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A B S T R A C T

This thesis considers the development of predictive thermodynamic models for
amine-based carbon capture processes, motivated by the imminent requirement
for the reduction in anthropogenically produced carbon dioxide emissions.

In the introduction, we show how the use of molecular-based equations of state,
such as SAFT (Statistical Associating Fluid Theory), can be highly effective in this
context. Due to the level of molecular detail captured in their theoretical develop-
ment, one can reduce the reliance on experimental data by transferring their pa-
rameters based on sound physical arguments. In particular, the inherent chemical
reactions in amine-based carbon dioxide absorption processes can be modelled by
a physical association scheme, offering a vast simplification over the conventional
treatments.

In the following chapter a rate-based absorber model is presented to investigate
the reactive capture of carbon dioxide CO2 using aqueous monoethanolamine
(MEA) as a solvent. The SAFT-VR SW equation is used as the thermodynamic
model. Due to the physical treatment of the reactions, the process model equa-
tions only needs to consider the apparent concentrations of the molecular species,
while the reactions are implicit in the SAFT equation. With the assumption that
the species diffuse as non-associated species, the rate of CO2 absorption is over-
predicted, providing an upper bound on the solvent performance. A single param-
eter is adjusted to the pilot plant data, reflecting the reduction in mass transfer
rate in the apparent CO2 in its aggregated form, which is found to be transferable
over all of the pilot plant runs.

The development of new models for the SAFT-γ Mie equation is then consid-
ered for improvement of the thermodynamic model. This is because the thermo-
dynamic models developed for the SAFT-VR SW (used in the absorber) provide
an inaccurate description of the liquid heat capacity and the heat of absorption
of CO2. We consider a novel approach to the parameter estimation problem. It
is shown that posing the parameter estimation as a multi-objective optimization
problem offers numerous advantages over conventional (single-objective optimiza-
tion) techniques. A robust and efficient algorithm that deals with multiple objec-
tive functions is tailored for this purpose. We consider objective functions that
characterise the deviation between the SAFT model and experimental measure-
ments for different thermodynamic property types. Using the multi-objective op-
timization technique we develop SAFT-γ Mie models for water where saturated
liquid denisty, vapour pressure and isobaric heat capacity are treated as compet-
ing objectives. A single (non-spherical) model for water is chosen from the Pareto
fronts obtained.

Next, we develop SAFT-γ Mie (or SAFT-VR Mie) models for the CO2 + MEA
+ H2O mixture, with focus on developing models that provide a simultaneous
accurate description of the vapour-liquid equilibria and the caloric properties. In
comparison with the previous models developed for the SAFT-VR SW equation of
state, the new models provide a better description of key thermodynamic proper-
ties in the chemisorption process, in particular the vapour pressure of CO2 above
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the solvent mixture, the isobaric liquid heat capacity and the heat of absorption.
We show that incorporating the new thermodynamic models in our process model
for the absorber, we obtain a slightly better prediction of the column temperature
profile.

In the last chapter we derive a classical density functional theory (DFT) that
incorporates the SAFT-VR Mie equation of state (SAFT-VR Mie MF DFT). The pro-
posed method is applicable for a wide variety of fluids, including fluids/ fluid
mixtures that consist of associating molecules and molecules of varying chain
length. We derive a theory that is numerically tractable and show a novel imple-
mentation of the DFT equations in gPROMS. We show that the theory can be used
to accurately predict the experimental interfacial tension for the SAFT models de-
veloped in this thesis, and the predicted density profiles in the intefacial region
compare favourably with molecular simulations. The SAFT-VR Mie MF DFT ap-
proach developed in this chapter is used throughout the thesis for validation of
the thermodynamic models.
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With thermodynamics, one can calculate almost everything crudely; with kinetic theory,

one can calculate fewer things, but more accurately; and with statistical mechanics, one

can calculate almost nothing exactly.— Eugene Wigner
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1
T H E S I S O V E RV I E W

1.1 motivation and objectives

It is now generally accepted in the scientific community that anthropogenically
emitted carbon dioxide (CO2) is a major concern with regards to climate change
and global warming. Recent studies show an almost linear relationship between
the rate of global temperature change and the rate of increase in cumulative car-
bon emissions (Matthews et al., 2012; Friedlingstein et al., 2014; Raupach, 2013).
The Cancun Agreements in 2010 set a limit for what could be considered a “dan-
gerous” level of climate change: the global temperature should remain 2◦C above
pre-industrial levels, or approximately 1.4◦C above current levels. However, two
thirds of this corresponding CO2 quota has already been used and the remaining
will be exhausted in 30 years based on 2014 emission rates. Global emissions of
CO2 from combustion of fossil fuels and cement production have continued to
grow over the past decade by 2.5% per year on average (2004-2013). There is an
increasing incentive for companies to reduce their carbon emissions as the price of
carbon increases and governments strive to meet their emission reduction targets.
(Friedlingstein et al., 2014).

Fossil fuel power plants, in particular coal-fired plants, are the largest fixed
point-source emitters, accounting for approximately one third of CO2 emissions,
and will remain so for the foreseeable future due to the high energy density,
proven resource base and established infrastructure for fossil fuels (Mac Dowell
et al., 2010; Choi et al., 2009a). Carbon Capture and Storage (CCS) technologies are
seen to be the most promising short-term solution to the reduction of CO2 emis-
sions, and amine-based post-combustion capture processes are seen as the most
promising near-term technology in terms of technological development and appli-
cability (Sreenivasulu et al., 2015; Mac Dowell et al., 2010). The ‘Capture’ part of
CCS in this instance involves the separation of CO2 from the flue gas, consisting
mainly of nitrogen (N2) if the fossil fuel is combusted with air, and CO2. Amine-
based absorption processes exploit the reversible chemical reaction between CO2

and the amine solvent, making the process suitable for capturing CO2 from di-
lute and low pressure streams which can be fitted to existing fixed-point sources
with relative ease. The main disadvantages of using this technology as it currently
stands include the large energy penalty associated with solvent regeneration, and
the environmental harm resulting from solvent losses and solvent degradation
products (Jackson and Attalla, 2011).

Modelling studies can play an important role in addressing some of these is-
sues. A key challenge for CO2 capture is the design of solvents which constitute
a process that is both economically and environmentally favourable, without the
extensive reliance on experimental data. There is a lack of data to decide on an
optimal solvent, particularly solvent mixtures (Kontogeorgis and Folas, 2010), and
a lack of pilot plant data to decide on an optimal design of the absorber-desorber
process.

1



2 thesis overview

The thermodynamic properties of CO2-amine-H2O mixtures give us vital infor-
mation about their viability for use in a process and are required for the accurate
modelling of a chemisorption plant. Some important thermodynamic properties
in this context are those that determine the vapour-liquid equilibria such as the
partial pressure of CO2 above the loaded amine solution. This gives us informa-
tion on the absorption capacity of the solvent and the selectivity towards CO2.
Caloric thermodynamic properties are important because they largely determine
the energy requirement for regeneration in the desorber unit. The key thermody-
namic quantities that contribute to this energy requirement are the liquid heat
capacity, the heat of vapourization of water, and the heat of absorption (or des-
orption) of CO2 in the solvent Gupta et al. (2013); Kim and Svendsen (2007); Ar-
cis et al. (2011); Mathonat et al. (1998). Furthermore, surface tension can have a
spectacular effect on the interfacial area and the rate of mass transfer within ab-
sorption/desorption columns (Zuiderweg and Harmens, 1958). In the context of
designing better absorption-desorption processes, it is clear that accurate and pre-
dictive (i.e., applicable outside the domain of experimental data) thermodynamic
models for CO2-amine-H2O systems, which correctly capture the phase equilibria,
caloric properties, and surface tension, are required in order to model and opti-
mize the chemisorption process. A key theme of this thesis is therefore developing
thermodynamic models that suit this need.

In this thesis, we will work with a particular type of equation of state (EoS)
known as SAFT (Statistical Associating Fluid Theory). SAFT models are EoSs with
a firm theoretical grounding in statistical mechanics, a field which originates from
the desire to describe thermodynamic systems in terms of mechanical principles,
for which Clausius, Maxwell and Boltzmann were the founders. SAFT was first
published in 1990 (Chapman et al., 1990), and a principle motivation for its de-
velopment was the requirement for an equation of state for associating and non-
spherical molecules which could not be described by traditional cubic EoSs. The
most recent development of the SAFT-VR equation of state, SAFT-VR Mie Lafitte
et al. (2013a), looks very promising as it provides excellent agreement with ex-
perimental data and can describe the phase equilibira and second-derivative (in-
cluding CP and the heat of absorption) thermodynamic properties simultaneously
(Lafitte et al., 2007).

The association theory within SAFT is based on Wertheim’s Thermodynamic
Perturbation Theory (TPT) Wertheim (1984a,b, 1986a,b), which gives the change
in free energy due to association for a fluid of monomers. Chemical association
is mediated using "sticky spot" models, where molecules can interact via an at-
tractive potential placed on the outside of a repulsive core. This directional in-
teraction essentially captures quantum mechanical effects, corresponding to the
change in internal electronic configurations, rotational degrees of freedom, etc.
upon association. This free energy contribution represents types of intermolecular
interactions that are highly-directional and short-ranged and is therefore typically
used to represent a hydrogen-bond, of which there are numerous types of in the
CO2-amine-H2O mixture. Furthermore, this technique (which we refer to as the
’physical approach’) may be used to model the chemical reactions that occur in
the mixture, with the ability to offer vastly simplified thermodynamic and process
models compared to the more traditional chemical approaches. In this thesis we
will demonstrate how one can implement this atypical physical approach for the
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thermodynamic treatment of CO2-amine-H2O, and show how such a model can
be incorporated into a rate-based absorber model.

The parameters within SAFT models define the intermolecular potential, and
simulations of this potential have been shown to compare favourably Lafitte et al.
(2013a). This validates the assumptions and approximations within the theoret-
ical model. The situation becomes challenging when one wants to develop spe-
cific SAFT models for real fluids. In order to develop such models, one needs to
estimate the parameters that define the intermolecular interactions using exper-
imental data. Usually, there are many suitable parameters sets that successfully
correlate the experimental data. Thus, the most suitable intermolecular potential
is the one that best captures the physics of the system, like the structure of the
fluid or it’s dynamic properties.

Due to the simplifications made to describe the real intermolecular potential,
it is difficult to simultaneously capture all of the desired thermodynamic prop-
erties in a simple model. One inevitably needs to choose a model that provides
the best compromise between the predictions of various thermodynamic proper-
ties. This choice can change according to the specific scenario that the thermody-
namic model is applied, and it is often unclear the trade-offs that are involved
when choosing a particular model. With an increasing number of types of thermo-
dynamic properties that we assess the model’s performance with respect to, the
choice of model becomes increasingly more difficult. We will address these issues
in this thesis by developing a multi-objective optimization methodology, providing
a novel approach to the estimation of SAFT parameters and general applicability
to any parameter estimation problem.

We have discussed that surface tension is an important property for modelling
the chemisorption process, as it can dramatically affect the interfacial area avail-
able for mass transfer. This pronounced effect can clearly be seen when soap accu-
mulates at the air-water interface, leading to bubble formation. SAFT-VR Mie pro-
vides accurate predictions for the ‘bulk’ fluid phase properties, however it cannot
be used directly to compute the surface tension. To evaluate the surface tension,
one requires knowledge of small interfacial region that occurs between two phases:
the density profile and the free energy as a functional of this density profile. In
this thesis we develop a density functional theory (DFT) that can be used as a
fully predictive method for evaluating the surface tension of SAFT-VR Mie mod-
els. This is useful from a process modelling aspect when one does not have this
type of experimental data. Since this method introduces a new type of property
to be compared to experiments, this is also useful for validating models during
model development and reducing the degeneracy in the parameter space.

1.2 overview of chapters

In chapter 2 we provide a review of the molecular systems engineering (MSE) ap-
proach to carbon capture, with a brief mention of other work based on similar
thermodynamic models. Here we discuss various approaches to modelling ther-
modynamic properties, with a special focus on the SAFT (Statistical Associating
Fluid Theory) family of thermodynamic approaches. We pay special attention to
show how one can take advantage of the physical association concept used with
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the equation of state (EoS) to describe the reaction equilibria relevant to chemical
absorption, and contrast this approach to the explicit approach that is more typi-
cally used in the modelling of such systems. Furthermore, we discuss approaches
to the solution of the integrated solvent and process design problem that embed
these thermodynamic models.

After presenting the SAFT approach used throughout this thesis, in chapter 3

we present a rate-based absorber model that incorporates a particular version of
SAFT (SAFT-VR SW) to investigate the reactive capture of carbon dioxide CO2

using aqueous monoethanolamine (MEA) as a solvent. We demonstrate how one
can incorporate SAFT models that use a physical treatment of the reactions into
a rate-based model, and demonstrate that the process model equations can be
vastly simplified (compared to explicit approaches) using this technique. The pro-
cess model equations only needed to consider the apparent concentrations of the
molecular species, while the reactions are implicit in the SAFT equation. We show
that by incorporating the SAFT-VR SW EoS and applying a physical association
scheme to mediate reactions, one is able to make accurate predictions of the ab-
sorption process by comparing with pilot plant data and is therefore suitable for
the rapid assessment of carbon capture solvents.

Following the work presented in chapter 3 we propose using a more recent equa-
tion of state (SAFT-γ Mie). This is to provide a better description of the thermody-
namics, in particular the simultaneous description of the vapour-liquid equilibria
and caloric properties of the mixtures discussed in chapter 3. These data types are
vitally important for the accurate modelling of the CO2 chemisorption process.

Due to the additional property types required to describe the caloric properties,
in chapter 4 we propose a novel technique for regressing EoS parameters. Typically
when regressing EoS parameters, deviations between the various property types
are lumped together in a single weighted-sum objective function and a single set
of parameters is obtained. By choosing weights arbitrarily (typically only a single
weight vector is chosen) one has little control over the distribution of errors over
the various property type, and this becomes an increasing issue the more prop-
erty types are included. In this chapter we propose a multi-objective optimization
(MOO) technique to deal with this problem, where the output is numerous differ-
ent Pareto-optimal thermodynamic models. We demonstrate the effectiveness of
this approach by applying the MOO technique to the development of SAFT-γ Mie
for water, and identify a suitable water model from the Pareto front.

In chapter 5 we develop SAFT-γ Mie homonuclear models for the molecules and
their mixtures present in the chemisorption process presented in chapter 3. Focus
is made on developing models that provide a simultaneous accurate description
of the vapour-liquid equilibria and caloric properties according to the findings in
chapter 3. The MOO technique in chapter 4 is applied to develop the key ther-
modynamic parameters that mediate the chemical reactions. We show that using
the proposed approaches, one is able to obtain an excellent description of the key
thermodynamic properties that are required for modelling the CO2 chemisorption
process, in particular the the liquid heat capacity, the partial pressure of CO2 and
the heat of absorption of CO2. Furthermore, we show that the physical approach
to the reactions is able to predict the chemical speciation accurately. To conclude
this chapter we assess the performance of the new models obtained against pi-
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lot plant data for the absorption process discussed in chapter 3 and compare this
performance with the previous result.

During the development of the thermodynamic models in chapters 4 and 5 we
assess the robustness of the parameters obtained comparing the predicted values
in the surface tension with experimental data. In order to calculate the interfacial
tension for the homonuclear SAFT-γ Mie models, we develop a classical density
functional theory (DFT) in chapter 6 that is suitable for this purpose. We validate
the theory against molecular simulations, and show that one is able to use the
proposed theory to accurately predict the interfacial tension and density profiles
obtained in molecular simulations. This is shown for pure components and mix-
tures of up to three components. We then assess the performance of the model in
predicting the vapour-liquid interfacial tension of the SAFT-γ Mie models for real
molecules and mixtures relevant to this thesis. We identify an issue with using the
DFT approach to predict the surface tension for SAFT-γ Mie models that contain
association at low temperatures and propose some recommendations for future
work.

We conclude the thesis in chapter 7 by summarising the key results and suggest-
ing some avenues for future research.





2
B A C K G R O U N D

2.1 introduction

There is an increasing global concern about climate change, and an urgent need to
mitigate anthropogenic CO2 emissions. Carbon Capture, Utilisation and Storage
(CCUS) comprises technologies to remove CO2 from different sources (e.g., flue
gases and from the atmosphere), followed by recycling this CO2 for utilization or
establishing permanent storage options. Carbon capture is a critical first step of
CCUS. Although significant effort has been devoted towards the design and imple-
mentation of carbon capture technologies, current implementation remains costly,
mainly due to the large energetic costs and the degradation of carbon capture
materials associated with current processes. Among other options, CO2 absorp-
tion using a liquid solvent is a competitive technology for CO2 removal from gas
streams (Olajire, 2010; Mac Dowell et al., 2010). A significant advantage of such
processes are that they can be retro-fitted to existing processes that generate en-
ergy from fossil fuels. A solvent can absorb CO2 through two main mechanisms:
chemical absorption and physical absorption. In chemical absorption processes,
reaction products are formed and CO2 is chemically bound in the liquid phase,
typically through the formation of ionic species. On the other hand, physical ab-
sorption processes are driven by weaker van der Waals forces between the solvent
and CO2.

The main advantages of chemical absorption over physical absorption are that
chemical solvents have a higher capacity for CO2 (Kenarsari et al., 2013), they can
be applied to streams with relatively low CO2 partial pressures, and the absorp-
tion rate is enhanced due to the depletion of CO2 at the gas-liquid interface due
to reactions. The regeneration of chemical solvents can be highly energy intensive
however (Chakma, 1997), whereas carbon capture processes using physical sol-
vents can be less energy intensive and the solvent can be regenerated with a less
costly pressure-swing process.

Several carbon capture-solvents have been considered, and their potential via-
bility for use in a CO2 separation process have been assessed. The main classes
of chemical solvents include alkanolamines, amino acids, ammonia, ionic liquids
and aqueous piperazine (PZ). The reader is referred to Songolzadeh et al. (2014)
for a summary of the advantages and disadvantages between these solvent types.
Aqueous solutions of alkanolamines, particularly monoethanolamine (MEA), re-
main the most widely used class of chemisorption solvents. Common physical
absorption process currently in use are Rectisol (methanol solvent), the Selexol
process (using a blend of polyethylene glycol and a blend of dimethyl ethers), the
Purisol process (N-methyl-2-pyrrolidone solvent), and the Fluor Solvent process
(using a propylene carbonate solvent) Yu et al. (2012). Processes that use a mix-
ture of physical and chemical solvents have also been investigated (Olajire, 2010),
in addition to switchable solvents, for example reversible ionic liquids, where the
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solvent species are non-ionic prior to reaction with CO2 and an ionic liquid is
formed upon reaction (Park et al., 2015).

The choice of solvent directly affects the performance of absorption technologies.
Since there is a need to develop lower-cost and more sustainable CO2 absorption
processes, there have been numerous scientific investigations into new carbon cap-
ture solvents. In the search for new solvents and solvent blends, it is unlikely
that a ‘best’ solvent or solvent mixture will be found. An optimal solvent will
be a function of the thermodynamic conditions of the process (temperature, pres-
sure and composition) and a function of the conditions of the gas feed (e.g., the
pressure and chemical composition). Furthermore, there are process constraints
that need to be considered (e.g., size constraints, restrictions on temperature and
pressure, and restrictions on the available equipment). Traditionally, solvent selec-
tion and process design have been addressed as separate or consecutive problems,
with little or no feedback between the two approaches (Eden et al., 2004). This
makes solvent selection a laborious task. Laboratory scale experiments on candi-
date solvents are expensive and time consuming, and it is difficult to interpret
experimental measurements (e.g., various physical properties of the solvent mix-
tures containing CO2) within the highly dimensional solvent and process design
space. It is therefore especially desirable to decouple process and molecular de-
sign problems, since large combinatorial spaces can theoretically be explored us-
ing computational methods. Such approaches can identify optimal solvents based
on appropriate physical property models and only a small number of targeted
experiments (Gani, 2004).

Computer-aided molecular design (CAMD) methods are useful for the solvent
selection process. These are often focussed on providing a list of ‘optimal’ sol-
vents based on a few important physicochemical properties (Gani, 2004; Duvedi
and Achenie, 1996; Churi and Achenie, 1997; Apostolakou and Adjiman, 2002;
Wang and Achenie, 2002; Samudra and Sahinidis, 2013). Several studies have been
conducted in order to assess the impact of solvent properties on the overall per-
formance of the process (Odele and Macchietto, 1993; Buxton et al., 1999; Bardow
et al., 2009; Adjiman et al., 2014). Through such methods it is possible to determine
the dependence of physicochemical properties on process variables (e.g., operat-
ing pressure and temperature), the values of which are often unknown at the time
of solvent selection. It has become clear that choice of an optimal solvent is best
considered as part of an integrated molecular and process design problem due to
the strong interactions between optimal process variables and optimal molecular
variables (Adjiman et al., 2014).

Several methodologies have therefore emerged for the simultaneous design of
molecules (e.g., solvents) and processes, where process variables and molecular
structure are optimized with respect to process objectives (e.g., cost). This is known
as computer-aided molecular and process design (CAMPD). The CAMPD prob-
lem has been discussed by numerous authors (Hostrup et al., 1999; Buxton et al.,
1999; Kim and Diwekar, 2002; Giovanoglou et al., 2003; Marcoulaki et al., 2000;
Eden et al., 2004; Papadopoulos and Linke, 2006; Eljack et al., 2008; Bardow et al.,
2009; Pereira et al., 2011a; Burger et al., 2015; Lampe et al., 2015; Ng et al., 2015;
Papadokonstantakis et al., 2015; Zhou et al., 2015; Gopinath et al., 2016).

Since intermolecular interactions strongly affect the performance of absorption
processes, CO2 capture studies are well-suited for the application of a molecu-



2.1 introduction 9

lar systems engineering approach. Within an MSE approach, a detailed molecular
model (e.g., a molecular-based thermodynamic model for fluids) is integrated with
a process model (Adjiman et al., 2014; Adjiman and Galindo, 2011). Thus, predic-
tive models are required that relate the physical properties of fluids (pure com-
ponents and mixtures), in addition to predictive models of process units, in order
to evaluate design objectives and constraints. Furthermore, optimization problems
must be set up such that trade-offs between different design decisions cab be ex-
plored, and advanced algorithms are required in order to solve the challenging
optimization problems that arise.

In the context of the integrated design of solvents and carbon-capture absorption
processes, an MSE approach requires predictive models for a range physicochemi-
cal properties: bulk thermodynamic properties such as density and vapour-liquid
equilibria, kinematic properties such as viscosity and interfacial properties such
as surface tension. These properties should be readily calculated for a fluid as a
function of the process operating conditions. Preferably, physical property models
should provide a continuous and consistent description for the entire fluid re-
gion in order to avoid the use of different models (e.g., activity coefficient models
and equations of state) for gas and liquid phases (Burger et al., 2015). This con-
sistency is particularly important when modelling fluids close to vapour-liquid
critical points, and when modelling unit operations that involve phase changes,
in order to avoid having to identify phases before selection of an appropriate
model. Furthermore, is desirable to use models that provide accurate predictions
not only of vapour-liquid equilibrium properties but also second-derivative ther-
modynamic properties (e.g., heat capacity). Thus, it is important to use a consis-
tent thermodynamic model for calculating different physical property types. It
can be challenging to find models that are so widely applicable (Poling et al., 2001;
Lafitte et al., 2013b; Papaioannou et al., 2014). Finally, in the context of modelling
chemisorption processes it is challenging to predictively model chemical equilib-
rium and/or kinetics.

Several authors have developed CAMPD approaches to CO2 capture in recent
years. Bardow et al. (2009), Pereira et al. (2011a), Burger et al. (2015), and Lampe
et al. (2015) have designed optimal solvents and process process conditions for
CO2 capture involving physical absorption of CO2 into the solvent. Their work
incorporated statistical associating fluid theory for describing physical proper-
ties. Chong et al. (2015) employed CAMD to determine suitable ionic liquids for
carbon-capture. Salazar et al. (2013) and Zarogiannis et al. (2016) applied CAMD
approaches for the design of alkanolamines and their blends. CAMPD has also
been applied for determining novel chemisorption solvents (Bommareddy et al.,
2010; Chemmangattuvalappil and Eden, 2013; Papadokonstantakis et al., 2015).

In this chapter we will review molecular systems engineering approaches to
carbon capture. In Section 2.2, we will discuss thermodynamic models for CO2 ab-
sorption processes, with a focus on SAFT-type equations of state. In Section 2.3 we
will describe how one can model reactive systems using the physical association
concept available to SAFT.
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2.2 predictive thermodynamic models for CO2 physisorption pro-
cesses

In order to accurately model physisorption processes, sophisticated thermody-
namic models are required in order to capture the non-ideal behaviour of the
mixtures involved. This non-ideal thermodynamic behaviour arises due to the
presence of chemical functional groups that form hydrogen bonds (e.g, in water,
methanol and ethers), the presence of non-spherical apolar compounds (hydro-
carbons), and the presence of CO2 which has a large quadrupole moment and a
critical temperature (304 K) that is within the range of typical process operating
conditions. Further complexity in the thermodynamic model arises when mod-
elling solvent blends due to the larger number of model parameters required.

Thermodynamic models that are predictive outside of the domain of experi-
mental data are required, and models derived from molecular theories and sta-
tistical mechanics, for example SAFT-based approaches are well-suited for this
purpose. For an overview of such approaches, the reader is referred to (McCabe
and Galindo, 2010), (Kontogeorgis and Folas, 2010) and references therein. These
require fewer state-dependent parameters compared to more commonly used ther-
modynamic models. Within SAFT-based approaches, the impact of molecular shape
and non-sphericity is accounted for by modelling molecules as chains of fused
monomeric segments, and the strong directional interactions representative of a
hydrogen bond or polar interactions can be mediated by the addition of associa-
tion sites. Since SAFT-based models provide an equation of state (EoS), they are
applicable over the entire fluid region and thus a consistent model may be used
for gas and liquid phases. This is beneficial for modelling processes consisting of
vapour-liquid and vapour-liquid-liquid equilibria. In this section, we will provide
an overview of SAFT-based approaches and discuss the development of models
(including group contribution models) that describe the thermodynamics of typi-
cal physical absorption processes.

2.2.1 An Introduction to SAFT

Given the extensive application of SAFT in this thesis for modelling the thermody-
namics of CO2 capture processes, it is imperative to provide a brief introduction
to this statistical mechanical theory and highlight its applicability in process de-
sign. In the appendix to this chapter, section 2.5, we detail the full SAFT-VR Mie
equation used throught this thesis.

Statistical associating fluid theory (SAFT) approaches are a family of state-of-
the-art EoSs, predicting thermodynamic properties of a system based on molecular
interactions of different moieties constituting the system. The first version of the
SAFT EoS (Chapman et al., 1989, 1990) was proposed to accurately describe the
thermodynamics of associating fluids, i.e., fluids that have directional, short-range
interactions, thus improving upon previous modelling of said fluids using tradi-
tional cubic EoSs. In order to achieve this, a new association theory was developed
to evaluate the contribution to the Helmholtz free energy due to association of a
fluid composed of associating monomers, based on Wertheim’s thermodynamic
perturbation theory (TPT) Wertheim (1984a,b, 1986a,b). This association theory
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models the contribution to the Helmholtz free energy due to association in a fluid
of monomers. The directional forces due to association are accounted for by speci-
fying off-center “association sites” on the monomers, which interact via a potential
function that is typically of the square-well (SW) form. Accurate thermodynamic
properties of associating fluids can thus be obtained with a SAFT equation with
parameters that provide information on the intermolecular forces.

Within all SAFT models, molecules are represented as chains of spherical seg-
ments. These segments interact via intermolecular potentials that determine the
forces between segments and between association sites. In homonuclear versions
of SAFT, a molecule i is formed from mi tangentially bonded spherical segments,
i.e., the segment-segment separation is σ (see equations 1 and 2) defined later
in this section. mi should strictly take on integer values in the theory, but this
constraint is generally relaxed so that mi can take on non-integer values. In this
case, segments may be referred to as ‘fused’. To model real fluids and mixtures
of real compounds, parameters are required that specify the number of segments
and the intermolecular potential (i.e., the energy and range of interaction between
segments and association sites). Homonuclear models may be used to represent
whole molecules, where a single set of parameters is used to describe a specific
compound. This contrasts with heteronuclear approaches where a set of parame-
ters is prescribed to a particular chemical functional group.

Numerous homonuclear versions of SAFT exist to describe neutral molecules,
where differences between approaches vary mainly in the form of the potential
used to describe the repulsive and attractive interactions between monomer seg-
ments, the explicit inclusion of different interaction types (e.g., the inclusion or
not of an explicit dipole contribution), and choices/ simplifications made in the
statistical mechanical theory (e.g., the order of the perturbation expansion in the
monomer free energy contribution and the choice of reference fluid). Some well
known variants (Kontogeorgis and Folas, 2010) of SAFT are the original SAFT
(Chapman et al., 1990, 1989), Chen and Kreglewski SAFT (CK-SAFT) (Huang and
Radosz, 1991), simplified SAFT (Fu and Sandler, 1995), Lennard-Jones SAFT (LJ-
SAFT) (Kraska and Gubbins, 1996b,a), variable-range SAFT, (SAFT-VR or SAFT-
VR SW) (Gil-Villegas et al., 1997; Galindo et al., 1998), SAFT-VR Mie (Lafitte et al.,
2013b; Dufal et al., 2015b), soft-SAFT (Blas and Vega, 1998), perturbed chain SAFT
(PC-SAFT) (Gross et al., 2001), and simplified PC-SAFT (von Solms et al., 2003).
Examples of SAFT that include an explicit polar/ dipolar contribution include a
variant of SAFT-VR (Zhao and McCabe, 2006), a variant of CK-SAFT (Jog et al.,
2001), variants of PC-SAFT (Tumakaka and Sadowski, 2004; Tumakaka et al., 2005;
Sauer and Chapman, 2003; Karakatsani et al., 2005; Karakatsani and Economou,
2006; Karakatsani et al., 2006; Gross, 2005; Gross and Vrabec, 2006; Kleiner and
Gross, 2006; Karakatsani and Economou, 2007; Kleiner and Sadowski, 2007), and
a polar variant of SAFT-VR Mie (Cripwell et al., 2018). Extensions of the SAFT
methodology that can be used to model electrolyte solutions have also been devel-
oped (Galindo et al., 1999; Liu et al., 1999; Gil-Villegas et al., 2001; Patel et al., 2003a;
Behzadi et al., 2005; Cameretti et al., 2005; Held et al., 2008; Held and Sadowski,
2009; Schreckenberg et al., 2014; Eriksen et al., 2016). Furthermore, modifications
to the SAFT methodology have been recently developed in order to describe quan-
tum fluids (e.g., helium and hydrogen) (Aasen et al., 2019).
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The SAFT-VR SW and SAFT-VR Mie equations of state are of most relevance to
this thesis since they are used extensively. We will therefore briefly review the SW
and Mie potentials, which describe the potential between monomeric segments.
The SW potential used in SAFT-VR SW (Gil-Villegas et al., 1997; Galindo et al.,
1998) is given by

φSW
12 (r12) =






∞ r12 < σ,

−ǫ σ 6 r12 < λσ,

0 r12 > λσ,

(1)

where φSW
12 is the potential, r12 is the distance between the centres of two spherical

monomeric segments 1 and 2, where σ is the diameter of the monomeric segments,
ǫ is the depth of the potential well, and the range of attraction is characterised by
λ. The SW potential is popular due to its simplicity, leading to exact statistical
mechanical derivations, for example algebraic expressions of the second and third
virial coefficients (Barker and Henderson, 1976).

In the more recently developed SAFT-VR Mie EoS (Lafitte et al., 2013b), the Mie
(generalised Lennard-Jones) potential is used, which is given by

φMie
12 (r12) = Cǫ
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σ

r12
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−
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σ
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)λa
]

, (2)

where the coefficient C is defined such that the minimum of the potential corre-
sponds to −ǫ and is given by

C(λr, λa) =
λr

λr − λa

(

λr

λa

)
λr

λr−λa

. (3)

where λr is the repulsive exponent and λa is the attractive exponent. λr is a key
parameter which provides flexibility in characterising the softness or hardness of
the repulsive interaction. The Mie potential consists of a relatively steep portion
at short separations and a smooth shallow curve at greater separations which
asymptotically approaches zero as r12 approaches infinity. A comparison with
the SW potential is shown in Figure 1. The Mie potential is longer-ranged and
smoother than the SW potential, allowing for a more realistic description of the
true segment-segment interaction.
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Figure 1: Examples of the Mie (continuous curve) and the SW (dotted line) potentials as a
function of the monomer-monomer separation distance.

Within SAFT, association forces can be treated by adding off-centre, spherically
symmetric bonding sites which interact via a potential that is typically of the SW
form. This potential is used to characterise interactions that are highly directional
and short-ranged, for example an interaction typical of a hydrogen bond (Dufal
et al., 2015b). The interaction between two association sites ‘a’ and ‘b’ on two
molecules of type i is characterized by an association energy ǫHB

abii, and a bonding
volume Kabii.

Within SAFT, an equation for the total Helmholtz free energy developed by
adding different perturbative contributions (representing different types of inter-
molecular force) to a reference free energy. In Figure 2 we demonstrate this con-
cept. In this case, the reference fluid consists of monomeric spherical segments, as
is the case in the SAFT-VR SW and SAFT-VR Mie EoSs. In dimensionless form the
equation for the free energy is given by

A

NkT
=

AIDEAL

NkT
+

AMONO.

NkT
+

ACHAIN

NkT
+

AASSOC.

NkT
, (4)

where N is the number of molecules, k the Boltzmann constant, and T the temper-
ature. AIDEAL is the free energy of an ideal gas (Figure 2a). For real molecules this
contribution is typically determined from experimental information on the molec-
ular ideal gas heat capacity. AMONO. is derived by perturbing from a reference
hard-sphere fluid (here, a volume is perscribed to the segments), the perturbative
contributions arise from the chosen inter-segment potential (Figure 2b). ACHAIN

represents the free energy due to spherical segments forming tangentially-bonded
chains (Figure 2c). AASSOC. is the free energy contribution due to interaction be-
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Figure 2: Schematic of a typical procedure for describing fluids within a SAFT EoS. a)
The ideal gas contribution: this includes contributions to the free energy that are
not due to intermolecular interactions (e.g., translational, rotational and vibra-
tional contributions). b) The monomer contribution: interactions between spher-
ical segments are considered, with the potential shown by the dotted circles. c)
The chain contribution: the additive free energy due to molecules forming tan-
gentially bonded segments. d)The association contribution: association sites are
added which are able to bond to other sites. This figure is based on that of
(Kontogeorgis and Folas, 2010).

tween association sites (Figure 2d). This term accounts for various types of com-
plexation such as charge transfer and hydrogen bonding. Once the total Helmholtz
free energy is known as a function of the thermodynamic variables (N,V , T ), other
thermodynamic properties can be obtained from known thermodynamic identities.
For example, the pressure can be obtained from P = −(∂A∂V )N,T , and the chemical
potential µ can be obtained from µ = (∂A∂N)V ,T .

The inclusion of the Mie potential in the more recent development in SAFT-VR
(SAFT-VR Mie (Lafitte et al., 2013b; Dufal et al., 2015a,b)) is of particular relevance
to this thesis. This potential has shown to be particularly advantageous for ac-
curately describing properties that are second derivatives of the Helmholtz free
energy. These properties include heat capacity, isothermal compressibility and the
speed of sound, and SAFT-VR Mie is able to simultaneously provide a good de-
scription of both vapour-liquid equilibria (VLE) properties and second derivative
properties (Lafitte et al., 2006b, 2013b; Dufal et al., 2015a,b). Second derivative
properties are particularly sensitive to the nature of the repulsive interaction, and
thus models may be finely tuned to such properties by varying λr. Furthermore,
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SAFT-VR Mie includes a higher-order Barker-Henderson perturbation expansion
of the monomer contribution (up to third order), compared to SAFT-VR SW (up
to second order). This modification leads to an improved description of the critical
point compared with SAFT-VR SW.

These improvements are vitally important when modelling solvent absorption
processes for carbon capture, since the critical point of CO2 is within the range
of realistic process operating conditions. Additionally, the ability to accurately de-
scribe second-order derivative properties is important, in particular the heat ca-
pacity of liquid mixtures (the assumption of ideal mixing that is usually made to
compute mixture heat capacities can be lifted), and heat of absorption of CO2 in
the solvent mixture as these properties are strongly correlated with the energetic
cost of a carbon capture process. By using a consistent model to calculate key ther-
modynamic properties within a process model, less empirical correlations and ex-
perimental investigations are required. Although one more parameter is required
to define the Mie potential compared to the SW potential, it has been shown that
a conformal description of the thermodynamics can be obtained with an interre-
lationship between λr and λa under certain assumptions (Ramrattan et al., 2015).
Thus, only λr or λa need to be determined during the model development, the
other being fixed. Typically, λa is fixed to 6, corresponding to the attractive range
of the London dispersion force, and λr is adjusted.

2.2.2 Group contribution (GC) versions of SAFT

Group contribution (GC) approaches (see e.g., (Papaioannou et al., 2011a)) make
use of the concept that a set of relevant chemical compounds may be broken down
into a significantly smaller number of chemical functional groups. For example,
the thermodynamic properties for set of linear alkanolamines (MEA, (C2H7ON),
MPA (C3H9ON), etc.) may be represented with a small number of chemical func-
tional groups: CH2 CH2NH2 and CH2OH. This can greatly reduce the number
of parameters required within the thermodynamic model, and once parameters
have been obtained for functional groups, the thermodynamic properties of new
molecules can be quickly assessed using the functional groups as building blocks.
An assumption inherent in GC methods is that the free energy contribution due
to the presence of each functional group is independent of its environment and
connectivity (Fredenslund et al., 1975). This is a valid assumption assuming that
there is no significant difference in the polarisation of the same functional group
present in different compounds. Proximity effects may be accounted for in an ef-
fective manner by the inclusion of ‘second-order’ groups (Fredenslund et al., 1975;
Constantinou and Gani, 1994; Abildskov et al., 1996; Kang et al., 2002).

There are numerous GC versions of SAFT, which differ mainly in the GC schemes
(for example, mixing rules) used. The two GC methods can be classified into
homonuclear and heteronuclear approaches.

In homonuclear approaches, molecules consist of identical monomeric segments.
Examples of homonuclear GC SAFT approaches include that of Vijande et al.
(2004), who proposed a GC version of PC-SAFT (Gross et al., 2001); Tobaly and
co-workers (Tamouza et al., 2004; Thi et al., 2005) who proposed a GC extension
to the original SAFT equation (Chapman et al., 1989, 1990), SAFT-VR (Gil-Villegas
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Figure 3: a) A heteronuclear model for MPA using the GC scheme of Chremos et al. (2016).
The different segments represent the CH2OH, CH2 and CH2NH2 (from left to
right). The association sites are represented by the small spheres: the lone pairs
of electrons (green) and hydrogens (black) on the amino and hydroxyl functional
groups. b) A homonuclear model for MPA with identical segments. c) The skele-
tal formula for MPA. This figure is based on that of Graham et al. (2017).

et al., 1997; Galindo et al., 1998) and PC-SAFT (Gross et al., 2001); and Tihic et al.
(2007) who applied the GC scheme of Constantinou and Gani (1994) to a sim-
plified version of PC-SAFT (von Solms et al., 2003). Within homonuclear GC ap-
proaches, the equation of state parameters are obtained by averaging parameters
associated with chemical functional groups using group contribution rules (for ex-
ample, Equations (11)-(14) in Tamouza et al. (2004) in Tamouza et al. (2004)). To
ensure that the functional group parameters are applicable for a large number of
different molecules, parameters are estimated from experimental data for a wide
range of different molecules that contain the functional groups.

Within heteronuclear GC SAFT methods, the averaging step is not needed as
the monomeric segments used to model compounds are not identical (Sauer et al.,
2014). Heteronuclear GC SAFT methods include SAFT-γ SW (Lymperiadis et al.,
2007, 2008a), GC-SAFT-VR (Peng et al., 2009), and SAFT-γ Mie (Papaioannou et al.,
2014), which is a GC extension to SAFT-VR Mie (Lafitte et al., 2013b). More re-
cently, a GC extension to perturbed-chain polar SAFT (GPC-SAFT) has also been
proposed (Sauer et al., 2014).

In Figure 3 we demonstrate the difference between a homonuclear and heteronu-
clear SAFT model for 3-amino-1-propanol (MPA). In Figure 3a), a heteronuclear
model is shown following the SAFT-γ SW model of Chremos et al. (2016). In Fig-
ure 3b) a homonuclear model of MPA is shown for comparison. In the molecular
(homonuclear) version, each segment is identical, and it is not possible to assign
a specific functional group to a monomeric segment. GC versions of SAFT extend
the predictive capabilities of the SAFT approach and are highly suited for the
formulation of CAMD and CAMPD problems.
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2.2.3 Model development in SAFT

When developing a SAFT model for a molecule, typically a few parameters are
assigned prior to the parameter estimation procedure. These define the basic struc-
ture of the molecular model: the number of segments and the association scheme
(number and types of association sites). The remaining unknown parameters are
then regressed by minimizing an objective function that characterises the devia-
tions between the values of thermodynamic properties predicted by the model and
the experimental measurements. In Table 1 we summarise the pure component pa-
rameters required for SAFT-VR SW and SAFT-VR Mie. The thermodynamic prop-
erties chosen are typically those that are easily measured experimentally (usually
saturated liquid densities and vapour pressures). In Chapter 4 we will discuss
in detail the inclusion of different types of thermodynamic property (in particu-
lar, second derivative properties such as heat capacity) in the parameter regression
step, when formulating the parameter estimation as a multi-objective optimization
problem.

The parameters required to model a functional group, k within a SAFT-γ SW
and SAFT-γ Mie are listed in Table 2. Unlike group-group interactions may be
obtained from pure component data alone within a GC approach, however, more
robust parameter values can be obtained by including mixture data in the regres-
sion, e.g., enthalpies of mixing or binary phase equilibrium data. The main unlike
interaction parameter to be estimated is the dispersive energy ǫkl between group
k and group l. Unlike interaction parameters that are not regressed may be ob-
tained using combining rules. These can be found in (Lymperiadis et al., 2007) for
SAFT-γ SW, in (Dufal et al., 2015b) for SAFT-VR Mie, and in (Papaioannou et al.,
2014) for SAFT-γ Mie.

In Chapter 4 we will discuss the issues regarding the formulation and solution
of the parameter estimation problem, in particular the non-convexity of the opti-
mization problem and issues regarding parameter degeneracy.

To develop mixture models based on homonuclear versions of SAFT, additional
parameters often need to be estimated based on multicomponent (usually binary)
phase-equilibrium data, such as vapour-liquid equilibrium or liquid-liquid equi-
librium. It is usually sufficient to estimate unlike energy parameters for dispersive
interactions (ǫij between compounds i and j) and, if relevant, for association in-
teractions (ǫHB

abij between sites of type a on compound i and sites of type b on
compound j). Occasionally, the unlike range parameters also need to be estimated
from the data to increase model accuracy (e.g., see (Papaioannou et al., 2016)).
Once again, any unlike parameter not regressed to experimental data can be ob-
tained from the like parameters using combining rules. For example, the unlike
size parameter (σij) required to describe the interactions between a compound i

with diameter σi and a compound j with diameter σj can be obtained by taking
the average of the like segment diameters:

σij =
σii + σjj

2
, (5)

The combining rules for other unlike parameters can be found in (Galindo et al.,
1998) for SAFT-VR SW, in (Dufal et al., 2015b) for SAFT-VR Mie, in (Lymperiadis
et al., 2007) for SAFT-γ SW and in (Papaioannou et al., 2014) for SAFT-γ Mie.
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Table 1: Parameters required to model pure components in SAFT-VR Mie and SAFT-VR
SW homonuclear approaches.

Parameter Definition Potential

mi Number of segments in molecule i Mie, SW

σi Diameter of monomeric segments in molecule i Mie, SW

ǫi Depth of potential well between segments in molecule i Mie, SW

λi Width of potential well for segments in molecule i SW

λai Attractive exponent of the Mie potential for segments Mie

in molecule i (usually set to 6)

λri Repulsive exponent of the Mie potential for segments Mie

in molecule i

NSTi Number of site types on molecule i Mie, SW

na,i Number of sites of type a on molecule i, a = 1, . . . ,NSTi Mie, SW

ǫHB
abii Association energy between sites of types a and b Mie, SW

on two molecules of type i, a = 1, . . . ,NSTi,

b = 1, . . . ,NSTi

rcabii or Kabii Range of association or bonding volume between sites Mie, SW

of types a and b on two molecules of type i,

a = 1, . . . ,NSTi, b = 1, . . . ,NSTi
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Table 2: Parameters needed to model group self-interactions in SAFT-γ Mie and SAFT-γ
SW heteronuclear group-contribution approaches.

Parameter Definition Potential

νi,k Number of groups of type k in molecule i Mie, SW

ν∗
k Number of identical segments in group k Mie, SW

Sk Shape factor of segments in group k Mie, SW

(Proportional free energy contribution)

σk Diameter of segments in group k Mie, SW

ǫk Depth of potential well for segments in group k Mie, SW

λk Width of potential well for segments in group k SW

λak Attractive exponent of the Mie potential Mie

for segments in group k (usually set to 6)

λrk Repulsive exponent of the Mie potential Mie

for segments in group k

NSTk Number of site types on group k Mie, SW

na,k Number of sites of type a on group k, a = 1, . . . ,NSTk Mie, SW

ǫHB
abkk Association energy between sites of types a and b Mie, SW

on two groups of type k, a = 1, . . . ,NSTk,

b = 1, . . . ,NSTk

rcabkk or Kabkk Range of association or bonding volume between sites Mie, SW

of types a and b on two groups of type k,

a = 1, . . . ,NSTk, b = 1, . . . ,NSTk
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2.2.4 SAFT models for physical absorption systems

In this section we present some examples of how CO2 physical absorption mix-
tures have been treated using SAFT-VR and SAFT-γ equations of state. For an
overview of the thermodynamic models discussed in this section and their in-
corporation into a process model for the formulation of a CAMPD problem, the
reader is referred to Section 1.4.1 of Graham et al. (2017).

Pereira et al. (2011a) considered the series of n-alkanes as potential solvents for
the separation of CO2 from methane. The thermodynamics of these mixtures were
modelled using SAFT-VR SW (Gil-Villegas et al., 1997; Galindo et al., 1998). Within
this approach, the SAFT parameters were determined as a function of the average
number of carbon atoms in the mixture, following McCabe and Jackson (1999)
and Paricaud et al. (2004a). Pure component parameters for CO2 and CH4 were
taken from a previous study (Galindo and Blas, 2002; Blas and Galindo, 2002),
where the CO2 parameters were scaled to match its critical point. Unlike inter-
action parameters between CH4, CO2 and the n-alkanes were determined from
experimental data for CH4, CO2 and n-decane (C10), and a single unlike interac-
tion energy, ǫij, was regressed for each pair of species. This lead to an accurate
description of the phase behaviour for a wide range of CO2+n-alkane mixtures (up
to hexadecane). This is due to the transferability of SAFT-VR parameters within a
homologous series (e.g., see (Galindo and Blas, 2002; Blas and Galindo, 2002)). The
ternary phase behaviour of the CH4+CO2+C10 mixture was predicted accurately,
and the cross-interaction parameters were found to be transferable to other mix-
tures of CH4+CO2+n-alkane. By formulating the SAFT parameters as a function
of the number of carbon atoms, Pereira et al. (2011a) were able to formulate the
full CAMPD problem using these models.

