as the power in higher frequency bands, in particular the
theta and higher beta band, are shaped by surprisal. Moreover, we also showed
that the neural response to surprisal is modulated by the precision of a prediction.
In particular, predictions made with high precision which lead to high surprisal
modulate gamma power in the left temporal and frontal scalp areas. In addition,
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we also demonstrated that neural activity in the delta, theta and beta frequency
bands is shaped by the precision of word prediction directly. These responses arise
at different latencies and at different scalp areas, suggesting a rich spatio-temporal
dynamics of neural activity related to word prediction.
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Cortical responses to

hierarchical syntactic features

S
peech signal is complex in nature. Its information content span many different
time scales, from a few tens of milliseconds in which phonemic information is

contained within spectro-temporal energy fluctuations, to several seconds in the
form of syntactic structures that need to be encoded appropriately to extract the
corresponding meaning of the speech utterance. However the complexity of speech
signal is not only in that it unfolds across time scales of different order of magnitude
but also in that it is constructed in a hierarchical way, where syntactic structures
can be represented as tree structure of grammatical functions and items.

III.1 Introduction

Whether the brain continuously performs prediction during language processing,
it must embed the information in a compact and efficient representation to encode
meaning of sentences. Indeed, human language is by nature organised in recursive
and hierarchical fashion. Its content is not a pure linear sequence of items (words)
but rather a complex organisation of those. Structure of words, hence syntax, can
endow further meaning to the utterance beyond individual lexical information at
the word level. In other words, grammar is an important aspect of language, and it
allows to combine group of words and phrases such that one can alter the meaning
of its subcomponents.

One important aspect of language modelling via RNN is that they do not
rely on any particular linguistic assumptions. For instance, there is no informa-
tion about syntactic categories or hierarchical structures, as they are simply trained
on sequences of words with little lexical information contained in the embedding
layer. The latter is itself derived from co-occurrence statistics in large corpus of text
data. Conversely, Phrase Structure Grammars (PSGs) are built from prior linguistic
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knowledge, and are the foundations on which are constructed hierarchical syntactic
structures.

Syntactic structures are categorical attributes given to a word or a group of
words (phrase). They take place within a theoretical framework in which a finite
set of rules suffices to generate an infinite amount of sentences (Chomsky, 2015;
Chomsky, 2007; Hauser, Chomsky, and Fitch, 2002). This set of rules is called
a grammar. Human language is uniquely shaped such that meaningful units can
be arranged in a recursive and hierarchical way to form complex sentences. This
distinguishes human language from any known form of animal communication such
as bird songs as described by Hauser, Chomsky, and Fitch, (2002) and Friederici,
(2011).

There are several ways to apply a grammatical rules in order to parse struc-
ture from an utterance. We can, for instance, describe a sentence by its syntactic
constituent, which are nothing less than phrase structures, sub-parts of the sentence
itself. Those groupings are pre-defined from grammatical rules such that a noun
phrase, NP (another often seen constituent is the verbal phrase, VP), can be formed
by a determinant (DET) and a noun (N), or a determinant, and adjective (JJ) and
noun, or proper noun, and so on. From such a description, a tree representing the
hierarchical organisation of such constituents is constructed. This is referred to as
a constituency-based tree. Another approach is to relates words in the sentence
based on their dependency relationships with each other. Each word is the child of a
parent node, or word, with the verb as the root for the whole sentence. Such graph
is called a dependency-based tree. We can see an example in figure III.1.

The parsing of a sentence can be ambiguous when several categories can be
attributed to a word. Generally, the most frequent one will be chosen first lead-
ing to a garden-path effect (Osterhout, Holcomb, and Swinney, 1994) if the actual
syntactic category was different (see also figure III.1). Researches have looked at
brain responses, using electroencephalography, to those ambiguity resolution and
word category violation. Studies showed that a systematic response, often linked to
syntactic repair, emerges after 600ms in posterior parts of the scalp, the P600 ERP
component (Osterhout, McLaughlin, and Bersick, 1997; Molinaro, Barber, and Car-
reiras, 2011a). Many ERP studies focused on the processing of grammar by looking
at syntactic violations, and one hypothesis for the origin and mechanism in play be-
hind the P600 component is related to the integration of a word into larger phrasal
content. Integrating a word into a phrase structure that stand higher in the syn-
tactic hierarchy boils down to merging its representation with the incremental build
up of the phrase structure encoding. One key computation for such processingis the
so-called merge operation (Berwick et al., 2013). It consists in merging two or more
meaningful units, words or phrases. For instance, X and Y (e.g. X ="predicts" and
Y ="the sequence"), into one new unified unit, Z ∼ X + Y ("predicts the sequence"),
which carries a synthesised meaning. The compound Z might represent more than
the sum of its parts. In that sense, merging is an essential computational process
for syntactic processing and language comprehension.
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(a) Constituency-based tree

The complex houses married and single students
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(b) Dependency-based tree

Figure III.1: Example of Phrase Structure Grammars, here on a grammatically
ambiguous sentence (this is effect is referred to as garden-path in linguistics). The
word complex is more frequently used as an adjective (adjectives are commonly
tagged as JJ in such representations), and the word houses as a plural noun (NNS)
whereas in this example complex is a noun (NN) and houses a verb (VB) at the third
person singular (VBZ). Determinant are tagged as DT, coordinators as CC, noun
phrases as NP, verbal phrases as VP and a whole sentence as S. (b) represents a
parse linking word by their relationship with each other: "The" is the determinant of
"complex" which is itself the subject (noted as nsubj) of the verb "houses". "Students"
is the direct object of the verb (dobj and is modified (amod)) by the adjectives
"married" and "single". The initial parse naturally made by the brain is led as in
a garden-path to take those first words according to their more common categories
until the ambiguity arises.
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More recently, Ding et al., (2016) and Ding et al., (2017) have shown results
that they argue were direct evidence for cortical tracking of hierarchical syntactic
structures. However, the structures employed in their stimulus were always similar
from one sentence to another. This was a design choice so they could measure
the frequency of supra-word level (phrasal, and sentence-level) tracking directly via
electrophysiology recording although it also plays as a major issue in the paradigm.
Indeed Frank and Yang, (2018), demonstrated in response to Ding et al.’s study
that they could elicit the same pattern of response with a simulated model that was
taking only lexical information into account (and hence could not rely on hierarchical
syntactic structures at all). By using natural speech, we can explore a broad range of
syntactic tree structures, such that the response observed in cortical activity, if any,
will not be only a by-product of rhythmic presentation of specific word categories.
However, in another study, Frank and Christiansen shows that a form of syntactic
surprisal, computed as the amount of information gain obtained at each word given
a certain tree structure, correlates with reading time and moreover is predictive of
behavioural outputs above and beyond a model relying on non-hierarchical (hence
sequential) linguistic information (Frank and Christiansen, 2018).

We propose to measure the cortical tracking to syntactic complexity during
natural story comprehension. To describe syntax, we used features deriving from
constituency-based trees themselves obtained from a context-free grammar. At-
tributes of those tree structures will give us insight on the interplay of different
mechanisms occurring in the brain during processing of syntax. As a proxy for the
merge operation for instance, we chose to look at the brain response to the number
of branches in the hierarchy being closed by each word in a sentence. The aim is
to extract brain responses to syntactic hierarchy, and to address the more general
question of whether and how the cortex builds nested phrase structure representa-
tions.

A similar method of analysis that the one used in the first chapter to measure
correlates of mechanisms involved in predictive processes during speech comprehen-
sion has been applied here. This methods allows to track brain responses using
continuous recording and hence to take the advantages of using a more naturalistic
and ecologically valid stimulus as explained in I.3.2. It also gives a method to track
continuous response to hierarchical tree structures as they unfold on natural speech
stimuli, without the need of artificially built syntactic mismatch or violations. This
is restrictive to one type of tree parsing, but the goal here is not to underpin the exact
mechanism used by the brain but rather to get a proxy of such computations, and a
reliable measure of syntactic processing such as merging operation and tracking of
phrasal structures at the individual subject level.
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III.2 Methods

III.2.1 Material

We used the same material as in chapter II, also accessible in Weissbart, Kandy-
laki, and Reichenbach, (2019a), where English native speakers were asked to atten-
tively listen to audiobook stories while their EEG was recorded (N = 13).

III.2.2 Syntax representations

The method used to analyse the response to syntax was also adopted from chap-
ter II, yet here the speech representations were different. Instead of surprisal and
precision-entropy derived from sequences of word we used linguistic informed fea-
tures obtained from rule-based phrase structures. To extract the constituency trees
for each sentence of our stimuli material we used a probabilistic context-free gram-
mar (PCFG) parser form Stanford natural language processing software 1 (Klein
and Manning, 2003). The parser outputs constituency-based trees on which were
extracted features that describe the hierarchical structure present in the stimulus.
It was important for us to be able to obtain a value representing the syntactic hi-
erarchy for each word in the sentence, so that we could compare those results with
our previous study.

A first level of representation of the hierarchy resides in the depth at which
each word is situated within the tree structure. A second feature was then built to
extract possible neural correlate to the merge operation. Having in mind that such
an operation occurs after the last word of a constituent phrase is encountered. We
modelled this with a feature that is zero for every words except those that act as
closing nodes in the syntactic hierarchy. Moreover, the non-zero value was chosen to
scale up with the amount of words merged into a constituent so as to represent the
increased relaxation offered by freeing up working memory and also increased effort
in unifying larger structures. This feature was labelled closing branch as it is given
by the number of "branches" the current word is closing in the phrase structure tree
hierarchy. Similarly, we represented the number of branches being opened by each
word to account for possible prediction in cognitive loading to forthcoming words.
The diagram in figure III.2 shows the afore described syntactic features for a given
sentence.

Our control features, namely word onsets and word order within a sentence, were
kept the same to account for any acoustic and linguistic responses not captured by
our present syntactic features and avoid possible confound with sentence length,
such controls were also used in Brennan and Hale, (2019).

