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Abstract 

Land-use and land-cover change (LUCC) has been identified as a major driver of change 

to the hydrological cycle. However, it is still a scientific challenge to quantify these 

effects. Land surface models are increasingly being used for such hydrological 

assessment because of their state-of-the-art representation of physical processes and 

versatility. A physically-based model has the advantage to map the modeller’s 

knowledge about the hydrological impacts of land-use and land-cover change into 

physically meaningful parameters. This PhD thesis explores the use of a land surface 

model (Joint UK Land-Environment Simulator, JULES) in combination with high 

temporal resolution in-situ data on streamflow, precipitation, and several weather 

variables, collected by a grassroots hydrological monitoring initiative (called iMHEA) in 

the tropical Andes. I find that the in-situ data can improve the hydrological simulation 

substantially, mainly by reducing uncertainty inherent in using large-scale precipitation 

data. The commonly used soil parameters based on pedotransfer functions lead to an 

underestimation of the flow. Therefore, I modified the soil parameterisation with 

experimental data for a more accurate representation of subsurface flow generation. 

Subsequently, I assessed the potential impacts of watershed interventions (grazing, 

afforestation, cultivation) using the calibrated soil parameters. A reduction in water 

yield and water regulation ability under these land use scenarios was identified, which 

is in line with observed impacts and relevant for water resources managers. In a next 

step, I implemented an open source land use change model, the lulcc R package, to 

analyse the regional land cover changes in the Andean region, and to generate 

predictive land use maps that can be used to drive the JULES model. For this purpose, 

the JULES model has been implemented at a regional scale using multiple sources of 

global data. The use of the JULES model allows the effects of LUCC to be assessed using 

knowledge about physical processes. My results show a further 3.7% of deforestation 

occurring in the region, which changes the flow by ±17% consequently. 
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1 Introduction 

1.1 Human impact on the hydrological cycle 

1.1.1 Global hydrological cycle 

The hydrological cycle refers to the water movements between different natural 

area of the global land surface (Figure 1.1). The upper boundary condition of the 

terrestrial hydrological cycle is precipitation in the form of rainfall or snow. 

Precipitation may be intercepted by the vegetation cover, infiltrate into soil, or directly 

run over the land surface to generate streamflow. The infiltrated water is stored in the 

soil column or drains as subsurface flow. Water is returned to the atmosphere as a 

result of evaporation from soil and vegetation interception, or as transpiration by the 

vegetation. As the volume of precipitation in many regions exceeds the evaporation in 

the terrestrial hydrological cycle, the excess is return to the oceans as runoff (Chahine, 

1992). In this PhD research, I particularly focused on evaluating the terrestrial 

hydrological fluxes under changes of land use and land cover. 

 
Figure 1.1 The Global Hydrological Cycle 
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1.1.2 Global dynamics of land use change 

Land use change such as cultivation, livestock grazing, construction, timber 

extraction has considerably transformed global land cover (Turner, B. L., Meyer & Skole, 

1994). Land cover can be prone to degradation (e.g. overgrazed grassland), 

conservation (e.g. restoration) or be converted to another land cover type (e.g. 

clearance of forest). These land use and land cover changes (LUCC) have cumulatively 

affected the global environment, in terms of climate, atmospheric composition, 

biodiversity, soil condition, water and sediment flows (Turner, B. L., Meyer & Skole, 

1994). Of the different type of LUCC, deforestation and expansion of cropland are the 

major ones (Turner, B. L., Meyer & Skole, 1994) accelerated by the economic growth 

and globalization (Lambin & Meyfroidt, 2011).  

The highest increase in deforestation (increased at 1021 km2/year rate) was 

reported in Indonesia from 2000 (10000 km2/year) through 2012 (over 20000 

km2/year). Globally, over 4 million km2 of land cover has been changed between 2001 

and 2012, which consisted of 3.3% changes of the total land identified with the 

available data covering 84.1% of the Earth’s land surface (Borrelli et al., 2017). 

Deforestation is the biggest change, with 2.07 million km2 of forest been converted to 

semi-natural vegetation (savannah, scrublands, grassland, transition forest) and 0.094 

million km2 been cultivated in this period. In the same time, 0.61 million km2 of areas 

was afforested for propose such as carbon sequestration (Farley, Jobbágy & Jackson, 

2005), which led to a combined 1.65 million km2 of forest area decrease (Borrelli et al., 

2017; Hansen et al., 2013).  

Cultivation is the second largest driver of LUCC, which includes the transition from 

forest (0.094 million km2), semi-natural vegetation (0.67 million km2), and the contrary 

process (0.49 million km2 cropland to semi-natural vegetation, and 0.055 million km2 
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cropland to forest) which totally expend the cropland by 0.22 million km2. 

The expansion of cropland drives the deforestation in all continents within the 

subtropical regions, including South Africa, central Chile, southeastern Brazil, Uruguay, 

southern China, Australia, and New Zealand (Hansen et al., 2013). Forestry is the major 

driver of deforestation in temperate regions, including intensive forestry in the 

northwest United States, temperate Canada, Estonia and Latvia (Hansen et al., 2013). 

In boreal region, forestry is found in Sweden, Finland, eastern Canada, parts of 

European Russia, and central Siberia, Russia. The largest area of forest loss is found in 

Russia (Hansen et al., 2013). The tropical regions have experienced the major 

deforestation dynamics (32% of the total forest losses), which threatened the Brazilian 

rainforest, the Eurasian tropical rainforest, the African tropical moist deciduous forest, 

the South American dry tropical forest, the Eurasian tropical moist deciduous and the 

dry forests (Hansen et al., 2013).  
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1.1.3 Impacts on hydrological cycles 

Hydrological evidence worldwide suggests that land use and land cover changes 

have a significant impact to the hydrological cycle (Table 1.1). The vegetation types, 

soil properties, and landscape of river basins can be considerably altered by increasing 

human activities, which consequently led to hydrological changes in transpiration, 

infiltration, and interception. These changes are particularly important in headwater 

catchments (Buytaert et al., 2006). Thus, understanding these hydrological processes 

is essential and contributes to successful water resource management. 

Changes in vegetation types affect runoff directly by intercepting precipitation, 

transpiration extraction, and indirectly by affecting soil infiltration. Canopy 

interception is found to be low in grasslands, but is considerably higher for broadleaf 

trees (10-20% of precipitation) and conifers (20-40% of precipitation) (Le Maitre, Scott 

& Colvin, 1999). In Andean regions, 30% of forest interception was estimated, and 11% 

for grassland and cropland (Molina et al., 2012). The transpiration rate is determined 

by rooting characteristics, leaf area, stomatal response, plant surface albedo, and 

turbulence (Farley, Jobbágy & Jackson, 2005). A higher leaf area index and a deeper 

and better-developed root system of forest leads to higher transpiration than 

grassland (Buytaert, Iniguez & De Bievre, 2007). The evapotranspiration in forest 

catchment is typically higher than a grassland covered catchment (Zhang, Dawes & 

Walker, 2001). Therefore , a flow reduction is often found in afforested catchments 

(Buytaert, Iniguez & De Bievre, 2007; Farley, Jobbágy & Jackson, 2005; Ochoa-Tocachi 

et al., 2016), whereas a flow increment is found in deforested catchments (Guzha, 

Rufino et al., 2018b; Molina et al., 2012). The vegetation dynamics affect 

evapotranspiration not only because of the change in vegetation properties, but also 

tends to have an effect on the soil properties (Buytaert et al., 2006). Increasing soil 
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erosion has been observed in the transition from forests to cropland (Borrelli et al., 

2017). Intensive sheep grazing can lead to crust formation, increase in runoff, erosion, 

and reduction in hydraulic conductivity in the Ecuadorian páramo (Buytaert et al., 

2006). At the catchment scale a 40% loss of water regulation capacity has been found 

in intensively grazed and cultivated páramo catchments (Buytaert, 2004). Despite of 

these effects, soils have been drained and ploughed intensively for cultivation in 

Ecuador (Buytaert et al., 2005), which reduced the available water storage, hence 

reduced the evaporation. 

The hydrological response can also be affected by changes at the larger landscape 

topography scale. Buytaert et al. (2006) indicated that a decrease in surface roughness 

and local depressions by the removal of the vegetation and the organic litter layer 

considerably affects the delay of surface runoff. Molina et al. (2007) found that 

degraded land with lower vegetation cover and lower soil organic matter content 

could transform the area to a saturation excess dominated flow regime by reducing 

infiltration capacity. In these conditions surface properties be more important for a 

saturation excess flow rather than an infiltration excess flow (Hortonian flow) 

(Buytaert et al., 2006). A faster hydrological response was observed under a cultivated 

land despite its higher saturated hydraulic conductivity, infiltration capacity, and 

water storage capacity (Buytaert et al., 2005).  
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Table 1.1 Overview of reviewed studies on the hydrological impacts of LUCC 

LUCC Hydrological impact Location References 

Cultivation (potato) 
& grazing 

Reducing hydrological regulation capacity 
Reducing runoff by 15% 

Huagrahuma & Soroche, 
Ecuador 

(Buytaert, Iniguez & De Bievre, 2007) 

 Increasing water storage capacity by 5 to 30% 
Increasing hydraulic conductivity by 31% 

 (Buytaert et al., 2005) 

Cultivation Reducing hydrological regulation capacity 
Reducing runoff by 12~15% 

Paute, Ecuador 
Tiquipaya, Bolivia 

(Ochoa-Tocachi et al., 2016) 

Cultivation 
(soybean) 

Increasing infiltrability from 100 to 469mm/h 
Enhancing subsoil compaction: decreased 
saturated hydraulic conductivity at 30cm from 
122 to 80 mm/h 

Mato Grosso, Brazil (Scheffler et al., 2011) 

Grazing No significant impact on runoff Piura & Huaraz, Peru (Ochoa-Tocachi et al., 2016) 

Burning and grazing Increasing runoff 
Reducing saturated hydraulic conductivity 

Pichincha, Ecuador (Poulenard et al., 2001) 

Afforestation 
 

Reducing runoff by 30-40% (pine), 38-75% 
(Eucalypts) 

Global data (India, the UK, 
Germany, Australia, New 
Zealand, South Africa) 

(Farley, Jobbágy & Jackson, 2005) 

Afforestation (Pine) Reducing peak and base flows 
Reducing runoff by 64% 

Marianza, Ecuador (Buytaert, Iniguez & De Bievre, 2007) 

 Increasing hydrological regulation capacity 
Reducing runoff by 53~68% 

Paute, Ecuador 
Chachapoyas & 
Tambobamba, Peru 

(Ochoa-Tocachi et al., 2016) 

Deforestation Increasing baseflow by 25 mm/year Jadan, Ecuador (Molina et al., 2012) 
 Increasing surface runoff by 4–90% East Africa (Guzha, Rufino et al., 2018a) 

Deforestation Decreasing infiltrability from 1258 to 100mm/h 
Reducing saturated hydraulic conductivity 

Mato Grosso, Brazil (Scheffler et al., 2011) 
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Figure 1.2 a) The distribution of major biomes of the tropical Andes, b) Humid páramo in southern Ecuador, c) Humid puna in central Perú, d) 

Dry puna in central Bolivia. Source: Ochoa‐Tocachi et al. (2018) 
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1.2 Hydrology of the tropical Andes 

The Andean region has been a hotspot of hydrological change, which warrants 

studying because of its important role in regional water supply and vulnerability to 

human activities. However, these effects are hard to identify and quantify due to the 

high data requirement to investigate how such changes propagate through the 

complex and interacting hydrological processes of a catchment (Viviroli et al., 2007). 

In the tropical Andes, the major hydrological processes are defined by varying bio-

physical properties within a variety of ecosystems. The páramo, jalca, and puna are 

high altitude neotropical ecosystems distributed within different latitude (Figure 1.2). 

Approximately 35,000 km2 of areas in Northern Colombia and Venezuela to northern 

Perú are covered by a discontinuous belt of páramo, a collection of neotropical alpine 

ecosystems within the grassland biome, which is consisted of glacier formed valleys, a 

large variety of lakes, peat bogs, and wet grasslands with shrublands and low-statured 

forest patches (Buytaert et al., 2006). Jalca locates in the transition region from 

páramo to puna in the regions of northern to central Perú. Humid puna ranges from 

eastern Perú to the north-eastern Bolivian Cordillera, whereas dry puna could be 

found in its west side, from western Perú until the southwest of Bolivia and northern 

Argentina and Chile (Ochoa-Tocachi et al., 2016). Below those ecosystems, montane 

forests and cloud forests are characteristic forests that can be found at elevations 

above 1000 m in the Andes, classified by the presence of permanent could (Célleri et 

al., 2009). 

The Andes provide a wide range of ecosystem services, including biodiversity 

conservation, nutrient recycling, carbon storage and sequestration, high quality water 

provision and hydrological regulation, with its complexity of landscapes (Buytaert, 

Cuesta-Camacho & Tobón, 2011). Of those, the provision of water may be the most 
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important service of Andean ecosystems. The Andean páramo is featured by its large 

water surplus, extreme water regulating capacity, and sustained base flow (Buytaert 

et al., 2006), which covers the headwaters of the major largest rivers of the Amazon 

basin (Célleri et al., 2009). It supports the water needs for major downstream Andean 

populations, smallholder irrigated agriculture, industrial consumption, and 

hydroelectricity production (Buytaert et al., 2014). 

Despite its importance of water supply, these mountain areas are particularly 

vulnerable and prone to human impact. Drastic changes in the water cycle have been 

produced by human activities as a result of the rapid economic growth during the past 

half-century (Harden, 2006). Land-use and land-cover change (LUCC) led by 

deforestation, oil exploitation, mining, and hydropower production (Zulkafli et al., 

2013), and the significantly increasing demand for páramo water for the purposes of 

intensive cattle grazing, cultivation, and pine planting (Buytaert et al., 2006) highlights 

the importance of water resources management. Therefore, the hydrology of these 

water sources requires to be assessed systematically. 

Hydrological processes are usually poorly understood in these remote mountain 

regions since they are often determined by complex catchment characteristics (Viviroli 

et al., 2007). In addition, external drivers of change such as global warming (Bradley et 

al., 2006; Urrutia & Vuille, 2009) and population growth (Buytaert & De Bièvre, 2012), 

further complicate hydrological studies. In the Andean region, the water yield 

mechanism with small-scale, pristine and human-altered catchments related is 

explored by several research initiatives (Célleri et al., 2009). Buytaert et al. (2006) 

identified the effect of human activities on the páramo ecosystem by using a pairwise 

catchment approach. Breuer, Vache & Frede (2006) analysed the functioning of 

montane and cloud forests by applying a nested-approach.  

Although a series of studies have been carried out, the hydrology and water 
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balance of these mountain basins are still poorly understood (Célleri et al., 2009). In 

order to extrapolate findings to non-monitored or data scarce catchments, further 

study and data is required (Wohl et al., 2012). However, the scarcity of data in both 

the spatial and temporal domains poses significant challenge for hydrological study 

which is usually characterised by a heterogenous and complex environment. The 

difficulties on the implementation and maintenance of research-grade observation 

networks has hindered the data collection on remote mountain area. This hinders the 

development of hydrological models and poses difficulty on model calibration. The 

advent of alternative methods for scientific data collection, and citizen science in 

particular, provides new opportunities to alleviate the issue of data scarcity, and 

additionally can promote public participation in hydrological science (Buytaert et al., 

2014). As such, it can serve as a supplement to the traditional data collection, which is 

usually established within a professional environment (Buytaert et al., 2014; Herschy, 

2014).  
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1.3 Citizen science in hydrology 

Citizen science refers to the participation of general public in the research design, 

data collection and interpretation process together with scientists (Buytaert et al., 

2014; Paul et al., 2018). Recently, innovations in sensing technology, data processing 

and visualization (Buytaert et al., 2014) have increased the potential of citizen science. 

It can be implemented in many forms such as community-based data collection, 

participatory data analysis or crowd-sourcing via internet (Buytaert et al., 2014). Newly 

developed sensing technology enables hydrological data to be collected by a 

participatory approach (Buytaert et al., 2014; Paul et al., 2018). The open-source 

Arduino platform is one example of low-cost technology that can be used to collect a 

wide range of data including temperature, soil-moisture, distance, and air pressure by 

combining it with different sensors (Fisher & Gould, 2012). These innovations have 

made citizen science an increasingly popular application in scientific research 

(Silvertown, 2009). 

Buytaert et al. (2014) summarised the existing citizen science applications in the 

field of water resources management. The review indicated that most of the level of 

involvement of non-scientist is limited to data gathering and focused more on water 

quality monitoring (Buytaert et al., 2014). The major reason for this limited depth of 

engagement might be the geographical bias toward wealthy regions, instead of in 

areas where socio-ecological problems have more serious consequences (Buytaert et 

al., 2014). In developed regions, citizen science is regarded as supplement to tradition 

science approaches. In contrast, in developing regions it is more explored as a measure 

to reduce poverty and enhance the well-being of society (Gura, 2013). According to 

Buytaert et al. (2014), the variables commonly measured in the field of hydrological 

science, the current approaches of data collection, the challenges, and the 



23 
 

opportunities in the future are as follows: 

 

⚫ Precipitation: Widely measured in the context of citizen science as new 

sensor technology and more experiment methods are developed. For 

example, low-cost disdrometers are increasingly used for precipitation 

measurement as a cheap and robust device (Löffler-Mang & Joss, 2000). 

Traditional, low-cost rain gauges also allow precipitation to be observed in a 

non-professional environment. Continuous data can be recorded 

automatically by the electronic sensors such as tipping bucket rain gauge. 

Despite its advantages, a rain gauge can easily be blocked by vegetation or 

affected by local aerodynamic conditions in non-standard locations. 

Therefore, robust quality control protocols for installation, maintenance, and 

documentation of local environment should be implemented to ensure the 

data quality. 

⚫ Streamflow: Traditionally, streamflow is often measured by indirect methods, 

converting by measured flow velocity with cross section or river stage 

(Herschy, 2014). The construction of water level gauging stations is 

challenging due to the complexity of the river setting and the restriction of 

regulations. Nevertheless, streamflow is successfully measured by the iMHEA 

monitoring network in the Peruvian Andes (Célleri et al., 2009). This case 

study shows the possibility to monitoring streamflow in the context of citizen 

science. The potential of streamflow measurement could be extended by 

introducing new technology. For example, the application of camera-based 

water level measurement is an affordable and reliable approach for citizen 

science monitoring (Royem et al., 2012). Data coverage can be improved 

further by integrating remote sensing methods such as using high-resolution 
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digital elevation. Nevertheless, proper installation and maintenance of 

instruments should still be the most important consideration. 

⚫ Water quality: This is the most common hydrological property to be 

measured by citizen science. Newly developed technology make it possible 

to perform continuous sampling of variables such as temperature, dissolved 

oxygen, turbidity, conductivity, pressure, redox potential and pH value. 

However, water quality monitoring is often limited to the collection of water 

samples and the aforementioned basic hydrochemical parameters due to the 

high requirement of equipment and specialised knowledge (Overdevest, Orr 

& Stepenuck, 2004).  

 

In the study of hydrology, citizen science can be a way to address the challenge of 

setting up repeated experiments. Controlled hydrological experiments are difficult to 

set up due to the large variety of uncontrolled boundary conditions such as land use 

change, and climate conditions. Using citizen science, it becomes possible to set up a 

large network of hydrological data collection through inexpensive, robust, and lower 

maintenance sensing equipment, thus covering larger variety of boundary conditions 

and hydrological variability. It also reduces the irreversible effects of perturbations to 

the water cycle posted by the control of experiments. 

In addition to the supplement to data collection, citizen science can also be a 

method to pursue a more active role to engage the general public into the scientific 

process (Buytaert et al., 2014). It can be included in each stage of the scientific process. 

The Extreme Citizen Science framework classified the level of engagement into crowd-

sourcing, distributed intelligence, participatory science, and extreme citizen science 

(Haklay, 2013). As the participation increases, non-scientists have more chance to be 

involved in the decision-making processes. 
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Local stakeholders often have a specific interest in hydrological studies since in 

many regions of the world, local development can be constrained if sustainable water 

resources management is unsuccessful (Célleri et al., 2009). This is particularly the case 

in the tropical Andes, where the initiative for Hydrological Monitoring of Andean 

Ecosystems (iMHEA in Spanish), was established in 2009 (Célleri et al., 2009). This 

citizen science-based hydrological monitoring effort is led by a regional NGO 

(Consortium for Sustainable Development of the Andean Ecoregion, CONDESAN). The 

network aims to increase data availability in the remote uplands which are not 

monitored by the standard national hydrometeorological network operated by the 

national hydrometeorological offices (e.g. SENAMHI in Perú) (Buytaert et al., 2014). 

The iMHEA network is a clear case of bottom-up initiative in response to the local 

awareness about the requirement for better understanding on watershed 

interventions (Ochoa-Tocachi et al., 2016). In order to identify the hydrological impacts 

of land-use change, including the benefits of restoration activities, the network 

focuses on pairwise catchment monitoring. Streamflow and precipitation are 

measured on 28 catchments distributed from Ecuador, Perú, to Bolivia (Ochoa-Tocachi 

et al., 2018). Such setup is ideal to study the relation between a catchment’s land cover 

and its rainfall-runoff relation. 
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1.4 Hydrological models 

Models are simplified and imperfect representations of a real-world system, 

which can nevertheless be useful to predict system behaviour and understand various 

processes. One of their main applications is to make predictions about the potential 

impact of changes. For the terrestrial water cycle, hydrological models are an essential 

tool in hydrological science and catchment management, to evaluate the hydrological 

impacts of instance climate change or land-use and land-cover change (Buytaert & 

Beven, 2011). A large variety of approaches exists: top-down (metric, empirical, or 

data-based), bottom-up (mechanistic or physically-based), or conceptual modelling, as 

summarised as followed: 

 

⚫ Top-down model (data-based): The hydrological response is entirely 

derived from observations of model input and output variables, such as 

rainfall and flow at the catchment-scale. Therefore, prediction of the 

hydrological response under LUCC can be difficult due to the inability to 

map the hydrological impact of change onto the model parameters. 

⚫ Bottom-up model (physically-based): These models are developed with 

understanding of the physics of hydrology. The effects of physical change 

can be explicitly represented once the physical properties of the 

catchment under existing and changed conditions can be determined 

(McIntyre et al., 2014). The physical properties have necessarily been 

derived from small-scale observations, and therefore calibration to the 

scale of interest is generally required. This can lead to problems of 

observation uncertainty and model identifiability. 

