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Abstract
Superoscillations are making a growing impact on an ever-increasing number of real-world
applications, as early theoretical analysis has evolved into wide experimental realisation. This is
particularly true in optics: the first application area to have extensively embraced superoscillations,
with much recent growth. This review provides a tool for anyone planning to expand the
boundaries in an application where superoscillations have already been used, or to apply
superoscillations to a new application. By reviewing the mathematical methods for constructing
superoscillations, including their considerations and capabilities, we lay out the options for anyone
wanting to construct a device that uses superoscillations. Superoscillations have inherent
trade-offs: as the size of spot reduces, its relative intensity decreases as high-energy sidebands
appear. Different methods provide solutions for optimising different aspects of these trade-offs, to
suit different purposes. Despite numerous technological ways of realising superoscillations, the
mathematical methods can be categorised into three approaches: direct design of superoscillatory
functions, design of pupil filters and design of superoscillatory lenses. This categorisation, based on
mathematical methods, is used to highlight the transferability of methods between applications. It
also highlights areas for future theoretical development to enable the scientific and technological
boundaries to be pushed even further in real-world applications.

1. Introduction

Superoscillatory functions, at their most basic, are band-limited functions with the counter-intuitive
property that they locally oscillate faster than their highest Fourier frequency. Underneath this simple
definition, however, lies a wealth of interesting mathematical properties and practical applications.

Perhaps most surprising is that they can oscillate arbitrarily faster than their highest Fourier frequency
over arbitrarily long intervals. That is, a physically band-limited system (such as an optical field, or an electron
wavefunction) can locally contain frequencies far outside the highest frequency in its Fourier transform, and
what’s more, these oscillations can extend over a wide area. As an extreme example, Michael Berry famously
derived a recipe for reproducing Beethoven’s ninth symphony exactly in a signal band-limited to 1 Hz [1].

Berry first used the term ‘superoscillations’ in 1994 [1] referring to work by Aharonov in the context of
quantum mechanics [2, 3]. However, functions with this property had already been studied for some time in
the mathematics of prolate spheroidal wavefunctions (PSWFs) [4, 5], band-limited functions [6, 7], and
oversampling in signal processing (as noted by Berry [1]): reconstructing an oversampled signal (sampled
faster than the Nyquist rate) is highly unstable outside the sampled interval [8].

As far back as 1952, Toraldo di Francia [9] was describing optical effects that would now be considered
superoscillatory. As such, di Francia was also the first to apply these ideas to optics, giving one of the first
applications of superoscillations: focussing light into a sub-diffraction-limited spot. Indeed, applications of
superoscillations have interested researchers since the birth of the field: in some of the earliest work on the
mathematics of superoscillations, Berry suggests the application of superoscillatory functions of two
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Figure 1. Parameters of a superoscillatory spot. Superoscillatory spot (red line - parameters in red text) compared with an Airy
disc (black dotted line). The width of the superoscillatory spot, w, is usually measured as the full width at half maximum
(FWHM) of the central spot, the field of view, FoV, is the distance between the sidebands (both the half-distance/radius and
full-distance/diameter are used in the literature). In the pupil-filter literature, the measure [full/half] width at first null is used,
shown here for both the superoscillatory focusWso and the Airy discWA, with their ratio giving the transverse gain GT . A similar
axial gain is also used (not shown). Intensity measures include the Strehl ratio S, the relative intensity of the sidebands Irel, the
relative intensity within the FoV Iin, and the yield Y : the ratio of energy in the superoscillatory region to the total energy of the
function.

variables to imaging [1], where he notes the possibility of using superoscillatory functions to describe detail
much finer than the wavelength of the light used for a new type of super-resolution microscopy. Since then,
superoscillations have found many potential applications, both within and outside the field of optics, a
selection of which are reviewed in section 6.

Early on in the development of superoscillations, it was also realised that they occur naturally: Berry
predicted the existence of superoscillations in random functions in 1994 [1] and the first experimental
demonstration to report optical superoscillations was in diffraction from a (quasi) random nanohole array
[10]. Concurrent with Berry’s first realisation in 2006 that optical superoscillations can be created in the far
field by propagating waves [11], Huang et al [10] showed that a quasicrystalline nanohole array (Penrose-like
pattern) can focus light into subwavelength ‘hotspots’ beyond the near field and without the contribution of
evanescent waves. Shortly afterwards, the same authors showed that these spots can be projected to the far
field [12] demonstrating that the subwavelength features are indeed constructed from propagating waves.
Not only has it been shown that random fields contain superoscillations, but also that they are common: on
average 1/3 of the area of a speckle pattern (in the scalar approximation) is superoscillatory [13, 14], although
it has recently been been shown that a vectorial analysis gives a reduced probability [15]. Konrad and Roux
have looked at superoscillations from the perspective of scale physics, and find that superoscillations are
natural features of many physical equations, and in some ways should not be unexpected [16].

Alongside these random superoscillations, we also see superoscillations ‘accidentally’ formed in
structured fields: a higher-order radially-polarised Laguerre-Gaussian beam is inherently superoscillatory
[17], and even using a standard Fresnel zone plate to focus a radially-polarised beam may produce a
superoscillatory focus [18].

A key factor in the applicability of superoscillations is the ability to construct them in a controlled
manner, and also that they come at a cost: any superoscillatory function must necessarily have a portion of its
energy outside the superoscillatory region. In terms of optics, this means that a superoscillatory focus cannot
contain all the energy of the beam: some must ‘spill out’ of the focal spot into high-intensity sidebands.
Common measures used to quantify superoscillations in optics are the size of the central spot, the field of
view (FoV) (the distance between the central spot and the first significant sideband), and some measure of
energy efficiency, with the precise measure depending on the application. A range of the most common
measures is summarised in figure 1.
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Table 1. Quantifying the trade-offs in superoscillations. Parameters from figure 1 calculated for each of the spots in figure 4. The
expected trade-offs are clearly seen as yield and Strehl ratio decrease with decreasing spot size and increasing FoV. Here FoV is measured
as the distance between the central spot and the first significant sideband.

FWHM (λ) FoV (λ)
Half width at
first nullWSO (λ) Transverse Gain GT Relative intensity Irel Iin Strehl Ratio S Yield Y

0.43 0.50 0.47 1.31 0.13 0 0.67 0.38
0.43 1.00 0.46 1.34 0.088 0.23 0.5 0.28
0.43 1.60 0.46 1.33 0.019 0.18 0.52 0.29
0.39 0.50 0.41 1.49 0.28 0 0.41 0.19
0.39 1.00 0.40 1.51 0.078 0.25 0.37 0.17
0.39 1.60 0.41 1.48 0.015 0.22 0.29 0.13
0.35 0.50 0.36 1.71 0.61 0.024 0.22 0.082
0.35 1.00 0.37 1.66 0.62 0.21 0.11 0.041
0.35 1.60 0.37 1.65 0.79 0.19 0.064 0.024
0.31 0.50 0.31 1.97 1.3 0.19 0.11 0.032
0.31 1.00 0.33 1.86 5.9 0.19 0.006 9 0.002
0.31 1.60 0.33 1.86 21 0.18 0.001 7 0.000 49

The spot size may be measured as the full width at half maximum (FWHM) (w in figure 1), or the full (or
half) width at first null (Wso). These may be absolute or compared to the equivalent measure for the Airy
disc. In the pupil-filter literature the common relative measure used is the transverse gain GT =

WA
Wso

, the ratio
of the Airy disc width to the spot width, with gains greater than one indicating a reduced spot size. For 3D
analysis the similar axial gain, GA, is used, which compares the widths at first null in the direction of
propagation.

Energy efficiency measures include the proportion of energy in the central spot Y, the Strehl ratio S (ratio
of intensity of the central spot to the intensity of an Airy disc with the same total energy) and the ratio of
peak sideband intensity to spot intensity Irel. Within the FoV, the ratio of peak intensity beyond the first null
to spot intensity, Iin, is also used.

As might be expected, there is a trade-off in these measures: it is not possible to have a very small spot in
both transverse and axial directions, containing most of the energy, and with very low sidebands. The
trade-offs have been investigated by many authors for specific cases, and some general patterns have been
seen throughout the literature. The energy in the sidebands is found to increase exponentially with the size of
the FoV, but only polynomially with spot size (or equivalently with speed of oscillation) [19]. From the point
of view of applications, this polynomial relationship poses much smaller challenges than an exponential one:
if the focussed energy decreased exponentially as the spot shrank, then vastly higher laser powers would be
needed to realise small spots. The degree of the polynomial relationship is of course important, with a degree
of 4 having been reported [20]. Still, a polynomial relationship means that, although we need slightly more
powerful lasers, the power trade-offs are not prohibitive. A visual representation of these trade-offs in 2D is
given later in figure 4 (section 2.4), with associated parameter values provided in table 1.

It has also been shown that the axial and transverse spot size cannot simultaneously be superoscillatory. A
spot with both very small axial and transverse dimensions may therefore not be possible. It should, however,
be noted that for some applications this may even be an advantage: some applications require a long spot in
the axial direction (see also section 6). A fuller discussion of these trade-offs is given in sections 2 and 3.

To enable quantitative comparisons and statements about superoscillations, a precise quantitative
definition is required, yet a few different definitions are currently in common usage. A straight-forward and
much-used measure in optical focussing (of light of wavelength λ), is a comparison of the superoscillatory
spot size to the diffraction-limited spot size. In 2D the diffraction-limited spot size is the width of the central
spot of the Airy disc. Measuring spot size by the FWHM thus gives a superoscillation criterion of w< λ/2,
whereas defining spot size by half width at first null gives a superoscillation criterion ofWSO < 0.61λ. One
issue with this definition is that a simple Bessel beam meets these criteria, and so it may be more appropriate
to compare to the equivalent Bessel beam, giving a superoscillation criterion of w< 0.38λ. Also, while an
obvious choice in optics, this definition is less applicable to the theoretical study of more general
superoscillatory functions.