Burger et al. (2015) developed group parameters within the SAFT-γ Mie frame-
work to describe linear alkanes and ethers, and oxygenated compounds sugh as
diethers and glymes. Groups consisted of CH3, CH2, and two different oxygen
functional groups, cO (an oxygen atom bonded to two CH2 groups) and eO (an
oxygen near the end of the molecule bonded to a CH3 group). Two separate oxygen
groups were considered in order to distinguish between structural isomers (e.g.,
methylpropylether and diethylether), and to account for the proximity effects of
adjacent functional groups. Pure component vapour pressure and saturated liquid
density, as well as binary phase equilibrium data was used to regress the group
parameters. This lead to an accurate prediction of the vapour pressure for pure sol-
vents not included in the parameter regression (e.g., a series of ethers).Then CO2

and CH4 parameters functional groups were taken from previous work Papaioan-
nou (2013); Dufal et al. (2014). The unlike interactions between CO2 and solvent
functional groups were estimated from binary mixture data, and the models ob-
tained were able to accurately predict the phase behaviour of binary mixtures of
solvents and CO2. This exemplifies that the SAFT-γ Mie EoS is able to accurately
model a wide variety of solvents with only a small set of parameters. Through this
group contribution approach, Burger et al. (2015) were able to formulate a CAMPD
problem and identified penta(oxymethylene)dimethylether as an optimal solvent.

Another noteworthy example where SAFT has been applied to physisorption
systems is the work of (Sauer et al., 2014), who developed models for the GPC-
SAFT EoS. Sauer et al. (2014) developed GPC-SAFT parameters for non-polar and
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polar functional groups, regressing parameters to pure component vapour pres-
sure and saturated liquid density data. Polar groups required an additional term
in order to describe interactions due to their dipole moment. Since CO2 has a
strong quadrupole moment, it can interact favourably with polar groups (Aschen-
brenner and Styring, 2010), offering a different mode of absorption compared to
non-polar solvents. Following this work Lampe et al. (2015) were able to formu-
late and solve the full CAMPD problem for the design of both polar and non-polar
solvents for physisorption processes.

2.3 describing chemical equilibria with saft

In this section we will discuss thermodynamic approaches to modelling of flu-
ids in which chemical reactions occur. Of particular interest in modelling CO2

chemisorption processes are the reactions present in mixtures of CO2 and aque-
ous alkanolamines. A number of theoretical and experimental investigations have
been carried out in order to determine the reaction mechanisms and reaction kinet-
ics of these systems (see e.g., (Caplow, 1968; Hikita et al., 1977; Danckwerts, 1979a;
Astarita and Savage, 1980; Laddha and Danckwerts, 1981; Penny and Ritter, 1983;
Blauwhoff et al., 1984; Arstad et al., 2007; McCann et al., 2009; Hwang et al., 2015)).
Solvents composed of primary and seconday amines, e.g., monoethanolamine
(MEA) and diethanolamine (DEA), react to form a carbamate. The true reaction
mechanism is not fully understood (Hwang et al., 2015), but the key mechanisms
proposed in the literature involve the formation of a zwitterionic form of the car-
bamate (McCann et al., 2009; Caplow, 1968; Arstad et al., 2007), followed by a
proton exchange reaction with a base (either another amine molecule or water).
The reaction can thus be represented as (Mac Dowell et al., 2010):

CO2+2 R1R2NH ⇋ [R1R2NCO –
2 + R1R2NH +

2 ]. (r1)

The other main reactions are carbamate hydrolysis:

R1R2NCO –
2 + H2O ⇋ R1R2NH + HCO –

3 , (r2)

and bicarbonate formation:

CO2 + OH–
⇋ HCO –

3 . (r3)

The equilibrium governed by (r2) is only important at high CO2 loadings for non-
sterically hindered amines (e.g., MEA). For aqueous MEA, the CO2 loading due
to chemisorption is therefore limited to approximately 0.5 under practical process
operating conditions, although further CO2 can be absorbed by physisorption at
high CO2 partial pressures. For sterically hindered amines, e.g., MDEA (N-methyl
diethanolamine) and AMP (2-amino-2-methyl-1-propanol), the carbamate hydrol-
ysis reaction is important due to the presence of a bulky substituent adjacent to
the amino group which leads to a reduced stability of the carbamate. Hence, for
these amines carbamate reversion (r2) is favourable and loadings can approach
approximately 1 under realistic operating pressures (Jou et al., 1982; Sartori and
Savage, 1983; Mac Dowell et al., 2010).
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2.3.1 Chemical and physical approaches to modelling reactions

In this section we will briefly compare two main types of thermodynamic ap-
proaches used to model chemical equilibrium: approaches based on chemical the-
ory and approaches based on physical theory.

2.3.1.1 The chemical approach

Approaches based on chemical theory are most commonly used (see e.g., (Doleza-
lek, 1908; Fredenslund et al., 1975; Song and Chen, 2009; Zhang et al., 2011c; Fre-
denslund, 1977; Prausnitz et al., 1998)). In such methods, the reaction products are
identified a priori and are treated explicitly within the thermodynamic model. To
explain this point, we consider a simple mixture of ‘A’ and ‘B’ reactants and the
reaction:

A + B ⇋ AB. (6)

In chemical approaches, the fluid consists of three types of species: A, B and AB,
which are in chemical equilibrium defined by the equation

K(T) =
aAB

aAaB
, (7)

where K(T) is the equilibrium constant (a function of temperature) and ai is the
activity of species i. K(T) is related to the standard change in Gibbs free energy
(∆G0) of the forward reaction by K(T) = exp(−∆G0/(RT)), where R is the gas
constant. (Gray et al., 2011). In Equation 7, activities can be replaced with concen-
trations when an ideal mixture is assumed, otherwise there are more sophisticated
methods to relate the concentrations to activities (e.g. using an equation of state).

Electrolyte extensions to activity coefficient based models have been used to
model CO2+amine(aq) mixtures for a few well-known solvents (Austgen et al.,
1989; Bollas et al., 2008; Faramarzi et al., 2009; Hessen et al., 2010; Zhang et al.,
2011c; Al-Rashed and Ali, 2012; Sadegh et al., 2015). These approaches include
eNRTL (Chen and Evans, 1986b; Bollas et al., 2008) and extended UNIQUAC
(Thomsen and Rasmussen, 1999). Such methods are successful in correlating mix-
ture properties where experimental data is available. The chemical or explicit ap-
proach can also be applied to SAFT-type equations for modelling the simultaneous
chemical and phase equilibria of CO2 capture mixtures, since extensions of SAFT
EoSs have been developed to explicitly treat the ionic species formed from reac-
tions (see e.g., (Galindo et al., 1999; Gil-Villegas et al., 2001; Patel et al., 2003a; Be-
hzadi et al., 2005; Cameretti et al., 2005; Held et al., 2008; Held and Sadowski, 2009;
Schreckenberg et al., 2014)). No complete SAFT-based model using the chemical
approach for CO2+amine+H2O mixtures has yet been proposed, but Zhang et al.
(2011c) proposed a chemical approach which utilises the eNRTL equation for the
liquid phase and the PC-SAFT equation of state Gross et al. (2001) to obtain the fu-
gacity coefficients of the vapour phase (assuming that no ionic species are present
in the gas phase).
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2.3.1.2 The physical approach

In contrast to chemical approaches, within physical approaches the reaction prod-
ucts are treated implicitly as aggregates of the reactants. Reaction products form
due to intermolecular forces, similar to the association approach used to model
hydrogen bonding. This does not require that the reaction products be defined ex-
plicitly, and any reaction product may form if this is permitted by the association
scheme. Thus, aggregates such as dimers, trimers or higher s-mers (even chains
of infinite length) may form if the association scheme permits this. Within SAFT
reactions can be modelled by the addition of association sites that enable chemical
binding. Referring back to Eq. (6), the thermodynamics of the mixture of ‘A’ and
‘B’ molecules can thus be defined as a function of the mixture temperature and
pressure, and the apparent concentrations of the two species. The chemical equi-
librium is defined implicitly by defining the association interactions, particularly
the types, number, energy and bonding volumes of the association sites. The the-
ory of chemical association within SAFT is due to a series of papers by Wertheim
(Wertheim, 1984a,b, 1986a,b). Within this work, association is accounted for us-
ing "sticky spot" models, where molecules associate due to an attractive potential
placed on the outside of a repulsive core. This interaction essentially captures
a quantum mechanical effect, corresponding to the change in internal electronic
configurations and rotational degrees of freedom upon association, which would
otherwise appear in the enthalpy and entropy of formation in an explicit treatment
of the reactions and thus present in AIDEAL. With such an approach, it is possible
to develop models for reactive mixtures (here, CO2, water and solvent) without ex-
plicitly defining reaction products or specifying equilibrium constants (Gray et al.,
2011). The species concentrations may be approximated via a statistical analysis on
the fractions of association sites (computed implicitly within the SAFT equation)
(Jackson et al., 1988; Rodríguez et al., 2012).

Various studies have been conducted in order to determine the equivalence be-
tween physical and chemical approaches. Economou and Donohue (1991) showed
that results obtained by chemical and perturbation theory are essentially the same
in terms of their functional form, given that the correct reaction stoichiometry
is provided. This is shown for the association contribution to the compressibility
factor, ZASSOC., and the mole fraction of monomers in the system predicted by
both theories. The results were also shown to be numerically indistinguishable
(Elliott Jr et al., 1990; Economou and Donohue, 1991). The equations which relate
molecular to macroscopic properties in chemical theory contain parameters which
are accessible experimentally, whereas the parameters within perturbation theo-
ries, although deterministic, cannot be readily accessed experimentally (although
they can be fitted to experimental data) (Economou and Donohue, 1991). Bala and
Lira (2016) showed that the association strength (∆AB) in Wertheim’s theory is
equivalent to the concentration-based equilibrium constant used in Flory’s poly-
merization theory by considering chains with one acceptor and one donor site.

The parameters obtained within the physical theory to describe the association
interactions (association strength and bonding volume) can thus be related to the
equilibrium constant. An advantage of the physical approach over the chemical
approach is that the parameters that define the association potential are not func-
tions of the thermodynamic state. Since the equilibrium constant is a function of
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temperature, large sets of experimental (speciation) data are required over various
temperatures.

We will now illustrate how a physical association scheme can be used to model
the reactions that occur when CO2 absorbs into an aqueous MEA solution. This
association scheme was proposed by Mac Dowell et al. (2011) and Rodríguez et al.
(2012) for modelling the thermodynamics of this system using the SAFT-VR SW
equation of state. The addition of two association sites, α1 and α2 on the CO2

molecule which interact with the e∗ site on the MEA molecule leads to the physical
treatment of the following reactions (shown schematically in Figure 4):

CO2 + 2 HO(CH2)2NH2 ⇋ [HO(CH2)2NHCOO– + HO(CH2)2NH +
3 ], (r4)

MEA Carbamate pair

HO(CH2)2NHCOO– + H3O+
⇋ [HO(CH2)2NH +

3 + HCO –
3 ]. (r5)

Bicarbonate pair

The square brackets represent ion pairs and these are assumed to be tightly bound
species. The carbamate pair consists of a CO2 molecule that is associated with two
MEA molecules, thus a CO2 molecule for which both association sites are bonded
is taken to exist in a carbamate structure. The bicarbonate pair consists of a CO2

molecule that is bonded to one MEA molecule, thus a CO2 molecule for which
only one association site is bonded (α1 or α2), the CO2 is taken to exist in the
form of a bicarbonate ion pair (cf Figure 4). The inherent assumption made in
this physical approach is that the ion pairs are aggregated species with no overall
charge, which is somewhat justified by the low dielectric constant of aqueous
alkanolamines relative to water, leading to stron ion pairing.

Although this treatment is simple compared to a with an explicit chemical ap-
proach, it can be used to predict the concentrations of carbamate and bicarbon-
ate with remarkable accuracy over various CO2 loadings and temperatures (Ro-
dríguez et al., 2012; Chremos et al., 2016), given that no speciation data needs to
be used in model development. One must be careful when using a physical ap-
proach if the reaction products are chemically very different from the reactants,
since interactions between monomeric segments and the association sites in the
reaction product may be different to that of the reactants.

For CO2 reacting with aqueous amines, the physical description is a reasonable
assumption since the ions are strongly paired and the reactions are reversible,
indicating that the intermolecular potentials of species in their free or aggregated
forms are similar.

2.3.1.3 Comparison of chemical and physical approaches

The majority of thermodynamic models used to describe CO2 in aqueous amines
follow a chemical approach to treat the reactions. Chemical approaches are usu-
ally more accurate than those based on physical theory. The current state-of-the-
art model for CO2 + aqeous MEA is that of Zhang et al. (2011c), who used the
electrolyte NRTL model (Song and Chen, 2009) to model the relevant chemical
equilibria. Within this model, the long-range ionic interactions and short range
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Figure 4: Schematic to show how the addition of association sites leads to the formation
of the expected reaction products for CO2 in an aqueous MEA solution: the
bicarbonate pair (zwitterion) and carbamate pair. This association scheme was
developed by Mac Dowell et al. (2011) and Rodríguez et al. (2012) .

interactions are treated explicitly for nine major ionic and neutral species in the
solution. This model provides an accurate description of the vapour-liquid equilib-
ria (VLE), heat capacity, and speciation. An accurate representation of the enthalpy
of absorption is also achieved at low temperatures and for loadings of up to 0.5
mol CO2 per mol of amine, with larger deviations observed at higher temperatures
and/or higher loadings.

The high level of accuracy required a high experimental effort however, since
different types of data were required over a wide range of thermodynamic con-
ditions for the model parametrization. These properties included VLE, enthalpy
of absorption, heat capacity and NMR spectroscopic data for the MEA–H2O–CO2

ternary system. Standard state properties of the amine ions, MEA protonate and
carbamate were also required. Furthermore, when developing a chemical model,
the reaction scheme must be postulated a priori. This becomes increasingly chal-
lenging as the number of reactions increases since temperature-dependent data is
required to derive an expression for each equilibrium constant. As a result of this
high reliance on experimental data, there is currently no chemical approach that
enables the prediction of the thermodynamics of mixtures of CO2 in solvents for
which no data or very limited data are available.

Contrastingly, physical approaches (available to SAFT-type EoSs) can be devel-
oped with limited data (or even no data), offering a way to compare the likely
performance of different solvents. To develop homonuclear models for a ternary
mixture of CO2 and aqueous amine, a relatively small amount of data is required
(in terms of the number of data points and data types). Thus, it suffices to have
vapour-liquid equilibrium data on the apparent mole fractions of CO2, H2O and
amine at a few temperatures and pressures, and importantly no speciation data
are required.

This is due to the temperature-independence of the SAFT parameters and the
fact that only three components (CO2, amine and H2O) need to be modelled explic-
itly. Due to their strong theoretical basis, SAFT parameters can be highly transfer-
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able between different compounds. For example, some of the association parame-
ters in MEA can be obtained from models for alkanols and alkylamines (Mac Dow-
ell et al., 2010, 2011), and parameters can be transferred from one alkanolamine
to another Rodríguez et al. (2012). SAFT models for new solvents can therefore
typically be derived using limited data sets. For heteronuclear models, Chremos
et al. (2013, 2016) have shown that the SAFT-γ SW group contribution EoS can
be successfully used to model these types of reactive systems. This gives a strong
indication that different solvents and solvent blends can be modelled predictively
without extensively relying on experimental data.

SAFT-based models combined with a physical approach to the reactions are
clearly benificial for providing an initial assessment of the carbon capture potential
of new solvents. Chemical models can then provide a more detailed representation
of the thermodynamic behaviour once necessary experimental data are available
for parameter regression. Physical models can thus help guide experimental effort
towards promising candidate solvents, while chemical models can assist in the
more detailed design of the CO2 capture process. Due to the explicit treatment of
all major species within a chemical model, reaction kinetics may be easily incorpo-
rated into a chemical model. Similarly, diffusion can be modelled rigorously, for
example the effect of ionic strength on mass transfer can be explicitly accounted
for. Chemical approaches are therefore vital for the accurate modelling of a carbon
capture process, and are necessary in order to fully assess potential solvents.

The development of accurate chemical models is well-understood Zhang et al.
(2011c), so we will focus the remainder of this section on the development of
thermodynamic models for CO2 chemisorption processes that follow a physical
approach.

2.3.2 Modelling aqueous mixtures of amine solvents and CO2

Button and Gubbins (1999) were the first authors to propose a SAFT model for
CO2 + aqueous amine mixtures. In their work, the original SAFT EoS (Chapman
et al., 1989, 1990) was used to predict the VLE of mixtures consisting of CO2, and
MEA(aq) or DEA(aq). CO2 was modelled using a four site association scheme to
account for interactions occurring due to its strong quadrupole moment (including
its ability to form complexes with amines). Water was modelled using a four-site
(4C) association scheme. Five association sites were used to model MEA: two sites
of type e (one representing the two lone pairs on the OH group and the other rep-
resenting the lone pair on NH2), and three identical sites of type H representing
the hydrogen atoms. Since only two site types were used for MEA, this associa-
tion scheme considers that the association parameters for hydrogen bonds formed
by nitrogen atoms and oxygen atoms are the same (which is not in-keeping with
the known differences in these bond strengths). This simplification leads to a re-
duction in the number of adjustable parameters. All pure component parameters
were determined from pure component data (vapour pressure and saturated liq-
uid density). For the binary mixtures (excluding CO2 + amine), a single adjustable
parameter (the dispersive energy) was adjusted to pressure - mole fraction data.
All cross interaction parameters were determined using combining rules. Thus,
thermodynamic calculations for the ternary mixture were fully predicted. Follow-
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ing this method, predictions of reasonable accuracy were obtained for the liquid
mole fractions in the ternary mixture, but small deviations in the liquid mole frac-
tions lead to large deviations in the predicted CO2 loading, leading to a relatively
large average error (62%) in the pressure or composition for the MEA mixtures.
Note that Button and Gubbins (1999) do not use experimental data for the reactive
ternary mixture in the parameter regression.

Following the work of Button and Gubbins (1999), Mac Dowell et al. (2010)
developed models for the SAFT-VR SW EoS to describe CO2+MEA+H2O. The au-
thors considered a symmetric and asymmetric association scheme to model MEA.
In the asymmetric scheme, the difference in association parameters between the
amine and hydroxyl functional groups is considered explicitly, in contrast to the
symmetric scheme as in the models proposed by Button and Gubbins (1999). The
asymmetric model was found to offer a superior description of the MEA+H2O
phase behaviour and of the CO2 partial pressure above the ternary mixture. This
work exploited the transferability of the SAFT parameters by taking the hydrogen-
bonding parameters for MEA from a separate study of ethanol and ethylamine
and their aqueous solutions. The reactions were modelled using the physical asso-
ciation scheme outlined in Section 2.3. Ternary mixture data (CO2 partial pressure)
was required to regress the cross-association parameters for the α1 and α2 sites
on CO2.

In subsequent work, a similar treatment of the reactions was used to model CO2

and aqueous alkylamines Mac Dowell et al. (2011) within the SAFT-VR SW frame-
work, including n-alkylamines up to n-hexylamine. In this case, the reactions be-
tween CO2 and the amines were modelled by including a single association site on
CO2 which interacts with the electron site on the n-alkylamine molecules. The pa-
rameters describing the interaction between CO2 and NH3 were obtained by com-
parison to experimental data for the NH3+H2O+CO2 ternary mixture. These were
found to be transferable to other n-alkylamines, providing accurate predictions of
the phase behaviour for ternary mixtures of CO2+n-propylamine+H2O, CO2+n-
butylamine+H2O and CO2 + n-hexylamine + H2O. The authors observed sepa-
rate regions of vapour-liquid and liquid-liquid coexistence for the n-hexylamine +
CO2 + H2O system. This de-mixing could be advantageous in a chemisorption pro-
cess. If the loaded amine solution splits into two liquid phases after the absorber
(e.g., upon heating), only the CO2-rich phase needs to be input into the desorber
(Svendsen et al., 2011), leading to a reduced energy requirement in the reboiler.
Numerous experimental studies have been conducted to search for amine solvents
that phase split (see e.g., (Zhang et al., 2011a,b, 2012a,b)). n-hexylamine has been
identified as a promising thermomorphic biphasic solvent (Zhang et al., 2011b,
2012a,b) due to a liquid-liquid phase separation upon heating. The prediction of
this phase split by Mac Dowell et al. (2011) demonstrates the advantage of using
predictive thermodynamic models in the search for better CO2 capture solvents.

Rodríguez et al. (2012) extended on the work of Mac Dowell et al. (2011) to in-
clude different multifunctional amines, including diethanolamine (DEA), methyl-
diethanolamine (MDEA), and 2-amino-2-methyl-1-propanol (AMP). Reliance on
experimental VLE data was minimized by making use of the transferability of
the SAFT parameters. Extensive use was made of parameter transferability in de-
veloping the models, with the aim to minimise reliance on VLE data. A good
description of the vapour pressures and liquid densities of the binary and ternary
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mixtures was obtained. The concentration of bicarbonate and carbamate for the
MEA+CO2+H2O mixture was found to compare favourably with the NMR spec-
trocopic study of Böttinger et al. (2008).

Recently, Wang et al. (2018a) modelled MEA+CO2+H2O using the a physical
approach using the PR-CPA equation of state. They used a similar approach to
Mac Dowell et al. (2009), but also account for the solvation between CO2 and H2O
via the addition of a single association site.

Given that the SAFT parameters were found to be highly transferable between
different homonuclear models for describing CO2 chemisorption solvents, Chre-
mos et al. (2016) investigated the effectiveness of the group contribution equa-
tion of state, SAFT-γ SW for modelling various primary alkanolamines (for ex-
ample, MEA and MPA). This is the first work where CO2 chemisorption sol-
vents have been considered within a group-contribution framework work. A small
set of functional groups were developed (CO2, H2O, CH2, CH3, NH2CH2 and
CH2OH) in order to model a range of CO2+H2O+primary alkanolamine mixtures.
Experimental data consisted of pure alkylamines and alkanolamines, and mix-
ture data where available. Due to the transferability of the group parameters, a
single set of parameters was sufficient to describe the phase behaviour of any
primary alkanolamine with an alkyl chain length consisting of three or more car-
bons (monopropanolamine onwards). Accurate predictions were also obtained for
molecules not included in the parameter estimation (5-amino-1-pentanol and 6-
amino-1-hexanol), demonstrating the predictiveness of the approach. In order to
treat MEA, Chremos et al. (2016) adopted the concept of second-order groups (see
e.g., (Constantinou and Gani, 1994; Abildskov et al., 1996; Kang et al., 2002)). This
was required due to the importance of proximity effects in this molecule, i.e., the
CH2 groups present in the molecule are polarised by nearby NH2 and OH groups.
An improved description of the MEA+H2O system was then obtained, and the
phase behaviour of the ternary CO2+H2O+MEA mixture was described with bet-
ter accuracy. In addition, the concentrations of bicarbonate and carbamate were
predicted accurately for this reactive mixture, as shown in Figure 5. The predictive
capabilities of SAFT-γ were further demonstrated by predicting the solubility of
CO2 in a quaternary H2O+CO2+MEA+MPA mixture.

2.4 conclusions

In this introductory chapter we have set the context of this thesis, i.e., the need to
develop advanced thermodynamic models for CO2 absorption processes. By com-
bining predictive molecular-based thermodynamic models with computer-aided
molecular and process design, one can provide design decisions on improved sol-
vents in order to guide further experimental investigations. This helps reduce the
time and investment required to design more optimal processes. The develop-
ment of advanced thermodynamic models rooted in molecular theory, including
techniques to describe reactions, is an important task in realizing this potential.

Due to the recent advancements in SAFT equations of state, in particular the
development of a group contribution framework and the use of the Mie potential
in the SAFT-γ Mie equation, one can reliably predict a range of thermodynamic
properties over a wide range of process conditions for novel solvents and their
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Figure 5: Predicted mole fraction, x, of carbamate and bicarbonate in the liquid phase of
a 30 wt% MEA aqueous solution at T = 313.15 K (circles) and 333.15 K (squares)
at vapour-liquid equilibrium for the ternary mixture of MEA + H2O + CO2 as
a function of the CO2 loading, θCO2

, defined as the number of moles of CO2

absorbed in the liquid phase per mole of amine in the liquid. The symbols cor-
respond to the experimental data (Jou et al., 1995; Böttinger et al., 2008) with
open symbols corresponding to carbamate and filled symbols to bicarbonate. The
curves correspond to the SAFT-γ SW predictions; continuous curves for 313.15

K and dot-dashed curves for 333.15 K. This figure is modified from reference
(Graham et al., 2017).
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mixtures. In the context of chemical absorption, the physical approach to associ-
ation is particularly advantageous for the prediction of the phase and chemical
equilibria of mixtures of CO2, amines, and water. These models are thus partic-
ularly suited for molecular systems engineering approach, and thus new groups
and their parameters are currently being developed (Papaioannou et al., 2016; Sad-
eqzadeh et al., 2016; Chremos et al., 2016; Dufal et al., 2014), so that an increasingly
wide range of structures can be described within the SAFT framework.

Due to the advancements made in the thermodynamic model, several method-
ologies have been put forward to solve CAMPD problems that are able to span
large search spaces. Although CAMD or CAMPD is not explored in this thesis,
the use of SAFT-type models in such problems (see e.g., (Pereira et al., 2011a, 2008;
Lampe et al., 2015; Papadokonstantakis et al., 2015; Burger et al., 2015)) is certainly
advantageous for the design of suitable solvents/ solvent blends.

2.5 appendix : the saft-vr mie equations

In this appendix we will summarize the main equations used in the SAFT-VR
Mie equation of state. For a more detailed description of the equation and its
derivation, the reader is referred to Lafitte et al. (2013a). The equtaions presented
here have the same notation as Dufal et al. (2015a) and Dufal et al. (2015b).

The general SAFT EoS for a nonassociating system can be expressed as:

A = Aideal +Amonomer +Achain +Aassoc (8)

where A is the Helmholtz free energy. The right hand side represents the addi-
tive contributions corresponding to a different type of molecular interaction. Con-
ceptually, one can imagine first an ideal gas of particles. The monomer term on the
right hand side of Equation 8 represents the change in free energy when adding an
interaction between monomeric segments. The chain term represents the change
in free energy due to grouping molecular segments as chains (each comprising of
m monomeric segments), thus inferring a shape to the molecule. The association
term accounts for non-spherical interactions such as hydrogen bonding interac-
tions or other types of association.

2.5.1 Ideal term

The ideal term is given by:

Aideal = NkBT(ln(ρΛ3) − 1) (9)

where N is the number of molecules, kB is the Boltzmann constant, T the absolute
temperature, ρ = N/V the volume and Λ3 is the de Broigle volume which incor-
porates all of the kinetic (rotational, translational and vibrational) contributions to
the partition function.
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2.5.2 Monomer term

Within SAFT-VR Mie, the Helmholtz free energy of a monomer fluid is expressed
as a high-temperature (Barker Henderson) perturbation expansion up to third or-
der in inverse temperature:

Amonomer

NKBT
= m

(

aHS +
a1

kBT
+

a2

(kBT)2
+

a3

(kBT)3

)

. (10)

For pure components the free energy of the reference hard sphere (HS) sstem is
obtained from the Carnahan and Starling EoS:

aHS =
4η− 3η2

(1− η2)
(11)

where η = ρsπd
3/6 is the packing fraction of the reference HS system and ρs =

Ns/V is the segment density of the Mie fluid with Ns = Nm, i.e., the total number
density of segments. The Barker and Henderson effective HS diameter d(T) is
given by:

d(T) =

∫∞

0

1− exp(
uMie(r)

kBT
)dr. (12)

The first-order perturbation contribution of the SAFT-VR Mie EoS is given by

a1 = C(λr, λa)
[

xλa

0 (aS
1(η; λa) +B(η; λa)) − xλr

0 (aS
1(η; λr) +B(η; λr))

]

, (13)

where x0 = σ/d and

B(η, λ) = 12ηε

(

1− η/2

(1− η)3

(

1− x3−λ
0

λ− 3

)

−
9η(1+ η)

2(1− η)3
Jλ(λ)

)

, (14)

where

Jλ(λ) = −
x4−λ
0 (λ− 3) − x3−λ

0 (λ− 4) − 1

(λ− 3)(λ− 4)
(15)

for λ = λa or λ = λr. aS
1 is given by:

aS
1(η, λ) = −12εη

(

1

λ− 3

)

(1− ηeff(η; λ)/2)
(1− ηeff(η; λ))3

, (16)

where
ηeff(η, λ) = c1(λ)η+ c2(λ)η

2 + c3(λ)η
3 + c4(λ)η

4. (17)

For the coefficients c1, c2, c3 and c4 the reader is referred to Lafitte et al. (2013a)
(Equation 41). The second order perturbation term is given by

a2 =
KHS

2
(1+ χ)εC2(λr, λa)[x2λa

0 (aS
1(η; 2λa) +B(η; 2λa))

− 2xλa+λr

0 (aS
1(η; λa + λr) +B(η; λa + λr))

+ x2λr

0 (aS
1(η; 2λr) +B(η; 2λr))],

(18)
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where KHS is the isothermal compressibility of the hard-spere reference fluid, ob-
tained from the Carnahan and Starling expression for the compressiblity factor as

KHS =
(1− η)4

1+ 4η+ 4η2 − 4η3 + η4
(19)

and
χ = f1(α)ηx

3
0 + f2(α)(ηx

3
0)

5 + f3(α)(ηx
3
0)

8. (20)

fi(α) are given by

fi(α) =

∑3
n=0φi,nα

n

1+
∑6

n=4φi,nαn−3
(21)

where the integrated attractive energy α is given by

α = C(λa, λr)
(

1

λa − 3

1

λr − 3

)

. (22)

For the coefficients φi,n the reader is referred to Table 2 of Lafitte et al. (2013b).
The third perturbation term is given by

a3 = −ε3f4(α)ηx
3
0exp(f5(α)ηx30 + f6(α)η

2x60) (23)

2.5.3 Chain term

The chain term is given by

Achain

NkBT
= −(m− 1)lngMie(σ). (24)

The radial distribution function of the Mie fluid is evaluated at monomer separa-
tions σ and is given by

gMie(σ) = gHS
d (σ)exp

[

g1(σ)

gHS
d (σ)

ε

kBT
+

g2(σ)

gHS
d (σ)

ε2

(kBT)2

]

. (25)

The radial distribution function of the HS fluid with spheres of diameter d evalu-
ated at σ is given by

gHS
d (σ) = exp[k0 + k1x0 + k2x

2
0 + k3x

3
0], (26)

where the ki are given by

k0 = −ln(1− η) +
42η− 39η2 + 9η3 − 2η4

6(1− η)3
(27)

k1 =
−12η+ 6η2 + η4

2(1− η)3
(28)

k2 =
−3η2

8(1− η)2
(29)

and

k3 =
3η+ 3η2 − η4

6(1− η3)
. (30)



2.5 appendix : the saft-vr mie equations 33

The first order perturbation term in Equation 25 is given by

g1(σ) =
1

2πεd3

[

3
∂a1

∂ρs
−C(λr, λa)λaxλa

0

aS
1(η; λa) +B(η; λa)

ρs

+C(λr; λa)λrxλr

0

aS
1(η; λr) +B(η; λr)

ρs

]

.

(31)

The second order perturbation term is given by

g2(σ) =
1+ γc

2πε2d3

{

3
∂a2/(1+ χ)

∂ρs
− εKHSC

2(λr, λa)

×
(

λrx
2λr

0

aS
1(η; 2λr) +B(η; 2λr)

ρs

− (λr + λa)x
λr+λa

0

aS
1(η; λr + λa) +B(η; λr + λa)

ρs

+ λax
2λa

0

aS
1(η; 2λa) +B(η; 2λa)

ρs

)}

(32)

where

γc = φ7,0(−tanh(φ7,1(φ7,2 −α) + 1))ηx30

×
(

exp
(

ε

kBT
− 1

)

exp(φ7,3ηx
3
0 +φ7,4η

2x60)

)

.
(33)

The coefficients for φ7,i, i = {0, 3, 4} can be found in Lafitte et al. (2013b).

2.5.4 The association term

The association contribution to the free energy is given as (Jackson et al., 1988)

Aassoc

NkBT
=

s∑

a=1

(

lnXa −
Xa

2

)

+
s

2
, (34)

where s represents the number of association types per molecule. The fraction of
molecules Xa with given sites a not bonded is obtained from

Xa =
1

1+ ρ
∑s

b=1 Xb∆ab
. (35)

The integrated association strength in the case that the reference fluid is a Lennard
Jones fluid is given by (Dufal et al., 2015b)

∆ab = 4πFabK
HB
ab I (36)

where
Fab = exp[εHB

ab /(kBT)] − 1 (37)

and

I =

4∑

i=0

4∑

j=0

aij[ρ
∗]i[T∗]j, (38)

where the coefficients aij can be found in Dufal et al. (2015a). KHB
ab and εHB

ab are
the bonding volume and association energy as used throughout the thesis.
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M O D E L L I N G A N A B S O R P T I O N C O L U M N W I T H S A F T- V R S W

The introductory chapter has set the context for this research, a key theme be-
ing that molecular-based equations of state can be highly predictive due to the
transferable nature of their parameters. Our focus from this point on will be on
the chemisorption of carbon dioxide in an aqueous MEA solvent. Although group
contribution methods have been shown to be highly predictive for alkanolamines,
the modelling of MEA requires second-order groups due to the proximity effect of
alkanol and amino functional groups (Chremos et al., 2016). Homonuclear meth-
ods are preferred in this study, as it will provide a fair comparison between the
SAFT-VR SW and SAFT-VR Mie equations of state, which we will show in future
chapters. Additionally, homonuclear approaches tend to be more accurate as the
parameters are particular to the compound in question. A thorough understand-
ing is required as to how to model processes when a physical approach to the
reactions is used as the technique is relatively novel, and therefore we want to
mitigate any uncertainty in the thermodynamic model as much as possible.

In this chapter, we expose a published paper on the modelling of an absorption
column using the SAFT-VR SW models of Rodríguez et al. (2012). The paper can
be found in reference (Brand et al., 2016). The majority of this work is based on the
thesis of Brand (2013); however some improvements were made to this work for
the published paper (for which I am second author). The key contributions from
myself are outlined as follows:

• SAFT-VR SW code previously being used had an inconsistency in the speci-
fication of the Boltzmann constant, kB, which lead to an error in the energy
balance. The corrected code was implemented in this work.

• In the work of Brand (2013), a correction to the energy balance was made due
to a large discrepancy between the calculated heat of absorption and experi-
ments (see Figure of Brand (2013)). It was found that the heat of absorption
was previously calculated incorrectly and the correction to the energy bal-
ance was removed for the paper.

• All process modelling results were reproduced with the corrected thermody-
namic model and process model, and diffusivity scaling parameter, τ, was
re-estimated.

• A large part of the discussion was re-written, to focus more on the physical
vs chemical approach to reactions and the usefulness of the general approach
in the context of solvent design.

3.1 introduction

Carbon dioxide (CO2) emissions are generally considered to play a major role in
climate change and particularly in global warming. Fossil fuel power plants are

35
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the major fixed point-source emitters of CO2. In response to the threat posed by
global warming, the Roadmap for 2050 set by the European Commission in 2011

suggested a reduction of greenhouse gas emissions in Europe to 25% of the 2011

value by 2020 and to 80% of the 2011 value by 2050 (The European Commission,
2011). In the recent Paris climate conference (COP21), an agreement was made
between participating parties to cut greenhouse gas emissions to a level that lim-
its the global average temperature to “well below" 2 ◦C above pre-industrial levels
and to “pursue efforts to limit the temperature increase to 1.5 ◦C" (UNFCCC, 2015).
In this context, the development of carbon capture systems must be addressed in
the short term, and amine-based post-combustion capture processes are seen as
the most promising near-term technology in terms of development and applicabil-
ity, e.g., see Mac Dowell et al. (2010). In this technique, absorption is achieved both
physically and chemically, so that significant CO2 removal can take place even at
the challenging low partial pressures of the greenhouse gas. The major advantage
of this technology is that it can be retrofitted to existing power plants.

There are however several concerns with this technology, in particular the large
energy requirements associated with solvent regeneration, the degradation of the
solvent, which is exacerbated by the presence of oxygen in the flue gas, and the
environmental and health impact that may result from solvent losses and solvent
degradation products. These issues are particularly important because of the scale
of deployment required to have a meaningful impact on CO2 emissions. There are
significant experimental programmes to identify new solvents (Paul et al., 2008;
Mangalapally et al., 2009; Bardow et al., 2010; Barzagli et al., 2012; Mangalapally
et al., 2012; Li et al., 2012; Salkuyeh and Mofarahi, 2012; Chen et al., 2015; Kortunov
et al., 2015) and several pilot-plant studies are under way (Tontiwachwuthikul
et al., 1992; Dugas, 2006; Tobiesen and Svendsen, 2006; Gabrielsen et al., 2007;
Habaki et al., 2007; Godini and Mowla, 2008; Cottrell et al., 2009; Notz et al., 2012;
Akram et al., 2016). Modelling studies can play an invaluable and complemen-
tary role in addressing some of these issues, including the choice of solvent and
operating conditions that yield optimal performance.

A key challenge in realising the benefits of a model-based approach to design
is the development of models that can accurately predict the behaviour of the
CO2 capture process under different conditions and for a range of solvents. This
is particularly difficult in the case of CO2 absorption due to the complex reaction
chemistry that occurs and the large number of ionic species present in the process.
For example, in the case of absorption of CO2 using the most common solvent, an
aqueous solution of MEA (MEA, HOC2H4NH2), the key reactions, excluding the
speciation of water, are (Astarita, 1967; Hikita et al., 1977; Danckwerts, 1979b; Lad-
dha and Danckwerts, 1981; Astarita et al., 1983; Penny and Ritter, 1983; Blauwhoff
et al., 1984):
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CO2 + HOC2H4NH2 ⇋ HOC2H4NH+
2 CO−

2

HOC2H4NH+
2 CO−

2 + HOC2H4NH2 ⇋ HOC2H4NHCO−
2 + HOC2H4NH+

3

HOC2H4NH+
2 CO−

2 + H2O ⇋ HOC2H4NHCO−
2 + H3O+

HOC2H4NHCO−
2 + H2O ⇋ HOC2H4NH2 + HCO−

3

HOC2H4NH+
2 CO−

2 + H2O ⇋ HOC2H4NH+
3 + HCO−

3

CO2 + OH− ⇋ HCO−
3

HOC2H4NH+
3 + H2O ⇋ HOC2H4NH2 + H3O+

CO2 + H2O ⇋ HCO−
3 + H+

The main reaction products are therefore the zwitterion (HOC2H4NH+
2 CO−

2 ), the
carbamate (HOC2H4NHCO−

2 + HOC2H4NH+
3 ), and bicarbonate (HCO−

3 ).
Given the complexity of the underlying chemical and physical phenomena, de-

tailed models of the thermodynamics, kinetics, and process units relevant to the
absorption systems have been developed for the simulation, optimisation, and de-
sign of CO2 capture processes for a given solvent, as for example in the work
of Kucka et al. (2003a), Zhang et al. (2011c), and Kale et al. (2013). The elucida-
tion and characterization of the speciation, reaction mechanism, equilibria and
kinetics for mixtures relevant to CO2 chemisorption are, however, required before
detailed models can be developed, and this necessitates extensive experimental in-
vestigation. The types of data that are required include data specific to the solvent
involved, such as reliable physicochemical (e.g., vapour-liquid equilibrium (VLE)
and liquid phase speciation) and kinetic (including reaction rate constants and
diffusion coefficients) data, and information regarding the effect of the column
specifications, for instance the type of packing material employed. This presents
a significant barrier to the rapid development of improved processes for carbon
capture.

To overcome this difficulty, the task of identifying solvents that lead to improved
CO2 absorption processes can be subdivided into two main steps. The first is the
rapid identification of a list of promising solvents by assessing a wide solvent
search space as fully as possible and analysing key performance indicators that
relate closely to process performance, energetics, environmental impact, and sol-
vent degradation. To minimize the reliance on experimental data and accelerate
the search for new solvents, models that make it possible to predict physical and
chemical properties from molecular structure are highly desirable. The motivation
for this first step is to reduce the number of solvents to be considered in more
detail, and the models used should therefore offer broad predictive capabilities,
which may require making simplifying assumptions in model development. In the
second step, promising solvents can be further analysed and some of the assump-
tions made in the first step can be re-assessed. Once a list of candidate solvents
is obtained, experiments can be conducted on a subset of these solvents, with the
aim of obtaining the information required for a more detailed evaluation of each
solvent and the corresponding carbon dioxide process.

To explore the space of possible solvents, there is a need to develop models that
offer adequate predictive capabilities without exhaustive reliance on experimental
data, and that can provide a quantitative insight into the behaviour of the process;
the use of a thermodynamic model to capture the phase and chemical equilibria
of mixtures of carbon dioxide, water, and alkanolamine within a process model
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is investigated in this chapter, as a means of obtaining an estimate of the perfor-
mance of the absorption. As an initial assessment of the method, we focus on MEA
because as a ubiquitous solvent for CO2 capture there is extensive experimental
data available to test the validity of the predictions. Before presenting the model,
we first place the proposed approach in the context of other modelling work in the
area.

There is an extensive body of literature concerning the process modelling and
simulation of CO2 absorption in packed columns. The modelling approaches
that have been proposed to date differ in the choice of thermodynamic and ki-
netic models, and, where appropriate, heat- and mass-transfer models. Most of
the effort has focused on the performance of aqueous MEA solutions, due to
their widespread industrial use and the availability of pilot-plant data, although
there have been some models developed for other solvents, notably aminomethyl-
propanol (AMP) (Aboudheir et al., 2006; Gabrielsen et al., 2006, 2007; Choi et al.,
2009b; Afkhamipour and Mofarahi, 2013). In modelling an absorber, the column
is usually divided into hypothetical stages, each representing a (sometimes in-
finitesimal) section of packing in the column (Taylor and Krishna, 1993; Khoury,
2005). Each stage can be modelled using either an equilibrium or a rate-based
model. In an equilibrium model, vapour-liquid equilibrium is assumed at each
stage, everywhere on the stage. A rate-based model accounts for heat- and mass-
transfer limitations. For chemisorption processes with fast reaction kinetics, as is
the case for the process of interest (Blauwhoff et al., 1984; Ying and Eimer, 2013),
a rate-based process is more reliable. Indeed, Lawal et al. (2009) have compared
the two approaches using the same physical property model and concluded that
the rate-based model provided a better description of the pilot-plant (Dugas, 2006)
temperature profiles where MEA was used as a solvent. A similar comparison was
made by Afkhamipour and Mofarahi (2013) for CO2 absorption in AMP solution,
and a rate-based model was found to give a better prediction of the temperature
and composition profiles of the pilot-plant runs (Tontiwachwuthikul et al., 1992).

When using a rate-based approach, an important aspect in model development
is the choice of approach to treat heat- and mass-transfer phenomena. The concen-
tration and temperature profiles across hypothetical films in a two-film model can
be imposed, taking into account the effect of chemical reactions on mass transfer
with an enhancement factor, defined as the ratio of the amount of gas absorbed in
a reacting liquid to the amount which would be absorbed if there were no reaction
(Danckwerts, 1970; DeCoursey, 1982; van Swaaij and Versteeg, 1992). The enhance-
ment factor varies along the length of the column and can often be adjusted to
pilot-plant data. This is the route followed in most models of CO2 absorption
(e.g., Sivasubramanian et al. (1985); Tontiwachwuthikul et al. (1992); Pintola et al.
(1993); Pacheco and Rochelle (1998); Al-Baghli et al. (2001); Tobiesen et al. (2007);
Faramarzi et al. (2010); Khan et al. (2011); Neveux et al. (2013); Saimpert et al.
(2013); Jayarathna et al. (2013b); Afkhamipour and Mofarahi (2014)). A compara-
tive review of the rate-based models that have been used to specifically treat CO2

absorption in aqueous MEA solutions can be found in reference (Llano-Restrepo
and Araujo-Lopez, 2015).

As an improvement on film theory, Tobiesen et al. (2007) developed a penetra-
tion model, where the two films at the interface are described continuously, which
was found to describe their own pilot-plant data well. A more rigorous approach
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is that followed by Kucka et al. (2003a), in which the Maxwell-Stefan formalism
is used together with film discretization. This more detailed model leads to better
predictions of concentration and temperature profiles at the pilot-plant scale (Ton-
tiwachwuthikul et al., 1992) than other models, without the need to adjust any
parameters to pilot-plant data (Kucka et al., 2003a). The Maxwell-Stefan formal-
ism has also been applied by Lawal et al. (2010) and Biliyok et al. (2012). Kale et al.
(2013) have recently investigated a rate-based model with film discretization, and
studied the sensitivity of the calculations to several key parameters. They found
that good predictions of column profiles can be obtained with a sufficiently fine
discretization.

In all rate-based models, empirical mass-transfer correlations are required to
take into account the type of packing used and the operating conditions. The
correlations of Onda et al. (1968a),(Onda et al., 1968b) and Bravo and Fair (1982)
were developed specifically for random packing, whereas the correlations of
Rocha et al. (1996) were developed for structured packing, but can be applied to
random packing by using an equivalence relation linking the random packing
characteristics to the structured packing. Correlations developed by Billet and
Schultes (1999) are also available as they apply to both structured and random
packing. In a detailed comparison applied to a model of a CO2 capture pilot plant
presented by Faramarzi et al. (2010), it appears that the main operating conditions
to consider when choosing a mass-transfer correlation are the flowrates of the flue
gas and the lean solvent.

Another important consideration in modelling CO2 absorption is the represen-
tation of the chemical reactions and fluid phase equilibria of the mixture of MEA,
CO2 and H2O. In the earliest absorber models, the thermodynamics of the gas
and liquid phases were described with the assumption of ideal gas and ideal so-
lution behaviour. This is the case for example of the model developed by Pandya
(1983) and later used by Tontiwachwuthikul et al. (1992). However, this model
was too simplified to describe the complex interactions between the CO2 and the
solvent, and may not be suitable when transferred to other solvents. Two differ-
ent approaches are typically followed when developing more accurate models of
mixtures exhibiting reaction equilibria: those based on physical theories and those
based on chemical theories. Most commonly, a chemical approach (e.g., see ref-
erences (Dolezalek, 1908; Fredenslund et al., 1975; Prausnitz et al., 1998; Song
and Chen, 2009; Zhang et al., 2011c; Fredenslund, 1977)) is adopted. In such ap-
proaches, all of the reaction species in solution are modelled explicitly, requiring
the a priori specification of the relevant reaction schemes and their corresponding
temperature-dependent equilibrium constants. Hence, the use of a chemical ap-
proach requires experimental data on the concentration of species in solution at
various temperatures.