⚫ Conceptual model: This type of model is the combination of the top-down 
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and bottom-up approaches. The model structure is defined based on prior 

knowledge, then the parameter values are calibrated. A conceptual model 

is prone to the limitations of both top-down (detection of signals in the 

observations) and bottom-up approaches (prior specification and non-

identifiability), makes it unsuitable for predicting proposes (McIntyre et 

al., 2014). 

 

Physically based models can be used to detect and attribute change in 

hydrological observations, thus identifying the potential factors that affect the 

hydrological responses. They allow detailed mapping of the potential hydrological 

impacts of LUCC onto physically meaningful parameters, which can subsequently be 

used for scenario analysis in a land management context (McIntyre et al., 2014). 

Furthermore, the potential hydrological impact of different LUCC scenarios can be 

predicted by changing the model structure or parameter values that represent in the 

catchment properties. Despite the advantages of physically based models, conceptual 

models are commonly used for tropical basins e.g. (Buytaert & Beven, 2011) due to 

the data requirements to represent detailed hydrological processes accurately 

(Buytaert, Célleri & Timbe, 2009; Célleri & Feyen, 2009). However, in tropical Andean 

catchments, the novel hydrological monitoring data (Ochoa-Tocachi et al., 2018) opens 

new opportunity for hydrological studies. These data also allow physically based 

models to be applied for hydrological simulation. 
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1.5 Hydrological analysis using a land 

surface model, JULES 

Land surface models were originally developed as lower boundary condition for 

Global Circulation Models (GCMs) and other atmospheric modelling (Best et al., 2011). 

Land surface models are increasingly used for hydrological assessment, given their 

advantage to map the modeller’s knowledge about the hydrological impacts of land-

use and land-cover change into physically meaningful parameters. One of such models, 

the Joint UK Land Environment Simulator (JULES) (Best et al., 2011; Clark, D. B. et al., 

2011) is used in this study. JULES is a community land surface model developed from 

the Met Office Surface Exchange Scheme (MOSES) by the UK Met Office (Cox et al., 

1999). It can be coupled to an atmospheric global circulation model, but is also used 

as a standalone land surface model which simulates the fluxes of carbon (Clark, D. B. 

et al., 2011) water, energy and momentum (Best et al., 2011) between the land surface 

and the atmosphere in continuous time series. It has been applied successfully for a 

range of applications such as weather forecasting, climate change prediction, earth 

system modelling, and has been increasingly used for hydrological assessment (Le Vine 

et al., 2016; Zulkafli et al., 2013). The JULES model is driven by a large dataset of 

hydrometeorological variables. It simulates the energy exchanges between various 

physical processes such as photosynthesis, carbon and nutrient cycles, irrigation, and 

crop growth. This makes it possible to investigate the interaction between hydrology 

and other land surface processes. (Zulkafli et al., 2013). 

JULES can be used to detect and attribute change in hydrological observations, 

thus identifying the potential factors affecting the change. This makes it possible to 

identify the potential hydrological impact under anthropogenic interventions (Centre 

for Ecology & Hydrology, 2018) by changing the model structure or parameter values 
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which represents in the catchment properties. 

JULES uses a tiled model to present the sub-grid heterogeneity consisting of 5 

vegetated and 4 non-vegetated surfaces (Figure 1.3). Distinct parameters are used to 

calculate the energy balance of surface temperatures, short-wave and long-wave 

radiative fluxes, sensible and latent heat fluxes, ground heat fluxes, canopy moisture 

contents, snow masses and snow melting rates for each surface type in a grid-box. A 

shared 4-layer soil column with thickness of 0.1, 0.25, 0.65, and 2.0 m from the top to 

the bottom is used for individual tile. 

In JULES, the precipitation is intercepted by the canopy storage, then 

partitioned into surface flow and infiltration into the soil based on the Hortonian 

infiltration excess mechanism. An instantaneous redistribution of soil moisture is 

assumed for the infiltration following the Darcy–Richards diffusion equation. The 

subsurface flow is generated by the gravity drainage at the lower boundaries. 

Saturation excess flow is calculated with a Probability Distributed Model (PDM) 

described by Moore (1985). The sub-grid distribution of soil moisture (𝜃) is described 

by a probability function (eq. 1.1), and the shape parameter B is modified to better 

represent the subsurface flow (Clark, Douglas B. & Gedney, 2008). The parameter is 

initially set as 1, whereas values of 0.1/0.5 can be used for a more subsurface flow 

dominated hydrology, and a value of 10 for a more flash hydrological response. 

f𝑠𝑎𝑡 = 1 − [1 −
𝜃

𝜃𝑠
]

𝐵
𝐵+1

(1.1) 
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Figure 1.3 Overview of JULES  
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This research focuses particularly on addressing the uncertainty in precipitation, 

the soil parameterisation, and the vegetation parameters. The iMHEA citizen science 

network has opened new opportunities for the model development. In which, the 

highly uncertainty in precipitation could be reduced by using these participatory data. 

The required soil parameters are commonly developed using pedotransfer functions 

(PTFs) (Marthews et al., 2014), which estimate unavailable soil parameters from soil 

properties such as texture and dry bulk density (Cosby et al., 1984; Tomasella & 

Hodnett, 1998). In the study region, water retention properties from the local 

experiment data (Buytaert et al., 2005; Crespo et al., 2011) are considerably higher 

than the values derived from PTFs (Marthews et al., 2014), which could be attributed 

to the inability of the PTFs to present the high water retention caused by the high 

organic matter content in these soils (Buytaert et al., 2006). Therefore, this research 

modifies the soil water retention properties using data from local in-situ experiments. 

The JULES model is used to assess the hydrology under LUCC impact. The analysis 

marks LUCC as the only contributor to affect the flow generation while other 

influencing factors such as meteorological influences have been kept constant. This 

approach reduces the uncertainty induced by changing catchment characteristics and 

meteorological drivers. 
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1.6 Thesis structure 

The aim of this PhD research is to explore the changing Andean hydrology under 

land-use and land cover changes using three analytical components: quantifying land 

use change; quantifying the impact of hydrology by means of a land surface model, 

and using citizen science data to calibrate and validate the hydrological model (Figure 

1.4). The research has focused on the impacts of grazing, cultivation, and afforestation 

in the upper-Andean region, and impacts of the forest dynamic in the Andes of 

Ecuador and Perú. First, the current state of the global LUCC and hydrological impacts, 

Andean hydrology, the challenges posed by land-use and land cover change, and the 

emergence of citizen science for data collection, and hydrological models are reviewed 

(Chapter 1). In a next step, the hydrological data obtained with citizen science are 

integrated into a land surface model, JULES, to simulate the hydrological fluxes under 

a variety of land use conditions (Chapter 2). The JULES model is then examined and 

calibrated at a headwater catchment scale (Chapter 3), and the potential impact of 

land use change on hydrology is further assessed by using this model approach 

(Chapter 4). The extent of regional land use and land cover changes are then assessed 

and predicted using a land use change model, lulcc R (Chapter 5). Lastly, the JULES 

model is implemented at a regional scale using multiple sources of global reanalysis 

data (Chapter 6) and the potential hydrological impacts posed by land use and land 

cover changes are then assessed. The main findings throughout the thesis and future 

works are then concluded. 
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Figure 1.4 Conceptual representation of the approach implemented in this thesis. 
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2 Hydrological evaluation of JULES 
for the tropical Andes using citizen-
science generated rainfall data 

2.1 Introduction 

Land surface models were originally developed as lower boundary condition for 

Global Circulation Models (GCMs) and other atmospheric modelling (Best et al., 2011). 

They simulate the fluxes of carbon (Clark, D. B. et al., 2011) water, energy and 

momentum (Best et al., 2011) between the land surface and the atmosphere, and have 

been applied successfully for a range of applications such as weather forecasting, 

climate change prediction, earth system modelling. They are also increasingly used for 

hydrological assessment (Le Vine et al., 2016; Zulkafli et al., 2013). In this chapter, the 

Joint-UK Land Environment Simulator (JULES) is applied for hydrological evaluation in 

the tropical Andes. It simulates the energy exchanges between various physical 

processes such as photosynthesis, carbon and nutrient cycles, irrigation, and crop 

growth. This makes it possible to investigate the interaction between hydrology and 

other land surface processes by mapping the modeller’s knowledge about the 

hydrological impacts of land-use and land-cover change into physically meaningful 

parameters. 

The JULES model is driven by a large dataset of hydrometeorological variables using 

a physically-based simulation approach. Globally available reanalysis datasets are 

commonly used for the setup, i.e. NCEP-DOE Reanalysis 2 (Kanamitsu et al., 2002), 

TRMM_3B42.7 (Huffman et al., 2007). However, the high uncertainty in the 

precipitation data makes it unreliable for small scale hydrological studies (Buytaert, 

Célleri & Timbe, 2009; Sheffield, Goteti & Wood, 2006). In this chapter, I evaluate the 

capacity of JULES to simulate streamflow using in-situ observational precipitation data 
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obtained from the participatory iMHEA network (Ochoa-Tocachi et al., 2018). The 

simulated results are evaluated with the streamflow observations obtained from the 

iMHEA network as well.   
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2.2 Methods 

2.2.1 JULES setup 

In this chapter, the setup of the land surface model, JULES vn5.3 (JULES, 2018) is 

explored using the analysis framework shown in Figure 2.1. The required time series 

of meteorological data, i.e. downward short-wave and long-wave radiation, 

temperature, specific humidity, wind speed, and surface pressure (as specific in Table 

2.2), are extracted from the globally available NCEP-DOE Reanalysis II dataset 

(Kanamitsu et al., 2002). The JULES model was driven by three sources of precipitation 

data. The simulated flow among using the iMHEA precipitation data/ NCEP-DOE 

Reanalysis II/ TRMM_3B42.7 were evaluated for their capacity to better represent the 

flow in small catchment. The land cover is parameterised with the local survey data 

(Ochoa-Tocachi et al., 2018). The soil data is parameterised by using a pedotransfer 

function approach. Required soil composition and chemical variables are obtained 

from the Harmonized World Soil Database version 1.21 (Fao/Iiasa/Isric/Isscas/Jrc, 

2012). The soil properties are assumed to be evenly distributed over the 4-layer soil 

column with thickness of 0.1, 0.25, 0.65, and 2.0 m from the top to the bottom. The 

simulated flows are routed with using a simple delayed function, then be further 

compared and evaluated with the iMHEA monitoring flow (Ochoa-Tocachi et al., 2018). 

 
Figure 2.1 Conceptual overview of the hydrological modelling approach using JULES 

driven by input data from citizen science and conventional sources.   
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2.2.2 Citizen science-based data collection 

Hydrological monitoring data is obtained from a regional citizen science-based 

initiative (Ochoa-Tocachi et al., 2018). The network is known as the Regional Initiative 

for Hydrological Monitoring of Andean Ecosystems (iMHEA) and is part of a grassroots 

initiative to characterize the hydrological response of different Andean ecosystems in 

Perú, Ecuador, and Bolivia. It collects data on streamflow, precipitation, and several 

weather variables at a high temporal resolution with using the cheap and robust 

technology (Buytaert et al., 2014). This monitoring is implemented in small and 

homogenous catchments, distributed from 0 and 17 °S, which covers three major high-

elevation biomes, páramo, puna, and jalca in the tropical Andes (Figure 2.2). The 22 

monitoring sites are described in Table 2.1. Most of the catchments are rural area 

covered by tussock and other grasses, wetlands, shrubs, and patches of native forest. 

These regions are not affected by urbanisation, water abstractions, and stream 

alterations.  

The iMHEA monitoring setup relies on monitoring a set of paired catchments with 

similar physical and climatic characteristics, and geographically close to each other 

(Brown et al., 2005), in order to characterise the impacts of a variety of human 

alterations on the watershed response (Célleri et al., 2009). For example, impacts of 

grazing and burning are assessed by comparing the hydrological response of 

catchment LLO_01 (Lloa, Ecuador, Figure 2.3), to that of its adjacent restored 

catchment LLO_02. The hydrological benefits of pasture restoration in HUA_01 are 

evaluated by comparison with the adjacent grazed catchment HUA_02 (Huaraz, Perú, 

Figure 2.3). As an example, Figure 2.4, shows the impacts of grazing compared to both 

páramo covered catchments (natural PIU_01, and grazed PIU_02), and forest covered 

puna catchments (natural PIU_04, and grazed PIU_07). 
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Figure 2.2 The location of the iMHEA sites within the major land cover types of the 

tropical Andes 
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Table 2.1 Description of the monitored catchments. BF: Broadleaf Forest, NF: Needleleaf Forest, CR: crop, C4: C4 grasses, SH: Shrub, BS: 
Bare soil. 

Code Ecosystem Land Use Altitude [m] Area [km2] Soil Land cover 

PIU_01 Páramo Natural 3112-3900 6.60 Andosol, Histosol 0.15 BF, 0.85 C4 
PIU_02 Páramo Grazing 3245-3610 0.95 Andosol, Histosol 0.15 BS, 0.85 C4 
PIU_04 Forest Natural 2682-3408 2.32 Andosol, Cambisol 0.80 BF, 0.20 C4 
PIU_07 Dry puna Grazing, cultivation 3110-3660 7.80 Andosol 0.35 CR, 0.45 C4, 0.2 SH 
CHA_02 Jalca Natural 3000-3450 1.63 Andosol, Inceptisol 0.10 BF, 0.90 C4 
CHA_01 Jalca Afforestation 2490-3200 0.95 Andosol, Inceptisol 0.80 NF, 0.20 C4 
HUA_01 Humid puna Natural 4280-4840 4.22 Andosol, Histosol 0.75 C4, 0.25 BS 
HUA_02 Humid puna Grazing 4235-4725 2.38 Andosol, Histosol 0.70 C4, 0.30 BS 
LLO_02 Páramo Grazing, restoration 4088-4680 2.21 Andosol, Histosol 0.10 BF, 0.90 C4 
LLO_01 Páramo Grazing, burning 3825-4700 1.79 Andosol 0.10 SH, 0.90 C4 
JTU_03 Páramo Natural 4144-4500 2.25 Andosol, Histosol 0.80 C4, 0.20 SH 
JTU_02 Páramo Grazing 4085-4322 2.42 Andosol 1.00 C4 
PAU_01 Páramo Natural 3665-4100 2.63 Andosol 1.00 C4 
PAU_04 Páramo Cultivation, grazing 3560-3721 1.55 Andosol 0.70 C4; 0.30 CR 
PAU_02 Páramo Natural, grazing 2970-3810 1.00 Andosol, Histosol 0.80 C4; 0.20 BF 
PAU_03 Páramo Afforestation 3245-3680 0.59 Andosol, Histosol 0.10 C4; 0.90 NF 
HMT_01 Dry puna Grazing 4025-4542 2.09 Leptosol, Inceptisol 0.75 C4; 0.10 SH, 0.15 BS 
HMT_02 Dry puna Grazing 3988-4532 1.67 Leptosol, Inceptisol 0.85 C4, 0.05 SH; 0.10 BS 
TAM_02 Humid puna Natural 3650-4360 1.67 Leptosol, Inceptisol 0.60 C4; 0.40 BF 
TAM_01 Humid puna Afforestation, grazing 3835-4026 0.82 Leptosol, Inceptisol 0.80 C4; 0.20 NF 
TIQ_02 Humid puna Natural 4182-4489 1.73 Leptosol, Inceptisol 0.95 C4; 0.05 BS 
TIQ_01 Humid puna Cultivation, grazing 4140-4353 0.69 Leptosol, Inceptisol 0.35 C4; 0.35 CR; 0.30 BS 
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Figure 2.3 Example of paired catchments monitored at the iMHEA site LLO (Lloa, Ecuador) and HUA (Huaraz, Perú) 
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Figure 2.4 Example of paired catchments monitored at the iMHEA site PIU (Piura, Perú) 
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Precipitation data (referred as “iMHEA precipitation”) has been recorded in each 

catchment with a minimum of two tipping-bucket rain gauges at an installed height of 

1.50m (resolutions of 0.254, 0.2 or 0.1mm) distributed over the catchment areas 

(Ochoa-Tocachi et al., 2016). Figure 2.5 shows the precipitation measurement site 

installed in JTU, Ecuador.  

 

 

Figure 2.5 Precipitation observation in Antisana (JTU, Ecuador)  
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Figure 2.6 shows a streamflow monitoring site at the outlet of catchment in LLO, 

Ecuador, using a compound sharp-crested weir (a V-shaped section for low flows and 

a triangular–rectangular section for high flows) equipped with a pair of pressure 

transducers. The water level has been recorded at a regular interval of 5/15 min by 

iMHEA (Ochoa-Tocachi et al., 2018).  

 

 

Figure 2.6 Streamflow observation in Pichincha (LLO, Ecuador) 

Table 2.2 Meteorological forcing data required to drive the JULES model 

Data Units 

Downward component of shortwave radiation at the surface  W m−2 

Downward component of longwave radiation at the surface  W m−2 

Precipitation kgm−2 s−1 

Wind speed m s−1 

Atmospheric temperature  K 

Atmospheric specific humidity  kg kg−1 

Surface pressure  Pa 

Source: (Best et al., 2011)  



44 
 

2.2.3 Non-iMHEA forcing data 

The required time series of meteorological data that are not available from the 

iMHEA network, i.e. downward short-wave and long-wave radiation, temperature, 

specific humidity, wind speed, and surface pressure (as specific in Table 2.2), are 

extracted from the globally available NCEP-DOE Reanalysis II data set (Kanamitsu et al., 

2002). The dataset is available on a T62 Gaussian grid with 192 x 94 points 

(approximately 2° scales) and provides 6-hourly temporal resolution form 1979/01 up 

to the present. This large-scale data is interpolated in space to a point scale with the 

nearest-neighbour interpolation method. An elevation adjustment was made for 

Temperature (T, °K) and pressure (P, Pa), from the record level (T0, P0) to the site level 

(TZ, PZ) using the environmental lapse rate (𝛾) and the gas constant of air (R). 𝛾 is 

between 0.5 and 0.7 °C per 100 meters (Buytaert et al., 2006) (eq. 2.1 and 2.2): 

𝑇𝑧 = 𝑇0 + 𝛾𝑧; 𝛾 = −0.0065
°𝐾

𝑚
(2.1) 

𝑃𝑧 = 𝑃0 (
𝑇𝑧
𝑇0
)
(
𝑔
𝛾𝑅
)

; 𝑅 =
287𝐽

𝑘𝑔 ∗ °K
 (2.2) 

 Specific humidity (q, kg/kg) is elevation adjusted assuming that the relative 

humidity (RH) remains constant with altitude (Cosgrove et al., 2003). By calculating 

saturated vapor pressure (esat, hPa) using Wexler’s saturated water vapor pressure 

equation, saturated specific humidity (qsat) can be obtained using the definition of 

specific humidity (eq. 2.3 – 2.6): 

RH = 100 (
𝑞0
𝑞𝑠𝑎𝑡,0

) (2.3) 

q𝑧 = (
𝑅𝐻 ∗ 𝑞𝑠𝑎𝑡,𝑧

100
) (2.4) 

q𝑠𝑎𝑡,𝑥 =
0.622e𝑠𝑎𝑡,𝑥

𝑝𝑥 − 0.378e𝑠𝑎𝑡,𝑥
; 𝑥 = 𝑧, 0 (2.5) 
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e𝑠𝑎𝑡,𝑥 = 6.112𝑒𝑥𝑝 [
17.67(𝑇𝑥 − 273.15)

(𝑇0 − 273.15) + 243.5
] ; 𝑥 = 𝑧, 0 (2.6) 

Using the Stefan-Boltzmann law, downward longwave radiation (L, W/m2) is also 

elevation adjusted (eq. 2.7 – 2.8), ε is the emissivity of the grey body, which depends 

on the wavelength, σ is the Stefan–Boltzmann constant:  

L𝑧 =
ε𝑧σ

ε0σ
(
𝑇𝑧
𝑇0
)
4

𝐿0 (2.7) 

ε𝑥 = 1.08 {1 − 𝑒𝑥𝑝 [−𝑒𝑥
(
𝑇𝑥
2016

)
]} ; e𝑥 =

p𝑥q𝑥
0.622⁄ ; x = z, 0 (2.8) 

 Lastly, the wind speed (u) is elevation adjusted using a power law wind profile, 

assuming 𝛼 = 0.143 under neutral stability conditions: (eq. 2.9): 

𝑢 = 𝑢0 (
𝑧

𝑧0
)
𝛼

(2.9) 

Shortwave radiation data is used directly from the NCEP Reanalysis II dataset 

without adjustment. The 6-hourly was disaggregated to hourly data with linear 

interpolation.  

In addition to the iMHEA precipitation, which was used as the major data 

source, two alternative large-scale precipitation datasets are used for comparison: the 

NCEP-DOE Reanalysis II data and the remote sensing product TRMM_3B42.7 (Huffman 

et al., 2007) developed by the Global Precipitation Measurement (GPM) mission (Hou 

et al., 2014). TRMM_3B42.7 provides a higher spatial resolution (0.5° scales) and 

temporal resolution (3-hourly) than the NCEP-DOE Reanalysis II data, which has shown 

good performance over the Peruvian Andes–Amazon (Zulkafli et al., 2013) .  
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2.2.4 The upper-Andean soils 

The study region is the upper Andean region of Perú and Ecuador, which mainly 

covered by the Andean páramo (Buytaert et al., 2006). Volcanic soils are the dominant 

soil types, in particular soils that are classified as Andosol, Leptosol, Histosol, Cambisol 

and Regosols (Fao/Iiasa/Isric/Isscas/Jrc, 2012). Andosols are particularly common, 

which are a dark, humic and acid soils with an open pore structure, in which organic 

matter and volcanic ash accumulate (Crespo et al., 2011). This type of soil covers the 

páramo ecosystem in large parts of the tropical Andean mountain belt between 3500 

and 4500 m altitude (Buytaert et al., 2005). It has extremely high water retention 

capacity (0.64-0.93 cm3/cm3 at saturation) (Buytaert, 2004) with its large organic 

carbon content (13-36%), and low bulk density (0.2-0.8 g/cm3). The soil is prone to 

irreversible changes and degradation (Dorel et al., 2000), which leads to volume 

change, lowering of water retention and increases in hydraulic conductivity (Buytaert 

et al., 2005). Leptosols are characterised by a shallow horizon with lower organic 

matter content (6-20%), and bulk density between the range of 0.5-1.0 g/cm3. 