Within this theoretical context an alternative definition of superoscillation is to require the local
frequency, defined as the magnitude of the gradient of the phase of the wave, to be greater than the band
limit of the function. Given a wave ψ(r) = ρ(r)exp(iϕ(r)) with wave number k0, the oscillation is
superoscillatory where the local wave number, k(r) = ∥∇ϕ(r)∥, is greater than k0 (see for example reference
[14]). This definition is readily applicable in certain theoretical contexts, yet it is more natural to consider
frequency over an interval than at a point. A further definition therefore considers the number of
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Figure 2. The three major superoscillatory focussing schemes. Left: A metalens (or other technology) directly encoding the
back-propagated electric field of a designed superoscillatory function f (r). Centre: A pupil filter modifying the beam transmitted
through a conventional lens. Right: A superoscillatory lens that modifies the amplitude and/or phase of the incoming beam to
focus light to a superoscillatory spot.

zero-crossings of a function in a superoscillating interval. For example, given 2N zeros in an interval [−a, a]
the frequency can be defined as ω = πN

a and compared to the band limit (see for example reference [20]).
Whichever definition of superoscillation one uses, the aforementioned trade-offs remain. With so many

different trade-offs to manage, a plethora of different methods for analysing and optimising superoscillations
have been developed. This has been approached from numerous different perspectives, ranging from pure
mathematical interest to realising application-specific solutions. This review gives an overview of the
available mathematical techniques for constructing superoscillations, to lay out the options to anyone
wanting to construct a superoscillation device. We focus on results from the optics literature, which are fairly
comprehensive as it was the first application area to have extensively embraced superoscillations, with much
recent growth.

The mathematical methods for constructing superoscillations fall neatly into the three categories
depicted in figure 2: direct construction of a superoscillatory function, design of a pupil filter (PF) and
design of a superoscillatory lens (SOL). The first, reviewed in section 2, gives the most generally applicable
approach: a pure mathematical construction of a superoscillatory function3 . This is shown leftmost in
figure 2 where the superoscillatory function is realised by back-propagating the field numerically, and then
using a metalens with continuous amplitude and phase modulation to impose the back-propagated profile
on an incident beam [21, 22]. Forward propagation of the light then reconstructs the superoscillatory field.
Superoscillatory functions can also be realised by two other classes of device: a pupil filter, which modulates
an incident beam in amplitude and/or phase before it is focussed by a conventional lens (centre panel of
figure 2), or a superoscillatory lens which again modulates the amplitude and/or phase of the beam, but in
this case does both the modulation and focussing in a single, usually planar, structure (rightmost panel).

Other mathematical methods have been developed specifically for the design of PFs or SOLs, and these
are reviewed in sections 3 and 4, respectively. These approaches are more restrictive than freely constructing
a superoscillatory function, as design decisions are made a priori and must be built into the method.
However, they are often a practical solution to realising superoscillations, and manufacturing methods are
becoming increasingly sophisticated.

This review draws out and categorises the mathematical methods employed in a multitude of different
scenarios, to facilitate the transferability of these methods between different applications. Superoscillations
have already been realised in a number of different applications, and section 6 gives a flavour of the extent of
these. The final section (section 7) includes concluding remarks and comments on the future outlook of the

3 It is assumed throughout this paper that conditions such as a function being square-integrable and sufficiently smooth are met as
necessary for each method.
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field. While we focus on mathematical techniques for constructing and optimising superoscillations, to
facilitate their application, fuller descriptions of the history, current applications and future of
superoscillations can be found in other reviews, for example by Gbur [23], Chen et al [24] and Rogers and
Zheludev [25], and the recent roadmap on the field by Berry et al [26].

2. Constructing superoscillatory functions

Many methods for constructing superoscillatory functions have been developed, each motivated by a
different purpose. Some early constructions of superoscillatory functions lend themselves well to the
mathematical analysis of their general properties, such as the class of integral representations given by Berry
[1], which was inspired by a conversation with Aharonov relating to the weak measurement of a quantum
variable [3, 27]. Although the focus of this early paper by Berry is primarily theoretical, he already suggests a
new type of super-resolution microscopy as a possible application.

Another construction of superoscillatory functions is proposed and analysed by Berry and Popescu [11].
They consider the band-limited function

f(x) = (cosx+ ia sinx)N, a> 1,N≫ 1, (1)

and note that f (x)≈ exp(iaNx) near x= 0. It therefore oscillates with arbitrarily large frequency if a is made
arbitrarily large.

While this function is primarily used to analyse the persistence of initial superoscillations in a quantum
wavefunction as it evolves in free space, an important analogy with light passing through a diffraction grating
is drawn. The authors theoretically demonstrate super-resolution without evanescent waves, by drawing a
parallel with a diffraction grating which produces a diffraction pattern given by a superoscillatory function,
where the superoscillations, made up of purely propagating waves, persist beyond the evanescent region.
Equation (1) is also later used by other authors [28–30].

A comprehensive mathematical study of superoscillatory functions expressed in the form of equation (1)
is given in [31]. For a broader review of the mathematics underpinning super-resolution, of which
superoscillations was one emerging approach at the time, see reference [32]. The focus there is on the
mathematical properties of band-limited functions and entire functions within the context of
super-resolution of linear optical instruments. This complements the mathematics in this current review,
which gives an overview of methods for constructing superoscillatory functions for realisation in
applications expanding beyond optical super-resolution.

2.1. Superoscillatory functions by interpolation
Ferreira and Kempf approach the analysis of superoscillatory functions from a different perspective, building
on results from signal processing [19]. They study superoscillatory functions which interpolate specified
points, and so there is some control of the shape. The interpolation function can contain arbitrarily fast
oscillations by specifying arbitrarily close interpolation points that oscillate between, for example,−1 and 1.
They analyse the energy cost of superoscillations, and derive the much-quoted and reinforced (for example
[33, 34]) relation that the total energy of a superoscillatory function grows exponentially with the number of
superoscillations, and polynomially with the speed (the reciprocal of the period) of the superoscillation. Note
that polynomial growth with the speed of superoscillation is much better than one might expect, and is very
promising in terms of overcoming the necessary challenges to exploiting superoscillations in applications.

As well as exploring the energy cost of superoscillations, Ferreira and Kempf give the unique
minimum-energy function that interpolates a set of N arbitrary real numbers at a set t= {tk}Nk=1 of distinct
real numbers. This minimum-energy function, which is band-limited to µ/2 Hz , is given by

f(t) = µ
N∑

k=1

aksinc[µ(t− tk)], (2)

where the coefficients, ak, are determined from the interpolation points. This minimum-energy function
applies a result by Levi [8]. He considers the interpolation of a finite set of points, spaced more closely than
the Nyquist rate, to a band-limited function, finding the minimum-energy solution by variational techniques.

A similar analysis of the energy cost of superoscillatory functions is also done within the context of
quantum mechanics [35], and a proof is given that a function always exists which interpolates any finite
number of points for any fixed band limit [36].

More control of the shape of the superoscillatory function is introduced by Lee and Ferreira [37] by
extending the method of Ferreira and Kempf [19] to allowing values of the derivatives of a target
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superoscillatory function to be specified at any finite number of points, in addition to, or instead of, the
amplitude. Variational techniques are again applied to find the unique minimum-energy solution that meets
such constraints, and this is shown to always be possible for any given bandwidth.

Further methods from communication theory are used by Ferreira et al [38] to develop a technique for
constructing superoscillatory functions based on oversampled signal reconstruction. Here, it is shown that
the classical sampling formula can also be used to interpolate a finite set of arbitrarily close, evenly-spaced
constraints, f(kT) = ak, k ∈ J, T< 1

f(t) =
∑
k∈I

f(k)sinc(t− k), (3)

where the number of constraints is equal to the number of coefficients to be determined (i.e. |I|= |J|). As
well as giving a method for constructing superoscillatory functions, this also enables a more thorough study
to verify earlier claims that the energy cost of superoscillatory functions is strongly linked with the instability
of reconstructing oversampled functions.

Since |I|= |J|, i.e. the number of coefficients to be determined is equal to the number of constraints, this
method results in a square, linear system of equations, shown to have a unique solution. Lee and Ferreira
extend this to allow |I| ̸= |J|, i.e. to considering also the over- and under-determined cases [39]. Such
problems lend themselves well to a least-squares approach, with the least-squares solution determined by the
pseudo-inverse in the usual way. The numerical stability of finding the pseudo-inverse is discussed in detail,
and it is noted that the least-squares solution does, of course, not normally satisfy the constraints in the
over-determined case.

Under-determined problems have an infinite set of solutions, and the least-squares approach gives the
solution with minimum norm, which in this case is equal to the minimum-energy solution. Lee and Ferreira
also show [39] that when this more general problem is reduced to the problem in reference [19] (where the
minimum-energy solution is found by variational techniques), the two methods do indeed give the same
result.

In the case where the number of constraints is equal to the number of coefficients, Lee and Ferreira also
compare the use of equations (2) and (3) for constructing superoscillatory functions [40]. The first equation
is known to express an ill-conditioned problem [19] (the expression for ak involves the inversion of an
ill-conditioned matrix for large numbers of superoscillations) whereas equation (3) always leads to a
well-conditioned problem. The downside of equation (3) is that its solution is not of minimal energy.
However, Lee and Ferreira show that it typically gives solutions of only approximately 10% higher energy
while the dynamic range of the coefficients is 4-5 orders of magnitude smaller [40]. Solutions that maximise
a form of energy concentration are also found. The conditioning of this method is also analysed further, with
a method for finding the optimal condition number [41].