Most models proposed to date that specifically treat CO2-amine-H2O systems
are based on this class of chemical approach; an explicit treatment of the major
ionic and non-ionic species formed due to reaction is adopted. Such methods rely
on the use of reaction kinetics and equilibrium constants derived from experimen-
tal data specific to each reaction (Austgen et al., 1989, 1991; Kucka et al., 2002;
Noeres et al., 2003; Kenig et al., 2003; Kucka et al., 2003a,b; Zhang et al., 2011c).
The methodology of combining the electrolyte-NRTL approach (Chen and Evans,
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1986a; Austgen et al., 1989) with a Henry’s constant to describe CO2 solubility has
attracted much interest and has been used in recent studies (Lawal et al., 2010).
The eNRTL approach has also been corrected for inconsistencies by Bollas et al.
(2008). More recently, Zhang et al. (2011c) developed a detailed model of the CO2-
MEA-H2O amine system using a chemical approach, for which an eNRTL (Song
and Chen, 2009) model was developed for the treatment of the liquid phase, the
perturbed chain statistical associating fluid theory (PC-SAFT) (Gross et al., 2001)
was used to obtain the vapour phase fugacity coefficients, and Henry’s law con-
stants were obtained to provide a full description of the phase equilibria. While
this approach arguably provides the most accurate representation of the behaviour
of these mixtures to date, a major drawback of these models is that they contain a
large number of parameters, requiring ample experimental data for vapour-liquid
equilibrium (VLE) and reaction kinetics, thus making it difficult to use for different
conditions and solvents. A similar approach (Kucka et al., 2003a) is to combine the
Soave-Rechlich-Kwong (SRK) equation of state (EoS) (Poling et al., 2001) with the
eNRTL model. Tobiesen et al. (2007) have adapted an activity coefficient model
from Hoff (2003) to correlate VLE experimental data, using an experimentally-
derived equilibrium constant (Weiland et al., 2004). As an alternative to reduce the
number of parameters to be determined and the computational effort needed to
solve the vapour-liquid equilibrium, Gabrielsen et al. (2005) developed their own
thermodynamic model to determine the VLE of MEA, CO2 and H2O. They pro-
posed a simple correlation derived from experimental data of CO2 solubility in
aqueous MEA, which is valid for MEA over the conditions considered: in this case
CO2 loading (defined as the number of moles of CO2 per mole of MEA in the
liquid phase) varied from 0 to 0.5 at 313 K and 393 K. As a simplification, a sin-
gle chemical equilibrium reaction (carbamate formation) was considered, reducing
the number of adjustable parameters required.

The combined reaction and activity coefficient models developed to date pro-
vide an accurate representation of CO2-MEA-H2O systems over a range of condi-
tions. However, they require extensive parametrization and the model parameters
obtained are not transferable to other solvents. These models are therefore more
suited for their application in step two of the solvent selection process, the detailed
quantitative analysis of the performance of the most promising solvents.

An alternative treatment of reactions follows a physical approach. Such ap-
proaches have previously been proposed to model the phase and chemical equi-
libria of mixtures of alkanolamines, CO2, and H2O (Button and Gubbins, 1999;
Mac Dowell et al., 2010, 2011; Rodríguez et al., 2012). SAFT approaches to mod-
elling such systems has been discussed in some detail in chapter 2.

The use of the SAFT-VR thermodynamic approach within process models of
CO2 absorption has previously been explored for high-pressure physical absorp-
tion in alkanes (Pereira et al., 2011b), ethers and ether derivatives (Burger et al.,
2015), and also for chemisorption. In an early study the modelling of the absorp-
tion process was also considered and explored in the context of solvent blend de-
sign (Mac Dowell et al., 2010). The absorber model was further developed (Brand
et al., 2012) showing reliable results for a set of pilot-plant data. Mac Dowell et al.
(2013) have proposed a dynamic model of a CO2 absorber, based on the SAFT-VR
thermodynamic treatment, which has been used in investigations of the control
(Arce et al., 2012) and economics (Mac Dowell and Shah, 2013; Alhajaj et al., 2016)
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of post-combustion CO2 capture processes. Qualitative agreement with data from
two pilot-plant runs from (Tontiwachwuthikul et al., 1992) was found in these
studies (Mac Dowell et al., 2013; Arce et al., 2012; Mac Dowell and Shah, 2013).
The column profiles obtained by Mac Dowell et al. (2013) are somewhat difficult
to interpret as the location of the plant data points reported in the paper does not
match the location of the sensors reported in the physical pilot plant. Neverthe-
less, the findings of this body of work indicate that a physical approach to the
modelling the chemical and physical equilibria allows one to capture the process
behaviour accurately with a limited set of parameters.

Overall, the models developed to date can be used to adequately represent the
general behaviour of the absorber column. However, only the model of Tontiwach-
wuthikul et al. (1992) provides an accurate description of the temperature of the
rich solvent at the outlet, and in all published models, the bulge in the temperature
profile, which is a well-known characteristic of this absorption process (Kvamsdal
and Rochelle, 2008), is reproduced qualitatively but not quantitatively. Existing
models reproduce either its magnitude or its location along the column, but not
both.

In view of foregoing discussion, the potential benefits of a novel absorption
model in which a SAFT-VR thermodynamic treatment and a rate-based column
model are integrated are explored based on CO2 absorption in aqueous MEA. The
proposed approach is based on a two-film model. Because the reactions are treated
implicitly with the SAFT-VR EoS, only the key molecular species (i.e., MEA, CO2,
H2O and N2) need to be taken into account explicitly at the level of mass and en-
ergy balances. The detailed model presented in this chapter includes several mod-
ifications over previous work (Mac Dowell, 2010; Mac Dowell et al., 2010), leading
to enhanced model reliability. In section 3.2, we describe the SAFT-VR EoS and
the heat- and mass-transfer relations used in the rate-based absorber model. The
validation of the model, its predictive capabilities, and a sensitivity analysis are
presented in section 3.3. Two scenarios are investigated, corresponding to differ-
ent levels of data availability: in the first scenario, it is assumed that no pilot-plant
data are available, and the suitability of the model to provide a best-case analysis
of process performance is studied; in the second scenario, one pilot-plant run is
considered and employed to obtain a more realistic quantification of mass-transfer
limitations. The transferability of this analysis is then tested against data at other
conditions.

3.2 modelling methodology

The development of a rate-based model of a CO2 absorber is described in this
section. In subsection 3.2.1, the thermodynamic model used for the vapour liquid
equilibrium (VLE) and the chemical equilibrium is presented. The non-equilibrium
stage approach is introduced in subsection 3.2.2.

3.2.1 Thermodynamic Model

The treatment of the chemical-reaction equilibria relevant to the absorption pro-
cess is a key aspect of the modelling strategy adopted in this work. In the physical
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approach followed here, the chemical and physical interactions are treated on an
equal footing, within the SAFT-VR SW EoS. Background information is provided
in this section to help the reader understand the models used and the underlying
assumptions.

The SAFT family of equations stems from the first-order thermodynamic per-
turbation theory (TPT1) of Wertheim (Wertheim, 1984a,b, 1986a,b; Jackson et al.,
1988; Chapman et al., 1988). In SAFT approaches molecules are modelled as chain
of fused spherical segments with embedded short-range association sites incorpo-
rated to mediate hydrogen bonding which lead to aggregate formation (specia-
tion). The EoS is developed in terms of the Helmholtz free energy using a pertur-
bation approach, such that the free energy of a chain molecule is obtained with
respect to the properties (free energy and radial distribution function) of a refer-
ence monomeric (non-bonded) system. The original version of SAFT (Chapman
et al., 1989, 1990) has been revisited and modified by a number of researchers so
that several versions are now available (Huang and Radosz, 1990, 1991; Blas and
Vega, 1997; Gil-Villegas et al., 1997; Galindo et al., 1998; Gross et al., 2001; Gross
and Sadowski, 2002a; Lafitte et al., 2006a, 2007, 2013b). A historical account of per-
turbation theories for polar and associating liquids has recently been presented by
Gubbins (2016).

In the SAFT-VR formulation (Gil-Villegas et al., 1997; Galindo et al., 1998) used
here, a square-well (SW) potential is used to describe the interaction between
spherical molecular segments of the reference fluid. The more recent versions
of the SAFT-VR EoS incorporate the Mie (generalized Lennard-Jones) potential
(SAFT-VR Mie (Lafitte et al., 2013b)), and allows for more reliable representation
of the near-critical region and second derivative properties (e.g., heat capacities)
which depend mainly on the specific form of the repulsive part of the potential
(Lafitte et al., 2006a, 2013b; Dufal et al., 2015a,b). Additionally, group contribu-
tion (GC) (Papaioannou et al., 2011b) versions of the SAFT-VR equations of state,
namely SAFT-γ SW (Lymperiadis et al., 2007, 2008b) and SAFT-γ Mie (Papaioan-
nou et al., 2014), have also been proposed. These offer additional predictive capa-
bilities in that the properties of a new solvent that has never been synthesized can
be predicted (without data specific to that solvent) provided that parameters for
the functional groups appearing in that molecule are available. The assessment
of the integration of the molecular-based SAFT-VR SW EoS within an absorption
model presented in this chapter can readily be extended to a group contribution
formulation.

In the SAFT-VR SW approach, a molecule i is modelled as a chain of mi fused
homonuclear spherical segments of diameter σii. The interactions between two
identical segments are described by a square-well potential of range λii and depth
εii (cf. figure 6). For each molecule i, the number of site types Ns,i must be defined,
as well as the number of sites of each type a, Ns,ia. The sites are characterized by
SW site-site energetic εHB

ab,ii and range rc;ab,ii parameters (cf. figure 6).
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(a)

(b)

(c)

Figure 6: The square-well potentials for a monomer, Φmono, and association between the
sites, Φassoc, employed in the SAFT-VR approach. (a) Φmono is characterized
by a hard-core with a diameter σ, range of attraction λσ and depth ε. (b) Φassoc

is defined by an off-centre potential of depth εHB
ab and of range rc;ab. (c) The

centre of the site is at a distance rd from the centre of the segment. This figure is
reproduced from (Brand et al., 2016).

In order to model mixtures, combining rules based on the Lorentz-Berthelot
approach (cf. Haslam et al. (2008)) are used to describe the unlike interaction
between segments on two different molecules i and j:

σij =
σii + σjj

2
(39)

εij = (1− kij)
√
εiiεjj (40)

λij =
σiiλii + σjjλjj

σij
(41)

where kij is an adjustable parameter that characterizes the unlike dispersion attrac-
tive interaction. Parameters to describe association between different molecules
are estimated using experimental data for the specific mixtures of interest, or for
chemically similar mixtures (Mac Dowell et al., 2010; Rodríguez et al., 2012).
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In recent work (Mac Dowell et al., 2010; Rodríguez et al., 2012; Chremos et al.,
2013, 2016) the reactions involved in aqueous amine solutions of CO2 have been
treated implicitly within the SAFT-VR and SAFT-γ frameworks, with the products
of the chemical reaction represented as aggregates of the reactant molecules. In
the case of MEA the overall set of reactions can be reduced to (Blauwhoff et al.,
1984)

CO2 + HOC2H4NH2 ⇋ [HOC2H4NH+
2 + CO−

2 ],

[HOC2H4NH+
2 + CO−

2 ] + HOC2H4NH2 ⇋ HOC2H4NH+
3 + HOC2H4NHCO−

2 ,

and association sites that allow the complexation of CO2 and amine are introduced
in the SAFT-VR molecular models. The reaction products can thus be modelled as
neutral aggregates of CO2 and MEA, bonded at association sites as shown in
figure 7.

Figure 7: Schematic representation of the association scheme between MEA and CO2 (in
aqueous media) showing two reaction products.

An accurate overall representation of the vapour-liquid phase equilibria of MEA
+ CO2 + H2O can be obtained in this manner by estimating the molecular parame-
ters from experimental fluid-phase equilibria data, for both the pure components
and mixtures. One important implication of the physical treatment of chemical
equilibrium is that there is no need to explicitly specify a reaction scheme or reac-
tion products. The types of products formed (e.g., carbamates or bicarbonates) are
dictated by the association scheme chosen (number of sites and strength of their in-
teractions), and the relative extent of formation of the different products depends
on the temperature-independent intermolecular parameters that describe the asso-
ciation energies. The fraction of molecules bonded at a given site is an output of
the SAFT-VR model and the distribution of reaction products can be determined
from a statistical analysis of the values of these fractions at the thermodynamic
state of interest (Economou and Donohue, 1991). Thus, although no speciation
data are used in deriving the SAFT-VR parameters, the speciation equilibria can
nonetheless be predicted successfully (Rodríguez et al., 2012; Chremos et al., 2016).
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This type of physical approach greatly reduces the number of parameters
needed to describe the mixture compared to explicit approaches such as eNRTL,
in which every species must be described as a separate entity and temperature-
dependent equilibrium constants must be derived for all the relevant reactions.
The SAFT-VR approach has been shown to be applicable to the absorption of CO2

in a wide range of aqueous alkanolamines solution (Rodríguez et al., 2012). In
many cases, it is possible to transfer parameters from one alkanolamine to another
based on molecular similarity, further reducing the need for experimental data.

One key assumption in adopting this type of physical approach is that all re-
actions are assumed to be at equilibrium, which is only applicable to processes
in the physical regime, i.e., where mass transfer is the rate limiting process. In
the case where a specific treatment of the charged electrolytic species is required,
the SAFT-VRE approach (Galindo et al., 1999; Gil-Villegas et al., 2001; Patel et al.,
2003a; Behzadi et al., 2005; Paricaud et al., 2010; Schreckenberg et al., 2014) can
be adopted coupled to a chemical approach as appropriate. It is also possible to
represent some or all species explicitly where any chemical reactions that are not
at equilibrium can then be modelled via a separate kinetic model. We do not fol-
low this route here, which would fall within the class of chemical approaches, but
instead assess the adequacy of the physical approach.

The molecules considered in our study are MEA, H2O, CO2, and N2. A
schematic of the molecular models used in the SAFT-VR SW EoS is presented in
figure 8. The values of all parameters are listed tables 4-7. Note that some of the
kij values for the binary mixtures shown in Table 5 show large deviations from
1. kij = 0.48 for MEA + CO2 is large since this parameter was regressed to the
ternary reactive mixture (MEA + CO2 + H2O), representing a highly non-ideal
interaction. The large negative kij = −0.3635 between H2O and N2 may indicate
an associative force which isnt explicitly accounted for in the model. The MEA
molecule is represented as 2 tangent spherical segments with 2 association sites of
type e (electron lone pairs on the oxygen atom), 1 site of type e∗ (corresponding
to the lone pair on the nitrogen atom), 1 site of type H (the hydrogen atom on the
hydroxyl group), and two sites of type H∗ (hydrogen atoms on the amine group)
(Mac Dowell et al., 2010). The H2O is represented as 1 spherical segment with 2 e

sites and 2 H sites (Clark et al., 2006). The CO2 model comprises 2 segments and
has 1 α1 site and 1 α2 site (acceptor sites) that interact only with the e∗ sites of
MEA (Rodríguez et al., 2012). The N2 model is modelled as a fused non-spherical
diatomic, with an aspect ratio of m = 1.4, and does not have association sites as it
is chemically inert and apolar (Paricaud et al., 2004b; Mac Dowell, 2010). A site of
type e/e∗ can bond with a site H/H∗ and vice versa. For example, when an e site
from MEA and an H site from water come within the cut-off range rHB

c,eH,MEA−H2O
of each other, there is a site-site hydrogen-bonding associative interaction of
energy -εHB

c,eH,MEA−H2O. A representative example of the good overall description
of the temperature and pressure dependence of the absorption VLE behaviour
of CO2 in aqueous MEA obtained with the SAFT-VR SW models can be seen in
figure 9 over several orders of magnitude for the partial pressure of CO2. In the
standard Wertheim TPT1 treatment at the heart of the SAFT EoS, association into
linear-chain, branched-chain, and network aggregates are considered. Association
into ring-like structures (Sear and Jackson, 1994a; Ghonasgi et al., 1994; Sear
and Jackson, 1996a; Galindo et al., 2002) (and even double bonding (Sear and
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(a) H2O MEA

(b) CO2 (c) N2

Figure 8: A schematic of the molecular models used in the SAFT-VR SW approach: (a)
H2O, (b) MEA, (c) CO2 and (d) N2.

Jackson, 1994b) and bond cooperativity (Sear and Jackson, 1996b)) can be taken
into account but this is not considered for the systems described in our current
work.

3.2.2 Non-equilibrium stage model for the absorption column

The absorber is a counter-current vapour-liquid multistage separation column,
with a liquid feed at the top stage and a vapour feed at the bottom stage. The
vapour product comes off the top stage and the liquid product off the bottom
stage. The inside of the column is filled with an inert packing material designed
for a maximum mass transfer between the vapour and the liquid and for a low
pressure drop. The vapour and liquid compositions vary continuously with pack-
ing height.

The modelling of such a column can be either discrete or continuous in the
vertical direction. In a discrete model, the column is divided in hypothetical stages,
each of which represents a section of packing in the packed column. For rate-
based models, a greater number of stages provides a better description (Taylor and
Krishna, 1993). Taken to the limit, using an infinite number of stages is equivalent
to modelling the column continuously. Although both models could be used, we
choose the discrete approach for our study.

The modelling of the stages can be equilibrium or rate-based. In an equilibrium
model, it is assumed that vapour-liquid equilibrium is achieved at each stage,
everywhere on the stage. A rate-based model accounts for limitations due to trans-
port phenomena. Due to the complexity of the process modelled in this case, a
rate-based approach is chosen over an equilibrium one in order to capture some
of the key physical phenomena (Krishnamurthy and Taylor, 1985a,b).
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Figure 9: Solubility of CO2 in a 30 wt% aqueous solution of MEA expressed as the CO2

loading in the liquid solvent (defined as the number of moles of CO2 per mole of
MEA in the liquid phase) as a function of the partial pressure. SAFT-VR model
predictions (dashed and continuous curves) using parameters from Rodríguez
et al. (2012) and experimental data (triangles and circles) from Jou et al. (1995).

For absorber model, the assumption is made that the two phases are distinct,
and each phase is perfectly mixed at each stage. A diagram of a non-equilibrium
stage is presented in figure 10. Vapour from the stage below is brought into contact
with liquid from the stage above and the two phases exchange mass and energy
through their common interface represented in the diagram by the wavy line. In
a rate-based model, separate mass balances are written for each phase. The two
phases are in contact through their interface where material lost by the vapour
phase is gained by the liquid phase. The heat transfer is treated in a similar way.
There is one energy balance in each phase, and the phases are linked via the rate of
energy transferred across the phase interface. The compositions of the two phases
at the interface are determined assuming equilibrium conditions at the interface.
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Figure 10: A schematic of a non-equilibrium stage. This stage represents a section of pack-
ing in a packed column.

The behaviour at the phase interface in the rate-based stages is described with
a two-film theory (Krishnamurthy and Taylor, 1985a). Each phase is split into two
parts: the bulk phase; and the film in which the heat and mass transfer occur. In
the bulk phase, the concentration, pressure, and temperature are assumed to be
uniform, whereas there could be a gradient in composition and temperature in
the film. A liquid–gas interface between the two films is sketched in figure 11,
where the profiles for composition of component i, temperature and pressure are
represented.
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Figure 11: A schematic of the two-film model of a column stage. δV and δL represent the
thickness of the gas and liquid films, respectively. PV , PI, and PL are the pres-
sure in the bulk vapour phase, at the gas-liquid interface and in the bulk liquid,
respectively. As can be seen an isobaric profile is assumed. The temperatures
of the bulk vapour phase, at the gas-liquid interface, and of the bulk liquid are
denoted by TV , TI, and TL, respectively. Finally, yi and xi are the mole fractions
of component i in the bulk vapour and liquid phases, respectively, and yIi and
xIi are the mole fractions of component i at the vapour-liquid interface in the
vapour and the liquid phases, respectively.

The following assumptions are made:

• The model is steady state.

• The bulk phases and films are at chemical equilibrium everywhere (i.e., the
reaction rates are faster than the mass transfer rates) (Laddha and Danckw-
erts, 1981; Blauwhoff et al., 1984).

• The interface is at phase and chemical equilibrium - this is a reasonable
assumption for MEA due to the high rate of reactions.

• The interfacial surface area is the same for both heat and mass transfer fol-
lowing (Laddha and Danckwerts, 1981).

• The effective area is equal to the wetted area (Laddha and Danckwerts, 1981).

• The absorption column is considered to be adiabatic since it is insulated
(Tontiwachwuthikul et al., 1989).

• There is no pressure drop along the column.
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3.2.3 Model equations

In this subsection, we present the equations used to model a packed column sub-
section (stage). The equations are grouped into different categories: energy and
mass balances, rate equations, equilibrium equations, mass-transfer correlations,
heat-transfer correlations, and diffusion correlations. We list explicitly all of the
model equations to clarify the radically different approach followed here. One im-
portant model parameter τ is introduced in this section to account for a scaling of
the CO2 diffusivity. This parameter will be estimated from experimental data. In
the following equations, the subscript i refers to the ith component, j to the jth

stage, c is the total number of components, and Ns is the number of stages in the
column. The number of stages is fixed to 50 which is amply sufficient to assure
numerical convergence without significantly impacting the computational time.

3.2.3.1 Heat and mass balances

The liquid and vapour phase mole balances for component i on stage j are given
by

Lj−1xi,j−1 +NL
i,j = Ljxi,j i = 1, 2..., c; j = 1, 2...,Ns (42)

Vj+1yi,j+1 −NV
i,j = Vjyi,j i = 1, 2..., c; j = 1, 2...,Ns (43)

where Lj and Vj (mol s−1) are the total liquid and vapour molar flowrate leaving
stage j respectively, xi,j and yi,j are the bulk liquid and vapour mole fractions of
component i on stage j, NL

i,j (mol s−1) is the net gain of species i in the liquid
phase due to interphase transport for stage j, and NV

i,j (mol s−1) is the net loss of
species i in the vapour phase due to interphase transport for stage j.

The mole fractions in the streams leaving each stage must sum to unity:
c∑

i=1

xi,j = 1 and
c∑

i=1

yi,j = 1; j = 1, 2...,Ns (44)

The energy balances for the liquid and vapour phases respectively are

Lj−1H
L
j−1(T

L
j−1,P, xj−1) + EL

j = LjH
L
j (T

L
j ,P, xj) j = 1, 2...,Ns, (45)

Vj+1H
V
j+1(T

V
j+1,P,y

j+1
) − EV

j = VjH
V
j (T

V
j ,P,y

j
) j = 1, 2...,Ns, (46)

where HL
j and HV

j (J mol−1) are the molar enthalpies of the liquid and gas phases
respectively of stage j. EL

j (W) is the net gain of energy of the liquid phase through
the interface at stage j, and EV

j (W) is the net loss of energy from the vapour phase
through the interface at stage j. The molar enthalpies HL

j and HV
j are determined

from SAFT-VR as functions of the temperature of the bulk phases, TL
j and TV

j (K),
the molar volumes of the phases, VL

j and VV
j (m3 mol−1), and the composition

(vectors) of the phases, xj and y
j
.

There is no accumulation of mass or energy at the vapour–liquid interface:

NL
i,j = NV

i,j i = 1, 2..., c; j = 1, 2...,Ns, (47)

EL
j = EV

j i = 1, 2..., c; j = 1, 2...,Ns. (48)
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3.2.3.2 Rate equations: mass transfer

According to the film model for mass transfer, we define the mass-transfer rates
as follows:

NL
i,j = kLi,jaT ,j(C

I,L
i,j −CL

i,j) i = 1, 2..., c; j = 1, 2...,Ns, (49)

NV
i,j = kVi,jaT ,j(C

V
i,j −CI,V

i,j ) i = 1, 2..., c; j = 1, 2...,Ns, (50)

where aT ,j (m2) is the total interfacial area on stage j available for heat or mass
transfer, kLi,j (m s−1) is the liquid-phase mass-transfer coefficient for component i
of stage j, kVi,j (m s−1) is the vapour-phase mass-transfer coefficient for component
i of stage j, CL

i,j and CV
i,j (mol m−3) are the concentrations of component i in

the bulk liquid and vapour phases of stage j, and CI,L
i,j and CI,V

i,j (mol m−3) are
the concentrations of component i at the vapour-liquid interface in the liquid and
vapour phases of stage j.

The total area for heat and mass transfer is given by the product of the effective
specific area and the stage volume:

aT ,j = a ′
jAsectionDz j = 1, 2...,Ns, (51)

where a ′
j (m2 m−3) is the interfacial area density on stage j, Asection (m2) is

the cross sectional area of the column, and Dz (m) is the stage height given by
hpacking/Ns, with hpacking (m) as the total packing height.

3.2.3.3 Rate equations: heat transfer

The energy fluxes in the liquid and gas phases at stage j are given by the sum of
the conductive and diffusive heat fluxes:

EL
j = QL

cond,j +QL
diff,j j = 1, 2...,Ns, (52)

EV
j = QV

cond,j +QV
diff,j j = 1, 2...,Ns, (53)

where QL
cond,j and QL

diff,j (W) are the conductive and diffusive heat fluxes at the
interface into the liquid phase on stage j, and QV

cond,j and QV
diff,j (W) are the

conductive and diffusive heat fluxes at the interface out of the vapour phase on
stage j.

The conductive heat-transfer rate into the liquid phase and out of the vapour
phase on stage j are driven by temperature gradients between the bulk phases and
the interface, and are given by

QL
cond,j = hL

T ,jaT ,j(T
I
j − TL

j ) j = 1, 2...,Ns, (54)

QV
cond,j = hV

T ,jaT ,j(T
V
j − TI

j ) j = 1, 2...,Ns, (55)

where hL
T ,j and hV

T ,j (W m−2 K−1) are the heat-transfer coefficients in the liquid
and gas phases on stage j, respectively , and TI

j (K) is the temperature at the
vapour-liquid interface on stage j.
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The diffusive heat fluxes account for the variation in enthalpy in the liquid and
vapour streams associated with the transfer of mass from one phase to another.
This is obtained based on the individual component fluxes and the corresponding
enthalpies of the pure components:

QL
diff,j =

c∑

i=1

NL
i,jH

L(TL
j ,P, zi) j = 1, 2...,Ns, (56)

QV
diff,j =

c∑

i=1

NV
i,jH

V(TV
j ,P, zi) j = 1, 2...,Ns, (57)

where H(TL
j ,V∗L

i,j , zi) and H(TV
j ,V∗V

i,j , zi) (J mol−1) are the molar enthalpies of pure
component i in the bulk liquid and vapour phase respectively, as calculated with
SAFT-VR SW. The variable zi denotes the molar composition vector of a stream
consisting of pure component i defined by zk,i = 1 if i = k and zk,i = 0 otherwise.
V∗L
i,j and V∗V

i,j (m3 mol−1) are the molar volumes of pure component i at stage j in
the bulk liquid and vapour phases respectively, given by

PL
j = P(TL

j ,V∗L
i,j , zi) i = 1, 2..., c; j = 1, 2...,Ns, (58)

PV
j = P(TV

j ,V∗V
i,j , zi) i = 1, 2..., c; j = 1, 2...,Ns, (59)

where PL
j and PV

j (MPa) are the pressure of the bulk liquid and vapour phases at
stage j respectively and P(TL

j ,V∗L
i,j , zi) and P(TL

j ,V∗L
i,j , zi) represent evaluations of

the pressure using the SAFT-VR SW EoS.
When equating the vapour and liquid fluxes, one obtains an expression which

includes the difference between the enthalpies in the vapour phase and in the
liquid phase for a pure component i; this is the enthalpy of vaporisation of this
component. As we will see, the enthalpy of vaporisation of water plays a signifi-
cant role in the process. We assume that the contribution of N2 due to its change
of enthalpy between the two phases is negligible as its mass transfer is very small,
and that the enthalpy of vaporisation of CO2 is negligible as the operating condi-
tions are close to or above its critical point. In the case where only one phase is
stable for a pure component at the conditions of interest, as is typically the case for
CO2, one can access the hypothetical phase information by providing an adequate
initial guess for the molar volume to the SAFT-VR SW EoS.

3.2.3.4 Equilibrium relations

Both chemical and phase equilibrium are assumed to prevail at the interface so
that the conditions of equality of pressure, temperature, and chemical potential
must be satisfied:

µL(TI
j ,P,yI

j
) = µV(TI

j ,P, xIj) = µI,L
i,j = µI,V

i,j i = 1, 2..., c; j = 1, 2...,Ns (60)

where µI,L
i,j and µI,V

i,j (J mol−1) are the chemical potentials of component i on stage
j in the liquid and vapour phases respectively, VI,L

j and VI,V
j (m3 mol−1) are the

molar volumes of the liquid phase and the vapour phases at the vapour-liquid
interface on stage j, and PI

j (MPa) is the pressure at the liquid-vapour interface on



3.2 modelling methodology 53

stage j. The chemical potentials and the molar volume are determined using the
SAFT-VR SW EoS.

The mole fractions at the interface must sum to unity:

c∑

i=1

xIi,j = 1 and
c∑

i=1

yI
i,j = 1 j = 1, 2...,Ns. (61)

Each stage is assumed to be at mechanical equilibrium, so that

PV
j = PL

j = PI
j j = 2...,Ns, (62)

where

PV
j = P(TV

j ,VV
j ,y

j
) j = 1, 2...,Ns, (63)

PL
j = P(TL

j ,VL
j , xj) j = 1, 2...,Ns. (64)

Finally, the column pressure drop is assumed to be negligible.

PV
j = PV

j+1; j = 1, 2...,Ns. (65)

All pressure terms present in the model are thus equated to the pressure of the
gas inlet stream, PV

Ns+1. This assumption can easily be removed at a later stage of
the model development. Preliminary results have indicated that the pressure drop
has a negligible effect on the process used for the validation of our model.

The equations presented in the remainder of this section apply to each stage.
The subscript j has been omitted for the purpose of clarity.

3.2.3.5 Mass-transfer correlations

The interfacial area, the liquid-phase mass-transfer coefficient, and the gas-phase
mass-transfer coefficient are obtained using the correlations from Onda et al.
(1968a),(Onda et al., 1968b). Other correlations are available, the most commonly
used being the ones developed by Rocha et al. (1996) and Billet and Schultes (1999).
Faramarzi et al. (2010) compared the performance of the correlations and found
that all three correlations provide a good description; they expressed a slight pref-
erence for the correlations of Rocha et al. (1996) but could not draw a general
conclusion which is applicable to all operating conditions. The correlations of
Rocha et al. (1996) apply to structured packing and have to be adapted for use
in random packing, whereas those developed by Onda et al. (1968a),(Onda et al.,
1968b) have been developed specifically using random Berl saddle packing, the
same as the one employed in the pilot plant by Tontiwachwuthikul et al. (1992).
This last set of correlations is sometimes re-parametrized when used in commer-
cial software such as Aspen or ProTreat. The correlations developed by Onda et al.
(1968a),(Onda et al., 1968b), as reported by Treybal (1981), are implemented in
our model of the absorber column. The liquid-phase mass-transfer coefficient for
component i is given by (Treybal, 1981)

kLi = 0.0051
(

ηLg

ρL

)1/3

(ReL
′
)2/3(ScLi )

−1/2(apLp)
0.4 i = 1, 2..., c, (66)
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where ρL (kg m−3) is the density of the liquid phase, ηL (kg m−1 s−1) is the
dynamic viscosity of the liquid phase, g (m s−2) is the gravitational acceleration,
ReL

′ is the liquid-phase Reynolds number based on the interfacial area, ScLi is the
Schmidt number of component i in the liquid phase, ap (m2 m−3) is the specific
surface area of the packing, and Lp (m) is the nominal packing size.

The Reynolds number and the Schmidt number for component i in the liquid
phase are

ReL
′
=

ρLuL

a ′ηL
, (67)

ScLi =

(

ηL

ρLDL
i

)

; i = 1, 2..., c, (68)

where DL
i (m2 s−1) is the diffusion coefficient of component i in the liquid phase,

uL (m s−1) is the liquid velocity, and a ′ is the interfacial area density defined in
equation (72).

The vapour-phase mass-transfer coefficient is obtained from

kVi = 2apD
V
i Re

V0.7
ScVi

1/3
(apLp)

−2; i = 1, 2..., c, (69)

where DV
i (m2 s−1) is the diffusivity of component i in the vapour-phase,

ReV is the vapour-phase Reynolds number, and ScVi is the Schmidt number of
component i in the vapour phase.

The Reynolds number and the Schmidt number for the vapour phase are

ReV =
ρVuV

apηV
, (70)

ScVi =

(

ηV

ρVDV
i

)

; i = 1, 2..., c, (71)

where ρV (kg m−3) is the density of the vapour phase, ηV (kg m−1 s−1) is the
dynamic viscosity of the vapour phase, and uV (m s−1) is the vapour velocity.

The interfacial area density a ′ is obtained from (Onda et al., 1968a,b)

a ′

ap
= 1− exp[−1.45(

σc

σ
)0.75(ReL)0.1(FrL)−0.05(WeL)0.2], (72)

where σc (N m−1) is the critical surface tension of the packing material, σ (N m−1)
is the vapour-liquid surface tension, ReL is the liquid-phase Reynolds number
based on the specific surface area, FrL is the liquid-phase Froude number, and WeL

is the liquid-phase Weber number. The interfacial area density, together with the
three dimensionless numbers used in equation (72), are properties of the mixture,
not properties of individual components.

The expressions for the dimensionless numbers are

ReL =
ρLuL

ηLap
, (73)

FrL =
apu

L2

g
, (74)

WeL =
ρLuL2

apσ
. (75)
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The velocities of each phase are

uL =
v̇L

Asection
, (76)

uV =
v̇V

Asection
, (77)

where v̇L and v̇V (m3 s−1) are the volumetric flowrate of the liquid and gas phase
respectively.

3.2.3.6 Heat-transfer correlations

For the gas and liquid heat-transfer coefficients we use the correlations presented
in Treybal’s Mass Transfer Operations (Treybal, 1981). Once again these expressions
apply to each stage. The expression for the liquid-phase heat-transfer coefficient is

hL
Tds

λLT
= 25.1

(

dsLspec

ηL

)0.45

(PrL)0.45, (78)

where hL
t (W m−2 K−1) is the liquid-phase heat-transfer coefficient , ds (m) is the

diameter of a sphere of the same surface area as a single packing particle (not the
same as ap), λLT (W m−1 K−1) is the liquid thermal conductivity, Lspec (kg s−1) is
the specific liquid flowrate, and PrL is the liquid phase Prandtl number. The latter
is obtained from the following expression:

PrL =
CL
pη

L

λLT
, (79)

where CL
p (J kg−1 K−1) is the specific isobaric heat capacity of the liquid phase.

The vapour-phase heat-transfer coefficient is given by

hV
T

CV
pVspec

PrV
2/3

= 1.195
(

dsVspec

ηV(1− ǫL0
)

)−0.36

, (80)

where hV
T (W m−2 K−1) is the vapour-phase heat-transfer coefficient , CV

p (J kg−1

K−1) is the specific isobaric heat capacity of the vapour phase, PrV is the Prandtl
number for the gas phase, Vspec (kg s−1) is the specific vapour flowrate, and ǫL0

is the operating void space in the packing. It is assumed to be equal to the void
fraction ǫ. The Prandtl number for the gas phase is obtained from

PrV =
CV
pη

V

λVT
, (81)

where λVT (W m−1 K−1) is the vapour thermal conductivity.

3.2.3.7 Vapour-phase diffusion coefficient

The vapour-phase diffusion coefficient used in equation (71) is obtained from the
expression of Fuller and co-workers (Fuller and Giddings, 1965; Fuller et al., 1966,
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1969) as reported by Poling et al. (2001). It is assumed that the components are
diffusing through air:

DV
i = 10−4 0.00143TV1.75

10PVM
1/2
i−air[Σv

1/3
i + Σv

1/3
air ]

i = 1, 2..., c, (82)

where Σv (Å) is the atomic diffusion volume, and Mi−air is given by

Mi−air = 2[(1/Mair) + (1/Mi)]
−1 i = 1, 2..., c, (83)

where Mi (g mol−1) is the molar mass of component i.

3.2.3.8 Liquid-phase diffusion coefficient

The liquid-phase binary diffusion coefficients are described with different correla-
tions. The mutual diffusion coefficients of CO2 at very low concentration in pure
MEA and pure H2O are derived from the Wilke-Chang correlation (Wilke and
Chang, 1955; Poling et al., 2001):

D◦
CO2,k =

7.4× 10−8(φkMk)
1/2TL

ηLk(V
m
CO2

)0.6 k = H2O, MEA, (84)

where φk is the “association factor" of solvent k, and Vm
CO2

(cm3 mol−1) is the
molar volume of CO2 at its normal boiling temperature.

These mutual diffusion coefficients are used in the correlation of Takahashi
(Takahashi et al., 1982) to determine the diffusivity of CO2 in a liquid mixture
of H2O and MEA:

DL
CO2

= τ 10−4

(

VL

ηL

)1/3 ∑

k=H2O,MEA

xkD
◦
CO2,k

(

ηLk
V∗L
k

)1/3

, (85)

where we have introduced the scaling prefactor τ to the correlation. The presence
of this scaling factor provides an effective approach to modelling several effects
that are not accounted for due to the use of a physical approach and the conse-
quent implicit treatment of the reaction products: the acceleration of mass-transfer
due to the depletion of CO2 via chemical reactions (Danckwerts, 1970); the reduc-
tion in mass transfer due to the ion pairs formed and their electrostatic interaction
with other species (Danckwerts, 1970); and the reduction in the mass transfer due
to CO2 being present in larger aggregated product species (bicarbonate and car-
bonate species). The latter effect was observed by Han et al. (2013) in a molecular
dynamics study of the diffusion coefficient of CO2 in MEA, indicating a signifi-
cant decrease in the diffusion coefficient with increasing CO2 loading. The value
of the parameter τ and its impact on model predictions are discussed in section
3.3. Finally, the Perkins and Geankoplis (Perkins and Geankoplis, 1969) method is
used to calculate the diffusivity of H2O, MEA, and N2 in the liquid phase:

DL
i = 10−4 7.4× 10−8(φM)

1/2
i T

1000ηL(Vm
i )0.6 i = H2O, MEA, N2, (86)
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where Vm
i (cm3 mol−1) is the molar volume of component i at its normal boiling

temperature, and the term (φM)i (g mol−1) represents the “association factor" of
component i in the liquid mixture which is derived from

(φM)i =

n∑

j=1
j 6=i

xjφjMj i = H2O, MEA, N2 (87)

The other correlations of experimental data used in our model are listed in table
8.

3.2.3.9 Properties computed with SAFT

In Table 3 we make it explicit which variables in the process model are computed
using the SAFT EoS.

Table 3: Table to show which variables in the process are calculated with the SAFT-VR SW
equation.

Variable Definition

Hi Enthalpy of phase i

Pi Pressure of phase i

µi Chemical potential of phase i

Ci
P Isobaric heat capacity of phase i

ρi Density of phase i

3.3 results

The model described in section 3.2.2 is implemented in gPROMS (Process Sys-
tems Enterprise, 2016) and an in-house implementation of the SAFT-VR SW EoS
(Kakalis et al., 2004) is accessed via a Foreign Object Interface.

In this section, we investigate the predictive capabilities of the proposed model
by thorough comparisons with the the pilot-plant data obtained by Tontiwach-
wuthikul et al. (1992). The inputs required to model these data and relevant as-
sumptions are discussed in section 3.3.1. As discussed in section 3.3.2, we first
assume that there are no pilot-plant data available for the solvent in question and
analyse the performance of the model when using the available mass transfer
correlations in the literature by fixing τ = 1. It is then assumed that only one pilot-
plant run is available and the corresponding concentration profiles are used to es-
timate the single parameter τ, related to mass transfer limitations, as summarized
in section 3.3.3. The transferability of this parameter is assessed by comparing
model predictions against data for other pilot-plant runs. Finally, in section 3.3.4,
the sensitivity of the model to several parameters is explored, providing insights
into the behaviour of CO2 absorption columns.
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3.3.1 Model inputs

The absorption column studied by Tontiwachwuthikul et al. (1992) has an internal
diameter of 0.1 m and a total packed height of 6.6 m; care has to be taken not to
mistake the total column height of 7.2 m with the packed height, which is the rel-
evant dimension in modelling the absorber. The absorption column internals are
randomly packed 12.7 mm ceramic Berl saddles. The gas inlet stream is assumed
to be free of MEA and the liquid solvent inlet stream free of N2. The input values
used are listed in Table 9 and the characteristics of the column and the packing
are listed in Table 10. Some of the data needed for the simulation of the process
were not explicitly reported by Tontiwachwuthikul et al. (1992): in particular, the
temperature of the flue gas, and the concentration of water in the flue gas. Close
inspection of an earlier paper detailing the experimental apparatus (Tontiwach-
wuthikul et al., 1989) reveals that the temperature of the flue gas is controlled to
be that of the lean solvent with a thermostatic bath. The inlet vapour stream is
composed of ambient air and bottled CO2. Typical values of relative humidity of
air (defined as the mole fraction of water vapour divided by the mole fraction of
air saturated with water at the same temperature and pressure ) lie between 20%
to 70%, which, at 20◦C and 1 bar, corresponds to a mass fraction of H2O in the
flue gas of between ωV

H2O 0.003 and 0.01 (ASHRAE, 2011). A sensitivity analysis
of the extent of humidity indicates that the variation of ωV

H2O between 0 and 0.072

(corresponding to a mole fraction 0.12) has a negligible impact on the tempera-
ture and composition profiles. The effect of the amount of water in the flue gas
is discussed in more detail in section 3.3.3.2. For our working model, the nominal
amount of water in the inlet flue gas is fixed to ωV

H2O = 0.0058, corresponding to
50% humidity at 20◦C and 1 bar.

3.3.2 Scenario 1

In the absence of pilot-plant data, the scaling factor τ for the diffusion coefficient of
CO2, cf. equation (85), is set to 1. The predictions with τ=1 are presented in figures
12 and 14-22 as dashed curves. In all but one case (Run T18, figure 19), the rate
of absorption of CO2 throughout the column is found to be over-predicted as the
predicted value of the gas-phase CO2 concentration profiles yCO2

all fall under
the measured values. With the exception of Run T18, the temperature profiles
TL and the liquid-phase CO2 loading profiles θCO2

(defined as the number of
moles of CO2 per mole of MEA in the liquid phase) are similarly under-predicted.
Complete absorption occurs at approximately stage 30, whilst an analysis of the
pilot-plant data suggests that this occurs between stages 10 to 20. The size of
the column required to achieve maximum absorption is therefore underestimated
based on these predictions alone.

In Run T18 (figure 19), there are two competing effects: the overestimation of the
absorption of CO2 tends to increase the temperature of the liquid phase, which in
turn tends to decrease the extent of absorption of CO2 in the liquid. Since this is
the only run in which the CO2 in the inlet gas is not completely absorbed within
the column, the cooling effect of the liquid feed is not as apparent as in other
runs. Given the relatively low recovery of CO2 and the fact that equilibrium is
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not reached at the bottom of the column, our findings indicate that the model is
best used as an indicator of process performance by modelling a sufficiently large
absorber to achieve equilibrium.

In most cases (apart from run T18), an optimistic prediction of process perfor-
mance is thus obtained with the model when no pilot-plant data are used (τ=1).
Indeed, although the depletion of CO2 through chemical reactions has an acceler-
ating effect on mass transfer, the reduced diffusivities of the product species lead
to an overall reduction in mass transfer rates. This suggests that the proposed pre-
dictive model could be used to obtain a preliminary assessment of novel solvents
in the absence of pilot-plant data: if their best-case (τ = 1) performance is found
to be significantly less than that of MEA or another suitable benchmark, these
solvents would be eliminated from further consideration without undertaking an
experimental programme.

3.3.3 Scenario 2

3.3.3.1 Estimation of the scaling factor

In order to investigate whether the proposed model can be used to provide a
quantitative agreement with the pilot-plant runs, the value of τ is then estimated
by fitting to selected pilot-plant data. In keeping with our requirement to rely on
only a limited amount of experimental data in the first step of the solvent selection
process (and the exploration of a large space of solvents), the value τ is estimated
from only one pilot-plant run (Run T22 of Tontiwachwuthikul et al. (1992)) in
our current work. Additionally, this value is determined by minimizing the abso-
lute deviation between the model predictions and the gas and liquid composition
profiles, yCO2

and θCO2
. The resulting temperature profile for Run T22 is hence

predicted since this data was not used in estimating τ. The value of τ that results
in the minimum deviation from the compositional pilot-plant data corresponds
to a scaling of the liquid-phase diffusivity to 4.1% of its original value (i.e., τ =
0.041). The liquid-phase temperature, gas-phase CO2 concentration, and liquid-
phase CO2 concentration profiles for Run T22, determined with and without the
scaling factor for the diffusivity of CO2, are represented in figure 12 as continuous
and dashed curves, respectively.

As the parameter τ is estimated from pilot-plant data, the value found for τ may
be correcting any potential errors in the chosen mass-transfer correlation rather
than the diffusivity alone. To the best of our knowledge, there is no published
experimental data for the diffusion of the carbamate product in aqueous MEA. In
order to assess the impact of the choice of mass-transfer correlation on the value
of τ, we implement the mass-transfer correlations of Rocha et al. (1993),(Rocha
et al., 1996) in our current model of the absorber with the same scaling factor
of τ = 0.041. The liquid-phase temperature, gas-phase CO2 concentration, and
liquid-phase CO2 concentration profiles for Run T22 obtained with the two dif-
ferent mass transfer correlations are compared in figure 13. With the correlation
of Rocha et al. (1993),(Rocha et al., 1996) there is a slight underestimation of
the composition of CO2 in the liquid and gas phases; the temperature profile
obtained with the correlation of Rocha et al. (1993),(Rocha et al., 1996) is more
faithful to the pilot-plant data than that of Onda et al. (1968a),(Onda et al., 1968b),
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though one should bear in mind that the diffusivity parameter is estimated from
the data using the former correlation. In conclusion, the value of τ is found to
be essentially independent of the choice of the mass-transfer correlation (at least
for this set of process conditions), confirming our hypothesis that a scaling of the
diffusivity is required.

3.3.3.2 Model predictions

All the runs with the pilot-plant MEA absorber process can now be simulated in a
predictive manner using the value of the diffusivity parameter (τ=0.041) obtained
based on Run T22. The predictions for the temperature profiles in the liquid phase,
and for the gas-phase CO2 concentration and liquid-phase CO2 loading profiles
for the different Runs T13 to T21 are represented in figures 14 to 22 with contin-
uous curves. These runs represent a variety of operating conditions in terms of
amine concentration, inlet liquid-phase CO2 loading, inlet gas-phase CO2 concen-
tration, and gas-to-liquid flowrate ratio (see Table 9).

Good agreement is found between the model predictions and the pilot-plant
data for Runs T13, T14, T16, T17, T19, and T20 in relation to the liquid-phase
temperature and the liquid- and gas-phase composition profiles along the entire
length of the column. There is an over-prediction of approximately 5 K in the tem-
perature profile for Runs T15 and T21, and an over-prediction of the composition
profiles, although the compositions at the top and at the bottom of the column
are accurately described. The outlet liquid temperature in Run T18 is overesti-
mated by about 12 K; there is a good match between the model predictions and
the experimental values for the composition profiles. A good representation of the
temperature bulges in Runs T16 and T20 can be seen in terms of its location along
the column, and the amplitude is predicted accurately for both of these runs. To
the best of our knowledge, no other published models provide a description of
the temperature bulge to this level of fidelity (Kucka et al., 2003a; Gabrielsen et al.,
2006; Faramarzi et al., 2010; Mac Dowell et al., 2013).

In all runs except Run T18, flat profiles are observed toward the top of the col-
umn. This plateau means that a maximum in the absorption is reached, indicating
that equilibrium is achieved not only at the vapour-liquid interface but also be-
tween the bulk liquid and the bulk vapour phases. As a result the profiles would
not be affected by making the column any higher. This plateau is depicted in fig-
ure 23 for Run T22. It can be seen that the temperatures of the liquid phase, the
vapour phase, and the vapour-liquid interface are all equal between stages 1 and
15 (i.e., at the top of the column). Similarly, the CO2 gas-phase composition in the
bulk vapour phase and at the vapour interface are equal between stages 1 and 15,
as are the CO2 loadings in the liquid phase and at the interface. Additionally, the
profiles for the temperature of the liquid phase and the temperature at the inter-
face are almost identical, suggesting that all the heat-transfer resistance is in the
vapour film.