As in chapter II, reconstruction accuracy is evaluated by measuring the cor-

1open source software available at https://nlp.stanford.edu/software/lex-parser.html
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Figure III.2: Example of syntactic features used. In orange, the syntactic depth,
and in purple the number of closing branches. Abbreviations stand for: sentence
(S), noun phrase (NP), verbal phrase (VP), prepositional phrase (PP), determinant
(DT), noun (NN), verb at third person (VBZ), preposition (IN), adjective (JJ), and
plural noun (NNS).

relation between predicted EEG signals and true EEG (see equation (II.4)). The
evaluation was carried out on held out data, using a 5-fold cross validation procedure
and repeating the procedure for every subject.

III.3 Results

A significant response can be observed for all syntactic features used. That is,
an increased EEG potential in specific scalp regions correlated with the depth in
the syntactic hierarchy along with responses to either words that open new phrasal
structures or words that are closing them. Importantly, the latter responses scale
with the number of subtrees being opened or closed.

From the TRF model, we can also predict EEG activity from stimulus rep-
resentation. We looked at the cross-validated score (correlation between true and
predicted EEG) differences between a model with word onsets alone and a model
with both word onsets and syntactic depth. The resulting topography shows where,
in sensor space, the reconstruction benefits from adding the depth feature into the
model. This analysis is also a way to verify that we are not observing spurious
amplitudes in the TRF coefficients arising from multicolinearity. If the model were
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Figure III.3: A: Relative increment in reconstruction accuracy obtained with respect
to a model with only word onset (WO) feature. B: Topography of reconstruction
accuracy ρ at each electrode, average across all participants, for a model with only
word onset feature. C: Difference in accuracy with the full model.

overfitting we would not observe any improvement from adding new features. Fig-
ure III.3 shows the overall (average across all channels) gain in reconstruction accu-
racy for each features independently. For those we added to word onsets only one
other feature and computed the corresponding TRFs in the delta band. The great-
est benefit occurred for the model containing all features. The feature that had the
strongest increase was the number of closing nodes. Syntactic depth did not provide
a benefit strong enough to be significant across all electrodes, although across partic-
ipants a small group of electrodes had a significantly higher reconstruction accuracy
than with a model with word onset only (see figure III.4) where we observed a left
lateralised response at occipital, and left posterior temporal electrodes as well as at
centro-parietal sensors.

We found a significant difference with our null models in the delta band. Full
TRF are shown in figure III.5. Syntactic depth and closing nodes gave the greater
responses in amplitude. The peak latencies are relatively early compared to usual
syntactic violation studies. We report a first peak of significant response between
100ms and 200ms for those two features. The TRF for closing nodes is slightly left
lateralised with a stronger posterior negativity at parieto-occipital electrodes. The
syntactic depth shows a positivity at occipital locations and then a later centro-
parietal positive peak of amplitude between 600ms and 700ms. As in chapter II,
there is a sustained high amplitude response at later latencies beyond 800ms, but
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about grammar structure, to our model and extract brain responses in line with
this information. A second objective in the study was to identify if the putative
operation merge would elicit a strong enough response to be measured at the scalp
level of individuals. "Merge" occurs when a list of words get reduced into a single
hierarchically higher node, i.e. one phrase. A neural correlate of such operation
might then be captured shortly after the last word of each syntactic constituent
is processed by the brain. At that point, the brain can release the words held in
memory as they enter a merged representation. Generally speaking, we were able to
measure reliably cortical activity correlated with the number of syntactic branches
a word closes.

III.4.1 A brain correlate to syntax complexity

The observed response for depth happens relatively early compared to syntactic
violations studies (Left Anterior Negativity - LAN, 300-450 msec and P600 after
500 msec Molinaro, Barber, and Carreiras, (2011b)). This could be explained by
the fact that we are using a continuous and more ecological stimuli. Therefore the
response observed is the canonical brain activity in relation rather than in response
to violation of grammar. The latter obviously incorporate a confound with a repair
operations that is triggered when a violation occurs. However, earlier components
have been linked to complexity of sentences and ambiguity resolution. Those aspects
of syntax processing are not violation per se and can occur in natural speech. I
argue that the depth TRF is tightly linked to processing of complex sentences. The
deeper a word in the syntactic structures, due for instance to nested constituents and
generally this happens for complex sentences, the stronger the cortical response to
that word will be (positive or negative) at those significant electrode locations (see
second row, right panel of figure III.5). However, the underlying mechanism is not
necessarily solely related to syntax but could also be explained by the maintenance
of syntactic structure in memory.

III.4.2 Closing nodes and Merge operation

The interaction between depth and closure however, should inform us on brain
processes closely related to the merge operation. When enough embedding occurs
such that the brain must maintained a deeply intricate structure in memory, the
closure should be even more of a relief for the system to relax by chunking the whole
structure in a condensed representation and move on to the new incoming input.

Interestingly, these data do not reflect a typical syntactic response as observed in
ERP analysis for grammatical processing. The main difference between the present
study and those ERP studies arise from our experimental design where we opted
on using naturalistic stimulus. This obviously as to be taken in consideration when
compared to data from syntactic violation studies which will involve processes that
are not necessarily occurring during normal comprehension. The P600 component
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usually measured by violation studies has been linked by Molinaro, Barber, and
Carreiras, (2011a) and Friederici, (2011), to merge. However, our closing nodes TRF
is rather weak compared to reported P600 effect and happens at earlier latencies,
with a negativity in left, centro-parietal areas rather than left anterior positivity.
Actually the region left-anterior area shows an early positive peak, being the exact
opposite in sign to the ELAN ERP component. However, the ELAN is usually not
linked to the integration of new input into larger syntactic structure. Observing
such an early latency for closing nodes could be indicative of predictive processes
underlying the syntactic integration.

In a very good review about oscillatory processes in language processing, Bas-
tiaansen and Hagoort, 2006 postulate that syntactic unification is reflected by high-
frequency band synchronisation such as in the beta and gamma band. We did
observe a decrease for the number of closing branches, but failed to see a linear in-
crease following the locally monotonically increasing values of syntactic depth as we
advance within a syntactic sub-tree. The syntactic depth did present a small resyn-
chronisation in the theta band around 600ms after word onset though but it did not
came out significant from the cluster-based statistic (see figure III.6 on page 64).
Bastiaansen and Hagoort also pinned theta oscillations to memory retrieval. They
observed a linear increase in theta power for each word added to the sentence. Al-
though this is not captured by our syntactic depth feature, indicating that this role
might not be dependant on syntactic complexity. But we recall the significant theta
power modulation by word frequency in chapter II that could relate to memory
retrieval.

In term of localisation, we do not have the data to correctly compute sources
from those EEG responses. Notwithstanding the topographies we obtained for syn-
tactic depth and the number of closing branches in the delta band could potentially
fit the network of structures involved in syntactic structure building observed by
Brennan et al., 2012. They also used naturalistic story to measure responses to
languages coupled with fMRI imaging to localise the neural sources. They could
associate word by word syntactic structure building with the posterior superior tem-
poral gyrus bilaterally, which we argue to correspond with the response to closing
branches, and the left anterior temporal lobe as a locus of neural correlate to syntac-
tic complexity. The latter could be associated to our syntactic depth feature, which
also present a left anterior scalp distribution of reconstruction accuracy (figure III.4).

III.4.3 Relation to ELAN and P600 ERP components

In the perspective of well studied ERP components related to syntactic process-
ing, the present study shows several similarities. We observe an early component
in both depth and closure TRFs. The latencies of that first part matches with
the "early left anterior negativity" (ELAN) ERP component at around 200ms (fig-
ure III.5). This response is observed for morphosyntactic violation or for unexpected
word-categories. Our topographies show a somehow less anterior activation. But the
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TRF for closing nodes in the hierarchy is also left-lateralised although with the sign
flipped when compared to the ELAN. One hypothesis to explain those differences
with ERP components of syntactic processing is that the latter are stemming from
violation of syntax whereas our TRF is measured using natural, grammatical speech,
thus with no syntactic violations. As violations entrain a strong mismatch between
top-down information and bottom up inputs. The same process is likely less impor-
tant during comprehension of grammatically correct sentences.

The early latency is for processing closure could be the reflection of predictive
mechanism where the neural population anticipate syntactic category that predict
a larger merge operation. That is, as the sentence unfolds and longer and intricate
phrase structure are met, the constraint put on the system to fuse word representa-
tion into grouped representation is increased too. That can be explained with our
closure feature as it scales with the number of nodes, and hence words, closed by the
given words. Our TRFs for both syntactic depth and closure are also more parietal
or temporal, but given the difficulty of localizing neural sources with EEG we can
not give a conclusive result on the exact source of our component.

Brennan and Hale, (2019) showed that they could extract ERP-like responses
to context-free grammar (CFG) surprisal that differs from the N400 and share some
similarity with the left anterior negativity (LAN). These results are more focused
on the predictive aspect of word processing, given syntactic information, while we
want to distinguish processes that are linked to syntactic representations. Their
study gives a neat evidence towards a combined mechanism between word level
prediction and hierarchical syntax computation although it does not directly address
the possible mechanism happening at those particular "event" of the phrase structure
hierarchy such as deeper structures and closing/opening of subtrees.

Molinaro, Barber, and Carreiras, (2011a) distinguishes a late and an early sub-
components to the P600. We prefer to interpret this as wave of information flow
(Maess et al., 2006; Tse et al., 2007; Kutas and Federmeier, 2011) propagating from
anterior towards posterior areas, potentially through the dorsal pathway as described
in Friederici, (2011). This could be a modulation mechanism implemented in areas
dedicated to sequences processing towards regions encoding lexical representations.
More specifically, top-down information from Broca’s area is projecting towards pos-
terior superior temporal gyrus. The latencies and topographies of those early and
late phases of P600 components match our result for syntactic depth and closure. We
have an earlier peak in the depth TRF starting at 600ms with a central activation
followed by late peaks beyond 750ms, for the closure only, in more parieto-occipital
areas of the scalp. This striking similarity with the P600 suggest that we can de-
compose those early and late components into two distinct mechanism, one of which
depending only on the depth, the other on the ability to relieve the load on pro-
cessing input by integrating lexical information to larger syntactic structure. The
former would be captured by our syntactic depth TRF, so the difficulty to maintain
more nested structures in memory, and the latter by response to closing branches.