Katzav and Schwartz recognised that the proportion of energy in the superoscillatory region of a function
may be of greater concern in applications than the total energy [20]. They therefore maximise the energy
yield of a periodic superoscillatory function, defined as

Y=

´ a
−a f

2(t)dt´ π
−π

f2(t)dt
, (4)

where [−a, a] is the superoscillatory region contained within one period of length 2π, and a< π. By
specifyingM interpolation points in [0, a], the shape of an even target superoscillatory function withM− 1
oscillations is controlled in a similar way to above, where the superoscillations can again be arbitrarily fast.
These constraints are applied to a periodic function in the form of a truncated Fourier cosine series

f(t) =
A0√
2π

+
N∑

k=1

Ak√
π
cos(kt), (5)

resulting in a system ofM linear equations in the N + 1 unknowns, Ak, which has an infinite set of solutions
in the under-determined case (i.e. whenM< N+ 1). The problem of maximising the energy yield is
expressed as a generalised eigenvalue problem, which is solved numerically to give the function with optimal
energy yield (corresponding to the generalised eigenvector with the largest generalised eigenvalue).

Katzav and Schwartz also extend this analysis to an investigation of the other eigenvectors (of lower
energy yield) that are constructed within the method. Sorting the full set of eigenvectors by descending
eigenvalue (i.e. by descending energy yield), each eigenvector introduces one more oscillation than the
previous one, with the first eigenvector havingM− 1 oscillations. This is therefore another method for
constructing superoscillatory functions of optimal energy yield where the required oscillations are only
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Figure 3. The superoscillatory functions resulting from the methods of Ferreira and Kempf [19] (blue line) and Katzav and
Schwartz [20] (orange dashed line) with the same interpolation points (black crosses) and band limit. Ferreira and Kempf
minimise total energy for non-periodic functions while Katzav and Schwartz maximise energy yield for functions with period 2π.

partly pre-specified: the interpolation points prescribeM− 1 oscillations with the further eigenvectors
providing solutions with naturally arising additional oscillations. As fewer constraints are specified, the
energy yield is greater for a given number of oscillations than when the full set of oscillations is prescribed.
However, there is a trade-off with the quality of the superoscillations as the additional oscillations are, of
course, not constrained.

Taking this process to the limit and specifying only one point gives rise to a yield-optimised method of
finding superoscillatory functions with any number of oscillations and effectively without any interpolation.
As these solutions are yield-optimised they also enable the study of energy bounds and energy cost as
mentioned in the introduction, reinforcing and expanding on the previous results of Ferreira and Kempf
[19]. This includes demonstrating an order 4 polynomial relationship between the energy yield and the size
of superoscillations, where the size of oscillation is reduced by reducing the size of the superoscillatory
region, a, while keeping the number of oscillations fixed.

The superoscillatory functions resulting from the methods of Ferreira and Kempf [19] and Katzav and
Schwartz [20] are compared in figure 3. Here, the minimum-total-energy and maximum-energy-yield
solutions are plotted together for the same interpolation points and band limit. It is reassuring to see how
closely they match in the superoscillatory region, and the sidebands differ as expected. The non-periodic and
periodic nature of the two functions is clearly seen.

Also controlling the shape of the superoscillatory function by interpolation, but now in 2D, Makris and
Psaltis [42] combine this with maintaining a superoscillatory spot on propagation. This is important in some
applications, for example to achieve good depth of focus in imaging. They construct superoscillatory
functions by using linear combinations of diffraction-free beams, which are well known for their invariance
on propagation [43]. A number of interpolation points are chosen, spaced sufficiently closely to give a
superoscillatory pattern in the x-y plane (which need not be radially symmetric). Applying these constraints
to a linear combination of the same number of (diffraction-free) Bessel beams of different order results in a
square, linear system of equations which determines the superposition coefficients. No optimisation is
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done—this is primarily a demonstration that diffraction-free beams can be superimposed to create
superoscillatory patterns that persist on propagation, and without the need for any focussing. The analysis is
later extended to a full vectorial treatment [44]. This method of superimposing diffraction-free beams is also
extended to create any shape of superoscillatory function [45], with further detail given in section 2.3.

2.2. Superoscillatory functions by manipulating zeros
Superoscillatory functions can also be controlled by specifying the zeros of a band-limited function, rather
than interpolating a set of points. A finite number of arbitrarily close zeros, specified for a band-limited
function, results in a superoscillatory function. Analysis on which some of these procedures relies is given by
Requicha [46], and an early method is described by Qiao [47]. By writing a finite-energy band-limited
function as its product expansion, the first N zeros can be modified at will without changing the band limit.
The sinc function, for example,

sinπx

πx
=

∞∏
n=1

(
1− x2

n2

)
, (6)

can be modified to

f(x) =
N∏

n=1

(
1− k2x2

n2

) ∞∏
n=N+1

(
1− x2

n2

)
, k> 0, (7)

which is band-limited to 1/2, yet contains local oscillations of (arbitrary) frequency k/2.
An alternative way of designing periodic superoscillatory functions by manipulating zeros is to subtract

an amount s (0< s< 1) from a cosine function of frequency f 0 [48, 49]

f(x) = [cos(2πf0x)− s]2. (8)

The central peak becomes arbitrarily small as s approaches 1, yet the function remains band-limited. Further
zeros can be introduced in the superoscillatory region by iteratively repeating another vertical translation
with s= 0.5, scaling and squaring, giving a number 2k, k= 1, 2, 3,… of zeros in the superoscillatory region.
While these further zeros, as well as the shape of the final function, are restricted by the properties of the
cosine function, the method is simple and ensures a very smooth and regular result. This method has been
applied to structured illumination microscopy [49].

Chojnacki and Kempf construct superoscillatory functions as a product of band-limited functions [34],
where each function is chosen to contribute at least one zero. The band limit of these superoscillatory
functions is the sum of the band limit of each of the contributing functions. Examples are given for periodic
functions (the product of translated sine functions) and square-integrable functions (the product of
translated sinc functions). This is a numerically stable method, and the dynamic range in the examples given
is shown to be within one order of magnitude of minimum-energy solutions. It is worth noting that while
the summation of functions representing waves is straight-forward to realise in optics, the product of such
functions is more challenging. However, multiplication of signals is easy and common in electronic systems,
such as those used in the generation of radio-frequency superoscillations.

A very different method using the product of functions to obtain superoscillatory functions is given in
references [33, 50, 51]. Chremmos and Fikioris note how the well-known property of the Fourier transform

F{xnf(x)}= in
dn

dknx
f̃(kx), (9)

can be used to convert any polynomial to a band-limited function by multiplication with a band-limited
envelope function, f (x). They use this to construct superoscillatory functions of any shape [33], which we
return to in section 2.3. Maintaining the focus on manipulating zeros for now, Smith and Gbur extend this
idea to constructing superoscillatory functions in 2D by specifying complex polynomials with arbitrarily
close zeros in the form of optical vortices. They demonstrate the method with two examples using real, 2D
band-limited envelope functions with circular and rectangular shape in frequency space.

The method is developed further by the same authors, including a full design process for a SOL, as well as
simulations demonstrating its focussing performance [51]. Zero rings are now specified, rather than the
previous zero points, by considering polynomials in the radial coordinate. Experimental results based on a
modification of this method are presented by Lin et al who also consider the propagation of the
superoscillations [52].

A similar idea is developed by Mansuripur and Jakobsen [53], where a polynomial with closely spaced
zeros is specified and multiplied by a band-limited envelope function. As above, this results in a
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superoscillatory function due to the property of the Fourier transform in equation (9). Here, however, a
method for controlling a general envelope function is also given. The envelope function is based on a
band-limited function g(t), and the band limit and shape of the final envelope function is controlled using
gν(t/ν), where ν is a large positive integer. The scaling t/ν ensures that the band limit of the original function
g(t) is maintained. As well as introducing a band limit, the envelope function moderates the growth of the
sidebands. Examples of multiple possible envelope functions are given, including the possibility of adding or
removing zeros from the envelope function, and a full example of a superoscillatory function constructed in
this way using a truncated (polynomial) Euler expansion of a cosine function is also given.

2.3. Superoscillatory functions with continuously specified shape
As mentioned above, it is possible to construct superoscillatory functions with fully prescribed shape,
introducing a completely new level of control over interpolating points or specifying zeros. Within a finite
FoV, a superoscillatory function can recreate the shape of any square-integrable function, including
functions that are not band-limited and approach the Dirac delta function.

The prolate spheroidal wave functions (PSWFs) [4, 54, 55] have the useful property of providing a double
basis set for square-integrable band-limited functions. They are band-limited and orthonormal on the real
line, and also form a complete orthogonal set on a finite interval. Thus any square-integrable function can be
reconstructed in a finite interval by a linear combination of PSWFs. This is used by Huang and Zheludev to
design a transmission function giving a superoscillating diffraction pattern that approximates an arbitrarily
narrow sinc function within a FoV [56]. Its use for imaging with theoretically unlimited resolution is also
described.

In 2D, the radially symmetric circular prolate spheroidal wave functions (CPSWFs) [5, 57] provide an
equivalent basis set, which is used by Rogers et al to extend the above result to 2D [58]. While these results
are interesting from a theoretical perspective, the authors note that this method is unlikely to be practical for
applications: specifying the precise shape of a superoscillatory function comes at a high cost in terms of the
intensity in the sidebands, and the precise shape is unlikely to be of practical importance.

Other basis sets which are simpler and easier to implement can also be used to construct superoscillatory
functions of any prescribed shape. Returning to Chremmos and Fikioris [33], the (polynomial) Taylor
expansion of a required fast-oscillating function can be made superoscillatory by multiplication with a
band-limited envelope function. This relies on the property of the Fourier transform in equation (9), and
approximates the required function in a region where the envelope function is close to 1. The following
specific example is analysed

f(t) =
3
√
3

2

(
t3

s3
− t

s

)
sinc4

( t

4D

)
, (10)

where D≥ 1 and s< 1 are parameters used to control the region where the envelope function approximates 1
and the superoscillatory region, respectively. This method is also modified with a focus on manipulating
zeros in 2D [50–52], as described in section 2.2.