Run T18 stands out from this set of runs as it does not exhibit a plateau in
the profiles as found for the other operating conditions, meaning that the whole
length of the column is used for absorption. The lack of a plateau region is clearly
apparent from figure 24. From Table 9, one can see that Run T18 has the lowest
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amount of MEA in the lean solvent and the highest amount of CO2 in the flue
gas compared to the other runs. This explains why the whole column is required
for absorption. In other runs, the totality of CO2 is absorbed as the gas travels up
the column between stages 50 and 15, so that lean solvent flowing at the top of
the absorber (stages 1 to 15) has no CO2 left to absorb. Run T18 is the only run
where there is still CO2 in the gas stream leaving the absorber, so the lean solvent
starts absorbing CO2 as soon as it enters the column at the top. These differences
explain why a larger discrepancy is observed between the predicted and measured
profiles for Run T18.

The behaviour of Runs T15, T18 and T21 could be represented more accurately
by estimating specific values τ for these runs. However, this would not be in keep-
ing with our objective to develop a predictive modelling platform to support sol-
vent design activities. The good overall quantitative agreement achieved with a
unique value of τ indicates that the scaling factor can be applied in a transfer-
able manner at different operating conditions (at least for similar types of column
packing).

An analysis of the deviation between the column profiles presented here and
those obtained when a different run is chosen to estimate τ is also undertaken.
The same method is applied to estimate τ based on pilot plant runs T13 – T21.
The values of τ range between 0.027 (for Run T19) and 0.076 (for Run T21). These
extreme values are then used to predict the column profiles (TL, yCO2

and θCO2
).

The absolute errors between the values for each variable obtained with τ = 0.041
(for Run T22) and the values obtained from the extreme values of τ is calculated,
and averaged over all stages and all column profiles. The calculated mean errors
are 4.35 K for TL, 0.080 for θCO2

and 0.023 for yCO2
. These values provide an

indication of the error bounds for the profiles presented in our current work, based
on choosing any single pilot plant run arbitrarily to estimate the value of τ.

3.3.4 Sensitivity analysis

A sensitivity analysis is now employed to assess the relative importance of selected
mass- and heat-transfer parameters. Different key parameters in the model are
altered to observe their impact on the predicted profiles. The values tested are
listed in Table 11.

3.3.4.1 Mass transfer

The mass transfer in the model is mediated via mass-transfer coefficients (Onda
et al., 1968a,b). These coefficients are highly dependent on the viscosity, the dif-
fusivity, and to a certain degree the surface tension of the fluid considered; these
properties are thus considered as key parameters in the model and their influence
on the temperature and composition profiles are assessed. The values of the param-
eters used in the sensitivity analysis are varied within physically realistic ranges.
We should note that though marked variations are expected for the diffusivity and
viscosity for the reacting system of this type, the change in the vapour-liquid sur-
face tension is expected to be somewhat less dramatic. The values of the vapour
and liquid diffusivities are doubled and halved, and the vapour-liquid surface ten-
sion is varied within ± 10 mN/m from the nominal value. Varying the diffusivity
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or viscosity in the gas phase has no visible effect on the liquid temperature profile
or the composition profiles. However, varying these parameters in the liquid phase
results in a significant variation in the profiles. The effect on the profiles due to
the variation of the liquid viscosity and the diffusivity in the liquid phase is repre-
sented in figures 25 and 26. It is clear from figure 25 that the column temperature
and composition profiles are highly sensitive to the value of τ. Varying the vapour-
liquid interfacial tension produces a less significant variation in the profiles as can
be seen in figure 27. The data that are originally considered for the surface ten-
sion correlation in our model is for a mixture of only H2O and MEA (Vazquez
et al., 1997). Jayarathna et al. (2013c) recently published experimental data of the
surface tension of liquid mixtures of H2O, MEA and CO2, finding an increase
in the vapour-liquid interfacial tension on absorption of CO2. A new correlation
from these data is also implemented in our process model. A comparison of the
temperature and composition profiles obtained with the two different correlations
is shown in figure 27. The difference in the profiles is negligible so changing the
surface tension correlation is not considered necessary. This also suggests that the
process model is less sensitive to realistic changes in the interfacial tension than
the corresponding changes in the the diffusivity and viscosity. We should note
that the vapour-liquid surface tension can also be determined from the SAFT-VR
EoS within a density functional treatment Gloor et al. (2004a, 2007b); Llovell et al.
(2010); Rodríguez et al. (2012). We do not however pursue this approach here since
accurate experimental data for the surface tension of the H2O-MEA-CO2 mixture
is available. We will derive a classical density functional theory for the SAFT-VR
Mie EoS in chapter 6 for the purpose of obtaining surface tension values predic-
tively.

It should be noted that the values of the mole fractions and temperatures at the
outlets are not affected by the variations of the surface tension or the viscosity
and diffusivity in the liquid phase. It would be safe to assume that under these
operating conditions, where the residence time is large enough for the system
to reach equilibrium, the outlet values are determined solely by thermodynamic
quantities while the composition profiles are mostly dependent on mass transfer.

3.3.4.2 Heat transfer

The major source of heat in the absorption process is a consequence of the exother-
mic reaction between MEA and CO2, which occurs in the liquid phase. This heat
can then be transferred to the vapour phase. Another major element in the energy
balance is the heat associated with the transfer of water from one phase to the
other. In the model, the heat transfer is mediated via the heat-transfer coefficients
(Treybal, 1981). Two notable thermal parameters can be identified in the model:
the heat-transfer coefficient for the liquid phase, and the heat-transfer coefficient
for the gas phase. In addition, the magnitude of the enthalpy changes as the com-
ponents are transferred from one phase to another or as the temperature changes
in the gas and liquid streams affect the overall temperature profile. For instance,
Kvamsdal and Rochelle (2008) and Faramarzi et al. (2010) have identified the heat
capacities as sensitive parameters for the temperature profiles. Here, we consider
the impact of the heat of vaporisation of water on model predictions. Although
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it is a well characterized thermodynamic quantity, its variation provides insights
into the behaviour of the column.

The value of the heat of vaporisation of water is doubled and halved relative
to the value predicted by the SAFT-VR EoS, and the values of the heat transfer
coefficients are multiplied by 10 and divided by 10 (Table 11). The variation of the
liquid heat-transfer coefficient has no visible effect on the liquid-phase tempera-
ture and composition profile. The effects on the profiles resulting from varying
the heat-transfer coefficients and the heat of vaporisation of water are presented
in figures 28 and 29, respectively.

As can be seen from figure 28, despite a variation of one order of magnitude in
the vapour heat-transfer coefficient, the effect on the temperature profile is very
limited. It can be concluded that for the operating conditions under consideration,
the model is insensitive to the heat-transfer coefficients and there is no need to
investigate heat-transfer correlations further.

The variation of the heat of vaporisation of water is found to have a significant
impact on the liquid phase temperature profile when its value is doubled, and a
lesser impact on the composition profiles; it has a limited effect on the end-point
values. An increase in the heat of vaporisation magnifies the amplitude of the tem-
perature bulge, whereas a reduction eliminates the bulge. This suggests that the
heat of vaporisation of H2O is responsible for the rate at which the liquid heats up
and cools down. A similar effect is observed when a sensitivity analysis is carried
out on the heat of absorption of CO2, however the analysis is not presented here
because the adjustment of both properties leads to similar (but opposite) correc-
tions to the energy balance. The key elements to predict the temperature bulge
accurately are therefore the enthalpy of absorption of CO2 and the enthalpy of va-
porisation of water. The absorption of CO2 releases energy that heats both phases.
As the gas temperature increases upon entering the column, water is transferred
from the liquid phase to the gas phase through evaporation to maintain saturation;
this results in an absorption of energy, and a consequent decrease in temperature.

In conclusion, the competition between these two thermal effects (the absorp-
tion of CO2 increases the temperature and the vaporisation of water decreases
the temperature) is responsible for the observed and predicted temperature bulge.
This interpretation is consistent with that reported in Mac Dowell et al. (2013).

3.3.4.3 Effect of humidity in the flue gas

The amount of water in the flue gas is considered to be important in determining
the position of the temperature bulge in the absorber (Kvamsdal and Rochelle,
2008; Kvamsdal et al., 2010). In the case of the pilot plants studied by Tontiwach-
wuthikul et al. (1992) and Dugas (2006), the inlet flue gas is not saturated in water,
while the flue gas is saturated in the pilot-plant studies of Tobiesen et al. (2007)
and Gabrielsen et al. (2007). In order to assess the impact of humidity in our model
of the absorber, we vary the amount of water in the inlet flue gas from ωV

H2O = 0

to 0.072 (corresponding to a mole fraction of 0.12) (water-rich). The effect on the
profiles is represented in figure 30. It is apparent that varying the amount of water
in the flue gas does not have a significant impact on the composition profiles. The
effect is visible only for the liquid-phase temperature profile, where the outlet tem-
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perature value is higher by approximately 5 K for the saturated gas ωV
H2O = 0.072

(corresponding to a mole fraction of 0.12) than for the dry gas ωV
H2O = 0. Biliyok

et al. (2012) also find that increasing the moisture content of the flue gas affects
the absorber temperature profile, however the increase in temperature is more sig-
nificant in their study because a larger change in moisture content is considered
(ωV

H2O varies between 0.015 and 0.15, where the latter value represents a two-phase
aqueous system). The negligible effect on the composition profiles is in contrast to
the work of Mac Dowell et al. (2013) who found a large effect of the humidity of
the inlet gas on the flux profiles in the mass transfer zone.

3.4 conclusions

An absorber model for CO2 capture is developed with the aim of being as pre-
dictive as possible, in order to support solvent design activities prior to extensive
experimental investigations. The heat- and mass-transfer are described with rate-
based equations, in common with many other process models. Unusually, however,
a physical approach is taken to model the chemical reactions taking place in the
absorber. Both vapour-liquid equilibrium and the chemical equilibrium are treated
within the SAFT-VR thermodynamic framework, ensuring a consistent and accu-
rate representation of the physical interactions in the system under the assump-
tion that reaction kinetics are not rate-determining. This approach lends itself to
extension to other solvents, as a consequence of the transferable nature of the
SAFT molecular models and the relatively small number of parameters and data
required to develop them.

Without making use of pilot-plant data in model development, we find that the
proposed model can generally be used to obtain a best-case performance of the
solvent in question. This modelling approach is valuable for narrowing the solvent
search space as solvents may be quickly rejected by comparing their performance
in such a test. With very limited pilot-plant data we find that by adjusting a single
parameter that corrects for the diffusivity of CO2 in the liquid phase, the model
can be used to predict with quantitative accuracy a variety of different operating
conditions. Excellent predictions are obtained for the liquid-phase temperature
profiles and the liquid- and gas-phase compositions along the column in most
cases, with moderate deviations in a few cases. The comparison of the absorption
performance of different solvents via this method may further aid in the narrowing
of the solvent search space, and then a more quantitative comparison could be
carried out.

Following accurate predictions of the column profiles, a careful sensitivity anal-
ysis is conducted. We find that the liquid viscosity and diffusivity, and to a lesser
extent the vapour-liquid surface tension, are key properties for the prediction of
the composition profiles. The column profiles are also shown to be sensitive to the
thermodynamic properties that are major sources of heat generation or dissipa-
tion.

The main benefit of the proposed modelling framework, which is based on the
physical modelling of the underlying chemical reactions, is the ability to assess
new solvents for which there may be limited data available. This can be further
enhanced through the adoption of a group-contribution EoS, which makes use of
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the same physical concepts, such as the SAFT-γ Mie EoS (Papaioannou et al., 2014).
The modification of the proposed model to use this group-contribution approach
is straightforward and offers an additional predictive capability as new solvents
may be analysed for which no experimental data are available. Additionally, it is
clear that an extension of the work presented here to the desorption process and
the coupling of the absorber and desorber is required (Brand et al., 2013). This
would allow a much more comprehensive predictive assessment of new solvents
and allow the rapid evaluation of many alternative multifunctional amines for the
optimal capture of CO2 from flue gas.
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Figure 12: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T22 for the absorption of CO2 in
an 18wt% solution of MEA. The dashed curves represent the results obtained
without scaling the CO2 diffusivity (τ = 1) and the continuous curves the results
obtained by scaling the CO2 diffusivity in the liquid phase to 4.1% of its original
value (τ = 0.041). a) Temperature profile for the liquid phase, b) gas-phase CO2

concentration profile, and c) liquid-phase CO2 loading (defined as the number
of moles of CO2 per mole of MEA in the liquid phase). Stage 50 corresponds to
the bottom of the column.
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Figure 13: Sensitivity analysis of the mass transfer correlation on the profiles predicted
with our model compared with the experimental pilot-plant data of Run T22

(Tontiwachwuthikul et al., 1992): Mass-transfer correlations from Onda et al.
(1968a),(Onda et al., 1968b) (continuous black curve); mass-transfer correlations
from Rocha et al. (1993),(Rocha et al., 1996) (dashed red curve). (a) Temperature
profile for the liquid phase, (b) gas phase CO2 concentration profile, and (c)
liquid phase CO2 loading. Stage 50 corresponds to the bottom of the column.
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Figure 14: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T13. The dashed curves represent
the results obtained without scaling the CO2 diffusivity (τ = 1) and the contin-
uous curves the results obtained by scaling the CO2 diffusivity in the liquid
phase to 4.1% of its original value (τ = 0.041). a) Temperature profile for the
liquid phase, b) gas-phase CO2 concentration profile, and c) liquid-phase CO2

loading. Stage 50 corresponds to the bottom of the column.
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Figure 15: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T14. The dashed curves represent
the results obtained without scaling the CO2 diffusivity (τ = 1) and the contin-
uous curves the results obtained by scaling the CO2 diffusivity in the liquid
phase to 4.1% of its original value (τ = 0.041). a) Temperature profile for the
liquid phase, b) gas-phase CO2 concentration profile, and c) liquid-phase CO2

loading. Stage 50 corresponds to the bottom of the column.
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Figure 16: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T15. The dashed curves represent
the results obtained without scaling the CO2 diffusivity (τ = 1) and the contin-
uous curves the results obtained by scaling the CO2 diffusivity in the liquid
phase to 4.1% of its original value (τ = 0.041). a) Temperature profile for the
liquid phase, b) gas-phase CO2 concentration profile, and c) liquid-phase CO2

loading. Stage 50 corresponds to the bottom of the column.
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Figure 17: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T16. The dashed curves represent
the results obtained without scaling the CO2 diffusivity (τ = 1) and the contin-
uous curves the results obtained by scaling the CO2 diffusivity in the liquid
phase to 4.1% of its original value (τ = 0.041). a) Temperature profile for the
liquid phase, b) gas-phase CO2 concentration profile, and c) liquid-phase CO2

loading. Stage 50 corresponds to the bottom of the column.
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Figure 18: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T17. The dashed curves represent
the results obtained without scaling the CO2 diffusivity (τ = 1) and the contin-
uous curves the results obtained by scaling the CO2 diffusivity in the liquid
phase to 4.1% of its original value (τ = 0.041). a) Temperature profile for the
liquid phase, b) gas-phase CO2 concentration profile, and c) liquid-phase CO2

loading. Stage 50 corresponds to the bottom of the column.
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Figure 19: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T18. The dashed curves represent
the results obtained without scaling the CO2 diffusivity (τ = 1) and the contin-
uous curves the results obtained by scaling the CO2 diffusivity in the liquid
phase to 4.1% of its original value (τ = 0.041). a) Temperature profile for the
liquid phase, b) gas-phase CO2 concentration profile, and c) liquid-phase CO2

loading. Stage 50 corresponds to the bottom of the column.
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Figure 20: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T19. The dashed curves represent
the results obtained without scaling the CO2 diffusivity (τ = 1) and the contin-
uous curves the results obtained by scaling the CO2 diffusivity in the liquid
phase to 4.1% of its original value (τ = 0.041). a) Temperature profile for the
liquid phase, b) gas-phase CO2 concentration profile, and c) liquid-phase CO2

loading. Stage 50 corresponds to the bottom of the column.
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Figure 21: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T20. The dashed curves represent
the results obtained without scaling the CO2 diffusivity (τ = 1) and the contin-
uous curves the results obtained by scaling the CO2 diffusivity in the liquid
phase to 4.1% of its original value (τ = 0.041). a) Temperature profile for the
liquid phase, b) gas-phase CO2 concentration profile, and c) liquid-phase CO2

loading. Stage 50 corresponds to the bottom of the column .
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Figure 22: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T21. The dashed curves represent
the results obtained without scaling the CO2 diffusivity (τ = 1) and the contin-
uous curves the results obtained by scaling the CO2 diffusivity in the liquid
phase to 4.1% of its original value (τ = 0.041). a) Temperature profile for the
liquid phase, b) gas-phase CO2 concentration profile, and c) liquid-phase CO2

loading. Stage 50 corresponds to the bottom of the column.
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Figure 23: Run T22 of the pilot-plant data from Tontiwachwuthikul et al. (1992). Com-
parison of the predictions of our model for: (a) temperature of the bulk liq-
uid phase (continuous curve), the temperature at the vapour-liquid interface
(dashed curve), and the temperature for the bulk vapour phase (dot-dashed
curve); (b) the gas phase CO2 concentration in the bulk vapour phase (continu-
ous curve) and at the interface (dashed curve); (c) the liquid phase CO2 loading
in the bulk liquid phase (continuous curve) and at the interface (dashed curve).
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Figure 24: Run T18 of the pilot-plant data from Tontiwachwuthikul et al. (1992). Com-
parison of the predictions of our model for: (a) temperature of the bulk liq-
uid phase (continuous curve), the temperature at the vapour-liquid interface
(dashed curve), and the temperature for the bulk vapour phase (dot-dashed
curve); (b) the gas phase CO2 concentration in the bulk vapour phase (continu-
ous curve) and at the interface (dashed curve); (c) the liquid phase CO2 loading
in the bulk liquid phase (continuous curve) and at the interface (dashed curve).
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Figure 25: Sensitivity analysis of the CO2 diffusivity in the liquid phase on the profiles
predicted with our model in terms of the scaling parameter τ compared with
the experimental pilot-plant data of Run T22 from Tontiwachwuthikul et al.
(1992). τ = 0.041 (continuous curve), τ = 0.082 (dashed curve), and τ = 0.021
(dot-dashed curve). (a) Temperature profile for the liquid phase, (b) gas phase
CO2 concentration profile, and (c) liquid phase CO2 loading.
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Figure 26: Sensitivity analysis of the liquid viscosity on the profiles predicted with our
model compared with the experimental pilot-plant data of Run T22 from Ton-
tiwachwuthikul et al. (1992): Nominal value (continuous curve), viscosity dou-
bled (dashed curve), and viscosity halved (dot-dashed curve). (a) Temperature
profile for the liquid phase, (b) gas phase CO2 concentration profile, and (c)
liquid phase CO2 loading.
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Figure 27: Sensitivity analysis of the vapour-liquid surface tension on the profiles pre-
dicted with our model compared with the experimental pilot-plant data of Run
T22 from Tontiwachwuthikul et al. (1992): Nominal value (continuous curve)
(Vazquez et al., 1997), +10 mN/m (dashed curve), -10 mN/m (dot-dashed
curve), and the surface tension correlation for the loaded MEA solution ob-
tained from Jayarathna et al. (2013c) (dotted curve). (a) Temperature profile for
the liquid phase, (b) gas phase CO2 concentration profile, and (c) liquid phase
CO2 loading.
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Figure 28: Sensitivity analysis of the vapour-phase heat-transfer coefficient on the pro-
files predicted with our model compared with the experimental pilot-plant
data of Run T22 from Tontiwachwuthikul et al. (1992). Nominal value (continu-
ous curve), coefficient value increased ten times (dashed curve), and coefficient
value reduced ten times (dot-dashed curve). (a) Temperature profile for the liq-
uid phase, (b) gas phase CO2 concentration profile, and (c) liquid phase CO2

loading.
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Figure 29: Sensitivity analysis of the enthalpy of vaporisation of water on the profiles pre-
dicted with our model compared with the experimental pilot-plant data of Run
T22 from Tontiwachwuthikul et al. (1992). Nominal value (continuous curve),
enthalpy doubled (dashed curve), and enthalpy halved (dot-dashed curve). (a)
Temperature profile for the liquid phase, (b) gas phase CO2 concentration pro-
file, and (c) liquid phase CO2 loading.
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Figure 30: Sensitivity analysis of the amount of water in the inlet flue gas on the pro-
files predicted with our model compared with the experimental pilot-plant data
of Run T22 from Tontiwachwuthikul et al. (1992). Nominal value (continuous
curve), yH2O = 0.072 (dashed curve), and yH2O = 0 (dot-dashed curve). (a) Tem-
perature profile for the liquid phase, (b) gas phase CO2 concentration profile,
and (c) liquid phase CO2 loading.
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Table 5: Binary interaction parameters for the mixtures relevant to this work. kij character-
izes the strength of the dispersion interaction between molecules of types i and j,
cf. equation (40).

i + j kij Source

MEA + CO2 0.47878 Rodríguez et al. (2012)

MEA + H2O 0.01 Mac Dowell et al. (2010)

MEA + N2 0.03 Mac Dowell (2010)

CO2 + H2O -0.06 Mac Dowell et al. (2010)

CO2 + N2 -0.0599 Mac Dowell (2010)

H2O + N2 -0.3635 Mac Dowell (2010)
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Table 6: The site-site association energies εHB
ab,ij for MEA, H2O, and CO2 (cf. figure 8). The

interaction matrix is symmetrical, i.e., εHB
eH,ii = εHB

He,ii; the lower diagonal part has
been left blank and is implied. The unlike association between sites of the same
type is assumed to be symmetric, i.e., εHB

eH,ij = εHB
He,ij= εHB

eH,ji = εHB
He,ji (Mac Dowell

et al., 2010; Rodríguez et al., 2012).

εHB
ab,ij/kB (K)

MEA H2O CO2

b\a e H e∗ H∗ e H α1 α2

MEA

e 0 2357.79 0 900 0 1780.7121 0 0

H - 0 550 0 1780.7121 0 0 0

e∗ - - 0 960 0 1517.1049 5200 3982.66

H∗ - - - 0 1517.1049 0 0 0

H2O
e - - - - 0 1400.00 0 0

H - - - - - 0 0 0

CO2
α1 - - - - - - 0 0

α2 - - - - - - 0 0
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Table 7: The site-site range parameters rc;ab,ij for mixtures containing MEA, H2O, and
CO2 (cf. figure 8). The interaction matrix is symmetrical, i.e., rc;eH,ii = rc;He,ii
and so the lower diagonal part has been left blank. The unlike association between
sites of the same type is assumed to be symmetric, i.e., rc;eH,ij = rc;He,ij = rc;eH,ji
= rc;He,ji (Mac Dowell et al., 2010; Rodríguez et al., 2012).

rc;ab,ij(Å)

MEA H2O CO2

b\a e H e∗ H∗ e H α1 α2

MEA

e 0 2.08979 0 2.65064 0 2.10763 0 0

H - 0 2.65064 0 2.10763 0 0 0

e∗ - - 0 2.32894 0 2.22626 1.97978 1.96999

H∗ - - - 0 2.22626 0 0 0

H2O
e - - - - 0 2.10822 0 0

H - - - - - 0 0 0

CO2
α1 - - - - - - 0 0

α2 - - - - - - 0 0
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Table 8: Correlations used in the process model of the absorber.

Physical property Component Source

Liquid phase viscosity
H2O Westmeier (1977)

MEA Leibush and Shorina (1947)

Mixture Maham et al. (2002)

Vapour phase viscosity Kestin et al. (1966)

Vapour-liquid surface tension Vazquez et al. (1997)

Heat conductivity Haynes (2011)

Liquid phase diffusion coefficient
CO2 Takahashi et al. (1982)

H2O, MEA, N2 Perkins and Geankoplis (1969)

Vapour phase diffusion coefficient CO2, H2O, MEA, N2 Poling et al. (2001)
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Table 10: Characteristics of the column and the packing

Name Value Source

Asection (m2) 0.00785 Tontiwachwuthikul et al. (1992)

ap (m2.m−3) 466 Treybal (1981)

σc (N m−1) 61 Perry and Green, 2008, pg. 18-34, table 18-11

Lp (m) 0.0127 Tontiwachwuthikul et al. (1992)

ǫ 0.63 Treybal, 1981, pg. 198, table 6.3

Dz (m) 0.132 Tontiwachwuthikul et al. (1992)

ds (m) 0.31622 Treybal, 1981, pg. 206, table 6.5
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Table 11: Sensitivity analysis of key parameters in the model

Parameter description Variation Effect

Vapour diffusivity doubled negligible effect

halved

Liquid diffusivity doubled significant effect

halved see figure 25

Vapour viscosity doubled negligible effect

halved

Liquid viscosity doubled significant effect

halved see figure 26

Surface tension +10 mN/m negligible effect

-10 mN/m see figure 27

Heat transfer liquid × 10 negligible effect

÷10

Heat transfer vapour × 10 limited effect

÷10 see figure 28

Heat of vaporisation of water doubled significant effect

halved see figure 29

Mass fraction of water in inlet flue gas varied between 0 and 0.072 negligible effect

see figure 30
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M U LT I - O B J E C T I V E O P T I M I Z AT I O N O F E Q U AT I O N O F S TAT E
PA R A M E T E R S W I T H A P P L I C AT I O N T O WAT E R

Following the modelling of the absorption column in the previous chapter, it was
found that the thermodynamic model of Rodríguez et al. (2012) under-predicted
the liquid heat capacity at 1 bar by approximately 15% and heat of absorption by
approximately 20% at the absorber conditions and 30 wt % MEA. This potentially
led to a cancellation of errors, meaning that the temperature profile was predicted
well but without the thermodynamic model correctly capturing the true physics
of the situation. The heat capacity of pure water for the SAFT-VR SW model of
Clark et al. (2006) under-predicts the experimental value by approximately 15%
in the liquid phase at 300K, which is a likely cause for the under-estimation of
the mixture heat capacity of the solvent. To continue, we aim to develop SAFT-VR
Mie models for the CO2-MEA-H2O system, noticing that the more recent equation
can provide a good simultaneous description of the vapour-liquid equilibria and
second derivative properties (Lafitte et al., 2006b, 2007, 2013b; Dufal et al., 2015b)
(which include heat capacity and the heat of absorption). In this chapter, we show
a novel technique to parameter estimation, where we treat the procedure as a
multi-objective optimization, and develop a new SAFT-VR Mie model for water
using this technique.

4.1 introduction

The typical approach to determining equation of state (EoS) parameters is to solve
a single objective optimization, where the objective function is constructed using
a weighted-sum of various error functions, each representing the deviation be-
tween the prediction of a certain thermodynamic property and the experimental
measurement. The weighted-sum optimization, WSP(w), is defined by:

minimize
x

wTf(x) =

Ndim∑

i=1

wifi(x)

subject to x ∈ X,

(WSP(w))

where fi is the error function for property type i, Ndim is the number of property
types, wi is the weighting given to property type i, and x is a vector of model
parameters to be estimated. X refers to the feasible set of parameters, which im-
plicitly includes any inequality constraints, such as lower and upper bounds on
the EoS variables, or equality constraints, for example the use of combining rules.
There are various factors to consider in constructing WSP(w), and the final EoS
model (to be used in e.g., a process simulation) will depend on the choice of the
specific form of WSP(w). In particular, the definition of fi, the choice of which
property types to use, and the choice of w.

93



94 multi-objective optimization of equation of state parameters

The precise definition of fi is important as it not only affects the values of the
parameters but also their statistical properties (Englezos and Kalogerakis, 2000).
An example of fi is a relative least-squares objective function:

fi(x) =

Ni∑

j=1

[

Y
exp.
i,j (k) − Ymodel.

i,j (k,x)

Y
exp.
i,j (k)

]2

, (88)

where Ni is the number of data points for each property type i, k is a vector of
independent variables that are fixed in the model and the experiment (e.g., ther-
modynamic variables such as temperature and pressure), Yexp.

i,j is the experimental
result for property type i and data point j, and Ymodel.

i,j is the calculated result given
by the EoS for property type i and data point j. Typically, fi is averaged over Ni

such that fi represents the average deviation for each property type:

fi(x) =
1

Ni

Ni∑

j=1

[

Y
exp.
i,j (k) − Ymodel.

i,j (k,x)

Y
exp.
i,j (k)

]2

. (89)

Note that the objective functions defined in Equations 88 and 89 lead to the same
functional form of WSP(w), so the constant prefactors present in Equation 89 may
either be used in the definition of fi or subsumed into the weighting wi.

Due to the highly nonlinear behaviour of the more sophisticated thermody-
namic models, finding the solution to WSP(w) can be challenging because the
objective function may have a non-convex behaviour and exhibit many local op-
tima. Therefore, utilizing global optimization routines in the model development
can achieve better results than local optimization methods (Costa et al., 2000). Fur-
thermore, the calculation of phase equilibrium properties can be difficult since
when regressing parameters one needs to ensure that the results correspond to
stable equilibria. This becomes particularly difficult to achieve in the case of mod-
elling multi-component mixtures. Sophisticated methods have been developed to
deal with this problem during parameter estimation (see for example Glass et al.
(2018)) .

The values of the parameters and the individual fi at the optimal solution to
WSP(w) are determined by the choice of weightings, but it is generally difficult
to decide upon the precise weighting given to each property a priori. One class
of methods suited for determining a suitable weight vector are Bayesian-type ap-
proaches. Common methods include the error-in-variables-measured (EVM), the
weighted least squares (WLS) approach, and the maximum-likelihood estimator
(Bard, 1974; Wang et al., 2018b), which seek to find the set of parameters that are
most statistically significant with respect to the experimental data. These methods
require prior knowledge of the experimental uncertainty, such as the variance and
distribution of measurement errors, which are sometimes not known or reported.
Furthermore, if the equation of state is not able to predict the experimental data to
within the range of experimental uncertainty, then weighting properties according
to the inverse of their variance can lead to an unfair weighting towards certain
thermodynamic properties.

For these reasons, the weight vector is typically chosen arbitrarily in the devel-
opment of EoS parameters. In the majority of cases, an equal weighting is given
to each property type. In other cases, a small number of weight vectors are cho-



4.1 introduction 95

sen and the thermodynamic model is picked by looking at the fi obtained from
the different models and judging which one gives the best balance between the
different properties (see for example Lafitte et al. (2007)). However, it is difficult to
decide systematically upon the weight vectors. It is often not clear how changes in
the weight vector will affect the individual fi, particularly as the number of dimen-
sions increases, as the dependence of fi on the weights can be highly non-linear
(Marler and Arora, 2010). Furthermore, there may not be a ’best’ set of parameters
for a particular compound or mixture. This will depend upon the intended use of
the model, and a single set of parameters may not suffice.

An alternative approach, recently outlined by Forte et al. (2018), is to formulate
the parameter estimation as a multi-criteria (or multi-objective) optimization prob-
lem. Within this approach, the different thermodynamic properties are treated as
competing objectives, and the output is a set of non-dominated (or Pareto-optimal)
models, from which a model may be chosen after the parameter estimation pro-
cedure. Importantly, the multi-objective optimization approach removes any ar-
bitrariness in selection of the weight vector. The authors demonstrate this novel
method of parameter estimation by developing Pareto-optimal models for water
using the PC-SAFT EoS (Gross and Sadowski, 2000; Gross et al., 2001), using sat-
urated liquid density and vapour pressure as two competing objectives. They con-
sidered models for water which differ in their association scheme (2-site, 3-site
and 4-site models), and the inclusion or not of a dipolar term (Gross and Vrabec,
2006). It was shown that knowledge of the Pareto front provides a useful means of
comparison between different model types, as one is able to simultaneously com-
pare the full set of Pareto-optimal solutions. They concluded that the 2- and 4-site
association schemes provide very similar predictions, and that the addition of a
dipolar term only offers a small improvement in the Pareto front if the literature
value of the dipole moment is used, while a vast improvement in the Pareto front
is seen if one treats the dipole moment of water as an adjustable parameter.

In addition to the determination a suitable set of weightings as an input to
WSP(w), the choice of the particular data types used is of crucial importance. In
the context of modelling of industrial processes, it is preferable that the equation of
state can accurately predict both phase equilibira and second derivative properties,
in particular, the caloric properties such as the heats of vaporization and isobaric
heat capacities (Hendriks et al., 2010). The more recent versions of molecular-based
SAFT EoSs that incorporate a soft repulsive core have been shown to provide an
excellent simultaneous description of the phase equilibria and second derivative
properties, allowing for the possibility of including more data types in the model
parametrisation (Lafitte et al., 2013b; Llovell and Vega, 2006; Lafitte et al., 2007).
The agreement with the experimental properties included in the objective function
is not the only concern however. In molecular-based EoSs, where the parameters
characterise the intermolecular potential, one needs to make sure that the model
correctly captures the physics in order for the equation to have any predictive
capacity. For example, the ability to predict properties at other thermodynamic
conditions, the ability to transfer some potential parameters to predict properties
for chemically similar compounds, or the ability to predict mixture properties.
When estimating the SAFT parameters for real molecules, the ability to generate
parameters that provide a good approximation of the true intermolecular potential
becomes difficult if there is a large amount of parameter degeneracy, where the



96 multi-objective optimization of equation of state parameters

experiments do not provide enough information to distinguish between different
models. Typically this degeneracy increases with the number of parameters.

When chemical association is present and is explicitly accounted for in the ther-
modynamic model, for example in the SAFT family of equations of state, it is
clear from the literature that data types beyond vapour pressure and saturated
liquid density alone are required in order to decouple the energy of interaction
due to dispersive and hydrogen bonding interactions. This is evidenced by the
work of Clark et al. (2006) for the SAFT-VR SW equation of state, and Dufal et al.
(2015b) for the SAFT-VR Mie equation of state, when developing SAFT models
for water. The authors observed large shallow regions in the objective function
space when plotted against discretised pairs of parameters, particularly the en-
ergy of dispersive interactions and the energy of hydrogen bonding interactions.
This indicates a high degree of degeneracy between these two parameters. Their
discretisation method allows for a visualisation of the parameter space and allows
one to generate a variety of models that do not necessarily minimize the objective
function but are within a certain acceptable error. Through analysing these water
models, Clark et al. (2006) found the heat of vaporisation was not a suitable data
type for discriminating between the different models due to the similar prediction
of this property for models along the “optimal” valley. The authors found that
vapour-liquid surface tension calculated using the SAFT-VR DFT of Gloor et al.
(2004b) provided some capacity to discriminate between the different models, but
the predicted values overestimate the experimental surface tension in all cases
due to the models overestimating the critical temperature. The predictions of the
fraction of association sites not bonded between the different models were much
more varied, and hence the authors were able to discriminate between models
by comparison with the spectroscopic data by Luck (1980). Similarly, Dufal et al.
(2015b) were able to validate their water models (regressed to only VLE data) to
the degree of association. However, in this case the authors used the degree of
association predicted by Monte Carlo simulations of the SPC/E and TIP4P/2005

force fields as pseudo-experimental data, and the authors discussed the question-
able accuracy of the spectroscopic data by Luck (1980). Cripwell et al. (2018) used
a similar approach to discretisation to determine models for the SAFT-VR Mie-
GV (polar variant of SAFT-VR) equation of state, whereby near-optimal solutions
were discriminated with respect to their ability to predict vapour-liquid equilibria.
Another pure-component property suitable for reducing the parameter degener-
acy and obtaining a reliable set of parameters is the vapour-liquid surface tension
(Gloor et al., 2002; Gloor, 2003; Gloor et al., 2007a), where the authors showed that
via a suitable density functional theory (SAFT-VR DFT), the surface tension may
be used to determine the balance between the dispersive and associative forces.
Oliveira et al. (2016) demonstrated that for highly associating molecules, if only
saturated liquid density and vapour pressure is used to fit the parameters (us-
ing the soft-SAFT equation of state), one is unable to obtain a good prediction
of various derivative properties (the speed of sound, isochoric heat capacity, ther-
mal expansion coefficient, isothermal compressibility, and isobaric heat capacity).
Such data types are useful as these properties are readily computed from an EoS,
and are relatively easy to obtain from experimental measurements. In this work
they showed that CP is much better described by a water model that accounts for
non-sphericity.
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The isobaric heat capacity, CP, is a promising data type to use in the objec-
tive function as it can be measured accurately and its accurate prediction is vi-
tally important for the modelling of chemical processes. It also provides specific
information on the structure of the liquid due to its relationship with entropy
(CP = T(dS/dT)P). Cerdeirina et al. (2007) showed that a simple two state associa-
tion model, TSAM (Cerdeiriña et al., 2004) is able to capture the various trends of
the temperature dependence of CP(T), at specific isobars, and observed that this
dependence for associating molecules is only sensitive to the ideal and association
contributions to the isobaric heat capacity. This provides a good indication that
one may be able to use this property to decouple the dispersive and association
forces. Note that in using CP to regress EoS models one also requires experimental
information (or some means to accurately estimate) the ideal gas heat capacity.

In conclusion, we have identified that multiple different property types (beyond
saturated liquid density and vapour pressure alone) may be required for the re-
gression of equation of state parameters to experimental measurements. By con-
structing an optimization problem of the form described in WSP(w) for the regres-
sion, it is clear that increasing the number of different property types makes it
even more difficult for the user to define which weights should be specified in the
optimization problem. In the present work, we extend the application of the novel
multi-objective approach to EoS parameter estimation of Forte et al. (2018) to in-
clude more that two data types (or two objectives, fi). We first discuss in detail the
theory behind multi-objective optimization and methodologies for providing an
efficient approximation of the Pareto front. We expose an algorithm that is ideally
suited for the parametrisation of EoS models, and that can be retrofitted with ex-
isting methods and code bases, provided that the objective function is of the form
described in WSP(w). The sandwich algorithm we implement for determining an
efficient sequence of weight vectors used in WSP(w) is closely related to that of
Bokrantz and Forsgren (2011), and is applicable to any number of dimensions
(Ndim). The method is applied to the generation of a number of Pareto-optimal
models for water using the SAFT-VR Mie equation of state (Lafitte et al., 2013a;
Dufal et al., 2015b). We include three data types in the parameter regression: sat-
urated liquid density, vapour pressure, and isobaric heat capacity. The thermody-
namic properties of water are notoriously difficult to predict with any EoS due to
the complex interplay between association, dispersive and polar forces. Hence, the
objectives are indeed conflicting and we are able to generate Pareto fronts from
which a choice of model must be made. Finally, we choose a particular model for
water that shows a good compromise between the objectives, and assess the abil-
ity for the model to predict other properties that are not included in the objective
function.

4.2 methodology

4.2.1 Definition of the multi-objective optimization problem and non-dominance

The following multi-objective optimization problem is considered:
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minimize
x

f(x) = [f1(x), f2(x), ..., fNdim(x)]

subject to xLB
6 x 6 xUB,

(MOP)

where f is a vector of individual objective functions, in our case, some scalar
functions fi, i = 1, ...,Ndim, that characterise the deviations between model and
experiment for property type i; x is a vector of equation of state parameters, which
we refer to as a “model” throughout; Ndim > 2 is the number of objectives; and
superscripts LB and UB represent the lower and upper bound constraints on the
model parameters respectively. Throughout this chapter, vector inequalities imply
that the inequalities hold for all components of the vector with the same index. If
it is possible to minimise all fi simultaneously, i.e., the objective functions are not
conflicting, then the solution is a single optimal model. Otherwise, the solution
is a (potentially infinite) set of models that are non-dominated. A model with
parameters x̃ is non-dominated if there exists no other feasible set of parameters
x such that:

f(x̃) ∈ f(x) +C \ {0}, (90)

where C is an ordering cone that is closed and pointed.
We follow the approach of Bokrantz and Forsgren (2011) by considering poly-

hedral ordering cones of the form C = {Qµ : µ > 0}, whereby we specify the maxi-
mum admissible trade-offs between pairs of objectives to obtain Q. Let tij (tij > 0)
be the reciprocal of the maximum admissible increase in fi per unit decrease in fj.
Then C can be represented by a set of inequality constraints: C = {z : Tz > 0},
where T is a matrix with dimensions Ndim, with ones on the diagonal and
off-diagonal elements tij. The dual cone to C, C∗, is the cone generated by T :
C∗ = {Tµ : µ > 0}.

To find the generating matrix, Q, we use Minkowski’s theorem for closed convex
pointed cones (Blekherman et al., 2012; Fawzi, 2017), which says that any point in
C can be described by the conical hull of its extreme rays. The extreme rays of C
can be found by setting (Ndim − 1) inequality constraints that define C to be active.
In this work, we set all maximal admissible trade-offs between objective pairs to
be equal and remove the subscripts: tij = t. This allows us to simplify the extreme
ray representation of C. In three dimensions:

C =






z :
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. (91)

Taking the first two inequality constraints to be active, we obtain z1 = z2 = −t
1+tz3.

Setting z3 = 1 (the length of the extreme ray is arbitrary), we obtain an extreme
ray and row of Q: [ −t

1+t , −t
1+t , 1]. The other extreme rays can be found similarly by

appealing to symmetry, giving:
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Using similar arguments for Ndim dimensions, Q is given by a matrix with ones
along the diagonal and off-diagonal elements −t

1+(Ndim−2)t
. If t = 0 then Q and T

equal the identity matrix, which leads to the conventional Pareto ordering, i.e., a
model x is Pareto-optimal if there is no other feasible model x̃ such that f(x̃) 6
f(x) with at least one strict inequality. In Figure 31a we demonstrate this concept:
a model is dominated if it lies anywhere above and to the right of another model.

f1

f2

a)

Dominated

model

f1

f2

b)

Dominated

model

Pareto surface

Maximum acceptable

trade-off

Pareto surface

Figure 31: Schematic illustrating Pareto-optimality and dominance in two dimensions. We
show two Pareto points, P1 and P2 (open circles), that lie on the Pareto front
(dotted line). The region shaded in red is P1 + C; any model that lies in this
region is dominated by P1. In a), the ordering cone C (t = 0) implies the con-
ventional Pareto ordering between objectives f1 and f2, where models are dom-
inated if they are above and to the right of a Pareto-optimal model. In b) we
illustrate the dominance criterion for a broader ordering cone, C, when t > 0.
We specify 1/t, the maximum acceptable increase in f2 (∆f2) for a unit decrease
in f1 (-∆f1), which corresponds to the gradient of the left-most extreme ray of
C. This broader ordering cone leads to P2 becoming dominated.

Throughout, we refer to the complete set of Pareto-optimal models as the Pareto
front, and refer to the discrete set of non-dominated models by a matrix P, where
the k-th row (k = 1, ...,NP) corresponds to a non-dominated point which we re-
fer to as Pk. NP is the number of Pareto points. The algorithm proposed in this
chapter will always produce points that are Pareto-optimal in the conventional
sense, but some Pareto-optimal points may be discarded when t > 0 due to the
dominance criterion, which removes parts of the Pareto front where trade-offs are
unfavourable. In Figure 31, we provide a visual interpretation of non-dominance
and Pareto dominance in two dimensions for an ordering cone C generated by
t = 0 (Figure 31a), and t > 0 (Figure 31b). In Figure 31b, we illustrate how Pareto-
optimal models are dominated when a broader ordering cone is chosen.

4.2.2 Approximating the non-dominated set

The goal of multi-objective optimization is to find the non-dominated set, i.e., so-
lutions to problem MOP, where non-dominance is defined in Equation 90 with a
user-defined ordering cone, C.
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Typically, it is difficult to find the complete set of non-dominated points since a
closed-form solution to MOP is not always available. The single objective optimiza-
tion (SOO) problem (WSP(w)) is nonlinear and NP-hard, i.e., it cannot be solved
in polynomial time with respect to the number of parameters. For approaches
that incorporate a scalarization method, the MOO is at best an infinite set of SOO
problems and is therefore even more NP-hard. Thus, various methods have been
developed for approximating the non-dominated set, the outputs of which are a
finite number of non-dominated points. The two main classes of approaches are
stochastic and deterministic.

Stochastic methods such as evolutionary algorithms work by sampling a large
area of the parameter space and are not typically gradient-based (Rangaiah, 2009).
They can therefore be effective regardless of the nature of the objective functions
and constraints (Marler and Arora, 2004).

Most deterministic methods make use of a particular type of scalarization,
whereby the MOP is converted into an SOO, allowing for gradient-based tech-
niques as solution methods. Common examples of scalarization techniques in-
clude the ε-constraint method (YV et al., 1971), whereby inequality constraints
are added to the individual objective functions; the Pascoletti-Serafini scalariza-
tion (Pascoletti and Serafini, 1984) which relates the objectives via an equality
constraint; and the weighted-sum method (WSP(w)) (Zadeh, 1963). For a more
detailed review of the different scalarization methods used in MOO problems, the
reader is referred to Eichfelder (2008).

Some scalarization approaches such as the Pascoletti-Serafini and ε-constraint
method are able to generate Pareto-optimal points on the non-convex regions of
the Pareto front. These approaches are able to explore non-convex regions by
adding hard constraints on the objective functions. Here we refer to ‘hard’ con-
straints as constraints that must be satisfied, in contrast to ‘soft’ constraints which
may be incorporated into the objective function via penalty functions (Boyd and
Vandenberghe, 2004). In non-convex scalarization techniques, the algorithms that
determine the scalarization variables do not scale favourably with problem dimen-
sionality. For example, in the hyper-boxing algorithm proposed by Serna (2009),
the number of Pascoletti-Serafini scalarizations required to provide a desired opti-
mization quality increases exponentially with the number of dimensions, making
the method numerically challenging above a certain number of dimensions (e.g.,
Ndim > 12 (Serna, 2009)).

Although the weighted-sum method is only able to capture the convex regions
of the Pareto front, it is computationally easier than the other scalarization meth-
ods, and has some unique properties that are useful in determining bounds on the
Pareto front, as detailed in the next section. From our practical experience with
two and three dimensional problems and when the individual objectives fi rep-
resent the sum of squared relative errors between the model and experiment, the
majority of the Pareto front is convex. We thus focus on the weighted-sum scalar-
ization, which allows the proposed algorithm to make use of existing methods
and code bases for weighted-sum single-objective model parametrisation, without
having to change the particular form of the objective function and constraints.
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4.2.3 The weighted-sum scalarization and sandwich algorithms

In this section we first show how weighted-sum scalarizations of the MOP can be
used to generate Pareto-optimal solutions and provide outer approximations to
the Pareto front. We then show how inner approximations to the Pareto front can
be constructed based on a discrete set of Pareto points, P, and the ordering cone,
C, in the case that the MOP is a convex problem. Finally, we describe sandwich
algorithms and how they can be used to efficiently generate Pareto points and
inner (in the case of convex Pareto fronts) and outer approximations to the Pareto
front.

4.2.3.1 The weighted-sum scalarization

For convenience, we repeat the definition of WSP(w) in order to describe the prop-
erties of the weighted-sum scalarization in more detail:

minimize
x

wTf(x) =

Ndim∑

i=1

wifi(x) (93a)

subject to x ∈ X. (93b)

We define the region Z as the set of all feasible vectors in objective space:
Z = {f(x) | x ∈ X}, and refer to vectors in objective space by z. The minimization
of a weighted-sum scalarization of the MOO can be interpreted geometrically as
shifting a hyperplane (a line in 2 dimensions, a plane in 3 dimensions, etc.), with
a normal vector equal to the weight vector, as close as possible to the origin in
the feasible objective space. A geometric illustration of the optimization is shown
in Figure 32, in two dimensions, and where some regions of the Pareto front are
non-convex. Solving the weighted-sum scalarized problem with the k-th weight
vector wk that lies in C∗ will give an optimal solution x∗, corresponding to the
k-th non-dominated Pareto point, Pk = f(x∗). We can then define a hyperplane
that has normal vector wk, and passes through Pk, by wT

kf = wT
kPk = bk, and its

associated positive half space, {z | wT
kz > bk, z ∈ Z}.
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f1

f2
Feasible region

P1

Hyperplane shift 

towards optimal solution

Figure 32: Schematic illustrating the weighted-sum scalarization in objective space for the
two objectives f1 and f2. The grey area represents the feasible region; the solid
black curve represents all of the Pareto-optimal solutions that are accessible by
weighted-sum scalarization, whilst the dotted section of this curve represents
Pareto-optimal solutions that are inaccessible by weighted-sum scalarization.
The weight vector, w, used for the scalarization is normal to the blue hyper-
planes. At the Pareto point, P1 (open circle), the hyperplane is tangential to
the Pareto front and provides an outer approximation; any feasible point in
objective space must lie above (or equal to) this hyperplane.