In contrast to semantic violations attributed to modulate the N400 compo-
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nent, syntactic anomalies have been linked with a left-anterior negativity (LAN, at
about 400ms post-stimulus) as well as a centro-parietal positive component emerg-
ing around 600ms after word onset, called the P600 (Friederici and Männel, 2014;
Kielar et al., 2015). However, both P600 and N400 have a similar centro-parietal
topography although with a opposed polarity which suggests that overlapping pop-
ulations of neurons are processing semantic and syntactic anomalies. Similarly, we
note an analogous resemblance between the topography at peak latency for surprisal
(figure II.4 on page 47) and the late scalp distribution of amplitude for the closing
branch feature (figure III.5) suggesting here a relation with neuronal population in-
volved in the N400/P600 wave. One main difference is that we capture the response
from naturalistic stimuli with no violations of semantic or syntax.

III.5 Conclusion

Even though the brain is continuously predicting linguistic input. It has to
build a compact representation of the complex hierarchical structures involved in
language. The meaning of an entire word sequence is thus inferred from semantic
and syntactic properties, be they predicted or not, and the network involved for such
process engages temporal, parietal and frontal areas over a wide range of latencies
(Fedorenko, Nieto-Castañón, and Kanwisher, 2012; Heer et al., 2017). EEG lacks of
spatial resolution, and without electrode position digitisation and structural MRI,
source localisation is not very precise. We have reported significant EEG responses to
syntactic features as extracted from constituency-based trees as they occurred during
natural speech listening. Those response function show spatio-temporal dynamics
similar to ERP components related to syntactic processing. We do not claim that
this responses are entirely reflecting hierarchical phrase structure tracking, but they
certainly depend on several descriptive attribute of the syntactic hierarchy. More
accurate imaging, possibly invasive recording at specific sites of the macro scale brain
network engaged in such processing would be required to underpin the underlying
encoding mechanism and exact neural dynamics that generate those hierarchical
representations. Though we could verify that such linguistic features elicit a strong
enough brain response that can be observed at the population level at least with
the amount of data we had (40 min). Different analysis and experiment would be
necessary to examine the robustness of this effect at the individual level. This could
pave the way to new diagnostic tools to better assess what stage of the hierarchy of
speech comprehension is affected in patients with language impairments.
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Chapter IV

Characterizing the relationship

between linguistic features and

EEG

W
e saw significant EEG responses to linguistic features as extracted from speech.
Cortical response to surprisal, precision and syntactic features could be re-

liably computed from the EEG recorded during presentation of continuous speech
stimuli. Yet we have not analysed the strength of the relationship between those
features and the EEG signal. If they are well represented in the EEG time series,
one should be able to extract information about the language content of the stim-
ulus. This approach is known as decoding, as we attempt to decode information
represented in the cortex about the stimulus and environment from its recorded
activity.

Listening to speech does not necessarily imply understanding it. When listening
to foreign languages, it is natural to recognize that we hear speech sounds, we might
even infer from the prosody speech structures like sentence boundaries or some of the
phrasal structures. However we will not extract any meaningful content from it. This
is one reason why we opted for mapping cortical responses to the linguistic content
of speech stimuli rather than its spectro-acoustic features. By doing so, we are more
directly targetting the neural processes involved in comprehension. Decoding the
degree of comprehension from electrophysiological recordings is a challenging and
interesting achievement. It provides us with new insights into what aspects of EEG
are important for comprehension and also it could be ported to future applications
such as brain-machine interfaces to verify that vegetative patients understood what
they heard.
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IV.1 Introduction

Speech comprehension involves many brain processes from lower perceptual
acoustic processing to domain-general sequence learning, as well as language-specific
lexical retrieval and semantic disambiguation. Each of those level of representations
support each other in order to lead to comprehension. The lower levels feeding in the
forward sense bottom up inputs, e.g. neural encoding of phonemic representations,
to higher-levels, like ones processing words to extract individual word meanings
from the sound chunks just processed; while higher level areas are modulating lower
level representation and encoding via predictive information such that the syntactic
category of a word can help to predictively pre-activate neural networks encoding
a word which itself predicts phonemic representation (this was presented in greater
details in section I.4. This information flow is present although disrupted when
listening to foreign speech. The different techniques reviewed in this thesis as well
as employed in the previous chapters help to disentangle some of this processing
hierarchy.

IV.1.1 Aims

Mainly we want to decode comprehension using some of the higher level linguis-
tic features and their electro-encephalographic encoding. Nevertheless we ought to
go beyond the sole purpose of decoding stimuli as we also aim at deciphering mech-
anisms underlying the neurobiology of language processing. With this in mind, it is
relevant to analyse both encoding and decoding models with different perspectives.
Indeed, the computation of TRF in chapters II and III revealed the time-course
and loci of neural signatures to the different speech features of interest. But to
go further, we want to assess (1) the gain in reconstruction accuracy achieved by
each predictor individually and their capacity to generalize to unseen data, (2) the
strength of relationship between a set of features from the stimulus and the EEG
when we pool frequency bands information, temporal and spatial filters, on both
stimulus and EEG, and finally (3) how much those linguistic features can tell us
about preceding (in cortical hierarchy) low-level acoustic tracking quality.

This characterisation of coupling between linguistic features and EEG paves
the way to expand this work to online decoding of comprehension and of linguistic
content. In previous chapters we focused on analysing TRF by contrasting them
to a null model. Both TRF and null models were built using all subjects. This
was a chosen design to emphasize any significant coefficients within each kernel that
robustly stands out as different from zero above and beyond null model distribution
of those same coefficient. However in this chapter we focus on the reconstruction
power of linear models and their capacity to generalize across participants. This is
more constraining than before as not only we want each predictor to get significant
filter coefficients but also they need to reconstruct the EEG better than any other
linguistic feature for unseen data despite the high intra-subject variance. This high-
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lights our interest in decoding the stimulus rather than describing the EEG response
to those linguistic features.

The goal is to get a more complete picture of the interaction between word-level
linguistic features and EEG data. In addition to the afore mentioned techniques,
we further characterize the role of linguistic features by looking at the dependency
of cortical tracking time-course on those word-level prediction statistics. We seek
at demonstrating how the reconstruction of low-level stimulus features such as the
acoustic envelope is linked to the presence of highly unpredictable words or not.
This shows how low level tracking has a top-down component and might be driven
by predictions as well as by spectro-temporal features of speech.

IV.1.2 General Methods

In the analysis of the present chapter, unless mentioned otherwise, we used the
same pre-processing pipeline as described in chapter II and Weissbart, Kandylaki,
and Reichenbach, (2019a).

Several methods have been employed to measure the degree of relationship be-
tween speech linguistic features and EEG. First we measured the correlation between
the predicted EEG using the forward encoding models computed through TRF mod-
elling from chapter II. Then we used a more efficient algorithm in modelling linear
relationships between two dataset, namely Canonical Components Analysis (CCA)
(though better at establishing correlated subspace between stimuli and response,
this method does not allow to accurately study the time-course of cortical responses
to the different features individually). Finally we also developed a classification
task in which we assess the respective contribution of the cortical tracking of each
individual linguistic features in classifying listening condition (Dutch vs English).

To summarize, we use three distinct methods to measure the quality of tracking
between a set of linguistic features and EEG data:

• TRF (forward models) reconstruction accuracy, following models and meth-
ods from the two previous chapters, to assess the power of generalisation to
unseen participant data for each feature, and hence the quality of robustness
of representation of the feature in EEG

• CCA correlations across canonical component pairs to measure the strength
of representation of linguistic features and how this differs across listening
condition

• Classification of comprehension condition (Dutch vs English) to test whether
feature subset can reveal neural basis for comprehension, that is to ask: are
we able to know if the language heard is understood using the quality of recon-
struction from our encoding models? For this one first needs to verify that
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English models give different reconstruction accuracy (better?) than the one
computed from the Dutch condition.

Our word-level features are difficult to reconstruct from linear modelling as they
are not smooth in time and the corresponding brain responses are generated from
high-level processes, and hence less robustly measurable as for lower-level features
such as the acoustic envelope. To reconstruct such non-linear features (time series of
"spikes" at word onsets) one would more naturally use a non-linear model, which be
harder t fit on noisy EEG data. Moreover, using linear regression models would not
allow us to jointly consider each linguistic features when they are used as targets.
A multiple regression will compute coefficients mapping EEG to each individual
features without leveraging their possible interactions. For these reasons we argue
that a backward model is less adequate than a forward model to carry on with such
analysis. Finally, by using a backward model one needs to regularize strongly as the
autocorrelation naturally occurring in EEG data renders the inversion of its covari-
ance matrix unstable. However it is possible that such regularization (necessary to
avoid overfitting) will also hinders performance as we privilege principal components
with higher variance and those could be stimulus-irrelevant. We indeed found very
little performance while trying to reconstruct our stimuli with backward models.
Using cross-validation, we trained a backward model for each subject to reconstruct
either the true word-level representations or a shuffle representation (null model).
We did not observed significant reconstruction of word-level features using backward
models (not greater than with a null model: paired t-test: t-statistics = −0.9, degree
of freedom = 12, p-value = 0.38). Although this might be investigated in the future
with different methodology.

IV.2 Generalisation of reconstruction accuracy for each feature

In both chapters II and III we aimed at underpinning the dynamics of cortical
responses to specific linguistic features, namely surprisal, precision and syntactic
trees descriptives.

A first analysis consist in assessing the degree at which word-level linguistic
features are represented in EEG. We expect a stronger relation with models that
carry a richer representation of speech (such as having both precision and surprisal as
characteristic features of prediction in language). However this will not necessarily
hold true for every locations of the brain and hence for every sensors. We must look
at the topography of accuracies to fully apprehend the beneficial impact of adding
predictors into a model. Indeed, for un-regularized models, we should observe no gain
in accuracy or overfitting at electrodes that do not measure brain sources responsible
for the encoding of the linguistic predictors used in the models.
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IV.2.1 Methods

To evaluate the accuracy of our encoding models, we scored the model at each
electrode location by taking the correlation between predicted signal and the true
underlying sensor signal.