Histosols in the páramo belt contain a high fraction of non-decomposed plant fibers 

(Beck et al., 2008). It has very high organic matter (21-66%), low bulk density (0.1-0.3 

g/cm3), and high water retention between saturation and field capacity (Crespo et al., 

2011). Cambisols have lower organic matter content, which leads to a lower water 

retention capacity than Andosols and Histosols. The soil properties of Regosol are 

similar to the properties of the Cambisol. 
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2.2.5 Soil parameterisation 

Darcy’s law describes the water flux (W) through saturated soil as the product of 

a gradient in hydraulic potential (𝜑) and the soil hydraulic conductivity (k) (eq. 2.10): 

W = k(
𝜕𝜑

𝜕𝑧
+ 1) (2.10) 

The relations between soil water content ( 𝜃 ), suction ( 𝜑 ) and hydraulic 

conductivity (k) are described by Brooks and Corey (1964), or a more robust formula 

van Genuchten (1980) using the soil water retention curve (eq. 2.11):  

𝜃(𝜑) = 𝜃𝑟 +
𝜃𝑠 − 𝜃𝑟

[1 + (𝛼𝜑)𝑛]𝑚
 ; 𝑚 = 1 −

1

𝑛
(2.11) 

 where 𝜃𝑟 is the residual water content, 𝜃𝑠  is the saturated water content, the 

parameter n measures the uniformity of pore sizes in the soil, and α indicates the air 

entry suction described by Van Genuchten (1980). 

In JULES, the critical point (𝜃𝑐𝑟𝑖𝑡;  field capacity) is defined by a matrix water 

potential of −33 kPa (𝜑 = −3.366m) (Cox et al., 1999), which enables vegetation to 

maintain an un-water stressed transpiration at values below field capacity with a soil 

moisture availability factor (𝛽) (eq. 2.12). 𝜃𝑤𝑖𝑙𝑡 is the wilting point defined by matrix 

water potential = −1500 kPa (𝜑 = −153 m). The vegetation cannot extract water if the 

water retention drops below this point. 

𝛽 =  

{
 

 
1                 𝑓𝑜𝑟 𝜃 ≥ 𝜃𝑐𝑟𝑖𝑡 

𝜃 − 𝜃𝑤𝑖𝑙𝑡
𝜃𝑐𝑟𝑖𝑡 − 𝜃𝑤𝑖𝑙𝑡

         𝑓𝑜𝑟 𝜃𝑤𝑖𝑙𝑡 < 𝜃 < 𝜃𝑐𝑟𝑖𝑡 

0                𝑓𝑜𝑟 𝜃 ≤ 𝜃𝑤𝑖𝑙𝑡

(2.12) 

The soil parameters (Table 2.3) required by JULES are not been commonly 

available in the soil dataset (Best et al., 2011). Therefore, these parameters are 

developed using pedotransfer functions (PTFs) from Cosby et al. (1984), Hodnett & 

Tomasella (2002), with thermal properties (hcap and hcon) described by Dharssi et al. 

(2009) as summarised in Table 2.4. The PTFs of Hodnett & Tomasella (2002) are more 
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robust and recommend for general use in tropical South America (Marthews et al., 

2014) than the texture-based Cosby et al. (1984) PTFs, and Tomasella & Hodnett (1998) 

PTFs. The required soil composition and chemical variables are obtained from the 

Harmonized World Soil Database version 1.21 (Fao/Iiasa/Isric/Isscas/Jrc, 2012). The 

soil hydraulic parameter maps derived from the PTFs are shown in resp. Figure 2.7 (Van 

Genuchten parameters and hydraulic conductivity) and Figure 2.8 (water retention 

content). 

 

 

 

Table 2.3 Soil hydraulic parameters in JULES 

symbol Description Units 

b Exponent in soil hydraulic characteristics  

φ Saturated soil water pressure m 

Ksat Hydraulic conductivity at saturation kg m-2 s-1 

θsat Soil moisture content at saturation m3 m-3 

θcrit Soil moisture content at the critical point m3 m-3 

θwilt Soil moisture content at the wilting point m3 m-3 

hcap Dry heat capacity  J m-3 K-1 

hcon Dry thermal conductivity  W m-1 K-1 

α  Bare soil albedo  

Source: (Best et al., 2011) 
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Table 2.4 Soil parameterization using pedotransfer functions 

Soil data Pedotransfer function Source 

b=1/(n-1) n = exp((62.986 − 0.833𝐶𝐿 − 0.529𝑆𝑂𝐶 + 0.593𝑝𝐻 + 0.007𝐶𝐿2 − 0.014𝑆𝐴 ∗ 𝑆𝐼)/100)  Hodnett & Tomasella 

(2002) 1/α (unit: m-1) 
α = 1000 ∗ 9.80665/ (1000/𝑒𝑥𝑝((−2.294 − 3.526𝑆𝐼 + 2.440𝑆𝑂𝐶 − 0.076𝐶𝐸𝐶 −

11.331𝑝𝐻 + 0.019𝑆𝐼2)/100))  

Saturation point 

(pF=0) 

θ𝑠𝑎𝑡 = 0.01(81.799 + 0.099𝐶𝐿 − 31.42𝐷𝐵𝐷 + 0.018𝐶𝐸𝐶 + 0.451𝑝𝐻 − 0.0005𝑆𝐴 ∗ 𝐶𝐿) 

Wilting point 

(pF=4.2) 

θ𝑤𝑖𝑙𝑡 = 0.01(22.733 − 0.164𝑆𝐴 + 0.235𝐶𝐸𝐶 − 0.831𝑝𝐻 + 0.0018𝐶𝐿2 + 0.0026𝑆𝐴 ∗ 𝐶𝐿) 

Critical point 

(pF=2.5) 
θ𝑐𝑟𝑖𝑡 = θ𝑤𝑖𝑙𝑡 +

𝜃𝑠𝑎𝑡 − 𝜃𝑤𝑖𝑙𝑡
[1 + (𝛼|𝜑|)𝑛]1−1/𝑛

 
Van Genuchten (1980) 

Saturated hydraulic 

conductivity 
K𝑠𝑎𝑡 =

25.4

3600
∗ 10(−0.60−0.0064𝐶𝐿+0.0126𝑆𝐴) 

Cosby et al. (1984) 

Saturated heat 
conductivity 

hcon = λ𝑎𝑖𝑟
θsat(λ𝑐

𝐹𝑐λ𝑠
𝐹𝑠λ𝑠𝑖

𝐹𝑠𝑖)
1−θsat

 

λs = λsi = 1.57025W 𝑚𝐾⁄ ; λc = 1.16025W 𝑚𝐾⁄ ; λair = 0.025W 𝑚𝐾⁄  

Dharssi et al. (2009) 

heat capacity hcap = (1 − θsat)(FcCc + FsCs + FsiCsi) 

 Cs = Csi = 2.133 ∗ 106
J
𝑚3𝐾
⁄ ; Cc = 2.373 ∗ 106

J
𝑚3𝐾
⁄  

CL: clay fraction, SA: sand fraction, SI: silt fraction, DBD: dry bulk density (g/cm3), SOC: soil organic carbon (% weight), CEC: carbon exchange 

capacity (cmol/kg), pH: hydrogen ion activity 
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Figure 2.7 Soil hydraulic parameter maps for Perú and Ecuador derived from the PTFs 
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Figure 2.8 Soil hydraulic parameter maps for Perú and Ecuador derived from the PTFs (Soil water retention points) 
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2.2.6 Routing in catchment 

The surface (Qsurface) and sub-surface (Qsubsurface) runoff fluxes simulated by the 

JULES model require an external river routing model for a reasonable comparison to 

observed river flows (Best et al., 2011). In this study, I applied a simple delayed 

function to account for the routing delay in the river discharge (Qsim) in each timestep 

(t) (eq. 2.13). 

Q𝑠𝑖𝑚,𝑡 =∑(𝑄𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑡−𝑡𝑖1 + 𝑄𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑡−𝑡𝑖2)

𝑛

𝑖=1

; 𝑡𝑖1 =
𝑑𝑖

𝐶𝑠𝑢𝑟𝑓𝑎𝑐𝑒
; 𝑡𝑖2 =

𝑑𝑖
𝐶𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒

(2.13) 

The distribution of the distance (d) of each point (i) in the catchment to the outlet 

(Figure 2.9) was calculated using GIS software and D8 flow routine (Figure 2.10).  

The lag time was obtained empirically by analysing the time interval between the 

maximum rainfall and the peak discharge of the observed hydrograph. A longer lag 

time up to 11.2 hours is found in PIU1 (Figure 2.11), whereas a shorter lag time 1.8 

hours is found in PIU4 (Figure 2.12). The flood wave velocity (celerity, C) is then 

calculated by dividing the mean distance by the travel time (eq. 2.14), which ranges 

between 0.421 m/s to 0.040 m/s as summarised in Table 2.5. 

C =
𝑀𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒
 (2.14) 

Table 2.5 Wave velocity for the delay function 

 Mean distance to  Time to peak Wave velocity 

 outlet (m) (hr) (m/s) (hr/m) 

PIU1 1627.0 11.2 0.040 145 
PIU2 545.7 3.4 0.045 161 
PIU4 1511.3 1.8 0.233 840 
PIU7 2017.5 1.3 0.421 1517 
JTU2 1275.2 5.3 0.067 240 
JTU3 1659.0 4.6 0.101 363 
HUA1 1712.1 2.9 0.165 594 
HUA2 851.5 1.3 0.189 681 
CHA1 1135.9 2.1 0.148 531 
CHA2 850.1 3.0 0.079 283 
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Figure 2.9 Maps of the distance to the outlet of three example iMHEA catchments, PIU1 (left), PIU2 (mid), and PIU4 (right). 

 
Figure 2.10 Histogram of the distance to the outlet of three example iMHEA catchments, PIU1 (left), PIU2 (mid), and PIU4 (right).
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Figure 2.11 Time to peak identified by using hydrograph (mean value of tlag is 11.2 hr in PIU_01, label shown as the top-right figure) 
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Figure 2.12 Time to peak identified by using hydrograph (mean value of tlag is 1.8 hr in PIU_04, label shown as the top-right figure)  
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2.2.7 Model evaluation 

The hydrological response was simulated for 5 catchments (PIU_01, CHA_02, 

HUA_01, LLO_02, JTU_03). The selected catchments are natural catchments with no 

human intervention, distributed in the Upper Andean region. For each catchment, the 

JULES model was driven with the iMHEA precipitation dataset, and two alternative 

precipitation datasets from NCEP-DOE Reanalysis II, and TRMM_3B42.7, within the 

period of available iMHEA precipitation data (Table 2.6). The variability in three 

precipitation dataset was summarised using the annual ratio of days with zero 

precipitation (DAYP0) and daily rainfall variability (PVAR), which is the standard 

deviation (𝜎𝑃) divided by its mean value (Pmean) (eq. 2.15). 

Pvar:
𝜎𝑃

𝑃𝑚𝑒𝑎𝑛
(2.15) 

The model performance was assessed by summarizing the simulated time series 

into hydrological indices, including rainfall-runoff ratio (RR), Baseflow index (BFI), daily 

flow variation (Qvar), skewness in daily flows (Qskew), the slope of the flow duration 

curve (R2FDC), and Nash–Sutcliffe model efficiency (NSE).  

RR marks the ratio between the total flow (Q) and the total rainfall volume (P) 

over the monitored period, which gives direct indication of the water yield (eq. 2.16).  

RR =
𝑄

𝑃
 (2.16) 

 

 

Table 2.6 Modelling period for the 5 catchments for rainfall data evaluation 

Site Modelling started Modelled concluded Duration (Years) 

PIU_01 2013/7/6 2016/5/10 2.81 

CHA_02 2012/1/1 2013/12/31 1.97 

HUA_01 2011/2/27 2014/6/19 3.27 

LLO_02 2013/1/11 2015/12/31 2.93 

JTU_03 2013/11/21 2016/2/10 2.19 
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The baseflow sustaining the ecosystem between rainfall events was assessed 

using BFI as short-term indicator, and R2FDC as long-term indicator. BFI defines the 

ratio of baseflow (Qbase) to the total flow (eq. 2.17). For dry weather runoff assessment, 

the baseflow was separated from the total flow with using the two-parameter 

algorithm from Chapman (1999) with a filter parameter of 0.085 (Ochoa-Tocachi, 

Buytaert & De Bièvre, 2016). 

BFI =
𝑄𝑏𝑎𝑠𝑒
𝑄

(2.17) 

R2FDC is the slope in the middle third (between Q66 and Q33) of the flow duration 

curve in logarithmic scale (eq. 2.18), which was used to assess the long-term 

hydrological regulation capacity (Olden & Poff, 2003). Flatter slope (value close to 0) 

indicates higher water hydrological regulation capacity with lower change in flow 

between 33% and 66% exceedance flow: 

R2FDC =  
log10 𝑄66 − log10 𝑄33

0.66 − 0.33
(2.18) 

The flow stability was assessed by using Qvar, which is the standard deviation (𝜎𝑄) 

divided by its mean value (Qmean) (eq. 2.19). 

Qvar:
𝜎𝑄

𝑄𝑚𝑒𝑎𝑛
(2.19) 

Qskew flows provides an estimate of the third moment (eq. 2.10). 

Q𝑠𝑘𝑒𝑤 =
𝐸(𝑥 − 𝜇)3

𝜎3
(2.20) 

The overall model performance was evaluated using the Nash Sutcliffe Efficiency (NSE): 

NSE =
∑ (𝑄𝑚𝑜𝑑,𝑡 − 𝑄𝑜𝑏𝑠,𝑡)
𝑁
𝑡

∑ (𝑄𝑜𝑏𝑠,𝑡 − 𝑄𝑜𝑏𝑠,𝑚𝑒𝑎𝑛)
𝑁
𝑡

(2.21) 

where Qobs,mean is the mean of observed flow, Qobs,t and Qmod,t is the observed flow 

and modelled flow at timestep t (eq. 2.21). NSE can range from −∞ to 1, as 1 marks a 

perfect match between the modelling flow and the observation, an efficiency of 0 

denote that model predictions are as accurate as using the mean of the observed data 

(Nash & Sutcliffe, 1970).  
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2.3 Results and discussion 

2.3.1 Uncertainty in precipitation data 

The precipitation characteristics of the iMHEA precipitation dataset, and two 

alternate precipitation datasets from NCEP-DOE Reanalysis II, and TRMM_3B42.7 were 

compared using annual rainfall, DAYP0, and PVAR (Table 2.7) in 5 study catchments 

(PIU_01, CHA_02, HUA_01, LLO_02, JTU_03). 

 It is found that NCEP precipitation data is not reliable for site study in all five 

catchments due to the high difference in the magnitude of rainfall, ranging from 48.8% 

to 346.8% compared to the iMHEA data. In PIU_01, the variability (DAYP0, and PVAR) 

is close to the iMHEA rainfall. However, the magnitude of rainfall is far lower than the 

iMHEA precipitation (NCEP data is 48.8% of the iMHEA data). In HUA_01, the NCEP 

precipitation is 80.9% of the iMHEA value with lower variability (DAYP0: NCEP=0.02, 

iMHEA=0.32; PVAR: NCEP=1.23, iMHEA=1.46). In CHA_02, considerably higher rainfall 

is estimated by NCEP data (261.2% of the iMHEA data), LLO_02 (210.3% of the iMHEA 

data) and JTU_03 (346.8% of the iMHEA data). 

The TRMM data underestimate the precipitation in PIU_01 (33.9% of the iMHEA 

data), and HUA_01 (68.5% of the iMHEA data). Reasonable estimation of the 

magnitude of rainfall can be found in CHA_02 (105.7% of the iMHEA data), and LLO_02 

(99.9% of the iMHEA data). In CHA_02, the TRMM rainfall estimates are close to the 

iMHEA data, whereas the variability is higher (PVAR: TRMM=2.33, iMHEA=1.38). 

DAYP0 shows that 25% of days with zero precipitation in iMHEA, with the higher ratio 

using TRMM data (40%). In LLO_02, the difference in total rainfall between TRMM and 

iMHEA is merely 0.01%, DAYP0 has also indicated similar precipitation characteristic 

(TRMM:0.45, iMHEA:0.47). In JTU_03, higher precipitation has been suggested by the 

TRMM data (140.2% of the iMHEA data). 
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Table 2.7 Comparison of the three sets of rainfall data assessed in this study 

Site Data Rainfall [mm/year] PVAR DAYP0 

PIU_01 iMHEA 2012.0  1.52 0.20  

 NCEP 983.6  1.54 0.26  

 TRMM 681.3  2.67 0.63  

CHA_02 iMHEA 887.3  1.38 0.25  

 NCEP 2318.2  1.15 0.09  

 TRMM 938.1  2.33 0.40  

HUA_01 iMHEA 1210.0  1.46 0.32  

 NCEP 978.6  1.23 0.02  

 TRMM 828.8  1.38 0.04  

LLO_02 iMHEA 1059.7  1.87 0.47  

 NCEP 2228.9  1.83 0.14  

 TRMM 1058.8  2.03 0.45  

JTU_03 iMHEA 845.5  1.69 0.13  

 NCEP 2932.6  1.72 0.03  

 TRMM 1185.7  2.08 0.32  
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2.3.2 Modelling flow with iMHEA/NCEP/TRMM 

precipitation data 

The hydrological response of 5 catchments (PIU_01, CHA_02, HUA_01, LLO_02, 

JTU_03) was simulated by driving the JULES model for each catchment using the 

iMHEA precipitation datasets, and two alternate precipitation datasets, NCEP-DOE 

Reanalysis II, and TRMM_3B42.7. Model performance is evaluated using the 

hydrological indices as summarised in Table 2.8.  

The magnitude of flow is the major concern when comparing three sets of 

simulations. Runoff was considerably overestimated in JTU_03 (686.9% of the 

observation flow; Figure 2.13) using NCEP precipitation. Large gaps also exist in the 

other 4 catchments which could be attributed to the high difference in the magnitude 

of rainfall. 

In LLO_02, the TRMM precipitation is closer to the iMHEA observations. Two 

simulations generated similar flow duration curve and hydrological indices, but both 

flows are significantly higher than the observed values. The gap could be attributed to 

the unobserved subsurface and groundwater preferential flow from deep soil layers 

(Buytaert et al., 2006; Ochoa-Tocachi et al., 2016), which was not observed by the 

monitoring network. 

In CHA_02, the TRMM precipitation is 5% higher than the iMHEA precipitation. 

Both modelling results considerably underestimate the average flow with a marked 

difference in flow pattern. Higher peak flow was simulated using TRMM precipitation 

(Qskew: TRMM=8.59; iMHEA=3.46).  

Among these three sets of rainfall input data, the modelling results using iMHEA 

data is the closest to the observed values in PIU_01 and HUA_01. As shown in Figure 

2.14, most of the peak flow is well captured for the two sites. The largest gap between 
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the modelling results and the observation could be found in recession process of the 

modelled hydrograph. Lower water yield is generated, with faster recessions, using 

iMHEA precipitation data. Zulkafli et al. (2013) already showed that TRMM 

precipitation data (TRMM 3B42.6) has better model performance over the NCEP 

Reanalysis data (Kalnay et al., 1996) for large basins (> 4640 km2) in the Peruvian 

Andes–Amazon study. In this Chapter, the NSE value suggests that better site-scale 

hydrological estimation can be obtained by using participatory data compared to the 

use of large-scale reanalysis data.  
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Table 2.8 Comparison of modelling results among using three set of rainfall data 

 Rainfall 

[mm/year] 

Runoff 

[mm/year] 

RR BFI Qvar Qskew R2FDC NSE 

PIU_01         

Observation  1379.6  0.686  0.425  1.09  2.19  -1.29   

iMHEA 2012.0  944.0  0.469  0.406  1.37  3.03  -1.50  0.57  

NCEP 983.6  336.5  0.342  0.360  1.73  3.87  -1.92  -0.64  

TRMM 681.3  217.6  0.319  0.288  2.54  5.20  -0.78  -0.59  

CHA_02         

Observation  714.8  0.806  0.550  1.26  4.73  -0.53   

iMHEA 887.3  157.4  0.178  0.247  1.72  3.46  -4.30  0.05  

NCEP 2318.2  1094.4  0.472  0.543  1.08  4.52  -1.33  -1.57  

TRMM 938.1  214.2  0.228  0.195  2.68  8.59  -3.43  -0.47  

HUA_01         

Observation  774.1  0.640  0.674  1.30  1.64  -3.23   

iMHEA 1210.0  653.8  0.540  0.561  1.13  2.35  -1.44  0.55  

NCEP 978.6  374.8  0.383  0.553  1.06  3.17  -1.06  0.04  

TRMM 828.8  281.6  0.340  0.393  1.21  3.47  -1.34  -0.14  

LLO_02         

Observation  146.6  0.138  0.880  0.60  1.72  -0.69   

iMHEA 1059.7  513.9  0.485  0.863  0.68  0.93  -1.05  -26.8 

NCEP 2228.9  1600.7  0.718  0.811  1.19  2.64  -1.26  -670 

TRMM 1058.8  509.2  0.481  0.862  0.71  1.12  -1.16  -28.2 

JTU_03         

Observation  310.5  0.368  0.742  0.90  4.53  -0.58   

iMHEA 845.5  162.6  0.192  0.726  0.83  1.93  -0.91  0.040  

NCEP 2932.6  2132.8  0.727  0.803  1.10  2.48  -1.33  -115 

TRMM 1185.0  473.0  0.399  0.818  0.64  2.73  -0.78  -0.57  
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Figure 2.13 Simulated discharge time series (left) and flow duration curves (right) using resp. iMHEA/NCEP/TRMM precipitation data in CHA2/LLO2/JTU3 
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Figure 2.14 Simulated discharge time series (left) and flow duration curves using resp. iMHEA/NCEP/TRMM precipitation data in PIU1/HUA1 
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2.4 Conclusions 

Land surface models have been increasingly used for hydrological assessment. 