4.2.3.2 Definition of the outer approximation, Zout

By solving the weighted-sum scalarization with a single weight vector to global
optimality, not only do we always obtain a Pareto-optimal solution, but we also
obtain a positive half-space that provides a lower bound on the feasible region, and
thus a lower bound on the Pareto front. Equivalently, there is no feasible solution
that lies in the associated negative half-space. With multiple Pareto points and
their associated weight vectors, we define an outer approximation to the feasible
objective space, Zout ⊆ Z, by the set of positive half-spaces:

Zout = {z | WTz > b}, (94)

where W is a matrix with each row corresponding to a particular weight vector,
and b is a column vector where the k-th element is obtained by the scalar product
between the k-th row of W and the k-th row of P. Note that Zout is an outer
approximation even if the Pareto front is non-convex.

4.2.3.3 Definition of the inner approximation, Zin

An inner approximation to the Pareto front can be found via polyhedral approx-
imations if the Pareto front is convex. Sufficient conditions for the convexity of
MOP are that all fi, i = 1, ...,Ndim are convex, the inequality constraint functions
are convex, and the equality constraints are affine (Boyd and Vandenberghe, 2004).
However, the convexity of the Pareto front only requires that the feasible region,
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f1

f2

Pareto surface

P1

P2

P3

Figure 33: Schematic illustrating the region described by the inner and outer approxi-
mations, Zin and Zout respectively, for three Pareto points (open circles). The
dashed curve is the Pareto front which is convex. Zin is defined in Equation 95

. The lower edge of Zin is shown by the straight black lines, some of which
connect the Pareto points, the others lie on the extreme ray of C that originates
from the two extreme Pareto points P2 and P3. The blue shaded region is the
convex hull of Zin. The red lines represent the lower region of Zout, defined in
Equation 94. The whole region defined by Zout lies above or on the red lines.
The Pareto front is ‘sandwiched’ in the region Zout \Zin.

Z, is p-directionally convex (Holtzman and Halkin, 1966), as demonstrated by Lin
(1976). This is because the Pareto front is always on the boundary of Z (Marler
and Arora, 2010). The definition of p−directionally convex is as follows (Marler
and Arora, 2010):

p-Directionally Convex: Given a nonzero vector p, Z is said to be p-directionally
convex if given any two different points in Z, f and f, and any two positive
scalars, w1 and w2, with w1 +w2 = 1, there is a positive number β such that
w1f1 +w2f +βp ∈ Z .

The Pareto front may be convex even if fi, i = 1, ...,Ndim, are non-convex
functions. Assuming convexity of the Pareto front, an inner approximation can
be defined by convex combinations of the Pareto points plus the ordering cone,
C = {Qµ : µ > 0}. The inner approximation is given by the set Zin (Bokrantz and
Forsgren, 2011):

Zin = {z | PTλ+QTµ : λ,µ > 0 and eTλ = 1}, (95)

where e is a vector of ones with the same dimensions as λ. Any feasible choice
of parameters (λ,µ), defines a point in objective space that must lie either above
or on the Pareto front. In Figure 33, we provide a geometric interpretation of Zin

and Zout. For non-convex surfaces, the inner approximation described here will
provide an upper bound to points that lie in the convex hull of the feasible region.

As every weight vector will provide a Pareto-optimal solution to WSP(w), one
may naively choose to run several optimizations with many weight vectors to pro-
duce the Pareto front. For example, by using a grid of equally distributed weights.
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Figure 34: Geometric interpretation of the sandwich algorithm for objectives f1 and f2.
The dotted line represents the true Pareto front, discrete Pareto points are
shown as open circles, the red lines represent the outer approximation, the blue
lines represent the inner approximation, the filled black circles are the extreme
vertices of the outer approximation. In a), we start with an initial selection of
Pareto points by solving the weighted-sum problem with three weight vectors
and construct the inner and outer approximation. The area with the largest er-
ror between the inner and outer approximation (represented by the line with
arrows) is chosen and the normal vector to the facet of the inner approxima-
tion in this area is chosen as the scalarization vector for the next weighted-sum
optimization. The error measure is some scalar quantity that characterises the
distance between the inner and outer approximations, and the specific error
measure (the Hausdorff distance) used in this work is defined in step 2 of the
sandwiching algorithm described in section 4.2.5. This creates a new Pareto
point in b), and the algorithm repeats until the error measure is below a certain
tolerance in c). The Pareto front is sandwiched between the inner and outer
approximations.

However, it is well known that an even distribution of weights does not typically
produce an evenly distributed set of points on the Pareto front (Das and Dennis,
1997), i.e., points become clustered towards certain regions. A grid search may be-
come numerically intractable, particularly as the number of dimensions increases.

Sandwich algorithms provide an efficient way to approximate the Pareto front.
The output is a finite number of non-dominated points, and a polytope (or col-
lection of facets) that approximates the true Pareto front to within a known de-
gree of accuracy. In essence, sandwich algorithms iteratively produce increasingly
tighter inner and outer approximations to the Pareto front by solving a sequence of
weighted-sum scalarizations of the MOO, and they terminate once a user-defined
convergence criterion is met. Assuming convexity of the MOO problem, the true
Pareto front is ‘sandwiched’ between the inner and outer approximations. At each
iteration of the algorithm, a new weight vector is selected to solve the weighted-
sum problem that leads to the largest improvement in the approximation quality.
In this way, the algorithm seeks to obtain the desired approximation quality in
as few weighted-sum optimizations as possible. The general idea behind the sand-
wich algorithm is shown in Figure 34 for two objectives. Note that this geometrical
interpretation is only applicable in two dimensions. Furthermore, we show in Fig-
ure 35 that although the Pareto front is non-convex, the sandwich algorithm still
converges.
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Figure 35: Geometric interpretation of the sandwich algorithm for objectives f1 and f2
when there are nonconvex regions within the Pareto front. The dotted line rep-
resents the true Pareto front, discrete Pareto points are shown as open circles,
the red lines represent the outer approximation, the blue lines represent the in-
ner approximation, the filled black circles are the extreme vertices of the outer
approximation. In a), we start with an initial selection of Pareto points by solv-
ing the weighted-sum problem with three weight vectors and construct the in-
ner and outer approximation. The area with the largest error between the inner
and outer approximation (represented by the line with arrows) is chosen and
the normal vector to the facet of the inner approximation in this area is chosen
as the scalarization vector for the next weighted-sum optimization. The error
measure is some scalar quantity that characterises the distance between the in-
ner and outer approximations, and the specific error measure (the Hausdorff
distance) used in this work is defined in step 2 of the sandwiching algorithm
described in section 4.2.5. This creates a new Pareto point in b). Note that in b)
there are parts of the Pareto front that lie outside of the the ’inner’ approxima-
tion. In c) a new Pareto point is created in the convex region of the Pareto front.
The next largest error measure is then associated with the inner and outer ap-
proximations close to the non-convex region. In d) we show that the inner and
outer approximations essentially converge to eachother in the non-convex re-
gion and thus the algorithm will terminate even if there are non-convex regions
in the Pareto front.
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4.2.4 Literature review of existing sandwich algorithms

The various sandwich algorithms in the literature differ mainly in the way in
which the inner approximation is formulated and the choice of the error measure
used to quantify the deviation between the inner and outer approximations to the
Pareto front. All methods use a similar formulation of the outer approximation
(Equation 94). Here we give a brief overview of the various sandwich algorithms
in the literature and note some of their drawbacks and advantages.

In the seminal work of Solanki et al. (1993), the authors propose an algorithm,
XNISE1, where the inner approximation is represented by the convex hull of the
Pareto points. This convex hull is represented by a collection of facets, Fs (e.g.,
line segments in two dimensions, planes in three dimensions, and hyperplanes in
n-dimensions) where s represents the s-th face of the convex hull. Each facet of
this inner approximation is given an error, δs, which is defined by the minimum
Euclidean distance between the facet and a point z∗ in the outer approximation
that satisfies z∗ = min(w∗Tz) subject to z ∈ Zout, where w∗ is the inner-facing
normal vector of the facet. Inner-facing means that it points towards the inside
of the convex hull of the set of Pareto points. The weight vector normal to the
facet Ft with maximum error δt is then used to solve the weighted-sum optimiza-
tion, producing a new Pareto point and additional half-space to be added to the
outer approximation. The new inner approximation is then the convex hull of the
new Pareto point and the previous set of Pareto points. The algorithm repeats
by calculating a new error measure δt, and iterates until this error reaches a cer-
tain maximum tolerance. Such an algorithm may be termed “facet enumerative”,
because the error δs is associated with the s-th facet. This contrasts to ’vertex enu-
merative’ sandwich algorithms where an error is assigned to the extreme vertices
of Zout, which we will discuss in more detail later in this section. A particular
issue with this approach lies in the definition of the inner approximation: in di-
mensions higher than two, some facets Fs of the inner approximation (particularly
facets close to the boundaries of the Pareto front) can have mixed normals, i.e.,
some components of the normal vector are positive and some negative. A sim-
ple example of a case where mixed normals arise is shown in Figure 36. Solving
a weighted-sum optimization with negative weightings given to some objectives
produces solutions that are non-dominated. The authors mediate this issue by lim-
iting fi such that the new solutions do not lie too far from the Pareto front, but
optimizations using negative weights is not a desirable property as carrying out
each weighted-sum optimization is time consuming. However, Rennen et al. (2009)
showed that the error measure associated with mixed-normal facets is overly pes-
simistic.
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Figure 36: Illustration of the facet representation of the inner approximation when only
the Pareto points are considered in the convex hull. The Pareto front, indicated
in grey, is the lower eighth of a sphere. The Pareto points are open circles. Points
P1, P2 and P3 represent the minimum values of f1, f2 and f3 respectively. Point
P4 represents the point on the Pareto front where all fi, i = 1, 2, 3 are equal. The
facets A, B and C are generated from the convex hull of the Pi and have normal
vectors with both positive and negative elements. Note that the fourth facet in
the convex hull that connects points P1, P2 and P3 is omitted from the diagram.
For facet B, we show its normal vector, n, that points towards the inside of the
convex hull of the Pareto points and passes through the midpoint of P2 and P3.
Vector n points in the direction of increasing f2 and f3, but decreasing in f1.

A similar approach was proposed by Craft et al. (2006), but rather than per-
forming weighted-sum optimizations scalarized with weight vectors that include
negative components for facets with mixed normals, a convex combination of the
weight vectors at the facet vertices is chosen. In this way, only positive weights
are used in the optimization. However, this method may lead to Pareto-optimal
solutions that do not reduce the error measure in subsequent iterations, i.e., the
same facet may exist in the convex hull of the previous Pareto points and the new
point (Rennen et al., 2009). This leads to issues in convergence of the algorithm
since in each iteration one is not guaranteed to reduce the error measure and thus
heuristic methods must be used, e.g., flagging facets for which the normal vector
has already been used in the weighted-sum optimization. Our tests with this algo-
rithm show that the convergence is relatively poor, and the Pareto points become
clustered towards the edges of the Pareto front.

Rennen et al. (2009) proposed a modification of the algorithm of Solanki et al.
(1993), where rather than generating facets by computing the convex hull of the
Pareto points only, additional ‘dummy’ points are added to expand the convex
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hull (and inner approximation), such that the resulting facets of the inner ap-
proximation do not have any mixed normals. This method for defining the inner
approximation is akin to finding the convex hull of the set-wise summation of
the Pareto points and the positive orthant, and is therefore similar to Zin as de-
fined in Equation 95, with the ordering cone C defined with Q and T equal to
the identity matrix. By defining dummy points according to Definition 10 in Ren-
nen et al. (2009), the relevant facets that include the dummy points have a zero
normal vector in at least one dimension. Using weight vectors with zero elements
in the weighted-sum optimization is not particularly desirable as it can produce
weakly dominated Pareto points. At the weakly Pareto optimal points, it is possi-
ble to improve some objective functions without penalizing others. Additionally,
if a thermodynamic property i has zero weighting, the value of fi at the solution
is large, which leads to large values in the distance metric even in regions of the
Pareto front where the curvature is steep. In our tests with the algorithm of Ren-
nen et al. (2009), many of the weight vectors used in the optimization have zero
elements, particularly at the start of the algorithm.

As we are mainly interested in regions of the Pareto front where the trade-offs
between objective pairs are desirable, it is preferable to use an algorithm that
incorporates a generalised ordering cone, such that elements of the weight vectors
are greater than zero. This provides additional flexibility in specifying maximum
admissible trade-offs prior to generating points on the Pareto front. In any case,
the use of ordering cones, even the conventional Pareto ordering cone, eliminates
artefacts that typically occur close to the boundary of the Pareto front (Hernández,
2011; Bokrantz and Forsgren, 2011).

Two sandwich algorithms that explicitly include ordering cones are those of
Hernández (2011) and Bokrantz and Forsgren (2011). The sandwich algorithm de-
scribed by Hernández (2011) is a modification of the inner-outer approximation
described by Klamroth et al. (2003). An error measure is reduced iteratively by
maximizing block norms centred on a point z ∈ Z+ C. A block norm is a poly-
hedral gauge that is symmetric with respect to the origin (see Hernández (2011)
and references the formal definition). The block norm is constructed in a particular
way such that its facets in the positive orthant have normals that are guaranteed to
lie within the dual cone of C. This algorithm has been used in several chemical en-
gineering applications that involve multi-objective optimization (Bortz et al., 2014;
Burger et al., 2015; Forte et al., 2018). In these works, no more than two objective
functions are considered.

In Bokrantz and Forsgren (2011), the authors proposed a ’vertex enumerative’
algorithm, whereby the error measure is calculated for each extreme vertex of the
outer approximation. This method avoids the explicit construction of the struc-
turally complex polyhedra that form the inner and outer approximations by treat-
ing the facet normals as free variables in a linear programming problem. The
authors showed that their algorithm scales better with the number of objectives
compared to the facet-enumerative approach of Rennen et al. (2009), and were
able to solve problems with up to 12 objectives within a practical computational
time.
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4.2.5 Description of the Sandwich algorithm used in this work

Due to the advantages discussed in the previous section, we use an algorithm
that closely follows that of Bokrantz and Forsgren (2011). In Algorithm 1 we sum-
marise the essential steps of the sandwich algorithm. Each step of the algorithm is
explained in detail in the following text.

1. Determining initial Pareto points

The first step is to compute an initial set of Pareto points, P, from which
we can then construct Zin and Zout. The first Ndim Pareto points are found
by solving a weighted-sum optimization with weight vectors equal to the
extreme rays of C∗ (the rows of T ), with

∑Ndim

i=1 wi = 1. If needed the objec-
tives fi are normalised between 0 and 1. We next compute a single Pareto
point with equal weightings and

∑Ndim

i=1 wi = 1. The Pareto points and their
corresponding weights are appended to matrices P and W respectively, and
b is initialised for the outer approximation.

2. Determining the error measure between Zout and Zin

The error criterion, η, that defines the deviation between Zin and Zout is the
smallest value of ǫ such that Zout ⊆ (Zin − ǫ). This error measure is equiv-
alent to the Hausdorff distance. Since Zout ⊃ Zin, the Hausdorff distance is
given by (Bokrantz and Forsgren, 2011)

dHausdorff = max
z∈Zout

min
z′∈Zin

d(z, z ′), (96)

where d is the distance function representing the maximum positive distance
between two points in any dimension of the objective space:

d(z, z ′) = max
i=1,...,Ndim

(0, z ′i − zi). (97)

Note that the infinity-norm used in Equation 97 is a design choice and may
be replaced with a different norm (for example, the Euclidean norm). η can
then be determined by solving the bi-level optimization problem (Bokrantz
and Forsgren, 2011):

maximize
z∈Zout






minimize
η,λ,µ

η

subject to ηe > PTλ+QTµ− z

eTλ = 1

η,λ,µ > 0






, (BLP)

where e is a row vector of ones with length defined its context, λ is a col-
umn vector corresponding to the weights used in a convex combination of
the Pareto points, µ is a column vector corresponding to the weights used
in a conic combination of the extreme rays of the ordering cone Q. Here,
we solve BLP by enumerating candidate values for z in the outer problem.
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As Zout consists of linear constraints, it can be shown (Bokrantz and Fors-
gren, 2011) that the values of z that are optimal to BLP lie on the extreme
vertices of the outer approximation, i.e., points where the hyperplanes that
define the outer approximation intersect. Denoting an extreme vertex by v,
the following linear programming problem is solved for each v:

minimize
η,λ,µ

η

subject to ηe > PTλ+QTµ− v

eTλ = 1

η,λ,µ > 0.

(PLP(v))

The extreme vertices are calculated using the "CON2VERT" function avail-
able on MATLAB file exchange, which returns a set of vertices given a system
of inequalities (in our case, WTz > b). The function employs a primal-dual
polytope method, which requires that the constraints are bounded. To ensure
boundedness, we provide a lower bound z > 0, and a large upper bound,
z 6 1E10. The extreme vertices that lie at the upper bound are removed from
the function output.

A geometric interpretation of PLP(v) for a particular v is shown in Figure
37. In Figure 37a), we show the region (in blue) defined by a convex combi-
nation of the Pareto points (PTλ,λ > 0, eTλ = 1), and the same region plus
the ordering cone defined by QTµ and µ > 0. In Figure 37b), we show a
geometric interpretation of the right hand side of the first set of inequality
constraints in PLP(v), where d1 and d2 are the z1 and z2 components of the
vector PTλ+QTµ− v. It is clear that because η is minimized, the optimal
solution will lie on an inner edge of PTλ+QTµ, and either η = d1(d1 > d2),
or η = d2(d2 > d1), or η = max(d1,d2). Additionally, η > 0, so both d1

and d2 vary between 0 and some positive value, so there is a solution where
d1 = d2. At this point of equality of the two distance metrics, any reduc-
tion in either d1 or d2 leads to an increase in the other distance, hence, the
solution is when the first set of inequality constraints are active and where
η = d1 = d2. In general, the first set of equality constraints will always be ac-
tive, as the supporting hyperplane to Zin at the optimal solution will have a
normal vector with all of the elements being positive by construction. Hence,
at a point on a hyperplane where are all di are equal, it is not possible to
choose another point in the hyperplane without increasing at least one of the
other di.

Let v∗ be the extreme vertex that gives the largest value of η in PLP(v). If this
value is below a user-defined tolerance ηmax, then the algorithm terminates
here, as the inner and outer approximations are suitably close. Otherwise we
continue to step 3.

3. Choosing the next weight vector to run

After finding v∗, the next step is to find the weight vector that is normal to
Zin at PTλ∗ +QTµ∗, where λ∗ and µ∗ are the optimal solutions to PLP(v∗),
to use in the next weighted-sum problem. In Bokrantz and Forsgren (2011),
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the dual problem to PLP(v) is solved in order to find the next weight vec-
tor. Instead, we use the property that the first set of inequality constraints
in PLP(v) are active, and therefore the Lagrange multipliers (or dual vari-
ables) for these constraints, provided by the linear optimization program, is
precisely the normal vector needed. This avoids having to solve a separate
linear programming problem. We denote these Lagrange multipliers and the
next weight vector to be run by w∗.

4. Solving WSP(w)

If WSP(w) is a non-convex problem the output of the chosen optimization
routine can be highly dependent on the initial parameter guess as one may
get trapped in minima that are locally but not globally optimal. To mediate
this issue, we use a multi-start approach whereby initial guesses for x are
chosen, which lie within the parameter bounds xLB and xUB, based on a
Sobol’ sequence (Sobol’, 1967). We choose to use powers of 2 for the num-
ber of Sobol’ points due to local minima observed in the “discrepancy”, a
measure of how uniformly the parameter space is sampled (Morokoff and
Caflisch, 1994).

Once an initial number, Ns, of Pareto points and their corresponding pa-
rameters are determined with a large number of Sobol’ points, subsequent
optimizations are run by using parameters already obtained from previous
Pareto points (nearby solutions in objective space) and their convex combi-
nations. This implicitly assumes that nearby points on the Pareto front will
have similar parameters. The point PTλ∗ +QTµ∗ lies on a hyperplane that
connects the points Pk, where k corresponds to the indices of the non-zero
elements of λ∗. We expect that this point will lie close to the true Pareto
point obtained in the next weighted-sum optimization. Hence, sensible ini-
tial guesses to solve WSP(w) are xk and the convex combination: λ∗T

k xk.
Note that this technique may lead to suboptimal points being identified if
there are discontinuities in the optimal set of Pareto-optimal parameters. The
likelihood of this issue arising can be mitigated by increasing Ns.

After solving WSP(w), the new Pareto point is appended to P and w∗ is
appended to W.

5. Removing Pareto points

At each addition of the new Pareto point, we perform checks to ensure that
all of the Pareto points in P lie within Zout. If this is not the case, then some
of solutions to WSP(w) in previous iterations were not globally optimal, or at
least optimal with respect to the other Pareto points. For each weight vector
wk in W we compute the scalar product of this weight vector and all of the
Pareto points. If the minimum scalar product does not correspond to wT

kPk,
i.e., another Pareto point lies below the hyperplane associated with wk in
the outer approximation, then we remove the kth row from P and W. Note
that this check will also remove any dominated points from P, and will help
with the convergence of the sandwich algorithm. At this point we return to
step 2 of the algorithm.

The following bullet points summarize how the algorithm differs from that of
Bokrantz and Forsgren (2011):
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f1

f2

b)

f1

f2

a)

Figure 37: Geometric interpretation of the minimization of the error measure in two di-
mensions. The open circles are the computed Pareto points; the blue region is
the convex hull of the Pareto points (PTλ, λ > 0, eTλ = 1); the region shaded
red is the obtainable region when adding the ordering cone to each point in the
convex hull. In b) we zoom in on an extreme vertex of the outer approximation,
v, to show the geometric interpretation of the error measure, η, where η > d1

and η > d2.

Algorithm 1 Sandwich algorithm, based on that of Bokrantz and Forsgren (2011)
input:

- A multi-objective optimization problem.
- A quality threshold, ηmax (default 0.01).
- Reciprocal of the maximum admissible trade-offs between objective pairs, t (de-
fault 0.01).

output:

- A set of non-dominated points, P.
- A polyhedron that approximates the Pareto front.

begin

1: Solve WSP(w) with w equal to the extreme rays of C∗.
Solve WSP(w) with an equal weight vector.
Construct Zin and Zout.
Set η = ∞.

while η > ηmax do ⊲ Terminate if quality criteria is met
2. Compute the extreme vertices, V, of the outer approximation.
For each v in V , compute η ′ by solving PLP(v) and set η = max(η,η ′).
3. For the solution of PLP(v) corresponding to η, set the next
weight vector, w∗, normal to Zin at the optimal solution.
4. Solve WSP(w) with w∗ and update P and Zout.
5. Remove Pareto points from P and inequality constraints from Zout that
correspond to suboptimal solutions to WSP(w).
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• In step 3., a different method is used in order to determine the weight vector
to be used in WSP(w), making use of the result of the solutions to PLP(v).

• A global optimization routine is used to solve WSP(w) since the objective
function may be highly non-convex, and an additional method is developed
in order to provide good initial guesses to the optimization and reduce the
computational effort in finding the optimal solution to WSP(w). These points
are addressed in step 4. of the algorithm.

• After solving WSP(w) and appending the new point to P, we check if all
Pareto points lie within Zout. If this is not the case, we remove Pareto points
Pk for which their lower-bounding half-space {z|wT

k z > bk} lies above any
of the other Pareto points. This is to ensure that solutions to WSP(w) are
globally optimal, or at least optimal with respect to the other Pareto points
generated. This is detailed in step 5. of the algorithm.

4.3 application

In the previous section (section 4.2) we have discussed the general methodologies
for solving the multi-objective optimization problem (MOP), and have detailed
a specific algorithm that is suitable for the estimation of equation of state (EoS)
parameters. In this section we will first detail the appropriate form of the objective
functions fi, and then apply the sandwich algorithm to develop accurate SAFT-γ
Mie models for water in order to illustrate the benefits of the MOO approach.

4.3.1 Definition of fi

The individual objective functions are defined as follows:

fi(x) =
104

Ni

Ni∑

j=1

[

Y
exp.
i,j (k) − Ymodel.

i,j (k,x)

Y
exp.
i,j (k)

]2

, (98)

where k is a vector of independent variables that are fixed in the model and the
experiment (e.g., thermodynamic variables such as temperature and pressure), x
is the parameter vector, Yexp.

i,j is the experimental data point for property type i

and measurement j, Ymodel.
i,j is the calculated result given by the EoS for property

type i and data point j and Ni is the number of data points for property type
i. This objective function assumes that for each experiment, an equal weight is
given to each data point. In our work this is a valid assumption since a constant
relative error is quoted for the data considered. The prefactor of 104 is used in
this instance so that the values of fi on the Pareto surface are a suitable order of
magnitude. We avoid normalisation in step 1. of the sandwich algorithm because
the fi, described in Equation 98, are non-dimensional and we want to avoid any
bias towards particular objectives. This least-squares type of objective function is
chosen as it is mathematically well-behaved and it is typically used in the estima-
tion of EoS parameters. We also report the absolute average deviation (AADi%)
for property type i to describe the accuracy of the fit to experimental data since it
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provides a more intuitive indication of the deviation, although we stress that this
is not used within the objective function:

AADi%(x) =
100

Ni

Ni∑

j=1

∣

∣

∣

∣

∣

Y
exp.
i,j − Ymodel.

i,j (x)

Y
exp.
i,j

∣

∣

∣

∣

∣

. (99)

4.3.2 Application of the MOO approach to SAFT-VR Mie models for water

We will now apply the proposed algorithm to develop a water model for SAFT-
VR Mie (or SAFT-γ Mie) using up to three properties. In the introductory section
(4.1) we outlined the benefits of adding additional property types in the parameter
estimation, and explained why CP is a suitable property to add above the standard
properties ρsatL and Pvap. We will therefore develop models using these three
property types within the MOP.

4.3.2.1 Literature review of SAFT models for water

In this section we provide a brief overview of how SAFT-type equations of state
can be used to model water. We will review some of the literature models and
their development. This will help us decide upon the particular set of SAFT-VR
Mie parameters that are defined before the parameter estimation, in particular the
parameters that define the association scheme and the sphericity of the model. The
literature review will also give us an idea as to which values the parameters will
take, and will help us specify suitable parameter bounds xLB and xUB.

Within SAFT approaches, molecules are modelled as chains of spherical seg-
ments with repulsive cores, which may be either hard (e.g., the square-well poten-
tial), or soft (e.g., the Mie potential). Association is mediated by adding off-centre,
spherically symmetrical square-well bonding sites with attractive short-range in-
teractions.

In the case of water, these association sites are chosen to represent the direc-
tional, short range interactions representative of a hydrogen-bond. It is widely
known that water can form up to four hydrogen bonds, as seen in hexagonal ice,
and water is therefore typically modelled using a four 4 site association scheme
(4C in the notation of Huang and Radosz (1990)). In this model, two association
sites of type e and two association sites of type H are used, which correspond to
the two lone pairs of electrons on the oxygen atom and the two hydrogen atoms
respectively and their ability to form hydrogen-bonds. In this model, only e-H
bonding is allowed. Due to the symmetry of the association scheme, all sites have
the same nonbonded fraction (Xe = XH). This represents the statistical considera-
tion that all of the sites are equally likely to participate in hydrogen bonding, and
thus effects such as bond coorperativity (Sear and Jackson, 1996c) are typically
neglected in SAFT models for water. Other association schemes have been used
to model water with SAFT using the 2B (one e and one H) and 3B (one e and
two H) association schemes. The 4C scheme is generally chosen however, since
it is verified by molecular orbital calculations (Wolbach and Sandler, 1997), it is
successful in representing pure component VLE properties (see e.g., (Clark et al.,
2006)), and transferring the parameters for this model to aqueous mixtures gener-
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ally provides better predictions than the other association schemes (Kontogeorgis
and Folas, 2010). Furthermore, it is apparent from the work of Forte et al. (2018)
that the non-polar 4C association scheme outperforms the 2B and 3B association
schemes for the majority of the Pareto front, with objective functions defined by
AADρsat

L
(%) and AADPvap(%).

Another important parameter to consider when defining a water model is m,
the number of tangential spherical segments used to represent the molecule. In
Figure 38 we show a spherical and non-spherical SAFT model for water using a
4C association scheme.

a) b)

H

Figure 38: Schematic for two typical SAFT model for water. The molecule is represented by
a number of spherical segments (m), which interact via a potential (in SAFT-VR
Mie this is the Mie potential) with repulsive core diameter σ. The Mie potential
is characterised by a repulsive exponent (λr), an attractive exponent (λa), and
a well depth ǫ. These segments are indicated by the spheres shaded red. In
a) the molecule is spherical (m = 1). In b) the molecule is non-spherical and
1 < m < 2. The latter molecule is represented by two fused spheres. In a) and
b) the the model is represented by a 4-site association scheme (2 e sites and 2 H

sites). These correspond to the two lone pairs of electrons on the oxygen atom
and the two hydrogen atoms respectively. These association sites interact via
a square-well potential with a hydrogen-bonding association interaction −ǫHB

e,H
and bonding volume KHB

e,H. Only e-H bonding is allowed.

In Table 12 we summarise some of the parameters for SAFT water models in the
literature, extending on the review by Kontogeorgis and Folas (2010) by including
some of the more recently developed models of relevance to this work. When the
value of m is fixed, it is typically set to m = 1, representing a spherical model.
In such cases, the chain contribution to the SAFT free energy (used to describe
non-spherical molecules) is omitted. This model type is generally chosen due to
its simplicity and due to its rigorously defined geometry. The other models are
non-spherical and have values of m that vary within 0.98 6 m 6 3.792. There is
evidence from quantum mechanical calculations as to the approximate value m

should take. Sheldon et al. (2006) derived values for m by mapping the shapes
of the electron orbitals obtained from Hartree-Fock calculations onto a sphero-
cylinder, and estimated the value of m = 1.0968 for the SAFT-VR EoS.

In Table 12 we show the values of the dispersion energy and association en-
ergy for the various water models. There is a large variation in the values of the
dispersion energy (between 42.8 K and 740.5 K), and a large variation in associa-
tion energy parameters (between 825 K and 2507 K). Although one cannot directly
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compare the parameter values between the different SAFT theories, these ranges
give an idea as to the order of magnitude the parameters should take.

An additional choice when defining a SAFT model for water is whether or not to
explicitly include the long-range dipolar interactions present in water. Extensions
to the theory to include this type of interaction are available (see e.g., (Gross and
Vrabec, 2006) ). In the recent work of Forte et al. (2018), a variety of water models
were obtained for PC-SAFT (Gross and Sadowski, 2000; Gross et al., 2001) and the
polar version of PC-SAFT (Gross and Vrabec, 2006) to account for the dipolar inter-
action. They developed non-polar water models which varied in their association
scheme (2-site (2B), 3-site (3B) and 4-site (4C)) and developed polar water models
which included 2B and 4C schemes. The authors showed that using the experi-
mental value of the dipole moment of water in the gas phase (µ = 1.86 D), the
polar 2B model outperforms the non-polar 2B model Pareto surface with objective
functions AADρsat

L
(%) and AADPvap(%) at all points. However, they found that

there is a region of the Pareto front (close to the Pareto-knee where there is a large
curvature in the Pareto front), where the two Pareto fronts essentially coincide,
with AADρsat

L
(%) and AADPvap(%) ≈ 0.5. The authors found that by adjusting µ

to ρsatL and Pvap for the polar 2B and 4C models they were able to capture a good
agreement with respect to both properties (AADρsat

L
(%) and AADPvap(%) < 0.1). In

this work we will not consider the explicit treatment of the diplolar interaction; the
orientational and average energetic features of a dipolar fluid will be accounted for
through the regression of the typical SAFT parameters to the experimental data.

Following the arguments made in this literature review and in section 4.1, we
will consider the development of water models for the SAFT-VR Mie EoS that
use the 4C association scheme. For the specific version of the SAFT-VR Mie EoS
that we will use, there is only one existing model in the literature, where water is
treated as a spherical molecule (m = 1) (Dufal et al., 2015b). In this work, we will
also consider models where m > 1 by treating m as an adjustable parameter due to
evidence from quantum mechanics Sheldon et al. (2006) and due to the majority
of literature models having a value of m different to 1. Through application of
the proposed MOO approach and analysis of the Pareto fronts this will provide
a rigorous comparison between the two model types and will make clear if it is
beneficial to choose a non-spherical model over a (simpler) spherical model.

4.3.3 The SAFT-VR Mie EoS

For a comprehensive description of the SAFT-VR Mie EoS we will use, the reader
is referred to Lafitte et al. (2013b), and the modifications to the association term
described in Dufal et al. (2015b). Specifically, the equations used to model the
association contribution are those which use the Lennard-Jones reference fluid as
the basis for the free energy perturbation, as opposed to the using the generalised
Mie fluid as a reference (Dufal et al., 2015b). This Equation is identical to the group
contribution counterpart, SAFT-γ Mie (Papaioannou et al., 2014), in the case where
molecules consist of identical functional groups. The ideal gas contribution to the
heat capacity is calculated using the third order polynomial coefficients in Reid
et al. (1977).
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Table 12: Parameters for various different SAFT models for water in the literature. Table
adapted from Kontogeorgis and Folas (2010).

Dispersion Association

SAFT Variant Reference m energy/ K energy/ K

SRK-CPA (Kontogeorgis et al., 1999) - - 2003

CK-SAFT (Huang and Radosz, 1990) 1.179 528.2 1809

SAFT 3 site (Economou and Tsonopoulos, 1997) 1.179 528.2 1809

SAFT 4 site (Economou and Tsonopoulos, 1997) 1.236 431.7 1368

Simplified SAFT (Fu and Sandler, 1995) 2 188.2 826

CK-SAFT (Button and Gubbins, 1999) 1.047 504.4 1365

Original SAFT, 4 site (Li and Englezos, 2004) 0.980 433.9 1195

PSAFT (Karakatsani et al., 2005) 1 52.1 1982

PC-PSAFT (Karakatsani et al., 2005) 1 42.8 1973

CK-SAFT (Boulougouris et al., 2001) 2.850 167.0 1634

PR-CPA (Wu and Prausnitz, 1998) - - 1477

SAFT-VR (Patel et al., 2003b) 1 253.0 1366

CK-SAFT 3 site HF (Wolbach and Sandler, 1997) 1.278 385.1 2286

CK-SAFT 4 site HF (Wolbach and Sandler, 1997) 1.406 212.9 1809

CK-SAFT 3 site DFT (Wolbach and Sandler, 1997) 1 615.9 1627

CK-SAFT 4 site DFT (Wolbach and Sandler, 1997) 1 546.6 1237

APACT 2 site (Economou and Donohue, 1992) 2418

APACT 3 site (Economou and Donohue, 1992) 2618

Original SAFT 4C (Li and Englezos, 2003) 0.982 433.9 1195

SRK-CPA (Voutsas et al., 2000) - 1794

CK-SAFT (Voutsas et al., 2000) 2.853 167.1 1635

PC-PSAFT (Karakatsani and Economou, 2006) 1.750 169.5 1131

tPC-PCAFT (Karakatsani and Economou, 2006) 1.600 58.1 1640

tPC-PSAFFT 4C (Karakatsani et al., 2006) 2.815 150.7 1575

PC-SAFT 2B (Gross and Sadowski, 2002b) 1.066 366.5 2501

sPC-SAFT 4C (Grenner et al., 2006) 1.500 180.3 1804

sPC-SAFT 4C (Grenner et al., 2007) 2.610 140.4 1695

PC-SAFT 3B (Kleiner and Sadowski, 2007) 3.254 196.2 1801

PC-SAFT 4C (Kleiner and Sadowski, 2007) 3.792 138.6 1718

PC-SAFT 4C (Forte et al., 2018) 2.500 147.9 1582

PC-SAFT 2B (Forte et al., 2018) 1.785 233.8 2507

PCP-SAFT 2B (Forte et al., 2018) 2.216 214.5 1544

SAFT-VR Mie (LJ Kernel) (Dufal et al., 2015b) 1 266.7 1985

SAFT-VR Mie (Mie Kernel) (Dufal et al., 2015b) 1 418.0 1600

SAFT-VR (Clark et al., 2006) 1 250.0 1400

SAFT-VR (Sheldon et al., 2006) 1.0968 740.5 367
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4.3.4 The choice of water model

The SAFT parameters that characterise the water model, along with their physical
descriptions, are summarised in Table 13.

Table 13: Description of the parameters used to characterise water.

Units A Description

m - Number of spherical segments

σ Å Size of each spherical segment

λr - Repulsive exponent of the Mie potential

λa - Attractive exponent of the Mie potential

ǫ/kB K Depth of the Mie potential

ǫHB
e,H/kB K Depth of association potential between sites e and H

KHB
e,H Å3 Bonding volume between sites e and H

NSTe - Number of site types of type e

NSTH - Number of site types of type H

The attractive exponent of the Mie potential, λa is fixed to 6, corresponding
to the attractive range of the London dispersion force, as it has been shown that
a conformal description of the thermodynamics can be achieved with an interre-
lationship between λr and λa (Ramrattan et al., 2015). Following the arguments
made in section 4.3.2.1, we choose to use a four-site association scheme to model
water, where NSTe = 2 and NSTH = 2. A schematic for this model type is shown
in Figure 38. For spherical models of water, the value of m is fixed to 1. In Table
14 we define the lower and upper bounds to each parameter.

Table 14: Upper and lower bounds on parameters

m σ / Å λr λa (ǫ/kB) / K (ǫHB
e,H/kB) / K KHB

e,H / Å3

Lower Bound 1 2.5 8 6 100 1000 0.1

Upper Bound 2 3.5 40 6 500 2500 500

4.4 results

The multi-objective optimization technique is applied to two types of water model:
"spherical" models, where m = 1, and "non-spherical" models where m > 1 follow-
ing the arguments made in section 4.3.2.1. These two model types are chosen for
the analysis as one may prefer to choose a spherical model over a non-spherical
one due to it being a simpler model, and we show in detail the level of improve-
ment that one may obtain by treating m as adjustable.

Following the arguments made in the introductory section (section 4.1) we will
apply the MOO technique to the development of water models where three differ-
ent experimental property types are considered as competing objectives: saturated
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liquid density (ρsatL ), saturated vapour pressure (Pvap), and isobaric heat capacity
data (CP).

In the first scenario, we will analyse the two-dimensional Pareto fronts for spher-
ical and non-spherical models of water when two experimental properties, satu-
rated liquid density (ρsat

L ) and vapour pressure (Pvap), are used as objective func-
tions. These are the most common data types used to regress pure component
EoS parameters (Kontogeorgis and Folas, 2010), and will therefore provide some
insight into the objective space and the models typically obtained when solving
WSP(w).

In the second scenario, we will analyse the three-dimensional Pareto fronts
where CP is included in the the MOP. This will show how the addition of a second-
derivative property affects the objective functions and the water models obtained.

Finally, we will pick some preferable Pareto-optimal water models from the
Pareto front and analyse their level of agreement with respect to the experimental
data, including the prediction of thermodynamic properties not included in the
objective function.

4.4.1 Calculation details

The experimental data for water is taken from the National Institute of Standards
and Technology (NIST) (E.W. Lemmon and Friend, 2018). Saturation property data
are taken at temperatures between the triple point of water, 273.16 K, to 613.16 K,
to ensure that temperatures do not exceed 95% of the critical point. This is the
same range of temperatures considered by Dufal et al. (2015b) and therefore the
models obtained in this work provide a useful comparison with the existing SAFT-
VR Mie literature model. We choose data points with temperature intervals of 10

K following Forte et al. (2018). The experimental values for the isobaric liquid heat
capacity are taken at 1 atm, and between the triple point and 10 K below the satu-
ration temperature, i.e., 273.16 K - 363.16 K. As the heat capacity function in gSAFT
requires temperature and pressure as inputs, temperatures close to the saturation
temperature are not included in the estimation to limit the risk of evaluating a
gas phase heat capacity. This prevents having large discontinuities in the objective
function. The uncertainties in all thermodynamic properties are expected to be be-
low 0.1 % within the temperature and pressure ranges considered (E.W. Lemmon
and Friend, 2018).

The sandwich algorithm is implemented in MATLAB R2018a, whilst the op-
timization problems are solved externally using the ‘lmfit’ module in Python
(Newville et al., 2016) with the default options, which follows a Levenberg-
Marquardt algorithm. The thermodynamic properties within the optimization rou-
tine are evaluated with gSAFT (Lafitte et al., 2017), which has an in-built flash
algorithm to solve for phase equilibira. To determine the convex hull of the set
of Pareto points and the normal vectors to the facets, the C++ implementation of
Qhull (Barber et al., 1996) is used.

In all cases, we set the reciprocal of the maximum admissible trade-off between
objective pairs to be t = 0.01. This represents a relatively narrow ordering cone,
but limits the non-dominated solutions to have reasonable trade-offs and limits
the fi such that they do not take on extremely large values. Furthermore, fixing
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t > 0 as opposed to t = 0 avoids generating weight vectors with zero elements
which can lead to weakly dominated solutions, as discussed in Section 4.2.4.

The maximum admissible error, ηmax, is set to 0.1 in all cases, meaning that any
point on the inner edge of Zin will not be further than 0.1 away from the true
Pareto front in any dimension in objective space, assuming that the Pareto front
is convex. To solve WSP(w), a total of 2048 Sobol’ points are used for the first 40

Pareto points calculated (Ns = 40 in step 4. of the algorithm). This is to provide us
with some confidence that the first 40 Pareto points are globally optimal. Further
optimizations are run using the initial guesses for the parameters of the previous
Pareto points and their convex combinations as described in step 4.

4.4.2 Scenario 1: Two-dimensional MOO with data types ρsat
L and Pvap

In Figure 39a, we display the inner edge of Zin for the two Pareto fronts and in Fig-
ure 39b we display the corresponding AAD% for each objective. In the appendix
to this chapter, we provide information attributed to each Pareto point in Table
16 (spherical) and Table 17 (non-spherical). It is clear from Figure 39 that the pro-
posed sandwich algorithm works effectively as the Pareto points are equally dis-
tributed along the Pareto front. This equal distribution is achieved with a sequence
of weight vectors generated by the sandwich algorithm, and these weight vectors
are not evenly distributed (this is particularly the case for the non-spherical mod-
els, c.f. Table 17). This suggests that the sandwich algorithm is more efficient than
a brute-force approach (e.g., solving WSP(w) with uniformly distributed weight
vectors). The true Pareto front appears to be convex in both cases as there are no
obvious areas with large gaps in the Pareto front. Therefore it appears we have
efficiently captured a good approximation of the full set of non-dominated solu-
tions to both model types for the two dimensional MOP, and any model that lies
on the Pareto front may be acceptable. By visual inspection of the Pareto fronts, it
is possible to make rigorous comparisons between the two model types. It is clear
that by relaxing the constraint on m, we are able to obtain significantly lower val-
ues of fρsat

L
whilst keeping the deviation in vapour pressure to reasonably small

values. For example, if we desire a water model with AAD (Pvap) < 0.5% then the
non-spherical model is able to capture the liquid density with AAD (ρsat

L ) < 1%,
whereas for the spherical model AAD (ρsat

L ) > 3%. The Pareto fronts coincide at
the lowest values of fρsat

L
because m hits the lower bound of 1 where the two

model types are identical.
In Figures 40 and 41, we show the prediction of ρsatL and Pvap in addition to the

second derivative property, CP, for the non-dominated models that only consider
ρsatL and Pvap in the objective function. These figures correspond to the Pareto
points as labelled in Figure 39b.

For spherical models (Figure 40), the prediction of the isobaric heat capacity is
relatively poor, with fCP

and AAD% (CP) exceeding 110 and 10% respectively
at points towards the centre of the Pareto front. If we consider the ‘standard’
model that is obtained by weighting the two objectives equally (point 8), we
obtain a model with AAD vector [AAD% (ρsatL ), AAD% (Pvap), AAD% (CP)]
= [0.88,1.50,10.45]. This is a fairly significant deviation of CP. At point 24, cor-
responding to a weight vector of [wρsat

L
,wPvap] = [0.0335,0.9665], where most
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Figure 39: (a) Pareto frontiers for the two objectives fP and fρsat
L

. The blue diamonds are
the calculated Pareto points for spherical models of water where m = 1, the
blue line is the inner approximation of the Pareto front. The red circles are the
calculated Pareto points for models for water where m > 1 and the red line is
the inner approximation of the Pareto front. (b) As for (a), but the AAD for each
point is shown, and the lines are a guide to the eye joining the Pareto points.
The black star is the result obtained when using the parameters in (Dufal et al.,
2015b).
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of the weighting is given to the vapour pressure, we obtain an AAD% vector
[3.51,0.16,0.45]. By comparing point 24 with point 8, point 24 sacrifices a small
difference in AAD% (ρsatL ) (2.63%) for an improvement in AAD% (Pvap) of 1.34%
and a vast improvement in AAD% (CP) of 10%. This illustrates that a model that
is potentially more preferable may be obtained by assigning a relatively extreme
weight vector in WSP(w) (i.e., it would generally not be chosen a priori). Numer-
ous Pareto points obtained using the proposed technique may be evaluated against
other properties not included in the regression (for example, property types that
are practically difficult to include within the objective function).
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Figure 40: The individual objectives, fi and the AAD (i) for non-dominated spherical mod-
els of water where only fρsat

L
and fP are considered in the MOO. The deviation

of the CP predictions are also shown.
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Figure 41: The individual objectives, fi and the AAD (i) for non-dominated models of
non-spherical water (m > 1), where only fρsat

L
and fP are considered in the

MOO. The deviation of the CP predictions are also shown.

For the Pareto-optimal non-spherical models (Figure 41) we show that the pre-
diction in CP (AAD% (CP)) is between 0.4 % and 7.8 %. The point obtained with
equal weighting is point 17 with [AAD% (ρsatL ), AAD% (Pvap), AAD% (CP)] =
[0.89,0.17,3.68]. Note that AAD% (Pvap) is fairly close to the expected experimen-
tal uncertainty (relative error 0.1%) reported on NIST (E.W. Lemmon and Friend,
2018). Model 12 is potentially more preferable with an AAD vector [0.80,0.71,0.41],
and is obtained with [wρsat

L
,wPvap] = [0.85,0.16].

From the analysis of the Pareto fronts obtained when ρsatL and Pvap are used in
WSP(w), CP is predicted accurately for some Pareto points but other points present
significant deviations. This may provide an indication that VLE data alone does
not provide sufficient information in predicting the second derivative property,
and that there is some degeneracy in the parameter space.

In Figure 42 we show the trends in parameters versus the Pareto point number,
with indices indicated in Figure 39b. Along the Pareto front for spherical models,
the values of ǫ/kB vary between 270 K and 440 K and ǫHB

e,H/kB vary between
1550 K and 1980 K. These represent relatively large ranges for the two energetic
parameters, and there is a clear inverse relationship between the two parameters
along the Pareto front, which could indicate degeneracy. The value of σ remains
fairly constant at just over 3Å. σ and ǫ show almost identical curvature, and simi-
larly with λr and KHB

e,H, indicating a close relationship between these two pairs of
parameters and how they affect the individual objectives.