Subject-out cross-validation: The evaluation was done through a leave-one-
subject-out cross-validation procedure. Each subject is in turn left out, as a left-out
dataset on which the model will be evaluated. The model is trained on all the
other remaining subjects. The training and evaluation is repeated for each subject,
such that we end up with a correlation score ρ for each channel and subject. The
procedure is illustrated in figure IV.1. This generalizes the model predictions across
participant and hence across experimental conditions too. However in that case, we
expect to be overfitting at some electrode locations where the predictors used can
only generalise to a certain extent across participants.

This was repeated for every set of possible features, and all frequency band
of interest, to assess the respective gain of adding each predictor to the model.
Namely we evaluated a model for all possible combination of the following linguistic
features (with the word onset feature always present): Word Frequency, Surprisal,
and Precision.

Within Subject Cross-validation (for classification) The evaluation was done
through a 4-folds cross-validation within subjects. For each subject, the classifier
was fitted on three folds while the fourth one was kept to compute an accuracy score.
Thus we end up with a classification accuracy for each (left-out) subject and fold.

Statistical Analysis

In order to evaluate the significance of reconstruction scores, we ran paired t-
tests at each electrode location between samples of correlation obtained from the
model with word onset only and the models with added linguistic features. The
significance threshold was set to α = 0.05/64 to control fo multiple comparison at
each of the 64 electrode sites with Bonferroni correction. This kind of correction is
here very conservative and puts the result on the safe side. Another way to correct
for family-wise error rate, which are likely given the structure of EEG signals (sensors
pick up correlated signals) would be to use a cluster-based approach. This was done
in chapters II and III. Nevertheless here we use this first t-test to have a quick and
robust way to evaluate topographies, and we test for location and model difference
with ANOVA, as explained below. Figures IV.2 and IV.4 show topography of the
difference between correlation scores of the model with word onset only and with
prediction features added and non significant areas masked by transparency.
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CCA by increasing the SNR in the bands of interest. However, the coefficients be-
come less directly interpretable. With this method, the goal is not to underpin the
time-course of EEG response to each feature but rather to measure the degree of
coupling existing between a specific feature set and the EEG signals, therefore we
opted to maximise this by supplying to the CCA algorithm a richer representation
of both stimulus and response.

IV.3.1 Method

The CCA method operates on both datasets simultaneously by projecting the
speech feature representation X and the EEG data matrix Y into a new vector
space in which the two transformed matrices have each pair of columns maximally
correlated. In other words, CCA combines the forward and backward models into
a hybrid encoding-decoding model where stimulus and response are simultaneously
temporally filtered across feature dimensions as well as linearly combined (which can
be interpreted as spatial filtering for the EEG side). That is, the neural activity is
decoded and correlated with an encoded version of the stimulus (Dmochowski et al.,
2018; Cheveigné et al., 2018a). Such a formulation allows to remove any variance
that is not related to speech representation in any linear way.

û(t) = (s ⋆ β)(t) (IV.1)

v̂(t) =
∑

i

ri(t) ⋆ wi(t) (IV.2)

The parameters β(t) and w are then found by maximising the correlation be-
tween the encoded stimulus ˆu(t) and the decoded response ˆv(t) (equations (IV.1)
and (IV.2)). This correlation can be reported as a score to quantify the quality of
fit of the model (Cheveigné et al., 2018a):

ρ(û, v̂) =
〈û, v̂〉

‖û‖‖v̂‖
(IV.3)

The global coupling strength was measured by taking the sum of correlations
between the first 25 pairs of canonical components for each language. We also
show the score obtained from the first canonical component only, which is the one
capturing most of the variance in both dataset (stimulus and response). In order
to highlight the difference between English and Dutch, we normalised the score for
each language condition by the score obtained with a word onset only model and
looked at the difference of this relative score (relative to word onset model). The
two bottom panels of figure IV.6 show this difference in relative scores for both the
first canonical component and the sum across the 25 first pairs.
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Statistical significance was assessed first with ANOVA to evaluate how each
model differed with feature sets or with condition. The following design was being
tested: condition×feature set, with language as condition. A post-hoc analysis (used
in figure IV.6) was implemented with a paired t-test between score samples per
language to establish significant influence of each feature set on score values. On the
other hand we used an independent t-test, correcting for multiple comparison with
Bonferroni (α = 0.05/4, for 4 feature sets) to assess the difference between language
conditions. The Bonferroni test was chosen because it is preferable here to avoid
type I errors. These results are new and we want to stay on the most conservative
side. Moreover, the number of comparisons is not so large (four) so the method is
not too constraining in this case.

IV.3.2 Results

There is an increased correlation between speech representations and EEG with
added linguistic features. Namely, there is a stronger coupling when the speech
representations encompasses more complexed information on the stimulus such as
precision of predictions and the interaction between prediction errors and precision.
The strongest increment in score is observed when adding the prior probability of
words, indexed by word frequency, to the model. The statistical results from a 2-way
ANOVA with language condition and feature sets as grouping variable is presented
in table IV.1.

Source SS DF MS F-statistic p-value η2
p

Feature set 12.461 4 3.115 77.835 3.477e-31 0.7389
Language 0.842 1 0.842 21.037 1.199e-05 0.1605
Feature set * Language 0.077 4 0.019 0.482 7.492e-01 0.0172
Residual 4.403 110 0.040

Table IV.1: 2-way ANOVA on the CCA scores (sum of correlations across all canon-
ical components), with "feature set" and "language" (English or Dutch) as groups.
We see a main effect of features and language condition. Interaction was not signifi-
cant. The effect size computed in η3

p (partial η2) shows a stronger effect size for the
feature sets.

The most discriminative models to contrast comprehension state (English vs
Dutch) are the models that incorporate probabilistic quantities computed over se-
quences of words instead of word frequencies alone. Indeed, we see in the bottom
right panel of figure IV.6 on the next page (positive values on bottom panels of the
figure favour English models) that a model with word-frequency alone (in addition
to word onsets) do not have a better global score in English than in Dutch relative
to the baseline model (word onset). Though the model taking in account surprisal,
precision and precision weighted surprisal have incrementally stronger scores for the
English condition only.
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IV.4 Decoding Comprehension: English vs Dutch

Some of those linguistic features can only be reliably encoded if the speech
stimuli is being comprehensively processed. That is if there is an understanding
of the language. For instance, the computation of uncertainty about prediction of
the next word based on its preceding context can only be done if the statistics of
word sequence of the given language is known, at the word level. Furthermore,
grouping into syntactic phrase structure can only occur during comprehension, at
least for complex sentences. With both those observations at hand, we know that
only speech that is being understood will elicit reliable responses to the high-level
representations such as word-level surprisal and the number of closing nodes. By
shifting our perspective on the data, this means it is possible to measure the degree
of comprehension a listener have given a speech stimulus by computing the strength
at which those linguistic features are represented in their EEG signals. We want to
verify this hypothesis by computing our models with EEG recorded while partici-
pants listen to foreign, incomprehensible speech. If there is a gain in using those
high level linguistic features to encode EEG signals, one should be able to decode
the English condition apart from the foreign language condition solely based on the
accuracy at which the model reconstruct the signals.

After comparing the accuracy of encoding models, we will attempt to directly
decode the listening condition from the EEG data. We chose Dutch as the foreign
language condition. Participants were all native English speakers, with no previous
knowledge of Dutch. However, the task is made relatively hard for a decoder system
as both language are western Germanic languages with common syllabic structures
and phonotactic constraints (Collins and Mees, 1999, p.16). Hence the decoder
must rely on high-level linguistic responses that are specific to the comprehension
of speech through extraction of meaning.

However most of the brain activity is captured by the response to word onset
only, nearly 90% of the variance captured at all electrodes by a model using all
predictors is already accounted for with just that simple onset feature in the English
condition. For instance, in figure II.3 on page 45 we can see the relative increase
in reconstruction accuracy of a model with word frequency and word onset with
respect to the word onset only model, and it achieves in average a 10% improvement
in accuracy. The latter is being measured by correlation coefficients so we loosely link
this up to the amount of variance captured as all models are linear. We expect the
Dutch word onset response to be also large, although different. Indeed, one does not
need to understand speech to be able to extract word boundaries. A clear evidence
for this comes from language development studies, where we can observe in babies
and toddlers evidence of correct chunking of sounds into syllables and words (Saffran,
Aslin, and Newport, 1996; Saffran, 2003; Mattys et al., 1999). Moreover both
English and Dutch are Germanic languages, there are compelling overlap between
their grammar and phoneme sets. Hence we expect to see a strong response to
word onset in Dutch, but which somehow must be different to the English one as
words are usually not recognizable in Dutch. Those dissimilarities can stem from
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divergent brain processes regarding lexical access and/or binding to other meaningful
units into larger phrasal structures. We will build on top of a simple word onset
model to disentangle the effect of higher level linguistic features when decoding
comprehension. Altogether, we can already observe at the word response potentials
a difference between conditions that would allow significant classification. This can
help to investigate the time-course of comprehension relative to word onset from
ERPs to words. Then we will move on more specific decoder, adding our high-level
linguistic predictors to see how much one gains from those.

In order to characterise at the same time the feature of interest as well as the
time course of relevant discriminatory activity we ran thus several analysis:

1. Firstly, we established an ERP-like analysis, epoching data around word onsets
and classifying comprehension state at each lags

2. Second, we want to see how much a backward model on the varying linguistic
features can, given our experimental conditions, provide us with a classifier on
comprehension state.

3. Finally, in order to correctly incorporate the multivariate representation of
speech into a decoder, we will first use an encoding step and classify compre-
hension based on the accuracy of the encoder.