The JULES model used in this study, has been successfully implement in regional 

hydrological assessment (e.g. Zulkafli et al., 2013). Precipitation data is the most 

important driver in the hydrological model. However, it could be highly uncertain for 

small scale hydrological studies (Buytaert, Célleri & Timbe, 2009). In the five selected 

tropical Andean catchments, I found that there is considerable difference in the rainfall 

characteristic, both in magnitude and variability, among participatory data (iMHEA), 

and two large-scale reanalysis data (NCEP and TRMM). Evaluations of flow simulations 

were made by driven the JULES model using the iMHEA/NCEP/TRMM precipitation 

dataset, respectively. At the scale of catchments no larger than 7.8 km2, I therefore 

conclude that participatory collected data (iMHEA) are more capable to simulate the 

flow. There are still gaps between the simulation and observation, which might be 

attributed to the uncertainty in soil and vegetation representatio. These issues are 

further investigated in the following Chapters. 
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3 Parameterization of JULES land 
surface types for the tropical Andes 
using a network of monitored 
catchments 

3.1 Introduction 

Physically-based hydrological models are often used to predict the impact of 

change, such as catchment interventions and land-use and land-cover change (LUCC), 

because it is possible to map the modeller’s knowledge about the hydrological impacts 

of LUCC into physically meaningful parameters. Soil hydraulic models determinate the 

water movement by using soil parameters (see Section 2.2.5). A major weakness of 

JULES and other land surface models is the limited number of land surface 

parameterizations that is available in the default setup. In JULES, land cover 

representation is simplified into five plant functional types, and the required soil 

parameters are commonly derived from large scale soil textual database (Cosby et al., 

1984; Tomasella & Hodnett, 1998) using pedotransfer functions (PTFs). The availability 

of sets of parameterizations greatly simplifies setting up JULES for large scale 

applications and data-scarce regions, but it comes at the expense of a highly simplified 

representation and coarse classification of surface hydrological processes. Marthews 

et al. (2014) concluded that the availability of soil data is still low in the tropical South 

America. For the study sites, I found considerably higher values of water retention 

properties investigated from the local experimental data (Buytaert et al., 2005; Crespo 

et al., 2011) than the values derived from the commonly use PTFs. This is problematic 

if JULES is used for LUCC evaluation, because of the high variability of land-use types 

and related hydrological processes. The common PTFs approach generates the same 

soil parameters for nearby catchments with different LUC due to the coarse resolution 
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of available soil properties. To avoid the issues related to parameterization of 

individual land-use types in a complex physically-based model such as JULES on the 

one hand, and the limited number of predefined land cover classes in JULES on the 

other, I posit the idea of the creation of parameter “libraries” of land cover classes for 

models such as JULES. The parameter libraries extend directly the default setup in 

JULES to 12 represented land-cover types (Table 3.1) in the tropical Andes from a 

network of upland catchments designed to characterise of different LUC types (Ochoa-

Tocachi et al., 2018). These selected catchments feature Andosols (Ochoa-Tocachi et 

al., 2018), and are characterised by the highest availability of recent hydrological 

monitoring data (from 2012 to 2017). I use these data to assess the effects of soil 

parameterisation on JULES’s simulation of streamflow and evaluate the impact of 

allowing for the more fine-grained representation of LUCC on hydrological evaluation. 

 

Table 3.1 The parameter libraries for the represented land-cover types in the tropical Andes. 

BF: Broadleaf Forest, NF: Needleleaf Forest, C3: C3 grasses, C4: C4 grasses, SH: Shrub, BS: 

Bare soil. 

Site  Land cover Default setup Major soil class (FAO) 

PIU_01 Natural páramo 0.15 BF, 0.85 C4 60% Cambisols; 40% Regosols 

PIU_02 Grazed páramo 0.15 BS, 0.85 C4 

PIU_04 Puna forest 0.80 BF, 0.20 C4 

PIU_07 Cultivated puna 0.35 CR, 0.45 C4, 0.20 
SH 

JTU_03 Natural páramo 0.80 C4, 0.20 SH 100% Andosols 

JTU_02 Grazed páramo 1.00 C4 

LLO_02 Restored páramo 0.10 BF, 0.90 C4 50% Phaeozems;30% Andosols; 
20% Regosols LLO_01 Grazed páramo 0.10 SH, 0.90 C4 

CHA_02 Natural jalca 0.10 BF, 0.90 C4 45% Leptosols; 40% Cambisols; 
15% Regosols CHA_01 Afforested jalca 0.80 NF, 0.20 C4 

HUA_01 Natural puna 0.75 C4, 0.25 BS 100% Leptosols 

HUA_02 Grazed puna 0.70 C4, 0.30 BS 
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3.2 Methods 

3.2.1 Parameterisation of high-Andean soils 

The pedotransfer functions (PTFs) of Hodnett & Tomasella (2002) are commonly 

used (Marthews et al., 2014) to estimate the unavailable soil parameters of land 

surface models from a large-scale soil database (Fao/Iiasa/Isric/Isscas/Jrc, 2012). In the 

experimental catchments, the high-Andean soils (Andosol, Leptosol, Histosol, 

Cambisol and Regosol) are characterised high water retention capacity (Buytaert et al., 

2005; Crespo et al., 2011), which is not well represented by the PTF-based estimations 

(Figure 3.1). This could be attributed to the inability of the PTFs to present the high 

water retention caused by the presence of amorphous clay minerals such as allophane 

and imogolite (Buytaert et al., 2006). Therefore, I explore the use of in-situ experiment 

data of Histic Andosols obtained by Buytaert et al. (2005) as a complement to the PTF-

based soil water retention data. 

 

 
Figure 3.1 Water retention curves obtained from 1) PTFs estimation 2) in-situ 

investigation at three locations: Huagrauma, Soroche and Queseras.   
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Table 3.2 Four combinations of soil parameters.  

Parameter 

estimation method 

Van Genuchten 

parameters (n, α) 

Water retention 

(θsat, θcrit, θwilt) 

Thermal properties 

(hcon, hcap) 

Saturated hydraulic 

conductivity (Ksat) 

initial PTFs FAO+PTFs FAO+PTFs FAO+PTFs FAO+PTFs 

initial Huagrauma Histic Histic Histic+PTFs Histic 

modified Huagrauma Histic Modified Histic Histic+PTFs Histic 

modified PTFs Histic FAO+PTFs FAO+PTFs FAO+PTFs 

 

I parameterise the soil data using four different combination as shown in Table 3.2 

since these parameters are independently derived from others. The first one “initial 

PTFs” is the most common approach, which obtains the parameters using PTFs (Table 

2.4) with the FAO soil data (Table 3.3).  

The second one “initial Huagrauma” uses the water retention properties and 

saturated hydraulic conductivity from the in-situ experiment data at the Huagrauma 

catchment in the south Ecuadorian páramo (Buytaert et al., 2005). The Van Genuchten 

parameters are numerically fitted using the least-squares method with the available 

water retention data (using eq. 2.11). 

The water retention data in Huagrauma were found to vary within a range (θsat : 

0.66-0.90; θcrit:0.39-0.64) (Crespo et al., 2011). Therefore, the third combination 

“modified Huagrauma” lowered the wilting point to a level found in the páramo 

covered Andosol (Figure 3.1). I use the same Van Genuchten parameters from the 

second combination due to the insufficient data for numerical fitting (only the ranges 

of θsat, θcrit, θwilt are available). 

The fourth combination “modified PTFs” is similar to the first one, but has 

replaced the Van Genuchten parameters to the values of the second combination, 

which shown gradually decrease under increasing pressure compared to the first 

combination (Figure 3.2). A higher value of θcrit is obtained with this approach 

compared to “initial PTFs”. 
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Table 3.3 Soil properties obtained from FAO soil database. CL: clay fraction, SA: sand 

fraction, SI: silt fraction, DBD: dry bulk density (g/cm3), SOC: soil organic carbon (% 

weight), CEC: carbon exchange capacity (cmol/kg), pH: hydrogen ion activity. 

Catchment Sand Silt Clay DBD SOC CEC pH 

PIU 0.392  0.270  0.338  1.308  12.62  19.2  5.6 

CHA 0.508  0.282  0.211  1.164  24.64  13.8  4.7 

HUA/HMT 0.551  0.255  0.195  1.395  8.87  18.0  5.6 

LLO 0.623  0.307  0.070  1.226  14.49  7.9  6.2 

JTU 0.426  0.466  0.108  0.914  45.28  14.0  5.2 

TAM 0.416  0.385  0.199  1.293  20.34  20.6  7.3 

PAU 0.484  0.348  0.168  1.004  30.26  11.4  5.4 

TIQ 0.211  0.521  0.269  1.231  16.63  5.0  5.2 

 

 

Figure 3.2 Water retention curves of the soil as generated by each of the parameter 

estimation methods. 
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3.2.2 Model evaluation 

The performance of the model using four combinations of soil parameters was 

assessed by summarizing the simulated time series into hydrological indices, including 

rainfall-runoff ratio (RR), Baseflow index (BFI), daily flow variation (Qvar), skewness in 

daily flows (Qskew), the slope of the flow duration curve (R2FDC), and the Nash–

Sutcliffe model efficiency (NSE) as described in detail in Section 2.2.7. In addition to 

the hydrological indicators, the hydrograph is used to compare the peak flow (the 

maximum discharge), recession lamb (the ending period of peak flow, and returns to 

groundwater-derived baseflow), and level of baseflow. 
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3.3 Results 

3.3.1 Comparison of four parameter estimation methods 

The soil parameters obtained from four combinations are shown in Table 3.4. The 

first combination “Initial PTFs” derived soil parameters from FAO database, thus, 8 

different parameter sets were obtained for individual catchment. The second 

combination “Initial Huagrauma” was obtained from the in-situ experiment data at 

Huagrauma (Buytaert et al., 2005). The Van Genuchten parameters were numerically 

fitted using the water retention data.  

The Van Genuchten parameter n measures the uniformity of pore sizes in the soil. 

The value ranges between 1.336 and 1.400 using the first method, which is slightly 

lower than the value of 1.560 obtained from the in-situ experiment. The Van 

Genuchten parameter α indicates the soil structure. The experiment estimation gives 

much lower value 0.557 than the PTFs estimation, which ranges from 1.473 to 2.545. 

There is significantly gap in the water retention properties between the PTFs 

estimation and the experiment values. The values of θsat are between 0.422 to 0.565, 

which is a value that is lower compared to the experiment data 0.900. 

The third combination “Modified Huagrauma” was similar to the “Initial 

Huagrauma”, but reduces the wilting point to a lower level (i.e. from 0.500 to 0.431 in 

PIU_01) according to the lower boundary of the experimental data of páramo covered 

Andosol (Crespo et al., 2011). This modification allows more water to be extracted 

from the soil column. 

The fourth combination “modified PTFs” is similar to the first one, but replaces 

the Van Genuchten parameters to the values of the second combination. The 

increasing value of θcrit has reduced the soil moisture extraction by the vegetation 

(following e.q. 2.12) as the moisture availability factor (𝛽) decreased.
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Table 3.4 Soil parameters used in JULES 

parameter estimation method Catchment n α θsat θcrit θwilt hcon hcap K 

Initial PTFs PIU 1.359  2.288  0.463 0.333 0.217 0.219 1189944 0.0034  
CHA 1.350  2.545  0.492 0.321 0.173 0.199 1110088 0.0057  
HUA 1.386  2.364  0.422 0.280 0.167 0.264 1259371 0.0066  
LLO 1.400  1.980  0.467 0.271 0.104 0.225 1146028 0.0097  
JTU 1.319  1.715  0.565 0.387 0.161 0.149 938752.8 0.0052  
TAM 1.350  1.479  0.464 0.335 0.176 0.223 1169057 0.0044  
PAU 1.336  2.049  0.542 0.354 0.156 0.163 996455 0.0056  
TIQ 1.384  1.473  0.479 0.342 0.189 0.207 1144154 0.0022 

Initial Huagrauma 1.560  0.557  0.900 0.751 0.500 0.037 221412 0.0034 

Modified Huagrauma 1.560  0.557  0.900 0.716 0.431 0.037 221412 0.0034 

Modified PTFs PIU 1.560  0.557  0.463 0.371 0.217 0.219 1189944 0.0034  
CHA 1.560  0.557  0.492 0.373 0.173 0.199 1110088 0.0057  
HUA 1.560  0.557  0.422 0.327 0.167 0.264 1259371 0.0066  
LLO 1.560  0.557  0.467 0.332 0.104 0.225 1146028 0.0097  
JTU 1.560  0.557  0.565 0.415 0.161 0.149 938752.8 0.0052  
TAM 1.560  0.557  0.464 0.356 0.176 0.223 1169057 0.0044  
PAU 1.560  0.557  0.542 0.398 0.156 0.163 996455 0.0056  
TIQ 1.560  0.557  0.479 0.371 0.189 0.207 1144154 0.0022 
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3.3.2 River flow under four sets of soil parameter 

Table 3.5 and Table 3.6 summarize the evaluation of the JULES model driven by 

using the four soil parameter sets, with the hydrological indices (see Section 2.2.7).  

In PIU_01 (Figure 3.3a), the JULES run driven by the parameter values estimated 

using the “initial PTFs”, underestimates the runoff by 35.1% (RR:0.445 vs 0.686) but 

has a baseflow ratio similar to the observations (BFI: 0.417 vs 0.425). The model 

performance improves most under the “initial Huagrauma” setup (NSE:0.680), which 

gives a better runoff estimation (RR:0.654). However, the hydrograph shows that 

baseflow has mostly increased (BFI:0.647), which leads to a higher regulation capacity 

(as expressed in the slope of the flow duration curve R2FDC), than that of the observed 

flow (R2FDC: -0.61 vs -1.29). The “modified Huagrauma” setup drops the wilting point 

to a lower value (θwilt: 0.500->0.431) compared to “initial Huagrauma”, which 

increased the water availability for vegetation extraction. This lowers the flow (RR: 

0.654 -> 0.559), particularly the subsurface flow (BFI: 0.654 -> 0.610). The “modified 

PTFs” setup increases the value of θcrit from “initial PTFs”, which reduces the water 

extraction of vegetation. Runoff is considerably higher (RR: 0.445 -> 0.566) with the 

subsurface flow increased as well (BFI: 0.417 -> 0.611). 

In the adjacent catchment, PIU_02 (Figure 3.3b), the parameters estimated with 

the “initial PTFs” yield a lower runoff than the observations (RR: 0.550 vs 0.639), 

whereas the slope of the FDC is closer to the observed value of (R2FDC: -1.34 vs -1.37). 

A higher runoff is simulated under the “initial Huagrauma” setup (RR: 0.690), which 

has a lower wilting point compared to the “modified Huagrauma” setup (RR:0.623). 

The “modified PTFs” gives a more precise prediction for both runoff (RR: 0.637 vs 0.639) 

and baseflow (BFI: 0.588 vs 0.598), which also shows the highest NSE value (0.774) out 

of the four combinations. 
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In PIU_04 (Figure 3.3c), the use of the “initial PTFs” has underestimated flow (RR: 

0.197 vs 0.389), which is characterised by low baseflow (BFI: 0.575 vs 0.851). The issue 

is again overcome by using “modified PTFs”. The runoff ratio is considerably closer to 

the observed flow (RR: 0.469 vs 0.389) and the catchments’ regulation capacity is also 

well presented (BFI: 0.857, R2FDC: -1.13). The experimentally-based setup, “initial 

Huagrauma” and “modified Huagrauma” overpredict the flow in this catchment. 

In PIU_07 (Figure 3.3d), the initial PTFs parameters simulated the flow best of all 

the four soil types with the highest NSE value. The flow is considerably lower than the 

observation (RR: 0.123 vs 0.269). The simulated flow is much higher under the other 

three sets of parameters (RR > 0.437). 

In JTU_03 (Figure 3.4a), the “initial PTFs” setup simulates lower flows than the 

observed value (RR: 0.255 vs 0.368). The “modified PTFs” manage to model the flow 

accurately with the RR (0.332 vs 0.368), BFI (0.881 vs 0.742), flow duration curve 

(R2FDC: -0.42 vs -0.58) closed to its observation. The experimental soil parameters 

both overestimate the flow (RR > 0.535). 

A low flow (RR: 0.071) was observed in JTU_02 (Figure 3.4b). The “initial PTFs” 

setup gives the closest estimation of flow out of the four set of parameters. However, 

Model performance is lower (NSE < -0.20) since flows are overestimated under all 

parameter sets (RR >0.129). The observed flow is more variable (Qvar: 5.77) than all 

of the simulated values (Qvar <2.71) due to the absence of baseflow. 

Similar simulations are found in the restored páramo catchment LLO_02 (Figure 

3.4c) and its adjacent grazed páramo catchment LLO_01 (Figure 3.4d). The “initial PTFs” 

setup simulates the flow that matches the observations best, but is still considerably 

higher than its observed values (RR: 0.457 vs 0.138 in LLO_02; 0.414 vs 0.121 in 

LLO_01). The large gap of flow between the simulations and observations leads to a 

very low model performance for both catchments (NSE < -23.77).  
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Table 3.5 Hydrological summary indices as calculated from the observed flow time series and the 

4 parameter estimation methods for JULES. OBS: Observation, PTF: initial PTFs, EXP: initial 

experiment data, MOD: modified experiment data, PTFm: modified PTFs; RR: Rainfall-runoff ratio, 

BFI: Baseflow index, Qvar: Coefficient of variation in daily flows, Qskew: Skewness in daily flows, 

R2FDC: the slope of the flow duration curve, NSE: Nash–Sutcliffe model efficiency.  

Site Land cover Soil set RR BFI Qvar Qskew R2FDC NSE 

PIU_01 Natural páramo OBS 0.686  0.425  1.09  2.19  -1.29  n/a  
 PTF 0.445  0.417  1.32  3.00  -1.46  0.626   
 EXP 0.654  0.654  0.77  2.81  -0.63  0.680   
 MOD 0.559  0.610  0.87  2.80  -0.75  0.655   
 PTFm 0.566  0.611  0.91  2.80  -0.84  0.670  

PIU_02 Grazed páramo OBS 0.639  0.598  1.15  2.46  -1.37  n/a  
 PTF 0.550  0.441  1.32  2.88  -1.35  0.727   
 EXP 0.690  0.617  0.89  2.71  -0.67  0.721   
 MOD 0.623  0.587  0.96  2.72  -0.78  0.737   
 PTFm 0.637  0.589  1.01  2.65  -0.95  0.774  

PIU_04 Puna forest OBS 0.389  0.851  0.95  2.73  -0.85  n/a  
 PTF 0.197  0.575  1.54  3.25  -2.47  0.184   
 EXP 0.585  0.898  0.49  1.37  -0.69  0.437   
 MOD 0.440  0.871  0.58  1.46  -0.85  0.587   
 PTFm 0.469  0.857  0.82  1.61  -1.13  0.711  

PIU_07 Cultivated puna OBS 0.269  0.703  1.57  4.36  -1.18  n/a  
 PTF 0.123  0.501  2.06  4.15  -0.96  0.366   
 EXP 0.537  0.906  0.43  1.66  -0.60  -0.027   
 MOD 0.437  0.893  0.46  2.29  -0.56  0.245   
 PTFm 0.446  0.882  0.71  1.32  -1.24  0.316  

JTU_03 Natural páramo OBS 0.368  0.742  0.90  4.53  -0.58  n/a  
 PTF 0.255  0.245  1.87  3.01  -1.86  -0.217   
 EXP 0.601  0.923  0.23  1.70  -0.17  -0.198   
 MOD 0.535  0.649  0.87  2.97  -0.42  -0.301   
 PTFm 0.332  0.881  0.48  1.51  -0.42  0.211  

JTU_02 Grazed páramo OBS 0.071  0.577  1.44  5.77  -1.03  n/a  
 PTF 0.129  0.652  0.97  2.71  -1.08  -0.201   
 EXP 0.627  0.930  0.23  1.56  -0.23  -30.57   
 MOD 0.471  0.912  0.28  1.71  -0.30  -15.79   
 PTFm 0.287  0.880  0.50  1.02  -0.74  -5.047  
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Figure 3.3 Modelling, observations, and flow duration curve in a. PIU1 b. PIU2 c. PIU4 d. PIU7  
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Figure 3.4 Modelling, observations, and flow duration curve in a. JTU3 b. JTU2 c. LLO2 d. LLO1 
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The flow in the conserved jalca catchment CHA_02 (Figure 3.5a) can be predicted 

best by using “initial Huagrauma” setup (RR: 0.576 vs 0.805). Most of the peak flows 

are still lower than the observation but their shape and recession and flow duration 

curve (R2FDC: -0.45 vs 0.53) is captured adequately. The average runoff is lower when 

using the other 3 soil parameter sets due to lower simulation of subsurface flow. In its 

adjacent afforested catchment CHA_01 (Figure 3.5b), the modelling results with 

“modified PTFs” show the best model performance (NSE: 0.346).  

In the conserved puna catchment HUA_01 (Figure 3.5c) and its neighbour grazed 

catchment HUA_02 (Figure 3.5d), the modified PTFs parameter gives an accurate 

estimation of the average runoff (HUA1 RR: 0.648, HUA2 RR: 0.618). The magnitude of 

peak flow could be captured, but the recession processes are faster than the 

observation. Most of the difference may be caused by the faster recession in the model 

and the higher baseflow than the observed flow in dry seasons, which leads to a 

steeper slope in the FDC (R2FDC: -1.28 vs -3.23 in HUA_01; -1.26 vs -2.93 in HUA_02). 
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Table 3.6 Hydrological summary indices as calculated from the observed flow time series and the 4 

parameter estimation methods for JULES. OBS: Observation, PTF: initial PTFs, EXP: initial experiment 

data, MOD: modified experiment data, PTFm: modified PTFs; RR: Rainfall-runoff ratio, BFI: Baseflow 

index, Qvar: Coefficient of variation in daily flows, Qskew: Skewness in daily flows, R2FDC: the slope 

of the flow duration curve, NSE: Nash–Sutcliffe model efficiency.  