Also mentioned above (in section 2.1) was the use of superpositions of diffraction-free Bessel beams of
different order, to interpolate specified points [42]. The use of Bessel beams extends the axial persistence of
the superoscillations. This method is developed further by Greenfield et al to an analytic method for
generating arbitrarily-shaped superoscillations from the superposition of Bessel beams of different order
(and potentially shifted from one another) [45]. A target superoscillatory function is approximated by its
Taylor expansion, and the electric field resulting from the superposition of Bessel beams is also approximated
as a polynomial. The coefficients of the polynomials are then matched to determine the required values of
the coefficients of the Bessel beams. Higher order Bessel beams are necessary, as the nth order Bessel function
is needed to match the nth order polynomial term of the Taylor expansion. As well as giving analytic
examples, the propagation of a superoscillation feature constructed by this method is experimentally
demonstrated to persist for 250 Rayleigh lengths.

This theme of constructing superoscillatory functions from functions with desirable properties continues
as Eliezer and Bahabad create superoscillatory patterns from the interference of Airy beams [28]. A method
they derived earlier [59] is used to write the imaginary part of equation (1) as a sum of sine modes, providing
a target superoscillatory function. These superoscillatory functions can be adjusted by varying the parameter
a in equation (1). Using finite Airy functions as a basis, they also approximate a sum of Airy functions as a
sum of sine modes, allowing coefficients and frequencies to be matched and the target function to be
reconstructed as a sum of Airy beams. These superoscillatory Airy patterns are also demonstrated
experimentally.

Following a similar technique, a target superoscillatory function is specified by Zacharias et al by
expanding the real part of equation (1) as a sum of cosine modes [30]. The interference pattern in the axial
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direction is written as a zero-order Bessel beam in the radial coordinate, multiplied by a propagation term,
and is also approximated as a sum of cosine modes. This allows coefficients and frequencies to be matched,
with the resulting coefficients corresponding to zero-order Bessel beams at different radii. Thus the necessary
amplitude and phase profile can be found to realise the target function as the axial profile of a focussed beam
of light. Experimental results demonstrate axial superoscillatory focussing by this construction method.

2.4. Specifying properties such as FWHM, Irel and FoV
The methods reviewed above construct superoscillatory functions with prescribed shape in some form. For
applications, it may be more useful to specify certain properties that a superoscillatory function should have,
such as a small FWHM, a large FoV and/or small Irel (i.e. low intensity sidebands as depicted in figure 1).

Such considerations date back to the work on supergain antennas by Schelkunoff [60] and Dolph [61],
who minimised spot size for a given Iin. Di Francia [9] noted how their results could be applied to the design
of PFs to achieve super-resolution in optical focussing, and that the diffraction limit was a practical rather
than theoretical limit. A large body of work within the design of PFs is relevant to the use of superoscillations
in optical focussing. Here we review the aspect of this early work relating directly to methods for
constructing superoscillatory functions, leaving PF design to section 3.

Wong and Eleftheriades brought these methods from antenna arrays into the field of optical
superoscillations in a series of results [62–66], where they demonstrate how the methods of Schelkunoff [60]
and Dolph [61] (see also [67, 68]) can be used to construct a periodic superoscillatory function, and how
that can be realised in applications.

The method relies on the observation [60, 62] that a diffraction pattern from N uniformly-spaced point
sources can be written as a complex polynomial in w= e−ix∆k, where∆k is the relative phase shift between
each point source. Furthermore, this polynomial can be written in terms of its zeros, wzn,

E(x) =
N−1∑
n=0

anw
n =

N−1∏
n=1

(w−wzn), (11)

where the an are determined from the specified zeros. Schelkunoff showed that within antenna theory, the
zeros can be chosen to design supergain antennas [62], with the direct consequence that the zeros can also be
chosen to design superoscillatory functions.

The question of how to optimally choose these zeros was tackled by Dolph [61]. By specifying Iin, the
required ratio between the intensity of the central peak a uniform amplitude of ripples between the specified
zeros, the optimal spot width is given by a linear combination of Chebyshev polynomials. Equivalently, a
required spot width can be specified and a linear combination of Chebyshev polynomials then gives the
optimal Iin (see also [68]).

Thus for a given set of uniformly-spaced point sources and required spot size (or Iin), the zeros wzn that
result in the optimal Iin (or spot width) can be determined. From this, the coefficients, an, of equation (11)
can be found and simple back-propagation using angular spectrum theory determines the amplitude and
phase required from the point sources to realise the superoscillatory function as a diffraction pattern [62].

This method is adapted and applied by Wong and Eleftheriades in a number of progressive results.
Focussing performance in free space and in a waveguide are demonstrated by simulations [62], with
experimental results following for a waveguide [63]. They then extend the method to 2D and build a working
microscope [65]. As the specified zeros essentially control the size of the FoV, the method lends itself well to
this non-scanning microscope, where objects can be imaged within the FoV. The method is extended further
to constructing a broadband spot in all three dimensions, with its potential use for 3D super-resolution
imaging also outlined [66].

An interesting new perspective on this method is also presented, where the ripples beyond the (now
diffraction-limited) central spot are designed to be superoscillatory, allowing smaller sidebands [69]. Their
use for imaging within the FoV is simulated and demonstrated experimentally.

A very different approach to constructing superoscillatory functions with optimal properties is offered by
optical eigenmodes, introduced and defined by Mazilu et al [70]. Optical eigenmodes provide a natural basis
for finding the optimal spot size for a given FoV (referred to as region of interest by the authors) and
intensity threshold. They arise from the linearity of Maxwell’s equations combined with the observation that
many measures of interest, such as energy and intensity, are quadratic in nature. The theory is fully
developed for vector fields, but scalar fields are later applied to optical imaging [71].

Consider a scalar electric field written as the superposition of N electric fields, E=
∑N

k=1 akEk. The
intensity (or any other quadratic measure) integrated over a FoV may then be written in matrix form, where
each element of a matrix,MIO, is given by

10



J. Phys. Photonics 2 (2020) 042004 K Rogers and E Rogers

MIO
jk =

ˆ
FoV

E∗j Ek2πrdr, (12)

where * denotes complex conjugation and radial symmetry has been assumed (though this is not necessary).
For a specific superposition of the Ek, given by the vector a with elements ak, the intensity is then a†M

IOa,
where a† is the conjugate transpose of a.

The eigenvectors of the matrix,MIO, specify a superposition of the initial set of electric fields with
particularly useful properties, and these eigenvectors are defined to be the optical eigenmodes. For example,
the eigenmode corresponding to the largest eigenvalue ofMIO gives the superposition of the initial set of
electric fields, Ek, for which the intensity in the FoV is maximal, with the intensity given by that largest
eigenvalue.

An equivalent definition applies to optical eigenmodes for any other quadratic operator. Spot size can
also be given by a quadratic measure, by using the second moment of the intensity giving a matrixMSS, and
defining the spot width to be

w= 2

√
a†MSSa

a†MIOa
. (13)

Using the normalised eigenmodes fromMIO as the input fields, Ek, to find the eigenmodes ofMSS, results in
the minimum spot of maximal intensity being given by the eigenmode ofMSS with smallest eigenvalue. Only
eigenmodes ofMIO that meet a specified intensity threshold are used.

As almost all optical systems are linear, this analysis can be applied to input fields in the input plane with
measures taken on the resulting fields in the output plane. No knowledge of any complex optical system
between the input field and the output is needed. Optimisation of the output parameters then gives the
optimum superposition of input fields. Both simulations and experimental results are given, demonstrating
the use of this method to create superoscillatory spots using a spatial light modulator (SLM) to encode the
required superposition of eigenmodes. The method is further applied to experimentally focussing light into
superoscillatory spots in the far field [72], and a complete confocal scanning imaging system [71].

As we have seen, there is a trade-off between several measures of interest. Ideally, we would
simultaneously optimise the FWHM, Irel, Iin and FoV, to name but a few. However, improving any one of
these causes a deterioration in another. Rogers et al implement a genetic algorithm (GA) to perform a
multi-objective optimisation which simultaneously minimises the FWHM and Irel for a number of different
FoV, obtaining superoscillatory functions with the best compromises (a Pareto front) [58]. The problem
space is all possible superoscillatory functions, which is approximated by linear combinations of CPSWFs,
and so the population for the GA is a set of functions. More detail is given about GAs in section 4.3, where
they are used in numerous cases to optimise SOLs.

Based on the results from this GA, Rogers et al also propose a much simpler and faster semi-analytic
method. A linear combination of only two CPSWFs, selected for their natural spot size, is shown to give
similar results. Twelve best compromises obtained using this method are shown in figure 4 for three different
FoV, illustrating clearly the inevitable trade-offs of superoscillations. As spot size decreases (vertically), and as
FoV increases (horizontally), the intensity in the sidebands increases. Table 1 shows these trade-offs in detail,
with the same patterns as in the figure. In all cases, yield and Strehl ratio decrease with decreasing spot size
and increasing FoV. The relative intensity, Irel, tends to increase, but is less predictable for large spots, where
low-intensity sidebands (which are not forbidden inside the FoV) are dominant. These can move from
outside to inside the FoV as it increases in size. The semi-analytic method is sufficiently fast to be
re-calculated in real-time and has been realised as a superoscillatory intensity pattern using an SLM and
applied to imaging of biological samples [73].

This method is also used to design a metalens [74]. Metalens technology such as this, with (nearly)
continuous amplitude and phase modulation, opens up the opportunity of easily realising any
directly-designed superoscillatory function, removing any constraints imposed by PF and SOL design. The
downside is that these metalenses require complex nanofabrication technologies to create.