In the following section we will often be referring to accuracy score. However we
have several stage in our decoding procedure which creates some overlap in the termi-
nology. Indeed, we are building a decoder, or classifier, based on the performance of
the encoding model. That is, we directly feed the reconstruction accuracies of EEG
from short speech segments, as obtained from a forward model, to our classifier and
this result to a classification accuracy. To avoid further confusion, we define here
for the sake of clarity the terms reconstruction accuracy and classification accuracy:

Definition 2 Reconstruction accuracy Correlation value between true EEG sig-
nal and predicted EEG from TRF model. Its range is [-1,1].

Definition 3 Classification accuracy or decoding accuracy: Fraction of correctly
classified condition (here English or Dutch) measured on held out segments of data.
It ranges from 0 to 1.

IV.4.1 Methods

Experimental procedure

The same set of subjects that participated in the first study, detailed in chap-
ter II and Weissbart, Kandylaki, and Reichenbach, (2019a), underwent a second
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EEG session. In this mew experiment, the task was to pay attention to a speech
stimulus in a foreign language. We chose Dutch as it shares many acoustic prop-
erties with English. Hence we expect the difference in brain responses to highlight
deviation in comprehension rather than in spectro-temporal processing of varying
acoustic inputs. The design was very similar as the first session, participants listened
to story parts extracted from an audiobook (excerpt from Arthur Conan Doyle’s
Sherlock Holmes, read in Dutch1), and had to answer comprehension question in
between story parts presented on screen. In addition to the comprehension ques-
tions we added a self-report questionnaire assessing their level of attention. Hence
between each story parts, for any condition (English or Dutch) they had to rate
their level of attention.

Time-course of comprehension: decoding per-lag

First we want to determine the time of interest as well as the minimal decoding
accuracy achievable in a simple framework. Namely, the first analysis consisted in
using only EEG activity at different electrodes at a single time lag relative to word
onset in order to decode comprehension state.

After preprocessing (similar as in section IV.2), EEG data were epoched around
word onsets of content words only (N=2904), using a window spanning from -200ms
to 1000ms after word onset. For each subject, we simply classified comprehension
(English or Dutch condition) based on the electrodes signal amplitude at each lag so
to localise and characterise the time-course of comprehension-specific activity, solely
based on filtered EEG signals.

To test whether the interaction between EEG potential values and surprisal
helps to decode comprehension, we developed a second decoder which were using a
set of 65 features at each lag: the 64 electrode potentials plus the surprisal value of
the preceding word. This allows to incorporate information on how scalp potentials
and surprisal co-varying might help to decode the listening condition. The hypothesis
being that if it does then not only EEG sensors signal are modulated by surprisal (as
we saw already in previous chapters) but also this modulation improve our ability
to decode comprehension from EEG.

A significance level was computed from the margin of error obtained above
chance level using the series of Bernoulli trials, following a binomial distribution.
After fixing a critical threshold α and given the total number of trials N and the
fraction of English trials p, we can compute the significance level as:

1Audio accessible at https://www.librivox.org and text at: https://www.gutenberg.org/

ebooks/30933
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psignificant = max(p, 1 − p) + zα/2 · sem (IV.4)

where:

zα/2 = Φ−1(1 −
α

2
)

sem =

√

p(1 − p)
N

Where Φ is the cumulative distribution function of the standard normal distribution
N (0, 1). When referring to a significance level in the following text and in the
context of binary classification, we will refer to equation (IV.4), which denotes the
upper bound level of an interval with confidence level of 100 × (1 − α)% around
the chance level of the decoding task. An clear situation where this computation
becomes obvious is to think of a statistical test where the alternative hypothesis
would be that a coin is loaded (null hypothesis it is not). Observing 80% of heads
on 5 flips only gives a significant level of 86.8%, the chance level is 50% but besides
our observations there is still more than 5% chance that the outcome is observed by
chance.

We corrected for multiple comparison (across lags) using a Bonferroni correction
directly on the significance level. This is very conservative in this case and we are
aware that it might be prone to a number of type II errors. However we are not
interested in finding exactly the significant latencies and are merely pointing out
at the fact that there are significant latencies at all. Thus we opted for such a
conservative correction here.

Classification from forward models scores

We follow a similar procedure as in section IV.2, where trained TRF are eval-
uated to predict EEG data from a left-out subject, as presented in figure IV.1 on
page 75. This allows to avoid overfitting as well as to test how much we can gen-
eralise across participants. Thus we are assessing the efficiency of such decoding
paradigm in revealing patterns common in a population but specific to comprehen-
sion of speech from the response to linguistic features.

The reconstruction accuracy were evaluated on left out subjects for both Dutch
and English condition. We segmented the data in chunks of 10 seconds, and com-
puted the correlation between predicted and true EEG for all chunks, so to obtain
one correlation value per electrode, language condition and chunk. Then a support
vector machine classifier from scikit-learn python library with radial basis function
was trained on the concatenation of scores for all electrodes. This gives us 128 fea-
tures in total, 64 scores from the English reconstruction scores, one per electrode,
and analogously 64 reconstruction features for the Dutch condition. The classifica-
tion accuracy from the support vector machine classifier was obtained from a nested
4-folds cross-validation (nested inside the leave-one subject-out cross-validation pro-

86



CHAPTER IV IV.4. DECODING COMPREHENSION: ENGLISH VS DUTCH

cedure done to obtain TRF scores, as explained by diagram of figure IV.1).

Significance level of decoding were directly estimated using equation (IV.4).
The number of trials is determined from the segment size (5 sec segment length gave
480 Dutch segments and 528 English ones), and the probability p is given by the
ratio between the number of English trials and the total number of segments. This
gave a significant level at roughly 53% of classification accuracy.

We repeated this procedure with different subset of linguistic or acoustic features
ranging from acoustic envelope, to the features of chapter II and syntactic features
but also to combinations of those. Since we are evaluating the reconstruction on left
out subject the accuracies of reconstruction suffers form adding too many predictors
in some cases, which can be interpreted as a sign of the difficulty to generalise across
subjects. On the other hand when classification accuracy reach significant levels we
can postulate a robust classification of comprehension at the individual level.

IV.4.2 Results

Time-course of comprehension: decoding per-lag

Figure IV.7 shows the time course of decoding accuracy. From the middle panel,
we see that we can discriminate comprehension condition as early as 50ms after word
onset. This early response suggests an early differentiation in the processing of words
between the two listening condition. At peaks, the accuracy reached a maximum
value of 0.54, just above significance level. However, when adding the surprisal as
a feature to electrode potentials, the decoding accuracy increased by up to 1% at
previously significant lags. Interestingly, a new time region became significant. It
was possible to decode comprehension above chance from those ERP topographies
around 750ms after word onset when scalp potential were augmented with surprisal
value. This indicates that the covariance structure between EEG and surprisal
benefits to our discriminatory task.

From encoding models

Firstly, we observed that the global reconstruction accuracy (average over all
electrodes) is better in English (p-value=0.003, paired t-test, n=12), this is presented
along with individual subject scores in figure IV.8. We conclude that a better rep-
resentation of linguistic speech features occurs during comprehension. Importantly
this indicates that we can potentially use the reconstruction accuracy to decode the
listening condition.

Secondly, we looked at the topography of the reconstruction accuracies in each
condition. Figure IV.9 contains the topography of reconstruction for both English
and Dutch as well as of the difference. At a first glance, we highlight the strong
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IV.5 Envelope Decoding accuracy Modulated by Word Sequence

Predictability features

Quality of cortical tracking can be quantified by the correlation between pre-
dicted acoustic envelope from a backward model and the actual sound envelope.
We observed that this entrainment was similar across participants. The correlation
taken on non-overlapping sliding windows were significantly high for all subjects at
specific times with respect to stimuli. We suggest that this might be due to top-
down linguistic modulation. Namely, part of the stimulus with words that have a
high uncertainty and are not easily predictable from context will cause bottom up
information to be processed with higher precision or importance. This is in line with
a Bayesian perspective on sensory integration. If predictions of linguistic features
(say lexical information) are unreliable, one must listen more carefully to the sound,
and modulate the gain, or weight, with which acoustic information is integrated with
higher level predictions.

The results below demonstrate that low-level representation of speech is mod-
ulated by probabilistic measures of predictability of word level input.

IV.5.1 Methods

In order to evaluate the influence of high level linguistic features on low level
processing such as the cortical tracking of acoustic envelope we trained a backward
model. The latter predicts the envelope from the EEG signals. The model was
evaluated on held out data of the same subject. This cross-validation procedure
was repeated for each subject to obtain a prediction of the stimulus envelope from
each subject EEG activity. The backward model needs more regularisation than
our forward models used so far since the lagged matrix of the EEG data is not
well conditioned (its condition number, the ratio between the highest and lowest
singular values, is low, indicating rank deficiency and strong correlations between
columns that originate from spatial correlation as well as autocorrelation at each
sensor signal) . We used another cross-validation loop on the training portion of the
data to estimate the best regularization parameter via a validation set. The EEG
data were processed following methods from chapter II.

Both the true and predicted envelope were then segmented into windows of
five seconds with 500ms overlap. We computed the correlation score between each
window pairs to get a time course of the Cortical Tracking Index (CTI). The Cortical
Tracking Index (CTI) thus represents the quality of amplitude envelope encoding in
the EEG. When the CTI is high, the prediction of sound envelope from the EEG
data is more accurate. This allows us to obtain a measure, through time (although
at a lower sampling rate as we compute the CTI on 5s window segments with little
overlap), of the quality of encoding of sound envelope amplitude. The hypothesis
being that low-level representation of sound is modulated by high-level features
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of language. In other words CTI, under this hypothesis, should be modulated by
linguistic features. We hereafter will refer to the correlation between a segment of
predicted envelope from EEG and the true envelope as the Cortical Tracking Index
(CTI).

Finally, to test the hypothesis mentioned, a linear model was fitted between
CTI across participants and linguistic features: surprisal, word frequency, precision
and interaction.