Site Land cover Soil set RR BFI Qvar Qskew R2FDC NSE 

LLO_02 Restored páramo OBS 0.138  0.880  0.60  1.72  -0.69  n/a  
 PTF 0.457  0.830  0.74  1.05 -1.17  -26.55   
 EXP 0.724  0.917  0.31 1.07  -0.40  -55.26   
 MOD 0.596  0.903  0.35  1.04  -0.52  -34.13   
 PTFm 0.562  0.886  0.58  0.83  -0.81  -38.36  

LLO_01 Grazed páramo OBS 0.121  0.862  0.68  2.47  -0.53  n/a  
 PTF 0.414 0.823  0.78 1.18 -1.19  -23.77   
 EXP 0.703  0.914  0.32  1.19  -0.42  -53.68   
 MOD 0.564  0.900  0.37  1.16  -0.50  -31.91   
 PTFm 0.527  0.880  0.64  0.96  -0.92  -35.45  

CHA_02 Natural jalca OBS 0.805  0.550  1.26  4.73  -0.53  n/a  
 PTF 0.184  0.148  1.79  3.65  -5.91  0.073   
 EXP 0.576  0.709  0.65  3.36  -0.45  0.448   
 MOD 0.517  0.531  1.04  3.30  -0.94  0.550   
 PTFm 0.301  0.560  1.01  3.47  -0.82  0.171  

CHA_01 Afforested jalca OBS 0.302  0.441  1.98  3.97  -1.40  n/a  
 PTF 0.080  0.199  2.15  4.16  -9.60  0.251   
 EXP 0.493  0.864  0.36  3.50  -0.21  0.263   
 MOD 0.087  0.508  1.28  3.87  -0.77  0.132   
 PTFm 0.268  0.798  0.57  3.32  -0.51  0.346  

HUA_01 Natural puna OBS 0.638  0.674  1.30  1.64  -3.23  n/a  
 PTF 0.508  0.526  1.06  2.67  -1.35  0.540   
 EXP 0.675  0.685  0.67  2.40  -0.67  0.520   
 MOD 0.650  0.536  1.08  2.56  -1.06  0.484   
 PTFm 0.631  0.692  0.95  2.03  -1.28  0.648  

HUA_02 Grazed puna OBS 0.579  0.712  1.29  1.53  -2.93  n/a  
 PTF 0.491  0.529  1.04  2.43  -1.40  0.483   
 EXP 0.655  0.686  0.65  2.28  -0.65  0.453   
 MOD 0.594  0.661  0.81  2.33  -0.69  0.458   
 PTFm 0.616  0.695  0.92  1.82  -1.26  0.618  
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Figure 3.5 Modelling, observations, and flow duration curve in a. CHA2 b. CHA1 c. HUA1 d. HUA2 
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3.4 Discussion 

The four sets of soil parameters result in substantial differences to the modelling 

results. The “initial PTFs” setup generated the lowest flow out of the four set of 

parameters, which could be attributed to its lowest subsurface flow generation. The 

“Initial Huagrauma” setup used higher values of saturated, critical, and wilting point 

obtained from the experimental data. This setup generated the highest flow in all 12 

catchments because it reduced the vegetation extraction effectively. The “Modified 

Huagrauma” setup reduces the wilting point to a lower level than “initial Huagrauma”, 

which allows more water to be extracted from the soil column. This modification 

reduces the runoff compared to the “initial Huagrauma” setup. The “Modified PTFs” 

scenario increases the value of critical point from the “initial PTFs” setup, which 

reduces the soil moisture extraction effectively.  

The total flow is the most important factor to affect the model performance.  

Using the “initial PTFs” setup results in the closest estimation for the catchments with 

lower flow (RR< 0.27: PIU_07, LLO_02, LLO_01, JTU_02), since the other three setups 

considerably overestimates the total flow. However, for these catchments, the low 

level of water yield in observation could be attributed to the unobserved subsurface 

and groundwater preferential flow from deep soil layers (Buytaert et al., 2006; Ochoa-

Tocachi et al., 2016). This uncertainty in observation should be taken into 

consideration as the model performance is still lower than other catchments. 

The “initial Huagrauma” setup generates the highest modelled flow, which made 

it suitable to be used in high flow catchments (PIU_01 and CHA_02). However, the 

“modified PTFs” setup simulated the best performance for the six catchments, 

including PIU_02, PIU_04, CHA_01, JTU_03, HUA_01, and HUA_02. The low variation 

in flow and the flattest R2FDC shows that this setup is more suitable to simulate 

baseflow-dominated flow (high regulation capacity) in these study regions. 
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3.5 Conclusions 

Soil hydraulic models determine the water movement in the physically-based 

hydrological model by using physically meaningful soil parameters. However, the soil 

parameters are commonly derived from a large scale soil textual database, which is 

highly simplified and tends to lead to a coarser representation of surface hydrological 

processes. In the study sites, which were mainly covered by Andosols, the commonly 

used pedotransfer functions underestimate the values of saturated water content (i.e. 

0.900 -> 0.463 in PIU_01), and residual water content (i.e. 0.500 -> 0.217 in PIU_01) 

compared to the values investigated from the local experiment data. This can be 

attributed to the insufficient of pedotransfer functions for high-Andean soils. 

This chapter explores whether the soil parameterisation can be improved by using 

experimentally obtained soil data. To this purpose, streamflow for the 12 tropical 

Andean catchments has been simulated using a JULES setup that combines large-scale 

meteorological data with citizen science-collected local precipitation data. I find that 

the soil water retention properties (saturated, critical, and wilting point) affect the flow 

generation effectively with their impacts on soil moisture extraction. The high-water 

retention property of high-Andean soils can be presented better by modifying the 

water retention curve with experimental data from the Histic Andosol in South Ecuador. 

The experiment-based parameter values reduce the soil moisture extraction 

compared to the PTFs generated data. It may not be the best fit for most of catchments 

since it is not the exact local for individual sites. However, it shows better performance 

than the “initial PTFs” setup with its higher baseflow simulation, which is more suitable 

to be used in these baseflow-dominated catchments. 

The “modified PTFs” shows best overall performance. This parameter set is based 

on the local data, which allows difference in soils to be represented for each catchment. 
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The simulated results showed that the modification on water retention curve can 

considerably increase the ability to simulate baseflow. I therefore recommend this 

setup to be used if local experimental data is not available. 

The modelling results show that the modified soil water retention properties can 

make a significant contribution to improving the land cover parameterizations of JULES 

for dominant land-use types of the region. These generated parameter “libraries” in 

the paired catchment could be used to assess the potential impact of land use change 

on hydrology in the following studies. 
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4 Assessing the hydrological impacts 
of land use and land cover changes 
in tropical Andean catchments 

4.1 Introduction 

The Andean páramo consitute the headwaters of the major largest rivers of the 

Amazon basin (Célleri et al., 2009), The water supply is highly reliable because of its 

large water surplus, extreme water regulating capacity, and sustained base flow 

(Buytaert et al., 2006), which covers the water needs for major downstream Andean 

populations, smallholder irrigated agriculture, industrial consumption, and 

hydroelectricity production (Buytaert et al., 2014). Despite its importance of water 

supply, these mountain areas are particularly vulnerable and prone to human impact. 

Drastic changes in the water cycle have been produced by human activities (cultivation, 

afforestation and grazing) as a result of the rapid economic growth during the past 

half-century (Buytaert et al., 2006; Harden, 2006). The hydrological responses could 

be affected in the forms of changing vegetation cover, soil, and landscape. An 

increasing hydraulic conductivity was found when Andosols were cultivated (Buytaert 

et al., 2006). Increasing transpiration, interception, and evaporation is found when 

grasslands or shrublands are afforested, which leads to 40% decrease in runoff (Farley, 

Jobbágy & Jackson, 2005). This emphasises the need to identify quantitatively the 

hydrological impacts of specific land use changes.  

The potential impacts have been assessed by a pair-wised catchment comparison, 

which used a ‘trading space for time’ approach to compare paired-catchments under 

similar physical, climatic conditions and different land management types (Ochoa-

Tocachi, Buytaert & De Bièvre, 2016; Singh et al., 2011). This monitoring setup allows 

observing the continuous hydrological responses under the controlled/affected 
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catchments, which reduces the time required for long-term record to evaluate the land 

use impact. The iMHEA participatory hydrological monitoring network has been 

monitoring 28 small and homogenous headwater catchments, which cover a variety 

of both pristine and human-altered land cover types and are representative for the 

major biomes of the tropical Andes, i.e., páramo, puna, and jalca (Célleri et al., 2009; 

Ochoa-Tocachi et al., 2018). This setup allows faster analysis, which is often required 

in view of the urgency of policy decisions. However, the difference in catchment 

characteristics and meteorological drivers between the paired catchments can still 

contribute to hydrological change. In order to account explicitly for differences in 

catchment characteristics and meteorological input between the paired catchments, 

the hydrological change under LUCC has been assessed by using the land-surface 

model JULES. This approach allows scenario analysis by using physically meaningful 

parameters that distinguish the contribution of LUCC.  

In the standard JULES setup, five plant functional types (PFTs), i.e. broadleaf trees, 

needle-leaf trees, C3 and C4 grasses, and shrubs, are used to represent the global 

vegetative land cover. In order to improve the estimation on gross and net primary 

productivity (GPP and NPP, respectively), new vegetation parameter sets of nine PFTs, 

i.e. tropical and temperate broadleaf evergreen trees, broadleaf deciduous trees, 

needle-leaf evergreen and deciduous trees, C3 and C4 grasses, and evergreen and 

deciduous shrubs, were developed (Harper et al., 2016). For the crops, 4 globally 

common crop types, wheat, soybean, maize, and rice, were included in the JULES-crop 

model (Osborne et al., 2015). In previous studies, this has led to improvements in the 

simulation on leaf area index, gross primary production and canopy height.  

These parameters are not representative for the complex local vegetation. 

However, new vegetation parameters are not available for the study region due to the 

insufficient data availability. Therefore, as an alternative, I evaluate the hydrological 
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sensitivity of vegetation parameters by changing three parameters: canopy height, leaf 

area index, root depth, which are related to plant structure (Harper et al., 2016). The 

hydrological impacts of LUCC impacts are modelled using the soil parameter “libraries” 

modelled in the previous chapter, which were shown to lead to considerably 

improvements in the hydrological simulation. 

 First, I evaluate whether the land cover parameterizations of JULES are capable 

of simulating adequately the hydrological responses of the soil and land-cover types 

that are represented in the iMHEA dataset (Chapter 3). Subsequently, the ability of 

JULES to represent land-use change is then evaluate by extrapolating the parameter 

values which represents the affected catchment to their referenced paired catchment. 
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4.2 Methods 

4.2.1 Hydrological sensitivity of vegetation parameters 

Vegetation transpiration rates are influenced by changes in rooting characteristics, 

leaf area, stomatal response, surface albedo (Farley, Jobbágy & Jackson, 2005). 

Therefore, hydrological sensitivity of three vegetation parameters (canopy height, leaf 

area index, root depth) related to plant structure (Harper et al., 2016) is investigated. 

The experimental catchment PIU_02 (85% C4 and 15% BS) is selected to represent C4 

grasses (C4), and PIU_04 (80% BF and 20% C4) is selected to represented Broadleaf 

forest (BF) since these two catchments are covered with the higher percentage of 

these respective vegetation types. 

The canopy height indirectly affects the hydrological cycle, as it mainly affects the 

nitrogen exchange in JULES (Clark, D. B. et al., 2011; Harper et al., 2016). The canopy 

height is simulated within range of ±10% in the sensitivity analysis. The leaf area per 

unit ground area (LAI) controls canopy water interception, radiation extinction, water 

and carbon gas exchange. The canopy water (Cm) is calculated using a linear equation: 

C𝑚 = A𝑚 + B𝑚 ∗ 𝐿𝐴𝐼 (4.1) 

In which Am is the interception by leafless vegetation and Bm is the rate of change 

of the water holding capacity with LAI (Best et al., 2011). LAI is changed within range 

of ±0.5 in the sensitivity analysis. Root depth affects the soil moisture extraction (Best 

et al., 2011), which I changed within a range of ±0.5 m, because it is limited by the 

depth of soil layer which is set at 3 m. 

The ‘modified PTFs’ soil parameter set is used as this set yielded the highest 

modelling performance in both sites (see Chapter 3). The model is simulated from 

2013/7/6 to 2017/1/1 in PIU_02, and from 2013/7/12 to 2016/8/9 in PIU_04 using all 

the available precipitation data (Ochoa-Tocachi et al., 2018).  

https://timbobtastic.com/hints-and-tips/special-characters-o-%C2%B1-pc/
https://timbobtastic.com/hints-and-tips/special-characters-o-%C2%B1-pc/
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4.2.2 Parameterisation of vegetation in JULES 

I evaluate the changes of hydrological flux in the major processes, including 

subsurface flow from drainage, saturated excess surface flow, evaporation from soil 

and canopy, transpiration from plants, under different land cover scenarios in site 

PIU_01. The setup of wheat is selected to represented ‘crop’ since the predominant 

crop types in the region, potato and tubers, are not covered in JULES-crop (Osborne et 

al., 2015). In order to evaluate the interaction between land cover and soil properties, 

the modelling results are compared under two types of soil water retention setup 

(initial PTFs and initial Huagrauma), respectively. Initial Huagrauma has a higher water 

retention, which allows more water to be stored and evaporated from the soil column. 

The model is simulated from 2013/7/6 to 2017/1/1 in PIU_01 using all the available 

precipitation data (Ochoa-Tocachi et al., 2018). 
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4.2.3 Comparison between pair-wise catchment 

observations and JULES modelling 

The hydrological monitoring data in paired catchments under similar physical, 

climatic conditions and different watershed interventions allows LUCC impacts to be 

assessed by a pair-wise catchment comparison (Ochoa-Tocachi et al., 2016). However, 

the difference in catchment characteristics and meteorological drivers between the 

paired catchments could still contribute to hydrological changes. The difference of the 

physical properties between the paired catchments are summarised in Table 4.1. The 

table shows that the difference in catchment size can be as high as 6.95 times in the 

case of PIU_01 and its paired catchment, PIU_02. In addition, the difference in altitude 

may affected meteorological variables, which need to be adjusted for altitude. For 

example, the altitude gap between PIU_04 and PIU_07 could lead to 4.4°C difference 

in average temperature, which affects evaporation. The difference in precipitation is 

another consideration since it can be as high as 683.5 mm/year in paired catchments 

(between PAU_01 and PAU_04). 

In this chapter, I assess the hydrological changes under LUCC using JULES v5.3. 

The model allows scenario analysis with using physically meaningful parameters, 

which distinguished the contribution of LUCC. The land surface has been 

parameterised in JULES vn5.3 for the catchments monitoring by the iMHEA network 

(Ochoa-Tocachi et al., 2018). The hydrological response under LUCC is assessed by 

substituting land cover fraction (Table 4.2), and the soil parameters (Table 4.3) from 

the natural catchment setup to the value modified in the affected catchment (Figure 

4.1). Meanwhile, the meteorological condition and catchment setup remains 

unchanged. The potential changes of grazing are modelled in three páramo covered 

watersheds (PIU_01, LLO_02, JTU_03), and three puna watersheds (PIU_04, HUA_01, 
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HMT02). The effects of cultivation are explored for both a páramo watershed 

(PAU_01), and a puna watershed (TIQ_02). The effects of pine afforestation are 

modelled for 3 biomes, i.e. páramo (PAU_02), humid puna (TAM_02), and jalca 

(CHA_02). 

The hydrological indicators (RR, BFI, Qvar, Qskew, and R2FDC) are used to identify 

the impact under LUCC with using JULES model and paired catchments comparison. 

The adequacy of the LUCC simulation to prediction of hydrological phenomenon was 

systematically compared and evaluated addressing on the effect of grazing, cultivation 

and afforestation accordingly. 

 

 

Figure 4.1 Conceptual representation of using modified parameters in 'natural' and 

'intervened' catchments for JULES modelling 
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Table 4.1 Comparison of the properties in the paired catchments used in the JULES model 

Code of catchment Annual rainfall [mm] Area [km2] Altitude [m] Temperature [°C] 

Natural Affected Natural Affected Natural Affected Natural Affected Natural Affected 

PIU_01 PIU_02 2240.2 2588.5 6.60 0.95 3193 3245 9.6 9.3 

LLO_02 LLO_01 996.7 989.0 2.21 1.79 4088 3825 4.1 5.7 

JTU_03 JTU_02 861.6 755.1 2.25 2.42 4144 4085 7.0 7.2 

HUA_01 HUA_02 1325.9 1270.4 4.22 2.38 4306 4356 4.3 4.3 

HMT_02 HMT_01 529.9 564.4 1.69 2.09 3914 4002 5.4 4.8 

PIU_04 PIU_07 1306.0 650.3 2.32 7.80 2727 3120 12.9 8.5 

PAU_01 PAU_04 1366.7 683.2 2.63 1.55 3675 3562 5.3 6.2 

TIQ_02 TIQ_01 725.2 847.9 1.73 0.69 4182 4140 3.9 4.6 

PAU_02 PAU_03 1088.4 952.1 1.00 0.59 2976 3255 8.2 6.5 

TAM_02 TAM_01 1330.4 1061.6 1.67 0.82 3708 3851 12.5 11.5 

CHA_02 CHA_01 939.7 677.7 1.63 0.95 2934 3030 10.9 10.4 
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Table 4.2 Land cover type representing the study catchments under natural and intervened conditions and the JULES 

land cover setup. BF: Broadleaf Forest, NF: Needleleaf Forest, CR: crop, C4: C4 grasses, SH: Shrub, BS: Bare soil. 

Catchment Natural Intervened 

 Land cover JULES setup Land cover JULES setup 

PIU_01 Natural páramo 15% BF, 85% C4 Grazed páramo 15% BS, 85% C4 

LLO_02 Restored páramo 10% BF, 90% C4 Grazed páramo 10% SH, 90% C4 

JTU_03 Natural páramo 80% C4, 20% SH Grazed páramo 100% C4 

PIU_04 Puna forest 80% BF, 20% C4 Cultivated puna 35% CR, 45% C4, 20% SH 

HUA_01 Natural puna 75% C4, 25% BS Grazed puna 70% C4, 30% BS 

HMT_02 Grazed dry puna 85% C4, 5% SH, 10% BS Grazed dry puna 75% C4, 10% SH, 15% BS 

PAU_01 Natural páramo 100% C4 Cultivated páramo 70% C4, 30%CR 

TIQ_02 Natural humid puna 95% C4, 5% BS Grazed humid puna 35% C4, 35% CR, 30% BS 

PAU_02 Natural páramo 80% C4, 20% BF Afforested páramo 80% C4, 20% NF 

TAM_02 Natural humid puna 60% C4, 40% BF Afforested humid puna 80% C4, 20% NF 

CHA_02 Natural jalca 10% BF, 90% C4 Afforested jalca 80% NF, 20% C4 
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Table 4.3 Soil parameters representing the study catchments under natural and intervened conditions 

Catchment Condition 1/(n-1) 1/a θsat θcrit θwilt hcon hcap K 

PIU_01 Natural 1.786  1.795  0.900  0.758  0.520  0.037  221412 0.0034 
 Grazed 1.786  1.795  0.900  0.732  0.450  0.037  221412 0.0034 

LLO_02 Natural 2.501  0.505  0.467  0.271  0.104  0.225  1146028 0.0097 
 Grazed 2.501  0.505  0.467  0.271  0.104  0.225  1146028 0.0097 

JTU_03 Natural 1.786  1.795  0.565  0.415  0.161  0.149  938752.8 0.0052 
 Grazed 3.133  0.583  0.565  0.387  0.161  0.149  938752.8 0.0052 

PIU_04 Natural 1.786  1.795  0.900  0.714  0.400  0.037  221412 0.0034 
 Grazed 2.787  0.437  0.463  0.333  0.217  0.219  1189944 0.0034 

HUA_01 Natural 1.786  1.795  0.422  0.327  0.167  0.264  1259371 0.0066 
 Grazed 1.786  1.795  0.900  0.717  0.410  0.037  221412 0.0034 

HMT_02 Grazed 2.590  0.423  0.422  0.280  0.167  0.264  1259371 0.0066 
 Grazed 2.590  0.423  0.422  0.280  0.167  0.264  1259371 0.0066 

PAU_01 Natural 1.786  1.795  0.900  0.751  0.500  0.037  221412 0.0034 
 Cultivated 1.786  1.795  0.463  0.371  0.217  0.219  1189944 0.0034 

TIQ_02 Natural 2.603  0.679  0.479  0.342  0.189  0.207  1144154 0.0022 
 Cultivated 2.603  0.679  0.479  0.342  0.189  0.207  1144154 0.0022 

PAU_02 Natural 1.786  1.795  0.463  0.371  0.217  0.219  1189944 0.0034 
 Afforested 2.787  0.437  0.463  0.333  0.217  0.219  1189944 0.0034 

TAM_02 Natural 1.786  1.795  0.900  0.788  0.600  0.037  221412 0.0034 
 Afforested 1.786  1.795  0.900  0.729  0.440  0.037  221412 0.0034 

CHA_02 Natural 1.786  1.795  0.900  0.803  0.640  0.037  221412 0.0034 
 Afforested 1.786  1.795  0.492  0.373  0.173  0.199  1110088 0.0057 

 

 

 

 

Figure 4.2 Modelling flows with different vegetation setup  
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4.3 Results and discussion 

4.3.1 Sensitivity of vegetation parameters 

The hydrological sensitivity of three vegetation parameters (canopy height, leaf 

area index, root depth) is simulated in site PIU_02 for C4 grasses (Table 4.4), and in site 

PIU_04 for broadleaf forest (Table 4.5). The increase in canopy height merely increases 

the total runoff, mainly in subsurface flow. In contrast, a larger leaf area index reduces 

the runoff with increasing transpiration from vegetation. The transpiration also 

increases as the root depth is increased. For C4 grasses, the largest increase in runoff 

occurs when the leaf area index was decreased from 4.0 to 3.5, but this represents 

merely 0.62% of the total runoff. A similar effect is observed for broadleaf forest, as 

1.4 % of the total flow only increases with 1.4% if the LAI is decreasedfrom 5.0 to 4.0. 

These results show that changes in vegetation parameters have only a minor effect on 

the generation of flow, which can barely be observed in the simulated hydrograph 

(Figure 4.2). 