The choice of CPSWFs as a basis set enabled independent control of the constructed superoscillatory
function within the FoV. Different basis sets can be chosen with different advantages. Inspired by Wong and
Eleftheriades [62], the Chebyshev polynomials are used by Xie et al as a natural choice for maintaining a low
intensity beyond the central spot within a large FoV [75, 76]. Here, a GA is implemented with the intensity in
the focal plane written as a complex combination of Chebyshev polynomials. The objective is to maximise
the intensity of the central peak for a pre-specified spot size, Iin and FoV. These restrictions are imposed as
specified zeros, with the first zero determining the spot size, the FoV determined by the interval over which
the zeros are specified and Iin given by a threshold.
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Figure 4. Visualising the trade-offs in optimised superoscillations. Twelve best compromises are shown, between spot size and Irel,
obtained using the semi-analytic optimisation method of Rogers et al [58]. This illustrates clearly the inevitable trade-offs of
superoscillations: as spot size decreases (vertical axis), and as FoV increases (horizontal axis), the intensity in the sidebands
increases. Here, the FoV is measured as the distance between the central spot and the first significant sideband. These trade-offs
are quantified in table 1.

A binary phase PF with N zones is used to realise this superoscillatory function. The intensity profile in
the focal plane of the PF is given by the Hankel transform of a transmission function taking values 1 and -1,
to impose phase shifts of 0 and π (assuming the Fraunhofer approximation). This expression depends on the
position of the radii of the zone boundaries, and also forms part of the optimisation by minimising the mean
squared error between the intensity profile in the focal plane written as a combination of Chebyshev
polynomials and as a sum of the contributions from each zone of the binary PF. The method thus combines
the construction of a superoscillatory function with the design of a PF. To increase the depth of focus, a
pre-specified central part of the PF is also obscured, and a working non-scanning microscope designed using
this method is built and demonstrated [76].

Before we move on to considering the explicit design of PFs, we provide a summary of the above methods
for the direct design of superoscillatory functions in table 2. Each method is briefly characterised by its main
features, such as whether it constructs 1D, 2D or 3D, single- or multi-lobe, or any shape of superoscillatory
functions, whether it uses scalar or vector theory and whether any application to focussing or imaging is
included. A brief comment on the purpose of each method is also included, with the full table providing an
at-a-glance overview of the many available methods.

3. Direct design of pupil filters

Starting with the aim of designing a PF to achieve super-resolution focussing, as opposed to starting with the
aim of designing a superoscillatory function, approaches the same problem from the opposite side. Once a
superoscillatory function is constructed, for example by one of the methods reviewed above (in section 2),
the problem of realising it as an electric field remains (which can be done in various ways). Starting instead
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with a PF, the emphasis is on finding a design of the PF that will create an electric field described by a
superoscillatory function.

The theoretical design of a superoscillatory function comes with no restrictions; we have already
reviewed methods for constructing any superoscillatory function. Although it is useful to consider practical
restrictions, this poses no restrictions on the superoscillatory functions that can be designed to meet them.
Approaching the problem from the point of view of designing a PF normally does pose restrictions on the
realisable electric field profiles.

Most PFs are radially symmetric (if 2D) and discretised into some number of concentric zones of varying
width at different radii. Each zone applies certain amplitude and/or phase shifts. Some design decisions have
usually been made a priori, for example whether the PF will have an amplitude or phase profile and how
many concentric zones it will be made up of (and/or the width of those zones, the radii etc). This must form
the starting point of any subsequent mathematical approach, restricting the possible outcomes. The
significance of these restrictions, however, depends on the particular PF and can be negligible. As an extreme
example, a continuous phase and amplitude PF would pose no such restrictions.

Simpler PFs are often a good practical solution despite any imposed restrictions, and the design of PFs
comes with a rich body of research from which much can be learnt about superoscillations. The search for
super-resolving PFs without the use of evanescent waves was active long before the term ‘superoscillations’
was introduced. Already in 1952 Di Francia realised that results from supergain antennas could be applied to
the design of super-resolving PFs [9], and the more recent development of this by Wong and Eleftheriades to
design superoscillatory functions [62] has already been noted. A selection of results from PF design, with an
emphasis on relevance to superoscillations, is reviewed here. For a fuller review of PFs, see for example
reference [32].

As well as suggesting that Schelkunoff ’s [60] method for designing supergain antennas can be used to
design PFs, Di Francia also investigates the use of selected Bessel beams for designing super-resolving PFs [9].
He notes the well-known result that a zero-order Bessel beam of the first kind, obtained from a PF
transmitting only a thin ring at some diameter, D, results in a smaller focal spot than the diffraction-limited
spot. He then suggests adding further such Bessel beams in order to reduce the outer ripples that inevitably
come with Bessel beams at greater radii, essentially increasing the FoV. This is first done by adding two
further rings at diameters D/3 and 2D/3 with their associated Bessel beams. The coefficients of these Bessel
beams is found by imposing an amplitude of 1 at the centre of the spot and zeros at two further positions
(the first of these coinciding with the first zero of the original Bessel beam), resulting in a system of three
linear equations in thee variables. Cases with four and five rings are then shown to push the outer ripples
further from the spot, increasing the FoV.

Although Di Francia stops at 5 rings, he notes that the process can be continued indefinitely to achieve an
arbitrarily large FoV. He also demonstrates how the spot size can be reduced by choosing the first zero closer
to the peak, and notes the cost of a significant increase in the size of the sidebands. This step is important in
that the spot size then reduces below that of the equivalent Bessel beam, which has been suggested as an
alternative baseline for the claim of superoscillations [77] (as opposed to comparing to the Airy disc, for
example).

It is also worth noting that this technique of specifying zeros, the first to set the spot size and the
remaining ones to control the FoV, closely resembles techniques for constructing superoscillatory functions
in both sections 2 and 4. (Though this selection of zeros is quite different to that used by Wong and
Eleftheriades [62], where the relationship between the complex zeros and the spot size and FoV is less direct.)
Also, if Bessel beams can be selected at any radius, rather than pre-specifying selected radii, then this
essentially provides a complete basis set for the electric field profile in the focal plane, with no additional
restrictions imposed by the PF.

Di Francia’s results are based on an entirely theoretical analysis, and a perfect realisation of this PF would
require infinitesimally thin rings at the chosen diameters with continuous amplitude and phase modulation.
These results are built on in many ways. Di Francia himself proposes a PF with n finite-width annuli with any
amplitude transmittance. For a lens of radius a, the n+ 1 radii of the n zones are given by aαk, k= 0,…, n.

Here αk =
√
k/n so that the radii are located at 0,a

√
1
n ,a

√
2
n ,a

√
3
n , . . . ,a and each zone has equal area of

πa2/n. The contribution to the resulting field from the k-th zone is given by

fk(v) = (πa2)ck

(
α2
k
2J1(αkv)

αkv
−α2

k−1
2J1(αk−1v)

αk−1v

)
, (14)

where J1 is a Bessel function of the first kind, order 1, the ck specify the transmittance of the k-th zone,
v= 2πrsinθ/λ, r is the radial coordinate, λ is the wavelength of the light used and θ is the semiangular
aperture. The ck are determined from a system of n linear equations resulting from imposing n independent
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constraints [78]. Cox et al compare this to a number of later proposed theoretical PF designs with
continuously varying amplitude [79], and little advantage is found to the harder-to-fabricate continuous
amplitude PFs.

Axial focussing behaviour, and its relation to transverse spot size, is considered by Sheppard and Hegedus
[80]. As noted in the introduction, it can be desirable either to reduce or to elongate a focal spot in the axial
direction, and both cases are considered here. A continuous real-valued (i.e. modulating the amplitude only)
PF, P(ρ), is studied theoretically by writing the intensity in the focal region as

U(v,u) = 2
´ 1
0 P(ρ)J0(vρ)exp(iuρ

2/2)ρdρ, so that (15)

U(v,0) = 2

ˆ 1

0
P(ρ)J0(vρ)dρ,

U(0,u) = 2

ˆ 1

0
P(ρ)exp(iuρ2/2)ρdρ,

where ρ is the radial coordinate in the pupil plane, v and u are the radial and axial coordinates in the focal
region and J0 is the zero-order Bessel function of the first kind. Using a change of variable t= ρ2, the electric
field profile in the focal region is written as a power series and squared to give the intensities

I(v,0) = I20 −
1

2
v2I0I1 + . . . (16)

I(0,u) = I20 −
u2

4
(I0I2 − I21)+ . . .

where In =
´ 1
0 Q(t)t

ndt is the nth moment of the pupil function, Q(t), in terms of t. Only the first two terms
(shown above) are retained, and Sheppard and Hegedus note by inspection of these equations that the
transverse and axial spot size are inter-related. This inter-relationship is investigated further for a few specific
analytic PFs with some experimental verification. In no case do they find that both axial and transverse gain,
GA and GT , can simultaneously be greater than one, i.e. the spot is not simultaneously reduced in both
transverse and axial directions (see figure 1 for definitions of gain). Sheppard and Hegedus also analyse two
specific, discrete amplitude PFs with two and three zones in terms of this inter-relationship, and they give
two specific continuous amplitude designs for axial focussing and elongation.

Sales and Morris consider phase-only PFs divided into N concentric zones [81]. The electric field in the
focal plane is given by

E(v) =
N∑

k=1

exp(iϕk)

(
α2
k
2J1(αkv)

αkv
−α2

k−1
2J1(αk−1v)

αk−1v

)
, (17)

where the contribution from the k-th zone is given by a similar expression to that in equation (14), but with a
phase shift ϕk instead of an amplitude transmission coefficient. Imposing N constraints on this system
therefore results in a system of N non-linear equations, rather than the set of linear equations which can be
obtained for amplitude modulation (if the radii αk are pre-specified). Such a non-linear system is difficult to
solve, especially if the αk are also treated as variables, and there is no guarantee of a solution. Before
considering this inverse problem, Sales and Morris start with an exploratory approach to solving the direct
problem for two zones.

Expanding the electric field profile in the focal plane as a power series and retaining the first two terms
allows the transverse gain and Srehl ratio to be written in terms of the phase shift, ϕ0, and radius of the zone
boundary, α0 (in the case of two zones there is only one value for each). Specifying a required Strehl ratio
thus allows the spot size to be plotted as a function of α0 for a given phase shift, for example, or the Strehl
ratio to be plotted as a function of α0 for various values of the phase shift. Imposing an intensity ratio
restricts the values of ϕ0 and α0.