Statistics

We tested the relationship between correlation scores and linguistic features by
fitting a multivariate linear model, using Ordinary Least Square (OLS) regression,
between the scores and the linguistic predictors. The significance of the recon-
struction were established using F-statistic for the overall model being better than
a model where with no dependent variable. We used the methods implemented in
statsmodels python library (Seabold and Perktold, 2010) to extract those statistics.

Significance were shown for the model with all variables, a p-value associated
with each predictors were indicative of which coefficient were significantly different
from zero. We then realized a cross-validated training, to get a sample of independent
coefficients (trained on non overlapping folds form the dataset) which gave us a
second statistical test assuring strict non null value of the coefficient. The margin
of error was computed with a Bonferroni correction to get a 95% confidence interval
that takes in account the multiple comparison in the most conservative way.

IV.5.2 Results

We found a negative correlation between CTI and the word-level precision of
prediction only. However, using the window segments does not provide us with a
reliable estimate of linguistic features as several words are appearing within one
5sec segment. The results from table IV.2 present statistics from OLS computed on
averaged linguistic feature values for each window segment. It is more likely than
one word only leads the increase in CTI so we also tried with the maximum value
within each window and got similar results. However, there is a strong bimodal dis-
tribution in values of precision as content and function words are clearly in contrast.
Aggregating precision entropy values of words into their mean or maximum might
hinder the change in values occurring between those two different word categories
(function and content word). We need to separate out those two categories, and to
do so we cannot simply use one value per five second segment.

Therefore we ran a new analysis, where the correlation score was obtained from
windows centred around word onset (from -0.1 to 0.6 seconds around word onset).
Thus we can take individual word score and represent the accuracy of cortical track-
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No. Observations: 1587 Log-Likelihood: 1599.6
Df Model: 4 F-statistic: 4.250
Df Residuals: 1582 Prob (F-statistic): 0.00200
R-squared: 0.011 Scale: 0.0078240

Coef. Std.Err. t P> |t| [0.025 0.975]

const 0.1231 0.0022 55.4509 0.0000 0.1188 0.1275
Surprisal -0.2766 0.1636 -1.6911 0.0910 -0.5974 0.0442
Word Frequency 0.2687 0.1399 1.9205 0.0550 -0.0057 0.5432
Precision -0.4878 0.1392 -3.5052 0.0005 -0.7607 -0.2148
Interaction 0.2045 0.1599 1.2784 0.2013 -0.1092 0.5182

Table IV.2: Results of the ordinary least squares regression of CTI with a sliding
windows of 5s with 500ms overlap

ing faithfully from word-level features. We added a categorical predictor to explain
away any correlation with content/function word attribute. Coefficient for linguis-
tic features are thus now also being considered in their interaction with this new
categorical variable in the OLS model. Table IV.3 present those new results. We
now obtained a much stronger model (p-value of F-statistic < 1e−11 while ≃ 0.002
earlier).

Those results show that there is an effect of word-level feature as well as word
category (function versus content words). The linguistic features showed a signif-
icant interaction with score only for function words though. We see a negative
correlation of word frequency and precision with the cortical tracking accuracy indi-
cating a modulation of neural alignment to the envelope that becomes less strong for
infrequent words or for highly predictable words. On the other hand, a positive rela-
tionship between surprisal of function words and cortical tracking was present. The
predictive power of cortical tracking from linguistic features was quite low overall as
the r squared value from this linear regression was only of 0.011.

IV.6 General Discussion

This chapter presented a series of analysis applied to encoding and hybrid mod-
els to assess the stimulus-response relationship and the ability to decode comprehen-
sion from our speech representation that is using only word-level linguistic features.

We could reveal several aspect of language processing by characterizing more
fully the interplay between those features, in how they affect the cortical tracking
in different frequency bands, and how each subset of feature helps in predicting
comprehension state for instance.
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No. Observations: 6337 Log-Likelihood: 3365.0
Df Model: 7 F-statistic: 9.603
Df Residuals: 6329 Prob (F-statistic): 6.25e-12
R-squared: 0.011 Scale: 0.020270

Coef. t P> |t| [0.025 0.975]

Intercept 0.0359 2.4204 0.0155 0.0068 0.0650
C(func) 0.0804 3.4060 0.0007 0.0341 0.1266
Surprisal 0.0012 1.5356 0.1247 -0.0003 0.0028
Surprisal:C(func) 0.0051 4.0175 0.0001 0.0026 0.0076
WordFrequency 0.0015 1.6059 0.1084 -0.0003 0.0034
WordFrequency:C(func) -0.0082 -3.4614 0.0005 -0.0128 -0.0035
Precision 0.0111 0.9521 0.3411 -0.0118 0.0340
C(func):Precision -0.0129 -2.4565 0.0141 -0.0232 -0.0026

Table IV.3: Results of the ordinary least squares regression on CTI around words
with categorical variables for function and content words added as a predictor.

IV.6.1 Top down modulation of envelope entrainment

The precision is a significant predictor of how accurate is the reconstruction of
the acoustic envelope from the EEG recordings. In other word, cortical entrainment
to envelope and spectro-temporal structures of sound is modulated by how precisely
words can be predicted. Such a precision can be computed from syntactic structure
constraints or lexical ones, and more generally from any conditional variables that
help building a model to predict the next word. In our experiment, the recurrent
neural network used has been shown to learn long term dependencies as well as
being able to create hierarchical representations of the input within the recurrent
connections of its hidden layers (Elman, 1990; Graves, 2013; Frank and Christiansen,
2018).

This result is in line with suggestions from predictive coding where informa-
tion from lower level processing stages must be more reliably accounted for if the
predictions from higher level are uncertain (Friston, 2018). That is, when the pre-
cision about prediction of the next word is low, the brain must rely more on the
bottom-up acoustic information. Now this presumes that cortical tracking does in-
deed represent this low-level acoustic processing. It surely gives us a glimpse on
acoustic representations in the brain but it is far from the full representation of
speech at its lower level. Previous studies have stipulated the role of such entrain-
ment in parsing of input (Giraud and Poeppel, 2012; Hyafil et al., 2015; Ghitza,
2017). The fact that some portion of the stimulus are less strongly represented in
the brain (since backward models will be less able to reconstruct the stimulus from
brain responses) is indicative of the dynamic nature of such processing. The cortex
is continuously looking for information to explain away the meaning from utterances
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and this information can be found in a feed forward way from the acoustic input, but
also from feedback connections and predictions of linguistic content. If we assume
the predictive coding model, it appears as natural that brain process relies as much
as possible on those high level predictions as they are directly available in such an
encoding scheme.

However we noted that only a small fraction of cortical tracking variance could
be explained by linguistic features (R2 = 0.011). Consequently we conclude that
most of the envelope tracking stem from phase alignment to lower-level acoustic
features such as speech edges and fine spectro-temporal structures although aided
from top-down processes in a relatively subtle manner.

IV.6.2 Spectral and spatial distribution of language encoding

Reconstruction accuracies reported in section IV.2 depict spatial loci of corti-
cal responses to linguistic features. It is presented here as where (which electrode
locations) in the brain do we see an improvement with respect to word onset model.
We found significant benefits of using informed linguistic features such as surprisal
and precision in several frequency bands of interest and interestingly with different
outcomes for each predictor. For instance, little information could be gained when
adding syntactic depth to our model, at least in that case for reconstructing left
out subject data. It had some little benefit in the delta band, but this is minor
considering the large amplitude of TRF observed in chapter III for depth.

It is in the delta band (0.5 to 4.5 Hz here) that we found the largest increase
in reconstruction accuracy. Notably, this is the only frequency band where the full
model was significantly better than a word onset only model for both prediction-
based and syntactic features. This probably indicates an incapacity for those pre-
dictors to linearly regress EEG data and generalize across participant (as we used a
leave-one subject out design for evaluation of model scores, see figure IV.1) for high
frequency bands. The signal to noise ration is also higher in lower frequency bands,
such as delta and theta. Power of high frequency EEG activity might be more prone
to underfitting from this low signal to noise ratio, as a more complex model would
be needed to denoise signals (probably even non-linear models).

The main network involved is formed of anterior temporal cortices together with
centro-parietal areas. Precision did not give better than baseline reconstruction of
EEG data in the delta band. This might imply a weaker representation of precision
that is not captured by our model. It is worth noting that precision is a second
order statistic (Koelsch, Vuust, and Friston, 2019). Here it is computed across the
vocabulary, we expect it to modulate activity at different level of the hierarchy al-
though it might not be effectively visible if there are not broad areas of synchronized
activity involved.

However, we observed strong improvement for both word frequency feature (we

95



IV.6. GENERAL DISCUSSION CHAPTER IV

remind the reader here that word frequency is inversely proportional to the unigram
probability of a word) and surprisal. A model with word onset and word frequency
had a right lateralised increase in reconstruction accuracy and conversely, the model
with surprisal was better in left temporal regions. Together with the results for
syntactic features, where we also see a left lateralised benefit of reconstruction accu-
racy (for the opening and closing branches predictors), these data converge towards
empirical observation of left-lateralisation for language specific tasks although we
overall see an improvement bilaterally. The left dominance is usually reported for
most neural organisation model for language processing (Fedorenko, Behr, and Kan-
wisher, 2011; Friederici, 2011), but it would need more investigation to localise the
sources generating the scalp topographies we reported.

There is a noticeable similarity between the response observed for word fre-
quency in the theta band and the one for surprisal in the beta band. Also, we recall
that the word frequency of a word is directly linked to the probability p(wi) of occur-
rence of this word in an utterance. This probability is unconditional, independent
from any context and is only estimated from statistics across many English corpora
of text. In the classical view of Bayesian inference, to generate a prediction the
likelihood of the data is weighted by a prior knowledge. Here the prior on a word
occurrence would actually correspond to this context-free probability. However we
did not test further the link between such prior and our surprisal. This observation
though might indicate a potential overlap in neural population encoding those quan-
tities for word processing, and that both stream of information seem to be channelled
through different frequency bands in EEG activity.