 

Table 4.4 The hydrological effects using different C4 vegetation parameter setup in PIU_02 

 Canopy height [m] Leaf area index Root depth [m] Runoff [mm/year] 

Standard C4 1.26 4.0 0.5 1457.0 
Set 1 1.40 4.0 0.5 1458.9 
Set 2 1.13 4.0 0.5 1455.0 
Set 3 1.26 4.5 0.5 1448.5 
Set 4 1.26 3.5 0.5 1466.0 
Set 5 1.26 4.0 1.0 1442.2 

 
Table 4.5 The hydrological effects using different BF vegetation parameter setup in PIU_04 

 Canopy height [m] Leaf area index Root depth [m] Runoff [mm/year] 

Standard BF 19.01  5.0  3.0  640.7  
Set 1 20.91  5.0  3.0  642.4  
Set 2 17.11  5.0  3.0  639.3  
Set 3 19.01  5.5  3.0  633.0  
Set 4 19.01  4.5  3.0  649.4  
Set 5 19.01  5.0  2.5  641.3  
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4.3.2 Parameterisation of vegetation in JULES 

The hydrological fluxes modelled with using “initial PTFs” are shown in Table 4.6 

with the percentage shown in Figure 4.3. The transpiration is highest when covered by 

broadleaf forest, which also generates the lowest subsurface flow and total flow. Shrub 

has the lowest transpiration, which leads to the highest subsurface flow. It also has the 

highest evaporation out of the 5 PFTs. The highest flow is modelled under bare soil, 

which is 335.6 mm/year higher than broadleaf forest coverage. Unrealistically low 

transpiration is modelled under crop (wheat) setup. The result is compared with the 

simulation using the soil setup used in previous JULES-crop study (Williams et al., 2017). 

The VG parameter in the study is higher than the values of both “initial PTFs” and 

“initial Huagrauma”, which requires further investigation. 

The modelling results are compared with the “initial Huagrauma” experiment data 

and shown in Table 4.7 with the percentage shown in Figure 4.4. The “initial 

Huagrauma” experiment has higher saturated water retention than the “initial PTFs” 

setup (θsat: 0.900 vs 0.463), which allows more water to be stored in the soil column. 

Hence, this reduces surface flow.  

The highest flow using “initial Huagrauma” is 1513.7 mm/year when covered by 

needle-leaf forest. The results show that the modelled flow is considerably affected 

under different land cover types.  
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Table 4.6 Hydrological flux under different land cover types [mm/year] (in PIU_1, initial PTFs)  

 Evapotranspiration [mm/year] Flow [mm/year] 

Land Cover Transpiration Evaporation Total Subsurface  Total 

PIU1 (15% BF+85% C4) 680.7 469.2 1149.9 285.7 1095.4 

Broadleaf forest (BF) 725.8 541.1 1266.9 189.8 988.0 

Needle-leaf forest (NF) 482.6 603.6 1086.2 366.7 1163.9 

C3 grasses 653.6 505.6 1159.2 275.7 1081.5 

C4 grasses 664.7 457.6 1122.3 311.0 1121.9 

Shrubs (SH) 381.3 703.0 1084.3 350.8 1159.3 

Crop (wheat) 9.5 979.4 988.9 425.3 1251.8 

Crop* 417.2 770.6 1187.8 4.3 1049.3 

Bare soil (BS) 0.0 913.0 913.0 349.9 1323.6 

*The simulation under the soil setup used in previous JULES-crop study (Williams et al., 2017) 

 

Figure 4.3 The percentage of hydrological flux under different land cover (initial PTFs) 
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Table 4.7 Hydrological flux under different land cover types [mm/year] (in PIU_1, initial Huagrauma) 

 Evapotranspiration Flow  
Transpiration Evaporation Total Subsurface  Total 

PIU1 (15% BF+85% C4) 270.4 499.3 769.7 779.0 1466.5 

Broadleaf forest (BF) 252.4 554.5 806.9 773.8 1435.9 

Needle-leaf forest (NF) 131.1 591.5 722.6 848.8 1513.7 

C3 grasses 210.5 587.5 798.0 739.0 1433.0 

C4 grasses 272.4 490.0 762.4 780.7 1472.7 

Shrubs (SH) 87.1 729.9 817.0 722.0 1409.6 

Crop (wheat) 0.0 945.4 945.4 576.1 1257.1 

Bare soil (BS) 0.0 875.7 875.7 509.6 1319.6 

 

 

Figure 4.4 The percentage of hydrological flux under different land cover (initial 

Huagrauma) 
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4.3.3 The effects of grazing in páramo 

The hydrological indicators are used to identify the impact under LUCC by using 

the JULES model setup and a paired catchments comparison (Table 4.8). In PIU_01, 

the resulting simulated discharge time series is shown in Figure 4.5, which shows that 

the flow has been reduced by 14.5% (RR: 0.69 to 0.59) under the potential grazing 

activities. The water regulation capacity reduces correspondingly, as shown by the 

lower BFI, and a steeper R2FDC in the model simulation under LUCC. Comparing the 

observed discharge of the paired catchments also shows that water yield of the grazed 

catchment PIU_01 is 6.8% lower than the natural catchment (RR: 0.73 vs 0.68). The 

flow in the grazed catchment PIU_02 is higher than the simulated value, which could 

be attribute to the difference in precipitation (PIU_01: 2240.2 mm/year vs 

PIU_02:2588.5 mm/year), which has  considerable impact ona the total flow. 

In LLO_02, the change in land cover (10% of forest -> 10% of shrub) has slightly 

increased the water yield (RR: 0.38 -> 0.39) with little effects on the other flow 

indicators. Since there is no difference in the intrinsic soil properties, these results 

imply that soil properties are more important than the vegetation parameters in 

determining the rainfall-runoff ratio. As shown in Figure 4.6, the flows observed in the 

pair of catchments were lower both than the simulated flow. The main reason is that 

some intense rainfall events exist in the rainfall record, which do not show an 

according peak in the flow observations. However, in the observed discharges, a minor 

change between the conserved and grazed catchment can also be observed (RR: 0.14 

vs 0.12). 

On the other hand, a much more substantial difference is present in JTU_03, in 

which the modelled flow shows a reduction in the grazed catchment (RR: 0.37 -> 0.26), 

which is also present in the observed discharge (0.36 vs 0.07; see also Figure 4.7). In 
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the model, the grazing activities in JTU_03 reduced the soil water retention, which 

leads to a baseflow reduction (BFI: 0.57 ->0.25), a more unstable flow (Qvar: 1.09 -

>1.87), and a lower water regulation (R2FDC: -0.66 -> -1.81).  
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Table 4.8 Hydrological indices of catchment in natural state and under potential LUCC impacts, obtained from both the 
observed discharge time series, and the time series simulated by JULES. RR: Rainfall-runoff ratio, BFI: Baseflow index, 
Qvar: Coefficient of variation in daily flows, Qskew: Skewness in daily flows, R2FDC: the slope of the flow duration curve 

  Observed discharge JULES modelling 
Catchment Land cover RR BFI Qvar Qskew R2FDC RR BFI Qvar Qskew R2FDC 

PIU_01 Natural 0.73 0.42 1.09 2.19 -1.29 0.69 0.66 0.77 2.86 -0.57 
 Grazed 0.68 0.59 1.15 2.46 -1.36 0.59 0.61 0.88 2.84 -0.73 
LLO_02 Natural 0.14 0.85 0.60 1.72 -0.69 0.46 0.83 0.74 1.05 -1.17 
 Grazed 0.12 0.84 0.68 2.47 -0.52 0.39 0.85 0.71 0.98 -1.17 
JTU_03 Natural 0.36 0.86 0.90 4.53 -0.54 0.37 0.88 0.48 1.50 -0.42 
 Grazed 0.07 0.63 1.44 5.77 -1.02 0.23 0.35 1.62 2.98 -1.11 
PIU_04 Natural 0.39 0.85 0.95 2.73 -0.85 0.39 0.86 0.61 1.39 -0.90 
 Grazed 0.26 0.70 1.57 4.36 -1.12 0.31 0.75 1.07 2.01 -1.66 
HUA_01 Natural 0.70 0.67 1.30 1.65 -3.23 0.63 0.69 0.95 1.91 -1.36 
 Grazed 0.54 0.71 1.29 1.52 -2.93 0.63 0.52 1.10 2.40 -1.22 
HMT_02 Natural 0.21 0.59 2.63 4.88 -2.04 0.27 0.38 2.31 4.63 -0.56 
 Grazed 0.23 0.57 2.87 5.51 -2.99 0.27 0.38 2.30 4.62 -0.51 
PAU_01 Natural 0.68 0.70 0.87 3.33 -0.74 0.71 0.70 0.61 2.73 -0.49 
 Cultivated 0.58 0.48 1.34 3.46 -1.11 0.62 0.66 0.71 2.85 -0.63 
TIQ_02 Natural 0.33 0.72 2.20 6.47 -0.53 0.33 0.37 2.23 4.40 -0.99 
 Cultivated 0.25 0.65 2.15 3.97 -2.04 0.32 0.33 2.35 4.27 -1.60 
PAU_02 Natural 0.40 0.83 0.73 2.08 -0.68 0.49 0.90 0.38 0.92 -0.40 
 Afforested 0.23 0.72 0.97 3.37 -0.90 0.34 0.81 0.55 1.41 -0.62 
TAM_02 Natural 0.53 0.95 0.67 1.94 -0.59 0.52 0.85 0.80 0.79 -1.61 
 Afforested 0.19 0.96 0.96 1.93 -0.86 0.41 0.81 0.97 1.01 -1.93 
CHA_02 Natural 0.76 0.55 1.26 4.73 -0.53 0.60 0.58 0.92 3.21 -0.75 
 Afforested 0.29 0.44 1.98 3.97 -1.42 0.40 0.49 1.15 3.36 -0.98 
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Figure 4.5 (a) Comparison of flow under natural páramo watershed (PIU1) using JULES modified on the observed data (“Modelled”) and modified 

on the grazed catchment (PIU2) with changed parameters (“LUCC”); (b) pair-wise observations for the natural (PIU1) and grazed (PIU2) 

catchments. 
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Figure 4.6 (a) Comparison of flow under natural páramo watershed (LLO2) using JULES modified on the observed data (“Modelled”) and modified 

on the grazed catchment (LLO1) with changed parameters (“LUCC”); (b) pair-wise observations for the natural (LLO2) and grazed (LLO1) 

catchments. 
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Figure 4.7 (a) Comparison of flow under natural páramo watershed (JTU3) using JULES modified on the observed data (“Modelled”) and modified 

on the grazed catchment (JTU2) with changed parameters (“LUCC”); (b) pair-wise observations for the natural (JTU3) and grazed (JTU2) 

catchments.
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4.3.4 The effects of grazing in puna 

PIU_04 is a catchment partially covered by páramo forest (0.80 BF, 0.20 C4). The 

land cover is different to its neighbouring watershed PIU_07 (0.35CR, 0.45 C4, 0.20 

SH), in which grazing, and cultivation activities had taken place. Figure 4.8 clearly 

shows a lower flow (RR: 0.26 vs 0.39) and increasing level of peak flows (Qskew: 4.36 

vs 2.73) in the overgrazed puna watershed, compared to the adjacent natural 

catchment. This change in land use is present in the modified soil parameters, which 

show a lower water retention is modified in the grazed catchment. This directly results 

in a reduced flow simulated by the model (RR: 0.39 -> 0.31), and similarly, a reduction 

in BFI and R2FDC. A lower flow is observed in the grazed catchment PIU_07 compared 

to its simulated value. This could be attribute to the lower precipitation (PIU_04: 

1306.0 mm/year vs PIU_07: 650.3 mm/year) in PIU_07, which further decreases the 

flow in addition to the effects of grazing. The observed and modelled effects of low-

density grazing in a humid puna watershed (HUA_01) are as shown in Figure 4.9. 

Reduced flow (RR: 0.70 vs 0.54) has been monitored in the grazed catchment (HUA_02) 

compared to the natural catchment. To simulate the grazing activities, the soil water 

retention parameters were changed in the model by means of a minor change of LUCC 

(5 % of grass -> bare soil). The modelled change in average flow is not significant. 

However, the hydrograph shows more flashy response under LUCC. 

Figure 4.10 shows the altered flow under high density grazing in dry puna 

(HMT_02). In the grazed catchment (HMT_01), a higher peak flow is observed (Qskew: 

5.51 vs 4.88) accompanied by an increased water yield (RR: 0.21 vs 0.23). The changes 

are not considerably detected by the model since minor differences were made in 

both of soil water retention and LUCC.
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Figure 4.8 (a) Comparison of flow under natural páramo watershed (PIU4) using JULES modified on the observed data (“Modelled”) and modified 

on the grazed catchment (PIU7) with changed parameters (“LUCC”); (b) pair-wise observations for the natural (PIU4) and grazed (PIU7) 

catchments. 
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Figure 4.9 (a) Comparison of flow under natural páramo watershed (HUA1) using JULES modified on the observed data (“Modelled”) and modified 

on the grazed catchment (HUA2) with changed parameters (“LUCC”); (b) pair-wise observations for the natural (HUA1) and grazed (HUA2) 

catchments. 
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Figure 4.10 (a) Comparison of flow under natural páramo watershed (HMT2) using JULES modified on the observed data (“Modelled”) and 

modified on the grazed catchment (HMT1) with changed parameters (“LUCC”); (b) pair-wise observations for the natural (HMT2) and grazed 

(HMT1) catchments. 
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4.3.5 The effects of cultivation 

The effects of cultivation are explored for both a páramo watershed (PAU_01), 

and a puna watershed (TIQ_02). A lower (RR: 0.58 vs 0.68) and more unstable flow 

(Qvar: 1.34 vs 0.87) with reduced base flow (BFI: 0.48 vs 0.70) has been monitored in 

the cultivated páramo watershed (PAU_04), compared to their natural counterparts 

(Figure 4.11). To model this change, 30 % of land cover was converted to “cultivated” 

in JULES, which reduced the flow by 12.6 % (RR: 0.71 ->0.62). These changes could also 

be attributed to the changing soil water retention modified between the natural and 

cultivated watershed. 

 Figure 4.12 displays the effect under cultivated puna (TIQ_01). The ability of 

water regulation is decreased (R2FDC: -2.04 vs -0.53) with reduced water yield (RR: 

0.25 vs 0.33). In the model, 35% of the catchment area is represented as cultivated, 

and 30 % by barren area. According this simulation a lower water yield (RR: 0.33 -> 

0.30) is generated with a lower baseflow (BFI: 0.37 -> 0.33), which reduces the 

catchment’s ability of water regulation (R2FDC: -0.99 -> -1.60). 

     In comparison with the observed data and modelling results among páramo 

watershed (PAU_01) and cultivated puna (TIQ_01), it is found that water yield and 

water regulation could be threatened by cultivation. The minor change on the R2FDC 

(the slope of the flow duration curve) from -0.49 to -0.63 in PAU_01, whilst from -0.99 

to -1.60 in TIQ_01 is clearly consistent with this observation.  
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Figure 4.11 (a) Comparison of flow under natural páramo watershed (PAU1) using JULES modified on the observed data (“Modelled”) and 

modified on the cultivated catchment (PAU4) with changed parameters (“LUCC”); (b) pair-wise observations for the natural (PAU1) and cultivated 

(PAU4) catchments. 
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Figure 4.12 (a) Comparison of flow under natural puna watershed (TIQ2) using JULES modified on the observed data (“Modelled”) and modified 

on the cultivated catchment (TIQ1) with changed parameters (“LUCC”); (b) pair-wise observations for the natural (TIQ2) and cultivated (TIQ1) 

catchments. 
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4.3.6 The effects of afforestation 

 The effects of pine afforestation are modelled for 3 biomes, i.e. páramo (PAU_02), 

humid puna (TAM_02), and jalca (CHA_02). In the páramo watershed, the observed 

and simulated hydrological responses show similar trends (Figure 4.13). The impact of 

LUCC leads to an evenly decreased runoff (RR: 0.42 vs 0.23 by observation; 0.49 -> 

0.34 by model). The water regulation also decreased (R2FDC: -0.68 vs -0.90 by 

observation; -0.40 -> 0.62 by model) with a reduced ratio of baseflow (BFI: 0.83 vs 0.72 

by observation; 0.90 -> 0.81 by model) and a higher variation in flow (Qvar: 0.73 vs 

0.97 by observation; 0.38 -> 0.55 by model). The JULES modelling demonstrates a very 

good fit with the observations of the paired catchments. 

In the humid puna watershed (TAM_02), only a few months of data is available 

from Apr-2012 to Aug-2012 as shown in Figure 4.14. Lower water yield has been 

monitored in the pine afforested catchment (RR: 0.53 vs 0.19) with no peak flow 

generated during this period, due to the absence of rainfall events. The JULES model 

was implemented from Apr-2012 to Apr-2013. The results show a significantly 

increased flow in the wet season (Dec-2012 to Apr-2013). The model also points out a 

decrease in flow (RR: 0.52 -> 0.41), as well as a less stable (Qvar: 0.80 ->0.97), and less 

regulated response (R2FDC: -1.61 -> -1.93) under LUCC. Within the pair-wise 

catchment comparison, afforestation reduces the flow by 64.2% (RR: 0.53 -> 0.19). 

However, the difference in precipitation (TAM_02: 1330.4 mm/year vs TAM_01: 

1061.6 mm/year) is likely to be a contributing factor to the lower runoff observed in 

TAM_01. Figure 4.15 shows the simulation of the impact of pine afforestation 

monitored in the jalca watershed (CHA_02). The JULES modelling results show a 

decrease in flow (RR: 0.60 -> 0.40) if 80 % of land cover been afforested. The regulation 

ability (R2FDC: -0.75 -> -0.98) of flow decreases with more variable peak flow (Qvar: 



113 
 

0.92 -> 1.15). The reduction is more significant in the observed flows of the paired 

catchments (RR: 0.76 vs 0.29), in which the flow of the afforested catchment is more 

fluctuated (Qvar: 1.26 vs 1.98) and unregulated (R2FDC: -0.53 vs -1.42).  
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Figure 4.13 (a) Comparison of flow under natural páramo watershed (PAU2) using JULES modified on the observed data (“Modelled”) and 

modified on the afforested catchment (PAU3) with changed parameters (“LUCC”); (b) pair-wise observations for the natural (PAU2) and afforested 

(PAU3) catchments. 
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Figure 4.14 (a) Comparison of flow under natural puna watershed (TAM2) using JULES modified on the observed data (“Modelled”) and modified 

on the afforested catchment (TAM1) with changed parameters (“LUCC”); (b) pair-wise observations for the natural (TAM2) and afforested (TAM1) 

catchments. 
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Figure 4.15 (a) Comparison of flow under natural jalca watershed (CHA2) using JULES modified on the observed data (“Modelled”) and modified 

on the afforested catchment (CHA1) with changed parameters (“LUCC”); (b) pair-wise observations for the natural (CHA2) and afforested (CHA1) 

catchments. 
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4.4 Conclusions 

Land use and land cover change (LUCC) is a major driver of change in the 

hydrological cycle. However, the impacts are hard to quantify and predict due to the 

complexity of catchment characteristics and the external meteorological drivers. Pair-

wised catchment comparison serves as an effective approach to compare the 

hydrological responses under the controlled/affected catchments. However, the 

hydrological effects of difference in catchment characteristics and meteorological 

drivers between the paired catchments cannot be assessed directly in this way. 

Therefore, I evaluated the potential of a physics-based hydrological model (JULES) to 

simulate the impacts under a variety of scenarios of grazing, cultivation, and pine 

afforestation, by altering the soil and land cover parameters in JULES in a physically 

sensible way. 

In this chapter, I find that modification of a single vegetation parameter (canopy 

height, leaf area index, root depth) has a minor effect (< 1.4% of total flow) on the 

hydrological response. However, the land cover change has significant impact on the 

evapotranspiration and generation of flow. The result also implies that the effect of 

soil properties is more pronounced given the low percentage of land cover change 

between the paired catchments. Also, given the insufficient data available for 

calibration of vegetation parameters, I drove the model with soil parameters modified 

in the paired catchment identifying LUCC. A reduction of flow can be found in all types 

of human intervention, as well as increasing peak flow, and the loss of water regulation 

capacity. The simulated LUCC impacts are consistent with the assessment under pair-

wised catchment comparison, which is to be expected because the parameters 

strongly depend on the local observation. The difference in precipitation could be an 

important driver that contributes to the flow change (e.g. PIU_01/PIU_02; 
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PIU_04/PIU_07; TAM_02/TAM_01). I conclude that using a hydrological model helps 

filtering out the impacts of catchment characteristics and micro-meteorological 

conditions, and makes it therefore possible to analyse more specifically the 

contribution of LUCC to the flow generation.  
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5 Modelling regional LUCC dynamics 
in the tropical Andes 

5.1 Introduction 

 Land use and land cover change (LUCC) is a dynamic process governed by the 

interaction between biophysical factors and socioeconomic activities (Moulds, 

Buytaert & Mijic, 2015). In its turn, it is an important driving factor of degrading 

biodiversity and threatening of sustainable ecosystem services (Foley et al., 2005; 

Turner, Billie L., Lambin & Reenberg, 2007). In terms of water resources management, 

sediments, hydrochemistry and hydro-ecology could all be affected directly by the 

changing land use (McIntyre et al., 2014). These effects may disrupt the surface energy 

and water balance; thus, affect the climate on both local and regional scale (Boysen et 

al., 2014; Pitman et al., 2009). Therefore, a sound understanding and prediction of land 

use change is important factor to be considered in hydrological science (McIntyre et 

al., 2014). 

Although land use management becomes increasingly important for solving 

water resources issues, the impact of land use change on the hydrology is still hard to 

identify because of the highly heterogeneous conditions of catchments (McIntyre et 

al., 2014). Land use change models are common measures to understand and quantify 

the driving factor of land use and land cover change (Veldkamp & Lambin, 2001). They 

allow past and future change under different scenarios to be simulated at various 

spatial scales (Mas et al., 2014). The simulated results can be applied to support the 

decision making process of land use planning and environmental management on both 

local and regional scale (Moulds, Buytaert & Mijic, 2015; Veldkamp & Lambin, 2001). 

In addition, the impact of change on biodiversity, water resources, and climate 

variability could be investigated accordingly. 
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The hydrology of tropical Andes is significantly affected by human activities such 

as intensive cattle grazing, cultivation, and pine planting (Buytaert et al., 2006) 

accompanied by the rapid economic growth during the past half-century, which as a 

consequence has decreased the water storage capacity of Andean catchments 

(Harden, 2006). In this chapter, I investigate the LUCC processes in the Andean region 

of Perú and Ecuador by using an open-source land use change model, i.e. the lulcc R 

software package (Moulds, Buytaert & Mijic, 2015). This package is a spatially explicit 

land-use change model, which aims to quantify key processes affecting LUCC, and to 

simulate the potential future changes. It has been demonstrated to generate 

adequate annual land cover map for India between 1960 and 2010 (Moulds, Buytaert 

& Mijic, 2018). I apply the lulcc R model to my study region to analyse the LUCC 

dynamics between 2001 and 2016, and to simulate the potential land use change in 

2030, which is the time horizon most relevant for policy making in the region. The 

model is also used so simulate the historic period that is not covered by available land 

cover maps, to make it possible to input a continuous time series of land use change 

data in the large scale hydrological modelling software JULES, to assess the potential 

changing hydrology under LUCC dynamics.  
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5.2 Methods 

5.2.1 The lulcc R model 

A variety of land-use change models have been developed for different purposes. 