The trade-off between spot size, Strehl ratio and intensity ratio can therefore be visualised and optimised
by exhaustive exploration of the different values of the parameters. This approach is not practical for more
than two zones, so for three zones values from the two-zone PF are used as a starting point.

For more than 3 zones the inverse problem, a set of non-linear equations obtained from a set of
constraints, must be solved. This is done by specifying zeros of the electric field profile where, as Di Francia
did [9], the first zero determines the spot size and the rest control the FoV. To simplify the problem, a binary
phase profile (taking values of 0 and π, with ϕ0 =π) is imposed. A further modification allows control of the
Strehl ratio at the expense of controlling the FoV, retaining only some control of the spot size.
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Sales and Morris also demonstrate axial focussing in binary phase-only PFs [82]. Considering a two-zone
PF designed for use in a confocal scanning microscope, the axial gain is shown to decrease linearly with the
phase shift, ϕ0. Given a value of ϕ0, the optimum zone boundary is shown to occur at α=

√
1/2. The

relationships of axial gain, Strehl ratio and intensity ratio, Irel, with phase shift are shown, with the trade-off
between these values clearly seen, and an improvement in Strehl ratio is gained over amplitude PFs. Sales and
Morris also give an example of a binary phase-only five-zone PF, allowing more control over the spot size and
FoV than the two-zone PF, while maintaining the improvement in Strehl ratio.

Having considered transverse and axial focussing separately, Sales proceeds to consider simultaneous
focussing in three dimensions [83]. Consistent with Sheppard and Hegedus [80], he finds that transverse and
axial focussing are inter-dependent, and he also derives a minimum spot size. A focal spot can therefore not
be made arbitrarily small in all three dimensions.

A complex PF, allowing simultaneous amplitude and phase modulation, is considered by de Juana et al
[84]. Defining P(ρ)=T(ρ)exp(iϕ(ρ)) in equations (15), they extend the analysis for amplitude PFs by
Sheppard and Hegedus [80] to this more general case. Making the same approximations, they obtain a
complex version of equations (16) with a similar form. These results are used to design a continuous
phase-only PF with ϕ(ρ)= asin(2πbρ). Here, the parameters a and b allow certain properties to be imposed
on the desired spot, such as Strehl ratio and intensity ratio. These restrictions result in a system of non-linear
equations from which a and b are determined by a numerical method.

To avoid these numerical calculations, a simple, analytic method for designing binary phase-only
two-zone PFs is derived by Cagigal et al [85]. The phase is restricted to taking values 0 and π, leaving the
radius of the single zone boundary, α0, as the only free parameter. The intensity profile in the focal region is
described by the equations of de Juana et al [84], which reduce to equations (16) for these restricted phase
values. This enables the Strehl ratio, transverse and axial gain to be written in terms of α0, and thus the zone
boundary to be determined for any required value of these measures. A trade-off between spot size and Strehl
ratio is observed, and while axial focussing is considered, it is shown that an axial gain greater than 1 is not
possible in this configuration.

Sheppard and Choudhury [86] consider the effect of polarisation on PF design. They describe how
properties of plane-polarised, circularly-polarised and radially-polarised light affect transverse and axial spot
size, and point out benefits to using radially-polarised light, for example to reduce transverse spot size.

After a move towards phase-only PFs due to their increased transmittance, Sheppard points out that
energy loss is not an issue in many applications [87]. He considers a continuous amplitude PF with parabolic
transmittance, specifically a Sonine filter, and proves that it maximises a defined signal concentration factor
for a given spot size. The axial and 3D focussing of this PF are also described. With superoscillations now
emerging strongly in the literature, Sheppard also notes the link between the fields of PF design and
superoscillations.

4. Direct design of SOLs

PFs engineer the light incident on a lens, with the lens then focussing the light onto a focal plane. However,
both these functions can be done in one: a thin mask can be designed to both engineer and focus the light
into superoscillatory spots. Here we call such a mask a superoscillatory lens (SOL). These are, as with PFs,
normally radially symmetric (if 2D) and discretised into some number of concentric zones of varying width
at different radii. Each zone applies a different amplitude and/or phase modulation.

In the same way as taking the design of a PF as a starting point for realising superoscillatory focussing,
the starting point may be to design a SOL. Restrictions are similarly imposed by design decisions made a
priori, so that the possible superoscillatory pattern in the focal plane, described by a superoscillatory
function, is limited by the intended design of the SOL. Such restrictions must form part of any optimisation
process. Even if the SOL is a metalens, then the design and manufacturing techniques of the metalens may
impose some restrictions.

SOLs are a practical and powerful method for constructing superoscillatory spots, and much of the
recent progress in realising superoscillations has been in the explicit design of SOLs. The first SOL was
demonstrated by Huang et al where a nanohole array based on a Penrose-like pattern was shown to focus
light into superoscillatory spots [12]. This section is a review of methods for designing SOLs to realise
superoscillatory focal patterns with desirable properties.

4.1. Direct solution to the inverse problem
As has been done both to construct superoscillatory functions and PFs, one way of specifying a desired
intensity profile is to specify zeros and/or amplitudes. Imposing N restrictions, the first one may be used to
specify an amplitude of 1 at the centre, the next to restrict the size of the spot and the remainder to create a
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surrounding FoV, for example. This is the approach taken by Huang et al to design an amplitude and phase
SOL, where the modulation of a number of finite-width rings is given by a complex number (allowing both
amplitude and phase to take any values) [77].

The intensity profile of each ring can be written as an equation of ring radius (at the centre of each ring),
ring width and distance to the focal plane. Specifying the value for the width of the rings as 0.3λ and the
distance to the focal plane as 20λ leaves the radii of each ring as the only variable. Imposing N constraints on
a SOL with N rings then leads to a system of N non-linear equations. This inverse problem is difficult to
solve, and to improve the behaviour of the problem, Huang et al compare the intensity profile from rings
with varying width to Bessel functions. The pre-specified width of the rings is chosen such that this
agreement is generally good.

A numerical method is required to solve the non-linear system of equations, and a specific example is
given with N = 5. The phase shift between rings is found to oscillate between values close to 0 and π, and the
authors suspect a non-optimal solution caused by numerical problems. A binary phase-only PF (with values
0 and π only) is therefore also considered. This simplifies the equations significantly, and an improved
solution is found with higher values of N.

4.2. Particle swarm optimisation
Given the difficulties in solving the inverse problem of SOL design as indicated above, it is natural that
stochastic global numerical optimisation schemes are widely used. One such method is particle swarm
optimisation (PSO). Each potential (randomly generated) SOL design is treated as a particle moving in an
N-dimensional search space, where N is the number of degrees of freedom in the design. The particles are
given an initial random position (equivalent to a design) and velocity, and the fitness of each design is
evaluated. In each iteration of the optimisation, the particle position (design) is updated based on its velocity,
and its velocity is updated so that it tends to move towards both the best position (design) that particle has
found, and the best position (design) found by any particle so far. The algorithm finishes either after a set
number of steps, or after the particles have all converged or become static.

Rogers et al use binary particle swarm optimisation to design a binary amplitude SOL with zones of
varying width of 0 or 1 amplitude transmittance [88]. The objective of the optimisation is to minimise spot
size, and a practical FoV and intensity ratio of the sidebands, Irel, are included as constraints. Using the
angular spectrummethod, the electric field profile in the focal plane is found for each potential SOL. Starting
with 100 equal-width concentric zones, the final optimised lens has 25 transparent zones of different widths
at different radii (neighbouring zones with the same amplitude are combined during the optimisation).

This SOL was created in order to build and demonstrate the first working superoscillatory microscope,
and variations on it are later also used. Optical needles are realised by obscuring the central part of the SOL
to obtain longer depth of focus and larger FoV [89]. This is a result of the outer zones giving beams that are
closer to the diffraction-free Bessel beams. A vectorial treatment using circularly-polarised light in UV is also
developed [90].

Achromatic SOLs are designed using particle swarm optimisation by Yuan et al [91]. Both an amplitude
SOL with transmittance of 0 or 1, and a phase SOL with 0 or π phase shift, are designed. A target intensity
profile is specified for several different wavelengths, and the optimisation algorithm continues until this
target is sufficiently well approximated by the SOL configuration that has been reached. Both phase and
amplitude SOLs that simultaneously focus two or three different wavelengths into superoscillatory spots are
simulated and demonstrated experimentally.

Yang et al use PSO to optimise a binary phase SOL in the THz region for circularly-polarised light [92].
The vectorial angular spectrum method is therefore used to describe the electric field profile in the focal
plane (located at 210λ). The resulting equations include a transmission function, t(r), which imposes a phase
shift of 0 or π as a continuous function of the radius, r, of the SOL. Three weighted terms specifying FWHM,
sideband intensity and peak intensity are incorporated into a single objective to obtain the transmission
function that realises these specifications.

PSO is also used to design a supercritical lens array [93], and binary phase SOLs to realise
superoscillatory optical hollow spots and needles [94–96] as well as 3D hollow spots [97, 98].

4.3. Genetic algorithms
Genetic algorithms are another stochastic global numerical optimisation technique, and have recently been
applied in many optimisation problems for SOL design. (As mentioned in section 2.4, these have also been
used to design optimal superoscillatory functions.) A genetic algorithm mimics natural evolution, with an
initial random population evolving to an optimal one over a number of generations. The initial population
can, for example, be a random set of possible SOLs with zones of varying radii, width, amplitude
transmittance and/or phase shift. Each SOL in a population is evaluated according to one or more fitness
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functions, and given a numerical score. A fitness function can, for example, be defined as the spot size, spot
intensity, FoV and/or Irel, as calculated from the intensity profile given by the angular or vectorial spectrum
method. The equations describing this intensity profile usually include a transmission function, which
specifies the amplitude and/or phase profile of the SOL.