In other studies, theta band activity has been linked to memory retrieval Bren-
nan et al., 2012 while beta band power has been attributed to top-down prediction
signalling (Lewis and Bastiaansen, 2015; Sedley et al., 2016). The latter hypothesis
fit well our results although surprisal as such is more related to a prediction error
rather than predictions per se. In order to encode the new word in the current con-
stituent representation, or into the global meaning of the sentence, both prediction
error and lexical information must co-activate in a coherent way in order to pass
the updated information (and the next prediction) to lower levels Levy, 2008; Arnal
and Giraud, 2012. Now representation of syntax involves different brain structure or
neural population, and similarly prediction error could be generated in other brain
structures. This would imply that distant cortical areas communicate information in
a coordinated manner as the speech is being processed. Long range communication
in large neural networks has been observed by Fries, 2005. He used microelectrode
recordings to reveal data suggesting the existence of communication through coher-
ence across different cortical areas. Neural population would fire in coherent ways
such that high-frequency activity enters in synchrony.

Precision must play a role in the propagation of prediction error as the pre-
dictions received from higher levels are weighted against sensory input relative to
the precision at which they were made (Friston, 2012; Koelsch, Vuust, and Friston,
2019). In line with the idea that prediction errors are signalled in higher frequency
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bands such as gamma (Giraud and Poeppel, 2012; Fries, 2015; Sedley et al., 2016),
we observed a robust representation of precision in the gamma band in panel D of
figure IV.4. Together with the gain in scores measured by CCA when adding the
interaction term (figure IV.6) these results indicate the importance of precision to
process prediction error in the gamma range.

IV.6.3 On the role of word level predictions and syntax in compre-

hension

In the delta band, all features used in our decoding task could classify compre-
hension better than a model with only word onsets. However we note that for the
theta band power, the model with word onset only outperformed any other. This
is in line with theories concerning the role of theta oscillations in the parsing of
speech input (Ghitza, 2011). For attention and intelligibility decoding, Etard and
Reichenbach, 2019 also showed that theta band activity was involved in predicting
the clarity, or acoustic quality of the speech input, but not the comprehension. Here
we show that word-level linguistic features, such as surprisal or syntactic depth, are
beneficial as an encoding model feature in delta or beta but not in theta where the
mere response to word onset suffices to decode which language is being listened to.

We were quite conservative in our decoding task in that we used left-out subject
to build the feature space on which the decoder was trained. Hence the encoding of
our linguistic features must be robust enough to be generalisable across participant
in order to give significant results. Critically, we observed that beta power could
be reliably encoded by surprisal and predict above and beyond other models the
comprehension state. This is a strong evidence that prediction errors are measurable
in high frequency power of EEG. Lewis and Bastiaansen, 2015; Giraud and Poeppel,
2012 hypothesised that beta synchronisation would carry predictions rather than
prediction error signals. Somehow the effect observed is opposite, as surprisal is our
proxy for prediction error (Sedley et al., 2016). However, these classification data
should be taken with care when interpreting underlying mechanism for neurobiology
as we are training noisy evaluation on left out subject which probably under-fit high
frequency power such as gamma band activity (because of the low SNR of high
frequency power and the variability across participant for induced activity latencies
relative to word onsets).

Syntactic features could also decode comprehension above significance level,
even for the gamma band. This might reflect lower-level processing in syntactic uni-
fication that do not require predictive processing and may be mapped more directly
to coherent neural population firing. It is also in good agreement with results from
Bastiaansen, Magyari, and Hagoort, 2010; Brennan et al., 2012 where high-frequency
activity is linked to syntactic unification.
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Chapter V

Conclusion

We conclude the work presented in this thesis by summarizing novel contribu-
tions of each chapters and by giving a transverse perspective on the entire work
with overreaching and more general goals in the study of neurobiology of language.
This is a global discussion covering the main findings across the whole thesis and
confronting them, as a whole, to the existing literature.

Two main axes are presented to highlight the impact of our results and their
possible applications. Section V.1 will put the focus on outcomes of our work with
respect to current theories of natural language understanding in the brain. Another
section will be dedicated to the horizon of applications, for instance in clinical di-
agnosis, that the present thesis offers. Throughout both sections, limitations and
constrains as well as possible future work will be addressed.

V.1 On the neurobiology of language processing

Thanks to advanced methodology and more ecologically valid experiments, we
were able to bring new evidence for a predictive coding account of neural processing
of language while not ruling out any claims on syntactic processing of hierarchical
structures of language.

In chapter II we presented results of the analysis aiming at isolating the corti-
cal response to surprisal, precision entropy and the interaction of those. We found
significant response to each, although with different degree in each classic frequency
bands. Low-frequency cortical oscillations, or delta rhythms, show the strongest and
most reliable response to linguistic features. Interestingly, it is rather in the theta
band that the envelope is best tracked by cortical activity Ghitza, 2017; Etard and
Reichenbach, 2019. This suggests that word-level linguistic information or supra-
segmental representations, beyond phonemic or syllables, entrains cortical activity
and potentially modulates faster processes such as acoustic processing of auditory
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input. However, our study could not underpin the source and neural basis for the es-
timation of surprisal. Indeed, the probability density used to compute both surprisal
and entropy could be derived from any language model. We opted for a recurrent
neural network to estimate the probability of upcoming words but other systems,
for instance that incorporate grammatical rules could be implemented in the brain.
A recent study attempted to disentangle the origin of prediction on the compu-
tational level with a behavioural task (reading time as dependant variable) (Frank
and Christiansen, 2018). They advocate that a hierarchical, rule-based model, rather
than sequential or markovian one, gave more accurate predictions of reading time.
Last year, Brennan and Hale presented a study were they replicated such an inves-
tigation using EEG and found similar results (Brennan and Hale, 2019, in). Hence
a grammar-based surprisal, such as CFG grammar, gave stronger correlates of brain
activity than surprisal from simple recurrent neural network. However, they used a
language model trained on part-of-speech tags (namely, word categories such as ad-
jectives, verbs, etc. . . ) which rules out entirely any semantic processing. This could
introduce a bias towards grammar-based models. In our study, both syntax and
semantic are taken into account by the language model. A natural follow-up study
would test different implementations of surprisal but not only using part-of-speech.
By doing so we can test for a better representation of brain activity and thus unveil
the neural basis of prediction in language processing.

Rather than seeking a "semantic-free" surprisal estimation as in Frank and
Christiansen, 2018, we opted to design completely new features to represent hi-
erarchically structured constituents of phrases in chapter III. Motivated by recent
results from Ding et al., 2016 and by the growing body of literature about unifica-
tion of constituents (Shetreet, Friedmann, and Hadar, 2009; Bastiaansen, Magyari,
and Hagoort, 2010; Brennan et al., 2012), also described as the MERGE operation
(Fedorenko, Behr, and Kanwisher, 2011; Chomsky, 2013), we aimed at designing
syntactic features that could be aligned with ongoing continuous speech stimulus.
However, in our results we did not find an effect of syntactic depth, namely the
level of nesting, in higher frequency bands as suggested in those studies. This oc-
curred instead for the number of closing branches in the hierarchy. Both are related
though, as the syntactic depth is decreased by that same number between each level
of the syntactic hierarchy. Also we observed a left lateralised topography in the im-
provement of EEG reconstruction in comparison with the word onset model. This
topography was qualitatively different for what was observed in chapter II, meaning
that we are probably looking at distinct neural processes.

The last chapter puts in perspective findings of previous chapters by introduc-
ing encoding or decoding performances. The goal was to characterize more precisely
which were the most prominent feature representations in the EEG signals, and in
which frequency band. An end goal of this analysis was to provide us with a speech
representation that could help us to decode comprehension, such as whether the par-
ticipant is listening to native or foreign language, from the EEG recordings. With
the use of CCA, we found that adding the interaction between surprisal and entropy
provides an encoding of stimulus response relationship for English that supplants
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models without it. This increase is measured as the correlation scores of canonical
components. In contrast with score obtained on the Dutch dataset, with participants
listening to a foreign speech, all English models presented a greater degree of rela-
tionship between EEG and speech representations. This translated into the ability
to decode comprehension from segment of EEG data based on TRF modelling. In-
terestingly, features played different roles in the decoding task, with surprisal being
a greater predictor of comprehension in the beta band while word onset was greater
in the theta band. The best decoding occurred in the delta band, were all word-level
models performed better than model using only acoustic information such as the en-
velope. Yet, using the envelope could still give above chance level decoding accuracy.
Indeed we observed a correlation between acoustic cortical tracking or entrainment
to envelope and linguistic features indicative of putative top-down modulation in the
neural representation of the acoustic envelope from prediction of precision entropy.

A major issue with EEG is the difficulty to localise sources of neural activity
with precision, and this becomes even worse without structural MRI scan and digi-
tised positions of electrodes. Further experimentation using different neuroimaging
techniques such as invasive electro-corticography (ECoG) or fMRI are required to
associate accurately spatial foci of activity to responses reported in our results.

V.1.1 Rule-based versus statistical models of language

The debate is still on. However, the work in this thesis is an attempt at unifying
both views, as we can not rule out one from the other. We observed significant
responses emerging from those "opposed" framework. The information theoretic
framework gave us a starting point to analyse predictions in language. Although
this do not let any claim transpire against the possibility of universal grammar
being present in human brain to help develop the ability to understand and speak.
However, it is clear that the mechanisms at play in the cortex to continuously track
linguistic inputs rely heavily on predictive processes. We observed strong response
to both surprisal of words as well as precision, and those data-driven features were
positively contributing to the decoding of comprehension.

Ding et al. observed cortical tracking of hierarchical structures and concluded
hastily about the possible role of such mechanism over statistical learning. In re-
sponse, Frank and Yang, 2018 showed that only lexical information as produced by
statistical models could actually reproduce similar results. However, in an other
study Frank et al., 2015 they also argued that hierarchically structured predictions
were stronger predictors than sequential ones. I think there is no debate on the
question of the involvement of hierarchical structures in the neural representation
of language. The debate remains around the idea that those features are learned or
generated from an innate universal grammar, although as argued by Frank et al.,
they might still underlie a predictive mechanism. In other words, even if we admit
the existence of a universal grammar, we suggest that the brain utilises it in a predic-
tive way. We have developed a technique to explore through the use of naturalistic
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stimuli how the brain perceives different structures of utterance depending on both
the hierarchical dependencies as well as their dynamic prediction through context.