Of these, spatially explicit models are operated over a spatial grid to predict the 

location of land-use/land cover changes (Mas et al., 2014). The models can be 

classified by their use of an inductive or deductive approach. In inductive spatially 

explicit modelling, the suitability to change is predicted for each grid by using a 

function of spatially explicit predictor variables (Moulds, Buytaert & Mijic, 2015). In a 

deductive spatially explicit model, the location of change is predicted by analysing the 

drivers of change. These two approaches can be combined to provide a better 

representing on the land use change in a complex system. The output of such models 

is a set of land use maps simulated by the model, which ideally describe the change 

over time for the target region comprehensively. 

In this research, I analyse the land cover dynamics by applying the lulcc R package 

developed by Moulds, Buytaert & Mijic (2015) to the tropical Andes. Traditionally, 

land-use/land cover change models are developed as software package or extension 

to geographic systems such as ArcGIS (Moulds, Buytaert & Mijic, 2015). It is uncommon 

for the source code of model implementations to be made available (Rosa, Ahmed & 

Ewers, 2014). The lulcc R package is an object-oriented framework for land use change 

modelling written in the R programming language. It is taken as an alternative to the 

major closed-source, specialised software packages. The lulcc R package provides a 

framework for users to perform the whole modelling process within the same 

environment. This allows for a very efficient workflow implementation, which reduces 

the likelihood of user errors. It has the added advantage to ensure the reproducibility 

of simulated scientific results.  
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5.2.2 Assessing historical land cover changes 

Figure 5.1 shows the data processing workflow of the lulcc R package. The 

historical land use map of my study region (Ecuador and Perú) was obtained from the 

MODIS Land Cover Type (MCD12Q1) Version 6 data (Friedl & Sulla-Menashe, 2015). 

The satellite-based map is used as a reference and referred to as the “observed” map. 

The original classification of 17 land use classes from the Annual International 

Geosphere-Biosphere Programme (IGBP) were reclassified into 6 major land use types 

in the study region as Figure 5.2. The region is mainly covered by forest, followed by 

C3/C4 grasses in the highlands, and bare soil occurrences in coast and urban area. I 

classified three minor land cover classes (ice, water, urban) as ‘others’ since these 

areas are barely changed during the modelling period. 

 

Figure 5.1 The workflow of the lulcc R package 

Quantity of LU change (Figure 5.6) 

Historical land use map (Figure 5.2) Explanatory variables (Figure 5.3 &Figure 5.4) 

Fitting predictive models 

Land use suitability (Figure 5.8 & Figure 5.9) 

Spatial allocation (Figure 5.10) Other inputs 

Validation (Figure 5.11) 
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Figure 5.2 Land cover classification (right) in 2001 from IGBP map (left) 
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5.2.3 Predicting future land cover changes 

Binary logistic regression was applied in the predictive model to predict the 

presence or absences of each land use type by using two topography, and three 

socioeconomic explanatory variables(Table 5.1). The topographical variables 

(elevation, slope; Figure 5.3) are important drivers for vegetation types, given that the 

Andean ecosystem is strongly altitude dependent (Célleri et al., 2009). In the Amazon, 

nearly 95% of all deforestation occurred within 5.5 km of roads or 1 km of rivers 

(Barber et al., 2014). Therefore, socioeconomic variables (Figure 5.4) are selected to 

determinate accessibility to human activities (distance to river, distance to road), and 

their development pressure under population growth (population density).  

An alternative predictive model, recursive partitioning and regression trees, 

provided by the rpart package (Therneau & Atkinson, 2019), was used for comparison. 

The predictive models were evaluated by using he receiver operator characteristic 

(ROC) of the ROCR package (Sing et al., 2005). The ROC is a curve of the true positive 

rate against the false positive rate, which is plotted using multiple thresholds to classify 

true values as 1, and false value as 0 (Pontius & Parmentier, 2014). The area under the 

curve (AUC) was summarised, where 1 indicates a perfect fit and 0.5 indicates a purely 

random model.  

 

Table 5.1 Explanatory variables for lulcc R 

Variable Spatial resolution [°] Source 

Elevation 0.083 HydroSHEDS (Lehner, Verdin & Jarvis, 2008) 

Mean slope 0.083 FAO (Fischer, van Velthuizen & Nachtergaele, 2000) 

Road network 0.0083 (DIVA-GIS, 2019) 

River network 0.0083 (DIVA-GIS, 2019) 

Population 

density 
0.0083 (DIVA-GIS, 2019) 
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Figure 5.3 Explanatory variables for lulcc R (topography) 
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Figure 5.4 Explanatory variables for lulcc R (socioeconomic) 
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The land cover changes during 2001 to 2030 were allocated by using two 

allocation algorithms, the CLUE-S algorithm (Verburg et al., 2002), and a stochastic 

ordered algorithm (Fuchs et al., 2012). The CLUE-S algorithm allocates each cell to the 

land use type with the highest suitability determined by the predictive model. The 

number of pixels allocated to each land use type was calculated subsequently. If the 

number of allocated pixels of a land use type is smaller or greater then the demand, 

the suitabily of each pixel of a certain land use type will be increased or decreased. 

The model uses an iterative procedure until the allocation of all land use types meet 

their demand. The ordered allocation algorithm uses a hierarchical way to allocate 

land use according to the perceived socialeconomic value of each land use. For land 

use types with decreasing demand, the pixels belonging to certain land use type with 

lower suitability will be changed to other land use type with increasing demand. 

I further validated the simulated land cover map in 5 selected river basins for 

which observed streamflow data exist (Table 5.2; Figure 5.5). The basins are deemed 

representative for the regional biogeographical variability of the study region. 

 

Table 5.2 The selected catchments for LUCC validation. BF: Forest, C3: C3 grasses, C4: 

C4 grasses, SH: Shrub, BS: Bare soil. 

Basin Elevation (m) Area (km2) Major land cover (% in 2016) 

BELLAVISTA 110 100677 92.4 BF; 3.9 C3 

SAN REGIS 93 363848 67.0 BF; 16.3 C3; 8.4 SH; 6.8 C4 

EL TIGRE 44 4792.6 45.6 SH; 31.6 C4; 15.8 BF 

CONTA 324 3161 77.5 C3; 15.0 C4; 7.5 BS; 7.0 C3 

EGEMSA KM 105 2,302 9712.1 87.7 C3; 5.3 BF 
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Figure 5.5 The boundary of lulcc R setup and the select catchments for validation 
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5.3 Results and discussion 

5.3.1 Allocating the land cover changes 

Figure 5.6 shows the land cover changes during 2001 to 2016 identified by using 

MODIS Land Cover Type (MCD12Q1) Version 6 data (Friedl & Sulla-Menashe, 2015). 

The model covers an area of 1.57 million km2 in the Andean region of Perú and Ecuador. 

Overall, 8.2% of land cover has been changed between this period, including a 

continuous trend of deforestation which has decreased the forest area by 28186 km2. 

Table 5.3 shows that these deforested areas have been mainly transformed to shrub 

and C3/C4 grasses.  

 

Figure 5.6 The land cover changes from 2001 to 2016 and a linear regression fit  
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Table 5.3 Cross-tabulated change between 2001 and 2016 (in pixels) 

2001\2016 Forest Shrub C4grass C3grass Crop Bare soil Others 

Forest 9952 341 45 67 3 0 1 

Shrub 41 329 58 27 1 0 0 

C4grass 30 79 1107 189 32 42 1 

C3grass 54 39 180 3831 38 16 2 

Crop 4 21 54 46 184 0 0 

Bare soil 0 0 50 35 0 1081 1 

Others 0 0 0 4 0 1 270 

 

In Figure 5.7, the AUC suggests reasonable prediction using both glm/rpart model.  

A suitability map for each land cover was fit using binary logistic regression model as 

Figure 5.8.  

 

Figure 5.7 ROC curves showing the ability to simulate the observed pattern of land 

use in 2001 
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Figure 5.8 Suitability map for each land cover (Forest, Shrub, C4 grass) according to binary logistic regression model 
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Figure 5.9 Suitability map for each land cover (C3 grass, crop, bare soil) according to binary logistic regression model
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The allocation results were compared and validated with the historical land cover 

map of 2016 (Figure 5.10). The modelled results predicted more afforestation in the 

lowland area, which shows a higher suitability for forest. In Figure 5.11, the land use 

changes were classified as afforestation and deforestation. The modelling results and 

observation all show that deforestation mainly occurs over the Andes mountains. 

With using the ordered algorithm, Table 5.4 shows the number of correctly 

allocated changes of the model. For the finest resolution, 87.6% of unchanged land 

cover was simulated correctly, whereas only 15.9% of changes were detected. The 

model performance increased with coarser resolution (Figure 5.12). 62.7% of changes 

were simulated under the resolution used in the JULES model (0.25 degree). However, 

40.6% of changes was simulated as wrong categories. Table 5.5 shows the allocation 

analysis using the CLUE-S algorithm. CLUE-S has slightly better performance simulating 

the persistence of land cover. However, a higher percentage of the changes were 

allocated to wrong categories. The model performance increases with decreasing 

resolution (Figure 5.13). The ordered algorithm allocated the land cover with 88.2% 

accuracy under the finest resolution. The number is 89.1% for the CLUE-S algorithm.  

The potential land cover for the year 2030 was allocated using both the ordered 

model (Figure 5.14) and the CLUE-S model (Figure 5.15), in which the demand of land 

cover was extrapolated linearly from the historical data. Both algorithms show that 

future deforestation is most likely to occur close to the area that was already 

deforested in 2016. 
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Figure 5.10 The land cover in 2016 a) the reference land cover map b) allocated by the ordered model c) allocated by the CLUE-S model 
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Figure 5.11 The afforestation/deforestation from 2001 to 2016 identified by a) the referenced land cover map b) the ordered model allocation 

c) the CLUE-S model allocation 
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Table 5.4 Indicators of agreement and disagreement at multiple resolutions using the 

ordered model. (1) Change simulated as persistence (misses) (2) Change simulated correctly 

(hits) (3) Change simulated as change to wrong category (wrong hits) (4) Persistence 

simulated as change (false alarms) (5) Persistence simulated correctly (correct rejections). 

Pixel = level of aggregation in multiple of pixels (i.e. decreasing resolution) compared to the 

original map. Resolution is expressed in degrees lat/lon. 

Pixel (resolution) (1) (2) (3) (4) (5) 

1 (0.083) 0.069 0.006 0.007 0.042 0.876 

4 (0.167) 0.034 0.010 0.019 0.030 0.906 

9 (0.25) 0.019 0.013 0.019 0.024 0.925 

16 (0.333) 0.012 0.013 0.021 0.018 0.934 

25 (0.417) 0.009 0.014 0.019 0.013 0.945 

36 (0.50) 0.008 0.014 0.021 0.011 0.947 

 

 

 

Figure 5.12 The number of correctly allocated changes as fraction of the total study 

area (ordered model) 

 

 



137 
 

Table 5.5 Indicators of agreement and disagreement at multiple resolutions using the 

CLUE-S model. (1) Change simulated as persistence (misses) (2) Change simulated correctly 

(hits) (3) Change simulated as change to wrong category (wrong hits) (4) Persistence 

simulated as change (false alarms) (5) Persistence simulated correctly (correct rejections). 

Pixel = level of aggregation in multiple of pixels (i.e. decreasing resolution) compared to 

the original map. Resolution is expressed in degrees lat/lon. 

Pixel (resolution) (1) (2) (3) (4) (5) 

1 (0.083) 0.073 0.004 0.005 0.030 0.887 

4 (0.167) 0.037 0.008 0.018 0.022 0.914 

9 (0.25) 0.022 0.011 0.017 0.018 0.932 

16 (0.333) 0.014 0.012 0.020 0.013 0.940 

25 (0.417) 0.011 0.014 0.017 0.011 0.945 

36 (0.50) 0.008 0.014 0.018 0.007 0.953 

 

 

Figure 5.13 The number of correctly allocated changes as fraction of the study area 

(CLUE-S model)  
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Figure 5.14 Simulation of land cover allocation and changes with the ordered model for 2030 

 

Figure 5.15 Simulation of the land cover allocation and changes with the CLUE-S model for 2030 
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5.3.2 Land cover changes in basins 

In this section, I review and discuss the obtained results for each of the modelled 

basins in sequence. 

Conta is a C3 grass covered catchment located in southern Perú. In this basin, no 

significant change was detected from observation from 2001 to 2016, and as a result, 

neither in the model results from 2016 to 2030 (Table 5.6). 

EGEMSA KM 105 (Table 5.7) is also located in southern Perú, and mainly covered 

by C3 grasses. The major part of land cover was modelled correctly with only 6 forest 

pixels that were simulated as wrong category.  

EL TIGRE is located in northern Perú at the boundary of forest and shrub. Table 

5.8 shows that the land cover allocated in 2016 is closest to the observed allocation. 

The observations, the ordered algorithm, and the CLUE-S algorithm, all show that part 

of forest has been transformed into shrub from 2001 to 2016. The lulcc R model 

suggests that the trend of deforestation will continue between 2016 and 2030. 
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Table 5.6 The pixels of land cover allocated in CONTA 

 Observation Ordered model CLUE-S model 

 2001 2016 2016 2030 2016 2030 

Shrub 0 0 3 3 0 0 

C4grass 6 6 3 3 6 6 

C3grass 30 31 30 30 30 30 

Bare soil 4 3 4 4 4 4 

 

Table 5.7 The pixels of land cover allocated in EGEMSA KM 105 

 Observation Ordered model CLUE-S model 

 2001 2016 2016 2030 2016 2030 

Forest 5 6 0 0 0 0 

Shrub 3 2 3 3 7 7 

C4grass 1 1 5 5 1 1 

C3grass 101 100 102 103 103 104 

Crop 1 1 1 1 0 0 

Bare soil 1 2 1  1 0 

Others 2 2 2 2 2 2 

 

Table 5.8 The pixels of land cover allocated in EL TIGRE 

 Observation Ordered model CLUE-S model 

 2001 2016 2016 2030 2016 2030 

Forest 13 9 9 4 5 1 

Shrub 17 26 27 36 23 27 

C4grass 20 18 14 10 22 22 

C3grass 7 4 7 7 7 7 
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Table 5.9 The pixels of land cover allocated in BELLAVISTA 

 Observation Ordered model CLUE-S model 

 2001 2016 2016 2030 2016 2030 

Forest 1076 1074 1073 1068 1073 1052 

Shrub 21 27 18 21 27 47 

C4grass 19 13 26 27 14 14 

C3grass 41 45 38 39 42 43 

Crop 3 0 3 3 4 4 

Bare soil 0 0 2 2 0 0 

Others 2 3 2 2 2 2 
 

 

The modelling results were further validated in two large forest catchments, 

BELLAVISTA in Ecuador, and SAN REGIS in northern Perú. In BELLAVISTA, minor changes 

of forest were detected from the observation between 2001 and 2016 (Table 5.9). The 

lulcc R model also suggests that the region will not be significantly deforested in 2030 

with ordered algorithm. However, the CLUE-S algorithm simulated decreasing forest 

area in 2030. 

In SAN REGIS, a clear trend of deforestation can be observed both in the land use 

map and in the simulation (Table 5.10). Respectively, 4.5%/3.4%/3.5% of deforestation 

is found with the observations/ ordered algorithm/ CLUE-S algorithm from 2001 to 

2016. The lulcc R predicts that respectively 3.6% and 5.6% of forest area will be lost 

from 2016 to 2030, using the ordered algorithm and the CLUE-S algorithm 

 

Table 5.10 The pixels of land cover allocated in SAN REGIS 

 Observation Ordered model CLUE-S model 

 2001 2016 2016 2030 2016 2030 

Forest 2607 2489 2522 2400 2516 2349 

Shrub 198 313 276 372 271 437 

C4grass 264 251 296 314 283 283 

C3grass 591 607 584 595 591 593 

Crop 27 29 9 9 27 27 

Bare soil 6 4 6 3 5 4 

Others 23 23 23 23 23 23 
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5.4 Conclusions 

I explored the use of the open source land use change model, lulcc R, to allocate 

historic and predict future land cover change in Ecuador and Perú. The model was set 

and validated with the current available land use map from 2001 to 2016. 

Deforestation is identified as the major change in the tropical Andes, with the forest 

having a high potential to be transferred to shrub. The modelling results of lulcc R 

indicate that most of the changes could be detected under the resolution (0.25 degree) 

projected to be used in the JULES model. However, some forest area was simulated as 

C3/C4 grasses rather than shrub as indicated by the observed land cover maps. The 

simulated land cover changes were further assessed at a basin scale. The major type 

of land cover is correctly allocated in the selected basins. In the basins mainly covered 

by C3 grasses, there is a low potential to be changed to forest or other land cover types. 

For the forest dominated catchments, continuous deforestation is detected, and the 

historic change could be estimated reasonably well. The model has detected 

continuous land cover change of over the past observations and based on these trends 

makes predictions on the location of future changes. These predications can be 

embedded in the hydrological model in cases where an up-to-date land cover map is 

not available, as well as to make predictions about future change. 
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6 Hydrological assessment of land-
use impacts on the basin scale 
using JULES 

6.1 Introduction 

Land use and land cover change (LUCC) is a major driver of changes in the 

hydrological cycle. Hydrological processes, including transpiration (Zhang, Walker & 

Dawes, 1999), infiltration, interception (Le Maitre, Scott & Colvin, 1999), and an overall  

change in streamflow are observed when the land cover is changed. Deforestation is 

the major type of LUCC worldwide (Borrelli et al., 2017; Turner, B. L., Meyer & Skole, 

1994). The Andean region is one of the hotspots of deforestation. Therefore, the 

impacts on hydrological responses need to be studied because of its important role in 

regional water supply and vulnerability to human activities (Buytaert et al., 2006).  

In this chapter, the LUCC impacts are investigated systematically by using the 

JULES model. The geographical focus is on the Andes of Ecuador and Perú, which 

covers an area of 1.57 million km2. In this area, forest area has decreased by 28186 

km2 (1.80% of total area) between 2001 and 2016,which was identified by using 

MODIS Land Cover Type (MCD12Q1) Version 6 data (Friedl & Sulla-Menashe, 2015). 

The hydrological fluxes are simulated using the JULES model, which is a model that 

is increasingly used for hydrological assessment (Le Vine et al., 2016; Zulkafli et al., 

2013). It has the advantage that it represents the physical processes using physically 

meaningful parameters, which can be adjusted to assess the impacts of LUCC. It is not 

commonly used in tropical regions due to the data requirement to represent detailed 

hydrological processes (Buytaert, Célleri & Timbe, 2009; Célleri & Feyen, 2009). A 

relevant study was carried out in Peruvian Andes–Amazon (Zulkafli et al., 2013), which 

suggested reasonable river flow simulation in four selected humid tropical mountain 
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basins using the JULES model. However, the study also highlightedremining 

discrepancies between the simulated and observed flow. In particular, the study 

identified an insufficient baseflow estimation, an underestimated evapotranspiration 

rate, and an absence of dry-season flow (MacKellar et al., 2013), which are issues still 

needed to be addressed. 

The main purpose of this research is twofold. The first aim is to improve the 

current regional hydrological modelling setup of JULES by using the citizen science 

generated soil and land cover information that were introduced earlier in this thesis. 

The simulated flow is evaluated by monitoring data in 17 selected basins distributed 

over the Andes. Subsequently, the regional JULES model is used to assess the impacts 

of LUCC on the regional hydrology. The potential hydrological impacts as a result of 

deforestation are evaluated. 
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6.2 Methods 

6.2.1 The regional JULES setup  

The JULES model has been initialised at a resolution of 0.25° over a geographical 

region that covers the area of Ecuador and Perú (1.57 million km2). The required time 

series of meteorological data, downward short-wave and long-wave radiation, 

temperature, specific humidity, wind speed, and surface pressure, were extracted 

from a globally available reanalysis dataset, i.e. the NCEP-DOE Reanalysis II data 

(Kanamitsu et al., 2002) from 2001 to 2016. The data were disaggregated to 0.25° from 

its original scale of 2.0° on the T62 Gaussian grid. The dataset comes at a 6-hourly 

temporal resolution and covers the time period of 1979/01 up-to-date. Precipitation 

data was obtained from a remote sensing product TRMM_3B42.7 (Huffman et al., 

2007), which provides a higher spatial resolution (0.25° scales),temporal resolution (3-

hourly), and better hydrological simulation (Zulkafli et al., 2013) than the NCEP-DOE 

Reanalysis II data.  

The land cover was obtained from the Terra and Aqua combined Moderate 

Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) Version 

6 data (Friedl & Sulla-Menashe, 2015). The 17 IGBP land cover classes were reclassified 

to the 10 land-use type used in JULES according to Table 6.1 (Houldcroft et al., 2009). 

This linear mapping algorithm has been developed to represent for the variation in 

land cover, (Dunderdale, Muller & Cox, 2000). 

Model performance was evaluated using two soil parameter sets. The first one is 

the most commonly used ‘pedotransfer function’ approach, which derives the soil 

parameters using the global soil textural fractions (percentage of sand, silt and clay), 

and chemical properties (pH, DBD, SOC, CEC) from the Harmonized World Soil 

Database version 1.21 (Fao/Iiasa/Isric/Isscas/Jrc, 2012). The second parameters set 
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uses modified soil parameters, in which the Van Genuchten parameters (n, α) are 

obtained from the experimental data obtained from Buytaert et al. (2005). This setup 

gives a higher estimation of the critical point, which reduces transpiration and 

consequently generates more subsurface runoff, which improves the hydrological 

simulation at the catchment scale (see Chapter 3). For the modified soil parameters, 

only Leptosols, Cambisols, Andosols, and Phaeozems were modified as these soil types 

were examined with iMHEA observation (Chapter 3) and the changing water retention 

properties shown improving performance for these soil types. 

 

 

Table 6.1 Mapping of IGBP into fractions of JULES surface types (%).  