The model of Dufal et al. (2015b) lies close to the calculated Pareto curve for
spherical models of water that we find, and these models are close to the Pareto
knee. We obtain very similar parameters to the literature model in this region. The
parameters for models of water where m > 1 are shown in Figure 39b. There is a
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clear relationship between m and σ. The value of λr remains fairly constant and
shows both a minima and a maxima along the Pareto front.
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Figure 42: Pareto fronts in parameter space, where the numbers on the x axis correspond
to the Pareto points labelled in Figure 39b. (a) Parameters for Pareto-optimal
water models where m = 1. The black stars correspond to the set of parameters
in (Dufal et al., 2015b). (b) Parameters for Pareto-optimal water models where
m > 1.
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4.4.3 Scenario 2: Three-dimensional MOO with data types ρsat
L , Pvap and CP

In the second scenario, we analyse the Pareto fronts when we include CP as an
additional property in the MOP.

Before proceeding with the MOP we will first look at the affect adding CP has
on a single weighted-sum objective function compared to the two-dimensional
case. In Figure 43 we show a contour plot of the weighted-sum objective function
(with equal weighting given to ρsatL and Pvap) versus discretized pairs of ǫ and
ǫHB
e,H. A similar analysis was conducted by Clark et al. (2006) and Dufal et al.

(2015b). We see that the objective function surface consisting of only saturated
liquid density and vapour pressure has a large shallow region of relatively similar
values. The addition of CP data reduces the size of the region with similar values,
and reduces the degeneracy between ǫ and ǫHB

e,H. We also show that treating m as
an adjustable parameter reduces the parameter degeneracy, while the addition of
CP and treating m adjustable has the most dramatic effect on reducing the size of
the region with close local minima.
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a) b)

c) d)

Figure 43: The weighted-sum objective function for water models where we have dis-
cretized the energetic parameters ǫ and ǫHB

e,H in a 1000 x 1000 grid with each
parameter varying between the upper and lower bounds defined in Table 14.
Each point represents an individual optimization where ǫ and ǫHB

e,H, are fixed
and the other parameters are optimized. The weight vectors are normalised
to sum to 1 and an equal weighting is given to each property type. The four
sub-figures are different in the type of water model and the types of experi-
mental data used in the optimization: a) Spherical water with ρsatL and Pvap

used as experimental data types. b) Non-spherical water with ρsatL and Pvap

used as experimental data types. c) Spherical water with ρsatL , Pvap, CP used
as experimental data types. d) Non-spherical water with ρsatL and CP used as
experimental data types.

In Figure 44, we provide a similar analysis of the objective function as described
in the previous paragraph, but rather than discretizing ǫ and ǫHB

e,H in a uniform
grid, we plot the objective function obtained when using a Sobol’ sequence to
obtain the initial parameter guesses. Note that this result may either be local op-
tima or simply the output of the optimization routine after numerical failure. For
non-spherical water models the figure demonstrates that by adding CP data (in
addition to ρsat

L and Pvap data) we greatly reduce the number of locally optimal
solutions, with almost all of the initial guesses converging close to the global opti-
mum. Hence, another advantage of adding CP is that it reduces the computational
effort in finding the global optimum.
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Figure 44: The weighted-sum objective function for non-spherical water models where we
use 104 initial guesses (Sobol’ points) for the optimization. Each blue open cir-
cle represents a local optimum that is obtained as a result of solving WSP(w)
with a different initial guess, and we plot the objective function against two pa-
rameters, ǫ and ǫHB

e,H. The objective function corresponds to an equal weighting
for each property. In a), we include ρsatL and Pvap only as experimental data
types. In b), we also include CP.

In Figure 45, we show the Pareto front in a contour plot, along with the corre-
sponding AADs for each parameter. Note that when we plot the Pareto front in 3

dimensions, we show the inner edge of Zin without addition of the ordering cone,
which is equivalent to plotting the facets of the convex hull of Pvap which consist of
only positive inward-facing normals. This is to ensure that models in-between the
Pareto points may be determined from the convex combinations of the parameters
at the facet vertices. The information on each Pareto point is tabulated in Table 18.
We first note that the Pareto points are evenly distributed throughout the Pareto
front and the Pareto front appears to be convex since there are no obvious regions
with large gaps. Thus, the sandwich algorithm has worked efficiently in choosing
a series of weight vectors in WSP(w). The Pareto front shows the trade-offs that
are involved in choosing a particular model, and it is clear that the three objec-
tives are indeed conflicting. We also show the Pareto-optimal solutions of the two
dimensional MOP when heat capacity is not considered in the objective function.
These models do not show on the 3D front because the gradients between objec-
tive functions are extremely steep within this area, and hence the models become
non-dominated with respect to the specified ordering cone. There are clearly com-
promises that need to be made upon choosing a model from this Pareto front, as
the regions with low to moderate curvature cover a fairly large region in objective
space (e.g., 2-3% in AAD).
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Figure 45: Pareto front for three objectives fPvap , fρsat
L

and fCP
for spherical models of

water. The open circles are the individual Pareto points calculated by the sand-
wich algorithm. The black line corresponds to the Pareto curve when only fPvap

and fρsat
L

are considered, i.e., the blue curve in Figure 39a. The Pareto front
is indicated by the coloured region. The white areas indicate either that there
are no models with such combinations of objective function values or that such
models are dominated. The red arrows and their labels refer to the models that
we will analyse further as described in section 4.4.3.1.
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In Figure 46 we show the Pareto front for the non-spherical water models for
the three objective scenario, and we display information for each Pareto point in
Table 19. The surface is extremely steep at the inner edge, so we also show the
same Pareto front by swapping the fCP

and fP coordinate axes in Figure 47. This
steepness provides a good indication that CP as a data type is highly suited for
reducing the parameter degeneracy, since providing very small weighting to heat
capacity leads to a highly accurate prediction of this property with a negligible
decrease in the quality of the vapour pressure and saturated liquid density pre-
diction. We also note that all of the parameters are within a relatively small range.
The non-spherical models can be used to predict all three properties extremely
well (all properties to within 0.8 % AAD), and the deviations are well below those
attainable with the spherical water models. We also notice that in some regions of
the Pareto front, heat capacity is not conflicting with the other two objectives. For
example, in the region where fρsat

L
is close to 1, the 3D Pareto front essentially coin-

cides with the 2D Pareto front where CP is not considered in the objective function.
If we consider the 2D Pareto point number 7 in Table 17 with an AAD(Pvap) of 0.7
% in vapour pressure, the corresponding AAD(CP) is approximately 5%. We can
choose a model that does equally well in terms of vapour pressure and saturated
liquid density but with an AAD in CP of 0.2% with a small weighting given to
CP of 0.07 (Pareto point 9 in Table 19). In Figure 47, this region where CP does
not conflict with the other two objectives is visible where fρsat

L
is approximately

1 due to the white area above this value. Points in this region of the Pareto front
are dominated due to the limit of steepness defined in the ordering cone C, rather
than the surface being non-convex in this area. Although not shown here, we were
able to obtain Pareto-optimal points within this region by specifying a very small
value for wCP

.
In Table 19 it can be seen that the values of m vary only slightly above unity

(between 1.12 and 1.33), and the parameter converges to a value only slightly
above unity and close to what we would expect from the quantum mechanical
predictions (m = 1.1) of Sheldon et al. (2006).
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Figure 46: Pareto front for three objectives fPvap , fρsat
L

and fCP
for spherical models of

water. The open circles are the individual Pareto points calculated by the sand-
wich algorithm. The black line corresponds to the Pareto curve when only fP
and fρsat

L
are considered, i.e., the blue curve in Figure 39a. The Pareto front

is indicated by the coloured region. The white areas indicate either that there
are no models with such combinations of objective function values or that such
models are dominated.



4.4 results 131

0 1 2 3 4

0

0.5

1

1.5

2

2.5

1

2

3

4

5

6

(a)

0 0.5 1 1.5

0

0.5

1

1.5

0

0.5

1

1.5

(b)

Figure 47: Pareto front for three objectives fPvap , fρsat
L

and fCP
for non-spherical models

of water. The open circles are the individual Pareto points calculated by the
sandwich algorithm. The black line corresponds to the Pareto curve when only
fP and fρsat

L
are considered, i.e., the blue curve in Figure 39a. The Pareto front

is indicated by the coloured region. The white areas indicate either that there
are no models with such combinations of objective function values or that such
models are dominated. The black arrows indicates model 5NS as detailed in
section 4.4.3.1. Note that this figure differs from Figure 46 in that we have
swapped the CP and Psat.
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4.4.3.1 Choice of Pareto point

There is no rigorous way of defining the process in which a Pareto point should
be chosen. This is partly due to each Pareto point being equally optimal to the
MOP from a mathematical perspective. However, in practical scenarios the deci-
sion maker tends to choose points "in the middle and near the bulge" of the Pareto
front Das (1999). Among other methods, a simple yet effective way of characteris-
ing a point on this "bulge" is to find the Pareto point that minimizes the Euclidean
distance between the utopia point (a vector with the minimum value of each ob-
jective in the set of non-dominated solutions) (Cheikh et al., 2010) and the Pareto
point. We therefore assign a distance measure, dk, to each Pareto point Pk accord-
ing to:

dk =

√

√

√

√

NP∑

j=1

(Pkj − uj)2. (100)

where uj is the minimum value of objective j in the non-dominated set and Pkj rep-
resents the jth index of Pareto point Pk. dk represents the distance between each
Pareto point Pk and the Utopia point u. Using this metric we can rank the Pareto
points. However, since some Pareto points present unphysical thermodynamic be-
haviour, the models that we recommend in this work, Pref are determined by
finding Pk that corresponds to the result of the optimization:

minimize
k

dk

subject to model is physical

The specification that the model should produce physical results refers to the
anomolalies seen in the saturated density envelope which is discussed further in
the appendix to this chapter (Section 4.6.2). We will now select some interesting
models for further analysis. Information on these points can be found in Table 15.

1. Model 1L: The existing SAFT-VR Mie model for water in the literature (Dufal
et al., 2015b).

2. Model 2S: The model that corresponds to the minimum dk for the three-
dimensional Pareto front for spherical water models.

3. Model 3S: The model that is obtained with an equal weight vector for the
three-dimensional Pareto front for spherical water models. This point is cho-
sen since this weight vector may typically be chosen a priori.

4. Model 4S: A model chosen from three-dimensional Pareto front for spherical
water models that does not show anomalous vapour density behaviour near
the critical point. Model 4S corresponds to Pref, and is obtained by ranking
the Pareto points according to Equation 100 and finding the lowest ranked
model (rank 28) that does not exhibit a non-convex density phase envelope.

5. Model 5NS: The model that corresponds to Pref for the three-dimensional
Pareto front for non-spherical water models. This is the only non-spherical
model shown because the model obtained with an equal weight vector is
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essentially indistinguishable with Model 5NS when plotting the thermody-
namic properties.

These models are indicated with arrows on the Pareto front in figures 45 and 47.
By visual inspection, the reference points offer a good compromise between the
three objectives.
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We note that the parameters obtained in this study are somewhat different to
those obtained by Dufal et al. (2015a), however, they are physically reasonable and
are well within the range of values for other SAFT models for water found in
the literature. In comparison with model 1L, the other models have a significantly
higher value of ǫ (400 K for the spherical models) and 351 K for model 5NS,
vs 267 K for model 1L. ǫHB

e,H is noticeably lower, with the models developed in
this work all having values 1600 K compared with 1985 K in model 1L. This
may indicate that the additional CP data provides suitable information on how
the dispersive and associative forces are distributed. λr is higher for the models
obtained in this work compared to model 1L (values above 23 compared with 17

in the literature model). The values of σ are similar for the spherical models with
m slightly above 3 Å, but the non-spherical model has a slightly lower value of
2.80 Å. The models obtained in this work all have a higher value of λr compared
with the literature model (1L).

We proceed by analysing these water models by looking at the prediction of var-
ious thermodynamic properties, including the properties that are not considered
in the parameter estimation. In Figure 48a, we show the level of agreement be-
tween the models and the experimental data for the saturated liquid density and
saturated vapour densities. We see that models 2S, 3S and 4S all under-predict
the saturated liquid density at temperatures between the triple point and 500 K,
with a maximum relative deviation of 3% with respect to the experimental data
at 350 K. Models 1L and 5NS are in better agreement with the experimental data
in this temperature range, with a maximum relative deviation less than 0.5% for
both models. We also note that all models have a similar curvature close to the
experimental triple point, and none of these models are able to capture the exper-
imentally observed maximum in the saturated liquid density at 273 K.
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Figure 48: Model calculations vs experimental data for (a) Saturation densities of the
vapour and liquid phase and (b) Vapour pressure (including the Clausius-
Clapeyron representation) for models 1L, 2S, 3S, 4S and 5NS. Model 1L is the
black solid curve, model 2S is the red dot-dashed curve, model 3S is the dot-
ted magenta curve, model 4S is the dashed green curve and model 5NS is the
solid blue curve. The open circles are the correlated experimental data from
E.W. Lemmon and Friend (2018). These are the precise points used in the pa-
rameter estimation, apart from those above 95% of the critical temperature.
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Models 2S and 3S show anomalous behaviour near the critical point. In section
4.6.2 we explain why this behaviour occurs and suggest some possible implementa-
tions to avoid generating such models. We characterise this ’anomalous’ behaviour
by saying that the phase envelope is non-convex. These models may not be desir-
able if one wishes to calculate thermodynamic properties close to the critical point,
since the critical density is over-estimated and there is a large over-prediction of
the vapour density in the near-critical region. Model 3S is obtained with an equal
weight vector (typically chosen a priori). This analysis demonstrates that MOO pro-
vides a useful means of generating a set of numerous Pareto-optimal models from
which models can be discriminated.

We propose model 4S as a suitable alternative to models 2S and 3S, as it ranks
the best according to our definition of Pref. In section 4.6.2 we discuss the reason
behind this anomaly and suggest some possible implementations to avoid obtain-
ing these models. Models 1L, 2S, 3S, 4S and 5NS predict the experimental critical
temperature to 4.0%, 1.7%, 3.2%, 0.9% and 0.9% respectively. Model 5NS captures
the near critical region much more accurately than the other models since it pro-
vides the correct curvature of both the saturated liquid and vapour densities and
is quantitatively accurate between 500 K and 600 K with a maximum deviation of
0.17% at 600 K.

In Figure 48b we show the description of the vapour pressure. All models show
a fairly good agreement with the experimental data and the models are indistin-
guishable from the experimental data in the Clausius Clapeyron representation.
The only noticeable deviations are those given by models 2S and 4S in the near-
critical region. These models over-predict the critical pressure by 17.5% and 24.7%
respectively.

In Figure 49a we show the model description of the isobaric heat capacity along
a single isobar (1 atm), and in Figure 49b we show the saturated liquid heat ca-
pacity between the experimental triple point and temperatures close to the experi-
mental critical point. Model 1L under-predicts the heat capacity by an average of
10.5% across the isobar, with the highest deviation at 273 K (15 %). Models 2S, 3S,
4S and 5NS provide a very good agreement with the experimental heat capacity
at 1 bar; model 5NS has the lowest average deviation of AAD (CP) = 0.16%. Mod-
els 2S, 3S, 4S and 5NS are all able to predict a low temperature minimum in the
saturated liquid heat capacity in contrast to model 1L. Model 5S is able to predict
the temperature at which this minimum occurs with remarkable accuracy.
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Figure 49: Model calculations and predictions vs experimental data for (a) liquid isobaric
heat capacity at 1 atm and (b) saturated liquid heat capacity. Model 1L is the
black solid curve, model 2S is the red dot-dashed curve, model 3S is the dotted
magenta curve, model 4S is the dashed green curve and model 5NS is the
solid blue curve. The open circles are the correlated experimental data from
E.W. Lemmon and Friend (2018). The experimental data in (a) are the precise
data points used in the parameter estimation.
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In Figure 50, we show the predictions of the different models for the heat of
vaporization; this property type was not included in the parameter regression. All
models predict the property accurately away from the critical temperature. Models
2S and 3S show anomalous behaviour at near-critical temperatures.
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Figure 50: Model predictions vs experimental data for the heat of vapourization. Model 1L
is the black solid curve, model 2S is the red dot-dashed curve, model 3S is the
dotted magenta curve, model 4S is the dashed green curve and model 5NS is
the solid blue curve. The open circles are the correlated experimental data from
E.W. Lemmon and Friend (2018). The experimental data in (a) are the precise
data points used in the parameter estimation.

In Figure 51, we show the predictions of the different models for the vapour-
liquid interfacial tension, using the SAFT-VR Mie MF DFT derived in chapter 6,
which requires no adjustable parameters. This property provides a stringent test
of the models in terms of the way the dispersion (long-range) and association
(short-range) forces are partitioned. Models 2S, 3S and 4S are able to predict the
near-critical interfacial tensions well, but they over-predict the interfacial tension
at lower temperatures. Model 1L performs worse in the near-critical region and
performs the worst in describing the temperature dependence of the interfacial
tension, with moderate (0.05 N.m−1) under-predictions at the lowest temperatures
considered. Model 5NS is quantitatively accurate over the range of temperatures
considered.
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Figure 51: The vapour-liquid interfacial tension of water for the various water models,
calculated using the SAFT-VR Mie DFT MF theory derived in chapter 6. The
blue diamonds are the correlated experimental data from NIST (E.W. Lemmon
and Friend, 2018). Model 1L is the continuous black line, model 2S is the red
dot-dashed line, model 3S is the dotted magenta line, model 4S is the dashed
green line and model 5NS is the continuous blue curve.

Due to the superior description of model 5S, we will assess it further by evaluat-
ing some other thermodynamic properties not considered in the parameter regres-
sion, to ensure that the parameters are physically sound. In figures 52 and 53, we
show the property predictions of density, isobaric heat capacity, speed of sound
and isochoric heat capacity over pressures varying by several orders of magnitude.
The single phase densities are predicted accurately apart from the curvature in
the low temperature region. The heat capacity in the liquid and vapour phase
is predicted very well over the full pressure range (varying by several orders of
magnitude), and the model is able to capture the CP maximum, which is more
pronounced at near-critical/ super-critical pressures. The speed of sound in the
liquid phase is not predicted well (e.g., it over-predicts the speed of sound by ap-
proximately 85% at 273 K). This is due to the inability for any model to capture
the correct curvature of the saturated liquid density at low temperatures. The iso-
choric heat capacity is predicted moderately well, with an average AAD of 17%
across the full temperature range.
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Figure 52: Isobaric properties for the newly developed water model (model 5NS). The
coloured lines indicate the model predictions and the circles are the values
taken from NIST (E.W. Lemmon and Friend, 2018). (a) Single phase density. (b)
Isobaric heat capacity.
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Figure 53: Isobaric properties for the newly developed water model (model 5NS). The
coloured lines indicate the model predictions and the open circles are the values
taken from NIST (E.W. Lemmon and Friend, 2018) (colours indicated in the
legend). (a) Speed of sound, u. (b) Isochoric heat capacity, Cv.

As discussed in section 4.1, the degree of hydrogen bonding is frequently anal-
ysed against spectroscopic data when modelling SAFT models for water. The frac-
tion of total possible O-H hydrogen bonds that are free, fOH

free is given in Figure 54.
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This is calculated from the fraction of association sites of type e and H not bonded,
which is solved for implicitly in the SAFT EoS:

fOH
free = XH = Xe, (101)

where XH and Xe are the non-bonded fractions for H and e association types
respectively. The reader is referred to the work of Clark et al. (2006) for a more
detailed discussion on the derivation of Equation 101. It is gratifying to see that
model 5NS is in remarkable agreement with the molecular simulations. This gives
us some confidence that the balance between dispersive and association forces is
physically sound, as the fraction of sites that are bonded is directly related to the
hydrogen-bonding energy and volume.

Figure 54: The fraction of free OH hydrogen bonds, fOH
free for the vapour and liquid states

of water. The black curve is the fraction of free hydrogen bonds predicted by
the newly developed water model (Model 5NS). For comparison, we also plot
the model of Dufal et al. (2015a) that uses the LJ kernel (Model 1L) (green
dashed curve), the model of Dufal et al. (2015a) that uses the Mie kernel (red
solid curve), the SAFT-VR SW model of Clark et al. (2006) (blue dotted curve).
The purple squares are the spectroscopic data of Luck (1980). The black sym-
bols are simulation results of Dufal et al. (2015a) using the SPC/E (circles) and
TIP4P/2005 (diamonds) force fields. This figure is a modification of that of Du-
fal et al. (2015a).

4.5 conclusion

In summary, we have extended on the novel work of Forte et al. (2018) by conduct-
ing multi-objective optimizations with more than one property type, and have
shown how this approach is beneficial over the typical approaches used in the
determination of equation of state parameters.

We have demonstrated how a multi-objective optimization approach can be used
to parametrise equations of state. Careful attention was been paid towards the
choice of an approach that best suits this cause, including minimizing the com-
putational effort involved and providing a framework that can be retrofitted to
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existing parameter estimation methods. We have applied the method for two and
three dimensional problems, but the algorithm we propose is generally applica-
ble to any number of dimensions. This allows for an efficient estimation of the
Pareto front where numerous property types may be considered as competing ob-
jectives. We have demonstrated that this technique may be used as a platform for
the rigorous comparison between different model types.

We applied the MOO technique to the development of water models for the
SAFT-VR Mie EoS, and considered models where water is treated as a spheri-
cal model (m=1), or non-spherical by treating the number of segments, m, as an
adjustable parameter. The technique provided numerous different Pareto-optimal
models for water which may be used for further evaluation. By analysing the
Pareto front and predictions of various thermodynamic properties, we identified
that the most preferable non-dominated models were determined using a weight
vector that would not typically be chosen a priori (e.g., not an equal weight vec-
tor). For the MOP we considered three property types as competing objectives:
saturated liquid density (ρsatL ), vapour pressure (Pvap), and liquid isobaric heat
capacity (CP). It was shown that if only ρsatL and Pvap are considered in the opti-
mization problem (as is typically the case in regressing EoS parameters), a variety
of non-dominated models are obtained and which predict CP with varying de-
grees of accuracy (some accurate and some not). This exemplifies that producing
a Pareto front using an MOO approach is a useful way of generating candidate
models which can be tested against other properties not considered in the param-
eter regression.

We then considered the three-dimensional MOP which included the three prop-
erties ρsatL , Pvap and CP as objective functions. We showed that CP is a particularly
useful property for reducing the parameter degeneracy in this case, and that one
is able to maintain a good description of CP without compromising the quality
of the prediction of ρsatL and Pvap. The three-dimensional Pareto fronts were com-
puted and preferable models were chosen through analysis of these fronts. We
found that the non-spherical water model (5NS) outperforms the spherical models
derived in this work (models 2S, 3S and 4NS) for all of the thermodynamic prop-
erties considered. The models developed when including CP are able to capture
the key thermodynamic properties better than the literature model (1L of Dufal
et al. (2015b), which describes CP relatively inaccurately), without compromising
the description of ρsatL , Pvap.

In further work, it would be useful to explore the effect of adding additional ther-
modynamic properties to the parameter estimation. It will be particularly useful to
investigate the effect of including different second derivative properties, e.g., the
speed of sound or isochoric liquid heat capacity in the MOO. Since the proposed
MOO technique is applicable to dimensions higher than three, it will be useful
to investigate the Pareto fronts obtained when a larger number of properties (or
objective functions) are included. Furthermore, it will be useful to see the effect of
including mixture properties at an earlier stage of the parameter development.
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4.6 appendix

4.6.1 Tabulated Pareto points
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4.6.2 Anomalous density profiles

Some of the Pareto-optimal spherical water models found during the optimiza-
tion produced saturated density phase diagrams that appear unphysical at near-
critical temperatures. This behaviour of the near-critical region contrasts with the
well-known law of the rectilinear diameter, which states that the average of the
densities ρsat

L and ρsat
G is a linear function of temperature (Zollweg and Mulhol-

land, 1972) . After a detailed parametric investigation on the near-critical region of
the ρ-T phase diagram, it was found that these shapes, which we may define as a
non-convex vapour-liquid envelope, is caused by relatively high values of λr. The
A1 term in SAFT-VR Mie is parametrized for two Sutherland potentials with ex-
ponents ranging between λ = 5 and λ = 100 (where λ is the repulsive or attractive
exponent), and the A2 term is a function of 2λr. Hence, the theory is strictly only
applicable for values of λr 6 50 as has been previously stated Lafitte et al. (2013b).
However, when association is introduced, the critical temperature and the range
of VLE coexistence increases, and the values of λr at which non-convex density
profiles occurs is lower. We illustrate this point in Figure 55 by changing the value
of λr while keeping other variables fixed to values that are similar to the values
obtained for the water models developed in this work. Non-convex envelopes oc-
cur at values of λr above 30 for this particular set of parameters. We attribute this
phenomenon to the increase in the number of density roots that appear in the
near-critical region. Multiple density roots have been observed in the literature for
SAFT-type equations of state (Alsaifi and Englezos, 2011; Privat et al., 2010; Alsaifi
et al., 2017; Aslam and Sunol, 2006; Koak et al., 1999; Alsaifi et al., 2019). In the
recent work of Alsaifi et al. (2019), the authors were able to show that as many as
10 density roots may occur in SAFT-VR Mie, via a sophisticated use of bifurcation
diagrams that rigorously analyse the metastable region of the equation of state. In
our testing, we found that 5 volume roots can appear at temperatures close to the
critical point. The authors note that these non-physical predictions are inevitable
in more sophisticated equations of state due to the empirical functional forms
(for example, an empirical analytic expression for the pair distribution function at
contact) required to approximate statistical mechanical theories with no exact so-
lutions. It is possible to follow a rigorous method such as that proposed by Alsaifi
et al. (2019) to identify models with non-physical regions, or simply inspecting
the van der Waals loop on a pressure-volume diagram at various temperatures. It
may be possible to include such checks as constraints within the MOP to avoid
the generation of anomalous models, however such checks are not included in
the current implementation as they would require significant computational effort.
From an chemical engineering perspective, the spherical models of water that we
have developed in this study are accurate for typical process operating conditions,
but one must be careful when using these models to calculate properties at near-
critical conditions.
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Figure 55: Effect of λr on the saturated liquid density and saturated vapour density. The
values of the other parameters are fixed to the typical values for water m = 1,
λa = 6, KHB

e,H = 180Å3, σ = 3Å, ǫ/kB = 390 K and ǫHB
e,H = 1700 K.





5
D E V E L O P I N G S A F T-γ M I E M O D E L S F O R C O 2 - M E A - H 2 O - N 2

5.1 introduction

The main motivation of this chapter is to develop models for the CO2-MEA-H2O-
N2 system that accurately describe the phase equilibria and the caloric properties
of the mixtures. This is to provide improved thermodynamic models that may be
used in a process modelling context, for example modelling the absorption process
as discussed in chapter 3. Currently, there are no SAFT-γ Mie (or SAFT-VR Mie)
models in the literature that are able to describe the CO2-MEA-H2O-N2 system,
but there exist models for the SAFT-VR SW EoS ((Mac Dowell et al., 2009) and
(Rodríguez et al., 2012)), and SAFT-γ SW EoS (Chremos et al., 2016).

The thermodynamic modelling of carbon dioxide with aqueous amine systems
has been discussed in some detail in the section 2.3 of the introductory chapter. In
this chapter, we develop homonuclear models for the SAFT-γ Mie (equivalently,
SAFT-VR Mie) equation of state, following an approach similar to Mac Dowell
et al. (2011), Rodríguez et al. (2012) and Chremos et al. (2016). A key concept used
in these approaches is that the inherent chemical reactions in CO2-aqueous alka-
nolamine mixtures can be modelled via a physical association scheme and ionic
products are not considered explicitly. This treatment was first proposed by Button
and Gubbins (1999) for CO2 reacting with aqueous MEA. Such an approach leads
to simplified thermodynamic models and simplified process model equations, as
seen in chapter 3. This simplification sacrifices some degree of model accuracy
compared to an explicit approach. The SAFT methodology is not limited to using
a physical association scheme to model the reactions because electrolyte exten-
sions to SAFT are available (Galindo et al., 1999; Liu et al., 1999; Gil-Villegas et al.,
2001; Patel et al., 2003a; Behzadi et al., 2005; Cameretti et al., 2005; Held et al., 2008;
Held and Sadowski, 2009; Schreckenberg et al., 2014; Eriksen et al., 2016), where
the equation proposed by Eriksen et al. (2016) is an extension to SAFT-VR Mie.

In this work we will focus on the development of models that provide an ac-
curate description of both the VLE and caloric properties of the pure compounds
and their mixtures. This will be achieved by including isobaric heat capacity in
the model regression in addition to VLE data. It was shown in chapter 4 that this
property is particularly useful for systems with a high degree of hydrogen bond-
ing, i.e., the systems studied here, because it reduces the parameter degeneracy in
the model regression, and we discussed why an accurate description of this prop-
erty is particularly important in the context of process modelling. We use the MOO
methodology for the development of the key parameters that mediate the chem-
ical reactions present in the ternary mixture of CO2-MEA-H2O when estimating
to partial pressure data.

We also focus on accurately describing of the heat of absorption and take a care-
ful look at the experimental methodologies used to measure this property. The
heat of absorption is strongly correlated to the operating cost of amine absorp-
tion processes (Gupta et al., 2013), so it is therefore vital that the thermodynamic
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model is able to accurately predict this property. Furthermore, it provides specific
information on the enthalpies of the inherent reactions (Gupta et al., 2013). With
the newly-developed model for water (model 5NS in chapter 4)), which provides
an excellent description of the isobaric heat capacity for a wide range of temper-
atures, we expect an improvement in the mixture heat capacity and the heat of
absorption compared to the literature SAFT-VR Mie model (model 1L in chapter
4).

5.2 methodology

To develop the SAFT-γ Mie parameters required to describe the thermodynamic
mixtures consisting of CO2, MEA, H2O and N2 we will regress some of the SAFT
parameters to available experimental data. The parameters to be determined de-
scribe the like- and unlike interactions between pairs of molecules and their asso-
ciation schemes. To avoid having too many parameters in the regressions (which
may lead to unphysical parameters and models), we will fix some parameters
a-priori by appealing to physical concepts. We also make sure that the SAFT pa-
rameters lie within bounds that are physically realistic and within the range that
SAFT-γ Mie is valid.

5.3 definition of parameters

The definitions of the all of the parameters used this chapter are summarized in
Table 20. The reader is referred to Papaioannou et al. (2014) for information on the
SAFT-γ Mie EoS for more details on the equation and the combining rules (CR)
that are used to fix some of the unlike parameters.

Table 20: Definition of the SAFT-γ Mie parameters

Parameter Definition

ν∗
k Number of segments in group k

Sk Shape factor for group k

σkl Segment diameter between groups k and l

λrkl Repulsive exponent between groups k and l

λakl Attractive exponent between groups k and l

ǫkl Depth of potential well between groups k and l

λrkl Repulsive exponent of the Mie potential between groups k and l

NST ,k Number of site types on group k

nk,a Number of sites of type a on group k

ǫHB
kl,ab Association energy between sites of types a and b on groups k and l

KHB
kl,ab Association energy between sites of types a and b on groups k and l
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5.4 definition of the models and their association schemes

We will first define the association schemes used to model CO2, MEA, H2O and
their mixtures. This determines the number of site types on group k (NST ,k),
k = {CO2, MEA, H2O}, and the number of sites of type a on group k (nk,a).

As discussed in section 2.3 of this thesis, the main reactions that occur when
CO2 absorbs into aqueous MEA are reactions r1-r3:

CO2 + 2 HO(CH2)2NH2 ⇋ [HO(CH2)2NHCOO– + HO(CH2)2NH +
3 ] (r1)

MEA Carbamate pair

HO(CH2)2NHCOO– + H3O+
⇋ [HO(CH2)2NH +

3 + HCO –
3 ] (r2)

Bicarbonate pair

CO2 + H2O ⇋ [HCO –
3 + H+]. (r3)

Carbonic acid

The reaction products involving ion pairs are represented by square brackets and
these are assumed to be tightly-bound species with no net charge. This assump-
tion is somewhat justified by the relatively low dielectric constant of aqueous alka-
nolamine solutions (2-5 times lower than that of water Rodríguez et al. (2012)).

In Figure 56, we show schematics for the molecular models that are to be devel-
oped. These are illustrations of the potential functions that define the molecular
interactions.
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Figure 56: Schematic showing the association sites for the models developed in this
research. The large spheres represent the monomeric segments which inter-
act via a Mie potential. The small spheres represent the association sites,
which may interact via other sites (representing chemical association). a) MEA
(HOCH2CH2NH2) is modelled with two tangentially bonded monomeric seg-
ments (ν∗MEA = 2,SMEA = 1). Two e sites represent the lone pair of electrons
on the oxygen atom; the H site represents the hydrogen atom attached to the
oxygen atom. The e∗ site represents the lone pair of electrons on the nitrogen
atom and and two H∗ sites represent the hydrogen atoms attached to the nitro-
gen atom. b) CO2 is modelled by two fused segments (ν∗CO2

= 2,SCO2
= 0.847).

The three sites α1, α2 and α3 do not self-associate but represent the ability for
CO2 to chemically associate with MEA and H2O as discussed in the text. c):
H2O is modelled as a slightly non-spherical molecule (ν∗CO2

= 1,SCO2
= 1.2566)

with four association sites, two e sites and two H sites, representing the lone
pairs of electrons and the hydrogen atoms respectively.

In Figure 57, we illustrate the physical association scheme used to treat reac-
tions r1, r2 and r3. Note that the thermodynamic model only treats each group
k, k = {CO2, MEA, H2O}, explicitly, while the reaction products are accounted for
implicitly via the association interactions depicted in the figure.
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Figure 57: Schematic to show the physical association schemes used to mediate reactions
r1, r2 and r3 (top to bottom in the diagram respectively). The large spheres
represent the monomeric segments which interact via a Mie potential. We use
fused spheres to represent a non-integer number of spherical of segments and
tangential spheres to represent an integer number of spherical segments. The
smaller spheres are association sites. e represents a lone pair of electrons, H rep-
resents a hydrogen atom and the superscript ‘*’ is used to distinguish between
the different association site types assigned to MEA. e-H bonding represents a
hydrogen bonding interaction and α-e bonding represents a different type of
chemical interaction (explained in the text).

In the following text we justify the particular type of model and the association
schemes used in this work.

In Figure 56a) we show the association scheme used to model MEA. Due to
its molecular weight, and the extensive investigations on the number of segments
conducted by Mac Dowell et al. (2009), MEA (HOCH2CH2NH2) is modelled with
two tangentially bonded monomeric segments (ν∗

MEA = 2,SMEA = 1). Two e sites
and one H site represent the the lone pair of electrons and the hydrogen atom
on the oxygen atom. Similarly, the e∗ and two H∗ sites on the nitrogen atom can
hydrogen bond with other association sites. This corresponds to the asymmetric
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association scheme of Mac Dowell et al. (2009) and Rodríguez et al. (2012), which
was found to provide a better description of the phase behaviour of mixtures com-
pared to treating the association behaviour of the sites on the different functional
groups identically. The e∗ site can also associate with the α1 and α2 sites on CO2,
which allows for reactions r1 and r2. We let e∗ associate with both α1 and α2 to pre-
serve the stoichiometry of reactions r1 and r2. The α1-e∗ and α2-e∗ characterises
three types of chemical association in an effective manner. In reaction r1), a CO2

molecule is bonded to two molecules of MEA. Therefore, if both α1-e∗ α2-e∗ are
bonded, we can approximate one bond that captures the physics of the covalent
C-N bond in the carbamate, and the other bond that captures the physics of the
chemical association attributed to the tightly-bound ion pair. On the other hand,
if only one (α1 or α2) site is bonded then this captures the physics attributed to
the chemical association of the tightly-bound bicarbonate ion pair (where a CO2

is bonded to a molecule of MEA).
In Figure 56b) we show the association scheme used to model CO2. CO2 is

modelled with a non-integer number of segments indicating 2 fused spheres
(ν∗

CO2
= 2,SCO2

= 0.847), and is modelled with three sites, α1, α2 and α3, which
do not self-associate. The α1 and α2 interactions were detailed in the previous
paragraph. The pure component parameters for CO2 are not developed in this
work and are taken from the literature model (Papaioannou et al., 2016). In con-
trast to the previous approach of Mac Dowell et al. (2009) and Rodríguez et al.
(2012), we include an association site, α3 that associates with the electronegative
e site on water. This accounts for the various solvation forces that occur in the
CO2-H2O binary system, including contributions to the free energy that occur in
the formation of bicarbonate (reaction r3). Solvation is expected to be physically
present and by adding an association site, one is able to improve the agreement
CO2-water mixture data, including the minimum solubility of water at low tem-
peratures (Kontogeorgis et al., 2006; Papaioannou et al., 2016; Sun and Dubessy,
2010; Diamantonis and Economou, 2012), indicating a more physical model com-
pared to models that do not consider an explicit association interaction. This same
approach has been used in a recent paper by Wang et al. (2018a) using the PR-CPA
equation of state, where three sites are used on CO2 to model the MEA-CO2-H2O
system via a physical approach to the reactions.

In Figure 56c) we show the association scheme used to model H2O. H2O is
modelled as a slightly non-spherical molecule (ν∗

CO2
= 1,SCO2

= 1.2566) with four
association sites, two e sites and two H sites representing the lone pairs of electrons
and the hydrogen atoms respectively. This model was developed in chapter 4.

5.5 parameter estimation

Now that we have assigned the association schemes needed to model the
molecules developed in this work, there are numerous like- and un-like param-
eters that need to be regressed to experimental data. We will first describe the
methodology that is used to regress these parameters in section 5.5.1. We then
proceed with the typical approach for estimating equation of state parameters by
first estimating the pure component parameters (section 5.5.2.1) and then transfer-
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ring these to the binary mixtures (section 5.5.2.2) and the ternary mixture (section
5.5.3).

5.5.1 Methodology

In order to determine the SAFT parameters we minimize an objective function
(WSP(w) in Chapter 4 which we repeat here) to be minimized :

minimize
x

wTf(x) =

Ndim∑

i=1

wifi(x)

subject to x ∈ X,

(WSP(w))

where fi is the error function for property type i, Ndim is the number of prop-
erty types, wi is the weighting given to property type i, and x is a vector of model
parameters to be estimated. X refers to the feasible set of parameters, which implic-
itly includes any inequality constraints, such as lower and upper bounds on the
EoS variables, or equality constraints, in this case when we set certain parameters
to be equal.

The individual objective functions representing the deviation between the model
and the experiment are defined as follows:

fi(x) =
104

Ni

Ni∑

j=1

[

Z
exp.
i,j −Zmodel.

i,j (x)

Z
exp.
i,j

]2

, (102)

where Z
exp.
i,j is the experimental result for property type i and data point j, Zmodel.

i,j
is the result predicted by the EoS for property type i and data point j, and Ni is
the number of data points for each property type i. We report the absolute average
deviation (AADi%) for property type i to provide a quantitative measure of the
accuracy of the fit to experimental data:

AADi%(x) =
100

Ni

Ni∑

j=1

∣

∣

∣

∣

∣

Z
exp.
i,j −Zmodel.

i,j (x)

Z
exp.
i,j

∣

∣

∣

∣

∣

. (103)

In all cases, the value of the repulsive exponent for the parameters that were re-
gressed was set to 6, following the arguments of Ramrattan et al. (2015), in that an
approximate conformal description for any λr − λa Mie potential can be obtained
with a λr-6 potential.

The optimizations are solved using the python implementation of gSAFT (Lafitte
et al., 2017), where the Python lmfit package (Newville et al., 2016) is used for
the optimization routine which uses a Levenberg-Marquadt algorithm. We use a
multi-start algorithm were the initial parameter guesses to the optimization are
sampled with a Sobol’ sequence (Sobol’, 1967). 2048 Sobol points used in every
weighted-sum optimization.

5.5.2 Results

All of the models resulting from the parameter estimation are clearly exposed in a
number of tables. The pure component like-interaction parameters and their asso-
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ciation schemes are shown in Table 22; the cross-dispersion interactions are shown
in Table 25; and the cross- association interaction parameters are shown in Table
23. Note that the parameter labelled with "∗" may be substituted for any of the
other set of parameters in tables 29 and 30 in the appendix, as multi-objective op-
timization was conducted when determining the parameters from ternary partial
pressure data, which led to several optimal solutions.

5.5.2.1 Pure components

We will first estimate the pure component parameters using pure component ex-
perimental data. In order to reduce the parameter degeneracy for the like MEA
interactions, the e∗ −H∗ and e−H association interactions are taken from the self-
interactions for ethylamine and ethanol respectively following Mac Dowell et al.
(2009). It is assumed that ǫHB

MEA,MEA,H∗,e= ǫHB
MEA,MEA,e∗,H and KHB

MEA,MEA,H∗,e=
KHB
MEA,MEA,e∗,H following their work. The pure component parameters that

need to be developed are those for ethanol (EtOH), ethylamine (EtNH2), mo-
noethanolamine (MEA) and nitrogen (N2). The model for CO2 is taken from the
literature ((Papaioannou et al., 2016)) and the model for water used here (model
5NS) is taken from the previous chapter.

For all pure components, we estimate their parameters using saturated liquid
density (ρsat

L ), vapour pressure (Pvap) and isobaric liquid heat capacity (CP) (apart
from N2 because it is an inert gas) data along an isotherm. Since we are estimating
to heat capacity data, we require an accurate model for the ideal gas heat capacity.
All of the parameters used in the ideal gas heat capacity correlations are shown
in Table 21, which were taken from Reid et al. (1977). The saturated properties are
taken from between the experimental triple point and 95 % of the experimental
critical point. CP data is taken between the experimental triple point and 5 K
below the saturation temperature.

As the model is able to predict the experimental data to within the accuracy
of the experimental measurements in all cases, we decide not to formulate the
parameter estimation of the pure components as a multi-objective problem. For
each pure component, we include isobaric heat capacity data at 1 bar in the liquid
phase, in addition to saturated liquid density and vapour pressure data, in order
to predict this property better and reduce the parameter degeneracy.

Table 21: Ideal gas heat capacity coefficients, according to the polynomial CP,0 = a+bT +

cT2 + dT3. The parameters are obtained from (Reid et al., 1977).

Compound a b c d

H2O 3.22400E+01 1.92400E-03 1.05500E-05 -3.59600E-09

MEA 9.31100E+00 3.00900E-01 -1.81800E-04 4.65600E-08

CO2 1.98000E+01 7.34400E-02 -5.60200E-05 1.71500E-08

N2 3.11498E+01 -1.35700E-02 2.68000E-05 -1.20000E-08

EtOH 9.00800E+00 2.13900E-01 -8.38500E-05 1.37200E-09

EtNH2 3.69029E+00 2.74972E-01 -1.58197E-04 3.80577E-08

In Tables 22 and 23 we define all of the component association sites and show
the parameters obtained from the optimization. Note that Table 23 also contains
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the unlike cross-association parameters which we will refer back to when these
parameters are developed.
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In Table 24 we show the level of agreement of pure component models with re-
spect to the experimental data. Here we also detail the specific temperature ranges
used in the estimation, the number of points used, and the specific reference where
this data was obtained from. The models are all in good agreement with respect
to the experimental data for the three properties considered. The only appreciable
deviations (AAD > 1%) are for the MEA model, with AAD(ρsat

L ), AAD(Pvap) and
isobaric heat capacity AAD(CP) being 1.25%, 1.81% and 2.05% respectively.
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5.5.2.2 Binary mixtures

Having obtained the pure component parameters, we will now estimate the unlike
interaction parameters from binary mixtures. The cross interaction parameters con-
taining the α1 and α2 sites are not estimated in this section because the reactions
they represent do not occur in the binary mixtures.

The unlike association parameters obtained in this section are displayed in Table
23 and the unlike dispersion parameters are displayed in Table 25.

Table 25: Group dispersion interaction energies. λakl, λrkl and σkl are determined from
combining rules. ǫkl = ǫlk. CR are the combining rules as defined in reference
(Papaioannou et al., 2014). The parameters labelled with a ∗ are determined by
multi-objective optimization, and may be substituted by one of the other Pareto-
optimal models in Tables 29 and 30.

k l Group k Group l (ǫkl/kB)/K T range/ K

1 3 H2O MEA 427.7310 362-443

1 2 H2O CO2 269.8034 323-353

1 4 H2O N2 CR -

1 5 H2O EtOH 295.2827 351-373

1 6 H2O EtNH2 296.0555 285-375

2 3 MEA CO2 261.1739∗ 313-393

2 4 MEA N2 CR -

2 5 MEA EtOH CR -

2 6 MEA EtNH2 CR -

3 4 CO2 N2 CR -

etoh + h2o To reduce parameter degeneracy in the development of the
models for MEA-H2O, the cross-association parameters are transferred from
the binary EtOH-H2O mixture. We assume that the e − H type hydrogen
bonds have the same energy and bonding volume as the H − e type bonds,
i.e., ǫHB

MEA,H2O,e,H = ǫHB
MEA,H2O,H,e = ǫHB

EtOH,H2O,H,e = ǫHB
EtOH,H2O,e,H and

KHB
MEA,H2O,e,H = KHB

MEA,H2O,H,e = KHB
EtOH,H2O,H,e = KHB

EtOH,H2O,e,H. We estimate
the cross interaction parameters KHB

MEA,H2O,e,H and ǫHB
EtOH,H2O,e,H from binary T -

x data with pressures ranging from 6666 Pa to 2 MPa and 3000 data points. In
Figure 58 we show the description of the model at 1 atm. We obtain a good de-
scription of the phase behaviour, including the temperature and composition of
the azeotrope, with an average %AAD of 0.1 in the bubble temperature across all
pressures.

etnh2 + h2o To obtain the MEA-H2O cross association parameters attributed
to the amine functional group, we assume that the association is similar to that
between ethylamine and water, and that the e−H type hydrogen bonds have the
same energy and bonding volume as the H− e type bonds, i.e., ǫHB

MEA,H2O,e∗,H =

ǫHB
MEA,H2O,H∗,e = ǫHB

EtNH2,H2O,H,e = ǫHB
EtNH2,H2O,e,H, and KMEA,H2O,e∗,H =

KMEA,H2O,H∗,e = KEtNH2,H2O,H∗,e = KEtNH2,H2O,e∗,H. T -x data were used in the
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Figure 58: Ethanol-water binary T -x data at 1 atm. The data sets used in the estimation are
at several isobars ranging between 6666 Pa and 2 MPa with 3000 different data
points Liessmann et al. (1995).
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Figure 59: Comparison between the model and the experiments for the binary mixture of
EtNH2 and H2O: binary phase diagrams at three different isobars. The isobars
are distinguished by their colours: 79993 Pa (black), 93326 Pa (blue), 106660 Pa
(red). The experimental data is from Bittrich (1963).

parameter regression. In Figure 59 we show that a good description of the binary
VLE is obtained.

mea + h2o After transferring the parameters from the ethanol-water and
ethylamine-water mixtures, only a single parameter needs to be estimated to ob-
tain a good prediction of the MEA + H2O mixture, ǫMEA,H2O. This was deter-
mined by regression to two T -x isobars at 66.7 kPa and 101.3kPa, and a single
P-x isotherm at 363.15 K. In Figures 60 and 61 we see that there is an excellent
agreement with the experimental data.

co2 + h2O For CO2-H2O there are three cross interaction parameters that need
to be determined: ǫCO2,H2O, ǫHB

CO2,H2O,α3,e and KCO2,H2O,α3,e. These are regressed
to binary vapour liquid and liquid-liquid equilibria data presented in Figures 62a
and 62b. The atypical curvature representing a minimum in solubility of water is
captured with remarkable accuracy. Additionally, the water rich phase is captured
to a high degree of accuracy. Although not shown here, we were not able to achieve
the same curvature in the CO2 rich phase without accounting for solvation. This
model also provides a good prediction of the excess enthalpy of mixing, as shown
in Figure 63. This is an important caloric property to accurately capture since it
will have some contribution to the overall enthalpy change upon CO2 absorption
for the CO2 + amine solvent mixture.
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Figure 60: Comparison between the model and the experiments for the binary mixture
of MEA and H2O: binary phase diagrams at three different isobars. The iso-
bars are distinguished by their colours: 66660 Pa (blue), 101330 Pa (black). The
experimental data is from Cai et al. (1996).
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Figure 61:
Comparison between the model and the experiments for the binary mixture of
MEA and H2O: binary phase diagram for a single isotherm where T = 363.15

K. The experimental data is from Cai et al. (1996).
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Figure 62: Isothermal pressure- mole fraction diagrams for the vapour-liquid and liquid-
liquid equilibira of water and carbon dioxide. The symbols represent the exper-
imental data of Bamberger et al. (2000), at T = 323.2 K (squares), T = 333.2 K
(circles), and T = 353.1 K (triangles). The solid curve is the prediction of the
SAFT-γ Mie equation of state. a) and b) represent the water rich and carbon
dioxide rich phases respectively.