The SOLs in a population are then randomly combined by cross-over and/or mutation, with the
properties of SOLs with high fitness values more likely to pass on to the next generation. Each generation of
SOLs is thus likely to attain overall higher fitness values, and the process is repeated until an optimal solution
is reached. This could be when no or little improvement is gained in the fitness values between populations.
A large problem space, such as all possible SOL configurations, can therefore be searched (non-exhaustively)
in a reasonable length of time, though locally-optimal solutions may result. Starting with a diverse initial
population and repeating the process for different initial populations should help guard against this.

A series of results using GAs to optimise SOLs are presented by Liu et al including a binary amplitude
SOL (using the vectorial angular spectrum method) [99], and binary amplitude or phase SOLs giving both a
scalar treatment [100] and a vector treatment [101]. The amplitude and phase modulations are implemented
by restricting the transmission function to take values in {0, 1} or {−1, 1}, respectively, and an outline is also
given for extending the method to multi-amplitude SOLs [101]. In all cases, the single objective of
minimising spot size is used, while constraining the intensity in the FoV, Iin. Where a vectorial treatment is
used, the method is applicable to radially-, circularly- and linearly-polarised light. Simulations and
experimental demonstrations using these SOLs in confocal scanning microscopy are also included.

This approach is modified to construct optical needles with a binary amplitude metasurface [102],
though this is later refined to a technique based on Fresnel zone plates that no longer uses a GA [103].

Chen et al use a GA to optimise binary amplitude (transmittance values 0 or 1), continuous amplitude
(transmittance values between 0 and 1), binary phase (modulation values 0 or π) and continuous phase
(modulation values between 0 and 2π) SOLs [104]. A vector treatment is used to consider circularly- and
radially-polarised light. They minimise the FWHM, imposing constraints on the FoV, Iin and spot intensity.
Several examples are given and compared, with continuous phase SOLs demonstrating improved
performance over amplitude SOLs. The authors also note that using radially-polarised light improves the
spot size.

All four combinations of continuous and binary SOL with both amplitude and phase modulation are
optimised by Wen et al [105]. This is done for a 1D SOL in the context of a manufacturing method
demonstrated by He et al [106], where a double-layer hole array is used to simultaneously control amplitude
(transmittance values between 0 and 0.3) and phase (modulation values between 0 and π). For a specified
FWHM, focal length and physical parameters, the objective of the GA is to find a SOL design with an
intensity profile that matches these values. The authors find advantages to using a continuous amplitude and
phase SOL, though include full 2D simulations for a continuous amplitude and binary phase SOL based on
the double-layer hole array.

Two further methods for manufacturing 1D SOLs are given by Chen et al [107, 108]. The first enables
continuous amplitude transmittance between 2% and 98%, and the second combined binary amplitude
transmittance (taking values 0 or 1) and phase modulation (with values 0 or π). These are optimised by a
similar approach to that of Wen et al [105] and demonstrated experimentally, both achieving a large FoV.
The latter is also extended to 2D [109], analysed for circularly-polarised light and shown to achieve a long
focal length.

Wan et al use a GA to optimise a binary phase SOL, where the value of the phase shift forms part of the
optimisation problem [110]. Building on a GA formulation by Menon et al [111], the fitness function
combines the energy in the spot, energy in the sidebands and the FWHM. These elements are delicately
weighted (with a negative weight for the spot energy so that small values of the fitness function are
preferred), and a step-wise optimisation regime is advised. This involves including only the energy
considerations initially, introducing the FWHM and increasing the number of zones in later stages. A
finite-difference time-domain simulation of the optimised SOL is also included.

Genetic algorithms are applied in a number of further scenarios. Diao et al design a binary amplitude
SOL for realising an optical needle [112]. A single objective is optimised, comprising a carefully weighted
sum of three terms. These three terms aim to maintain a uniform intensity of the optical needle, maximise
the energy in the optical needle and maintain a constant FWHM. Additional constraints impose
pre-specified parameters including the FWHM, depth of focus and focal length.

A similar approach is used to design a binary amplitude SOL for realising multi-focal superoscillatory
spots [113]. Three weighted objectives, aimed at concentrating the energy uniformly in the spots, are
combined into a single-objective optimisation problem. Additional constraints impose pre-specified
parameters including FWHM and Irel.
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This approach is then modified to implement the constraints as penalty functions rather than
constraints, resulting in a single-objective unconstrained optimisation problem with improved convergence
[114]. Binary phase SOLs are designed, with the spot size now also part of the objective. Multi-focal and
achromatic superoscillatory spots, as well as a SOL aimed at tackling dispersion, are realised experimentally.

5. From theory to application

Many of the methods for constructing superoscillations reviewed above have been realised in experiments.
However, the transfer of theory to experiment is never straight-forward. There are numerous practical issues
to be resolved beyond the issues arising from the well-known theoretical trade-offs. These include dealing
with axial (and other) misalignment, imperfect manufacturing, noise and discretisation of continuous
functions, to name but a few. Where superoscillations have been demonstrated experimentally, these issues
have been overcome, and many authors include calculations and/or simulations to demonstrate the
robustness of their designed superoscillations.

Mathematical and numerical methods must also be intrinsically robust to be of general use. This includes
considerations such as induced instability, bounds on truncation errors and ensuring convergence where
appropriate. Again, authors generally address such issues alongside the development of any new methods.

This must be taken seriously in any pursuit of applying these methods, and is sufficiently important that
some papers are published entirely based on such considerations [115–118] . They are, however, beyond the
scope of this review, and we refer the reader to individual publications of interest for further detail.

6. Applications of optimised superoscillations

The generality of the superoscillation concept—the fact that it allows unusually rapid oscillations in any
band-limited wave system—gives it a huge range of potential applications, with some unexpected results.
Systems of interfering waves, and in particular band-limited waves, are not just found in optics, but in all
areas of science and technology. We briefly review some application areas below, to give an idea of the range
of problems to which the mathematical techniques above have been applied. We aim to give a flavour, rather
than an exhaustive list of applications of superoscillations, for which we refer the reader to other recent
reviews [23, 24, 26].

6.1. Imaging
One of the more obvious and widely exploited application areas is super-resolution imaging, which is an
enabling technology of immense importance across the physical and life sciences, as well as a field of research
in its own right (for a recent review of super-resolution imaging, see [119]). Indeed, Berry noted the power
of superoscillations for imaging as early as 1994, but it was 2007 before experimentalists described complex
optical fields as superoscillations [10], with the same authors proposing an imaging technology soon
afterwards [12]. In fact, Di Francia had already noted the application of these ideas to imaging in 1952 [9],
although he did not use the terminology of superoscillations, and the body of work on PFs (see section 3)
expanded on his idea and optimised the technology.

Microscopy is ideally suited to superoscillatory imaging, due to the degree of control of the whole optical
system, and the high-power illumination sources available, compared to detector sensitivities: a standard 100
mW visible laser produces 1017 photons per second, and a typical microscopy camera is capable of producing
high contrast images with tens of photons per pixel. Similarly, confocal scanning systems rarely use more
than a milliwatt of laser power, leaving several orders of magnitude of power to compensate for the inevitable
loss of energy into the sidebands. Confocal scanning microscopes also allow the sidebands to be filtered out
using pinholes, though it has also been shown [65, 71] that widefield superoscillatory microscopes can
achieve optical super-resolution. In 2013, Rogers et al [88] published the first work using SOLs for imaging,
and since then there have been many more advances in lens design (see section 4), lens fabrication [114, 120]
and imaging technology [69, 121–123]. In a different approach, multi-lobe superoscillations have also been
applied to structured illumination microscopy [49]. For a recent review of superoscillatory imaging see
reference [23].

Although SOLs work well in transmission geometries, Nagarajan et al [124] recently studied them for
reflection confocal nanoscopy, finding the double pass through the SOL to degrade imaging performance.
For this reason PF approaches, where the PF can be applied to only the focussing path, have been preferred
for reflection microscopy [73, 125, 126].

In general SOLs suffer from chromatic aberration: they focus different colours of light into different focal
spots, and often in an unpredictable pattern. More recently however, achromatic SOLs have been
demonstrated for super-resolution focussing [91, 127] and imaging [128]. In applications such as
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spectrometry, however, chromatic dependence is an advantage, and SOLs can be exploited for compact
spectral imaging [114].

Telescopes, while more sensitive to loss than microscopes, have the same resolution challenges and several
works have shown that superoscillatory PFs can also enhance telescope resolution [129, 130].

6.2. Superoscillatory optical needles
Standard methods of creating superoscillatory spots tend to produce spots that do not persist in the axial
(propagation) direction. This can be seen as an advantage in imaging applications (it can give high axial
resolution) or a disadvantage (it gives short depth of focus). To extend the depth of focus, one approach is to
create an optical needle: a superoscillatory focus that extends for many wavelengths in the propagation
direction. These have been created with SOLs [89, 112, 131], and PFs [132–135], or by techniques involving
the superposition of Bessel beams [75, 96, 136]. Roy et al demonstrated that these lenses could be used for
subdiffraction-limited imaging [137]. Further work has designed SOLs specifically for use in the next
generation of hard-disk drives, where tight focussing of UV light, but with a long depth of focus, is a major
technological challenge [90, 138]. These optical needles could also be applied to nanofabrication with light,
including optical micro- and nano-drilling, particularly where high length-to-diameter-ratio holes are
needed [139], and are particularly well suited to the (very common) paradigm of optically-written planar
fabrication, where a long depth of focus is a major technological advantage.

6.3. Optical lattices and trapping
Another common use of focussed light beams is for the trapping and manipulation of micro- and
nano-particles (see [140] for a recent review of the field). As such it is a natural field for application of
superoscillations, as noted by many authors [26, 70]. Axially invariant [141] or axially multifocal beams
[114] hold particular promise and over the last few years, both optical [142–144] and acoustic [145]
superoscillatory traps have been demonstrated.