V.1.2 Predictive processing during language comprehension

Most studies on predictive coding concerned low-level sensory processing and
perceptual systems (Rao and Ballard, 1999; Friston, 2005; Friston, 2010). On other
instances, more formally they were analysing computational models at the level of
cortical micro-circuits and neuronal networks to compare with physiological data
evidence and exemplify the validity of predictive coding (Bastos et al., 2012; Friston
and Kiebel, 2009; Chalk, Marre, and Tkačik, 2018). Nevertheless, the predictive
coding framework got a lot of attention from cognitive scientists (Clark, 2013; Levy,
2008). The idea of having predictions based on context during language compre-
hension is not new (Federmeier and Kutas, 1999). However it is only since recently
that researchers put an effort into linking elements of computational models of pre-
dictive coding with neural activity in response to language processing. Those key
quantities are information theoretic measures that qualify the probabilistic genera-
tive model at play. Surprisal and precision entropy are both important quantities
in the probabilistic description of a hierarchical generative implementing predictive
coding. When parametrised through a linear dynamic model with Gaussian prior
and likelihood, as in a Kalman filter for instance, the precision is the inverse of the
covariance (or determinant thereof in a multivariate case), of which the logarithm
is linearly proportional to the entropy (entropy of a Gaussian probability density is
1
2
(1 + log(2πD|Σ|))). To our knowledge the work from chapter II is the first relating

natural language processing to the interaction of precision entropy and surprisal, as
a proxy of precision-weighted prediction error. An inspiring study carried out by
Sedley et al., demonstrated the relative stronger effect of surprisal versus a linear
projection of predictive error in ECoG data with a simple auditory task. Converging
findings between their results and ours bring more weight to the theory of predictive
coding as a broad computational mechanism across the cortex.

Precision seems to play an important role but somehow not as strong as hypoth-
esised. In lower-level cognitive processes such as auditory perception (Sedley et al.,
2016), but also during the perception of music (Koelsch, Vuust, and Friston, 2019),
it has been shown to be a key element in the neural representation of sensory input
(Knill and Pouget, 2004). We measured a strong effect of the interaction between
precision and surprisal. This is in line with predictive coding theories where pre-
dictions get updated depending on the precision weighted surprisal. We understand
this result as an evidence for predictive coding in semantic and syntactic processing.

Importantly, we could separate the contribution of different frequency band of
interest often referred to have specific and distinct roles in both electrophysiology
literature Arnal and Giraud, 2012 and in predictive coding literature Sedley et al.,
2016. Even though the fine grained neural mechanism underpinning those predic-
tions remains unclear, we could measure neural correlates of features that are key in
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the predictive processing framework. The cortical responses measured were different
depending on the frequency band in which we filtered the data.

Yet more research is necessary to break down the predictive processes involved
during language understanding. With invasive data and better source localisation,
researchers could link functional activity to structural neural organisation in order
to establish a better neural model of language processing.

V.2 New methodology, novel applications

Most of the analysis in the thesis relied on a particular treatment of EEG sig-
nals. We worked with naturalistic continuous presentation of speech, which were
both a motivation for developing new analysis tools and a constraint in term of
what technique could be used. In the last five years, many studies with EEG for
speech comprehension leaned towards the use of continuous stimulus instead of trial-
based experiments. Most of the analysis methods employed in those studies revolve
around the idea of using a linear model to represent the stimulus-response relation-
ship (Di Liberto et al., 2015; Ding and Simon, 2014; Ding et al., 2016; Peelle and
Davis, 2012; Zoefel and VanRullen, 2015b; Keitel et al., 2016). However, those stud-
ies mostly focused on acoustic features, such as the envelope or spectrogram. Such
representations are involved in non-speech auditory processing as well, or in process-
ing of foreign speech and do not efficiently decouple neural mechanisms responsible
for language comprehension from mere auditory processing. Although the attention
has been brought up more recently to higher level speech representations such a se-
mantic similarity or phoneme surprisal as in Brodbeck, Presacco, and Simon, 2018;
Broderick et al., 2018, our study paved the way to word level linguistic features as
a probe to assess speech comprehension through EEG.

V.2.1 A toolkit for studying naturalistic speech

One goal of this thesis was to bring new tools in the methodology for studying
spoken language processing. It seemed natural to pursue the route of using more
ecologically valid stimuli to foster research and applications in naturalistic environ-
ment. On one hand, this gives a view on neural processes in their context, as they
occur in everyday life, and on the other hand it embeds brain activity within the
natural neural context. Hasson et al., 2018

When population of neurons, sparsely connected to form complex network un-
dergo their non-linear dynamics, it can be advantageous to analyse their activity
with a fully engaged brain. Other areas, non-task specific modulation may actually
be captured by richer model to provide us with better gist on what is actually at
play.

On the other hand, the use of naturalistic stimuli allows to deploy experiments
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more easily, to the public or in the clinic, with task that seem more natural, and
hence less mentally exhausting than artificial and complex cognitive tasks. When
one takes a diagnostic of an aphasic patient, it may sound cumbersome to ask the
patient to attentively listen to a repeated set of non-sense words.

V.2.2 Decoding comprehension: applications

We assessed comprehension by comparing cortical activity in response to expo-
sure to native language and foreign language separately. Above chance classification
was possible using segment of EEG of a few seconds only. This could potentially
inspire new tools for language disorder diagnosis and also could be used in new
technologies such as hearing aid devices.

The first aspect of technology concerns assessment of language impairment,
such as with aphasia, where therapists would benefit from having a quantitative
assessment of the degree and type of impairment. Currently, aphasia is diagnosed
by speech specialists using a battery of tests such as the Comprehensive Aphasia Test
(Bruce and Edmundson, 2010). Beyond the lesions analysis and observations from
neurologists of MRI scans no quantitative measure of neural processing of speech
are being used for such assessment.

Another potential application is in relation to brain-machine interface to detect
whether an unconscious patient is hearing, and understanding speech. Some at-
tempts have been made to detect and classify the state of patients in coma, whether
they are in a locked-in or vegetative state. It is important to assess their level of
consciousness and awareness as their treatment while in coma might differ.

Finally, decoding comprehension from EEG signals could also benefit hearing
aids (neuro-steered hearing aid devices are attracting interests with recent findings
on selective attention, see Das et al., (2020)). If a real-time decoder allows the
technology to detect whether the wearer missed a part of the attended speech, one
could potentially enhance acoustic aspects of the signal picked by the hearing aid
microphone to increase intelligibility accordingly.

However the work presented here regarding decoding did not have an engineering
perspective and was carried out mainly to answer fundamental scientific questions
about speech processing. One caveat is that it requires the knowledge of textual
data from the speech heard to be able to decode comprehension. Furthermore, we
did not test the ability to get the technology near to real-time decoding. With this
in mind, one could improve the encoding model as well as the language model that
extract features from speech a straightforward improvement of the language model
is to use Long Short-Term Memory (LSTM) instead of classic RNN architectures
to estimate the language model (Hochreiter and Schmidhuber, 1997; Sundermeyer,
Schlüter, and Ney, 2012).

Our methods have been applied in a naive fashion. Realistically, it should be
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tested with a real-time experiment, although further work is necessary on the speech
recognition side as well, as such an application decoding comprehension in real-time
using our methodology would need the speech transcript being passed through a
trained language model such as Long Short-Term Memory (LSTM) or RNN.
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Code

Most of the code, scripts, class and methods written throughout the PhD have
been assembled into a python library. The library is well documented and relies on
a few other scientific common python packages. It allows efficient analysis of EEG
data that has been recorded along with continuous speech stimulus and especially
contains method to easily align word-level features to the EEG signals.

All the package code is available at https://github.com/Hugo-W/pyEEG.

The library created heavily relies on MNE-python (Gramfort et al., 2013) to
import, process and store structured EEG data. However, the rest of the custom-
written code has been designed to easily handle time-aligned speech data along with
EEG signals. The aligned speech segments can be continuous, and can contains
different corresponding features such as acoustic ones like the envelope amplitude,
or linguistic features such as word-level surprisal or categories.

The library also makes better use of algebra to efficiently compute TRFs of sev-
eral subjects in a grand average model, simply by averaging the covariance matrices
before inverting them. This gives a consequent gain in computation time and it is
also more memory-efficient.

An example of the documentation page generated with python libraries is shown
in figure A.1.

Here is a non-exhaustive list of other functions and methods implemented in
the library:

• integration of word vectors representations to align those features to the EEG
signal

• CCA

• multiway-CCA to preprocess group EEG data (denoising technique)
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Figure A.1: Example of a documentation page from the EEG processing python
library.

• multi-channel Wiener filter to remove artefacts from EEG

• plotting functions
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Data Availability

The dataset has been made publicly partly available to promote reproducibility
and foster more experimentations.

A first release was made along the publication of chapter II at https://doi.

org/10.6084/m9.figshare.9033983.v1 (Weissbart, Kandylaki, and Reichenbach,
2019b). We released pre-processed EEG data. Namely, the signals are already band
pass filtered in the delta band, and re-references to the average signal.

We supplied surprisal and precision values of words presented during the experi-
ment along the EEG signals, and a portion of code that allows any user to regenerate
figure II.4 on page 47 easily.
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Proof of permissions

As described in the following table (table C.1 on the next page), I requested
permission to reuse the following figures from different journals:

1. figure I.1 on page 9

2. figure I.2 on page 10

3. figure I.3 on page 11

4. figure I.5 on page 20

5. figure I.7 on page 25

A copy of the proof of permission received by mail is given here for each of those
figures.
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(a) For figures I.1 and I.2
(b) For figure I.3

(c) For figure I.5 (d) For figure I.7

Figure C.1: Proof of permissions to reuse figures
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