5.5.3 Ternary mixture

The unlike association parameters obtained in this section are displayed in Table
23 and the unlike dispersion parameters are displayed in Table 25. Ternary mixture
data is required in order to determine the association parameters that mediate the
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Figure 63: Isothermal-isobaric excess molar enthalpy of mixing for H2O +CO2. The sym-
bols represent the experimental data at T = 523.15 K and pressures of P = 10.4
MPa (circles), P = 12.4 MPa (stars), and P = 15 MPa (squares). Some of the model
and experimental values represent the two phase region. The experimental data
is taken from Teng et al. (1997).

chemical reactions that occur in solution. Following the approaches of Mac Dowell
et al. (2009) and Rodríguez et al. (2012), we use vapour pressure data to determine
the parameters. Although heat capacity data is available, we do not include it
in the fitting because it was found that the cross interaction parameters for CO2-
water have an insignificant effect on the mixture heat capacity. The parameters that
need to be determined are: ǫCO2,MEA, ǫHB

α1,e∗ and KHB
α2,e∗ ,KHB

α1,e∗ and KHB
α2,e∗ . In this

case, we treat the estimation of these parameters as a multi-objective optimization,
where we define the objectives to be:

fi(x) =
1

Ni

Ni∑

j=1

[

log10(P
exp.
CO2,i,j) − log10(P

model
CO2,i,j)

]2

, (104)

where P
exp.
CO2,i,j is the jth data point for the experimental vapour pressure at the ith

temperature and the (Pmodel
CO2,i,j) refers to the model prediction. The logarithm of the

partial pressure is chosen due to the experimental data spanning several orders of
magnitude; using an objective function 102 would bias the goodness of fit to low
partial pressures (e.g., Jou et al. (1995) report partial pressures as low as 1.5 Pa).
We use the algorithm described in chapter 4 with t = 0.0001, and decide to stop
the algorithm after the first 50 points are generated. The resulting Pareto surface
from the multi-objective optimization problem is shown in Figure 64, while the
%AAD representation of the surface is shown in Figure 65. All of the solutions are
shown in Tables 29 and 30 in the appendix to this chapter. From the Pareto-optimal
models found, it appears that the data is best represented by an α2 site that bonds
with a large bonding energy ((ǫHB

α2,e∗/kB) ≈ 8000 K) and a relatively small bonding
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volume (KHB
α2,e∗/Å3 ≈ 0.01 Å3), and an α1 site that bonds with a lower bonding

energy ((ǫHB
α2,e∗/kB) ≈ 2000 K) and a relatively large bonding volume (KHB

α2,e∗/Å3 ≈
10000 Å3). We expect that the α2− e∗ bond is capturing the physics of the covalent
C-N bond present in the carbamate (high energy, small volume), while the α1 − e∗

bond is capturing the physics of the chemical association due to ion pairing (lower
energy and high volume). The latter bond type is present in both the carbamate
and bicarbonate. Although the bonding volumes vary several orders of magnitude,
the values are not unphysical, and they are effectively empirical parameters that
incorporate site geometry as well as size. The association kernel in (Dufal et al.,
2015b) is shown to vary exponentially with respect to the change in the radius of
the association site.

Following the methodology used in the previous chapter we pick a Pareto point,
Pref, according to equation 100. We can see that this point, indicated in Figure 65

is close to the Pareto knee. The parameters and objectives for the chosen Pareto
point are displayed in Tables 26 and 27 respectively. These represent the cross-
interactions between CO2 and MEA. In terms of the AADs, the deviations appear
fairly large (e.g., approximately 10 % at 353 K). These large AAD values are mainly
due to the large errors at very low partial pressures/ loadings. In Figure 66, we
show the level of agreement of this model with respect to experimental partial
pressure data. The model captures the highly nonlinear dependency of the partial
pressure on the CO2 loading well. This curvature is mainly due to the saturation
of α1 and α2 sites, which can be seen by the inflexion points occurring at load-
ings close to 0.5 and 1. There is a significant deviation at low loading, where the
partial pressures are very small. It is clear from the figure that the new SAFT-γ
Mie models describe the experimental data more accurately than the SAFT-VR SW
models of Rodríguez et al. (2012). In particular, the description of the SAFT-γ Mie
models is better at higher temperatures, and we are able to predict the high tem-
perature (433 K), which is not included in the parameter estimation, with excellent
accuracy.

Table 26: Parameters for the chosen Pareto-optimal model for cross-interactions between
CO2 and MEA in aqueous solution.

Model (ǫ/kB)/K (ǫHB
α1,e∗/kB)/K (ǫHB

α2,e∗/kB)/K KHB
α1,e∗/Å3 KHB

α2,e∗/Å3

13 261.1739 2556.999 7734.476 2.830809E+03 1.706985E-02

Table 27: Objective functions and %AADs for the chosen Pareto-optimal model for cross-
interactions between CO2 and MEA

Model fPCO2
(T) AAD %

T=313 K T = 353 K T=393 K T=313 K T = 353 K T=393 K

13 0.0283 0.0252 0.0525 7.511 9.771 4.758
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Figure 64: Pareto surface for the three dimensional multi-objective optimization problem
considered in this chapter. The three objectives represent the deviation be-
tween the model and partial pressure data of Jou et al. (1995) at three different
isotherms: 313.15 K, 353.15 K and 393.15 K. The open circles are the individual
Pareto points.

5.6 assessment of the models

5.6.1 Heat of absorption

It is important to know the heat of absorption of CO2 in aqueous amine solutions
when designing acid gas removal plants. The temperature increase in the absorber,
which occurs mainly due to the exothermic heat of reaction, affects the equilibrium
amount of absorbed gas. The heat of desorption is directly related to the energy
requirement of the re-boiler in the desorber unit. This heat, provided by hot steam
passing through the re-boiler, is required in order to: heat the CO2 solution to the
boiling point, break the chemical bonds between CO2 and the absorption solvent,
and generate water vapour by both physical solubility and the chemical equilib-
rium for aqueous phase reactions occurring among CO2, water, and amines. The
overall enthalpy of reaction of gaseous CO2 with aqueous alkanolamines is the
sum of the individual enthalpies of reaction in the aqueous phase and the en-
thalpy of physical absorption of CO2 from the gas phase to the aqueous phase
(Gupta et al., 2013). Experimentally it is difficult to measure both these effects sep-
arately, the physical and chemical equilibrium are highly coupled, so these are
usually combined and referred to by the overall “heat of absorption” (Svensson
et al., 2013).

For chemical absorption systems, the Gibbs-Helmholtz equation relates the en-
thalpy of solution for a particular gas component, i, to the temperature derivative
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Figure 65: The %AAD representation of the Pareto optimal models for the three dimen-
sional multi-objective optimization problem. The three objectives represent the
deviation between the model and partial pressure data of Jou et al. (1995) at
three different isotherms: 313.15 K, 353.15 K and 393.15 K. The open circles
are the individual Pareto points. The Pareto point surrounded by another open
black circle is model 13, which is the model we choose for further investigation.
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Figure 66: The partial pressure of CO2 for a 30 wt% (mass) solution of MEA and water.
Note that this mass percentage corresponds to the composition of the solution
in the liquid phase with no CO2. The experimental data is from Jou et al. (1995)
(313.15 K, 353.15 K and 393.15 K), and Xu and Rochelle (2011) (433.15 K). The
temperature at 433.15 K is not included in the parameter estimation. The dotted
lines are the predictions of the SAFT-VR SW models of Rodríguez et al. (2012).
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of its fugacity in the liquid phase at the bubble pressure and fixed apparent com-
position. We take its formal definition from Mathias and O’Connell (2012):

∆H̃0i =

(

∂H

∂n0i

)

T ,P,n0j 6=i

− h∗
i = R

(

∂lnfi
∂(1/T)

)

{P,x0}

. (105)

In this notation, the subscript “0” refers to apparent chemical species Where
∆H̃0i is the differential enthalpy of solution of component i, ∂n0i indicates an
infinitesimal amount of gas absorbing in to the liquid phase at constant T ,P, and
n0j is the apparent composition of the liquid phase, i.e., the composition assuming
that there are no reactions occurring in the liquid. h∗

i is the ideal gas enthalpy of
the absorbing gas (i) at the reference pressure. Although this is a precise thermo-
dynamic definition, it is difficult to measure the partial derivates experimentally
and is therefore subject to numerous approximations. For example, the fugacity is
substituted for partial pressure, or the partial derivative is carried out along the
saturation curve (Kim and Svendsen, 2007). Mathias and O’Connell (2012) deter-
mined that under suitable approximations, which are valid for absorption of CO2

into MEA, the differential heat of absorption can be written in terms of experimen-
tal partial pressure measurements:

(PCO2
)σ,θ,T1

= (PCO2
)σ,θ,T0

∗ exp

[∫1/T1

1/T0

∆H̃0CO2

R
d(1/T)

]

, (106)

where θ is the loading, and T0 is a base temperature for which the partial pres-
sure at T0 is known. The authors show that according to the partial pressure
data of Jou et al. (1995), used in our estimations, a constant heat of absorption
of approximately -85 kJ.mol−1 CO2 provides a good fit to the partial pressure
data between the full range of temperatures (298.15 and 423.15 K). The heats of
absorption quoted by Arcis et al. (2011) and Carson et al. (2000) are in close accor-
dance with this observation, with average values of -88 kJ.mol−1 and -82 kJ.mol−1

over the full temperature range respectively. The authors found inconsistencies be-
tween the partial pressure and heat of absorption data for the quoted values by
Mathonat et al. (1998) and Kim and Svendsen (2007), because applying the Gibbs-
Helmholtz equation to this data provides poor predictions, particularly at high
temperatures. Kim et al. (2014) improve on their measurement technique in their
later work, reporting not such a large temperature dependency on the heat of ab-
sorption, however, the results are still not in accordance with the partial pressure
data. Due to these arguments, we choose to model the experiment of Arcis et al.
(2011) as a reliable measurement of the heat of absorption. Rather than applying
the Gibbs-Helmholtz equation to the SAFT-γ Mie equation of state, we decide to
simulate the experiment that was conducted, to avoid any misinterpretation of the
definition of the quoted heat of absorption given by the authors.

5.6.1.1 Simulation of a flow calorimetry experiment

Arcis et al. (2011) measure the heat of absorption (or heat of solution) of CO2

in MEA solution in a constant volume flow device. Each experiment is run at a
constant temperature (322.5 and 372.9) K and constant pressure between 0.5 MPa
and 5 MPa. Two streams enter the calorimeter, one is pure CO2 and the other is
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Figure 67: Schematic of the model for the experiment by Arcis et al. (2012).

an unloaded solution of aqueous MEA at a specified mass composition. Streams
enter the calorimeter at the same temperature and pressure as the mixing device,
and exit the device as a mixture of either one phase or two phases, depending
on the ratio of the flowrates of CO2 and the solvent. At pressures above 3 MPa,
the authors note that there were some issues with mixing inside the calorimeter,
so these pressures were not considered. The change in enthalpy was obtained
from the thermophile signal (µV). A baseline signal was measured whilst only the
aqueous MEA solution was flowing through the calorimeter, this is the baseline
signal where no enthalpy change is present. The heat of absorption was calculated
from the measured quantities in Equation 107:

∆Habs(kJ/mol−CO2) =
∆signal

E× ṅ
(107)

where ∆signal is the difference between the thermophile signal (the electronic
signal from the thermometer) during mixing and the baseline signal. E is the con-
version from the thermophile signal to heat power, determined from calibration
with the same experiment with water+ethanol with a well-known enthalpy of mix-
ing. ṅ is the total molar flow rate of CO2 or MEA entering the calorimeter. The
enthalpy change measured is therefore the integral heat of absorption at a given
CO2 loading, θ. An energy balance around the reactor vessel gives:

Q̇ = ṅmixhmix(T ,P, zmix) − ṅsolhsol(T ,P, zsol) − ṅCO2
hCO2

(T ,P), (108)

where Q̇ is the heat output from the reactor measured by the thermophile; ṅ are
the molar flowrates, h is the molar enthalpy (kJ.mol−1); z are the mole fractions;
subscript "mix" refers to the total mole fraction of the entire mixture inside the
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calorimeter (MEA + CO2 + H2O); "sol" refers to the total mole fraction of the sol-
vent (MEA + H2O); and "CO2" is the pure gaseous stream of CO2 that enters the
calorimeter. The SAFT EoS may be used to determine the enthalpy terms on the
right hand side of equation 108, while the other terms are independent variables.
When calculating the enthalpies with T ,P,z as inputs, a TP-flash is used to deter-
mine the enthalpy. When the stable solution is two phases, the enthalpy is the sum
of the total enthalpies of the two phases.

The heat power is divided by the molar flow rate of the CO2 stream:

∆Habs(kJ/mol−CO2) =

ṅmixhmix(T ,P, zmix) − ṅsolhsol(T ,P, zsol) − ṅCO2
hCO2

(T ,P)
ṅCO2

(109)

The total number of moles does not change during each measurement assuming
steady state is reached. Dividing through by ṅtot gives

∆Habs,CO2
=

hmix(T ,P, zmix) − (1− zCO2
)hsol(T ,P, zsol) − zCO2

hCO2
(T ,P)

zCO2

(110)
The loading, θ, is defined by the inlet flow rates to the mixing vessel:

θ =
ṅtot,CO2

ṅtot,MEA
=

zCO2

zMEA
. (111)

The amounts of MEA and H2O are related via the mass fraction of the solvent
solution:

γ =
zMEA

zH2O + zMEA

MWMEA

MWH2O
. (112)

Where γ is the mass fraction of the solvent and MWi are the molecular weights
for component i.

5.6.1.2 Results

In Figure 68 we show the model predictions for the simulated experiment. The
curvature can be described as follows. At a loading of 0.5, there is a drop in the
heat of absorption due to the α1 and α2 sites on CO2 becoming saturated, i.e., it
is not possible to form any more carbamate due to the reaction stoichiometry. The
change in curvature close to loadings of 1.2 represent the formation of a vapour
phase. The values of the heat of absorption at low loadings are in accordance
with the experiment of Arcis et al. (2011), with the model predicting values of
approximately -90 kJ.mol−1. We find that this value is insensitive to the pressure
and solvent concentration at low loadings, in accordance with the experiment.
The SAFT-VR SW models of Rodríguez et al. (2012) predict a heat of absorption
at low loadings of approximately -70 kJ.mol−1. The quality of the prediction is
particularly good at T=372.9 K and 30 wt% solvent, where the heat of absorption
is predicted with excellent accuracy over the entire range of CO2 loadings.
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Figure 68: Comparison between the predictions of the SAFT-γ Mie models, the prediction
of the SAFT-VR SW models of Rodríguez et al. (2012), and experimental data
(Arcis et al., 2011) for the enthalpy of solution of CO2 in aqueous MEA. a) T =
322.5 K, 15 wt% solvent. b) T = 322.5 K, 30 wt% solvent. c) T = 372.9 K, 15 wt%
solvent. d) T = 372.9 K, 15 wt% solvent. The pressures are labelled in the figure
legends according to the colour of the lines and scattered experimental data.

5.6.2 Heat capacity

The prediction of the heat capacity of the ternary mixture is shown in Figure 69.
An excellent description of the heat capacity is obtained at low loadings, however
we obtain the incorrect temperature dependence with respect to the CO2 loading
which leads to maximum deviations in the heat capacity of 7% at loadings of 0.5.
This discrepancy is likely due to the simplified implicit approach used to model
the reactions.
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Figure 69: Isobaric heat capacity at 1 bar and three different temperatures using the newly
developed SAFT-γ Mie models in this chapter. The symbols are experimental
data points from Weiland et al. (1997).

5.6.3 Chemical speciation

In Figure 71 we show the predicted mole fractions of the key chemical species in
solution, which were measured using NMR spectroscopy by Böttinger et al. (2008).
The mole fractions are calculated according to a statistical analysis of the fractions
of association sites not bonded, which is implicitly calculated in the SAFT equation
of state within the association term. Note that this analysis on the fractions can
be used to approximate the number density of any molecule that the association
scheme permits, for example, a molecule with an "e" and "H" site that forms "e-H"
bonds will form an infinite distribution of chain-like clusters (Jackson et al., 1988).
The concentrations of the species are determined as follows:

Referring back to reaction (r1) and Figure 57, a carbamate molecule is formed
when both α1 and α2 are bonded. The bonded fractions can be treated as proba-
bilities, so we multiply the probability that both sites are bonded:

xcarbamate = xCO2
[(1−Xα1,CO2

)(1−Xα2,CO2
)]. (113)

According to reaction (r2), the concentration of bicarbonate can be calculated as the
probability that α1 is bonded and not α2, plus the probability that α2 is bonded
and not α1:

xbicarbonate = xCO2
[(1−Xα1,CO2

)Xα2,CO2
+ (1−Xα2,CO2

)Xα1,CO2
]. (114)

The amount of free CO2 can be calculated by the probability that both sites are
not bonded:

xCO2,monomer = xCO2
Xα1,CO2

Xα2,CO2
. (115)
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Also measured by Böttinger et al. (2008) is the concentration of MEA and proto-
nated MEA. This can be approximated by the total amount of MEA that does not
exist in the form of a carbamate:

xMEA,MEAH+ = xMEA[1− xCO2
(1−Xα1,CO2

)(1−Xα2,CO2
)]. (116)

It is gratifying to see that all of the concentrations of the chemical species measured
by Böttinger et al. (2008) are predicted well by the model. Note that this predic-
tion is not purely due to the stoichiometry enforced by the association scheme
and prediction of the experimental data requires that some of the α sites are not
fully bonded or not bonded. In Figure 70 we show the fraction of site types that
are bonded in the mixture. Up until loadings close to 0.5, the majority of the α1

and α2 sites are bonded, meaning that the most of the CO2 is present in the car-
bamate at low loadings. This is also shown in Figure 71. The fraction of bonded
α1 sites begins to decrease prior to loadings of 0.5. Because both α1 and α2 are
not maximally bonded (CO2 can bond with 2 MEA molecules up until loadings
of 0.5), the equilibrium positions of reactions (r1) and (r2) lie somewhere in the
middle, indicating that there is some competition between entropic and enthalpic
contributions to the free energy. It is clear that MEA has a preference to bond with
the α2 over the α1 site from Figure 70, because the fraction of bonded α1 sites is
the first to decrease. The α2 − e∗ interaction should represent a covalent bond due
to its high bonding energy and low bonding volume, but this bond should only
be present in the carbamate. Hence, the bicarbonate may be characterised by an
association energy that is unphysical. This issue could be resolved by accounting
for bond cooperativity (Sear and Jackson, 1996c).
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Figure 70: The fraction of sites bonded for each site type using the newly developed SAFT-
γ Mie models used in this chapter.
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Figure 71: The prediction of the mole fraction of the reaction products newly developed
SAFT-γ Mie models used in this chapter. The experimental data points are the
symbols and the lines are the predictions of the model (Böttinger et al., 2008).
Green is carbamate, blue is bicarbonate, brown is the combination of free MEA
and protonated MEA, and black is free carbon dioxide.

5.7 re-assessment of the column profiles

Following the development of the new homonuclear SAFT-γ Mie models for the
CO2-MEA-H2O-N2 system, the thermodynamic models are input into the model
for the absorber. We transfer the diffusivity scaling of the "apparent" mole fraction
of CO2 directly from the previous study (τ = 0.041). In Table 28, we show the de-
viations in temperature, mole fraction and temperature between the two models.
In figures 72-81 we show the comparison between the two thermodynamic mod-
els and with respect to the pilot plant data (Tontiwachwuthikul et al., 1992). By
visual inspection of the column profiles, the two thermodynamic models perform
very similar. In all cases but one (run T19), the new models do marginally better
in terms of the temperature profile. The composition profiles are almost exactly
the same. We reiterate that the previous SAFT-VR SW models may be predicting
the temperature profile with a good degree of accuracy due to a cancellation of
errors, i.e., the mixture heat capacity is under predicted by ≈ 15 %, and the heat
of absorption is under predicted by ≈ 20 %.

5.8 conclusion

In this chapter, new thermodynamic models were developed for the SAFT-γ Mie
EoS. The parameters developed are independent of thermodynamic state. These
models improve upon the previous SAFT-VR SW models of Rodríguez et al. (2012),



190 developing saft-γ mie models for co2-mea-h2o-n2

0 10 20 30 40 50

Stage

292

294

296

298

300

302

304

306

308

T
L
/ 

K

a)

0 10 20 30 40 50

Stage

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

y
C

O
2

b)

0 10 20 30 40 50

Stage

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
O

2

c)

Figure 72: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T13. The dashed curves represent
the previous result with the SAFT-VR SW models of Rodríguez et al. (2012)
and the continuous curves the results for our new thermodynamic model using
SAFT-γ Mie. Here we scale the CO2 diffusivity in the liquid phase to 4.1% of
its original value (τ = 0.041). a) Temperature profile for the liquid phase, b)
gas-phase CO2 concentration profile, and c) liquid-phase CO2 loading. Stage
50 corresponds to the bottom of the column.
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Figure 73: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T14. The dashed curves represent
the previous result with the SAFT-VR SW models of Rodríguez et al. (2012)
and the continuous curves the results for our new thermodynamic model using
SAFT-γ Mie. Here we scale the CO2 diffusivity in the liquid phase to 4.1% of
its original value (τ = 0.041). a) Temperature profile for the liquid phase, b)
gas-phase CO2 concentration profile, and c) liquid-phase CO2 loading. Stage
50 corresponds to the bottom of the column.
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Figure 74: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T15. The dashed curves represent
the previous result with the SAFT-VR SW models of Rodríguez et al. (2012)
and the continuous curves the results for our new thermodynamic model using
SAFT-γ Mie. Here we scale the CO2 diffusivity in the liquid phase to 4.1% of
its original value (τ = 0.041). a) Temperature profile for the liquid phase, b)
gas-phase CO2 concentration profile, and c) liquid-phase CO2 loading. Stage
50 corresponds to the bottom of the column.



5.8 conclusion 193

0 10 20 30 40 50

Stage

290

295

300

305

310

315

320

T
L
/ 

K

a)

0 10 20 30 40 50

Stage

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

y
C

O
2

b)

0 10 20 30 40 50

Stage

0

0.1

0.2

0.3

0.4

0.5

C
O

2

c)

Figure 75: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T16. The dashed curves represent
the previous result with the SAFT-VR SW models of Rodríguez et al. (2012)
and the continuous curves the results for our new thermodynamic model using
SAFT-γ Mie. Here we scale the CO2 diffusivity in the liquid phase to 4.1% of
its original value (τ = 0.041). a) Temperature profile for the liquid phase, b)
gas-phase CO2 concentration profile, and c) liquid-phase CO2 loading. Stage
50 corresponds to the bottom of the column.
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Figure 76: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T17. The dashed curves represent
the previous result with the SAFT-VR SW models of Rodríguez et al. (2012)
and the continuous curves the results for our new thermodynamic model using
SAFT-γ Mie. Here we scale the CO2 diffusivity in the liquid phase to 4.1% of
its original value (τ = 0.041). a) Temperature profile for the liquid phase, b)
gas-phase CO2 concentration profile, and c) liquid-phase CO2 loading. Stage
50 corresponds to the bottom of the column.
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Figure 77: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T18. The dashed curves represent
the previous result with the SAFT-VR SW models of Rodríguez et al. (2012)
and the continuous curves the results for our new thermodynamic model using
SAFT-γ Mie. Here we scale the CO2 diffusivity in the liquid phase to 4.1% of
its original value (τ = 0.041). a) Temperature profile for the liquid phase, b)
gas-phase CO2 concentration profile, and c) liquid-phase CO2 loading. Stage
50 corresponds to the bottom of the column.
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Figure 78: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T19. The dashed curves represent
the previous result with the SAFT-VR SW models of Rodríguez et al. (2012)
and the continuous curves the results for our new thermodynamic model using
SAFT-γ Mie. Here we scale the CO2 diffusivity in the liquid phase to 4.1% of
its original value (τ = 0.041). a) Temperature profile for the liquid phase, b)
gas-phase CO2 concentration profile, and c) liquid-phase CO2 loading. Stage
50 corresponds to the bottom of the column.
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Figure 79: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T20. The dashed curves represent
the previous result with the SAFT-VR SW models of Rodríguez et al. (2012)
and the continuous curves the results for our new thermodynamic model using
SAFT-γ Mie. Here we scale the CO2 diffusivity in the liquid phase to 4.1% of
its original value (τ = 0.041). a) Temperature profile for the liquid phase, b)
gas-phase CO2 concentration profile, and c) liquid-phase CO2 loading. Stage
50 corresponds to the bottom of the column.
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Figure 80: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T21. The dashed curves represent
the previous result with the SAFT-VR SW models of Rodríguez et al. (2012)
and the continuous curves the results for our new thermodynamic model using
SAFT-γ Mie. Here we scale the CO2 diffusivity in the liquid phase to 4.1% of
its original value (τ = 0.041). a) Temperature profile for the liquid phase, b)
gas-phase CO2 concentration profile, and c) liquid-phase CO2 loading. Stage
50 corresponds to the bottom of the column.
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Figure 81: Comparison of the pilot-plant data (circles) (Tontiwachwuthikul et al., 1992)
and the result of our model (curves) for Run T22. The dashed curves represent
the previous result with the SAFT-VR SW models of Rodríguez et al. (2012)
and the continuous curves the results for our new thermodynamic model using
SAFT-γ Mie. Here we scale the CO2 diffusivity in the liquid phase to 4.1% of
its original value (τ = 0.041). a) Temperature profile for the liquid phase, b)
gas-phase CO2 concentration profile, and c) liquid-phase CO2 loading. Stage
50 corresponds to the bottom of the column.
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Table 28: Deviations in the composition and temperature profiles for the pilot plant runs
of Tontiwachwuthikul et al. (1992). The %AAD in temperature is the average per-
centage relative deviation of the model with respect to the experimental value.
The composition deviations are defined by the average absolute deviation be-
tween the experiment and model.

Run % AAD (TL) ∆yCO2
∆θ

SW Mie SW Mie SW Mie

13 0.270 0.226 0.0103 0.0132 0.0036 0.0132

14 0.548 0.186 0.0087 0.0075 0.0042 0.0075

15 0.971 0.451 0.0269 0.0214 0.0086 0.0214

16 0.615 0.155 0.0139 0.0112 0.0058 0.0112

17 0.367 0.199 0.0049 0.0040 0.0032 0.0040

18 2.088 1.298 0.0280 0.0246 0.0165 0.0246

19 0.095 0.150 0.0095 0.0112 0.0033 0.0112

20 0.826 0.571 0.0120 0.0135 0.0093 0.0135

21 1.338 0.749 0.0419 0.0344 0.0142 0.0344

22 0.615 0.172 0.0033 0.0031 0.0027 0.0031

Average 0.773 0.416 0.0159 0.0144 0.0071 0.0144

because they can simultaneously provide a good prediction of the vapour-liquid
equilibria and the caloric properties of the mixture. This was achieved by includ-
ing isobaric heat capacities at an early stage of the model development. The as-
sociation scheme is different as we account for the solvation effect between CO2

and H2O with an association site. Ternary vapour pressure data was used to de-
termine the association parameters that mediate the other reactions that occur
within the ternary mixture. The parameter estimation was formulated as a multi-
objective optimization problem, realising that the underlying assumptions in the
physical approach may not capture the correct temperature dependence of the re-
action equilibria, and that the experimental data can be subject to some uncertainty.
Thus, a number of Pareto-optimal parameter sets, capturing the key parameters
that determine the reaction equilibria, was obtained. A single model was chosen
for further evaluation by choosing a point close to the Pareto knee. After a crit-
ical evaluation of the heat of absorption measurements, we determined that the
model predictions are in good agreement with a particular set of experimental
data, and they are in accordance with the heat of absorption calculated when ap-
plying the Gibbs-Helmholtz equation to vapour pressure data. This is significant
in the context of process design of absorption columns, where the temperature
profile determines mass transfer rates, and where the amount of heat required in
the re-boiler constitutes a significant proportion of the total energy cost. A detailed
assessment of the chemical association was conducted, by looking at the bonded
fractions of all nine association sites present in solution. This provided some key
statistical mechanical insights into the species distribution implicit in the SAFT
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equation. The species distribution was shown to be in excellent agreement with
the experimental data.

The new models were shown to provide a better overall description of pilot
plant absorption column data compared to the previous models. This result also
indicates that the diffusivity scaling parameter determined in Chapter 3 may be
highly transferable to similar systems.

5.9 appendix
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6
D E V E L O P I N G A C L A S S I C A L D E N S I T Y F U N C T I O N A L
T H E O RY F O R S A F T- V R M I E

6.1 introduction

Interfacial phenomena play an important role in the design and modelling of chem-
ical processes. In the context of this thesis, the ability to predict the interfacial ten-
sion between fluid phases is important because it affects mass transfer rates. In
the modelling of the absorption column in chapter 3, the vapour-liquid interfacial
tension appears in the mass transfer correlations as it directly affects the intefacial
area density available for mass transfer. As noted by Gloor et al. (2007a), it is an
important data type for decreasing the degeneracy of molecular parameters for
associating substances.

In this chapter we derive a classical density functional theory (DFT) that is com-
patible with the SAFT-VR Mie equation of state, in order to be able to predict
inhomogeneous properties of fluids, in particular the interfacial tension. At the
pure component level, this approach is similar to that of Gloor et al. (2002); Gloor
(2003); Gloor et al. (2007a), who developed a DFT for pure components utilizing
the SAFT-VR SW equation of state, and is similar to the methodology used in the
recently published work by Algaba et al. (2019), who developed a pure component
DFT utilizing SAFT-VR Mie. The method described in this chapter expands on the
work of Algaba et al. (2019) by considering associating species and the general case
of mixtures, following a similar approach to Llovell et al. (2010). Due to the com-
plex nature of the molecules inherent in carbon capture processes (consisting of
hydrogen bonding and reactive systems), we focus on developing a theory that is
numerically tractable, providing a method that is suitable for the rapid evaluation
of thermodynamic models.

6.2 classical density functional theory

It is convenient to express an inhomogeneous mixture in terms of the chemical
potential for each component, µi, the total system volume, V , and the temperature,
T . In the absence of external fields, the grand potential functional, Ω[{ρ̃c(r)}], of
the system is given by (Evans, 1992):

Ω[{ρ̃c(r)}] = A[{ρ̃c(r)}] −

n∑

i=1

µi

∫

drρ̃i(r), (117)

where A[{ρ̃c(r)}] is the intrinsic Helmholtz free energy, µi is the chemical poten-
tial of component i, i = {1, ..,n}, and ρ̃i(r) is the average one-body density of
component i at position vector r. The square brackets indicate that Ω and A are
functionals of {ρ̃(r)}, where the curly brackets indicate a set of density profiles for
components c: {ρ̃c(r)} = [ρ1(r), ρ2(r), ..., ρn(r)]. Since at thermodynamic equilib-
rium the grand potential must be a minimum, it can be shown (Evans, 1979) that
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206 developing a classical density functional theory for saft-vr mie

when ρ̃i(r) = ρi(r), where ρi(r) is the equilibrium density profile for component
i, we obtain the following variation at thermodynamic equilibrium:

(

δΩ[{ρ̃c(r)}]

δρ̃i(r)

)

T ,V ,ρ̃j6=i(r)

= 0, {ρ̃c(r)} = {ρc(r)}, Ω[{ρc(r)}] = Ω. (118)

Throughout this chapter, functional derivatives are taken at constant
T ,Vand ρ̃j 6=i(r) unless specified otherwise. The minimization of the grand po-
tential is equivalent to the minimization of the Helmholtz free energy functional,
subject to the constraint that the total number of particles of each component
in the system remains constant; the Lagrange multipliers for these constraints
are the chemical potentials µi, i.e., the chemical potentials of the coexisting bulk
phases. The equilibrium density profiles can then be obtained by applying func-
tional derivatives to Equation 117, giving

(

δA[{ρc(r)}]

δρi(r)

)

T ,V , ˜ρ(r)j 6=i

= µi i = {1, ...,n}. (119)

This specifies that the intrinsic chemical potential for each component is constant
throughout the interface. Once the equilibrium density profile is obtained, the
thermodynamic properties of the inhomogeneous system can be calculated. In
this context, the interfacial tension, γ, can be determined by the thermodynamic
relation:

γ =
Ω+ PV

A
, (120)

where A is the area of the interface and P is the pressure of the coexisting bulk
phases.

6.3 derivation of the saft-vr mie dft

We now seek to find a suitable approximation for the free energy functional,
A[{ρc(r)}], that is compatible with the SAFT-VR Mie equation of state (EoS) (Lafitte
et al., 2013a; Dufal et al., 2015b). This EoS provides the free energy of a homoge-
neous fluid of associating chain molecules, where chains consist of a number (not
necessarily an integer) of segments that interact via a Mie potential. The reader is
referred to the original texts for details. Here, we outline some aspects of SAFT-VR
Mie that are required for the DFT formulation.

The monomer contribution to the EoS considers the free energy due to spherical
segments interacting via a Mie (generalised Lennard-Jones) potential. The Mie
potential is defined as follows:

φij(r) = Cijεij

[

(
σij

r
)λ

r
ij − (

σij

r
)λ

a
ij

]

, (121)

where λaij is the attractive exponent, λrij is the repulsive exponent (λrij > λaij > 3),
σij is the diameter at which the Mie potential is repulsive, and ǫij is the depth of
the potential well. C is given by:

Cij =
λrij

λrij − λaij

(

λrij

λaij

)

λa
ij

λr
ij
−λa

ij

. (122)
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The attractive part of the Mie potential (which we will consider to be the long
range contribution in the DFT) is given by

φatt
ij (r) =






φij(r) if r > σ

0 otherwise.
(123)

Following Gloor et al. (2002); Gloor (2003); Gloor et al. (2007a), we split the free
energy functional into terms that are local and non-local:

A[{ρc(r)}] = Aref[{ρc(r)}] +Aatt[{ρc(r)}]. (124)

Here, Aref is the reference free energy functional that incorporates all of the con-
tributions to the free energy that are determined using the local density approx-
imation (LDA), and Aatt is the free energy functional that is determined by the
long-range attractive contributions to the free energy which we treat non-locally.
The LDA is a good approximation for fluid-fluid interfaces because the gradients
in the density with respect to position are relatively small (e.g., compared to solid-
fluid systems). The reference contribution is given by

Aref[{ρc(r)}] = ASAFT[{ρc(r)}] −ASAFT,lr[{ρc(r)}]. (125)

The first term is the free energy obtained when integrating the free energy density
given by the SAFT equation over the system volume, while the second term ex-
cludes the long range attractive contributions to this free energy in the reference
contribution (evaluated within the mean-field approximation). Therefore, ASAFT is
given by

ASAFT[{ρc(r)}] = kBT

∫

drρ(r)ASAFT({ρc(r)}), (126)

Here, ASAFT({ρc(r)}) is the dimensionless free energy (normalized by 1/(NkBT))
obtained directly from SAFT-VR Mie, which includes the ideal, hard-sphere,
the perturbative contributions due to attractive interactions, chain contributions,
and association contributions, while kB is the Boltzmann constant and ρ(r) =
∑n

i ρi(r), the total number density of chain molecules at position vector r. From
Equation 126 it is clear that a local density approximation (LDA) has been used
because variables inside the integrals are only functions of the local position coor-
dinate (r). The long-range mean-field contribution to ASAFT which we subtract is
given by

ASAFT,lr[{ρc(r)}] =
1

2

n∑

i=1

n∑

j=1

∫

drmimjρi(r)ρj(r)

∫

dr′φatt
ij (|r − r′|)

=
1

2

n∑

i=1

n∑

j=1

∫

drmimjρi(r)ρj(r)α
vdW
ij .

(127)
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Here, αvdW
ij is the van der Waals attractive constant for the interaction between

spherical segments i and j, which can be obtained by integrating the attractive
part of the Mie potential for the uniform fluid as follows:

αvdW
ij =

∫

dr′φatt
ij (|r− r′|)

=

∫∞

σ

dr(4πr2)φatt
ij (r)

= −4πCijεσ
3
ij

(

1

3− λrij
−

1

3− λaij

)

.

(128)

The non-local attractive contribution is given by:

Aatt[{ρc(r)}] =
1

2

n∑

i=1

n∑

j=1

∫

drmiρi(r)

∫

dr′mjρj(r
′)φatt

ij (|r − r′|). (129)

In order for the DFT theory to be consistent with the bulk SAFT-VR Mie EoS, we
require that if the densities are constant throughout the fluid, the free energy func-
tional A[{ρc(r)}] is the same as the free energy computed via the EoS ASAFT[{ρc(r)}].
From equations 124 and 125 it is clear that this requires that ASAFT,lr = Aatt, which
is the case because the number densities ρi(r) can be taken outside of the integrals
in equations 127 and 129 and the two contributions become identical.

The next step is to determine the explicit forms of the functional derivatives
used in Equation 119. The free energy functional is given by:

A[{ρc(r)}] = Aref[{ρc(r)}] +Aatt[{ρc(r)}]

= ASAFT[{ρc(r)}] −ASAFT,lr[{ρc(r)}]
︸ ︷︷ ︸

short range contribution

+Aatt[{ρc(r)}]. (130)

Taking the functional derivative with respect to ρi(r) gives:

δA[{ρc(r)}]

δρi(r)
=

δASAFT[{ρc(r)}]

δρi(r)
−

δASAFT,lr[{ρc(r)}]

δρi(r)
+

δAatt[{ρc(r)}]

δρi(r)

= µSAFT
i ({ρc(r)}) − µSAFT ,lr

i ({ρc(r)}) + µatt
i [{ρc(r)}].

(131)

In the appendix to this chapter (section 6.10.2 ) we show the methodology for
computing these functional derivatives. µSAFT [{ρc(r)}] is simply the chemical po-
tential directly obtained from the SAFT-VR Mie equation of state for the uniform
fluid. The long-range contribution to this chemical potential (which we subtract),
is given by

µSAFT ,lr
i ({ρc(r)}) =

n∑

j=1

mimjρj(r)α
vdW
ij . (132)

The contribution due to long range attractive forces is given by:

µatt
i [{ρc(r)}] =

n∑

j=1

mimj

∫

dr′ρj(r
′)φatt

ij (|r− r′|). (133)
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Finally, we obtain the Euler-Lagrange equation which can be used to solve for the
density profile:

µi = µSAFT
i ({ρc(r)}) −

n∑

j=1

mimjρj(r)α
vdW
ij +

n∑

j=1

mimj

∫

dr′ρj(r
′)φatt

ij (|r− r′|).

(134)

6.4 transforming to the planar interface

In this chapter we will consider only planar interfaces, meaning that the density
profile varies in only one Cartesian coordinate perpendicular to the surface normal.
Here we define a new potential function, φatt∗

ij (|z − z ′|), that defines the total
potential between two planes of particles at positions z and z ′:

φatt∗

ij (|z− z ′|) =






2π∫

0

dθ

∞∫

√

σ2
ij−|z−z ′|2

dζφij

(

√

ζ2 + |z− z ′|2
)

ζ, if |z− z ′| 6 σij,

2π∫

0

dθ

∞∫

0

dζφij

(

√

ζ2 + |z− z ′|2
)

ζ, if |z− z ′| > σij.

(135)
To determine Equation 135 we have converted to cylindrical coordinates (θ, ζ, r) to
simplify the mathematics, and have made the substitution that:

r =

√

ζ2 + |z− z ′|2, (136)

where ζ is the radial distance and |z− z ′| denotes the distance between two planes
at positions z and z ′, and θ is the angle in radians for the cylindrical coordinate
system, as depicted in Figure 82.
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Figure 82: Schematic describing the conversion to cylindrical coordinates between two par-
ticles at positions r1 and r2. In this figure, r1 and r2 are equivalent to r and
r′, and z1 and z2 are equivalent to z and z ′, to be consistent with the notation
used in this chapter.

The lower limits of integration over the radial coordinate (ζ) are included explic-
itly to avoid integration over particle separations where φatt

ij > 0 . If |z− z ′| 6 σij

then the integration over the radial distance will have a lower bound greater than
zero due to the lower limit on the range of the attractive part of the Mie potential
due to the overlaps between the repulsive cores. For separation distances above
σij, the integration over ζ is between 0 and ∞. The inner integrals in Equation 135

can be solved analytically for the Mie interaction to give

∫

dζφatt
ij

(

√

ζ2 + (z− z ′)2
)

ζ = Cijǫij(|z− z ′|2 + ζ2)





1

2− λrij

(

σij
√

|z− z ′|2 + ζ2

)λr
ij

−
1

2− λaij

(

σij
√

|z− z ′|2 + ζ2

)λa
ij



+ constant.

(137)

Applying the limits of integration given in Equation 135, the potential function is

φatt∗

ij (|z− z ′|) =





−2πCijǫijσ
2
ij

[

1
2−λr

ij
− 1

2−λa
ij

]

, if |z− z ′| 6 σij,

−2πCijǫij|z− z ′|2
[

1
2−λr

ij

(

σij

|z−z ′|

)λr
ij
− 1

2−λa
ij

(

σij

|z−z ′|

)λa
ij

]

if |z− z ′| > σij.

(138)
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The Euler-Lagrange equation is then given by

µi = µSAFT
i ({ρc(z)}) −

n∑

j=1

mimjρj(z)α
vdW
ij +

n∑

j=1

mimj

∫

dzρj(z
′)φatt∗

ij (|z− z ′|)

(139)
The individual contributions to the free energy functional are given by:

ASAFT[{ρc(z)}] = kBTA

∫

dzρ(z)ASAFT({ρc(z)}), (140)

ASAFT,lr[{ρc(r)}] =
1

2
A

n∑

i=1

n∑

j=1

∫

dzmimjρi(z)ρj(z)α
vdW
ij , (141)

and

Aatt[{ρc(z)}] =
1

2
A

n∑

i=1

n∑

j=1

∫

dzmiρi(z)

∫

dz ′mjρj(z
′)φatt∗

ij (|z− z ′|). (142)

6.5 numerical implementation

The numerical method we use in this work to solve the DFT equations is fairly
unique compared to the other methods used to solve similar problems in the
literature. Typically, a damped direct substitution algorithm (Picard iteration) is
used (see e.g., Gloor (2003)). In this work, we use an equation-oriented program-
ming language, gPROMS (Process Systems Enterprise, 2016), to solve the system
of equations. This is a powerful tool for solving these types of problem because,
after specifying the parameters, variables and equations of the problem, the pow-
erful internal solvers of gPROMS are used for numerical solution. This requires
little user input as to the procedural way of solving the DFT equation.

In this section we describe the precise way in which the equations are solved
using the gPROMS (equation-oriented) software package, and detail the modifica-
tions to the DFT equations that are used to facilitate their numerical solution.

6.5.1 Modification of the DFT equations

For integrations over the auxiliary z ′ coordinate, we determine suitable bounds to
the width of the interface by specifying a lower and upper bound on z: zLB and
zUB respectively, outside of which the component number densities are approxi-
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mately equal to their bulk densities, such that we can take these densities outside
of the integral. We modify the Euler-Lagrange equation (Equation 139) as follows:

µi = µSAFT
i ({ρc(z)}) −

n∑

j=1

mimjρj(z)α
vdW
ij +

n∑

j=1

mimj

[

ρB,I
j

∫zLB

−∞

dzφatt∗

ij (|z− z ′|)

+

∫zUB

zLB

dzρj(z
′)φatt∗

ij (|z− z ′|)

+ ρB,II
j

∫∞

zUB

dzφatt∗

ij (|z− z ′|)

]

,

(143)

where ρB,I
j and ρB,II

j are the number densities of component j in bulk phases I and
II respectively. These bulk densities are found by solving for phase equilibria with
the homogeneous EoS. Similarly, the attractive free energy functional is modified
by splitting the integral in Equation 142:

Aatt[{ρc(z)}] =
1

2

n∑

i=1

n∑

j=1

∫

dzmimjρi(z)

[

ρB,I
j

∫zLB

−∞

dz ′φatt∗

ij (|z− z ′|)

+

∫zUB

zLB

dz ′ρj(z
′)φatt∗

ij (|z− z ′|)

+ ρB,II
j

∫∞

zUB

dz ′φatt∗

ij (|z− z ′|)

]

(144)

The analytic expressions for the integration of the attractive potential are given by

∫zLB

−∞

dz ′φatt∗

ij (|z− z ′|) =






−2πCijǫijσ
2
ij

[

σij

3−λr
ij
−

σij

3−λa
ij
−

|zLB−z|
2−λr

ij
+

|zLB−z|
2−λa

ij

]

if |zLB − z| < σij,

−2πCijǫij





|zLB − z|3−λa
ijσ

λa
i j

ij

(2− λaij)(3− λaij)
−

|zLB − z|3−λr
ijσλr

ij

(2− λrij)(3− λrij)



 if |zLB − z| > σij

(145)

and similarly,
∫∞

zUB

dz ′φatt∗

ij (|z− z ′|) =






−2πCijǫijσ
2
ij

[

σij

3−λr
ij
−

σij

3−λa
ij
−

|zUB−z|
2−λr

ij
+

|zUB−z|
2−λa

ij

]

if |zUB − z| < σij,

−2πCijǫij





|zUB − z|3−λa
ijσ

λa
i j

ij

(2− λaij)(3− λaij)
−

|zUB − z|3−λr
ijσλr

ij

(2− λrij)(3− λrij)



 if |zUB − z| > σij.

(146)

The equation for the interfacial tension is given by

γ =
Ω+ PV

A
=

Ω

A
+ P|zUB − zLB|. (147)
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6.5.2 Solution to the density profile

The key numerical challenge is to find the set of density profiles, {ρc(z)}, that sat-
isfy Equations 143, 145 and 146. Within the gPROMS formalism, z is declared as
a distribution domain with lower and upper bounds of zLB and zUB respectively
with Ndist discretized points. |z − z ′| is declared as a distribution domain with
lower and upper bounds of 0 and |zUB − zLB| respectively with 2Ndist discretized
points. The method used to solve numerical integrations over these distribution
domains is set to a sixth order centred finite difference method. Numerical inte-
grations are performed by splitting the integral into a number of sub-integrals. For
example,

∫b

a

fdx =

∫xi+1

xi

fdx+

∫xi+2

xi+1

fdx+ ... +
∫xi+m

xi+m−1

fdx+

∫b

xi+m

fdx (148)

Each sub-integral in Equation 148 is integrated using a polynomial approxima-
tion consistent with the numerical method (used to approximate partial deriva-
tives) specified for the distribution domain.