Trapping multiple particles (using optical lattices) is a natural field where superoscillatory patterns (with
multiple spots in the focal plane, rather than a single focal spot) are of particular use. These types of field
have been studied from the early demonstrations of superoscillations, where quasi-crystalline arrays of spots
were investigated [10, 12]. Shortly after superoscillatory lenses became common, lens arrays (creating spot
arrays) were also designed and demonstrated [146]. More recently, the Talbot effect has been reported in
superoscillatory spot patterns [147]. While multilobe superoscillations have already been used for structured
illumination microscopy [49], it would be interesting to investigate the use of superoscillatory spot-arrays for
multifocal structured illumination microscopy [148].

6.4. Optical superoscillations in the time domain
As well as the well-known problem of focussing light into small spots, the creation of short temporal pulses is
a key challenge in both optics and signal processing. Conventionally, the minimum pulse length is limited by
the frequency and bandwidth of the optical field: analogous to the spot size being limited by the range of
spatial frequencies available. Superoscillatory pulses, therefore, can break this limit and produce rapid
temporal oscillations [59] and temporally compressed pulses [29, 149]. These temporal superoscillations can
be used to transmit high-frequency signals through absorbing media [59] or low pass filters [150], and have
been proposed to increase the range resolution of a radar system [151, 152] or to allow super-narrow
frequency conversion [48].

6.5. Suboscillations
As well as superoscillations, which oscillate faster than their highest Fourier component, suboscillations,
which oscillate slower than their lowest Fourier component have been proposed and studied. Eliezer and
Bahabad developed a mathematical treatment and demonstrated optically that they can cause light to
defocus unexpectedly rapidly [153]. Further work has investigated the mathematics [154] of suboscillations
and shown that arbitrarily shaped suboscillations can be designed [155].

6.6. Non-optical
Although many of the applications of superoscillations demonstrated so far have been in optics, it should be
remembered that they were originally described in quantum mechanics [2] where research in
superoscillations continues to push boundaries. For example, Aharonov et al have proved a surprising
longevity of time-evolving superoscillatory wavepackets [156, 157], and there is continual potential for the
applicability of such new results from quantum mechanics to other application areas.

Many further applications outside optics have also been explored. Superoscillations have been applied to
terahertz focussing [158, 159], used to create super-resolved electron beams [160] and used to create
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subwavelength acoustic foci [145, 161, 162]. In fact, the work of di Francia [9] was inspired by previous work
on radio-frequency super-gain (or super-directive) antennas. These use the same mathematics as
superoscillations but in reciprocal spaces. Optical superoscillations have limited spatial frequencies (or
equivalently angles of plane waves) and yet produce unexpectedly small spatial features. Super-gain antennas
use spatially-limited antennas to produce beams with unexpectedly small angular distributions [60, 61].
From the point of view of applications however, there is one crucial distinction: in super-gain antennas, the
(angular) sidebands can be pushed beyond an angle of 90

◦
, where they enter the evanescent region and are

not transmitted. In this case their effect is seen as a reactive loss (the antenna has to be supplied with more
energy than is transmitted) but the sidebands do not propagate and hence are not seen in the far-field. In
superoscillations, on the other hand, the sidebands remain real and are seen in the same space as the
superoscillatory feature.

Data compression is another obvious area of application for superoscillations: if we can (locally) increase
the effective bandwidth, then surely we can send more information through a band-limited transmission
channel. It is important to note, however, that the overall channel capacity is actually both bandwidth limited
and noise-limited: that is, the bandwidth limit is valid only for a particular noise level. If we consider a noisy
channel, the weaker superoscillatory section of the pulse becomes more difficult to faithfully detect,
requiring a lower-noise channel for error-free transmission. However, it is well-known that lowering the
noise floor also increases the channel capacity [163, 164] by the same amount as the superoscillatory
compression would achieve. The overall effect is that ‘compressing’ data by encoding into a superoscillatory
signal does not increase the overall channel capacity [36, 165], as might be naively expected, although it
provides a way of compressing data differently, which may have subtle benefits in some scenarios.

Broadening the scope even more, superoscillations have been proposed as a mechanism for heating in the
solar corona [166, 167], and for super-resolution in ground penetrating radar for landmine detection
[34, 168].

7. Concluding remarks and future outlook

This review is a tool for anyone planning to apply superoscillations to a new application, or to extend the
boundaries in an application where superoscillations have already been used. It lays out the available
mathematical methods, their considerations and capabilities, so that the one that is best suited to a particular
purpose can be chosen. Whether it is a new application that requires a large FoV with multiple
superoscillations, the design of a PF that is easier to manufacture, or the need for a spot that persists on
propagation, there are a multitude of available design methods at our disposal.

We have minimum-energy and minimum-energy-yield solutions, we have solutions that analytically
optimise some combination of spot size, spot intensity and FoV. Other solutions exploit the properties of
Bessel beams to achieve large depth of focus, or the cosine function for a smooth and regular result.
Numerical methods simultaneously tackle multiple objectives, and include several superoscillatory spots and
wavelengths. It is not surprising that we see a trend over time from analytic methods considering relatively
simple cases, using methods from linear algebra and variational techniques, to numerical methods tackling
increasingly complex scenarios with genetic algorithms.

Not only do these methods provide a range of options suited to different purposes, they also describe the
inevitable trade-offs that must be faced in applying superoscillations. Each application, and each scenario,
will be sensitive to different aspects of these trade-offs, and have different tolerances. Energy loss is not a
problem if powerful lasers are used with only a fraction of the available energy actually needed. However, the
relative intensity of the sidebands may pose a significant challenge. The shape of the superoscillations may be
crucial in some applications, whereas in others it can be relaxed. This review also outlines the capabilities of
each method to tackle such trade-offs, a consideration which will be equally important in choosing the
method best suited to a particular purpose.

Despite the numerous different technological methods for realising superoscillations, the mathematical
design methods can be categorised into just three different approaches: the direct approach of designing a
superoscillatory function, or specifically setting out to design a PF or a SOL. The theoretical capabilities of
the direct approach are limited only by our current mathematical understanding, while starting with a
particular PF or SOL in mind inevitably imposes restrictions. A PF or SOL may, however, be the practical
solution. The mathematics behind PFs is relatively straight-forward, with the use of a lens enabling far-field
approximations to be employed. Designing SOLs tends to lead to difficult inverse problems that are more
difficult to solve. An improved theoretical understanding of the mechanisms behind SOLs, and further
insight into inverse problems, will aid development in the area of SOL design.

Alongside this development of mathematical methods, the technology for realising superoscillatory
functions has also seen major break-throughs. Recent metalenses can simultaneously and (almost)
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continuously modulate both amplitude and phase, making the direct approach of designing superoscillatory
functions even more applicable to the search for the optimal SOL, while arbitrary pupil filters can be realised
with SLMs.

As well as laying out the available methods for designing superoscillations, this review also gives a picture
of the field of applied mathematics within the superoscillations literature, highlighting some areas for
development. Further theoretical analysis will enable superoscillations to be more fully exploited in
applications. This includes studying superoscillatory functions further in their own right, to really probe our
understanding of their properties, as well as optimising the features of superoscillations that are relevant to
applications. While the trade-off between the number of superoscillations and size of superoscillations with
total energy is understood in 1D, this has not been fully described in 2D or 3D. Furthermore, such
relationships between measures that may be of more concern in applications, such as FoV and relative
intensity, could be better characterised. Fundamental limits on sets of best possible compromises imposed by
the various trade-offs are also not known. With new application areas, new considerations and trade-offs are
also likely to emerge.

With sophisticated numerical methods now available, alongside widely-available processing power, it is
tempting to be led down that route, and no doubt much future development will result from such pursuits.
However, it is important not to forget the rich body of theoretical results and understanding that has built up
over the past decades, and to ensure that this is properly utilised in future developments, which may include
analytic and semi-analytic approaches.

It is an exciting time in the field of superoscillations, as early theoretical analysis has evolved to making a
growing impact on an ever-increasing number of real-world applications. There is great scope for both
theoretical growth to further our understanding of this remarkable effect, as well as technological
break-through to further push boundaries.
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[167] López Ariste A and Facchin M 2018 Superoscillations in solar MHD waves and their possible role in heating coronal loops Astron.

Astrophys. 614 1–12
[168] Kempf A and Prain A 2017 Driving quantum systems with superoscillations J. Math. Phys. 58 082101

27

https://doi.org/10.1364/AO.57.007905
https://doi.org/10.1364/AO.57.007905
https://doi.org/10.1103/PhysRevA.95.031802
https://doi.org/10.1103/PhysRevA.95.031802
https://doi.org/10.1002/adfm.201801127
https://doi.org/10.1002/adfm.201801127
https://doi.org/10.1038/s41598-018-27312-5
https://doi.org/10.1038/s41598-018-27312-5
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1109/JRPROC.1949.232969
https://doi.org/10.1088/1751-8121/aaeebb
https://doi.org/10.1088/1751-8121/aaeebb
https://doi.org/10.1051/0004-6361/201731401
https://doi.org/10.1051/0004-6361/201731401
https://doi.org/10.1063/1.4996135
https://doi.org/10.1063/1.4996135

	Realising superoscillations: A review of mathematical tools and their application
	1. Introduction
	2. Constructing superoscillatory functions
	2.1. Superoscillatory functions by interpolation
	2.2. Superoscillatory functions by manipulating zeros
	2.3. Superoscillatory functions with continuously specified shape
	2.4. Specifying properties such as FWHM, Irel and FoV

	3. Direct design of pupil filters
	4. Direct design of SOLs
	4.1. Direct solution to the inverse problem
	4.2. Particle swarm optimisation
	4.3. Genetic algorithms

	5. From theory to application
	6. Applications of optimised superoscillations
	6.1. Imaging
	6.2. Superoscillatory optical needles
	6.3. Optical lattices and trapping
	6.4. Optical superoscillations in the time domain
	6.5. Suboscillations
	6.6. Non-optical

	7. Concluding remarks and future outlook
	References