IGBP description BF NF C3 C4 SH Crop Urban Water Bare Soil Ice 

EN forest 0.0  69.4  22.2  0.0  0.0  0.0  0.0  0.0  8.4  0.0  

EB forest 85.9  0.0  0.9  7.0  0.0  0.0  0.0  0.0  6.2  0.0  

DN forest 0.0  65.3  25.6  0.0  0.0  0.0  0.0  0.0  9.1  0.0  

DB forest 62.3  0.0  7.0  8.9  3.7  0.0  0.0  0.0  18.1  0.0  

Mixed forest 35.5  35.5  20.8  0.0  0.0  0.0  0.0  0.0  8.2  0.0  

Closed shrub 0.0  0.0  25.0  0.0  60.0  0.0  0.0  0.0  15.0  0.0  

Open shrub 0.9  0.0  3.1  14.7  34.1  0.0  0.0  0.0  47.2  0.0  

Woody savannah 50.0  0.0  15.0  0.0  25.0  0.0  0.0  0.0  10.0  0.0  

Savannah 20.0  0.0  0.0  75.0  0.0  0.0  0.0  0.0  5.0  0.0  

Grassland 0.0  0.0  65.9  15.7  4.9  0.0  0.0  0.0  13.5  0.0  

Permanent wet 2.2  0.0  80.8  0.0  1.4  0.0  0.0  15.0  0.6  0.0  

Cropland 0.0  0.0  0.0  0.0  0.0  79.6  0.0  0.0  20.4  0.0  

Urban 0.0  0.0  0.0  0.0  0.0  0.0  100.0  0.0  0.0  0.0  

Crop 2.5  2.5  27.5  7.5  5.0  45.0  0.0  0.0  10.0  0.0  

Snow/ice 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  100.0  

Barren 0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  100.0  0.0  

Water bodies 0.0  0.0  0.0  0.0  0.0  0.0  0.0  100.0  0.0  0.0  
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Figure 6.1 The boundary of JULES setup and the 17 catchments selected for validation 
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6.2.2 Assessing the basin hydrology 

In this chapter, the JULES model was extended beyond the represented land 

covers in the iMHEA sites to broader basin scale in Andes of Ecuador and Perú. The 

modelling flow was evaluated with the observation in 17 selected basins (Figure 6.1) 

delineated using the HydroBASINS data (Lehner, Verdin & Jarvis, 2008; Lehner & Grill, 

2013). Observed streamflow are available from the Sistema Nacional de Información 

de Recursos Hídricos (Autoridad Nacional del Agua, 2019) in Perú, and are described 

in Table 6.2.  

As JULES does not have an integrated routing function, the simulated subsurface 

and surface flow was routed using a simple delay function: 

Q𝑠𝑖𝑚,𝑡 =∑(𝑄𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑡−𝑡𝑖1 + 𝑄𝑠𝑢𝑏𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑡−𝑡𝑖2)

𝑛

𝑖=1

; 𝑡𝑖1 =
𝑑𝑖
𝐶1
; 𝑡𝑖2 =

𝑑𝑖
𝐶2

 

in which the flood wave velocity C1 was set to 1.0 m/s (fast response catchment) 

and 0.25 m/s (slow response catchment) for surface flow, and a fixed value of 0.25 m/s 

for subsurface flow, according to the Monte Carlo optimisation implemented 

previously for the Peruvian Andes–Amazon (Zulkafli et al., 2013). For each pixel, di 

marks the distance to the outlet of basin. The lag time ti is calculated accordingly. The 

modelling performance was assessed with hydrological indices RR for the water yield, 

BFI for the baseflow, and Nash–Sutcliffe model efficiency (NSE) for the overall 

performance (as described in section 2.2.7). 
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Table 6.2 Overview of the hydrometric stations used for validation. 

Station River Coordinates Elevation Area 

(km2) 

Period of  

available data 

Dominate soil Land cover 

BELLAVISTA 
 

-73.085  -3.488  110 100676.5 1998-2013 Gleysols, Cambisols BF 

EL TIGRE Tumbes -80.457  -3.769  44 4792.6 1963-2019 Leptosols BF, C4 

ZAMBA CANAL QUIROZ -79.900  -4.667  585 2171.6 2011-2019 Cambisols C4 

SALINAR Chicama -78.967  -7.667  350 3800 1950-2016 Leptosols, Cambisols C3, C4 

PUENTE ÑACARA Piura -80.170  -5.110  119 4733.7 2014-2019 Cambisols, Arenosols C3, C4 

PUENTE SANCHEZ 

CERRO 

Piura -80.617  -5.183  23 7571 1925-2018 Cambisols, Arenosols C3, C4 

BATAN Zaña -79.289  -6.803  246 738.5 2016-2019 Leptosols C3, C4, BF 

YONAN Jequetepeque -79.100  -7.250  428 3509.3 2001-2019 Leptosols, Regosols C3, C4 

HUACAPONGO VIRU -78.667  -8.383  280 958.2 2014-2017 Leptosols, Regosols C3, CR 

CONDORCERRO Santa -78.250  -8.650  450 10540 1977-2019 Leptosols, Regosols C3 

MALVADOS 
 

-77.628  -10.336  1071* 1545.3 2000-2017 Leptosols C3 

CAHUA Pativilca -77.224  -10.547  3518* 3134.1 2000-2019 Leptosols C3 

SANTO DOMINGO Chancay - 

Huaral 

-77.028  -11.370  620 1870.5 1921-2017 Leptosols, Regosols C3, BS 

OBRAJILLO Chillón -76.622  -11.453  2,706 452.4 1968-2019 Leptosols, Regosols C3 

CONTA SAN JUAN -75.975  -13.439  324 3161 2011-2019 Leptosols, Regosols C3 

LETRAYOC Pisco -75.720  -13.640  756 3120.1 2011-2019 Leptosols, Regosols C3 

EGEMSA KM 105 Vilcanota -72.533  -13.183  2,302 9712.1 1985-2019 Regosols C3 
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6.2.3 Assessing LUCC impacts on regional hydrology 

The impacts of LUCC on the catchment hydrological response were assessed using 

the JULES model. First, the flow was modelled under the land cover map in 2016 to 

represent for the current state of hydrology. A comparative simulation was setup 

subjected to a land cover map in 2001. The comparison indicated the change in flow 

under LUCC between the 2001 and the 2016 land use scenario. Subsequently, scenario 

analysis was carried out between land use scenarios for resp. 2016 and 2030 to predict 

the potential change of river flow. For this, the land cover maps simulated by lulcc R 

(CLUE-S) were used. The modelling results were further compared in SAN REGIS basin 

to assess the basin hydrology subjected to deforestation. 
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Figure 6.2 The a) land cover and b) dominant soils in the study area 

Table 6.3 The distribution 

of dominant soil types 

Soil type Percentage 

Leptosols 22.91% 

Cambisols 22.52% 

Regosols 13.28% 

Gleysols 12.59% 

Acrisols 11.60% 

Planosols 4.20% 

Andosols 3.46% 

Arenosols 2.86% 

Luvisols 1.38% 

Alisols 1.19% 

Fluvisols 1.19% 

Solonchaks 0.84% 

Phaeozems 0.69% 

Lixisols 0.59% 

Minor class 0.69% 
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6.3 Results and discussion 

6.3.1 The effects of modifying soil parameters 

The region is mainly covered by forest, following by C3/C4 grasses, and bare soil 

along the coast and urban areas (Figure 6.2a). Soils were classified as shown in Figure 

6.2b. Table 6.3 shows that Leptosols, Cambisols, Regosols, Gleysols are the dominated 

soil types in this region.  

First, I evaluated the impact of changing the soil parameters from the regional Van 

Genuchten parameters to the use of the locally modified soil parameters (Figure 6.3; 

see Chapter 3). Figure 6.4 shows that the use of locally modified soil parameter values 

increases the flow up to 305.8 mm/year compared to the default PTFs parameters.  

 

Figure 6.3 The difference in annual flow between the regional van Genuchten 

parameters and the locally modified soil parameters 
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Figure 6.4 Histogram of the change in flow under the modified soil parameters 

 

The modelled flow was further evaluated with the observation in 17 selected 

basins (Table 6.4). As shown in Figure 6.5, the modified soil parameters increase the 

water yield in EL TIGRE by 23 %. The increase of the flow is more significant in the dry 

season, as the BFI increased from 0.42 to 0.60 with the modification. The rainfall-

runoff ratio is considerably increased. BELLAVISTA (Figure 6.6) is a wider forest covered 

catchment dominated by similar soil types. The simulated flow is lower than the 

observation, but the modified parameters result in simulated flow that is closer to the 

observed flow values. The higher model performance (NSE: 0.47 vs 0.33) is reflected 

in the good agreement between the BFI values (modelled: 0.89, observation: 0.92). 

Four páramo covered catchments, ZAMBA, SALINAR, PUENTE ÑACARA, and 

PUENTE SANCHEZ CERRO, are classified with the same soil parameters as the dominant 

soil type in iMHEA site PIU. Doing so increases the model performance in ZAMBA 

(Figure 6.7) and SALINAR (Figure 6.8) as the modified soil parameters generated higher 

runoff. 
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The 11 catchments distributed in the Peruvian Andes have soils that are classified 

as Leptosols and Regosols, which is the same as the dominated soil type in iMHEA site 

HUA/HMT. The modelling results (Figure 6.11 - Figure 6.21) also show a noticeable 

improvement on the runoff generation compared to the use of the standard Van 

Genuchten parameters. The major gap in the hydrographs can be attributed to the 

uncertainties in the observations of both precipitation and streamflow. The deficiency 

in the observed precipitation and streamflow data is reflected in the rainfall-runoff 

ratio, which is as high as 1.32 in the EL TIGRE basin and far higher than the typical value 

in the range of 0.6 – 0.7 for the tropical environment (Zulkafli et al., 2013). Most likely 

this shows that the TRMM precipitation data still underpredict the precipitation in 

mountain areas, which can be attributed to the highly variable topography and 

mountain precipitation process such as orographic rainfall, which are not well captured 

in TRMM observations.  

The modelling results in the selected basins show that the baseflow could be 

effectively generated by using the modified soil parameters, resulting in more precise 

flow estimates. 
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Table 6.4 The modelling results of the regional JULES. MODi: modelled flow with PTFs soil data; MODm: modelled flow with modified soil 

parameters; RR0/RR1/RR2: rainfall-runoff ratio of obs/MODi/MODm BFI0/BFI1/BFI2: baseflow index of obs/MODi/MODm; NSEi/NSEm: 

Nash–Sutcliffe model efficiency of MODi/MODm. 

Station Rainfall OBS MODi MODm RR0 RR1 RR2 BFI0 BFI1 BFI2 NSEi NSEm 

 [mm] [m3/s] [m3/s] [m3/s] [m3/s]         

EL TIGRE 937.9  142.1  187.6  50.9  62.5  1.32  0.36  0.44  0.73 0.42 0.6 0.15  0.16  

BELLAVISTA 2891.9  9207.0  7269.6  5858.2  6162.4  0.79  0.64  0.67  0.92 0.85 0.89 0.33  0.47  

ZAMBA 914.4  62.8  50.2  26.0  35.0  0.80  0.41  0.56  0.68 0.41 0.61 0.07  0.26  

SALINAR 376.0  45.2  17.9  10.7  14.9  0.40  0.24  0.33  0.71 0.4 0.61 0.28  0.40  

PUENTE ÑACARA 404.4  60.5  23.0  14.4  18.8  0.38  0.24  0.31  0.62 0.29 0.50 0.38  0.41  

PUENTE SANCHEZ CERRO 544.6  130.4  96.8  31.4  38.2  0.74  0.24  0.29  0.66 0.33 0.50 0.35  0.36  

BATAN 438.3  10.2  9.2  2.2  3.3  0.90  0.22  0.32  0.73 0.27 0.55 -0.08  0.01  

YONAN 586.2  65.1  41.2  18.0  24.4  0.63  0.28  0.37  0.65 0.38 0.59 0.19  0.31  

HUACAPONGO 304.1  9.2  2.2  1.7  2.3  0.24  0.18  0.25  0.55 0.28 0.52 0.15  0.21  

CONDORCERRO 918.8  306.3  150.4  136.9  157.5  0.49  0.45  0.51  0.8 0.52 0.62 -0.13  -0.09  

MALVADOS 337.6  16.5  6.3  4.2  5.7  0.38  0.26  0.35  0.74 0.36 0.58 0.17  0.33  

CAHUA 684.1  67.8  41.9  24.1  31.1  0.62  0.35  0.46  0.82 0.48 0.64 -0.12  0.16  

SANTO DOMINGO 446.7  26.4  23.1  7.5  10.8  0.87  0.29  0.41  0.78 0.40 0.62 -0.12  0.09  

OBRAJILLO 533.1  7.6  6.8  2.4  3.6  0.90  0.32  0.47  0.80 0.41 0.64 -0.58  -0.15  

CONTA 370.6  37.0  18.0  11.1  14.7  0.49  0.30  0.40  0.59 0.51 0.67 0.46  0.47  

LETRAYOC 459.2  45.3  31.4  14.3  19.2  0.69  0.31  0.42  0.62 0.46 0.65 0.35  0.37  

EGEMSA KM 105 1006.8  309.2  133.9  89.3  102.1  0.43  0.29  0.33  0.83 0.43 0.56 0.38  0.46  
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Figure 6.5 The regional modelling results in EL TIGRE 

 
Figure 6.6 The regional modelling results in BELLAVISTA 

 
Figure 6.7 The regional modelling results in ZAMBA 
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Figure 6.8 The regional modelling results in SALINAR 

 
Figure 6.9 The regional modelling results in PUENTE ÑACARA 

 
Figure 6.10 The regional modelling results in PUENTE SANCHEZ CERRO 
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Figure 6.11 The regional modelling results in BATAN 

 
Figure 6.12 The regional modelling results in YONAN 

 

Figure 6.13 The regional modelling results in HUACAPONGO 
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Figure 6.14 The regional modelling results in CONDORCERRO 

 
Figure 6.15 The regional modelling results in MALVADOS 

 
Figure 6.16 The regional modelling results in CAHUA 
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Figure 6.17 The regional modelling results in SANTO DOMINGO 

 
Figure 6.18 The regional modelling results in OBRAJILLO 

 
Figure 6.19 The regional modelling results in CONTA 
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Figure 6.20 The regional modelling results in LETRAYOC 

 
Figure 6.21 The regional modelling results in EGEMSA KM 105 
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Figure 6.22 a) The change of annual runoff between the 2001 and the 2016 land cover b) Land cover change between 2001 and 2016 
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6.3.2 LUCC impacts on regional hydrology 

The change in annual runoff was assessed in individual grid cells between the 2001 

and the 2016 land use scenarios. Overall, 8.2% of land cover has been changed. 

Deforested areas have been mainly transformed to shrub and grasses (Table 5.3).  

Figure 6.22 shows that the change of annual runoff with the map indicated location of 

LUCC. The change in annual runoff ranges between +57.1 mm and -48.5 mm. The 

majority of the pixels experiences changes of less than 5 mm (Figure 6.23). The LUCC 

impacts on hydrology are strongly depended on the interaction with soil properties 

(see Chapter 4.2.2). No consistent change can be observed with the occurrence of 

deforestation, or afforestation between 2001 and 2016.  

 

 

Figure 6.23 Histogram of the change in runoff [mm/year] for individual pixels 

between the 2001 and the 2016 land cover scenario subjected to deforestation. 
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Figure 6.24 a) The change of annual runoff between 2016 and 2030 land cover b) Land cover change between 2016 and 2030 
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In Figure 6.24, the potential change of flow between 2016 and 2030 land use 

scenario was assessed with using land cover map simulated by lulcc R (CLUE-S). The 

change in runoff ranges between -123.4 mm/year and +66.6 mm/year when 3.7% of 

forest was transformed to shrub. In which, increasing runoff was observed in 61.4% of 

grid cells (Figure 6.25). The modelling result of JULES shows that LUCC impacts could 

be effectively detected by changing the land cover parameters (see Chapter 4). 

 

 

Figure 6.25 Histogram of the change in runoff [mm/year] between the 2016 and 

2030 land cover scenarios. 
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6.4 Conclusions 

In this chapter, the JULES model was implemented for the tropical Andes of 

Ecuador and Perú for hydrological assessment under a range of hydrological responses. 

The modelled flow was validated in 17 selected basins. The major gap between the 

simulation and observation can be attributed to the uncertainty in precipitation data 

as the rainfall-runoff ratio between the observed flow and TRMM precipitation ranges 

from 0.24 to 1.32, which results in clearly unrealistic values in several basins.  

The initial simulation with the soil parameters generated by using the 

pedotransfer functions generally underestimates the baseflow generation. This can be 

improved effectively by modifying the soil parameters. The increased value of critical 

point estimates more accurately the water yield and baseflow ratio. The runoff volume 

is also increased by using the modified soil parameters. Overall, the modelled rainfall-

runoff ratio increases from [0.27-0.62] to [0.37-0.67] and is closer to the observation 

in most catchments. The modelling results captured most of the hydrological response, 

which is reflected in increased NSE values.  

The regional JULES model shows a potential to be used to assess the hydrology 

changes under long-term land use and land cover change. JULES is capable to simulate 

flow under various types of land cover. However, the LUCC occurring over the 15-year 

period is less the 10% in regional scale. No consistent change can be observed for 

specific LUCC (e.g. deforestation). It is more effective to combine the soil properties to 

attribute these changes. 
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7 Conclusions 

7.1 Summary of contributions to knowledge  

The Andean region is a hotspot of hydrological change, which needs to be studied 

because of its important role in regional water supply and vulnerability to human 

activities. This PhD research explores the changing Andean hydrology under land-use 

and land cover changes by integrating citizen science data, a land surface model, and 

a land use change model. The research has mainly contributed to knowledge 

generation in the context of exploring the use of new data, improving the hydrological 

simulation by model parameterisation, and consequently using this model for 

hydrological impact assessment.  

Land surface models are increasingly used for hydrological assessment, given their 

advantage to map the modeller’s knowledge about the hydrological impacts of land-

use and land-cover change into physically meaningful parameters. However, these 

processes are hard to be interpolated into a model due to the high data requirement 

to represent the hydrological processes of a catchment. The iMHEA citizen science 

network has extended the hydrological monitoring in the upper regions of the tropical 

Andes, which is a regional hotspot of water resources, and not well covered by the 

traditional monitoring networks. These new sources of data provide new 

opportunities for hydrological studies. In Chapter 2, hydrological data obtained with 

citizen science approach were used to simulate the hydrological fluxes under a variety 

of land use conditions. I found that hydrological estimation at the headwater 

catchment scale can be improved by using participatory data, which addressed 

substantially the highly uncertainty in the large-scale reanalysis rainfall data. 

Given that the JULES model is originally developed for larger scale meteorological 

purposes, the required data for modelling are commonly derived from large scale data 
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base. These data may not well represent the local hydrological fluxes. In this research, 

I focused particularly on the LUCC impact on soil properties, and the energy exchange 

as altered by the land cover parameters. I focused on improving the model for 

hydrological evaluation by complimenting the commonly used soil parameterisation 

with local experimental data. In Chapter 3, the water retention properties obtained 

from pedotransfer functions were adjusted with data from in-situ experiments in 

similar catchments. This modification represents better the soil water storage, which 

increased the generation of subsurface flow significantly, and simulates better the 

local flow. 

In Chapter 4, a comparative analysis is performed, in which JULES is used to assess 

the hydrology under land use impact. The analysis simulates LUCC as the only 

contributor to affect the flow generation while other influencing factors such as 

climate influences have been kept constant, which reduces the uncertainty of 

catchment characteristics and meteorological drivers. The results show that a loss of 

water regulation ability with lower water yield and higher level of peak flow could be 

found in the areas with human interventions of grazing, cultivation, and afforestation. 

In Chapter 5, a land use change model, lulcc R, is used to simulate the land use 

and land cover changes in Ecuador and Perú. Deforestation is the major type of land 

cover change in the region. These changes of land cover are allocated statistically 

based on the environment and social-economic variables. I find that the simulated 

land use map can allocate the major patterns of land cover adequately. The model is 

able to detect the main trends in land cover change and uses them to predict the 

location of future changes. It generates a simulated land cover map specifically under 

the projected development scenario, which allows the potential hydrological changes 

to be assessed by a predictive hydrological model. 

This research has explored the use of the JULES land surface model to simulate 
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the hydrological fluxes from site (i.e. headwater catchment), to basin, and regional 

scale. In Chapter 6, the JULES model is extended to the several Andean basins which 

are monitored by the national observation network of Perú. Also, at this larger scale 

the low baseflow simulated by regional estimates of soil property can be improved 

effectively by using modified soil data obtained in representative experimental basins 

in the region. However, uncertainties present in the precipitation data remain the main 

source of the imperfect fit between the model and observation. Nevertheless, a 

reasonable estimation can be simulated by using the JULES model. This opens an 

opportunity to explore the potential hydrological change under land-use impacts in 

larger Andean region. 
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7.2 Pathways for future research 

In this PhD thesis, I explored the use of JULES land surface model to simulate the 

hydrological flux under specific land use conditions in the tropical Andes. The fluxes 

are modelled grid-to-grid. Therefore, a river routing scheme is required for a 

meaningful comparison with the monitored river flow. In this research, the simply 

delay function provides reasonable estimation regards of the effects of topography. 

In the groundwater-dominated Andean region, groundwater storage (e.g. using linear 

reservoir) could be used to partition the surface flow, subsurface flow, and the 

interflow which was not considered in this study. 

I found that there is considerable gap between using PTFs and experiment data 

in Andean region. The use of experiment data had greatly improved the model in site 

scale. However, the experiment data covering boarder region is still insufficient. The 

JULES model has an advantage to collaborated with various field of studies. In which, 

the setup of JULES-crop is used to simulate the hydrology under cultivated lands 

instead of using the C3/C4 grasses setup. Currently, the predominant crop types (e.g. 

potato and tubers) in the study regions are not parameterized in the JULES-crop model. 

The simulated results using the current setup has resulted in low transpiration. Thus, 

this implied that crop parameterisation could improve the model further. 

The precipitation input was considered as unchanged when subjected to LUCC. 

However, the results had shown considerably change of evapotranspiration under 

different LUCC condition. Thus, the changes in local precipitation and other micro-

climate factors should be considered in the setup to estimate the potential 

hydrological changes more effectively. For the long-term predictive model, there are 

potential to assess the hydrology under certain climate change scenarios (e.g. raising 

temperature and rainfall products), which is not discussed in this thesis.  
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