The solution to Equations 143, 145 and 146 requires a robust initialization proce-
dure because the system of equations is unlikely to converge unless a good initial
guess is given for {ρc(z)}. To aid convergence, we start with a system of equations
that is easily solvable by gPROMS and then gradually move to the final system of
equations using the in-built initialization procedure. We first start by rearranging
Equation 143 and defining the residual term ri as a free variable

ri(z) = −µi + µSAFT
i ({ρc(z)}) −

n∑

j=1

mimjρj(z)α
vdW
ij

+

n∑

j=1

mimj

[

ρB,I
j

∫zLB

−∞

dzφatt∗

ij (|z− z ′|)

+

∫zUB

zLB

dzρj(z
′)φatt∗

ij (|z− z ′|)

+ ρB,II
j

∫∞

zUB

dzφatt∗

ij (|z− z ′|)

]

.

(149)

Note that by setting ri(z) = 0 at all z we obtain the Euler-Lagrange equation. By
relaxing the constraint on ri(z) we can specify {ρc(z)} to initialize the problem.
In this case, we converge from a step-change profile that changes between the
two bulk densities at the midpoint of zLB and zUB. The initialization procedure
is defined as follows. As a first step to the initialization procedure in gPROMS,
Equation 150 is solved

{ρc(z)} = step-change profile. (150)

Next, we gradually move to the new set of equations defined by

ri(z) = 0 (Euler-Lagrange equation). (151)

We found that this solution procedure provides a robust method for convergence
of the equations in all cases (even for three component mixtures). Once initialized,
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one can move efficiently between different equilibrium density profiles by making
gradual steps in the thermodynamic variables (e.g., temperature, pressure and
mole fraction).

6.5.3 Numerical options

zLB and zUB are fixed to values suitably large such that they contain the inter-
face where the density varies, typically −30σ11 and 30σ11 respectively, however
this inter-facial width is increased for near-critical calculations. The number of dis-
cretized points in the z domain, Ndist, is set to 500, and a sixth order centred finite
difference method is used for the numerical integration. "DASOLV" is used as the
numerical solver with default options, but with the absolute and relative tolerance
options reduced to 10−10.

6.6 results and discussion

This section analyzes several aspects of the proposed DFT approach. To provide
a stringent test of the theory, we will first test the validity of the proposed DFT
approach by comparing the predictions of the theory with molecular simulations.
To ensure a direct mapping between the potential function used in the SAFT theory
and the simulations, the first section focuses on molecules that consist of Mie
chains with an integer number of segments, without association interactions. We
will then assess the predictive capacity of the DFT approach when applied to SAFT-
VR Mie models parametrised for real molecules by comparing the predicted values
in the interfacial tension with experimental data, including molecules that contain
a non-integer number of segments and those that exhibit association interactions.

6.6.1 Comparison with simulations

In this section we will consider pure components and mixtures of Lennard-Jones
chains consisting of 1,3 and 5 segments. We use the notation LJm to refer to a
molecule consisting of m tangentially bonded Lennard-Jones segments (λrij = 12

and λaij = 6). We also consider the pure component 8-6 Mie fluid (λrij = 8 and λaij =

6). The variables in this section are reduced with respect to the pure component
parameters of the first component, with σ11 and ǫ11 being the length and energy
scaling units respectively. Therefore, the reduced variables are defined as follows:
T∗ = TkB/ǫ11, P∗ = Pσ3

11/ǫ11,ρ∗ = ρσ3
11, γ∗ = γσ2

11/ǫ11 and z∗ = z/σ11.

6.6.1.1 Pure components

In Figure 83, we show the density profiles for the vapour-liquid interface for LJ1
molecules (mLJ1 = 1) at various temperatures compared to the molecular simula-
tions of Duque et al. (2004). The results show excellent agreement with the molec-
ular simulations, with densities following the typical hyperbolic tangent shape
and the interfacial width captured accurately. In Figure 84 we show the level of
agreement between the DFT and the interfacial tension obtained from molecular
simulations in the literature. There is some disagreement in the literature values
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due to the differences in the molecular simulation technique, but we see that the
theory is quantitatively accurate in most cases.

In Figure 85, we show the density profiles for the vapour-liquid interface for
an 8-6 Mie fluid at various temperatures compared to the molecular simulations
of Lindeboom et al. (2019). This represents a longer-range attractive interaction
compared with the Lennard-Jones fluids. Again, the DFT predicts the simulation
result with remarkable accuracy. In Figure 86 we show that the DFT is in excellent
agreement with the simulations.

In Figure 87 we include the prediction of the DFT when applied at low tempera-
tures (green curve, T∗ = 0.4), a temperature well-below the triple point (T∗

≅ 0.72
(Ladd and Woodcock, 1977)). The theory predicts abnormal shapes in the density
profiles at low temperatures (green curve); in fact the profile shown here exhibits
two discontinuities. This is not an issue when applying the DFT to a simple LJ
monomer because we are applying SAFT, a fluid theory, outside its range of appli-
cability at temperatures where the simulation is expected to freeze. In section 6.7
we will see that this becomes an issue when applying the DFT to real molecules
that contain a high degree of association, since the theory predicts discontinuous
density profiles at temperatures far above the experimental triple point.
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Figure 83: The density profile for a system of LJ1 molecules at various temperatures com-
pared to the molecular dynamic (NVT) simulations of Duque et al. (2004). The
continuous lines are the SAFT-VR Mie MF DFT predictions and the scattered
points are the molecular simulation results.
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Figure 84: Comparison between the predicted interfacial tensions for the LJ1 fluid and
the result determined from molecular simulations at various temperatures. The
solid black curve corresponds to the DFT calculation in this work. The simula-
tion results are taken from various sources: blue diamonds (Potoff and Pana-
giotopoulos, 2000), green stars ((Errington, 2003)), magenta triangles Duque
et al. (2004) and red squares (Mecke et al., 1997).
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Figure 85: The vapour-liquid density profiles for an 8-6 Mie fluid at various temperatures
compared to the molecular dynamic (NVT) simulations of (Lindeboom et al.,
2019). The scattered points are the molecular simulation results, and the contin-
uous lines are the predictions of our SAFT-VR Mie MF DFT

.
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Figure 86: Comparison between the predicted interfacial tensions for the 8-6 Mie fluid and
the result determined from molecular simulations at various temperatures. The
solid black curve corresponds to the DFT calculation in this work. The blue
diamonds are the simulation results (Lindeboom et al., 2019).
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Figure 87: The density profile for a system of LJ1 molecules at various temperatures.

6.6.1.2 Mixtures

The mixtures considered here are detailed in Table 31. For mixture 1 we consider
a binary mixture of a monomer fluid (LJ1) and a trimer, LJ3 with three tangen-
tial Lennard Jones segments. For mixture 2 we consider a binary mixture of a
monomer fluid (LJ1) and a pentamer, LJ5 with five tangential Lennard Jones seg-
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ments. For mixture 3 we consider the mixture consisting of three components: LJ1,
LJ2 and LJ3. Details regarding the molecular simulations are covered in section
6.10.1.

Table 31: Thermodynamic properties for the three mixtures considered in this section that
exhibit vapour-liquid equilibria. x refers to the liquid mole fraction. Subscripts
‘sim’ and ‘DFT’ refer to the simulation and DFT results respectively.

Mixture T∗ xLJ1 xLJ3 xLJ5 1000 × P∗
sim 1000 × P∗

DFT γ∗
sim γ∗

DFT

1 1 0.722 0.278 - 6.9 ± 0.25 7.4 1.090 ± 0.013 1.130

2 1 0.450 - 0.550 16.4 ± 0.4 16.7 0.801 ± 0.026 0.804

3 0.833 0.564 0.309 0.127 3.0 ± 0.4 3.1 1.223 ± 0.0337 1.220

In Figure 88 we compare the density profile predicted by the DFT with the
molecular simulation results for mixture 1, consisting of monomer LJ1 and trimer
LJ3 Lennard-Jones molecules at fixed temperature (T∗ = 1) and liquid phase com-
position (detailed in Table 31). The theory predicts the density profiles accurately
and is able to correctly capture the inter-facial width. It is also able to capture the
accumulation of the light component at the interface.
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Figure 88: The vapour-liquid equilibrium density profile of the binary mixture of Lennard-
Jones monomers LJ1 (mLJ1 = 1) and trimer LJ3 (mLJ3 = 3) molecules compared
to molecular dynamic (NVT) simulations at a reduced temperature T∗ = 1. The
liquid phase composition in the simulations and the DFT theory is xLJ1 = 0.722.
The blue and red continuous curves correspond to the result of the SAFT-VR
Mie MF DFT for LJ1 and LJ3 respectively. The blue diamonds (LJ1) and red
circles (LJ3) correspond to the simulation results Lindeboom et al. (2019).

The second mixture we consider consists of monomer LJ1 and pentamer chain
LJ5 molecules. The density profiles are compared with molecular simulations in
Figure 89. In this case, the excess absorption of the light component at the interface
is more pronounced, and the maximum in density of the light component is again
predicted well by the SAFT-VR Mie MF DFT, although there is a small under-
prediction. This deviation may be due to the use of the LDA in a region where
there are large variations in density with respect to z. The theory slightly under-
predicts the number density of the chains close to the bulk vapour phase.
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Figure 89: The vapour-liquid equilibrium density profile of the binary mixture of Lennard-
Jones monomers LJ1 (mLJ1 = 1) and pentamer LJ5 (mLJ5 = 5) molecules
compared to molecular dynamic (NVT) simulations at a reduced temperature
T∗ = 1. The liquid phase composition in the simulations and the DFT theory
is xLJ1 = 0.450. The blue and red continuous curves correspond to the result
of the SAFT-VR Mie MF DFT for LJ1 and LJ5 respectively. The blue diamonds
(LJ1) and red circles (LJ5) correspond to the simulation results Lindeboom et al.
(2019).

The third mixture we consider is the ternary mixture consisting of monomer LJ1,
trimer LJ3 and pentamer LJ5 chain molecules. The vapour-liquid density profiles
predicted by the DFT are compared with the molecular simulation results in Figure
90. Again, the theory is able to predict the density profiles both qualitatively and
quantitatively, however the theory slightly under-predicts the densities near the
bulk vapour phase. Furthermore, for all mixtures considered in this section we are
able to predict the interfacial tension calculated from the simulation remarkably
well (see Table 32).
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Figure 90: The vapour-liquid density profile of the ternary mixture of Lennard-Jones
monomer LJ1, trimer LJ3 and pentamer LJ5 chain molecules compared to molec-
ular dynamic (NVT) simulations at reduced temperature T∗ = 0.833. The liquid
phase composition in the simulations and the DFT theory are xLJ1 = 0.833 and
xLJ3 = 0.550. The black, red and blue continuous curves correspond to the re-
sult of the SAFT-VR Mie MF DFT for LJ1, LJ3 and LJ5 respectively. The dashed
curves correspond to the simulation results of Lindeboom et al. (2019).

Finally, we will consider a binary equimolar mixture of LJ1 and LJ∗1 molecules,
where we have used the superscript ‘∗’ to distinguish between the two identical
molecules. The results are compared to the molecular simulations by Garrido et al.
(2016). Liquid-liquid equilibria is achieved by setting an unfavourable unlike in-
teraction between the two particles (ε12 = ε21 = 0.5ε11). In Figure 91 we show
the density profiles predicted by the theory and compare these with the molec-
ular simulation results. The theory is able to predict the density profiles of the
pure components, although the width of the interface is slightly over-predicted.
The theory is also able to predict the minimum in the total number density of
molecules at the middle of the interface. The prediction of the liquid-liquid inter-
facial tension for this system at various pressures is shown in Figure 92. One is
able to predict the interfacial tension with quantitative accuracy, with only a small
over-prediction.



222 developing a classical density functional theory for saft-vr mie

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 
11

3

LJ1
 

11

3

LJ1*
 

11

3

Figure 91: The liquid-liquid equilibrium density profile for the binary mixture of Lennard-
Jones monomers LJ1 (mLJ1 = 1) and LJ∗1 (mLJ∗1

= 1) with an unlike interaction
ε12 = ε21 = 0.5ε11 compared to the molecular dynamic (NPzAT ) simulation
results of Garrido et al. (2016) at a reduced temperature T∗ = 0.9. The dashed
curves are the simulation results and the continuous curves are the SAFT-VR
Mie MF DFT predictions. The red and blue curves correspond to the number
density of LJ1 and LJ∗1 monomers respectively, and the black curves are the total
number density of segments.
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Figure 92: The interfacial tension for a mixture of LJ1 and LJ∗1 monomers (continuous
curve) with cross interaction ε∗12 = ε∗21 = 0.5ε∗11 compared to the molecular
dynamic (NPzAT ) simulation data (symbols) reported by Garrido et al. (2016)
at a reduced temperature T∗ = 0.9.

6.7 prediction of real fluids

6.7.1 Pure components

The adequacy of the aforementioned DFT approach in predicting the interfacial
tensions of real fluids is assessed in this subsection. We will first look at the
series of n-alkanes and then assess the performance for molecules that contain
association that are relevant to this thesis: water, ethylamine, ethanol and mo-
noethanolamine, for which we have estimated the parameters in the previous
chapter. We will also look at the prediction of the interfacial tension of carbon
dioxide, a quadrupolar molecule, for two different SAFT-VR Mie models.

The models and their parameters are detailed in Table 32. In Table 33 we also
show the AAD (%) for each of these models for saturated liquid density, vapour
pressure and saturated liquid heat capacity.
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Table 33: Table of AAD (%) for the molecules considered in this section. The temperature
range considered is between the experimental triple point up to 0.9*Tc.

k Group k AAD ρsat
L (%) AAD Psat (%) AAD CP (%)

1 ethanol 0.267 0.127 0.757

2 ethylamine 0.81 0.184 0.503

3 carbon dioxide 1 0.38 1.92 6.67

4 carbon dioxide 2 1.29 15.49 3.26

5 water 1 0.87 0.50 0.16

6 water 2 1.06 1.28 10.52

7 methane 0.75 0.4 1.23

8 hexane 0.29 0.16 0.87

9 decane 0.46 0.41 0.70

In Figure 93 we show the predictions of the interfacial tension for the n-alkane
series: methane, propane, n-hexane and n-decane, the parameters for which were
estimated by Dufal et al. (2015a) from vapour pressure and saturated liquid den-
sity data. The results show a good qualitative prediction of the experimental in-
terfacial tension, however it is systematically over-predicted. This over-prediction
appears worse than more sophisticated DFT of Gross (2009), which is based on the
perturbed-chain statistical associating fluid theory (PC-SAFT) EoS, but we note
that this difference in agreement may be due to the bulk EoS model rather than
simplifications used in the DFT method because PC-SAFT uses a reference hard-
chain free energy that is correlated to the series of n-alkanes (Gross and Sadowski,
2001) and is therefore likely to be more accurate for these molecules.
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Figure 93: A comparison between the predicted interfacial tensions of the proposed DFT
approach and experimental data for methane, n-propane, n-hexane and n-
decane. The continuous curves are the predictions of the proposed SAFT-VR
Mie MF DFT using the models given in reference (Dufal et al., 2015a). The
dashed curves are the correlated data from NIST (E.W. Lemmon and Friend,
2018).

We now analyse two SAFT-VR Mie models for water. Group 5 in Table 32 is the
water model (model 5NS) developed in chapter 4. The other model is group 6 in
Table 32 which is taken from Dufal et al. (2015b) (labelled model 1L in chapter
4). Figure 94 we show the predictions of the SAFT-VR Mie MF DFT and compare
these with experimental data. Model 5NS is quantitatively accurate over the range
of temperatures where we do not experience a discontinuity in the equilibrium
density profile, and is in better agreement with the experimental data than model
1L, which over-predicts the critical point and under-predicts the surface tension at
lower temperatures.

We see from Figure 95 that the agreement is excellent for the model of mo-
noethanolamine developed in this thesis. These results confirm the predictive ca-
pabilities of the DFT theory and the robustness of parameters developed for water
and monoethanolamine. The interfacial tension is not calculated at low temper-
atures, due to the density profiles becoming discontinuous upon reducing the
temperature, as depicted in Figure 96. Below these temperatures, gPROMS fails to
find a solution to the Euler-Lagrange equation. As discussed in section 6.6.1, the
theory predicts similar shaped profiles for a simple LJ1 fluid at temperatures be-
low the simulation triple point and therefore may indicate the presence of a solid
phase. We suspect that this unphysical result at low temperatures for associating
systems is due to the fact that we are evaluating properties at temperatures below
the triple point of the reference Mie system.

The models for ethanol and ethylamine developed in this thesis both show an
over-prediction of the interfacial tension, as depicted in Figures 97 and 98.
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Figure 94: A comparison between the predicted interfacial tensions of the proposed SAFT-
VR Mie MF DFT approach for water and experimental data. The black contin-
uous curve is the prediction using the literature model of Dufal et al. (2015b)
(group 6 in table 32). The blue continuous curve is the prediction using the
non-shperical model of water developed in this thesis (group 5 in table 32). The
blue diamonds are the correlated data from NIST (E.W. Lemmon and Friend,
2018).
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Figure 95: A comparison between the predicted interfacial tensions of the proposed DFT
approach for monoethanolamine and experimental data. The continuous curve
is the prediction of the SAFT-VR Mie MF DFT model for MEA derived in this
thesis (cf. Table 32)). The blue diamonds are the experimental data from various
sources (Liessmann et al., 1995).
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Figure 96: The density profile for the model of water at different temperatures (with the
colours for each temperature indicated in the legend). Below 430 K, the equilib-
rium density profile becomes discontinuous.
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Figure 97: A comparison between the predicted interfacial tensions of the proposed SAFT-
VR Mie MF DFT approach for ethanol and experimental data. The continuous
black curve is the model developed in this thesis (cf. Table 32). The dashed
curve is the correlated data from Fletcher et al. (1996)

.
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Figure 98: A comparison between the predicted interfacial tensions of the proposed SAFT-
VR Mie MF DFT approach for ethylamine. The continuous black curve is the
model developed in this work (cf. Table 32). The open circles are the experimen-
tal data (Fletcher et al., 1996).

In Figure 99, we show the predicted interfacial tension of carbon dioxide for
two models: the SAFT-γ Mie model of Papaioannou et al. (2016), and the coarse-
grained model of Avendano et al. (2011) with parameters scaled to match the exper-
imental critical point. The former model over-predicts the interfacial tension, while
the latter model is in excellent agreement with the experimental data. The discrep-
ancy in prediction between the two models may be due to the way in which the
models were parametrised. Both provide an excellent agreement with the experi-
mental critical point, however the model of Avendano et al. (2011) was obtained
by adjusting the parameters to saturated liquid density and vapour pressure data
and then rescaling these parameters to match the critical point, thus the model
offers large deviations with respect to the experimental liquid density and vapour-
pressure. Nevertheless, it is gratifying to see that the DFT applied to the model
of Avendano et al. (2011) provides a good prediction of the vapour-liquid interfa-
cial tension, since the same model was confirmed to match the interfacial tension
predicted by Monte-Carlo simulations. The large relative deviations of the model
of Papaioannou et al. (2016) (AAD approximately 50 % for temperatures between
the triple point and 0.9 Tc) indicates that there is potentially a better SAFT-VR Mie
model for CO2 for describing this property. Furthermore, we can see from Table
33 that the model of Avendano et al. (2011) more accurately describes CP. This
could indicate that parametrizing to CP data is a useful route for thermodynamic
model more accurately describing the interfacial tension.
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Figure 99: A comparison between the predicted interfacial tensions of the proposed SAFT-
VR Mie MF DFT approach for carbon dioxide and experiments. The dotted
black curve is obtained with the model of Papaioannou et al. (2016). The contin-
uous black curve is obtained with the coarse-grained model of Avendano et al.
(2011). The blue diamonds are the correlated data from NIST (E.W. Lemmon
and Friend, 2018)

.

6.8 mixtures

In this section we will analyse the binary CO2 - H2O mixture, the parameters for
which were developed in chapter 5, the binary mixture of MEA and H2O, and the
reactive ternary mixture of CO2 - H2O and MEA. All of the parameters for these
systems can be found in chapter 5.

In Figure 100, we show the predicted interfacial tension for the binary mixture
of CO2 - H2O when T = 469.15 K at several different pressures. A good qualita-
tive and quantitative agreement is obtained over the pressure range considered.
In Figure 101 we show the density profiles obtained at P =10.1 MPa and T =
469.15 K. We see that the theory predicts accumulation of CO2 at the interface.
Similar density profiles have been observed in the literature (see for example the
results obtained by Lafitte et al. (2010) using density gradient theory).
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Figure 100: A comparison between the predicted interfacial tensions of the proposed DFT
approach for the binary system of carbon dioxide and water at 469.15 K using
the models developed in this thesis. The black line is the prediction of the
proposed DFT approach. The blue diamonds are the experimental data from
Pereira et al. (2016).
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Figure 101: Figure to show the predicted density profiles between the vapour and liquid
bulk phases for carbon dioxide and water at P = 10.1 MPa and T = 469.15 K.

In Figure 102, we show the predicted interfacial tension for the binary mixture of
MEA - H2O at various temperatures and compositions. We obtain a good qualita-
tive prediction. In Figure 101 we show the density profiles obtained at P =10.1 MPa
and T = 469.15 K.
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Figure 102: A comparison between the predicted interfacial tensions of the proposed
SAFT-VR Mie MF DFT approach for the binary system of MEA and water
at various temperatures and compositions. The continuous lines are the DFT
predictions. The scattered data are the experimental data of Vázquez et al.
(1997).

Finally, we will consider the ternary, reactive mixture of MEA, CO2 and H2O,
where we treat the reactions implicity via a physical association scheme (cf. chap-
ter 5). In Figure 103 we show the predicted intefacial tension for this mixture at
a typical absorber temperature (T= 313.15 K). The theory predicts the interfacial
tension of the binary mixture of MEA and H2O accurately (at zero CO2 loading),
but it predicts that the interfacial tension decreases with CO2 loading whereas the
experimental evidence suggests that the interfacial tension increases. This discrep-
ancy is likely due to our theory not explicitly treating the long-range electrostatic
interactions present in the mixture. Matin et al. (2017) modelled the interfacial
speciation of this mixture using the Pitzer equation to explicitly model the ionic
species, and found that the increased ionic strength of the surface and bulk re-
gions upon increasing CO2 loading leads to an increase in the solution interfacial
tension.

In chapter 3 we showed that using correlated interfacial tension data for the
binary MEA + H2O mixture of Vázquez et al. (1997) predicts column profiles fairly
similar to the profiles obtained using the interfacial tensions of the ternary mixture
of Jayarathna et al. (2013c) (Figure 27). Thus, explicit treatment of the electrostatic
interactions may not be necessary for the good prediction of the chemisorption
process.

Although our methodology does not predict the interfacial tension accurately
for the reactive mixture at high CO2 loadings, we can apply the SAFT-VR Mie
MF DFT approach to gain physical insight into the distribution of species at the
interface. In Figure 104 we show the density profile at T=450 K for the apparent
densities of the three components (which includes both the reacted and un-reacted
species). We see that all three components exhibit a maximum density at the inter-
face. MEA and CO2 accumulate at the interface.
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Figure 103: A comparison between the predicted interfacial tensions of the proposed
SAFT-VR Mie MF DFT approach for the ternary system of CO2, MEA and
H2O at 313.15 K and 80 wt% solvent in the liquid phase (mass of MEA/ (mass
of MEA + mass of H2O) using the models developed in this thesis. The black
line is the prediction of the proposed DFT approach. The blue diamonds are
the experimental data of Jayarathna et al. (2013a).

In Figure 105 we show the number density of the key reaction products: car-
bamate, bicarbonate and free (un-reacted) CO2. These number densities are calcu-
lated by multiplying the mole fractions of each species (cf. Equations 113, 114 and
115 in chapter 5) by the total number density. We predict a large accumulation of
carbamate and bicarbonate at the interface, while there is a small accumulation of
free CO2 close to the vapour side of the interface. In Figure 105 we also show the
predicted mole fractions of these species. These density profiles give us an insight
into what is happening at the vapour-liquid interface.
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Figure 104: Figure to show the predicted density profiles for the reactive MEA, CO2, H2O
system. The thermodynamic conditions are T = 450 K, 30 wt% solvent in the
liquid phase (mass of MEA/ (mass of MEA + mass of H2O)), and a CO2

loading of 0.3 in the liquid phase (moles of CO2/ moles of MEA). Here we
plot the apparent densities for the three components.
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Figure 105: Figure to show the predicted density profiles for the reactive reactive MEA,
CO2, H2O system. The thermodynamic conditions are T = 450 K, 30 wt% sol-
vent in the liquid phase (mass of MEA/ (mass of MEA + mass of H2O)), and
a CO2 loading of 0.3 in the liquid phase (moles of CO2/ moles of MEA). Here
we plot the density of the reacted species using the fractions of bonded associ-
ation sites that mediate the reactions.
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Figure 106: Figure to show the predicted concentration profiles for the reactive MEA, CO2,
H2O system. xi is the mole fraction of the species at each z coordinate. The
thermodynamic conditions are T = 450 K, 30 wt% solvent in the liquid phase
(mass of MEA/ (mass of MEA + mass of H2O)), and a CO2 loading of 0.3 in
the liquid phase (moles of CO2/ moles of MEA).

6.9 conclusion

In this chapter, a new DFT was developed that is compatible with the SAFT-VR
Mie EoS in order to predict the interfacial properties of fluids and fluid mixtures,
which requires no additional parameters other than those used in the bulk EoS.
The DFT was derived using suitable approximations so that the resulting system
of equations are numerically tractable and therefore suitable for the rapid evalu-
ation of SAFT-VR Mie models. An implementation was developed in gPROMS,
providing an efficient solution method for systems containing any number of com-
ponents, with minimal user input. A key approximation used in this work is that
most of the contributions to the free energy functional can be treated at the mean-
field level using a local density approximation, as suggested by Gloor et al. (2002).
Another is that correlations are neglected when approximating the free energy
functional due to segments interacting via a Mie potential. Although this may
seem a crude approximation, we have demonstrated that the theory provides an
excellent prediction of inhomogeneous properties. The resulting theory allows one
to directly use the SAFT-VR Mie EoS without any modifications.

We first tested the theory by comparison with molecular simulation data for
pure, two and three component Lennard-Jones molecules and the pure compo-
nent 8-6 Mie fluid. The DFT predictions of the density profiles are in excellent
agreement with the simulation results; for the systems analysed one can use the
theory to accurately predict the interfacial width, excess absorption at the inter-
face, and the interfacial tension. Next, the theory was tested against mixtures of
single-segment Lennard-Jones fluids exhibiting liquid-liquid equilibria. The theory
is in excellent agreement with molecular simulations in the literature, providing
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an accurate prediction of the simulated density profiles (exhibiting phase density
inversion) and interfacial tensions.

We then tested the theory against the experimental interfacial tension for real flu-
ids that do no exhibit association, for SAFT-VR Mie models that were parametrised
using bulk phase properties. Applying the DFT to the literature models for the
series of n-alkanes, the results show a good qualitative and quantitative predic-
tion of the interfacial tension, however we find that these are systematically over-
predicted with the largest deviations at low temperatures. We also tested two dif-
ferent literature models for CO2. The model of Papaioannou et al. (2016) system-
atically over-predicts the interfacial tension, whereas the model of Avendano et al.
(2011) is in excellent agreement with the experimental data.

Next, we tested the performance of the DFT when applied to associat-
ing molecules. The molecules tested were: water, ethanol, ethylamine and mo-
noethanolamine. In all cases there is a lower temperature limit (above the exper-
imental triple point) where the DFT fails due to emerging discontinuities in the
equilibrium density profile. Further work will need to be done to test if this issue
is due to the inaccuracies in the DFT approach (e.g., including density correlations
in the free energy functional), or if it is due to the application of the SAFT-VR
Mie outside its range of validity. Applying the DFT to the water model developed
in this thesis, the interfacial tension is predicted with remarkable accuracy. Simi-
larly, the model for monoethanolamine is in excellent quantitative agreement with
the theory. This may indicate that including CP in the model parametrization is a
useful route to obtaining the interfacial tension. Since the SAFT-VR Mie MF DFT
approach can accurately predict the interfacial tension (with no adjustable param-
eters), the inclusion of interfacial tension in the model parameterization can be a
useful way of obtaining more robust model parameters. The interfacial tensions
of ethylamine and ethanol are predicted moderately well, however, they show the
incorrect temperature dependence, indicating either issues with the underlying
assumptions in the DFT theory, or the model parametrisation.

We then analysed the predictive capacity of the SAFT-VR Mie MF DFT approach
when applied to associating mixtures. For the binary mixture of CO2 and H2O
there is an excellent agreement with the experimental data at high temperatures
(469.5 K) over a range of pressures (between 5 and 30 MPa). The theory predicts
accumulation of CO2 at the vapour-liquid interface. Next, we showed that one can
obtain an accurate prediction of the interfacial tension of the MEA-H2O mixture
over a wide range of thermodynamic conditions. We then analysed the reactive
ternary mixture consisting of CO2, H2O and MEA. The theory is accurate at low
CO2 loadings, but predicts the opposite trend in interfacial tension with respect to
CO2 loading due to not treating electostatic interactions explicity (we used a phys-
ical association scheme to treat the reactions). We then analysed the predictions
of the SAFT-VR Mie MF DFT for the density and composition profiles for this
reactive mixture. This gave a physical insight into the distribution of molecules
at the vapour-liquid interface, and we showed that there is a large accumulation
of the bicarbonate and carbamate species at the interface. This study showed that
one can apply the proposed DFT approach (and numerical method for solving the
equations) to evaluate interfacial properties of very complex mixtures.

The usefulness of the DFT methodology presented in this chapter is that,
through the mean-field and local density approximations, the DFT equations are
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simplified such that quick calculations may be made for the prediction of inhomo-
geneous properties. It is therefore possible to use this methodology for the rapid
evaluation of different SAFT-VR Mie models, thus rendering the potential parame-
ters more robust. Furthermore, it allows one to explore the density profiles within
the interfacial region, providing physical insight into the way molecules behave at
the interface.

6.10 appendix

6.10.1 Molecular dynamic simulation details

The simulations in this chapter were undertaken in GROMACS (Berendsen et al.,
1995) by Tom Lindeboom, Maziar Fayaz-Torshizi and Matthias Kiesel (Lindeboom
et al., 2019) in the Molecular Sytems Engineering group at Imperial College, unless
otherwise stated. The simulation options are detailed in Table 34 and the inputs
specific to the mixtures studied are detailed in Table 35.

Table 34: Simulation details for the mixtures described in this section.

Potential cut off/ nm 2

Time step/ ps 0.005

Long range vdW corrections PME

Thermostat Nosé-Hoover

Thermostat time constant/ ps 2.5

Table 35: Specific simulation inputs for the mixtures studied in this work. # refers to the
number of molecules of each type used in the simulation box.

Mixture #LJ1 #LJ3 #LJ5 Simulation time/ ns Box dimensions (xyz)/ nm

1 4200 1400 - 500 3.8 x 3.8 x 30

2 4200 - 840 500 3.8 x 3.8 x 30

3 4200 1400 840 500 3.8 x 3.8 x 30

6.10.2 Functional derivatives

In this section we describe how to take the functional derivatives with respect to
the various contributions to the Helmholtz free energy functional. Details regard-
ing this method can be found in section 3.2 in (Hansen and McDonald, 1990). From
127 we have:

ASAFT,lr[{ρc(r)}] =
1

2

n∑

j=1

n∑

k=1

mjmkα
vdW
jk

∫

dr′ρj(r
′)ρk(r

′), (152)
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The functional derivative with respect to ρi(r) can be determined as follows:

δASAFT,lr[{ρc(r)}]

δρi(r)
= µSAFT ,lr

i [{ρc(r)}]

=
1

2
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jk
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(
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ρk(r
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δρk(r

′)
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)
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mjmkα
vdW
jk
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dr′δ(r − r′)
(

δijρk(r
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mjmkα
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(
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vdW
jk .

(153)

Here, we have used:

δρi(r
′)

δρi(r)
= δ(r − r′), (154)

and

δρi(r
′)

δρj(r)
= δijδ(r − r′), (155)

where δij is the Kroneker delta function, which is defined by:

δij =






1 if i = j,

0 if i 6= j,
(156)

and δ is the Dirac delta distribution.
The functional derivative of the attractive free energy functional can be deter-

mined in a similar way. The functional is given by:

Aatt[{ρc(r)}] =
1

2

n∑

j=1

n∑

k=1

∫

dr′mjρj(r
′)

∫

dr′′mkρk(r
′′)φatt

jk (|r′ − r′′|). (157)
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The functional derivative with respect to ρi(r) can be determined as follows:
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The free energy functional obtained by the SAFT EoS is given by:

ASAFT[{ρc(r)}] = kBT

∫

dr′
n∑

j=1

ρj(r
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′)}). (159)

Taking the functional derivative with respect to ρi(r) gives:

δASAFT[{ρc(r)}]

δρi(r)
= kBT

∫

dr′
n∑

j=1

δijδ(r − r′)ASAFT({ρc(r
′)}) +

n∑

j=1

ρj(r
′)
δASAFT({ρc(r

′)})

δρi(r)

= kBT

∫

dr′δ(r − r′)ASAFT({ρc(r
′)}) +

n∑

j=1

ρj(r
′)
∂ASAFT({ρc(r

′)})

∂ρi(r′)

δρi(r
′)

δρi(r)

= kBT

∫

dr′δ(r − r′)ASAFT({ρc(r
′)}) +

n∑

j=1

ρj(r
′)
∂ASAFT({ρc(r

′)})

∂ρi(r′)
δ(r − r′)

= kBT



ASAFT({ρc(r)}) +

n∑

j=1

ρj(r)
∂ASAFT({ρc(r)})

∂ρi(r)





= kBT

[

ASAFT({ρc(r)}) + ρ(r)
∂ASAFT({ρc(r)})

∂ρi(r)

]

= µSAFT ({ρc(r)})

(160)

The last step in the derivation above uses a known thermodynamic identity.
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C O N C L U S I O N S A N D F U T U R E W O R K

7.1 conclusions

Carbon capture, utilisation and storage (CCUS) is widely considered to be a com-
prehensive strategy to reduce the impact of the carbon dioxide (CO2) that is pro-
duced through the use of fossil fuels across a range of human activities. Carbon-
capture is an important first step in the implementation of such an approach. De-
spite the significant effort devoted to the development of carbon capture tech-
niques, their implementation remains challenging due to the high energetic costs,
large environmental impacts, and rapid degradation of capture materials associ-
ated with some of the current processes. Modelling studies can be used as a tool
in addressing these costs, however, there are a significant number of variables to
consider in the search for a process that is feasible and economical: the process con-
figuration, operating conditions, and numerous decisions that need to be made on
a molecular level: for example reaction kinetics, toxicity of the solvent, and the ther-
modynamics of the solvent. In this thesis, we have focused on only one part of the
task: developing thermodynamic models that are predictive outside of the range
of experimental data. Unfortunately, the modelling of CO2-Amine-H2O is made
particularly complex due to the different types of intermolecular interactions in
present in solution. The species form hydrogen bonds and chemical reactions lead
to the formation of covalent bonds and ionic species. The more commonly adopted
cubic equations of state do not lend themselves to the treatment of these reaction
types, and therefore more sophisticated thermodynamic models are required.

The association theory developed by Wertheim (1984a,b, 1986a,b) and its in-
corporation into a sophisticated equation of state, SAFT, allows us to model the
thermodynamics of these systems predictively. SAFT equation of state have a
firm grounding in statistical mechanics, and the Hamiltonian is well-defined by
a single set of state-independent parameters. Chemical association is mediated us-
ing "sticky spot" models, where molecules can interact via an attractive potential
placed on the outside of a repulsive core. This directional interaction essentially
captures a quantum mechanical effect, corresponding to the change in internal
electronic configurations, rotational degrees of freedom, etc. upon association. By
defining the thermodynamic system in terms of its monomer densities and state-
independent association potentials, one can greatly reduce the reliance on exper-
imental data compared to explicit treatments; the reaction products are outputs
from the theory rather than inputs.

Button and Gubbins (1999) were the first to apply this physical approach to
treat the MEA-CO2-H2O systems, and Mac Dowell et al. (2009); Rodríguez et al.
(2012) realised that the underlying assumptions may be valid due to the strong
ion pairing between ionic species and the low dielectric medium of the mixture,
meaning that effectively the reaction products can be treated as neutral species.
Due to the fast kinetics of the bicarbonate and carbamate formation reactions, it is
also a fair assumption to assume thermodynamic equilibrium and that the process
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modelling of a typical absorption-desorption process may be assumed to be mass-
transfer limited. This lead to the work of Brand (2013), who developed a process
model based on the SAFT-VR equation of state. In this thesis the first step was to
revisit this work in chapter 2, due to complications in the energy balance, resulting
in a different process model.

In this chapter, we showed an absorber model for CO2 capture, developed with
the aim of being as predictive as possible, in order to support solvent design ac-
tivities prior to extensive experimental investigations. The thermodynamics were
provided by the SAFT-VR SW model of Rodríguez et al. (2012), incorporating
the chemical reactions implicitly, thus it assumed that reaction kinetics are not
rate-determining. The absorber equations therefore considered apparent concen-
trations of the molecular species rather than the true concentrations, allowing for
a vastly simplified exposition. However, this meant that mass transfer rates had to
be scaled accordingly to the aggregated species. Without making use of pilot-plant
data in model development, we found that the proposed model can generally be
used to obtain a best-case performance of the solvent in question. This modelling
approach is valuable for narrowing the solvent search space as solvents may be
quickly rejected by comparing their performance in such a test. With very limited
pilot-plant data we found that by adjusting a single parameter that corrects for the
diffusivity of CO2 in the liquid phase, the model can be used to predict with quan-
titative accuracy a variety of different operating conditions. Excellent predictions
were obtained for the liquid-phase temperature profiles and the liquid- and gas-
phase compositions along the column in most cases, with moderate deviations in
a few cases. The comparison of the absorption performance of different solvents
via this method may further aid in the narrowing of the solvent search space, and
then a more quantitative comparison could be carried out. Following accurate pre-
dictions of the column profiles, a careful sensitivity analysis was conducted. We
found that the liquid viscosity and diffusivity, and to a lesser extent the vapour-
liquid surface tension, are key properties for the prediction of the composition
profiles. The column profiles are also shown to be sensitive to the thermodynamic
properties that are major sources of heat generation or dissipation. The main ben-
efit of the proposed modelling framework in this chapter, is the ability to assess
new solvents for which there may be limited data available.

Upon assessment of the SAFT-VR thermodynamic model of Rodríguez et al.
(2012), it was found that the heat capacity of the mixture was under-predicted
by approximately 15%, and the heat of absorption was similarly under-predicted
by approximately 15% at the absorber conditions. Therefore, the good predictive
capacity may be due to a fortunate cancellation of errors and the models may
not be correctly capturing the physics of the thermodynamic system. Among the
many variations of the original SAFT, many of which treat the dispersion inter-
actions between monomeric segments with a square well potential, Lafitte et al.
(2006b, 2013b) showed that by incorporating a variable range Mie potential, one
can fine tune to properties that are sensitive to slopes of the molecular potential,
particularly the slope of the repulsive exponent. The increased level of accuracy
of this equation of state meant that one can obtain a simultaneous description
of the vapour-liquid equilibria and properties that are second derivatives of the
Helmholtz free energy. This improvement essentially set the president for the work
in this thesis, recognising that the important caloric properties that determine the
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temperatures in the absorption column: the heat of absorption and the heat ca-
pacity, are second derivative properties that may be better characterised with the
more recent equation of state. The following step was to develop new SAFT-VR
Mie (or SAFT-γ Mie homonuclear) models, for the MEA-CO2-H2O system.

The new theory and increased number of data types led to two issues that
needed to be addressed. Firstly, we realized that upon changes in the theory, an ex-
tensive amount of research time needs to be spent on determining new parameters.
This may inhibit more extensions to the theory, and the time spent on parametri-
sation needed to be addressed. Secondly, by arbitrarily lumping together several
properties into an objective function, one has little control over the distributions of
the deviations across the data types. Frequently a single thermodynamic model is
developed using single set of weightings for experimental properties. In chapter
3, we dealt specifically with these issues by formulating the parameter estimation
technique as a multi-objective optimization, where the deviation for each property
type is treated as an individual optimization, and the output of the optimization
is a set of different models that are "Pareto optimal" with respect to the numer-
ous property types. We argue that this approach has several advantages over the
single weighted sum optimization: it provides a rigorous comparison between dif-
ferent model types, models may be chosen more effectively by visualisation of
the Pareto surface, and there are numerous Pareto optimal models that may be
brought forwards for further investigation. With a set of Pareto optimal models,
one can simply pick a model from the Pareto front in future investigations, rather
than having to set up a new parameter estimation problem. This can significantly
reduce the time spent on model development. Another important point we note
is that via the multi-objective approach, one can be slightly more relaxed about
the uncertainty in the experimental data. In-keeping with our goal to reduce the
time spent to parameter estimation, we tailored a multi-objective algorithm for
the regression of equation of state parameters that was as efficient as possible. A
thorough review of the sandwiching algorithms was required because many of the
algorithms in the literature we not suited for a general dimensional multi-objective
optimization. The resulting algorithm is fully automated, requires little user input,
and is able to very efficiently sample the Pareto surface. Upon realising that the
only available SAFT-VR Mie model for water under-predicts the heat capacity by
approximately 15% in the liquid phase at the absorber conditions, and that the
majority of the solvent is liquid, we demonstrated the multi-objective optimiza-
tion approach by developing new water models where saturated liquid density
vapour pressure and heat capacity were used in the objective functions. The study
showed that heat capacity was an excellent property for reducing the degeneracy
between the dispersion and hydrogen bonding forces. By comparison of the Pareto
surfaces, it was found that by accounting for the slight non-sphericity of water, one
is able to obtain a significant improvement in the description of all three properties.
A suitable water model that showed good trade-offs between the three properties
was brought forward, and the parameters proven to be robust by assessing the
prediction of properties not considered in the parameter estimation including the
fractions of bonded association sites and surface tension.

Subsequently, we developed parameters for the ternary MEA+CO2+H2O sys-
tem. The approach followed closely that of Mac Dowell et al. (2009); Rodríguez
et al. (2012), with a few important exceptions. Caloric properties, (heat capacities,
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heats of mixing, heats of absorption) were included in the parameter estimation
or used for validation at all stages. In addition to the bicarbonate and carbamate
formation reactions, we also accounted for the solvation of CO2 in water. The key
parameters in this study were those that mediate the reactions. These were deter-
mined from vapour pressure data, and the parameter estimation was formulated
using the multi-objective optimization technique used previously. The different
objectives represented the deviations from the partial pressure data of Jou et al.
(1982). This led to a variety of Pareto-optimal models. After an in-depth analysis
of the heat of absorption data, some data was rejected due to it being fundamen-
tally inconsistent with the partial pressure data via the Gibbs-Helmholtz equation.
By modelling the experiment in detail, the new Mie models were shown to provide
excellent description of the heat of absorption (within the range of experimental
error), in addition to the heat capacity. A detailed assessment of the association
fractions showed that the speciation data was also in good accordance. We iden-
tified that the inclusion of cooperative bonding into the theory may improve the
physical description. The thermodynamic model led to an improved description
of the absorption column pilot plant data, transferring the same diffusivity param-
eter

In the final chapter, a new DFT model was developed using the SAFT-γ Mie
EoS in order to predict the interfacial surface tension of fluid phases without any
adjustable parameters (SAFT-VR Mie MF DFT). A robust algorithm was applied to
satisfy the system of Euler-Lagrange equations, in order to obtain the one dimen-
sional density profiles across the interface of two-phase systems. The methodology
follows from the work of Gloor et al. (2002); Gloor (2003); Gloor et al. (2007a), who
realised that one can treat some of the additive free energy contributions of SAFT
as "local contributions", and some long range, allowing for a significant reduction
in the complexity of the free energy functional. The methodology was extended
to incorporate soft core Mie potential, and by applying even the simplest form of
the theory (i.e., the mean field approximation to the radial distribution function),
one is able to obtain extremely accurate predictions for the interfacial tension for
a variety of fluids and fluid mixtures. Additionally, the interfacial density profiles
of the theory agree with molecular simulations. This was used as further evidence
for the robustness of the thermodynamic models developed in the previous sec-
tions. The theory showed slight over-predictions for other molecules, the alkane
series, ethanol and ethylamine. Further investigations would need to be carried
out to identify if this is due to the DFT theory of the molecular models used.

It is hoped that the tools developed in this thesis and its specific outcomes will
benefit the scientific community. The multi-objective optimization methodology
may be useful in any scenario where multiple conflicting objectives occur; the den-
sity functional theory may be used as a predictive tool for inhomogeneous prop-
erties; and the novel approaches to parameter estimation the process modelling
have provided predictive models which may be used in the context of reducing
anthropogenic carbon emissions.
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7.2 future work

This section summarises some possible avenues for future research following the
key findings presented in this thesis.

Though the physical approach has been shown to be predictive in principle
(both in this thesis and in previous work), it is important to also understand its
underlying assumptions and potential short-comings. To name a few: it does not
allow one to include reaction kinetics in the description; it assumes that the in-
termolecular interactions of the bonded species are the same as non-bonded and
charge effects are not accounted for. An equation of state that combines the predic-
tive capabilities of Wertheim’s theory and the level of detail captured in chemical
approaches is certainly an interesting avenue for future research.

In Chapter 3 we analysed a particular set of pilot plant data by Tontiwach-
wuthikul et al. (1989) that used aqueous MEA as the solvent. There are in fact nu-
merous pilot plant data for absorption via aqueous alkanolamines (to name just a
few, (Knudsen et al., 2007; Dugas et al., 2009; Notz et al., 2012; Mangalapally et al.,
2012). In future work it would useful to analyse wether the same modelling tech-
nique can be applied to other pilot plant runs. In particular, it would be useful to
see if the scaling parameter (τ), applied to reduce the diffusion coefficient of CO2,
is transferable to different pilot plant runs or even different solvent molecules. Fur-
thermore, it would be useful if one can correctly model the rate of mass transfer
without having to regress parameters to the pilot plant data. A potential idea for
the future development of the implicit approach is that one can make use of the
fractions of association sites bonded by incorporating true species concentrations
into the mass transfer equations, for example, CO2 will diffuse more slowly if it
is in its associated form. This treatment may allow for more predictive diffusion
models such as the Stokes-Einstein equation.

In Chapter 4 we developed a multi-objective optimization technique suitable for
regressiong equation-of-state parameters. In future work it would be interesting
to perform the same analysis with different properties (e.g., replacing CP with
a different second-derivative property) to see the effect on the models obtained.
This type of analysis may help guide experimental investigations. Furthermore, it
will be useful to apply the technique to higher dimensional problems and include
more property types in the regression.

In Chapter 6 we showed that a relatively simple density functional provides
accurate predictions of the interfacial tensions and density profiles for pure com-
ponents and mixtures when using the SAFT-VR Mie parameters. However, we saw
that there are issues for associating systems at low temperatures where the density
profile becomes discontinuous. Future work will need to rectify this issue. A pos-
sible solution may be to formulate of a more sophisticated non-local DFT. Another
would be to assess whether the radial distribution function of the SAFT reference
fluid is in fact suitable for highly associating systems.
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